xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_txrx.c (revision 3381df0954199458fa3993db72fb427f0ed1e43b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include <linux/bpf_trace.h>
9 #include <net/xdp.h>
10 #include "ice_txrx_lib.h"
11 #include "ice_lib.h"
12 #include "ice.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_xsk.h"
15 
16 #define ICE_RX_HDR_SIZE		256
17 
18 /**
19  * ice_unmap_and_free_tx_buf - Release a Tx buffer
20  * @ring: the ring that owns the buffer
21  * @tx_buf: the buffer to free
22  */
23 static void
24 ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
25 {
26 	if (tx_buf->skb) {
27 		if (ice_ring_is_xdp(ring))
28 			page_frag_free(tx_buf->raw_buf);
29 		else
30 			dev_kfree_skb_any(tx_buf->skb);
31 		if (dma_unmap_len(tx_buf, len))
32 			dma_unmap_single(ring->dev,
33 					 dma_unmap_addr(tx_buf, dma),
34 					 dma_unmap_len(tx_buf, len),
35 					 DMA_TO_DEVICE);
36 	} else if (dma_unmap_len(tx_buf, len)) {
37 		dma_unmap_page(ring->dev,
38 			       dma_unmap_addr(tx_buf, dma),
39 			       dma_unmap_len(tx_buf, len),
40 			       DMA_TO_DEVICE);
41 	}
42 
43 	tx_buf->next_to_watch = NULL;
44 	tx_buf->skb = NULL;
45 	dma_unmap_len_set(tx_buf, len, 0);
46 	/* tx_buf must be completely set up in the transmit path */
47 }
48 
49 static struct netdev_queue *txring_txq(const struct ice_ring *ring)
50 {
51 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
52 }
53 
54 /**
55  * ice_clean_tx_ring - Free any empty Tx buffers
56  * @tx_ring: ring to be cleaned
57  */
58 void ice_clean_tx_ring(struct ice_ring *tx_ring)
59 {
60 	u16 i;
61 
62 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
63 		ice_xsk_clean_xdp_ring(tx_ring);
64 		goto tx_skip_free;
65 	}
66 
67 	/* ring already cleared, nothing to do */
68 	if (!tx_ring->tx_buf)
69 		return;
70 
71 	/* Free all the Tx ring sk_buffs */
72 	for (i = 0; i < tx_ring->count; i++)
73 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
74 
75 tx_skip_free:
76 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
77 
78 	/* Zero out the descriptor ring */
79 	memset(tx_ring->desc, 0, tx_ring->size);
80 
81 	tx_ring->next_to_use = 0;
82 	tx_ring->next_to_clean = 0;
83 
84 	if (!tx_ring->netdev)
85 		return;
86 
87 	/* cleanup Tx queue statistics */
88 	netdev_tx_reset_queue(txring_txq(tx_ring));
89 }
90 
91 /**
92  * ice_free_tx_ring - Free Tx resources per queue
93  * @tx_ring: Tx descriptor ring for a specific queue
94  *
95  * Free all transmit software resources
96  */
97 void ice_free_tx_ring(struct ice_ring *tx_ring)
98 {
99 	ice_clean_tx_ring(tx_ring);
100 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
101 	tx_ring->tx_buf = NULL;
102 
103 	if (tx_ring->desc) {
104 		dmam_free_coherent(tx_ring->dev, tx_ring->size,
105 				   tx_ring->desc, tx_ring->dma);
106 		tx_ring->desc = NULL;
107 	}
108 }
109 
110 /**
111  * ice_clean_tx_irq - Reclaim resources after transmit completes
112  * @tx_ring: Tx ring to clean
113  * @napi_budget: Used to determine if we are in netpoll
114  *
115  * Returns true if there's any budget left (e.g. the clean is finished)
116  */
117 static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
118 {
119 	unsigned int total_bytes = 0, total_pkts = 0;
120 	unsigned int budget = ICE_DFLT_IRQ_WORK;
121 	struct ice_vsi *vsi = tx_ring->vsi;
122 	s16 i = tx_ring->next_to_clean;
123 	struct ice_tx_desc *tx_desc;
124 	struct ice_tx_buf *tx_buf;
125 
126 	tx_buf = &tx_ring->tx_buf[i];
127 	tx_desc = ICE_TX_DESC(tx_ring, i);
128 	i -= tx_ring->count;
129 
130 	prefetch(&vsi->state);
131 
132 	do {
133 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
134 
135 		/* if next_to_watch is not set then there is no work pending */
136 		if (!eop_desc)
137 			break;
138 
139 		smp_rmb();	/* prevent any other reads prior to eop_desc */
140 
141 		/* if the descriptor isn't done, no work yet to do */
142 		if (!(eop_desc->cmd_type_offset_bsz &
143 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
144 			break;
145 
146 		/* clear next_to_watch to prevent false hangs */
147 		tx_buf->next_to_watch = NULL;
148 
149 		/* update the statistics for this packet */
150 		total_bytes += tx_buf->bytecount;
151 		total_pkts += tx_buf->gso_segs;
152 
153 		if (ice_ring_is_xdp(tx_ring))
154 			page_frag_free(tx_buf->raw_buf);
155 		else
156 			/* free the skb */
157 			napi_consume_skb(tx_buf->skb, napi_budget);
158 
159 		/* unmap skb header data */
160 		dma_unmap_single(tx_ring->dev,
161 				 dma_unmap_addr(tx_buf, dma),
162 				 dma_unmap_len(tx_buf, len),
163 				 DMA_TO_DEVICE);
164 
165 		/* clear tx_buf data */
166 		tx_buf->skb = NULL;
167 		dma_unmap_len_set(tx_buf, len, 0);
168 
169 		/* unmap remaining buffers */
170 		while (tx_desc != eop_desc) {
171 			tx_buf++;
172 			tx_desc++;
173 			i++;
174 			if (unlikely(!i)) {
175 				i -= tx_ring->count;
176 				tx_buf = tx_ring->tx_buf;
177 				tx_desc = ICE_TX_DESC(tx_ring, 0);
178 			}
179 
180 			/* unmap any remaining paged data */
181 			if (dma_unmap_len(tx_buf, len)) {
182 				dma_unmap_page(tx_ring->dev,
183 					       dma_unmap_addr(tx_buf, dma),
184 					       dma_unmap_len(tx_buf, len),
185 					       DMA_TO_DEVICE);
186 				dma_unmap_len_set(tx_buf, len, 0);
187 			}
188 		}
189 
190 		/* move us one more past the eop_desc for start of next pkt */
191 		tx_buf++;
192 		tx_desc++;
193 		i++;
194 		if (unlikely(!i)) {
195 			i -= tx_ring->count;
196 			tx_buf = tx_ring->tx_buf;
197 			tx_desc = ICE_TX_DESC(tx_ring, 0);
198 		}
199 
200 		prefetch(tx_desc);
201 
202 		/* update budget accounting */
203 		budget--;
204 	} while (likely(budget));
205 
206 	i += tx_ring->count;
207 	tx_ring->next_to_clean = i;
208 
209 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
210 
211 	if (ice_ring_is_xdp(tx_ring))
212 		return !!budget;
213 
214 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
215 				  total_bytes);
216 
217 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
218 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
219 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
220 		/* Make sure that anybody stopping the queue after this
221 		 * sees the new next_to_clean.
222 		 */
223 		smp_mb();
224 		if (__netif_subqueue_stopped(tx_ring->netdev,
225 					     tx_ring->q_index) &&
226 		    !test_bit(__ICE_DOWN, vsi->state)) {
227 			netif_wake_subqueue(tx_ring->netdev,
228 					    tx_ring->q_index);
229 			++tx_ring->tx_stats.restart_q;
230 		}
231 	}
232 
233 	return !!budget;
234 }
235 
236 /**
237  * ice_setup_tx_ring - Allocate the Tx descriptors
238  * @tx_ring: the Tx ring to set up
239  *
240  * Return 0 on success, negative on error
241  */
242 int ice_setup_tx_ring(struct ice_ring *tx_ring)
243 {
244 	struct device *dev = tx_ring->dev;
245 
246 	if (!dev)
247 		return -ENOMEM;
248 
249 	/* warn if we are about to overwrite the pointer */
250 	WARN_ON(tx_ring->tx_buf);
251 	tx_ring->tx_buf =
252 		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
253 			     GFP_KERNEL);
254 	if (!tx_ring->tx_buf)
255 		return -ENOMEM;
256 
257 	/* round up to nearest page */
258 	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
259 			      PAGE_SIZE);
260 	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
261 					    GFP_KERNEL);
262 	if (!tx_ring->desc) {
263 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
264 			tx_ring->size);
265 		goto err;
266 	}
267 
268 	tx_ring->next_to_use = 0;
269 	tx_ring->next_to_clean = 0;
270 	tx_ring->tx_stats.prev_pkt = -1;
271 	return 0;
272 
273 err:
274 	devm_kfree(dev, tx_ring->tx_buf);
275 	tx_ring->tx_buf = NULL;
276 	return -ENOMEM;
277 }
278 
279 /**
280  * ice_clean_rx_ring - Free Rx buffers
281  * @rx_ring: ring to be cleaned
282  */
283 void ice_clean_rx_ring(struct ice_ring *rx_ring)
284 {
285 	struct device *dev = rx_ring->dev;
286 	u16 i;
287 
288 	/* ring already cleared, nothing to do */
289 	if (!rx_ring->rx_buf)
290 		return;
291 
292 	if (rx_ring->xsk_umem) {
293 		ice_xsk_clean_rx_ring(rx_ring);
294 		goto rx_skip_free;
295 	}
296 
297 	/* Free all the Rx ring sk_buffs */
298 	for (i = 0; i < rx_ring->count; i++) {
299 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
300 
301 		if (rx_buf->skb) {
302 			dev_kfree_skb(rx_buf->skb);
303 			rx_buf->skb = NULL;
304 		}
305 		if (!rx_buf->page)
306 			continue;
307 
308 		/* Invalidate cache lines that may have been written to by
309 		 * device so that we avoid corrupting memory.
310 		 */
311 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
312 					      rx_buf->page_offset,
313 					      rx_ring->rx_buf_len,
314 					      DMA_FROM_DEVICE);
315 
316 		/* free resources associated with mapping */
317 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
318 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
319 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
320 
321 		rx_buf->page = NULL;
322 		rx_buf->page_offset = 0;
323 	}
324 
325 rx_skip_free:
326 	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
327 
328 	/* Zero out the descriptor ring */
329 	memset(rx_ring->desc, 0, rx_ring->size);
330 
331 	rx_ring->next_to_alloc = 0;
332 	rx_ring->next_to_clean = 0;
333 	rx_ring->next_to_use = 0;
334 }
335 
336 /**
337  * ice_free_rx_ring - Free Rx resources
338  * @rx_ring: ring to clean the resources from
339  *
340  * Free all receive software resources
341  */
342 void ice_free_rx_ring(struct ice_ring *rx_ring)
343 {
344 	ice_clean_rx_ring(rx_ring);
345 	if (rx_ring->vsi->type == ICE_VSI_PF)
346 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
347 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
348 	rx_ring->xdp_prog = NULL;
349 	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
350 	rx_ring->rx_buf = NULL;
351 
352 	if (rx_ring->desc) {
353 		dmam_free_coherent(rx_ring->dev, rx_ring->size,
354 				   rx_ring->desc, rx_ring->dma);
355 		rx_ring->desc = NULL;
356 	}
357 }
358 
359 /**
360  * ice_setup_rx_ring - Allocate the Rx descriptors
361  * @rx_ring: the Rx ring to set up
362  *
363  * Return 0 on success, negative on error
364  */
365 int ice_setup_rx_ring(struct ice_ring *rx_ring)
366 {
367 	struct device *dev = rx_ring->dev;
368 
369 	if (!dev)
370 		return -ENOMEM;
371 
372 	/* warn if we are about to overwrite the pointer */
373 	WARN_ON(rx_ring->rx_buf);
374 	rx_ring->rx_buf =
375 		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
376 			     GFP_KERNEL);
377 	if (!rx_ring->rx_buf)
378 		return -ENOMEM;
379 
380 	/* round up to nearest page */
381 	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
382 			      PAGE_SIZE);
383 	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
384 					    GFP_KERNEL);
385 	if (!rx_ring->desc) {
386 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
387 			rx_ring->size);
388 		goto err;
389 	}
390 
391 	rx_ring->next_to_use = 0;
392 	rx_ring->next_to_clean = 0;
393 
394 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
395 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
396 
397 	if (rx_ring->vsi->type == ICE_VSI_PF &&
398 	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
399 		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
400 				     rx_ring->q_index))
401 			goto err;
402 	return 0;
403 
404 err:
405 	devm_kfree(dev, rx_ring->rx_buf);
406 	rx_ring->rx_buf = NULL;
407 	return -ENOMEM;
408 }
409 
410 /**
411  * ice_rx_offset - Return expected offset into page to access data
412  * @rx_ring: Ring we are requesting offset of
413  *
414  * Returns the offset value for ring into the data buffer.
415  */
416 static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
417 {
418 	if (ice_ring_uses_build_skb(rx_ring))
419 		return ICE_SKB_PAD;
420 	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
421 		return XDP_PACKET_HEADROOM;
422 
423 	return 0;
424 }
425 
426 /**
427  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
428  * @rx_ring: Rx ring
429  * @xdp: xdp_buff used as input to the XDP program
430  * @xdp_prog: XDP program to run
431  *
432  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
433  */
434 static int
435 ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
436 	    struct bpf_prog *xdp_prog)
437 {
438 	int err, result = ICE_XDP_PASS;
439 	struct ice_ring *xdp_ring;
440 	u32 act;
441 
442 	act = bpf_prog_run_xdp(xdp_prog, xdp);
443 	switch (act) {
444 	case XDP_PASS:
445 		break;
446 	case XDP_TX:
447 		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
448 		result = ice_xmit_xdp_buff(xdp, xdp_ring);
449 		break;
450 	case XDP_REDIRECT:
451 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
452 		result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
453 		break;
454 	default:
455 		bpf_warn_invalid_xdp_action(act);
456 		fallthrough;
457 	case XDP_ABORTED:
458 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
459 		fallthrough;
460 	case XDP_DROP:
461 		result = ICE_XDP_CONSUMED;
462 		break;
463 	}
464 
465 	return result;
466 }
467 
468 /**
469  * ice_xdp_xmit - submit packets to XDP ring for transmission
470  * @dev: netdev
471  * @n: number of XDP frames to be transmitted
472  * @frames: XDP frames to be transmitted
473  * @flags: transmit flags
474  *
475  * Returns number of frames successfully sent. Frames that fail are
476  * free'ed via XDP return API.
477  * For error cases, a negative errno code is returned and no-frames
478  * are transmitted (caller must handle freeing frames).
479  */
480 int
481 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
482 	     u32 flags)
483 {
484 	struct ice_netdev_priv *np = netdev_priv(dev);
485 	unsigned int queue_index = smp_processor_id();
486 	struct ice_vsi *vsi = np->vsi;
487 	struct ice_ring *xdp_ring;
488 	int drops = 0, i;
489 
490 	if (test_bit(__ICE_DOWN, vsi->state))
491 		return -ENETDOWN;
492 
493 	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
494 		return -ENXIO;
495 
496 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
497 		return -EINVAL;
498 
499 	xdp_ring = vsi->xdp_rings[queue_index];
500 	for (i = 0; i < n; i++) {
501 		struct xdp_frame *xdpf = frames[i];
502 		int err;
503 
504 		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
505 		if (err != ICE_XDP_TX) {
506 			xdp_return_frame_rx_napi(xdpf);
507 			drops++;
508 		}
509 	}
510 
511 	if (unlikely(flags & XDP_XMIT_FLUSH))
512 		ice_xdp_ring_update_tail(xdp_ring);
513 
514 	return n - drops;
515 }
516 
517 /**
518  * ice_alloc_mapped_page - recycle or make a new page
519  * @rx_ring: ring to use
520  * @bi: rx_buf struct to modify
521  *
522  * Returns true if the page was successfully allocated or
523  * reused.
524  */
525 static bool
526 ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
527 {
528 	struct page *page = bi->page;
529 	dma_addr_t dma;
530 
531 	/* since we are recycling buffers we should seldom need to alloc */
532 	if (likely(page)) {
533 		rx_ring->rx_stats.page_reuse_count++;
534 		return true;
535 	}
536 
537 	/* alloc new page for storage */
538 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
539 	if (unlikely(!page)) {
540 		rx_ring->rx_stats.alloc_page_failed++;
541 		return false;
542 	}
543 
544 	/* map page for use */
545 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
546 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
547 
548 	/* if mapping failed free memory back to system since
549 	 * there isn't much point in holding memory we can't use
550 	 */
551 	if (dma_mapping_error(rx_ring->dev, dma)) {
552 		__free_pages(page, ice_rx_pg_order(rx_ring));
553 		rx_ring->rx_stats.alloc_page_failed++;
554 		return false;
555 	}
556 
557 	bi->dma = dma;
558 	bi->page = page;
559 	bi->page_offset = ice_rx_offset(rx_ring);
560 	page_ref_add(page, USHRT_MAX - 1);
561 	bi->pagecnt_bias = USHRT_MAX;
562 
563 	return true;
564 }
565 
566 /**
567  * ice_alloc_rx_bufs - Replace used receive buffers
568  * @rx_ring: ring to place buffers on
569  * @cleaned_count: number of buffers to replace
570  *
571  * Returns false if all allocations were successful, true if any fail. Returning
572  * true signals to the caller that we didn't replace cleaned_count buffers and
573  * there is more work to do.
574  *
575  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
576  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
577  * multiple tail writes per call.
578  */
579 bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
580 {
581 	union ice_32b_rx_flex_desc *rx_desc;
582 	u16 ntu = rx_ring->next_to_use;
583 	struct ice_rx_buf *bi;
584 
585 	/* do nothing if no valid netdev defined */
586 	if (!rx_ring->netdev || !cleaned_count)
587 		return false;
588 
589 	/* get the Rx descriptor and buffer based on next_to_use */
590 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
591 	bi = &rx_ring->rx_buf[ntu];
592 
593 	do {
594 		/* if we fail here, we have work remaining */
595 		if (!ice_alloc_mapped_page(rx_ring, bi))
596 			break;
597 
598 		/* sync the buffer for use by the device */
599 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
600 						 bi->page_offset,
601 						 rx_ring->rx_buf_len,
602 						 DMA_FROM_DEVICE);
603 
604 		/* Refresh the desc even if buffer_addrs didn't change
605 		 * because each write-back erases this info.
606 		 */
607 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
608 
609 		rx_desc++;
610 		bi++;
611 		ntu++;
612 		if (unlikely(ntu == rx_ring->count)) {
613 			rx_desc = ICE_RX_DESC(rx_ring, 0);
614 			bi = rx_ring->rx_buf;
615 			ntu = 0;
616 		}
617 
618 		/* clear the status bits for the next_to_use descriptor */
619 		rx_desc->wb.status_error0 = 0;
620 
621 		cleaned_count--;
622 	} while (cleaned_count);
623 
624 	if (rx_ring->next_to_use != ntu)
625 		ice_release_rx_desc(rx_ring, ntu);
626 
627 	return !!cleaned_count;
628 }
629 
630 /**
631  * ice_page_is_reserved - check if reuse is possible
632  * @page: page struct to check
633  */
634 static bool ice_page_is_reserved(struct page *page)
635 {
636 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
637 }
638 
639 /**
640  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
641  * @rx_buf: Rx buffer to adjust
642  * @size: Size of adjustment
643  *
644  * Update the offset within page so that Rx buf will be ready to be reused.
645  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
646  * so the second half of page assigned to Rx buffer will be used, otherwise
647  * the offset is moved by "size" bytes
648  */
649 static void
650 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
651 {
652 #if (PAGE_SIZE < 8192)
653 	/* flip page offset to other buffer */
654 	rx_buf->page_offset ^= size;
655 #else
656 	/* move offset up to the next cache line */
657 	rx_buf->page_offset += size;
658 #endif
659 }
660 
661 /**
662  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
663  * @rx_buf: buffer containing the page
664  *
665  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
666  * which will assign the current buffer to the buffer that next_to_alloc is
667  * pointing to; otherwise, the DMA mapping needs to be destroyed and
668  * page freed
669  */
670 static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
671 {
672 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
673 	struct page *page = rx_buf->page;
674 
675 	/* avoid re-using remote pages */
676 	if (unlikely(ice_page_is_reserved(page)))
677 		return false;
678 
679 #if (PAGE_SIZE < 8192)
680 	/* if we are only owner of page we can reuse it */
681 	if (unlikely((page_count(page) - pagecnt_bias) > 1))
682 		return false;
683 #else
684 #define ICE_LAST_OFFSET \
685 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
686 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
687 		return false;
688 #endif /* PAGE_SIZE < 8192) */
689 
690 	/* If we have drained the page fragment pool we need to update
691 	 * the pagecnt_bias and page count so that we fully restock the
692 	 * number of references the driver holds.
693 	 */
694 	if (unlikely(pagecnt_bias == 1)) {
695 		page_ref_add(page, USHRT_MAX - 1);
696 		rx_buf->pagecnt_bias = USHRT_MAX;
697 	}
698 
699 	return true;
700 }
701 
702 /**
703  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
704  * @rx_ring: Rx descriptor ring to transact packets on
705  * @rx_buf: buffer containing page to add
706  * @skb: sk_buff to place the data into
707  * @size: packet length from rx_desc
708  *
709  * This function will add the data contained in rx_buf->page to the skb.
710  * It will just attach the page as a frag to the skb.
711  * The function will then update the page offset.
712  */
713 static void
714 ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
715 		struct sk_buff *skb, unsigned int size)
716 {
717 #if (PAGE_SIZE >= 8192)
718 	unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring));
719 #else
720 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
721 #endif
722 
723 	if (!size)
724 		return;
725 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
726 			rx_buf->page_offset, size, truesize);
727 
728 	/* page is being used so we must update the page offset */
729 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
730 }
731 
732 /**
733  * ice_reuse_rx_page - page flip buffer and store it back on the ring
734  * @rx_ring: Rx descriptor ring to store buffers on
735  * @old_buf: donor buffer to have page reused
736  *
737  * Synchronizes page for reuse by the adapter
738  */
739 static void
740 ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
741 {
742 	u16 nta = rx_ring->next_to_alloc;
743 	struct ice_rx_buf *new_buf;
744 
745 	new_buf = &rx_ring->rx_buf[nta];
746 
747 	/* update, and store next to alloc */
748 	nta++;
749 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
750 
751 	/* Transfer page from old buffer to new buffer.
752 	 * Move each member individually to avoid possible store
753 	 * forwarding stalls and unnecessary copy of skb.
754 	 */
755 	new_buf->dma = old_buf->dma;
756 	new_buf->page = old_buf->page;
757 	new_buf->page_offset = old_buf->page_offset;
758 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
759 }
760 
761 /**
762  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
763  * @rx_ring: Rx descriptor ring to transact packets on
764  * @skb: skb to be used
765  * @size: size of buffer to add to skb
766  *
767  * This function will pull an Rx buffer from the ring and synchronize it
768  * for use by the CPU.
769  */
770 static struct ice_rx_buf *
771 ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
772 	       const unsigned int size)
773 {
774 	struct ice_rx_buf *rx_buf;
775 
776 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
777 	prefetchw(rx_buf->page);
778 	*skb = rx_buf->skb;
779 
780 	if (!size)
781 		return rx_buf;
782 	/* we are reusing so sync this buffer for CPU use */
783 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
784 				      rx_buf->page_offset, size,
785 				      DMA_FROM_DEVICE);
786 
787 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
788 	rx_buf->pagecnt_bias--;
789 
790 	return rx_buf;
791 }
792 
793 /**
794  * ice_build_skb - Build skb around an existing buffer
795  * @rx_ring: Rx descriptor ring to transact packets on
796  * @rx_buf: Rx buffer to pull data from
797  * @xdp: xdp_buff pointing to the data
798  *
799  * This function builds an skb around an existing Rx buffer, taking care
800  * to set up the skb correctly and avoid any memcpy overhead.
801  */
802 static struct sk_buff *
803 ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
804 	      struct xdp_buff *xdp)
805 {
806 	unsigned int metasize = xdp->data - xdp->data_meta;
807 #if (PAGE_SIZE < 8192)
808 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
809 #else
810 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
811 				SKB_DATA_ALIGN(xdp->data_end -
812 					       xdp->data_hard_start);
813 #endif
814 	struct sk_buff *skb;
815 
816 	/* Prefetch first cache line of first page. If xdp->data_meta
817 	 * is unused, this points exactly as xdp->data, otherwise we
818 	 * likely have a consumer accessing first few bytes of meta
819 	 * data, and then actual data.
820 	 */
821 	prefetch(xdp->data_meta);
822 #if L1_CACHE_BYTES < 128
823 	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
824 #endif
825 	/* build an skb around the page buffer */
826 	skb = build_skb(xdp->data_hard_start, truesize);
827 	if (unlikely(!skb))
828 		return NULL;
829 
830 	/* must to record Rx queue, otherwise OS features such as
831 	 * symmetric queue won't work
832 	 */
833 	skb_record_rx_queue(skb, rx_ring->q_index);
834 
835 	/* update pointers within the skb to store the data */
836 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
837 	__skb_put(skb, xdp->data_end - xdp->data);
838 	if (metasize)
839 		skb_metadata_set(skb, metasize);
840 
841 	/* buffer is used by skb, update page_offset */
842 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
843 
844 	return skb;
845 }
846 
847 /**
848  * ice_construct_skb - Allocate skb and populate it
849  * @rx_ring: Rx descriptor ring to transact packets on
850  * @rx_buf: Rx buffer to pull data from
851  * @xdp: xdp_buff pointing to the data
852  *
853  * This function allocates an skb. It then populates it with the page
854  * data from the current receive descriptor, taking care to set up the
855  * skb correctly.
856  */
857 static struct sk_buff *
858 ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
859 		  struct xdp_buff *xdp)
860 {
861 	unsigned int size = xdp->data_end - xdp->data;
862 	unsigned int headlen;
863 	struct sk_buff *skb;
864 
865 	/* prefetch first cache line of first page */
866 	prefetch(xdp->data);
867 #if L1_CACHE_BYTES < 128
868 	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
869 #endif /* L1_CACHE_BYTES */
870 
871 	/* allocate a skb to store the frags */
872 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
873 			       GFP_ATOMIC | __GFP_NOWARN);
874 	if (unlikely(!skb))
875 		return NULL;
876 
877 	skb_record_rx_queue(skb, rx_ring->q_index);
878 	/* Determine available headroom for copy */
879 	headlen = size;
880 	if (headlen > ICE_RX_HDR_SIZE)
881 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
882 
883 	/* align pull length to size of long to optimize memcpy performance */
884 	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
885 							 sizeof(long)));
886 
887 	/* if we exhaust the linear part then add what is left as a frag */
888 	size -= headlen;
889 	if (size) {
890 #if (PAGE_SIZE >= 8192)
891 		unsigned int truesize = SKB_DATA_ALIGN(size);
892 #else
893 		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
894 #endif
895 		skb_add_rx_frag(skb, 0, rx_buf->page,
896 				rx_buf->page_offset + headlen, size, truesize);
897 		/* buffer is used by skb, update page_offset */
898 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
899 	} else {
900 		/* buffer is unused, reset bias back to rx_buf; data was copied
901 		 * onto skb's linear part so there's no need for adjusting
902 		 * page offset and we can reuse this buffer as-is
903 		 */
904 		rx_buf->pagecnt_bias++;
905 	}
906 
907 	return skb;
908 }
909 
910 /**
911  * ice_put_rx_buf - Clean up used buffer and either recycle or free
912  * @rx_ring: Rx descriptor ring to transact packets on
913  * @rx_buf: Rx buffer to pull data from
914  *
915  * This function will update next_to_clean and then clean up the contents
916  * of the rx_buf. It will either recycle the buffer or unmap it and free
917  * the associated resources.
918  */
919 static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
920 {
921 	u32 ntc = rx_ring->next_to_clean + 1;
922 
923 	/* fetch, update, and store next to clean */
924 	ntc = (ntc < rx_ring->count) ? ntc : 0;
925 	rx_ring->next_to_clean = ntc;
926 
927 	if (!rx_buf)
928 		return;
929 
930 	if (ice_can_reuse_rx_page(rx_buf)) {
931 		/* hand second half of page back to the ring */
932 		ice_reuse_rx_page(rx_ring, rx_buf);
933 		rx_ring->rx_stats.page_reuse_count++;
934 	} else {
935 		/* we are not reusing the buffer so unmap it */
936 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
937 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
938 				     ICE_RX_DMA_ATTR);
939 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
940 	}
941 
942 	/* clear contents of buffer_info */
943 	rx_buf->page = NULL;
944 	rx_buf->skb = NULL;
945 }
946 
947 /**
948  * ice_is_non_eop - process handling of non-EOP buffers
949  * @rx_ring: Rx ring being processed
950  * @rx_desc: Rx descriptor for current buffer
951  * @skb: Current socket buffer containing buffer in progress
952  *
953  * If the buffer is an EOP buffer, this function exits returning false,
954  * otherwise return true indicating that this is in fact a non-EOP buffer.
955  */
956 static bool
957 ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
958 	       struct sk_buff *skb)
959 {
960 	/* if we are the last buffer then there is nothing else to do */
961 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
962 	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
963 		return false;
964 
965 	/* place skb in next buffer to be received */
966 	rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
967 	rx_ring->rx_stats.non_eop_descs++;
968 
969 	return true;
970 }
971 
972 /**
973  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
974  * @rx_ring: Rx descriptor ring to transact packets on
975  * @budget: Total limit on number of packets to process
976  *
977  * This function provides a "bounce buffer" approach to Rx interrupt
978  * processing. The advantage to this is that on systems that have
979  * expensive overhead for IOMMU access this provides a means of avoiding
980  * it by maintaining the mapping of the page to the system.
981  *
982  * Returns amount of work completed
983  */
984 static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
985 {
986 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
987 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
988 	unsigned int xdp_res, xdp_xmit = 0;
989 	struct bpf_prog *xdp_prog = NULL;
990 	struct xdp_buff xdp;
991 	bool failure;
992 
993 	xdp.rxq = &rx_ring->xdp_rxq;
994 
995 	/* start the loop to process Rx packets bounded by 'budget' */
996 	while (likely(total_rx_pkts < (unsigned int)budget)) {
997 		union ice_32b_rx_flex_desc *rx_desc;
998 		struct ice_rx_buf *rx_buf;
999 		struct sk_buff *skb;
1000 		unsigned int size;
1001 		u16 stat_err_bits;
1002 		u16 vlan_tag = 0;
1003 		u8 rx_ptype;
1004 
1005 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1006 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1007 
1008 		/* status_error_len will always be zero for unused descriptors
1009 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1010 		 * which is always zero because packet split isn't used, if the
1011 		 * hardware wrote DD then it will be non-zero
1012 		 */
1013 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1014 		if (!ice_test_staterr(rx_desc, stat_err_bits))
1015 			break;
1016 
1017 		/* This memory barrier is needed to keep us from reading
1018 		 * any other fields out of the rx_desc until we know the
1019 		 * DD bit is set.
1020 		 */
1021 		dma_rmb();
1022 
1023 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1024 			ICE_RX_FLX_DESC_PKT_LEN_M;
1025 
1026 		/* retrieve a buffer from the ring */
1027 		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1028 
1029 		if (!size) {
1030 			xdp.data = NULL;
1031 			xdp.data_end = NULL;
1032 			xdp.data_hard_start = NULL;
1033 			xdp.data_meta = NULL;
1034 			goto construct_skb;
1035 		}
1036 
1037 		xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
1038 		xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
1039 		xdp.data_meta = xdp.data;
1040 		xdp.data_end = xdp.data + size;
1041 
1042 		rcu_read_lock();
1043 		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1044 		if (!xdp_prog) {
1045 			rcu_read_unlock();
1046 			goto construct_skb;
1047 		}
1048 
1049 		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1050 		rcu_read_unlock();
1051 		if (!xdp_res)
1052 			goto construct_skb;
1053 		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1054 			unsigned int truesize;
1055 
1056 #if (PAGE_SIZE < 8192)
1057 			truesize = ice_rx_pg_size(rx_ring) / 2;
1058 #else
1059 			truesize = SKB_DATA_ALIGN(ice_rx_offset(rx_ring) +
1060 						  size);
1061 #endif
1062 			xdp_xmit |= xdp_res;
1063 			ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1064 		} else {
1065 			rx_buf->pagecnt_bias++;
1066 		}
1067 		total_rx_bytes += size;
1068 		total_rx_pkts++;
1069 
1070 		cleaned_count++;
1071 		ice_put_rx_buf(rx_ring, rx_buf);
1072 		continue;
1073 construct_skb:
1074 		if (skb) {
1075 			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1076 		} else if (likely(xdp.data)) {
1077 			if (ice_ring_uses_build_skb(rx_ring))
1078 				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1079 			else
1080 				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1081 		}
1082 		/* exit if we failed to retrieve a buffer */
1083 		if (!skb) {
1084 			rx_ring->rx_stats.alloc_buf_failed++;
1085 			if (rx_buf)
1086 				rx_buf->pagecnt_bias++;
1087 			break;
1088 		}
1089 
1090 		ice_put_rx_buf(rx_ring, rx_buf);
1091 		cleaned_count++;
1092 
1093 		/* skip if it is NOP desc */
1094 		if (ice_is_non_eop(rx_ring, rx_desc, skb))
1095 			continue;
1096 
1097 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1098 		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1099 			dev_kfree_skb_any(skb);
1100 			continue;
1101 		}
1102 
1103 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1104 		if (ice_test_staterr(rx_desc, stat_err_bits))
1105 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1106 
1107 		/* pad the skb if needed, to make a valid ethernet frame */
1108 		if (eth_skb_pad(skb)) {
1109 			skb = NULL;
1110 			continue;
1111 		}
1112 
1113 		/* probably a little skewed due to removing CRC */
1114 		total_rx_bytes += skb->len;
1115 
1116 		/* populate checksum, VLAN, and protocol */
1117 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1118 			ICE_RX_FLEX_DESC_PTYPE_M;
1119 
1120 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1121 
1122 		/* send completed skb up the stack */
1123 		ice_receive_skb(rx_ring, skb, vlan_tag);
1124 
1125 		/* update budget accounting */
1126 		total_rx_pkts++;
1127 	}
1128 
1129 	/* return up to cleaned_count buffers to hardware */
1130 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1131 
1132 	if (xdp_prog)
1133 		ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1134 
1135 	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1136 
1137 	/* guarantee a trip back through this routine if there was a failure */
1138 	return failure ? budget : (int)total_rx_pkts;
1139 }
1140 
1141 /**
1142  * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1143  * @port_info: port_info structure containing the current link speed
1144  * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1145  * @itr: ITR value to update
1146  *
1147  * Calculate how big of an increment should be applied to the ITR value passed
1148  * in based on wmem_default, SKB overhead, Ethernet overhead, and the current
1149  * link speed.
1150  *
1151  * The following is a calculation derived from:
1152  *  wmem_default / (size + overhead) = desired_pkts_per_int
1153  *  rate / bits_per_byte / (size + Ethernet overhead) = pkt_rate
1154  *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1155  *
1156  * Assuming wmem_default is 212992 and overhead is 640 bytes per
1157  * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1158  * formula down to:
1159  *
1160  *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1161  * ITR = -------------------------------------------- * --------------
1162  *			     rate			pkt_size + 640
1163  */
1164 static unsigned int
1165 ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1166 				 unsigned int avg_pkt_size,
1167 				 unsigned int itr)
1168 {
1169 	switch (port_info->phy.link_info.link_speed) {
1170 	case ICE_AQ_LINK_SPEED_100GB:
1171 		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1172 				    avg_pkt_size + 640);
1173 		break;
1174 	case ICE_AQ_LINK_SPEED_50GB:
1175 		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1176 				    avg_pkt_size + 640);
1177 		break;
1178 	case ICE_AQ_LINK_SPEED_40GB:
1179 		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1180 				    avg_pkt_size + 640);
1181 		break;
1182 	case ICE_AQ_LINK_SPEED_25GB:
1183 		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1184 				    avg_pkt_size + 640);
1185 		break;
1186 	case ICE_AQ_LINK_SPEED_20GB:
1187 		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1188 				    avg_pkt_size + 640);
1189 		break;
1190 	case ICE_AQ_LINK_SPEED_10GB:
1191 	default:
1192 		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1193 				    avg_pkt_size + 640);
1194 		break;
1195 	}
1196 
1197 	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1198 		itr &= ICE_ITR_ADAPTIVE_LATENCY;
1199 		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1200 	}
1201 
1202 	return itr;
1203 }
1204 
1205 /**
1206  * ice_update_itr - update the adaptive ITR value based on statistics
1207  * @q_vector: structure containing interrupt and ring information
1208  * @rc: structure containing ring performance data
1209  *
1210  * Stores a new ITR value based on packets and byte
1211  * counts during the last interrupt.  The advantage of per interrupt
1212  * computation is faster updates and more accurate ITR for the current
1213  * traffic pattern.  Constants in this function were computed
1214  * based on theoretical maximum wire speed and thresholds were set based
1215  * on testing data as well as attempting to minimize response time
1216  * while increasing bulk throughput.
1217  */
1218 static void
1219 ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1220 {
1221 	unsigned long next_update = jiffies;
1222 	unsigned int packets, bytes, itr;
1223 	bool container_is_rx;
1224 
1225 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1226 		return;
1227 
1228 	/* If itr_countdown is set it means we programmed an ITR within
1229 	 * the last 4 interrupt cycles. This has a side effect of us
1230 	 * potentially firing an early interrupt. In order to work around
1231 	 * this we need to throw out any data received for a few
1232 	 * interrupts following the update.
1233 	 */
1234 	if (q_vector->itr_countdown) {
1235 		itr = rc->target_itr;
1236 		goto clear_counts;
1237 	}
1238 
1239 	container_is_rx = (&q_vector->rx == rc);
1240 	/* For Rx we want to push the delay up and default to low latency.
1241 	 * for Tx we want to pull the delay down and default to high latency.
1242 	 */
1243 	itr = container_is_rx ?
1244 		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1245 		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1246 
1247 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1248 	 * that either packets are coming in so slow there hasn't been
1249 	 * any work, or that there is so much work that NAPI is dealing
1250 	 * with interrupt moderation and we don't need to do anything.
1251 	 */
1252 	if (time_after(next_update, rc->next_update))
1253 		goto clear_counts;
1254 
1255 	prefetch(q_vector->vsi->port_info);
1256 
1257 	packets = rc->total_pkts;
1258 	bytes = rc->total_bytes;
1259 
1260 	if (container_is_rx) {
1261 		/* If Rx there are 1 to 4 packets and bytes are less than
1262 		 * 9000 assume insufficient data to use bulk rate limiting
1263 		 * approach unless Tx is already in bulk rate limiting. We
1264 		 * are likely latency driven.
1265 		 */
1266 		if (packets && packets < 4 && bytes < 9000 &&
1267 		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1268 			itr = ICE_ITR_ADAPTIVE_LATENCY;
1269 			goto adjust_by_size_and_speed;
1270 		}
1271 	} else if (packets < 4) {
1272 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1273 		 * bulk mode and we are receiving 4 or fewer packets just
1274 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1275 		 * that the Rx can relax.
1276 		 */
1277 		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1278 		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1279 		    ICE_ITR_ADAPTIVE_MAX_USECS)
1280 			goto clear_counts;
1281 	} else if (packets > 32) {
1282 		/* If we have processed over 32 packets in a single interrupt
1283 		 * for Tx assume we need to switch over to "bulk" mode.
1284 		 */
1285 		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1286 	}
1287 
1288 	/* We have no packets to actually measure against. This means
1289 	 * either one of the other queues on this vector is active or
1290 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1291 	 *
1292 	 * Between 4 and 56 we can assume that our current interrupt delay
1293 	 * is only slightly too low. As such we should increase it by a small
1294 	 * fixed amount.
1295 	 */
1296 	if (packets < 56) {
1297 		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1298 		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1299 			itr &= ICE_ITR_ADAPTIVE_LATENCY;
1300 			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1301 		}
1302 		goto clear_counts;
1303 	}
1304 
1305 	if (packets <= 256) {
1306 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1307 		itr &= ICE_ITR_MASK;
1308 
1309 		/* Between 56 and 112 is our "goldilocks" zone where we are
1310 		 * working out "just right". Just report that our current
1311 		 * ITR is good for us.
1312 		 */
1313 		if (packets <= 112)
1314 			goto clear_counts;
1315 
1316 		/* If packet count is 128 or greater we are likely looking
1317 		 * at a slight overrun of the delay we want. Try halving
1318 		 * our delay to see if that will cut the number of packets
1319 		 * in half per interrupt.
1320 		 */
1321 		itr >>= 1;
1322 		itr &= ICE_ITR_MASK;
1323 		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1324 			itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1325 
1326 		goto clear_counts;
1327 	}
1328 
1329 	/* The paths below assume we are dealing with a bulk ITR since
1330 	 * number of packets is greater than 256. We are just going to have
1331 	 * to compute a value and try to bring the count under control,
1332 	 * though for smaller packet sizes there isn't much we can do as
1333 	 * NAPI polling will likely be kicking in sooner rather than later.
1334 	 */
1335 	itr = ICE_ITR_ADAPTIVE_BULK;
1336 
1337 adjust_by_size_and_speed:
1338 
1339 	/* based on checks above packets cannot be 0 so division is safe */
1340 	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1341 					       bytes / packets, itr);
1342 
1343 clear_counts:
1344 	/* write back value */
1345 	rc->target_itr = itr;
1346 
1347 	/* next update should occur within next jiffy */
1348 	rc->next_update = next_update + 1;
1349 
1350 	rc->total_bytes = 0;
1351 	rc->total_pkts = 0;
1352 }
1353 
1354 /**
1355  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1356  * @itr_idx: interrupt throttling index
1357  * @itr: interrupt throttling value in usecs
1358  */
1359 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1360 {
1361 	/* The ITR value is reported in microseconds, and the register value is
1362 	 * recorded in 2 microsecond units. For this reason we only need to
1363 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1364 	 * granularity as a shift instead of division. The mask makes sure the
1365 	 * ITR value is never odd so we don't accidentally write into the field
1366 	 * prior to the ITR field.
1367 	 */
1368 	itr &= ICE_ITR_MASK;
1369 
1370 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1371 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1372 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1373 }
1374 
1375 /* The act of updating the ITR will cause it to immediately trigger. In order
1376  * to prevent this from throwing off adaptive update statistics we defer the
1377  * update so that it can only happen so often. So after either Tx or Rx are
1378  * updated we make the adaptive scheme wait until either the ITR completely
1379  * expires via the next_update expiration or we have been through at least
1380  * 3 interrupts.
1381  */
1382 #define ITR_COUNTDOWN_START 3
1383 
1384 /**
1385  * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1386  * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1387  */
1388 static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1389 {
1390 	struct ice_ring_container *tx = &q_vector->tx;
1391 	struct ice_ring_container *rx = &q_vector->rx;
1392 	struct ice_vsi *vsi = q_vector->vsi;
1393 	u32 itr_val;
1394 
1395 	/* when exiting WB_ON_ITR lets set a low ITR value and trigger
1396 	 * interrupts to expire right away in case we have more work ready to go
1397 	 * already
1398 	 */
1399 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
1400 		itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
1401 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1402 		/* set target back to last user set value */
1403 		rx->target_itr = rx->itr_setting;
1404 		/* set current to what we just wrote and dynamic if needed */
1405 		rx->current_itr = ICE_WB_ON_ITR_USECS |
1406 			(rx->itr_setting & ICE_ITR_DYNAMIC);
1407 		/* allow normal interrupt flow to start */
1408 		q_vector->itr_countdown = 0;
1409 		return;
1410 	}
1411 
1412 	/* This will do nothing if dynamic updates are not enabled */
1413 	ice_update_itr(q_vector, tx);
1414 	ice_update_itr(q_vector, rx);
1415 
1416 	/* This block of logic allows us to get away with only updating
1417 	 * one ITR value with each interrupt. The idea is to perform a
1418 	 * pseudo-lazy update with the following criteria.
1419 	 *
1420 	 * 1. Rx is given higher priority than Tx if both are in same state
1421 	 * 2. If we must reduce an ITR that is given highest priority.
1422 	 * 3. We then give priority to increasing ITR based on amount.
1423 	 */
1424 	if (rx->target_itr < rx->current_itr) {
1425 		/* Rx ITR needs to be reduced, this is highest priority */
1426 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1427 		rx->current_itr = rx->target_itr;
1428 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1429 	} else if ((tx->target_itr < tx->current_itr) ||
1430 		   ((rx->target_itr - rx->current_itr) <
1431 		    (tx->target_itr - tx->current_itr))) {
1432 		/* Tx ITR needs to be reduced, this is second priority
1433 		 * Tx ITR needs to be increased more than Rx, fourth priority
1434 		 */
1435 		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1436 		tx->current_itr = tx->target_itr;
1437 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1438 	} else if (rx->current_itr != rx->target_itr) {
1439 		/* Rx ITR needs to be increased, third priority */
1440 		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1441 		rx->current_itr = rx->target_itr;
1442 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1443 	} else {
1444 		/* Still have to re-enable the interrupts */
1445 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1446 		if (q_vector->itr_countdown)
1447 			q_vector->itr_countdown--;
1448 	}
1449 
1450 	if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
1451 		wr32(&q_vector->vsi->back->hw,
1452 		     GLINT_DYN_CTL(q_vector->reg_idx),
1453 		     itr_val);
1454 }
1455 
1456 /**
1457  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1458  * @q_vector: q_vector to set WB_ON_ITR on
1459  *
1460  * We need to tell hardware to write-back completed descriptors even when
1461  * interrupts are disabled. Descriptors will be written back on cache line
1462  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1463  * descriptors may not be written back if they don't fill a cache line until the
1464  * next interrupt.
1465  *
1466  * This sets the write-back frequency to 2 microseconds as that is the minimum
1467  * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
1468  * make sure hardware knows we aren't meddling with the INTENA_M bit.
1469  */
1470 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1471 {
1472 	struct ice_vsi *vsi = q_vector->vsi;
1473 
1474 	/* already in WB_ON_ITR mode no need to change it */
1475 	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1476 		return;
1477 
1478 	if (q_vector->num_ring_rx)
1479 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1480 		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1481 						 ICE_RX_ITR));
1482 
1483 	if (q_vector->num_ring_tx)
1484 		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1485 		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1486 						 ICE_TX_ITR));
1487 
1488 	q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1489 }
1490 
1491 /**
1492  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1493  * @napi: napi struct with our devices info in it
1494  * @budget: amount of work driver is allowed to do this pass, in packets
1495  *
1496  * This function will clean all queues associated with a q_vector.
1497  *
1498  * Returns the amount of work done
1499  */
1500 int ice_napi_poll(struct napi_struct *napi, int budget)
1501 {
1502 	struct ice_q_vector *q_vector =
1503 				container_of(napi, struct ice_q_vector, napi);
1504 	bool clean_complete = true;
1505 	struct ice_ring *ring;
1506 	int budget_per_ring;
1507 	int work_done = 0;
1508 
1509 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1510 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1511 	 */
1512 	ice_for_each_ring(ring, q_vector->tx) {
1513 		bool wd = ring->xsk_umem ?
1514 			  ice_clean_tx_irq_zc(ring, budget) :
1515 			  ice_clean_tx_irq(ring, budget);
1516 
1517 		if (!wd)
1518 			clean_complete = false;
1519 	}
1520 
1521 	/* Handle case where we are called by netpoll with a budget of 0 */
1522 	if (unlikely(budget <= 0))
1523 		return budget;
1524 
1525 	/* normally we have 1 Rx ring per q_vector */
1526 	if (unlikely(q_vector->num_ring_rx > 1))
1527 		/* We attempt to distribute budget to each Rx queue fairly, but
1528 		 * don't allow the budget to go below 1 because that would exit
1529 		 * polling early.
1530 		 */
1531 		budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
1532 	else
1533 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1534 		budget_per_ring = budget;
1535 
1536 	ice_for_each_ring(ring, q_vector->rx) {
1537 		int cleaned;
1538 
1539 		/* A dedicated path for zero-copy allows making a single
1540 		 * comparison in the irq context instead of many inside the
1541 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1542 		 */
1543 		cleaned = ring->xsk_umem ?
1544 			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
1545 			  ice_clean_rx_irq(ring, budget_per_ring);
1546 		work_done += cleaned;
1547 		/* if we clean as many as budgeted, we must not be done */
1548 		if (cleaned >= budget_per_ring)
1549 			clean_complete = false;
1550 	}
1551 
1552 	/* If work not completed, return budget and polling will return */
1553 	if (!clean_complete)
1554 		return budget;
1555 
1556 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1557 	 * poll us due to busy-polling
1558 	 */
1559 	if (likely(napi_complete_done(napi, work_done)))
1560 		ice_update_ena_itr(q_vector);
1561 	else
1562 		ice_set_wb_on_itr(q_vector);
1563 
1564 	return min_t(int, work_done, budget - 1);
1565 }
1566 
1567 /**
1568  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1569  * @tx_ring: the ring to be checked
1570  * @size: the size buffer we want to assure is available
1571  *
1572  * Returns -EBUSY if a stop is needed, else 0
1573  */
1574 static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1575 {
1576 	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1577 	/* Memory barrier before checking head and tail */
1578 	smp_mb();
1579 
1580 	/* Check again in a case another CPU has just made room available. */
1581 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1582 		return -EBUSY;
1583 
1584 	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1585 	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1586 	++tx_ring->tx_stats.restart_q;
1587 	return 0;
1588 }
1589 
1590 /**
1591  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1592  * @tx_ring: the ring to be checked
1593  * @size:    the size buffer we want to assure is available
1594  *
1595  * Returns 0 if stop is not needed
1596  */
1597 static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1598 {
1599 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1600 		return 0;
1601 
1602 	return __ice_maybe_stop_tx(tx_ring, size);
1603 }
1604 
1605 /**
1606  * ice_tx_map - Build the Tx descriptor
1607  * @tx_ring: ring to send buffer on
1608  * @first: first buffer info buffer to use
1609  * @off: pointer to struct that holds offload parameters
1610  *
1611  * This function loops over the skb data pointed to by *first
1612  * and gets a physical address for each memory location and programs
1613  * it and the length into the transmit descriptor.
1614  */
1615 static void
1616 ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1617 	   struct ice_tx_offload_params *off)
1618 {
1619 	u64 td_offset, td_tag, td_cmd;
1620 	u16 i = tx_ring->next_to_use;
1621 	unsigned int data_len, size;
1622 	struct ice_tx_desc *tx_desc;
1623 	struct ice_tx_buf *tx_buf;
1624 	struct sk_buff *skb;
1625 	skb_frag_t *frag;
1626 	dma_addr_t dma;
1627 
1628 	td_tag = off->td_l2tag1;
1629 	td_cmd = off->td_cmd;
1630 	td_offset = off->td_offset;
1631 	skb = first->skb;
1632 
1633 	data_len = skb->data_len;
1634 	size = skb_headlen(skb);
1635 
1636 	tx_desc = ICE_TX_DESC(tx_ring, i);
1637 
1638 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1639 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1640 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1641 			  ICE_TX_FLAGS_VLAN_S;
1642 	}
1643 
1644 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1645 
1646 	tx_buf = first;
1647 
1648 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1649 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1650 
1651 		if (dma_mapping_error(tx_ring->dev, dma))
1652 			goto dma_error;
1653 
1654 		/* record length, and DMA address */
1655 		dma_unmap_len_set(tx_buf, len, size);
1656 		dma_unmap_addr_set(tx_buf, dma, dma);
1657 
1658 		/* align size to end of page */
1659 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1660 		tx_desc->buf_addr = cpu_to_le64(dma);
1661 
1662 		/* account for data chunks larger than the hardware
1663 		 * can handle
1664 		 */
1665 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1666 			tx_desc->cmd_type_offset_bsz =
1667 				build_ctob(td_cmd, td_offset, max_data, td_tag);
1668 
1669 			tx_desc++;
1670 			i++;
1671 
1672 			if (i == tx_ring->count) {
1673 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1674 				i = 0;
1675 			}
1676 
1677 			dma += max_data;
1678 			size -= max_data;
1679 
1680 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1681 			tx_desc->buf_addr = cpu_to_le64(dma);
1682 		}
1683 
1684 		if (likely(!data_len))
1685 			break;
1686 
1687 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1688 							  size, td_tag);
1689 
1690 		tx_desc++;
1691 		i++;
1692 
1693 		if (i == tx_ring->count) {
1694 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1695 			i = 0;
1696 		}
1697 
1698 		size = skb_frag_size(frag);
1699 		data_len -= size;
1700 
1701 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1702 				       DMA_TO_DEVICE);
1703 
1704 		tx_buf = &tx_ring->tx_buf[i];
1705 	}
1706 
1707 	/* record bytecount for BQL */
1708 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1709 
1710 	/* record SW timestamp if HW timestamp is not available */
1711 	skb_tx_timestamp(first->skb);
1712 
1713 	i++;
1714 	if (i == tx_ring->count)
1715 		i = 0;
1716 
1717 	/* write last descriptor with RS and EOP bits */
1718 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1719 	tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset, size,
1720 						  td_tag);
1721 
1722 	/* Force memory writes to complete before letting h/w know there
1723 	 * are new descriptors to fetch.
1724 	 *
1725 	 * We also use this memory barrier to make certain all of the
1726 	 * status bits have been updated before next_to_watch is written.
1727 	 */
1728 	wmb();
1729 
1730 	/* set next_to_watch value indicating a packet is present */
1731 	first->next_to_watch = tx_desc;
1732 
1733 	tx_ring->next_to_use = i;
1734 
1735 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1736 
1737 	/* notify HW of packet */
1738 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1739 		writel(i, tx_ring->tail);
1740 
1741 	return;
1742 
1743 dma_error:
1744 	/* clear DMA mappings for failed tx_buf map */
1745 	for (;;) {
1746 		tx_buf = &tx_ring->tx_buf[i];
1747 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1748 		if (tx_buf == first)
1749 			break;
1750 		if (i == 0)
1751 			i = tx_ring->count;
1752 		i--;
1753 	}
1754 
1755 	tx_ring->next_to_use = i;
1756 }
1757 
1758 /**
1759  * ice_tx_csum - Enable Tx checksum offloads
1760  * @first: pointer to the first descriptor
1761  * @off: pointer to struct that holds offload parameters
1762  *
1763  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1764  */
1765 static
1766 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1767 {
1768 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1769 	struct sk_buff *skb = first->skb;
1770 	union {
1771 		struct iphdr *v4;
1772 		struct ipv6hdr *v6;
1773 		unsigned char *hdr;
1774 	} ip;
1775 	union {
1776 		struct tcphdr *tcp;
1777 		unsigned char *hdr;
1778 	} l4;
1779 	__be16 frag_off, protocol;
1780 	unsigned char *exthdr;
1781 	u32 offset, cmd = 0;
1782 	u8 l4_proto = 0;
1783 
1784 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1785 		return 0;
1786 
1787 	ip.hdr = skb_network_header(skb);
1788 	l4.hdr = skb_transport_header(skb);
1789 
1790 	/* compute outer L2 header size */
1791 	l2_len = ip.hdr - skb->data;
1792 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1793 
1794 	if (skb->encapsulation)
1795 		return -1;
1796 
1797 	/* Enable IP checksum offloads */
1798 	protocol = vlan_get_protocol(skb);
1799 	if (protocol == htons(ETH_P_IP)) {
1800 		l4_proto = ip.v4->protocol;
1801 		/* the stack computes the IP header already, the only time we
1802 		 * need the hardware to recompute it is in the case of TSO.
1803 		 */
1804 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1805 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1806 		else
1807 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1808 
1809 	} else if (protocol == htons(ETH_P_IPV6)) {
1810 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1811 		exthdr = ip.hdr + sizeof(*ip.v6);
1812 		l4_proto = ip.v6->nexthdr;
1813 		if (l4.hdr != exthdr)
1814 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1815 					 &frag_off);
1816 	} else {
1817 		return -1;
1818 	}
1819 
1820 	/* compute inner L3 header size */
1821 	l3_len = l4.hdr - ip.hdr;
1822 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1823 
1824 	/* Enable L4 checksum offloads */
1825 	switch (l4_proto) {
1826 	case IPPROTO_TCP:
1827 		/* enable checksum offloads */
1828 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1829 		l4_len = l4.tcp->doff;
1830 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1831 		break;
1832 	case IPPROTO_UDP:
1833 		/* enable UDP checksum offload */
1834 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1835 		l4_len = (sizeof(struct udphdr) >> 2);
1836 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1837 		break;
1838 	case IPPROTO_SCTP:
1839 		/* enable SCTP checksum offload */
1840 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1841 		l4_len = sizeof(struct sctphdr) >> 2;
1842 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1843 		break;
1844 
1845 	default:
1846 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1847 			return -1;
1848 		skb_checksum_help(skb);
1849 		return 0;
1850 	}
1851 
1852 	off->td_cmd |= cmd;
1853 	off->td_offset |= offset;
1854 	return 1;
1855 }
1856 
1857 /**
1858  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1859  * @tx_ring: ring to send buffer on
1860  * @first: pointer to struct ice_tx_buf
1861  *
1862  * Checks the skb and set up correspondingly several generic transmit flags
1863  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1864  *
1865  * Returns error code indicate the frame should be dropped upon error and the
1866  * otherwise returns 0 to indicate the flags has been set properly.
1867  */
1868 static int
1869 ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1870 {
1871 	struct sk_buff *skb = first->skb;
1872 	__be16 protocol = skb->protocol;
1873 
1874 	if (protocol == htons(ETH_P_8021Q) &&
1875 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1876 		/* when HW VLAN acceleration is turned off by the user the
1877 		 * stack sets the protocol to 8021q so that the driver
1878 		 * can take any steps required to support the SW only
1879 		 * VLAN handling. In our case the driver doesn't need
1880 		 * to take any further steps so just set the protocol
1881 		 * to the encapsulated ethertype.
1882 		 */
1883 		skb->protocol = vlan_get_protocol(skb);
1884 		return 0;
1885 	}
1886 
1887 	/* if we have a HW VLAN tag being added, default to the HW one */
1888 	if (skb_vlan_tag_present(skb)) {
1889 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1890 		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1891 	} else if (protocol == htons(ETH_P_8021Q)) {
1892 		struct vlan_hdr *vhdr, _vhdr;
1893 
1894 		/* for SW VLAN, check the next protocol and store the tag */
1895 		vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
1896 							     sizeof(_vhdr),
1897 							     &_vhdr);
1898 		if (!vhdr)
1899 			return -EINVAL;
1900 
1901 		first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
1902 				   ICE_TX_FLAGS_VLAN_S;
1903 		first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
1904 	}
1905 
1906 	return ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1907 }
1908 
1909 /**
1910  * ice_tso - computes mss and TSO length to prepare for TSO
1911  * @first: pointer to struct ice_tx_buf
1912  * @off: pointer to struct that holds offload parameters
1913  *
1914  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1915  */
1916 static
1917 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1918 {
1919 	struct sk_buff *skb = first->skb;
1920 	union {
1921 		struct iphdr *v4;
1922 		struct ipv6hdr *v6;
1923 		unsigned char *hdr;
1924 	} ip;
1925 	union {
1926 		struct tcphdr *tcp;
1927 		struct udphdr *udp;
1928 		unsigned char *hdr;
1929 	} l4;
1930 	u64 cd_mss, cd_tso_len;
1931 	u32 paylen, l4_start;
1932 	int err;
1933 
1934 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1935 		return 0;
1936 
1937 	if (!skb_is_gso(skb))
1938 		return 0;
1939 
1940 	err = skb_cow_head(skb, 0);
1941 	if (err < 0)
1942 		return err;
1943 
1944 	/* cppcheck-suppress unreadVariable */
1945 	ip.hdr = skb_network_header(skb);
1946 	l4.hdr = skb_transport_header(skb);
1947 
1948 	/* initialize outer IP header fields */
1949 	if (ip.v4->version == 4) {
1950 		ip.v4->tot_len = 0;
1951 		ip.v4->check = 0;
1952 	} else {
1953 		ip.v6->payload_len = 0;
1954 	}
1955 
1956 	/* determine offset of transport header */
1957 	l4_start = l4.hdr - skb->data;
1958 
1959 	/* remove payload length from checksum */
1960 	paylen = skb->len - l4_start;
1961 
1962 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1963 		csum_replace_by_diff(&l4.udp->check,
1964 				     (__force __wsum)htonl(paylen));
1965 		/* compute length of UDP segmentation header */
1966 		off->header_len = sizeof(l4.udp) + l4_start;
1967 	} else {
1968 		csum_replace_by_diff(&l4.tcp->check,
1969 				     (__force __wsum)htonl(paylen));
1970 		/* compute length of TCP segmentation header */
1971 		off->header_len = (l4.tcp->doff * 4) + l4_start;
1972 	}
1973 
1974 	/* update gso_segs and bytecount */
1975 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1976 	first->bytecount += (first->gso_segs - 1) * off->header_len;
1977 
1978 	cd_tso_len = skb->len - off->header_len;
1979 	cd_mss = skb_shinfo(skb)->gso_size;
1980 
1981 	/* record cdesc_qw1 with TSO parameters */
1982 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
1983 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1984 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1985 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
1986 	first->tx_flags |= ICE_TX_FLAGS_TSO;
1987 	return 1;
1988 }
1989 
1990 /**
1991  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
1992  * @size: transmit request size in bytes
1993  *
1994  * Due to hardware alignment restrictions (4K alignment), we need to
1995  * assume that we can have no more than 12K of data per descriptor, even
1996  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1997  * Thus, we need to divide by 12K. But division is slow! Instead,
1998  * we decompose the operation into shifts and one relatively cheap
1999  * multiply operation.
2000  *
2001  * To divide by 12K, we first divide by 4K, then divide by 3:
2002  *     To divide by 4K, shift right by 12 bits
2003  *     To divide by 3, multiply by 85, then divide by 256
2004  *     (Divide by 256 is done by shifting right by 8 bits)
2005  * Finally, we add one to round up. Because 256 isn't an exact multiple of
2006  * 3, we'll underestimate near each multiple of 12K. This is actually more
2007  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2008  * segment. For our purposes this is accurate out to 1M which is orders of
2009  * magnitude greater than our largest possible GSO size.
2010  *
2011  * This would then be implemented as:
2012  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2013  *
2014  * Since multiplication and division are commutative, we can reorder
2015  * operations into:
2016  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2017  */
2018 static unsigned int ice_txd_use_count(unsigned int size)
2019 {
2020 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2021 }
2022 
2023 /**
2024  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2025  * @skb: send buffer
2026  *
2027  * Returns number of data descriptors needed for this skb.
2028  */
2029 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2030 {
2031 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2032 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2033 	unsigned int count = 0, size = skb_headlen(skb);
2034 
2035 	for (;;) {
2036 		count += ice_txd_use_count(size);
2037 
2038 		if (!nr_frags--)
2039 			break;
2040 
2041 		size = skb_frag_size(frag++);
2042 	}
2043 
2044 	return count;
2045 }
2046 
2047 /**
2048  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2049  * @skb: send buffer
2050  *
2051  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2052  * and so we need to figure out the cases where we need to linearize the skb.
2053  *
2054  * For TSO we need to count the TSO header and segment payload separately.
2055  * As such we need to check cases where we have 7 fragments or more as we
2056  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2057  * the segment payload in the first descriptor, and another 7 for the
2058  * fragments.
2059  */
2060 static bool __ice_chk_linearize(struct sk_buff *skb)
2061 {
2062 	const skb_frag_t *frag, *stale;
2063 	int nr_frags, sum;
2064 
2065 	/* no need to check if number of frags is less than 7 */
2066 	nr_frags = skb_shinfo(skb)->nr_frags;
2067 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2068 		return false;
2069 
2070 	/* We need to walk through the list and validate that each group
2071 	 * of 6 fragments totals at least gso_size.
2072 	 */
2073 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2074 	frag = &skb_shinfo(skb)->frags[0];
2075 
2076 	/* Initialize size to the negative value of gso_size minus 1. We
2077 	 * use this as the worst case scenario in which the frag ahead
2078 	 * of us only provides one byte which is why we are limited to 6
2079 	 * descriptors for a single transmit as the header and previous
2080 	 * fragment are already consuming 2 descriptors.
2081 	 */
2082 	sum = 1 - skb_shinfo(skb)->gso_size;
2083 
2084 	/* Add size of frags 0 through 4 to create our initial sum */
2085 	sum += skb_frag_size(frag++);
2086 	sum += skb_frag_size(frag++);
2087 	sum += skb_frag_size(frag++);
2088 	sum += skb_frag_size(frag++);
2089 	sum += skb_frag_size(frag++);
2090 
2091 	/* Walk through fragments adding latest fragment, testing it, and
2092 	 * then removing stale fragments from the sum.
2093 	 */
2094 	stale = &skb_shinfo(skb)->frags[0];
2095 	for (;;) {
2096 		sum += skb_frag_size(frag++);
2097 
2098 		/* if sum is negative we failed to make sufficient progress */
2099 		if (sum < 0)
2100 			return true;
2101 
2102 		if (!nr_frags--)
2103 			break;
2104 
2105 		sum -= skb_frag_size(stale++);
2106 	}
2107 
2108 	return false;
2109 }
2110 
2111 /**
2112  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2113  * @skb:      send buffer
2114  * @count:    number of buffers used
2115  *
2116  * Note: Our HW can't scatter-gather more than 8 fragments to build
2117  * a packet on the wire and so we need to figure out the cases where we
2118  * need to linearize the skb.
2119  */
2120 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2121 {
2122 	/* Both TSO and single send will work if count is less than 8 */
2123 	if (likely(count < ICE_MAX_BUF_TXD))
2124 		return false;
2125 
2126 	if (skb_is_gso(skb))
2127 		return __ice_chk_linearize(skb);
2128 
2129 	/* we can support up to 8 data buffers for a single send */
2130 	return count != ICE_MAX_BUF_TXD;
2131 }
2132 
2133 /**
2134  * ice_xmit_frame_ring - Sends buffer on Tx ring
2135  * @skb: send buffer
2136  * @tx_ring: ring to send buffer on
2137  *
2138  * Returns NETDEV_TX_OK if sent, else an error code
2139  */
2140 static netdev_tx_t
2141 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2142 {
2143 	struct ice_tx_offload_params offload = { 0 };
2144 	struct ice_vsi *vsi = tx_ring->vsi;
2145 	struct ice_tx_buf *first;
2146 	unsigned int count;
2147 	int tso, csum;
2148 
2149 	count = ice_xmit_desc_count(skb);
2150 	if (ice_chk_linearize(skb, count)) {
2151 		if (__skb_linearize(skb))
2152 			goto out_drop;
2153 		count = ice_txd_use_count(skb->len);
2154 		tx_ring->tx_stats.tx_linearize++;
2155 	}
2156 
2157 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2158 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2159 	 *       + 4 desc gap to avoid the cache line where head is,
2160 	 *       + 1 desc for context descriptor,
2161 	 * otherwise try next time
2162 	 */
2163 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2164 			      ICE_DESCS_FOR_CTX_DESC)) {
2165 		tx_ring->tx_stats.tx_busy++;
2166 		return NETDEV_TX_BUSY;
2167 	}
2168 
2169 	offload.tx_ring = tx_ring;
2170 
2171 	/* record the location of the first descriptor for this packet */
2172 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2173 	first->skb = skb;
2174 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2175 	first->gso_segs = 1;
2176 	first->tx_flags = 0;
2177 
2178 	/* prepare the VLAN tagging flags for Tx */
2179 	if (ice_tx_prepare_vlan_flags(tx_ring, first))
2180 		goto out_drop;
2181 
2182 	/* set up TSO offload */
2183 	tso = ice_tso(first, &offload);
2184 	if (tso < 0)
2185 		goto out_drop;
2186 
2187 	/* always set up Tx checksum offload */
2188 	csum = ice_tx_csum(first, &offload);
2189 	if (csum < 0)
2190 		goto out_drop;
2191 
2192 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2193 	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2194 		     vsi->type == ICE_VSI_PF &&
2195 		     vsi->port_info->is_sw_lldp))
2196 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2197 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2198 					ICE_TXD_CTX_QW1_CMD_S);
2199 
2200 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2201 		struct ice_tx_ctx_desc *cdesc;
2202 		int i = tx_ring->next_to_use;
2203 
2204 		/* grab the next descriptor */
2205 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2206 		i++;
2207 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2208 
2209 		/* setup context descriptor */
2210 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2211 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2212 		cdesc->rsvd = cpu_to_le16(0);
2213 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2214 	}
2215 
2216 	ice_tx_map(tx_ring, first, &offload);
2217 	return NETDEV_TX_OK;
2218 
2219 out_drop:
2220 	dev_kfree_skb_any(skb);
2221 	return NETDEV_TX_OK;
2222 }
2223 
2224 /**
2225  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2226  * @skb: send buffer
2227  * @netdev: network interface device structure
2228  *
2229  * Returns NETDEV_TX_OK if sent, else an error code
2230  */
2231 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2232 {
2233 	struct ice_netdev_priv *np = netdev_priv(netdev);
2234 	struct ice_vsi *vsi = np->vsi;
2235 	struct ice_ring *tx_ring;
2236 
2237 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2238 
2239 	/* hardware can't handle really short frames, hardware padding works
2240 	 * beyond this point
2241 	 */
2242 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2243 		return NETDEV_TX_OK;
2244 
2245 	return ice_xmit_frame_ring(skb, tx_ring);
2246 }
2247