1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_LB: 26 return "ICE_VSI_LB"; 27 default: 28 return "unknown"; 29 } 30 } 31 32 /** 33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 34 * @vsi: the VSI being configured 35 * @ena: start or stop the Rx rings 36 * 37 * First enable/disable all of the Rx rings, flush any remaining writes, and 38 * then verify that they have all been enabled/disabled successfully. This will 39 * let all of the register writes complete when enabling/disabling the Rx rings 40 * before waiting for the change in hardware to complete. 41 */ 42 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 43 { 44 int ret = 0; 45 u16 i; 46 47 for (i = 0; i < vsi->num_rxq; i++) 48 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 49 50 ice_flush(&vsi->back->hw); 51 52 for (i = 0; i < vsi->num_rxq; i++) { 53 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 54 if (ret) 55 break; 56 } 57 58 return ret; 59 } 60 61 /** 62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 63 * @vsi: VSI pointer 64 * 65 * On error: returns error code (negative) 66 * On success: returns 0 67 */ 68 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 69 { 70 struct ice_pf *pf = vsi->back; 71 struct device *dev; 72 73 dev = ice_pf_to_dev(pf); 74 75 /* allocate memory for both Tx and Rx ring pointers */ 76 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 77 sizeof(*vsi->tx_rings), GFP_KERNEL); 78 if (!vsi->tx_rings) 79 return -ENOMEM; 80 81 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 82 sizeof(*vsi->rx_rings), GFP_KERNEL); 83 if (!vsi->rx_rings) 84 goto err_rings; 85 86 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 87 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 88 sizeof(*vsi->txq_map), GFP_KERNEL); 89 90 if (!vsi->txq_map) 91 goto err_txq_map; 92 93 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 94 sizeof(*vsi->rxq_map), GFP_KERNEL); 95 if (!vsi->rxq_map) 96 goto err_rxq_map; 97 98 /* There is no need to allocate q_vectors for a loopback VSI. */ 99 if (vsi->type == ICE_VSI_LB) 100 return 0; 101 102 /* allocate memory for q_vector pointers */ 103 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 104 sizeof(*vsi->q_vectors), GFP_KERNEL); 105 if (!vsi->q_vectors) 106 goto err_vectors; 107 108 return 0; 109 110 err_vectors: 111 devm_kfree(dev, vsi->rxq_map); 112 err_rxq_map: 113 devm_kfree(dev, vsi->txq_map); 114 err_txq_map: 115 devm_kfree(dev, vsi->rx_rings); 116 err_rings: 117 devm_kfree(dev, vsi->tx_rings); 118 return -ENOMEM; 119 } 120 121 /** 122 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 123 * @vsi: the VSI being configured 124 */ 125 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 126 { 127 switch (vsi->type) { 128 case ICE_VSI_PF: 129 case ICE_VSI_CTRL: 130 case ICE_VSI_LB: 131 /* a user could change the values of num_[tr]x_desc using 132 * ethtool -G so we should keep those values instead of 133 * overwriting them with the defaults. 134 */ 135 if (!vsi->num_rx_desc) 136 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 137 if (!vsi->num_tx_desc) 138 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 139 break; 140 default: 141 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 142 vsi->type); 143 break; 144 } 145 } 146 147 /** 148 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 149 * @vsi: the VSI being configured 150 * @vf_id: ID of the VF being configured 151 * 152 * Return 0 on success and a negative value on error 153 */ 154 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 155 { 156 struct ice_pf *pf = vsi->back; 157 struct ice_vf *vf = NULL; 158 159 if (vsi->type == ICE_VSI_VF) 160 vsi->vf_id = vf_id; 161 162 switch (vsi->type) { 163 case ICE_VSI_PF: 164 vsi->alloc_txq = min3(pf->num_lan_msix, 165 ice_get_avail_txq_count(pf), 166 (u16)num_online_cpus()); 167 if (vsi->req_txq) { 168 vsi->alloc_txq = vsi->req_txq; 169 vsi->num_txq = vsi->req_txq; 170 } 171 172 pf->num_lan_tx = vsi->alloc_txq; 173 174 /* only 1 Rx queue unless RSS is enabled */ 175 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 176 vsi->alloc_rxq = 1; 177 } else { 178 vsi->alloc_rxq = min3(pf->num_lan_msix, 179 ice_get_avail_rxq_count(pf), 180 (u16)num_online_cpus()); 181 if (vsi->req_rxq) { 182 vsi->alloc_rxq = vsi->req_rxq; 183 vsi->num_rxq = vsi->req_rxq; 184 } 185 } 186 187 pf->num_lan_rx = vsi->alloc_rxq; 188 189 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 190 max_t(int, vsi->alloc_rxq, 191 vsi->alloc_txq)); 192 break; 193 case ICE_VSI_VF: 194 vf = &pf->vf[vsi->vf_id]; 195 vsi->alloc_txq = vf->num_vf_qs; 196 vsi->alloc_rxq = vf->num_vf_qs; 197 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 198 * data queue interrupts). Since vsi->num_q_vectors is number 199 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 200 * original vector count 201 */ 202 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 203 break; 204 case ICE_VSI_CTRL: 205 vsi->alloc_txq = 1; 206 vsi->alloc_rxq = 1; 207 vsi->num_q_vectors = 1; 208 break; 209 case ICE_VSI_LB: 210 vsi->alloc_txq = 1; 211 vsi->alloc_rxq = 1; 212 break; 213 default: 214 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 215 break; 216 } 217 218 ice_vsi_set_num_desc(vsi); 219 } 220 221 /** 222 * ice_get_free_slot - get the next non-NULL location index in array 223 * @array: array to search 224 * @size: size of the array 225 * @curr: last known occupied index to be used as a search hint 226 * 227 * void * is being used to keep the functionality generic. This lets us use this 228 * function on any array of pointers. 229 */ 230 static int ice_get_free_slot(void *array, int size, int curr) 231 { 232 int **tmp_array = (int **)array; 233 int next; 234 235 if (curr < (size - 1) && !tmp_array[curr + 1]) { 236 next = curr + 1; 237 } else { 238 int i = 0; 239 240 while ((i < size) && (tmp_array[i])) 241 i++; 242 if (i == size) 243 next = ICE_NO_VSI; 244 else 245 next = i; 246 } 247 return next; 248 } 249 250 /** 251 * ice_vsi_delete - delete a VSI from the switch 252 * @vsi: pointer to VSI being removed 253 */ 254 static void ice_vsi_delete(struct ice_vsi *vsi) 255 { 256 struct ice_pf *pf = vsi->back; 257 struct ice_vsi_ctx *ctxt; 258 enum ice_status status; 259 260 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 261 if (!ctxt) 262 return; 263 264 if (vsi->type == ICE_VSI_VF) 265 ctxt->vf_num = vsi->vf_id; 266 ctxt->vsi_num = vsi->vsi_num; 267 268 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 269 270 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 271 if (status) 272 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 273 vsi->vsi_num, ice_stat_str(status)); 274 275 kfree(ctxt); 276 } 277 278 /** 279 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 280 * @vsi: pointer to VSI being cleared 281 */ 282 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 283 { 284 struct ice_pf *pf = vsi->back; 285 struct device *dev; 286 287 dev = ice_pf_to_dev(pf); 288 289 /* free the ring and vector containers */ 290 if (vsi->q_vectors) { 291 devm_kfree(dev, vsi->q_vectors); 292 vsi->q_vectors = NULL; 293 } 294 if (vsi->tx_rings) { 295 devm_kfree(dev, vsi->tx_rings); 296 vsi->tx_rings = NULL; 297 } 298 if (vsi->rx_rings) { 299 devm_kfree(dev, vsi->rx_rings); 300 vsi->rx_rings = NULL; 301 } 302 if (vsi->txq_map) { 303 devm_kfree(dev, vsi->txq_map); 304 vsi->txq_map = NULL; 305 } 306 if (vsi->rxq_map) { 307 devm_kfree(dev, vsi->rxq_map); 308 vsi->rxq_map = NULL; 309 } 310 } 311 312 /** 313 * ice_vsi_clear - clean up and deallocate the provided VSI 314 * @vsi: pointer to VSI being cleared 315 * 316 * This deallocates the VSI's queue resources, removes it from the PF's 317 * VSI array if necessary, and deallocates the VSI 318 * 319 * Returns 0 on success, negative on failure 320 */ 321 static int ice_vsi_clear(struct ice_vsi *vsi) 322 { 323 struct ice_pf *pf = NULL; 324 struct device *dev; 325 326 if (!vsi) 327 return 0; 328 329 if (!vsi->back) 330 return -EINVAL; 331 332 pf = vsi->back; 333 dev = ice_pf_to_dev(pf); 334 335 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 336 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 337 return -EINVAL; 338 } 339 340 mutex_lock(&pf->sw_mutex); 341 /* updates the PF for this cleared VSI */ 342 343 pf->vsi[vsi->idx] = NULL; 344 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 345 pf->next_vsi = vsi->idx; 346 347 ice_vsi_free_arrays(vsi); 348 mutex_unlock(&pf->sw_mutex); 349 devm_kfree(dev, vsi); 350 351 return 0; 352 } 353 354 /** 355 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 356 * @irq: interrupt number 357 * @data: pointer to a q_vector 358 */ 359 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 360 { 361 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 362 363 if (!q_vector->tx.ring) 364 return IRQ_HANDLED; 365 366 #define FDIR_RX_DESC_CLEAN_BUDGET 64 367 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 368 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 369 370 return IRQ_HANDLED; 371 } 372 373 /** 374 * ice_msix_clean_rings - MSIX mode Interrupt Handler 375 * @irq: interrupt number 376 * @data: pointer to a q_vector 377 */ 378 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 379 { 380 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 381 382 if (!q_vector->tx.ring && !q_vector->rx.ring) 383 return IRQ_HANDLED; 384 385 napi_schedule(&q_vector->napi); 386 387 return IRQ_HANDLED; 388 } 389 390 /** 391 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 392 * @pf: board private structure 393 * @vsi_type: type of VSI 394 * @vf_id: ID of the VF being configured 395 * 396 * returns a pointer to a VSI on success, NULL on failure. 397 */ 398 static struct ice_vsi * 399 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 400 { 401 struct device *dev = ice_pf_to_dev(pf); 402 struct ice_vsi *vsi = NULL; 403 404 /* Need to protect the allocation of the VSIs at the PF level */ 405 mutex_lock(&pf->sw_mutex); 406 407 /* If we have already allocated our maximum number of VSIs, 408 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 409 * is available to be populated 410 */ 411 if (pf->next_vsi == ICE_NO_VSI) { 412 dev_dbg(dev, "out of VSI slots!\n"); 413 goto unlock_pf; 414 } 415 416 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 417 if (!vsi) 418 goto unlock_pf; 419 420 vsi->type = vsi_type; 421 vsi->back = pf; 422 set_bit(__ICE_DOWN, vsi->state); 423 424 if (vsi_type == ICE_VSI_VF) 425 ice_vsi_set_num_qs(vsi, vf_id); 426 else 427 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 428 429 switch (vsi->type) { 430 case ICE_VSI_PF: 431 if (ice_vsi_alloc_arrays(vsi)) 432 goto err_rings; 433 434 /* Setup default MSIX irq handler for VSI */ 435 vsi->irq_handler = ice_msix_clean_rings; 436 break; 437 case ICE_VSI_CTRL: 438 if (ice_vsi_alloc_arrays(vsi)) 439 goto err_rings; 440 441 /* Setup ctrl VSI MSIX irq handler */ 442 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 443 break; 444 case ICE_VSI_VF: 445 if (ice_vsi_alloc_arrays(vsi)) 446 goto err_rings; 447 break; 448 case ICE_VSI_LB: 449 if (ice_vsi_alloc_arrays(vsi)) 450 goto err_rings; 451 break; 452 default: 453 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 454 goto unlock_pf; 455 } 456 457 if (vsi->type == ICE_VSI_CTRL) { 458 /* Use the last VSI slot as the index for the control VSI */ 459 vsi->idx = pf->num_alloc_vsi - 1; 460 pf->ctrl_vsi_idx = vsi->idx; 461 pf->vsi[vsi->idx] = vsi; 462 } else { 463 /* fill slot and make note of the index */ 464 vsi->idx = pf->next_vsi; 465 pf->vsi[pf->next_vsi] = vsi; 466 467 /* prepare pf->next_vsi for next use */ 468 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 469 pf->next_vsi); 470 } 471 goto unlock_pf; 472 473 err_rings: 474 devm_kfree(dev, vsi); 475 vsi = NULL; 476 unlock_pf: 477 mutex_unlock(&pf->sw_mutex); 478 return vsi; 479 } 480 481 /** 482 * ice_alloc_fd_res - Allocate FD resource for a VSI 483 * @vsi: pointer to the ice_vsi 484 * 485 * This allocates the FD resources 486 * 487 * Returns 0 on success, -EPERM on no-op or -EIO on failure 488 */ 489 static int ice_alloc_fd_res(struct ice_vsi *vsi) 490 { 491 struct ice_pf *pf = vsi->back; 492 u32 g_val, b_val; 493 494 /* Flow Director filters are only allocated/assigned to the PF VSI which 495 * passes the traffic. The CTRL VSI is only used to add/delete filters 496 * so we don't allocate resources to it 497 */ 498 499 /* FD filters from guaranteed pool per VSI */ 500 g_val = pf->hw.func_caps.fd_fltr_guar; 501 if (!g_val) 502 return -EPERM; 503 504 /* FD filters from best effort pool */ 505 b_val = pf->hw.func_caps.fd_fltr_best_effort; 506 if (!b_val) 507 return -EPERM; 508 509 if (vsi->type != ICE_VSI_PF) 510 return -EPERM; 511 512 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 513 return -EPERM; 514 515 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 516 517 /* each VSI gets same "best_effort" quota */ 518 vsi->num_bfltr = b_val; 519 520 return 0; 521 } 522 523 /** 524 * ice_vsi_get_qs - Assign queues from PF to VSI 525 * @vsi: the VSI to assign queues to 526 * 527 * Returns 0 on success and a negative value on error 528 */ 529 static int ice_vsi_get_qs(struct ice_vsi *vsi) 530 { 531 struct ice_pf *pf = vsi->back; 532 struct ice_qs_cfg tx_qs_cfg = { 533 .qs_mutex = &pf->avail_q_mutex, 534 .pf_map = pf->avail_txqs, 535 .pf_map_size = pf->max_pf_txqs, 536 .q_count = vsi->alloc_txq, 537 .scatter_count = ICE_MAX_SCATTER_TXQS, 538 .vsi_map = vsi->txq_map, 539 .vsi_map_offset = 0, 540 .mapping_mode = ICE_VSI_MAP_CONTIG 541 }; 542 struct ice_qs_cfg rx_qs_cfg = { 543 .qs_mutex = &pf->avail_q_mutex, 544 .pf_map = pf->avail_rxqs, 545 .pf_map_size = pf->max_pf_rxqs, 546 .q_count = vsi->alloc_rxq, 547 .scatter_count = ICE_MAX_SCATTER_RXQS, 548 .vsi_map = vsi->rxq_map, 549 .vsi_map_offset = 0, 550 .mapping_mode = ICE_VSI_MAP_CONTIG 551 }; 552 int ret; 553 554 ret = __ice_vsi_get_qs(&tx_qs_cfg); 555 if (ret) 556 return ret; 557 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 558 559 ret = __ice_vsi_get_qs(&rx_qs_cfg); 560 if (ret) 561 return ret; 562 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 563 564 return 0; 565 } 566 567 /** 568 * ice_vsi_put_qs - Release queues from VSI to PF 569 * @vsi: the VSI that is going to release queues 570 */ 571 static void ice_vsi_put_qs(struct ice_vsi *vsi) 572 { 573 struct ice_pf *pf = vsi->back; 574 int i; 575 576 mutex_lock(&pf->avail_q_mutex); 577 578 for (i = 0; i < vsi->alloc_txq; i++) { 579 clear_bit(vsi->txq_map[i], pf->avail_txqs); 580 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 581 } 582 583 for (i = 0; i < vsi->alloc_rxq; i++) { 584 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 585 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 586 } 587 588 mutex_unlock(&pf->avail_q_mutex); 589 } 590 591 /** 592 * ice_is_safe_mode 593 * @pf: pointer to the PF struct 594 * 595 * returns true if driver is in safe mode, false otherwise 596 */ 597 bool ice_is_safe_mode(struct ice_pf *pf) 598 { 599 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 600 } 601 602 /** 603 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 604 * @vsi: the VSI being cleaned up 605 * 606 * This function deletes RSS input set for all flows that were configured 607 * for this VSI 608 */ 609 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 610 { 611 struct ice_pf *pf = vsi->back; 612 enum ice_status status; 613 614 if (ice_is_safe_mode(pf)) 615 return; 616 617 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 618 if (status) 619 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 620 vsi->vsi_num, ice_stat_str(status)); 621 } 622 623 /** 624 * ice_rss_clean - Delete RSS related VSI structures and configuration 625 * @vsi: the VSI being removed 626 */ 627 static void ice_rss_clean(struct ice_vsi *vsi) 628 { 629 struct ice_pf *pf = vsi->back; 630 struct device *dev; 631 632 dev = ice_pf_to_dev(pf); 633 634 if (vsi->rss_hkey_user) 635 devm_kfree(dev, vsi->rss_hkey_user); 636 if (vsi->rss_lut_user) 637 devm_kfree(dev, vsi->rss_lut_user); 638 639 ice_vsi_clean_rss_flow_fld(vsi); 640 /* remove RSS replay list */ 641 if (!ice_is_safe_mode(pf)) 642 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 643 } 644 645 /** 646 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 647 * @vsi: the VSI being configured 648 */ 649 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 650 { 651 struct ice_hw_common_caps *cap; 652 struct ice_pf *pf = vsi->back; 653 654 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 655 vsi->rss_size = 1; 656 return; 657 } 658 659 cap = &pf->hw.func_caps.common_cap; 660 switch (vsi->type) { 661 case ICE_VSI_PF: 662 /* PF VSI will inherit RSS instance of PF */ 663 vsi->rss_table_size = (u16)cap->rss_table_size; 664 vsi->rss_size = min_t(u16, num_online_cpus(), 665 BIT(cap->rss_table_entry_width)); 666 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 667 break; 668 case ICE_VSI_VF: 669 /* VF VSI will get a small RSS table. 670 * For VSI_LUT, LUT size should be set to 64 bytes. 671 */ 672 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 673 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 674 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 675 break; 676 case ICE_VSI_LB: 677 break; 678 default: 679 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 680 ice_vsi_type_str(vsi->type)); 681 break; 682 } 683 } 684 685 /** 686 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 687 * @ctxt: the VSI context being set 688 * 689 * This initializes a default VSI context for all sections except the Queues. 690 */ 691 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 692 { 693 u32 table = 0; 694 695 memset(&ctxt->info, 0, sizeof(ctxt->info)); 696 /* VSI's should be allocated from shared pool */ 697 ctxt->alloc_from_pool = true; 698 /* Src pruning enabled by default */ 699 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 700 /* Traffic from VSI can be sent to LAN */ 701 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 702 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 703 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 704 * packets untagged/tagged. 705 */ 706 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 707 ICE_AQ_VSI_VLAN_MODE_M) >> 708 ICE_AQ_VSI_VLAN_MODE_S); 709 /* Have 1:1 UP mapping for both ingress/egress tables */ 710 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 711 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 712 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 713 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 714 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 715 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 716 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 717 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 718 ctxt->info.ingress_table = cpu_to_le32(table); 719 ctxt->info.egress_table = cpu_to_le32(table); 720 /* Have 1:1 UP mapping for outer to inner UP table */ 721 ctxt->info.outer_up_table = cpu_to_le32(table); 722 /* No Outer tag support outer_tag_flags remains to zero */ 723 } 724 725 /** 726 * ice_vsi_setup_q_map - Setup a VSI queue map 727 * @vsi: the VSI being configured 728 * @ctxt: VSI context structure 729 */ 730 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 731 { 732 u16 offset = 0, qmap = 0, tx_count = 0; 733 u16 qcount_tx = vsi->alloc_txq; 734 u16 qcount_rx = vsi->alloc_rxq; 735 u16 tx_numq_tc, rx_numq_tc; 736 u16 pow = 0, max_rss = 0; 737 bool ena_tc0 = false; 738 u8 netdev_tc = 0; 739 int i; 740 741 /* at least TC0 should be enabled by default */ 742 if (vsi->tc_cfg.numtc) { 743 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 744 ena_tc0 = true; 745 } else { 746 ena_tc0 = true; 747 } 748 749 if (ena_tc0) { 750 vsi->tc_cfg.numtc++; 751 vsi->tc_cfg.ena_tc |= 1; 752 } 753 754 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc; 755 if (!rx_numq_tc) 756 rx_numq_tc = 1; 757 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc; 758 if (!tx_numq_tc) 759 tx_numq_tc = 1; 760 761 /* TC mapping is a function of the number of Rx queues assigned to the 762 * VSI for each traffic class and the offset of these queues. 763 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 764 * queues allocated to TC0. No:of queues is a power-of-2. 765 * 766 * If TC is not enabled, the queue offset is set to 0, and allocate one 767 * queue, this way, traffic for the given TC will be sent to the default 768 * queue. 769 * 770 * Setup number and offset of Rx queues for all TCs for the VSI 771 */ 772 773 qcount_rx = rx_numq_tc; 774 775 /* qcount will change if RSS is enabled */ 776 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) { 777 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) { 778 if (vsi->type == ICE_VSI_PF) 779 max_rss = ICE_MAX_LG_RSS_QS; 780 else 781 max_rss = ICE_MAX_RSS_QS_PER_VF; 782 qcount_rx = min_t(u16, rx_numq_tc, max_rss); 783 if (!vsi->req_rxq) 784 qcount_rx = min_t(u16, qcount_rx, 785 vsi->rss_size); 786 } 787 } 788 789 /* find the (rounded up) power-of-2 of qcount */ 790 pow = (u16)order_base_2(qcount_rx); 791 792 ice_for_each_traffic_class(i) { 793 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 794 /* TC is not enabled */ 795 vsi->tc_cfg.tc_info[i].qoffset = 0; 796 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 797 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 798 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 799 ctxt->info.tc_mapping[i] = 0; 800 continue; 801 } 802 803 /* TC is enabled */ 804 vsi->tc_cfg.tc_info[i].qoffset = offset; 805 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 806 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc; 807 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 808 809 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 810 ICE_AQ_VSI_TC_Q_OFFSET_M) | 811 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 812 ICE_AQ_VSI_TC_Q_NUM_M); 813 offset += qcount_rx; 814 tx_count += tx_numq_tc; 815 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 816 } 817 818 /* if offset is non-zero, means it is calculated correctly based on 819 * enabled TCs for a given VSI otherwise qcount_rx will always 820 * be correct and non-zero because it is based off - VSI's 821 * allocated Rx queues which is at least 1 (hence qcount_tx will be 822 * at least 1) 823 */ 824 if (offset) 825 vsi->num_rxq = offset; 826 else 827 vsi->num_rxq = qcount_rx; 828 829 vsi->num_txq = tx_count; 830 831 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 832 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 833 /* since there is a chance that num_rxq could have been changed 834 * in the above for loop, make num_txq equal to num_rxq. 835 */ 836 vsi->num_txq = vsi->num_rxq; 837 } 838 839 /* Rx queue mapping */ 840 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 841 /* q_mapping buffer holds the info for the first queue allocated for 842 * this VSI in the PF space and also the number of queues associated 843 * with this VSI. 844 */ 845 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 846 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 847 } 848 849 /** 850 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 851 * @ctxt: the VSI context being set 852 * @vsi: the VSI being configured 853 */ 854 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 855 { 856 u8 dflt_q_group, dflt_q_prio; 857 u16 dflt_q, report_q, val; 858 859 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL) 860 return; 861 862 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 863 ctxt->info.valid_sections |= cpu_to_le16(val); 864 dflt_q = 0; 865 dflt_q_group = 0; 866 report_q = 0; 867 dflt_q_prio = 0; 868 869 /* enable flow director filtering/programming */ 870 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 871 ctxt->info.fd_options = cpu_to_le16(val); 872 /* max of allocated flow director filters */ 873 ctxt->info.max_fd_fltr_dedicated = 874 cpu_to_le16(vsi->num_gfltr); 875 /* max of shared flow director filters any VSI may program */ 876 ctxt->info.max_fd_fltr_shared = 877 cpu_to_le16(vsi->num_bfltr); 878 /* default queue index within the VSI of the default FD */ 879 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 880 ICE_AQ_VSI_FD_DEF_Q_M); 881 /* target queue or queue group to the FD filter */ 882 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 883 ICE_AQ_VSI_FD_DEF_GRP_M); 884 ctxt->info.fd_def_q = cpu_to_le16(val); 885 /* queue index on which FD filter completion is reported */ 886 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 887 ICE_AQ_VSI_FD_REPORT_Q_M); 888 /* priority of the default qindex action */ 889 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 890 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 891 ctxt->info.fd_report_opt = cpu_to_le16(val); 892 } 893 894 /** 895 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 896 * @ctxt: the VSI context being set 897 * @vsi: the VSI being configured 898 */ 899 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 900 { 901 u8 lut_type, hash_type; 902 struct device *dev; 903 struct ice_pf *pf; 904 905 pf = vsi->back; 906 dev = ice_pf_to_dev(pf); 907 908 switch (vsi->type) { 909 case ICE_VSI_PF: 910 /* PF VSI will inherit RSS instance of PF */ 911 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 912 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 913 break; 914 case ICE_VSI_VF: 915 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 916 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 917 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 918 break; 919 default: 920 dev_dbg(dev, "Unsupported VSI type %s\n", 921 ice_vsi_type_str(vsi->type)); 922 return; 923 } 924 925 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 926 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 927 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 928 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 929 } 930 931 /** 932 * ice_vsi_init - Create and initialize a VSI 933 * @vsi: the VSI being configured 934 * @init_vsi: is this call creating a VSI 935 * 936 * This initializes a VSI context depending on the VSI type to be added and 937 * passes it down to the add_vsi aq command to create a new VSI. 938 */ 939 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 940 { 941 struct ice_pf *pf = vsi->back; 942 struct ice_hw *hw = &pf->hw; 943 struct ice_vsi_ctx *ctxt; 944 struct device *dev; 945 int ret = 0; 946 947 dev = ice_pf_to_dev(pf); 948 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 949 if (!ctxt) 950 return -ENOMEM; 951 952 switch (vsi->type) { 953 case ICE_VSI_CTRL: 954 case ICE_VSI_LB: 955 case ICE_VSI_PF: 956 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 957 break; 958 case ICE_VSI_VF: 959 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 960 /* VF number here is the absolute VF number (0-255) */ 961 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 962 break; 963 default: 964 ret = -ENODEV; 965 goto out; 966 } 967 968 ice_set_dflt_vsi_ctx(ctxt); 969 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 970 ice_set_fd_vsi_ctx(ctxt, vsi); 971 /* if the switch is in VEB mode, allow VSI loopback */ 972 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 973 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 974 975 /* Set LUT type and HASH type if RSS is enabled */ 976 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 977 vsi->type != ICE_VSI_CTRL) { 978 ice_set_rss_vsi_ctx(ctxt, vsi); 979 /* if updating VSI context, make sure to set valid_section: 980 * to indicate which section of VSI context being updated 981 */ 982 if (!init_vsi) 983 ctxt->info.valid_sections |= 984 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 985 } 986 987 ctxt->info.sw_id = vsi->port_info->sw_id; 988 ice_vsi_setup_q_map(vsi, ctxt); 989 if (!init_vsi) /* means VSI being updated */ 990 /* must to indicate which section of VSI context are 991 * being modified 992 */ 993 ctxt->info.valid_sections |= 994 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 995 996 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 997 * respectively 998 */ 999 if (vsi->type == ICE_VSI_VF) { 1000 ctxt->info.valid_sections |= 1001 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1002 if (pf->vf[vsi->vf_id].spoofchk) { 1003 ctxt->info.sec_flags |= 1004 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1005 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1006 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1007 } else { 1008 ctxt->info.sec_flags &= 1009 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1010 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1011 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1012 } 1013 } 1014 1015 /* Allow control frames out of main VSI */ 1016 if (vsi->type == ICE_VSI_PF) { 1017 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1018 ctxt->info.valid_sections |= 1019 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1020 } 1021 1022 if (init_vsi) { 1023 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1024 if (ret) { 1025 dev_err(dev, "Add VSI failed, err %d\n", ret); 1026 ret = -EIO; 1027 goto out; 1028 } 1029 } else { 1030 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1031 if (ret) { 1032 dev_err(dev, "Update VSI failed, err %d\n", ret); 1033 ret = -EIO; 1034 goto out; 1035 } 1036 } 1037 1038 /* keep context for update VSI operations */ 1039 vsi->info = ctxt->info; 1040 1041 /* record VSI number returned */ 1042 vsi->vsi_num = ctxt->vsi_num; 1043 1044 out: 1045 kfree(ctxt); 1046 return ret; 1047 } 1048 1049 /** 1050 * ice_free_res - free a block of resources 1051 * @res: pointer to the resource 1052 * @index: starting index previously returned by ice_get_res 1053 * @id: identifier to track owner 1054 * 1055 * Returns number of resources freed 1056 */ 1057 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1058 { 1059 int count = 0; 1060 int i; 1061 1062 if (!res || index >= res->end) 1063 return -EINVAL; 1064 1065 id |= ICE_RES_VALID_BIT; 1066 for (i = index; i < res->end && res->list[i] == id; i++) { 1067 res->list[i] = 0; 1068 count++; 1069 } 1070 1071 return count; 1072 } 1073 1074 /** 1075 * ice_search_res - Search the tracker for a block of resources 1076 * @res: pointer to the resource 1077 * @needed: size of the block needed 1078 * @id: identifier to track owner 1079 * 1080 * Returns the base item index of the block, or -ENOMEM for error 1081 */ 1082 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1083 { 1084 u16 start = 0, end = 0; 1085 1086 if (needed > res->end) 1087 return -ENOMEM; 1088 1089 id |= ICE_RES_VALID_BIT; 1090 1091 do { 1092 /* skip already allocated entries */ 1093 if (res->list[end++] & ICE_RES_VALID_BIT) { 1094 start = end; 1095 if ((start + needed) > res->end) 1096 break; 1097 } 1098 1099 if (end == (start + needed)) { 1100 int i = start; 1101 1102 /* there was enough, so assign it to the requestor */ 1103 while (i != end) 1104 res->list[i++] = id; 1105 1106 return start; 1107 } 1108 } while (end < res->end); 1109 1110 return -ENOMEM; 1111 } 1112 1113 /** 1114 * ice_get_free_res_count - Get free count from a resource tracker 1115 * @res: Resource tracker instance 1116 */ 1117 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1118 { 1119 u16 i, count = 0; 1120 1121 for (i = 0; i < res->end; i++) 1122 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1123 count++; 1124 1125 return count; 1126 } 1127 1128 /** 1129 * ice_get_res - get a block of resources 1130 * @pf: board private structure 1131 * @res: pointer to the resource 1132 * @needed: size of the block needed 1133 * @id: identifier to track owner 1134 * 1135 * Returns the base item index of the block, or negative for error 1136 */ 1137 int 1138 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1139 { 1140 if (!res || !pf) 1141 return -EINVAL; 1142 1143 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1144 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1145 needed, res->num_entries, id); 1146 return -EINVAL; 1147 } 1148 1149 return ice_search_res(res, needed, id); 1150 } 1151 1152 /** 1153 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1154 * @vsi: ptr to the VSI 1155 * 1156 * This should only be called after ice_vsi_alloc() which allocates the 1157 * corresponding SW VSI structure and initializes num_queue_pairs for the 1158 * newly allocated VSI. 1159 * 1160 * Returns 0 on success or negative on failure 1161 */ 1162 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1163 { 1164 struct ice_pf *pf = vsi->back; 1165 struct device *dev; 1166 u16 num_q_vectors; 1167 int base; 1168 1169 dev = ice_pf_to_dev(pf); 1170 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1171 if (vsi->type == ICE_VSI_VF) 1172 return 0; 1173 1174 if (vsi->base_vector) { 1175 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1176 vsi->vsi_num, vsi->base_vector); 1177 return -EEXIST; 1178 } 1179 1180 num_q_vectors = vsi->num_q_vectors; 1181 /* reserve slots from OS requested IRQs */ 1182 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, vsi->idx); 1183 1184 if (base < 0) { 1185 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1186 ice_get_free_res_count(pf->irq_tracker), 1187 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1188 return -ENOENT; 1189 } 1190 vsi->base_vector = (u16)base; 1191 pf->num_avail_sw_msix -= num_q_vectors; 1192 1193 return 0; 1194 } 1195 1196 /** 1197 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1198 * @vsi: the VSI having rings deallocated 1199 */ 1200 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1201 { 1202 int i; 1203 1204 /* Avoid stale references by clearing map from vector to ring */ 1205 if (vsi->q_vectors) { 1206 ice_for_each_q_vector(vsi, i) { 1207 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1208 1209 if (q_vector) { 1210 q_vector->tx.ring = NULL; 1211 q_vector->rx.ring = NULL; 1212 } 1213 } 1214 } 1215 1216 if (vsi->tx_rings) { 1217 for (i = 0; i < vsi->alloc_txq; i++) { 1218 if (vsi->tx_rings[i]) { 1219 kfree_rcu(vsi->tx_rings[i], rcu); 1220 WRITE_ONCE(vsi->tx_rings[i], NULL); 1221 } 1222 } 1223 } 1224 if (vsi->rx_rings) { 1225 for (i = 0; i < vsi->alloc_rxq; i++) { 1226 if (vsi->rx_rings[i]) { 1227 kfree_rcu(vsi->rx_rings[i], rcu); 1228 WRITE_ONCE(vsi->rx_rings[i], NULL); 1229 } 1230 } 1231 } 1232 } 1233 1234 /** 1235 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1236 * @vsi: VSI which is having rings allocated 1237 */ 1238 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1239 { 1240 struct ice_pf *pf = vsi->back; 1241 struct device *dev; 1242 u16 i; 1243 1244 dev = ice_pf_to_dev(pf); 1245 /* Allocate Tx rings */ 1246 for (i = 0; i < vsi->alloc_txq; i++) { 1247 struct ice_ring *ring; 1248 1249 /* allocate with kzalloc(), free with kfree_rcu() */ 1250 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1251 1252 if (!ring) 1253 goto err_out; 1254 1255 ring->q_index = i; 1256 ring->reg_idx = vsi->txq_map[i]; 1257 ring->ring_active = false; 1258 ring->vsi = vsi; 1259 ring->dev = dev; 1260 ring->count = vsi->num_tx_desc; 1261 WRITE_ONCE(vsi->tx_rings[i], ring); 1262 } 1263 1264 /* Allocate Rx rings */ 1265 for (i = 0; i < vsi->alloc_rxq; i++) { 1266 struct ice_ring *ring; 1267 1268 /* allocate with kzalloc(), free with kfree_rcu() */ 1269 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1270 if (!ring) 1271 goto err_out; 1272 1273 ring->q_index = i; 1274 ring->reg_idx = vsi->rxq_map[i]; 1275 ring->ring_active = false; 1276 ring->vsi = vsi; 1277 ring->netdev = vsi->netdev; 1278 ring->dev = dev; 1279 ring->count = vsi->num_rx_desc; 1280 WRITE_ONCE(vsi->rx_rings[i], ring); 1281 } 1282 1283 return 0; 1284 1285 err_out: 1286 ice_vsi_clear_rings(vsi); 1287 return -ENOMEM; 1288 } 1289 1290 /** 1291 * ice_vsi_manage_rss_lut - disable/enable RSS 1292 * @vsi: the VSI being changed 1293 * @ena: boolean value indicating if this is an enable or disable request 1294 * 1295 * In the event of disable request for RSS, this function will zero out RSS 1296 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1297 * LUT. 1298 */ 1299 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1300 { 1301 int err = 0; 1302 u8 *lut; 1303 1304 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1305 if (!lut) 1306 return -ENOMEM; 1307 1308 if (ena) { 1309 if (vsi->rss_lut_user) 1310 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1311 else 1312 ice_fill_rss_lut(lut, vsi->rss_table_size, 1313 vsi->rss_size); 1314 } 1315 1316 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size); 1317 kfree(lut); 1318 return err; 1319 } 1320 1321 /** 1322 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1323 * @vsi: VSI to be configured 1324 */ 1325 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1326 { 1327 struct ice_aqc_get_set_rss_keys *key; 1328 struct ice_pf *pf = vsi->back; 1329 enum ice_status status; 1330 struct device *dev; 1331 int err = 0; 1332 u8 *lut; 1333 1334 dev = ice_pf_to_dev(pf); 1335 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1336 1337 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1338 if (!lut) 1339 return -ENOMEM; 1340 1341 if (vsi->rss_lut_user) 1342 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1343 else 1344 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1345 1346 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut, 1347 vsi->rss_table_size); 1348 1349 if (status) { 1350 dev_err(dev, "set_rss_lut failed, error %s\n", 1351 ice_stat_str(status)); 1352 err = -EIO; 1353 goto ice_vsi_cfg_rss_exit; 1354 } 1355 1356 key = kzalloc(sizeof(*key), GFP_KERNEL); 1357 if (!key) { 1358 err = -ENOMEM; 1359 goto ice_vsi_cfg_rss_exit; 1360 } 1361 1362 if (vsi->rss_hkey_user) 1363 memcpy(key, 1364 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user, 1365 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1366 else 1367 netdev_rss_key_fill((void *)key, 1368 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1369 1370 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key); 1371 1372 if (status) { 1373 dev_err(dev, "set_rss_key failed, error %s\n", 1374 ice_stat_str(status)); 1375 err = -EIO; 1376 } 1377 1378 kfree(key); 1379 ice_vsi_cfg_rss_exit: 1380 kfree(lut); 1381 return err; 1382 } 1383 1384 /** 1385 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1386 * @vsi: VSI to be configured 1387 * 1388 * This function will only be called during the VF VSI setup. Upon successful 1389 * completion of package download, this function will configure default RSS 1390 * input sets for VF VSI. 1391 */ 1392 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1393 { 1394 struct ice_pf *pf = vsi->back; 1395 enum ice_status status; 1396 struct device *dev; 1397 1398 dev = ice_pf_to_dev(pf); 1399 if (ice_is_safe_mode(pf)) { 1400 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1401 vsi->vsi_num); 1402 return; 1403 } 1404 1405 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1406 if (status) 1407 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1408 vsi->vsi_num, ice_stat_str(status)); 1409 } 1410 1411 /** 1412 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1413 * @vsi: VSI to be configured 1414 * 1415 * This function will only be called after successful download package call 1416 * during initialization of PF. Since the downloaded package will erase the 1417 * RSS section, this function will configure RSS input sets for different 1418 * flow types. The last profile added has the highest priority, therefore 2 1419 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1420 * (i.e. IPv4 src/dst TCP src/dst port). 1421 */ 1422 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1423 { 1424 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1425 struct ice_pf *pf = vsi->back; 1426 struct ice_hw *hw = &pf->hw; 1427 enum ice_status status; 1428 struct device *dev; 1429 1430 dev = ice_pf_to_dev(pf); 1431 if (ice_is_safe_mode(pf)) { 1432 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1433 vsi_num); 1434 return; 1435 } 1436 /* configure RSS for IPv4 with input set IP src/dst */ 1437 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1438 ICE_FLOW_SEG_HDR_IPV4); 1439 if (status) 1440 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1441 vsi_num, ice_stat_str(status)); 1442 1443 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1444 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1445 ICE_FLOW_SEG_HDR_IPV6); 1446 if (status) 1447 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1448 vsi_num, ice_stat_str(status)); 1449 1450 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1451 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1452 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1453 if (status) 1454 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1455 vsi_num, ice_stat_str(status)); 1456 1457 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1458 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1459 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1460 if (status) 1461 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1462 vsi_num, ice_stat_str(status)); 1463 1464 /* configure RSS for sctp4 with input set IP src/dst */ 1465 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1466 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1467 if (status) 1468 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1469 vsi_num, ice_stat_str(status)); 1470 1471 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1472 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1473 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1474 if (status) 1475 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1476 vsi_num, ice_stat_str(status)); 1477 1478 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1479 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1480 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1481 if (status) 1482 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1483 vsi_num, ice_stat_str(status)); 1484 1485 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1486 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1487 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1488 if (status) 1489 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1490 vsi_num, ice_stat_str(status)); 1491 } 1492 1493 /** 1494 * ice_pf_state_is_nominal - checks the PF for nominal state 1495 * @pf: pointer to PF to check 1496 * 1497 * Check the PF's state for a collection of bits that would indicate 1498 * the PF is in a state that would inhibit normal operation for 1499 * driver functionality. 1500 * 1501 * Returns true if PF is in a nominal state, false otherwise 1502 */ 1503 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1504 { 1505 DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 }; 1506 1507 if (!pf) 1508 return false; 1509 1510 bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS); 1511 if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS)) 1512 return false; 1513 1514 return true; 1515 } 1516 1517 /** 1518 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1519 * @vsi: the VSI to be updated 1520 */ 1521 void ice_update_eth_stats(struct ice_vsi *vsi) 1522 { 1523 struct ice_eth_stats *prev_es, *cur_es; 1524 struct ice_hw *hw = &vsi->back->hw; 1525 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1526 1527 prev_es = &vsi->eth_stats_prev; 1528 cur_es = &vsi->eth_stats; 1529 1530 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1531 &prev_es->rx_bytes, &cur_es->rx_bytes); 1532 1533 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1534 &prev_es->rx_unicast, &cur_es->rx_unicast); 1535 1536 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1537 &prev_es->rx_multicast, &cur_es->rx_multicast); 1538 1539 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1540 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1541 1542 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1543 &prev_es->rx_discards, &cur_es->rx_discards); 1544 1545 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1546 &prev_es->tx_bytes, &cur_es->tx_bytes); 1547 1548 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1549 &prev_es->tx_unicast, &cur_es->tx_unicast); 1550 1551 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1552 &prev_es->tx_multicast, &cur_es->tx_multicast); 1553 1554 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1555 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1556 1557 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1558 &prev_es->tx_errors, &cur_es->tx_errors); 1559 1560 vsi->stat_offsets_loaded = true; 1561 } 1562 1563 /** 1564 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1565 * @vsi: the VSI being configured 1566 * @vid: VLAN ID to be added 1567 * @action: filter action to be performed on match 1568 */ 1569 int 1570 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1571 { 1572 struct ice_pf *pf = vsi->back; 1573 struct device *dev; 1574 int err = 0; 1575 1576 dev = ice_pf_to_dev(pf); 1577 1578 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1579 vsi->num_vlan++; 1580 } else { 1581 err = -ENODEV; 1582 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1583 vsi->vsi_num); 1584 } 1585 1586 return err; 1587 } 1588 1589 /** 1590 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1591 * @vsi: the VSI being configured 1592 * @vid: VLAN ID to be removed 1593 * 1594 * Returns 0 on success and negative on failure 1595 */ 1596 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1597 { 1598 struct ice_pf *pf = vsi->back; 1599 enum ice_status status; 1600 struct device *dev; 1601 int err = 0; 1602 1603 dev = ice_pf_to_dev(pf); 1604 1605 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1606 if (!status) { 1607 vsi->num_vlan--; 1608 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1609 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1610 vid, vsi->vsi_num, ice_stat_str(status)); 1611 } else { 1612 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1613 vid, vsi->vsi_num, ice_stat_str(status)); 1614 err = -EIO; 1615 } 1616 1617 return err; 1618 } 1619 1620 /** 1621 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1622 * @vsi: VSI 1623 */ 1624 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1625 { 1626 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1627 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1628 vsi->rx_buf_len = ICE_RXBUF_2048; 1629 #if (PAGE_SIZE < 8192) 1630 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1631 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1632 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1633 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1634 #endif 1635 } else { 1636 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1637 #if (PAGE_SIZE < 8192) 1638 vsi->rx_buf_len = ICE_RXBUF_3072; 1639 #else 1640 vsi->rx_buf_len = ICE_RXBUF_2048; 1641 #endif 1642 } 1643 } 1644 1645 /** 1646 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1647 * @hw: HW pointer 1648 * @pf_q: index of the Rx queue in the PF's queue space 1649 * @rxdid: flexible descriptor RXDID 1650 * @prio: priority for the RXDID for this queue 1651 */ 1652 void 1653 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio) 1654 { 1655 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1656 1657 /* clear any previous values */ 1658 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1659 QRXFLXP_CNTXT_RXDID_PRIO_M | 1660 QRXFLXP_CNTXT_TS_M); 1661 1662 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1663 QRXFLXP_CNTXT_RXDID_IDX_M; 1664 1665 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1666 QRXFLXP_CNTXT_RXDID_PRIO_M; 1667 1668 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1669 } 1670 1671 /** 1672 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1673 * @vsi: the VSI being configured 1674 * 1675 * Return 0 on success and a negative value on error 1676 * Configure the Rx VSI for operation. 1677 */ 1678 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1679 { 1680 u16 i; 1681 1682 if (vsi->type == ICE_VSI_VF) 1683 goto setup_rings; 1684 1685 ice_vsi_cfg_frame_size(vsi); 1686 setup_rings: 1687 /* set up individual rings */ 1688 for (i = 0; i < vsi->num_rxq; i++) { 1689 int err; 1690 1691 err = ice_setup_rx_ctx(vsi->rx_rings[i]); 1692 if (err) { 1693 dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n", 1694 i, err); 1695 return err; 1696 } 1697 } 1698 1699 return 0; 1700 } 1701 1702 /** 1703 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1704 * @vsi: the VSI being configured 1705 * @rings: Tx ring array to be configured 1706 * 1707 * Return 0 on success and a negative value on error 1708 * Configure the Tx VSI for operation. 1709 */ 1710 static int 1711 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings) 1712 { 1713 struct ice_aqc_add_tx_qgrp *qg_buf; 1714 u16 q_idx = 0; 1715 int err = 0; 1716 1717 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1718 if (!qg_buf) 1719 return -ENOMEM; 1720 1721 qg_buf->num_txqs = 1; 1722 1723 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1724 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1725 if (err) 1726 goto err_cfg_txqs; 1727 } 1728 1729 err_cfg_txqs: 1730 kfree(qg_buf); 1731 return err; 1732 } 1733 1734 /** 1735 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1736 * @vsi: the VSI being configured 1737 * 1738 * Return 0 on success and a negative value on error 1739 * Configure the Tx VSI for operation. 1740 */ 1741 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1742 { 1743 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings); 1744 } 1745 1746 /** 1747 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1748 * @vsi: the VSI being configured 1749 * 1750 * Return 0 on success and a negative value on error 1751 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1752 */ 1753 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1754 { 1755 int ret; 1756 int i; 1757 1758 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings); 1759 if (ret) 1760 return ret; 1761 1762 for (i = 0; i < vsi->num_xdp_txq; i++) 1763 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]); 1764 1765 return ret; 1766 } 1767 1768 /** 1769 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1770 * @intrl: interrupt rate limit in usecs 1771 * @gran: interrupt rate limit granularity in usecs 1772 * 1773 * This function converts a decimal interrupt rate limit in usecs to the format 1774 * expected by firmware. 1775 */ 1776 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1777 { 1778 u32 val = intrl / gran; 1779 1780 if (val) 1781 return val | GLINT_RATE_INTRL_ENA_M; 1782 return 0; 1783 } 1784 1785 /** 1786 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1787 * @vsi: the VSI being configured 1788 * 1789 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1790 * for the VF VSI. 1791 */ 1792 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1793 { 1794 struct ice_pf *pf = vsi->back; 1795 struct ice_hw *hw = &pf->hw; 1796 u16 txq = 0, rxq = 0; 1797 int i, q; 1798 1799 for (i = 0; i < vsi->num_q_vectors; i++) { 1800 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1801 u16 reg_idx = q_vector->reg_idx; 1802 1803 ice_cfg_itr(hw, q_vector); 1804 1805 wr32(hw, GLINT_RATE(reg_idx), 1806 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 1807 1808 /* Both Transmit Queue Interrupt Cause Control register 1809 * and Receive Queue Interrupt Cause control register 1810 * expects MSIX_INDX field to be the vector index 1811 * within the function space and not the absolute 1812 * vector index across PF or across device. 1813 * For SR-IOV VF VSIs queue vector index always starts 1814 * with 1 since first vector index(0) is used for OICR 1815 * in VF space. Since VMDq and other PF VSIs are within 1816 * the PF function space, use the vector index that is 1817 * tracked for this PF. 1818 */ 1819 for (q = 0; q < q_vector->num_ring_tx; q++) { 1820 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1821 q_vector->tx.itr_idx); 1822 txq++; 1823 } 1824 1825 for (q = 0; q < q_vector->num_ring_rx; q++) { 1826 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1827 q_vector->rx.itr_idx); 1828 rxq++; 1829 } 1830 } 1831 } 1832 1833 /** 1834 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1835 * @vsi: the VSI being changed 1836 */ 1837 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1838 { 1839 struct ice_hw *hw = &vsi->back->hw; 1840 struct ice_vsi_ctx *ctxt; 1841 enum ice_status status; 1842 int ret = 0; 1843 1844 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1845 if (!ctxt) 1846 return -ENOMEM; 1847 1848 /* Here we are configuring the VSI to let the driver add VLAN tags by 1849 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1850 * insertion happens in the Tx hot path, in ice_tx_map. 1851 */ 1852 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1853 1854 /* Preserve existing VLAN strip setting */ 1855 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1856 ICE_AQ_VSI_VLAN_EMOD_M); 1857 1858 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1859 1860 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1861 if (status) { 1862 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 1863 ice_stat_str(status), 1864 ice_aq_str(hw->adminq.sq_last_status)); 1865 ret = -EIO; 1866 goto out; 1867 } 1868 1869 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1870 out: 1871 kfree(ctxt); 1872 return ret; 1873 } 1874 1875 /** 1876 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 1877 * @vsi: the VSI being changed 1878 * @ena: boolean value indicating if this is a enable or disable request 1879 */ 1880 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 1881 { 1882 struct ice_hw *hw = &vsi->back->hw; 1883 struct ice_vsi_ctx *ctxt; 1884 enum ice_status status; 1885 int ret = 0; 1886 1887 /* do not allow modifying VLAN stripping when a port VLAN is configured 1888 * on this VSI 1889 */ 1890 if (vsi->info.pvid) 1891 return 0; 1892 1893 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1894 if (!ctxt) 1895 return -ENOMEM; 1896 1897 /* Here we are configuring what the VSI should do with the VLAN tag in 1898 * the Rx packet. We can either leave the tag in the packet or put it in 1899 * the Rx descriptor. 1900 */ 1901 if (ena) 1902 /* Strip VLAN tag from Rx packet and put it in the desc */ 1903 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 1904 else 1905 /* Disable stripping. Leave tag in packet */ 1906 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 1907 1908 /* Allow all packets untagged/tagged */ 1909 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 1910 1911 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 1912 1913 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1914 if (status) { 1915 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 1916 ena, ice_stat_str(status), 1917 ice_aq_str(hw->adminq.sq_last_status)); 1918 ret = -EIO; 1919 goto out; 1920 } 1921 1922 vsi->info.vlan_flags = ctxt->info.vlan_flags; 1923 out: 1924 kfree(ctxt); 1925 return ret; 1926 } 1927 1928 /** 1929 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1930 * @vsi: the VSI whose rings are to be enabled 1931 * 1932 * Returns 0 on success and a negative value on error 1933 */ 1934 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1935 { 1936 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1937 } 1938 1939 /** 1940 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1941 * @vsi: the VSI whose rings are to be disabled 1942 * 1943 * Returns 0 on success and a negative value on error 1944 */ 1945 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 1946 { 1947 return ice_vsi_ctrl_all_rx_rings(vsi, false); 1948 } 1949 1950 /** 1951 * ice_vsi_stop_tx_rings - Disable Tx rings 1952 * @vsi: the VSI being configured 1953 * @rst_src: reset source 1954 * @rel_vmvf_num: Relative ID of VF/VM 1955 * @rings: Tx ring array to be stopped 1956 */ 1957 static int 1958 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1959 u16 rel_vmvf_num, struct ice_ring **rings) 1960 { 1961 u16 q_idx; 1962 1963 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1964 return -EINVAL; 1965 1966 for (q_idx = 0; q_idx < vsi->num_txq; q_idx++) { 1967 struct ice_txq_meta txq_meta = { }; 1968 int status; 1969 1970 if (!rings || !rings[q_idx]) 1971 return -EINVAL; 1972 1973 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 1974 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 1975 rings[q_idx], &txq_meta); 1976 1977 if (status) 1978 return status; 1979 } 1980 1981 return 0; 1982 } 1983 1984 /** 1985 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 1986 * @vsi: the VSI being configured 1987 * @rst_src: reset source 1988 * @rel_vmvf_num: Relative ID of VF/VM 1989 */ 1990 int 1991 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1992 u16 rel_vmvf_num) 1993 { 1994 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings); 1995 } 1996 1997 /** 1998 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 1999 * @vsi: the VSI being configured 2000 */ 2001 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2002 { 2003 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings); 2004 } 2005 2006 /** 2007 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2008 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2009 * 2010 * returns true if Rx VLAN pruning is enabled and false otherwise. 2011 */ 2012 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2013 { 2014 if (!vsi) 2015 return false; 2016 2017 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2018 } 2019 2020 /** 2021 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2022 * @vsi: VSI to enable or disable VLAN pruning on 2023 * @ena: set to true to enable VLAN pruning and false to disable it 2024 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2025 * 2026 * returns 0 if VSI is updated, negative otherwise 2027 */ 2028 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2029 { 2030 struct ice_vsi_ctx *ctxt; 2031 struct ice_pf *pf; 2032 int status; 2033 2034 if (!vsi) 2035 return -EINVAL; 2036 2037 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2038 * mode. VLAN pruning will be enabled when the interface exits 2039 * promiscuous mode if any VLAN filters are active. 2040 */ 2041 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2042 return 0; 2043 2044 pf = vsi->back; 2045 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2046 if (!ctxt) 2047 return -ENOMEM; 2048 2049 ctxt->info = vsi->info; 2050 2051 if (ena) 2052 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2053 else 2054 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2055 2056 if (!vlan_promisc) 2057 ctxt->info.valid_sections = 2058 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2059 2060 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2061 if (status) { 2062 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2063 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2064 ice_stat_str(status), 2065 ice_aq_str(pf->hw.adminq.sq_last_status)); 2066 goto err_out; 2067 } 2068 2069 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2070 2071 kfree(ctxt); 2072 return 0; 2073 2074 err_out: 2075 kfree(ctxt); 2076 return -EIO; 2077 } 2078 2079 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2080 { 2081 struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg; 2082 2083 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2084 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2085 } 2086 2087 /** 2088 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2089 * @vsi: VSI to set the q_vectors register index on 2090 */ 2091 static int 2092 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2093 { 2094 u16 i; 2095 2096 if (!vsi || !vsi->q_vectors) 2097 return -EINVAL; 2098 2099 ice_for_each_q_vector(vsi, i) { 2100 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2101 2102 if (!q_vector) { 2103 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2104 i, vsi->vsi_num); 2105 goto clear_reg_idx; 2106 } 2107 2108 if (vsi->type == ICE_VSI_VF) { 2109 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2110 2111 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2112 } else { 2113 q_vector->reg_idx = 2114 q_vector->v_idx + vsi->base_vector; 2115 } 2116 } 2117 2118 return 0; 2119 2120 clear_reg_idx: 2121 ice_for_each_q_vector(vsi, i) { 2122 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2123 2124 if (q_vector) 2125 q_vector->reg_idx = 0; 2126 } 2127 2128 return -EINVAL; 2129 } 2130 2131 /** 2132 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2133 * @vsi: the VSI being configured 2134 * @tx: bool to determine Tx or Rx rule 2135 * @create: bool to determine create or remove Rule 2136 */ 2137 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2138 { 2139 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2140 enum ice_sw_fwd_act_type act); 2141 struct ice_pf *pf = vsi->back; 2142 enum ice_status status; 2143 struct device *dev; 2144 2145 dev = ice_pf_to_dev(pf); 2146 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2147 2148 if (tx) { 2149 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2150 ICE_DROP_PACKET); 2151 } else { 2152 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2153 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2154 create); 2155 } else { 2156 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2157 ICE_FWD_TO_VSI); 2158 } 2159 } 2160 2161 if (status) 2162 dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2163 create ? "adding" : "removing", tx ? "TX" : "RX", 2164 vsi->vsi_num, ice_stat_str(status)); 2165 } 2166 2167 /** 2168 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2169 * @vsi: pointer to the VSI 2170 * 2171 * This function will allocate new scheduler aggregator now if needed and will 2172 * move specified VSI into it. 2173 */ 2174 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2175 { 2176 struct device *dev = ice_pf_to_dev(vsi->back); 2177 struct ice_agg_node *agg_node_iter = NULL; 2178 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2179 struct ice_agg_node *agg_node = NULL; 2180 int node_offset, max_agg_nodes = 0; 2181 struct ice_port_info *port_info; 2182 struct ice_pf *pf = vsi->back; 2183 u32 agg_node_id_start = 0; 2184 enum ice_status status; 2185 2186 /* create (as needed) scheduler aggregator node and move VSI into 2187 * corresponding aggregator node 2188 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2189 * - VF aggregator nodes will contain VF VSI 2190 */ 2191 port_info = pf->hw.port_info; 2192 if (!port_info) 2193 return; 2194 2195 switch (vsi->type) { 2196 case ICE_VSI_CTRL: 2197 case ICE_VSI_LB: 2198 case ICE_VSI_PF: 2199 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2200 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2201 agg_node_iter = &pf->pf_agg_node[0]; 2202 break; 2203 case ICE_VSI_VF: 2204 /* user can create 'n' VFs on a given PF, but since max children 2205 * per aggregator node can be only 64. Following code handles 2206 * aggregator(s) for VF VSIs, either selects a agg_node which 2207 * was already created provided num_vsis < 64, otherwise 2208 * select next available node, which will be created 2209 */ 2210 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2211 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2212 agg_node_iter = &pf->vf_agg_node[0]; 2213 break; 2214 default: 2215 /* other VSI type, handle later if needed */ 2216 dev_dbg(dev, "unexpected VSI type %s\n", 2217 ice_vsi_type_str(vsi->type)); 2218 return; 2219 } 2220 2221 /* find the appropriate aggregator node */ 2222 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2223 /* see if we can find space in previously created 2224 * node if num_vsis < 64, otherwise skip 2225 */ 2226 if (agg_node_iter->num_vsis && 2227 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2228 agg_node_iter++; 2229 continue; 2230 } 2231 2232 if (agg_node_iter->valid && 2233 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2234 agg_id = agg_node_iter->agg_id; 2235 agg_node = agg_node_iter; 2236 break; 2237 } 2238 2239 /* find unclaimed agg_id */ 2240 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2241 agg_id = node_offset + agg_node_id_start; 2242 agg_node = agg_node_iter; 2243 break; 2244 } 2245 /* move to next agg_node */ 2246 agg_node_iter++; 2247 } 2248 2249 if (!agg_node) 2250 return; 2251 2252 /* if selected aggregator node was not created, create it */ 2253 if (!agg_node->valid) { 2254 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2255 (u8)vsi->tc_cfg.ena_tc); 2256 if (status) { 2257 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2258 agg_id); 2259 return; 2260 } 2261 /* aggregator node is created, store the neeeded info */ 2262 agg_node->valid = true; 2263 agg_node->agg_id = agg_id; 2264 } 2265 2266 /* move VSI to corresponding aggregator node */ 2267 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2268 (u8)vsi->tc_cfg.ena_tc); 2269 if (status) { 2270 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2271 vsi->idx, agg_id); 2272 return; 2273 } 2274 2275 /* keep active children count for aggregator node */ 2276 agg_node->num_vsis++; 2277 2278 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2279 * to aggregator node 2280 */ 2281 vsi->agg_node = agg_node; 2282 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2283 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2284 vsi->agg_node->num_vsis); 2285 } 2286 2287 /** 2288 * ice_vsi_setup - Set up a VSI by a given type 2289 * @pf: board private structure 2290 * @pi: pointer to the port_info instance 2291 * @vsi_type: VSI type 2292 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2293 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2294 * fill-in ICE_INVAL_VFID as input. 2295 * 2296 * This allocates the sw VSI structure and its queue resources. 2297 * 2298 * Returns pointer to the successfully allocated and configured VSI sw struct on 2299 * success, NULL on failure. 2300 */ 2301 struct ice_vsi * 2302 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2303 enum ice_vsi_type vsi_type, u16 vf_id) 2304 { 2305 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2306 struct device *dev = ice_pf_to_dev(pf); 2307 enum ice_status status; 2308 struct ice_vsi *vsi; 2309 int ret, i; 2310 2311 if (vsi_type == ICE_VSI_VF) 2312 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2313 else 2314 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2315 2316 if (!vsi) { 2317 dev_err(dev, "could not allocate VSI\n"); 2318 return NULL; 2319 } 2320 2321 vsi->port_info = pi; 2322 vsi->vsw = pf->first_sw; 2323 if (vsi->type == ICE_VSI_PF) 2324 vsi->ethtype = ETH_P_PAUSE; 2325 2326 if (vsi->type == ICE_VSI_VF) 2327 vsi->vf_id = vf_id; 2328 2329 ice_alloc_fd_res(vsi); 2330 2331 if (ice_vsi_get_qs(vsi)) { 2332 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2333 vsi->idx); 2334 goto unroll_vsi_alloc; 2335 } 2336 2337 /* set RSS capabilities */ 2338 ice_vsi_set_rss_params(vsi); 2339 2340 /* set TC configuration */ 2341 ice_vsi_set_tc_cfg(vsi); 2342 2343 /* create the VSI */ 2344 ret = ice_vsi_init(vsi, true); 2345 if (ret) 2346 goto unroll_get_qs; 2347 2348 switch (vsi->type) { 2349 case ICE_VSI_CTRL: 2350 case ICE_VSI_PF: 2351 ret = ice_vsi_alloc_q_vectors(vsi); 2352 if (ret) 2353 goto unroll_vsi_init; 2354 2355 ret = ice_vsi_setup_vector_base(vsi); 2356 if (ret) 2357 goto unroll_alloc_q_vector; 2358 2359 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2360 if (ret) 2361 goto unroll_vector_base; 2362 2363 ret = ice_vsi_alloc_rings(vsi); 2364 if (ret) 2365 goto unroll_vector_base; 2366 2367 /* Always add VLAN ID 0 switch rule by default. This is needed 2368 * in order to allow all untagged and 0 tagged priority traffic 2369 * if Rx VLAN pruning is enabled. Also there are cases where we 2370 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2371 * so this handles those cases (i.e. adding the PF to a bridge 2372 * without the 8021q module loaded). 2373 */ 2374 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2375 if (ret) 2376 goto unroll_clear_rings; 2377 2378 ice_vsi_map_rings_to_vectors(vsi); 2379 2380 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2381 if (vsi->type != ICE_VSI_CTRL) 2382 /* Do not exit if configuring RSS had an issue, at 2383 * least receive traffic on first queue. Hence no 2384 * need to capture return value 2385 */ 2386 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2387 ice_vsi_cfg_rss_lut_key(vsi); 2388 ice_vsi_set_rss_flow_fld(vsi); 2389 } 2390 ice_init_arfs(vsi); 2391 break; 2392 case ICE_VSI_VF: 2393 /* VF driver will take care of creating netdev for this type and 2394 * map queues to vectors through Virtchnl, PF driver only 2395 * creates a VSI and corresponding structures for bookkeeping 2396 * purpose 2397 */ 2398 ret = ice_vsi_alloc_q_vectors(vsi); 2399 if (ret) 2400 goto unroll_vsi_init; 2401 2402 ret = ice_vsi_alloc_rings(vsi); 2403 if (ret) 2404 goto unroll_alloc_q_vector; 2405 2406 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2407 if (ret) 2408 goto unroll_vector_base; 2409 2410 /* Do not exit if configuring RSS had an issue, at least 2411 * receive traffic on first queue. Hence no need to capture 2412 * return value 2413 */ 2414 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2415 ice_vsi_cfg_rss_lut_key(vsi); 2416 ice_vsi_set_vf_rss_flow_fld(vsi); 2417 } 2418 break; 2419 case ICE_VSI_LB: 2420 ret = ice_vsi_alloc_rings(vsi); 2421 if (ret) 2422 goto unroll_vsi_init; 2423 break; 2424 default: 2425 /* clean up the resources and exit */ 2426 goto unroll_vsi_init; 2427 } 2428 2429 /* configure VSI nodes based on number of queues and TC's */ 2430 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2431 max_txqs[i] = vsi->alloc_txq; 2432 2433 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2434 max_txqs); 2435 if (status) { 2436 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2437 vsi->vsi_num, ice_stat_str(status)); 2438 goto unroll_clear_rings; 2439 } 2440 2441 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2442 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2443 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2444 * The rule is added once for PF VSI in order to create appropriate 2445 * recipe, since VSI/VSI list is ignored with drop action... 2446 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2447 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2448 * settings in the HW. 2449 */ 2450 if (!ice_is_safe_mode(pf)) 2451 if (vsi->type == ICE_VSI_PF) { 2452 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2453 ICE_DROP_PACKET); 2454 ice_cfg_sw_lldp(vsi, true, true); 2455 } 2456 2457 if (!vsi->agg_node) 2458 ice_set_agg_vsi(vsi); 2459 return vsi; 2460 2461 unroll_clear_rings: 2462 ice_vsi_clear_rings(vsi); 2463 unroll_vector_base: 2464 /* reclaim SW interrupts back to the common pool */ 2465 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2466 pf->num_avail_sw_msix += vsi->num_q_vectors; 2467 unroll_alloc_q_vector: 2468 ice_vsi_free_q_vectors(vsi); 2469 unroll_vsi_init: 2470 ice_vsi_delete(vsi); 2471 unroll_get_qs: 2472 ice_vsi_put_qs(vsi); 2473 unroll_vsi_alloc: 2474 if (vsi_type == ICE_VSI_VF) 2475 ice_enable_lag(pf->lag); 2476 ice_vsi_clear(vsi); 2477 2478 return NULL; 2479 } 2480 2481 /** 2482 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2483 * @vsi: the VSI being cleaned up 2484 */ 2485 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2486 { 2487 struct ice_pf *pf = vsi->back; 2488 struct ice_hw *hw = &pf->hw; 2489 u32 txq = 0; 2490 u32 rxq = 0; 2491 int i, q; 2492 2493 for (i = 0; i < vsi->num_q_vectors; i++) { 2494 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2495 u16 reg_idx = q_vector->reg_idx; 2496 2497 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, reg_idx), 0); 2498 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, reg_idx), 0); 2499 for (q = 0; q < q_vector->num_ring_tx; q++) { 2500 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2501 if (ice_is_xdp_ena_vsi(vsi)) { 2502 u32 xdp_txq = txq + vsi->num_xdp_txq; 2503 2504 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2505 } 2506 txq++; 2507 } 2508 2509 for (q = 0; q < q_vector->num_ring_rx; q++) { 2510 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2511 rxq++; 2512 } 2513 } 2514 2515 ice_flush(hw); 2516 } 2517 2518 /** 2519 * ice_vsi_free_irq - Free the IRQ association with the OS 2520 * @vsi: the VSI being configured 2521 */ 2522 void ice_vsi_free_irq(struct ice_vsi *vsi) 2523 { 2524 struct ice_pf *pf = vsi->back; 2525 int base = vsi->base_vector; 2526 int i; 2527 2528 if (!vsi->q_vectors || !vsi->irqs_ready) 2529 return; 2530 2531 ice_vsi_release_msix(vsi); 2532 if (vsi->type == ICE_VSI_VF) 2533 return; 2534 2535 vsi->irqs_ready = false; 2536 ice_for_each_q_vector(vsi, i) { 2537 u16 vector = i + base; 2538 int irq_num; 2539 2540 irq_num = pf->msix_entries[vector].vector; 2541 2542 /* free only the irqs that were actually requested */ 2543 if (!vsi->q_vectors[i] || 2544 !(vsi->q_vectors[i]->num_ring_tx || 2545 vsi->q_vectors[i]->num_ring_rx)) 2546 continue; 2547 2548 /* clear the affinity notifier in the IRQ descriptor */ 2549 irq_set_affinity_notifier(irq_num, NULL); 2550 2551 /* clear the affinity_mask in the IRQ descriptor */ 2552 irq_set_affinity_hint(irq_num, NULL); 2553 synchronize_irq(irq_num); 2554 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2555 } 2556 } 2557 2558 /** 2559 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2560 * @vsi: the VSI having resources freed 2561 */ 2562 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2563 { 2564 int i; 2565 2566 if (!vsi->tx_rings) 2567 return; 2568 2569 ice_for_each_txq(vsi, i) 2570 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2571 ice_free_tx_ring(vsi->tx_rings[i]); 2572 } 2573 2574 /** 2575 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2576 * @vsi: the VSI having resources freed 2577 */ 2578 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2579 { 2580 int i; 2581 2582 if (!vsi->rx_rings) 2583 return; 2584 2585 ice_for_each_rxq(vsi, i) 2586 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2587 ice_free_rx_ring(vsi->rx_rings[i]); 2588 } 2589 2590 /** 2591 * ice_vsi_close - Shut down a VSI 2592 * @vsi: the VSI being shut down 2593 */ 2594 void ice_vsi_close(struct ice_vsi *vsi) 2595 { 2596 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) 2597 ice_down(vsi); 2598 2599 ice_vsi_free_irq(vsi); 2600 ice_vsi_free_tx_rings(vsi); 2601 ice_vsi_free_rx_rings(vsi); 2602 } 2603 2604 /** 2605 * ice_ena_vsi - resume a VSI 2606 * @vsi: the VSI being resume 2607 * @locked: is the rtnl_lock already held 2608 */ 2609 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2610 { 2611 int err = 0; 2612 2613 if (!test_bit(__ICE_NEEDS_RESTART, vsi->state)) 2614 return 0; 2615 2616 clear_bit(__ICE_NEEDS_RESTART, vsi->state); 2617 2618 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2619 if (netif_running(vsi->netdev)) { 2620 if (!locked) 2621 rtnl_lock(); 2622 2623 err = ice_open_internal(vsi->netdev); 2624 2625 if (!locked) 2626 rtnl_unlock(); 2627 } 2628 } else if (vsi->type == ICE_VSI_CTRL) { 2629 err = ice_vsi_open_ctrl(vsi); 2630 } 2631 2632 return err; 2633 } 2634 2635 /** 2636 * ice_dis_vsi - pause a VSI 2637 * @vsi: the VSI being paused 2638 * @locked: is the rtnl_lock already held 2639 */ 2640 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2641 { 2642 if (test_bit(__ICE_DOWN, vsi->state)) 2643 return; 2644 2645 set_bit(__ICE_NEEDS_RESTART, vsi->state); 2646 2647 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2648 if (netif_running(vsi->netdev)) { 2649 if (!locked) 2650 rtnl_lock(); 2651 2652 ice_vsi_close(vsi); 2653 2654 if (!locked) 2655 rtnl_unlock(); 2656 } else { 2657 ice_vsi_close(vsi); 2658 } 2659 } else if (vsi->type == ICE_VSI_CTRL) { 2660 ice_vsi_close(vsi); 2661 } 2662 } 2663 2664 /** 2665 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2666 * @vsi: the VSI being un-configured 2667 */ 2668 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2669 { 2670 int base = vsi->base_vector; 2671 struct ice_pf *pf = vsi->back; 2672 struct ice_hw *hw = &pf->hw; 2673 u32 val; 2674 int i; 2675 2676 /* disable interrupt causation from each queue */ 2677 if (vsi->tx_rings) { 2678 ice_for_each_txq(vsi, i) { 2679 if (vsi->tx_rings[i]) { 2680 u16 reg; 2681 2682 reg = vsi->tx_rings[i]->reg_idx; 2683 val = rd32(hw, QINT_TQCTL(reg)); 2684 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2685 wr32(hw, QINT_TQCTL(reg), val); 2686 } 2687 } 2688 } 2689 2690 if (vsi->rx_rings) { 2691 ice_for_each_rxq(vsi, i) { 2692 if (vsi->rx_rings[i]) { 2693 u16 reg; 2694 2695 reg = vsi->rx_rings[i]->reg_idx; 2696 val = rd32(hw, QINT_RQCTL(reg)); 2697 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2698 wr32(hw, QINT_RQCTL(reg), val); 2699 } 2700 } 2701 } 2702 2703 /* disable each interrupt */ 2704 ice_for_each_q_vector(vsi, i) { 2705 if (!vsi->q_vectors[i]) 2706 continue; 2707 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2708 } 2709 2710 ice_flush(hw); 2711 2712 /* don't call synchronize_irq() for VF's from the host */ 2713 if (vsi->type == ICE_VSI_VF) 2714 return; 2715 2716 ice_for_each_q_vector(vsi, i) 2717 synchronize_irq(pf->msix_entries[i + base].vector); 2718 } 2719 2720 /** 2721 * ice_napi_del - Remove NAPI handler for the VSI 2722 * @vsi: VSI for which NAPI handler is to be removed 2723 */ 2724 void ice_napi_del(struct ice_vsi *vsi) 2725 { 2726 int v_idx; 2727 2728 if (!vsi->netdev) 2729 return; 2730 2731 ice_for_each_q_vector(vsi, v_idx) 2732 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2733 } 2734 2735 /** 2736 * ice_vsi_release - Delete a VSI and free its resources 2737 * @vsi: the VSI being removed 2738 * 2739 * Returns 0 on success or < 0 on error 2740 */ 2741 int ice_vsi_release(struct ice_vsi *vsi) 2742 { 2743 struct ice_pf *pf; 2744 2745 if (!vsi->back) 2746 return -ENODEV; 2747 pf = vsi->back; 2748 2749 /* do not unregister while driver is in the reset recovery pending 2750 * state. Since reset/rebuild happens through PF service task workqueue, 2751 * it's not a good idea to unregister netdev that is associated to the 2752 * PF that is running the work queue items currently. This is done to 2753 * avoid check_flush_dependency() warning on this wq 2754 */ 2755 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) { 2756 unregister_netdev(vsi->netdev); 2757 ice_devlink_destroy_port(vsi); 2758 } 2759 2760 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2761 ice_rss_clean(vsi); 2762 2763 /* Disable VSI and free resources */ 2764 if (vsi->type != ICE_VSI_LB) 2765 ice_vsi_dis_irq(vsi); 2766 ice_vsi_close(vsi); 2767 2768 /* SR-IOV determines needed MSIX resources all at once instead of per 2769 * VSI since when VFs are spawned we know how many VFs there are and how 2770 * many interrupts each VF needs. SR-IOV MSIX resources are also 2771 * cleared in the same manner. 2772 */ 2773 if (vsi->type != ICE_VSI_VF) { 2774 /* reclaim SW interrupts back to the common pool */ 2775 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2776 pf->num_avail_sw_msix += vsi->num_q_vectors; 2777 } 2778 2779 if (!ice_is_safe_mode(pf)) { 2780 if (vsi->type == ICE_VSI_PF) { 2781 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2782 ICE_DROP_PACKET); 2783 ice_cfg_sw_lldp(vsi, true, false); 2784 /* The Rx rule will only exist to remove if the LLDP FW 2785 * engine is currently stopped 2786 */ 2787 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2788 ice_cfg_sw_lldp(vsi, false, false); 2789 } 2790 } 2791 2792 ice_fltr_remove_all(vsi); 2793 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2794 ice_vsi_delete(vsi); 2795 ice_vsi_free_q_vectors(vsi); 2796 2797 /* make sure unregister_netdev() was called by checking __ICE_DOWN */ 2798 if (vsi->netdev && test_bit(__ICE_DOWN, vsi->state)) { 2799 free_netdev(vsi->netdev); 2800 vsi->netdev = NULL; 2801 } 2802 2803 if (vsi->type == ICE_VSI_VF && 2804 vsi->agg_node && vsi->agg_node->valid) 2805 vsi->agg_node->num_vsis--; 2806 ice_vsi_clear_rings(vsi); 2807 2808 ice_vsi_put_qs(vsi); 2809 2810 /* retain SW VSI data structure since it is needed to unregister and 2811 * free VSI netdev when PF is not in reset recovery pending state,\ 2812 * for ex: during rmmod. 2813 */ 2814 if (!ice_is_reset_in_progress(pf->state)) 2815 ice_vsi_clear(vsi); 2816 2817 return 0; 2818 } 2819 2820 /** 2821 * ice_vsi_rebuild_update_coalesce - set coalesce for a q_vector 2822 * @q_vector: pointer to q_vector which is being updated 2823 * @coalesce: pointer to array of struct with stored coalesce 2824 * 2825 * Set coalesce param in q_vector and update these parameters in HW. 2826 */ 2827 static void 2828 ice_vsi_rebuild_update_coalesce(struct ice_q_vector *q_vector, 2829 struct ice_coalesce_stored *coalesce) 2830 { 2831 struct ice_ring_container *rx_rc = &q_vector->rx; 2832 struct ice_ring_container *tx_rc = &q_vector->tx; 2833 struct ice_hw *hw = &q_vector->vsi->back->hw; 2834 2835 tx_rc->itr_setting = coalesce->itr_tx; 2836 rx_rc->itr_setting = coalesce->itr_rx; 2837 2838 /* dynamic ITR values will be updated during Tx/Rx */ 2839 if (!ITR_IS_DYNAMIC(tx_rc->itr_setting)) 2840 wr32(hw, GLINT_ITR(tx_rc->itr_idx, q_vector->reg_idx), 2841 ITR_REG_ALIGN(tx_rc->itr_setting) >> 2842 ICE_ITR_GRAN_S); 2843 if (!ITR_IS_DYNAMIC(rx_rc->itr_setting)) 2844 wr32(hw, GLINT_ITR(rx_rc->itr_idx, q_vector->reg_idx), 2845 ITR_REG_ALIGN(rx_rc->itr_setting) >> 2846 ICE_ITR_GRAN_S); 2847 2848 q_vector->intrl = coalesce->intrl; 2849 wr32(hw, GLINT_RATE(q_vector->reg_idx), 2850 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 2851 } 2852 2853 /** 2854 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2855 * @vsi: VSI connected with q_vectors 2856 * @coalesce: array of struct with stored coalesce 2857 * 2858 * Returns array size. 2859 */ 2860 static int 2861 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2862 struct ice_coalesce_stored *coalesce) 2863 { 2864 int i; 2865 2866 ice_for_each_q_vector(vsi, i) { 2867 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2868 2869 coalesce[i].itr_tx = q_vector->tx.itr_setting; 2870 coalesce[i].itr_rx = q_vector->rx.itr_setting; 2871 coalesce[i].intrl = q_vector->intrl; 2872 } 2873 2874 return vsi->num_q_vectors; 2875 } 2876 2877 /** 2878 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2879 * @vsi: VSI connected with q_vectors 2880 * @coalesce: pointer to array of struct with stored coalesce 2881 * @size: size of coalesce array 2882 * 2883 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2884 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2885 * to default value. 2886 */ 2887 static void 2888 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2889 struct ice_coalesce_stored *coalesce, int size) 2890 { 2891 int i; 2892 2893 if ((size && !coalesce) || !vsi) 2894 return; 2895 2896 for (i = 0; i < size && i < vsi->num_q_vectors; i++) 2897 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2898 &coalesce[i]); 2899 2900 /* number of q_vectors increased, so assume coalesce settings were 2901 * changed globally (i.e. ethtool -C eth0 instead of per-queue) and use 2902 * the previous settings from q_vector 0 for all of the new q_vectors 2903 */ 2904 for (; i < vsi->num_q_vectors; i++) 2905 ice_vsi_rebuild_update_coalesce(vsi->q_vectors[i], 2906 &coalesce[0]); 2907 } 2908 2909 /** 2910 * ice_vsi_rebuild - Rebuild VSI after reset 2911 * @vsi: VSI to be rebuild 2912 * @init_vsi: is this an initialization or a reconfigure of the VSI 2913 * 2914 * Returns 0 on success and negative value on failure 2915 */ 2916 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 2917 { 2918 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2919 struct ice_coalesce_stored *coalesce; 2920 int prev_num_q_vectors = 0; 2921 struct ice_vf *vf = NULL; 2922 enum ice_status status; 2923 struct ice_pf *pf; 2924 int ret, i; 2925 2926 if (!vsi) 2927 return -EINVAL; 2928 2929 pf = vsi->back; 2930 if (vsi->type == ICE_VSI_VF) 2931 vf = &pf->vf[vsi->vf_id]; 2932 2933 coalesce = kcalloc(vsi->num_q_vectors, 2934 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 2935 if (coalesce) 2936 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, 2937 coalesce); 2938 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2939 ice_vsi_free_q_vectors(vsi); 2940 2941 /* SR-IOV determines needed MSIX resources all at once instead of per 2942 * VSI since when VFs are spawned we know how many VFs there are and how 2943 * many interrupts each VF needs. SR-IOV MSIX resources are also 2944 * cleared in the same manner. 2945 */ 2946 if (vsi->type != ICE_VSI_VF) { 2947 /* reclaim SW interrupts back to the common pool */ 2948 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2949 pf->num_avail_sw_msix += vsi->num_q_vectors; 2950 vsi->base_vector = 0; 2951 } 2952 2953 if (ice_is_xdp_ena_vsi(vsi)) 2954 /* return value check can be skipped here, it always returns 2955 * 0 if reset is in progress 2956 */ 2957 ice_destroy_xdp_rings(vsi); 2958 ice_vsi_put_qs(vsi); 2959 ice_vsi_clear_rings(vsi); 2960 ice_vsi_free_arrays(vsi); 2961 if (vsi->type == ICE_VSI_VF) 2962 ice_vsi_set_num_qs(vsi, vf->vf_id); 2963 else 2964 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 2965 2966 ret = ice_vsi_alloc_arrays(vsi); 2967 if (ret < 0) 2968 goto err_vsi; 2969 2970 ice_vsi_get_qs(vsi); 2971 2972 ice_alloc_fd_res(vsi); 2973 ice_vsi_set_tc_cfg(vsi); 2974 2975 /* Initialize VSI struct elements and create VSI in FW */ 2976 ret = ice_vsi_init(vsi, init_vsi); 2977 if (ret < 0) 2978 goto err_vsi; 2979 2980 switch (vsi->type) { 2981 case ICE_VSI_CTRL: 2982 case ICE_VSI_PF: 2983 ret = ice_vsi_alloc_q_vectors(vsi); 2984 if (ret) 2985 goto err_rings; 2986 2987 ret = ice_vsi_setup_vector_base(vsi); 2988 if (ret) 2989 goto err_vectors; 2990 2991 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2992 if (ret) 2993 goto err_vectors; 2994 2995 ret = ice_vsi_alloc_rings(vsi); 2996 if (ret) 2997 goto err_vectors; 2998 2999 ice_vsi_map_rings_to_vectors(vsi); 3000 if (ice_is_xdp_ena_vsi(vsi)) { 3001 vsi->num_xdp_txq = vsi->alloc_rxq; 3002 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3003 if (ret) 3004 goto err_vectors; 3005 } 3006 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3007 if (vsi->type != ICE_VSI_CTRL) 3008 /* Do not exit if configuring RSS had an issue, at 3009 * least receive traffic on first queue. Hence no 3010 * need to capture return value 3011 */ 3012 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3013 ice_vsi_cfg_rss_lut_key(vsi); 3014 break; 3015 case ICE_VSI_VF: 3016 ret = ice_vsi_alloc_q_vectors(vsi); 3017 if (ret) 3018 goto err_rings; 3019 3020 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3021 if (ret) 3022 goto err_vectors; 3023 3024 ret = ice_vsi_alloc_rings(vsi); 3025 if (ret) 3026 goto err_vectors; 3027 3028 break; 3029 default: 3030 break; 3031 } 3032 3033 /* configure VSI nodes based on number of queues and TC's */ 3034 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3035 max_txqs[i] = vsi->alloc_txq; 3036 3037 if (ice_is_xdp_ena_vsi(vsi)) 3038 max_txqs[i] += vsi->num_xdp_txq; 3039 } 3040 3041 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3042 max_txqs); 3043 if (status) { 3044 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 3045 vsi->vsi_num, ice_stat_str(status)); 3046 if (init_vsi) { 3047 ret = -EIO; 3048 goto err_vectors; 3049 } else { 3050 return ice_schedule_reset(pf, ICE_RESET_PFR); 3051 } 3052 } 3053 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3054 kfree(coalesce); 3055 3056 return 0; 3057 3058 err_vectors: 3059 ice_vsi_free_q_vectors(vsi); 3060 err_rings: 3061 if (vsi->netdev) { 3062 vsi->current_netdev_flags = 0; 3063 unregister_netdev(vsi->netdev); 3064 free_netdev(vsi->netdev); 3065 vsi->netdev = NULL; 3066 } 3067 err_vsi: 3068 ice_vsi_clear(vsi); 3069 set_bit(__ICE_RESET_FAILED, pf->state); 3070 kfree(coalesce); 3071 return ret; 3072 } 3073 3074 /** 3075 * ice_is_reset_in_progress - check for a reset in progress 3076 * @state: PF state field 3077 */ 3078 bool ice_is_reset_in_progress(unsigned long *state) 3079 { 3080 return test_bit(__ICE_RESET_OICR_RECV, state) || 3081 test_bit(__ICE_PFR_REQ, state) || 3082 test_bit(__ICE_CORER_REQ, state) || 3083 test_bit(__ICE_GLOBR_REQ, state); 3084 } 3085 3086 #ifdef CONFIG_DCB 3087 /** 3088 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3089 * @vsi: VSI being configured 3090 * @ctx: the context buffer returned from AQ VSI update command 3091 */ 3092 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3093 { 3094 vsi->info.mapping_flags = ctx->info.mapping_flags; 3095 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3096 sizeof(vsi->info.q_mapping)); 3097 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3098 sizeof(vsi->info.tc_mapping)); 3099 } 3100 3101 /** 3102 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3103 * @vsi: VSI to be configured 3104 * @ena_tc: TC bitmap 3105 * 3106 * VSI queues expected to be quiesced before calling this function 3107 */ 3108 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3109 { 3110 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3111 struct ice_pf *pf = vsi->back; 3112 struct ice_vsi_ctx *ctx; 3113 enum ice_status status; 3114 struct device *dev; 3115 int i, ret = 0; 3116 u8 num_tc = 0; 3117 3118 dev = ice_pf_to_dev(pf); 3119 3120 ice_for_each_traffic_class(i) { 3121 /* build bitmap of enabled TCs */ 3122 if (ena_tc & BIT(i)) 3123 num_tc++; 3124 /* populate max_txqs per TC */ 3125 max_txqs[i] = vsi->alloc_txq; 3126 } 3127 3128 vsi->tc_cfg.ena_tc = ena_tc; 3129 vsi->tc_cfg.numtc = num_tc; 3130 3131 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3132 if (!ctx) 3133 return -ENOMEM; 3134 3135 ctx->vf_num = 0; 3136 ctx->info = vsi->info; 3137 3138 ice_vsi_setup_q_map(vsi, ctx); 3139 3140 /* must to indicate which section of VSI context are being modified */ 3141 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3142 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3143 if (status) { 3144 dev_info(dev, "Failed VSI Update\n"); 3145 ret = -EIO; 3146 goto out; 3147 } 3148 3149 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3150 max_txqs); 3151 3152 if (status) { 3153 dev_err(dev, "VSI %d failed TC config, error %s\n", 3154 vsi->vsi_num, ice_stat_str(status)); 3155 ret = -EIO; 3156 goto out; 3157 } 3158 ice_vsi_update_q_map(vsi, ctx); 3159 vsi->info.valid_sections = 0; 3160 3161 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3162 out: 3163 kfree(ctx); 3164 return ret; 3165 } 3166 #endif /* CONFIG_DCB */ 3167 3168 /** 3169 * ice_update_ring_stats - Update ring statistics 3170 * @ring: ring to update 3171 * @cont: used to increment per-vector counters 3172 * @pkts: number of processed packets 3173 * @bytes: number of processed bytes 3174 * 3175 * This function assumes that caller has acquired a u64_stats_sync lock. 3176 */ 3177 static void 3178 ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont, 3179 u64 pkts, u64 bytes) 3180 { 3181 ring->stats.bytes += bytes; 3182 ring->stats.pkts += pkts; 3183 cont->total_bytes += bytes; 3184 cont->total_pkts += pkts; 3185 } 3186 3187 /** 3188 * ice_update_tx_ring_stats - Update Tx ring specific counters 3189 * @tx_ring: ring to update 3190 * @pkts: number of processed packets 3191 * @bytes: number of processed bytes 3192 */ 3193 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3194 { 3195 u64_stats_update_begin(&tx_ring->syncp); 3196 ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes); 3197 u64_stats_update_end(&tx_ring->syncp); 3198 } 3199 3200 /** 3201 * ice_update_rx_ring_stats - Update Rx ring specific counters 3202 * @rx_ring: ring to update 3203 * @pkts: number of processed packets 3204 * @bytes: number of processed bytes 3205 */ 3206 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3207 { 3208 u64_stats_update_begin(&rx_ring->syncp); 3209 ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes); 3210 u64_stats_update_end(&rx_ring->syncp); 3211 } 3212 3213 /** 3214 * ice_status_to_errno - convert from enum ice_status to Linux errno 3215 * @err: ice_status value to convert 3216 */ 3217 int ice_status_to_errno(enum ice_status err) 3218 { 3219 switch (err) { 3220 case ICE_SUCCESS: 3221 return 0; 3222 case ICE_ERR_DOES_NOT_EXIST: 3223 return -ENOENT; 3224 case ICE_ERR_OUT_OF_RANGE: 3225 return -ENOTTY; 3226 case ICE_ERR_PARAM: 3227 return -EINVAL; 3228 case ICE_ERR_NO_MEMORY: 3229 return -ENOMEM; 3230 case ICE_ERR_MAX_LIMIT: 3231 return -EAGAIN; 3232 default: 3233 return -EINVAL; 3234 } 3235 } 3236 3237 /** 3238 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3239 * @sw: switch to check if its default forwarding VSI is free 3240 * 3241 * Return true if the default forwarding VSI is already being used, else returns 3242 * false signalling that it's available to use. 3243 */ 3244 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3245 { 3246 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3247 } 3248 3249 /** 3250 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3251 * @sw: switch for the default forwarding VSI to compare against 3252 * @vsi: VSI to compare against default forwarding VSI 3253 * 3254 * If this VSI passed in is the default forwarding VSI then return true, else 3255 * return false 3256 */ 3257 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3258 { 3259 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3260 } 3261 3262 /** 3263 * ice_set_dflt_vsi - set the default forwarding VSI 3264 * @sw: switch used to assign the default forwarding VSI 3265 * @vsi: VSI getting set as the default forwarding VSI on the switch 3266 * 3267 * If the VSI passed in is already the default VSI and it's enabled just return 3268 * success. 3269 * 3270 * If there is already a default VSI on the switch and it's enabled then return 3271 * -EEXIST since there can only be one default VSI per switch. 3272 * 3273 * Otherwise try to set the VSI passed in as the switch's default VSI and 3274 * return the result. 3275 */ 3276 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3277 { 3278 enum ice_status status; 3279 struct device *dev; 3280 3281 if (!sw || !vsi) 3282 return -EINVAL; 3283 3284 dev = ice_pf_to_dev(vsi->back); 3285 3286 /* the VSI passed in is already the default VSI */ 3287 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3288 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3289 vsi->vsi_num); 3290 return 0; 3291 } 3292 3293 /* another VSI is already the default VSI for this switch */ 3294 if (ice_is_dflt_vsi_in_use(sw)) { 3295 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3296 sw->dflt_vsi->vsi_num); 3297 return -EEXIST; 3298 } 3299 3300 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3301 if (status) { 3302 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3303 vsi->vsi_num, ice_stat_str(status)); 3304 return -EIO; 3305 } 3306 3307 sw->dflt_vsi = vsi; 3308 sw->dflt_vsi_ena = true; 3309 3310 return 0; 3311 } 3312 3313 /** 3314 * ice_clear_dflt_vsi - clear the default forwarding VSI 3315 * @sw: switch used to clear the default VSI 3316 * 3317 * If the switch has no default VSI or it's not enabled then return error. 3318 * 3319 * Otherwise try to clear the default VSI and return the result. 3320 */ 3321 int ice_clear_dflt_vsi(struct ice_sw *sw) 3322 { 3323 struct ice_vsi *dflt_vsi; 3324 enum ice_status status; 3325 struct device *dev; 3326 3327 if (!sw) 3328 return -EINVAL; 3329 3330 dev = ice_pf_to_dev(sw->pf); 3331 3332 dflt_vsi = sw->dflt_vsi; 3333 3334 /* there is no default VSI configured */ 3335 if (!ice_is_dflt_vsi_in_use(sw)) 3336 return -ENODEV; 3337 3338 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3339 ICE_FLTR_RX); 3340 if (status) { 3341 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3342 dflt_vsi->vsi_num, ice_stat_str(status)); 3343 return -EIO; 3344 } 3345 3346 sw->dflt_vsi = NULL; 3347 sw->dflt_vsi_ena = false; 3348 3349 return 0; 3350 } 3351