xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_common.c (revision 81464192839de0b5bc84c5739381101e04d94f62)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 #include "ice_flow.h"
8 
9 #define ICE_PF_RESET_WAIT_COUNT	300
10 
11 /**
12  * ice_set_mac_type - Sets MAC type
13  * @hw: pointer to the HW structure
14  *
15  * This function sets the MAC type of the adapter based on the
16  * vendor ID and device ID stored in the HW structure.
17  */
18 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
19 {
20 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
21 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
22 
23 	hw->mac_type = ICE_MAC_GENERIC;
24 	return 0;
25 }
26 
27 /**
28  * ice_clear_pf_cfg - Clear PF configuration
29  * @hw: pointer to the hardware structure
30  *
31  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
32  * configuration, flow director filters, etc.).
33  */
34 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
35 {
36 	struct ice_aq_desc desc;
37 
38 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
39 
40 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
41 }
42 
43 /**
44  * ice_aq_manage_mac_read - manage MAC address read command
45  * @hw: pointer to the HW struct
46  * @buf: a virtual buffer to hold the manage MAC read response
47  * @buf_size: Size of the virtual buffer
48  * @cd: pointer to command details structure or NULL
49  *
50  * This function is used to return per PF station MAC address (0x0107).
51  * NOTE: Upon successful completion of this command, MAC address information
52  * is returned in user specified buffer. Please interpret user specified
53  * buffer as "manage_mac_read" response.
54  * Response such as various MAC addresses are stored in HW struct (port.mac)
55  * ice_aq_discover_caps is expected to be called before this function is called.
56  */
57 static enum ice_status
58 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
59 		       struct ice_sq_cd *cd)
60 {
61 	struct ice_aqc_manage_mac_read_resp *resp;
62 	struct ice_aqc_manage_mac_read *cmd;
63 	struct ice_aq_desc desc;
64 	enum ice_status status;
65 	u16 flags;
66 	u8 i;
67 
68 	cmd = &desc.params.mac_read;
69 
70 	if (buf_size < sizeof(*resp))
71 		return ICE_ERR_BUF_TOO_SHORT;
72 
73 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
74 
75 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
76 	if (status)
77 		return status;
78 
79 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
80 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
81 
82 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
83 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
84 		return ICE_ERR_CFG;
85 	}
86 
87 	/* A single port can report up to two (LAN and WoL) addresses */
88 	for (i = 0; i < cmd->num_addr; i++)
89 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
90 			ether_addr_copy(hw->port_info->mac.lan_addr,
91 					resp[i].mac_addr);
92 			ether_addr_copy(hw->port_info->mac.perm_addr,
93 					resp[i].mac_addr);
94 			break;
95 		}
96 
97 	return 0;
98 }
99 
100 /**
101  * ice_aq_get_phy_caps - returns PHY capabilities
102  * @pi: port information structure
103  * @qual_mods: report qualified modules
104  * @report_mode: report mode capabilities
105  * @pcaps: structure for PHY capabilities to be filled
106  * @cd: pointer to command details structure or NULL
107  *
108  * Returns the various PHY capabilities supported on the Port (0x0600)
109  */
110 enum ice_status
111 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
112 		    struct ice_aqc_get_phy_caps_data *pcaps,
113 		    struct ice_sq_cd *cd)
114 {
115 	struct ice_aqc_get_phy_caps *cmd;
116 	u16 pcaps_size = sizeof(*pcaps);
117 	struct ice_aq_desc desc;
118 	enum ice_status status;
119 
120 	cmd = &desc.params.get_phy;
121 
122 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
123 		return ICE_ERR_PARAM;
124 
125 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
126 
127 	if (qual_mods)
128 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
129 
130 	cmd->param0 |= cpu_to_le16(report_mode);
131 	status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
132 
133 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
134 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
135 		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
136 	}
137 
138 	return status;
139 }
140 
141 /**
142  * ice_get_media_type - Gets media type
143  * @pi: port information structure
144  */
145 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
146 {
147 	struct ice_link_status *hw_link_info;
148 
149 	if (!pi)
150 		return ICE_MEDIA_UNKNOWN;
151 
152 	hw_link_info = &pi->phy.link_info;
153 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
154 		/* If more than one media type is selected, report unknown */
155 		return ICE_MEDIA_UNKNOWN;
156 
157 	if (hw_link_info->phy_type_low) {
158 		switch (hw_link_info->phy_type_low) {
159 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
160 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
161 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
162 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
163 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
164 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
165 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
166 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
167 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
168 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
169 		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
170 		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
171 		case ICE_PHY_TYPE_LOW_50GBASE_SR:
172 		case ICE_PHY_TYPE_LOW_50GBASE_FR:
173 		case ICE_PHY_TYPE_LOW_50GBASE_LR:
174 		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
175 		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
176 		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
177 		case ICE_PHY_TYPE_LOW_100GBASE_DR:
178 			return ICE_MEDIA_FIBER;
179 		case ICE_PHY_TYPE_LOW_100BASE_TX:
180 		case ICE_PHY_TYPE_LOW_1000BASE_T:
181 		case ICE_PHY_TYPE_LOW_2500BASE_T:
182 		case ICE_PHY_TYPE_LOW_5GBASE_T:
183 		case ICE_PHY_TYPE_LOW_10GBASE_T:
184 		case ICE_PHY_TYPE_LOW_25GBASE_T:
185 			return ICE_MEDIA_BASET;
186 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
187 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
188 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
189 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
190 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
191 		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
192 		case ICE_PHY_TYPE_LOW_50GBASE_CP:
193 		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
194 		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
195 		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
196 			return ICE_MEDIA_DA;
197 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
198 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
199 		case ICE_PHY_TYPE_LOW_2500BASE_X:
200 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
201 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
202 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
203 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
204 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
205 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
206 		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
207 		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
208 		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
209 		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
210 			return ICE_MEDIA_BACKPLANE;
211 		}
212 	} else {
213 		switch (hw_link_info->phy_type_high) {
214 		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
215 			return ICE_MEDIA_BACKPLANE;
216 		}
217 	}
218 	return ICE_MEDIA_UNKNOWN;
219 }
220 
221 /**
222  * ice_aq_get_link_info
223  * @pi: port information structure
224  * @ena_lse: enable/disable LinkStatusEvent reporting
225  * @link: pointer to link status structure - optional
226  * @cd: pointer to command details structure or NULL
227  *
228  * Get Link Status (0x607). Returns the link status of the adapter.
229  */
230 enum ice_status
231 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
232 		     struct ice_link_status *link, struct ice_sq_cd *cd)
233 {
234 	struct ice_aqc_get_link_status_data link_data = { 0 };
235 	struct ice_aqc_get_link_status *resp;
236 	struct ice_link_status *li_old, *li;
237 	enum ice_media_type *hw_media_type;
238 	struct ice_fc_info *hw_fc_info;
239 	bool tx_pause, rx_pause;
240 	struct ice_aq_desc desc;
241 	enum ice_status status;
242 	struct ice_hw *hw;
243 	u16 cmd_flags;
244 
245 	if (!pi)
246 		return ICE_ERR_PARAM;
247 	hw = pi->hw;
248 	li_old = &pi->phy.link_info_old;
249 	hw_media_type = &pi->phy.media_type;
250 	li = &pi->phy.link_info;
251 	hw_fc_info = &pi->fc;
252 
253 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
254 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
255 	resp = &desc.params.get_link_status;
256 	resp->cmd_flags = cpu_to_le16(cmd_flags);
257 	resp->lport_num = pi->lport;
258 
259 	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
260 
261 	if (status)
262 		return status;
263 
264 	/* save off old link status information */
265 	*li_old = *li;
266 
267 	/* update current link status information */
268 	li->link_speed = le16_to_cpu(link_data.link_speed);
269 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
270 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
271 	*hw_media_type = ice_get_media_type(pi);
272 	li->link_info = link_data.link_info;
273 	li->an_info = link_data.an_info;
274 	li->ext_info = link_data.ext_info;
275 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
276 	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
277 	li->topo_media_conflict = link_data.topo_media_conflict;
278 	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
279 				      ICE_AQ_CFG_PACING_TYPE_M);
280 
281 	/* update fc info */
282 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
283 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
284 	if (tx_pause && rx_pause)
285 		hw_fc_info->current_mode = ICE_FC_FULL;
286 	else if (tx_pause)
287 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
288 	else if (rx_pause)
289 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
290 	else
291 		hw_fc_info->current_mode = ICE_FC_NONE;
292 
293 	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
294 
295 	ice_debug(hw, ICE_DBG_LINK, "link_speed = 0x%x\n", li->link_speed);
296 	ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
297 		  (unsigned long long)li->phy_type_low);
298 	ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
299 		  (unsigned long long)li->phy_type_high);
300 	ice_debug(hw, ICE_DBG_LINK, "media_type = 0x%x\n", *hw_media_type);
301 	ice_debug(hw, ICE_DBG_LINK, "link_info = 0x%x\n", li->link_info);
302 	ice_debug(hw, ICE_DBG_LINK, "an_info = 0x%x\n", li->an_info);
303 	ice_debug(hw, ICE_DBG_LINK, "ext_info = 0x%x\n", li->ext_info);
304 	ice_debug(hw, ICE_DBG_LINK, "lse_ena = 0x%x\n", li->lse_ena);
305 	ice_debug(hw, ICE_DBG_LINK, "max_frame = 0x%x\n", li->max_frame_size);
306 	ice_debug(hw, ICE_DBG_LINK, "pacing = 0x%x\n", li->pacing);
307 
308 	/* save link status information */
309 	if (link)
310 		*link = *li;
311 
312 	/* flag cleared so calling functions don't call AQ again */
313 	pi->phy.get_link_info = false;
314 
315 	return 0;
316 }
317 
318 /**
319  * ice_fill_tx_timer_and_fc_thresh
320  * @hw: pointer to the HW struct
321  * @cmd: pointer to MAC cfg structure
322  *
323  * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
324  * descriptor
325  */
326 static void
327 ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
328 				struct ice_aqc_set_mac_cfg *cmd)
329 {
330 	u16 fc_thres_val, tx_timer_val;
331 	u32 val;
332 
333 	/* We read back the transmit timer and FC threshold value of
334 	 * LFC. Thus, we will use index =
335 	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
336 	 *
337 	 * Also, because we are operating on transmit timer and FC
338 	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
339 	 */
340 #define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
341 
342 	/* Retrieve the transmit timer */
343 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
344 	tx_timer_val = val &
345 		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
346 	cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
347 
348 	/* Retrieve the FC threshold */
349 	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
350 	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
351 
352 	cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
353 }
354 
355 /**
356  * ice_aq_set_mac_cfg
357  * @hw: pointer to the HW struct
358  * @max_frame_size: Maximum Frame Size to be supported
359  * @cd: pointer to command details structure or NULL
360  *
361  * Set MAC configuration (0x0603)
362  */
363 enum ice_status
364 ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
365 {
366 	struct ice_aqc_set_mac_cfg *cmd;
367 	struct ice_aq_desc desc;
368 
369 	cmd = &desc.params.set_mac_cfg;
370 
371 	if (max_frame_size == 0)
372 		return ICE_ERR_PARAM;
373 
374 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
375 
376 	cmd->max_frame_size = cpu_to_le16(max_frame_size);
377 
378 	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
379 
380 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
381 }
382 
383 /**
384  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
385  * @hw: pointer to the HW struct
386  */
387 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
388 {
389 	struct ice_switch_info *sw;
390 	enum ice_status status;
391 
392 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
393 				       sizeof(*hw->switch_info), GFP_KERNEL);
394 	sw = hw->switch_info;
395 
396 	if (!sw)
397 		return ICE_ERR_NO_MEMORY;
398 
399 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
400 
401 	status = ice_init_def_sw_recp(hw);
402 	if (status) {
403 		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
404 		return status;
405 	}
406 	return 0;
407 }
408 
409 /**
410  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
411  * @hw: pointer to the HW struct
412  */
413 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
414 {
415 	struct ice_switch_info *sw = hw->switch_info;
416 	struct ice_vsi_list_map_info *v_pos_map;
417 	struct ice_vsi_list_map_info *v_tmp_map;
418 	struct ice_sw_recipe *recps;
419 	u8 i;
420 
421 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
422 				 list_entry) {
423 		list_del(&v_pos_map->list_entry);
424 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
425 	}
426 	recps = hw->switch_info->recp_list;
427 	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
428 		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
429 
430 		recps[i].root_rid = i;
431 		mutex_destroy(&recps[i].filt_rule_lock);
432 		list_for_each_entry_safe(lst_itr, tmp_entry,
433 					 &recps[i].filt_rules, list_entry) {
434 			list_del(&lst_itr->list_entry);
435 			devm_kfree(ice_hw_to_dev(hw), lst_itr);
436 		}
437 	}
438 	ice_rm_all_sw_replay_rule_info(hw);
439 	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
440 	devm_kfree(ice_hw_to_dev(hw), sw);
441 }
442 
443 #define ICE_FW_LOG_DESC_SIZE(n)	(sizeof(struct ice_aqc_fw_logging_data) + \
444 	(((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
445 #define ICE_FW_LOG_DESC_SIZE_MAX	\
446 	ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)
447 
448 /**
449  * ice_get_fw_log_cfg - get FW logging configuration
450  * @hw: pointer to the HW struct
451  */
452 static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
453 {
454 	struct ice_aqc_fw_logging_data *config;
455 	struct ice_aq_desc desc;
456 	enum ice_status status;
457 	u16 size;
458 
459 	size = ICE_FW_LOG_DESC_SIZE_MAX;
460 	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
461 	if (!config)
462 		return ICE_ERR_NO_MEMORY;
463 
464 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
465 
466 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF);
467 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
468 
469 	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
470 	if (!status) {
471 		u16 i;
472 
473 		/* Save FW logging information into the HW structure */
474 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
475 			u16 v, m, flgs;
476 
477 			v = le16_to_cpu(config->entry[i]);
478 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
479 			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
480 
481 			if (m < ICE_AQC_FW_LOG_ID_MAX)
482 				hw->fw_log.evnts[m].cur = flgs;
483 		}
484 	}
485 
486 	devm_kfree(ice_hw_to_dev(hw), config);
487 
488 	return status;
489 }
490 
491 /**
492  * ice_cfg_fw_log - configure FW logging
493  * @hw: pointer to the HW struct
494  * @enable: enable certain FW logging events if true, disable all if false
495  *
496  * This function enables/disables the FW logging via Rx CQ events and a UART
497  * port based on predetermined configurations. FW logging via the Rx CQ can be
498  * enabled/disabled for individual PF's. However, FW logging via the UART can
499  * only be enabled/disabled for all PFs on the same device.
500  *
501  * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
502  * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
503  * before initializing the device.
504  *
505  * When re/configuring FW logging, callers need to update the "cfg" elements of
506  * the hw->fw_log.evnts array with the desired logging event configurations for
507  * modules of interest. When disabling FW logging completely, the callers can
508  * just pass false in the "enable" parameter. On completion, the function will
509  * update the "cur" element of the hw->fw_log.evnts array with the resulting
510  * logging event configurations of the modules that are being re/configured. FW
511  * logging modules that are not part of a reconfiguration operation retain their
512  * previous states.
513  *
514  * Before resetting the device, it is recommended that the driver disables FW
515  * logging before shutting down the control queue. When disabling FW logging
516  * ("enable" = false), the latest configurations of FW logging events stored in
517  * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
518  * a device reset.
519  *
520  * When enabling FW logging to emit log messages via the Rx CQ during the
521  * device's initialization phase, a mechanism alternative to interrupt handlers
522  * needs to be used to extract FW log messages from the Rx CQ periodically and
523  * to prevent the Rx CQ from being full and stalling other types of control
524  * messages from FW to SW. Interrupts are typically disabled during the device's
525  * initialization phase.
526  */
527 static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
528 {
529 	struct ice_aqc_fw_logging_data *data = NULL;
530 	struct ice_aqc_fw_logging *cmd;
531 	enum ice_status status = 0;
532 	u16 i, chgs = 0, len = 0;
533 	struct ice_aq_desc desc;
534 	u8 actv_evnts = 0;
535 	void *buf = NULL;
536 
537 	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
538 		return 0;
539 
540 	/* Disable FW logging only when the control queue is still responsive */
541 	if (!enable &&
542 	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
543 		return 0;
544 
545 	/* Get current FW log settings */
546 	status = ice_get_fw_log_cfg(hw);
547 	if (status)
548 		return status;
549 
550 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
551 	cmd = &desc.params.fw_logging;
552 
553 	/* Indicate which controls are valid */
554 	if (hw->fw_log.cq_en)
555 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
556 
557 	if (hw->fw_log.uart_en)
558 		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
559 
560 	if (enable) {
561 		/* Fill in an array of entries with FW logging modules and
562 		 * logging events being reconfigured.
563 		 */
564 		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
565 			u16 val;
566 
567 			/* Keep track of enabled event types */
568 			actv_evnts |= hw->fw_log.evnts[i].cfg;
569 
570 			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
571 				continue;
572 
573 			if (!data) {
574 				data = devm_kzalloc(ice_hw_to_dev(hw),
575 						    ICE_FW_LOG_DESC_SIZE_MAX,
576 						    GFP_KERNEL);
577 				if (!data)
578 					return ICE_ERR_NO_MEMORY;
579 			}
580 
581 			val = i << ICE_AQC_FW_LOG_ID_S;
582 			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
583 			data->entry[chgs++] = cpu_to_le16(val);
584 		}
585 
586 		/* Only enable FW logging if at least one module is specified.
587 		 * If FW logging is currently enabled but all modules are not
588 		 * enabled to emit log messages, disable FW logging altogether.
589 		 */
590 		if (actv_evnts) {
591 			/* Leave if there is effectively no change */
592 			if (!chgs)
593 				goto out;
594 
595 			if (hw->fw_log.cq_en)
596 				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
597 
598 			if (hw->fw_log.uart_en)
599 				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
600 
601 			buf = data;
602 			len = ICE_FW_LOG_DESC_SIZE(chgs);
603 			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
604 		}
605 	}
606 
607 	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
608 	if (!status) {
609 		/* Update the current configuration to reflect events enabled.
610 		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
611 		 * logging mode is enabled for the device. They do not reflect
612 		 * actual modules being enabled to emit log messages. So, their
613 		 * values remain unchanged even when all modules are disabled.
614 		 */
615 		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
616 
617 		hw->fw_log.actv_evnts = actv_evnts;
618 		for (i = 0; i < cnt; i++) {
619 			u16 v, m;
620 
621 			if (!enable) {
622 				/* When disabling all FW logging events as part
623 				 * of device's de-initialization, the original
624 				 * configurations are retained, and can be used
625 				 * to reconfigure FW logging later if the device
626 				 * is re-initialized.
627 				 */
628 				hw->fw_log.evnts[i].cur = 0;
629 				continue;
630 			}
631 
632 			v = le16_to_cpu(data->entry[i]);
633 			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
634 			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
635 		}
636 	}
637 
638 out:
639 	if (data)
640 		devm_kfree(ice_hw_to_dev(hw), data);
641 
642 	return status;
643 }
644 
645 /**
646  * ice_output_fw_log
647  * @hw: pointer to the HW struct
648  * @desc: pointer to the AQ message descriptor
649  * @buf: pointer to the buffer accompanying the AQ message
650  *
651  * Formats a FW Log message and outputs it via the standard driver logs.
652  */
653 void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
654 {
655 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
656 	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
657 			le16_to_cpu(desc->datalen));
658 	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
659 }
660 
661 /**
662  * ice_get_itr_intrl_gran
663  * @hw: pointer to the HW struct
664  *
665  * Determines the ITR/INTRL granularities based on the maximum aggregate
666  * bandwidth according to the device's configuration during power-on.
667  */
668 static void ice_get_itr_intrl_gran(struct ice_hw *hw)
669 {
670 	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
671 			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
672 			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
673 
674 	switch (max_agg_bw) {
675 	case ICE_MAX_AGG_BW_200G:
676 	case ICE_MAX_AGG_BW_100G:
677 	case ICE_MAX_AGG_BW_50G:
678 		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
679 		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
680 		break;
681 	case ICE_MAX_AGG_BW_25G:
682 		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
683 		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
684 		break;
685 	}
686 }
687 
688 /**
689  * ice_init_hw - main hardware initialization routine
690  * @hw: pointer to the hardware structure
691  */
692 enum ice_status ice_init_hw(struct ice_hw *hw)
693 {
694 	struct ice_aqc_get_phy_caps_data *pcaps;
695 	enum ice_status status;
696 	u16 mac_buf_len;
697 	void *mac_buf;
698 
699 	/* Set MAC type based on DeviceID */
700 	status = ice_set_mac_type(hw);
701 	if (status)
702 		return status;
703 
704 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
705 			 PF_FUNC_RID_FUNC_NUM_M) >>
706 		PF_FUNC_RID_FUNC_NUM_S;
707 
708 	status = ice_reset(hw, ICE_RESET_PFR);
709 	if (status)
710 		return status;
711 
712 	ice_get_itr_intrl_gran(hw);
713 
714 	status = ice_create_all_ctrlq(hw);
715 	if (status)
716 		goto err_unroll_cqinit;
717 
718 	/* Enable FW logging. Not fatal if this fails. */
719 	status = ice_cfg_fw_log(hw, true);
720 	if (status)
721 		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
722 
723 	status = ice_clear_pf_cfg(hw);
724 	if (status)
725 		goto err_unroll_cqinit;
726 
727 	/* Set bit to enable Flow Director filters */
728 	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
729 	INIT_LIST_HEAD(&hw->fdir_list_head);
730 
731 	ice_clear_pxe_mode(hw);
732 
733 	status = ice_init_nvm(hw);
734 	if (status)
735 		goto err_unroll_cqinit;
736 
737 	status = ice_get_caps(hw);
738 	if (status)
739 		goto err_unroll_cqinit;
740 
741 	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
742 				     sizeof(*hw->port_info), GFP_KERNEL);
743 	if (!hw->port_info) {
744 		status = ICE_ERR_NO_MEMORY;
745 		goto err_unroll_cqinit;
746 	}
747 
748 	/* set the back pointer to HW */
749 	hw->port_info->hw = hw;
750 
751 	/* Initialize port_info struct with switch configuration data */
752 	status = ice_get_initial_sw_cfg(hw);
753 	if (status)
754 		goto err_unroll_alloc;
755 
756 	hw->evb_veb = true;
757 
758 	/* Query the allocated resources for Tx scheduler */
759 	status = ice_sched_query_res_alloc(hw);
760 	if (status) {
761 		ice_debug(hw, ICE_DBG_SCHED,
762 			  "Failed to get scheduler allocated resources\n");
763 		goto err_unroll_alloc;
764 	}
765 
766 	/* Initialize port_info struct with scheduler data */
767 	status = ice_sched_init_port(hw->port_info);
768 	if (status)
769 		goto err_unroll_sched;
770 
771 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
772 	if (!pcaps) {
773 		status = ICE_ERR_NO_MEMORY;
774 		goto err_unroll_sched;
775 	}
776 
777 	/* Initialize port_info struct with PHY capabilities */
778 	status = ice_aq_get_phy_caps(hw->port_info, false,
779 				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
780 	devm_kfree(ice_hw_to_dev(hw), pcaps);
781 	if (status)
782 		goto err_unroll_sched;
783 
784 	/* Initialize port_info struct with link information */
785 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
786 	if (status)
787 		goto err_unroll_sched;
788 
789 	/* need a valid SW entry point to build a Tx tree */
790 	if (!hw->sw_entry_point_layer) {
791 		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
792 		status = ICE_ERR_CFG;
793 		goto err_unroll_sched;
794 	}
795 	INIT_LIST_HEAD(&hw->agg_list);
796 	/* Initialize max burst size */
797 	if (!hw->max_burst_size)
798 		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
799 
800 	status = ice_init_fltr_mgmt_struct(hw);
801 	if (status)
802 		goto err_unroll_sched;
803 
804 	/* Get MAC information */
805 	/* A single port can report up to two (LAN and WoL) addresses */
806 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
807 			       sizeof(struct ice_aqc_manage_mac_read_resp),
808 			       GFP_KERNEL);
809 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
810 
811 	if (!mac_buf) {
812 		status = ICE_ERR_NO_MEMORY;
813 		goto err_unroll_fltr_mgmt_struct;
814 	}
815 
816 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
817 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
818 
819 	if (status)
820 		goto err_unroll_fltr_mgmt_struct;
821 	/* enable jumbo frame support at MAC level */
822 	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
823 	if (status)
824 		goto err_unroll_fltr_mgmt_struct;
825 	/* Obtain counter base index which would be used by flow director */
826 	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
827 	if (status)
828 		goto err_unroll_fltr_mgmt_struct;
829 	status = ice_init_hw_tbls(hw);
830 	if (status)
831 		goto err_unroll_fltr_mgmt_struct;
832 	mutex_init(&hw->tnl_lock);
833 	return 0;
834 
835 err_unroll_fltr_mgmt_struct:
836 	ice_cleanup_fltr_mgmt_struct(hw);
837 err_unroll_sched:
838 	ice_sched_cleanup_all(hw);
839 err_unroll_alloc:
840 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
841 err_unroll_cqinit:
842 	ice_destroy_all_ctrlq(hw);
843 	return status;
844 }
845 
846 /**
847  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
848  * @hw: pointer to the hardware structure
849  *
850  * This should be called only during nominal operation, not as a result of
851  * ice_init_hw() failing since ice_init_hw() will take care of unrolling
852  * applicable initializations if it fails for any reason.
853  */
854 void ice_deinit_hw(struct ice_hw *hw)
855 {
856 	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
857 	ice_cleanup_fltr_mgmt_struct(hw);
858 
859 	ice_sched_cleanup_all(hw);
860 	ice_sched_clear_agg(hw);
861 	ice_free_seg(hw);
862 	ice_free_hw_tbls(hw);
863 	mutex_destroy(&hw->tnl_lock);
864 
865 	if (hw->port_info) {
866 		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
867 		hw->port_info = NULL;
868 	}
869 
870 	/* Attempt to disable FW logging before shutting down control queues */
871 	ice_cfg_fw_log(hw, false);
872 	ice_destroy_all_ctrlq(hw);
873 
874 	/* Clear VSI contexts if not already cleared */
875 	ice_clear_all_vsi_ctx(hw);
876 }
877 
878 /**
879  * ice_check_reset - Check to see if a global reset is complete
880  * @hw: pointer to the hardware structure
881  */
882 enum ice_status ice_check_reset(struct ice_hw *hw)
883 {
884 	u32 cnt, reg = 0, grst_delay, uld_mask;
885 
886 	/* Poll for Device Active state in case a recent CORER, GLOBR,
887 	 * or EMPR has occurred. The grst delay value is in 100ms units.
888 	 * Add 1sec for outstanding AQ commands that can take a long time.
889 	 */
890 	grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
891 		      GLGEN_RSTCTL_GRSTDEL_S) + 10;
892 
893 	for (cnt = 0; cnt < grst_delay; cnt++) {
894 		mdelay(100);
895 		reg = rd32(hw, GLGEN_RSTAT);
896 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
897 			break;
898 	}
899 
900 	if (cnt == grst_delay) {
901 		ice_debug(hw, ICE_DBG_INIT,
902 			  "Global reset polling failed to complete.\n");
903 		return ICE_ERR_RESET_FAILED;
904 	}
905 
906 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
907 				 GLNVM_ULD_PCIER_DONE_1_M |\
908 				 GLNVM_ULD_CORER_DONE_M |\
909 				 GLNVM_ULD_GLOBR_DONE_M |\
910 				 GLNVM_ULD_POR_DONE_M |\
911 				 GLNVM_ULD_POR_DONE_1_M |\
912 				 GLNVM_ULD_PCIER_DONE_2_M)
913 
914 	uld_mask = ICE_RESET_DONE_MASK;
915 
916 	/* Device is Active; check Global Reset processes are done */
917 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
918 		reg = rd32(hw, GLNVM_ULD) & uld_mask;
919 		if (reg == uld_mask) {
920 			ice_debug(hw, ICE_DBG_INIT,
921 				  "Global reset processes done. %d\n", cnt);
922 			break;
923 		}
924 		mdelay(10);
925 	}
926 
927 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
928 		ice_debug(hw, ICE_DBG_INIT,
929 			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
930 			  reg);
931 		return ICE_ERR_RESET_FAILED;
932 	}
933 
934 	return 0;
935 }
936 
937 /**
938  * ice_pf_reset - Reset the PF
939  * @hw: pointer to the hardware structure
940  *
941  * If a global reset has been triggered, this function checks
942  * for its completion and then issues the PF reset
943  */
944 static enum ice_status ice_pf_reset(struct ice_hw *hw)
945 {
946 	u32 cnt, reg;
947 
948 	/* If at function entry a global reset was already in progress, i.e.
949 	 * state is not 'device active' or any of the reset done bits are not
950 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
951 	 * global reset is done.
952 	 */
953 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
954 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
955 		/* poll on global reset currently in progress until done */
956 		if (ice_check_reset(hw))
957 			return ICE_ERR_RESET_FAILED;
958 
959 		return 0;
960 	}
961 
962 	/* Reset the PF */
963 	reg = rd32(hw, PFGEN_CTRL);
964 
965 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
966 
967 	/* Wait for the PFR to complete. The wait time is the global config lock
968 	 * timeout plus the PFR timeout which will account for a possible reset
969 	 * that is occurring during a download package operation.
970 	 */
971 	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
972 	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
973 		reg = rd32(hw, PFGEN_CTRL);
974 		if (!(reg & PFGEN_CTRL_PFSWR_M))
975 			break;
976 
977 		mdelay(1);
978 	}
979 
980 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
981 		ice_debug(hw, ICE_DBG_INIT,
982 			  "PF reset polling failed to complete.\n");
983 		return ICE_ERR_RESET_FAILED;
984 	}
985 
986 	return 0;
987 }
988 
989 /**
990  * ice_reset - Perform different types of reset
991  * @hw: pointer to the hardware structure
992  * @req: reset request
993  *
994  * This function triggers a reset as specified by the req parameter.
995  *
996  * Note:
997  * If anything other than a PF reset is triggered, PXE mode is restored.
998  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
999  * interface has been restored in the rebuild flow.
1000  */
1001 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1002 {
1003 	u32 val = 0;
1004 
1005 	switch (req) {
1006 	case ICE_RESET_PFR:
1007 		return ice_pf_reset(hw);
1008 	case ICE_RESET_CORER:
1009 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1010 		val = GLGEN_RTRIG_CORER_M;
1011 		break;
1012 	case ICE_RESET_GLOBR:
1013 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1014 		val = GLGEN_RTRIG_GLOBR_M;
1015 		break;
1016 	default:
1017 		return ICE_ERR_PARAM;
1018 	}
1019 
1020 	val |= rd32(hw, GLGEN_RTRIG);
1021 	wr32(hw, GLGEN_RTRIG, val);
1022 	ice_flush(hw);
1023 
1024 	/* wait for the FW to be ready */
1025 	return ice_check_reset(hw);
1026 }
1027 
1028 /**
1029  * ice_copy_rxq_ctx_to_hw
1030  * @hw: pointer to the hardware structure
1031  * @ice_rxq_ctx: pointer to the rxq context
1032  * @rxq_index: the index of the Rx queue
1033  *
1034  * Copies rxq context from dense structure to HW register space
1035  */
1036 static enum ice_status
1037 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1038 {
1039 	u8 i;
1040 
1041 	if (!ice_rxq_ctx)
1042 		return ICE_ERR_BAD_PTR;
1043 
1044 	if (rxq_index > QRX_CTRL_MAX_INDEX)
1045 		return ICE_ERR_PARAM;
1046 
1047 	/* Copy each dword separately to HW */
1048 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1049 		wr32(hw, QRX_CONTEXT(i, rxq_index),
1050 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1051 
1052 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1053 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 /* LAN Rx Queue Context */
1060 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1061 	/* Field		Width	LSB */
1062 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1063 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1064 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1065 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1066 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1067 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1068 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1069 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1070 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1071 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1072 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1073 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1074 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1075 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1076 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1077 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1078 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1079 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1080 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1081 	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1082 	{ 0 }
1083 };
1084 
1085 /**
1086  * ice_write_rxq_ctx
1087  * @hw: pointer to the hardware structure
1088  * @rlan_ctx: pointer to the rxq context
1089  * @rxq_index: the index of the Rx queue
1090  *
1091  * Converts rxq context from sparse to dense structure and then writes
1092  * it to HW register space and enables the hardware to prefetch descriptors
1093  * instead of only fetching them on demand
1094  */
1095 enum ice_status
1096 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1097 		  u32 rxq_index)
1098 {
1099 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1100 
1101 	if (!rlan_ctx)
1102 		return ICE_ERR_BAD_PTR;
1103 
1104 	rlan_ctx->prefena = 1;
1105 
1106 	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1107 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1108 }
1109 
1110 /* LAN Tx Queue Context */
1111 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1112 				    /* Field			Width	LSB */
1113 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1114 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1115 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1116 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1117 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1118 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1119 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1120 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1121 	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1122 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1123 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1124 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1125 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1126 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1127 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1128 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1129 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1130 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1131 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1132 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1133 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1134 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1135 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1136 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1137 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1138 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1139 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1140 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1141 	{ 0 }
1142 };
1143 
1144 /* FW Admin Queue command wrappers */
1145 
1146 /* Software lock/mutex that is meant to be held while the Global Config Lock
1147  * in firmware is acquired by the software to prevent most (but not all) types
1148  * of AQ commands from being sent to FW
1149  */
1150 DEFINE_MUTEX(ice_global_cfg_lock_sw);
1151 
1152 /**
1153  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1154  * @hw: pointer to the HW struct
1155  * @desc: descriptor describing the command
1156  * @buf: buffer to use for indirect commands (NULL for direct commands)
1157  * @buf_size: size of buffer for indirect commands (0 for direct commands)
1158  * @cd: pointer to command details structure
1159  *
1160  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1161  */
1162 enum ice_status
1163 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1164 		u16 buf_size, struct ice_sq_cd *cd)
1165 {
1166 	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1167 	bool lock_acquired = false;
1168 	enum ice_status status;
1169 
1170 	/* When a package download is in process (i.e. when the firmware's
1171 	 * Global Configuration Lock resource is held), only the Download
1172 	 * Package, Get Version, Get Package Info List and Release Resource
1173 	 * (with resource ID set to Global Config Lock) AdminQ commands are
1174 	 * allowed; all others must block until the package download completes
1175 	 * and the Global Config Lock is released.  See also
1176 	 * ice_acquire_global_cfg_lock().
1177 	 */
1178 	switch (le16_to_cpu(desc->opcode)) {
1179 	case ice_aqc_opc_download_pkg:
1180 	case ice_aqc_opc_get_pkg_info_list:
1181 	case ice_aqc_opc_get_ver:
1182 		break;
1183 	case ice_aqc_opc_release_res:
1184 		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1185 			break;
1186 		fallthrough;
1187 	default:
1188 		mutex_lock(&ice_global_cfg_lock_sw);
1189 		lock_acquired = true;
1190 		break;
1191 	}
1192 
1193 	status = ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1194 	if (lock_acquired)
1195 		mutex_unlock(&ice_global_cfg_lock_sw);
1196 
1197 	return status;
1198 }
1199 
1200 /**
1201  * ice_aq_get_fw_ver
1202  * @hw: pointer to the HW struct
1203  * @cd: pointer to command details structure or NULL
1204  *
1205  * Get the firmware version (0x0001) from the admin queue commands
1206  */
1207 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1208 {
1209 	struct ice_aqc_get_ver *resp;
1210 	struct ice_aq_desc desc;
1211 	enum ice_status status;
1212 
1213 	resp = &desc.params.get_ver;
1214 
1215 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1216 
1217 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1218 
1219 	if (!status) {
1220 		hw->fw_branch = resp->fw_branch;
1221 		hw->fw_maj_ver = resp->fw_major;
1222 		hw->fw_min_ver = resp->fw_minor;
1223 		hw->fw_patch = resp->fw_patch;
1224 		hw->fw_build = le32_to_cpu(resp->fw_build);
1225 		hw->api_branch = resp->api_branch;
1226 		hw->api_maj_ver = resp->api_major;
1227 		hw->api_min_ver = resp->api_minor;
1228 		hw->api_patch = resp->api_patch;
1229 	}
1230 
1231 	return status;
1232 }
1233 
1234 /**
1235  * ice_aq_send_driver_ver
1236  * @hw: pointer to the HW struct
1237  * @dv: driver's major, minor version
1238  * @cd: pointer to command details structure or NULL
1239  *
1240  * Send the driver version (0x0002) to the firmware
1241  */
1242 enum ice_status
1243 ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1244 		       struct ice_sq_cd *cd)
1245 {
1246 	struct ice_aqc_driver_ver *cmd;
1247 	struct ice_aq_desc desc;
1248 	u16 len;
1249 
1250 	cmd = &desc.params.driver_ver;
1251 
1252 	if (!dv)
1253 		return ICE_ERR_PARAM;
1254 
1255 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1256 
1257 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1258 	cmd->major_ver = dv->major_ver;
1259 	cmd->minor_ver = dv->minor_ver;
1260 	cmd->build_ver = dv->build_ver;
1261 	cmd->subbuild_ver = dv->subbuild_ver;
1262 
1263 	len = 0;
1264 	while (len < sizeof(dv->driver_string) &&
1265 	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1266 		len++;
1267 
1268 	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1269 }
1270 
1271 /**
1272  * ice_aq_q_shutdown
1273  * @hw: pointer to the HW struct
1274  * @unloading: is the driver unloading itself
1275  *
1276  * Tell the Firmware that we're shutting down the AdminQ and whether
1277  * or not the driver is unloading as well (0x0003).
1278  */
1279 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1280 {
1281 	struct ice_aqc_q_shutdown *cmd;
1282 	struct ice_aq_desc desc;
1283 
1284 	cmd = &desc.params.q_shutdown;
1285 
1286 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1287 
1288 	if (unloading)
1289 		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1290 
1291 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1292 }
1293 
1294 /**
1295  * ice_aq_req_res
1296  * @hw: pointer to the HW struct
1297  * @res: resource ID
1298  * @access: access type
1299  * @sdp_number: resource number
1300  * @timeout: the maximum time in ms that the driver may hold the resource
1301  * @cd: pointer to command details structure or NULL
1302  *
1303  * Requests common resource using the admin queue commands (0x0008).
1304  * When attempting to acquire the Global Config Lock, the driver can
1305  * learn of three states:
1306  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1307  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1308  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1309  *                          successfully downloaded the package; the driver does
1310  *                          not have to download the package and can continue
1311  *                          loading
1312  *
1313  * Note that if the caller is in an acquire lock, perform action, release lock
1314  * phase of operation, it is possible that the FW may detect a timeout and issue
1315  * a CORER. In this case, the driver will receive a CORER interrupt and will
1316  * have to determine its cause. The calling thread that is handling this flow
1317  * will likely get an error propagated back to it indicating the Download
1318  * Package, Update Package or the Release Resource AQ commands timed out.
1319  */
1320 static enum ice_status
1321 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1322 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1323 	       struct ice_sq_cd *cd)
1324 {
1325 	struct ice_aqc_req_res *cmd_resp;
1326 	struct ice_aq_desc desc;
1327 	enum ice_status status;
1328 
1329 	cmd_resp = &desc.params.res_owner;
1330 
1331 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1332 
1333 	cmd_resp->res_id = cpu_to_le16(res);
1334 	cmd_resp->access_type = cpu_to_le16(access);
1335 	cmd_resp->res_number = cpu_to_le32(sdp_number);
1336 	cmd_resp->timeout = cpu_to_le32(*timeout);
1337 	*timeout = 0;
1338 
1339 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1340 
1341 	/* The completion specifies the maximum time in ms that the driver
1342 	 * may hold the resource in the Timeout field.
1343 	 */
1344 
1345 	/* Global config lock response utilizes an additional status field.
1346 	 *
1347 	 * If the Global config lock resource is held by some other driver, the
1348 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1349 	 * and the timeout field indicates the maximum time the current owner
1350 	 * of the resource has to free it.
1351 	 */
1352 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1353 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1354 			*timeout = le32_to_cpu(cmd_resp->timeout);
1355 			return 0;
1356 		} else if (le16_to_cpu(cmd_resp->status) ==
1357 			   ICE_AQ_RES_GLBL_IN_PROG) {
1358 			*timeout = le32_to_cpu(cmd_resp->timeout);
1359 			return ICE_ERR_AQ_ERROR;
1360 		} else if (le16_to_cpu(cmd_resp->status) ==
1361 			   ICE_AQ_RES_GLBL_DONE) {
1362 			return ICE_ERR_AQ_NO_WORK;
1363 		}
1364 
1365 		/* invalid FW response, force a timeout immediately */
1366 		*timeout = 0;
1367 		return ICE_ERR_AQ_ERROR;
1368 	}
1369 
1370 	/* If the resource is held by some other driver, the command completes
1371 	 * with a busy return value and the timeout field indicates the maximum
1372 	 * time the current owner of the resource has to free it.
1373 	 */
1374 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1375 		*timeout = le32_to_cpu(cmd_resp->timeout);
1376 
1377 	return status;
1378 }
1379 
1380 /**
1381  * ice_aq_release_res
1382  * @hw: pointer to the HW struct
1383  * @res: resource ID
1384  * @sdp_number: resource number
1385  * @cd: pointer to command details structure or NULL
1386  *
1387  * release common resource using the admin queue commands (0x0009)
1388  */
1389 static enum ice_status
1390 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1391 		   struct ice_sq_cd *cd)
1392 {
1393 	struct ice_aqc_req_res *cmd;
1394 	struct ice_aq_desc desc;
1395 
1396 	cmd = &desc.params.res_owner;
1397 
1398 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1399 
1400 	cmd->res_id = cpu_to_le16(res);
1401 	cmd->res_number = cpu_to_le32(sdp_number);
1402 
1403 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1404 }
1405 
1406 /**
1407  * ice_acquire_res
1408  * @hw: pointer to the HW structure
1409  * @res: resource ID
1410  * @access: access type (read or write)
1411  * @timeout: timeout in milliseconds
1412  *
1413  * This function will attempt to acquire the ownership of a resource.
1414  */
1415 enum ice_status
1416 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1417 		enum ice_aq_res_access_type access, u32 timeout)
1418 {
1419 #define ICE_RES_POLLING_DELAY_MS	10
1420 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1421 	u32 time_left = timeout;
1422 	enum ice_status status;
1423 
1424 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1425 
1426 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1427 	 * previously acquired the resource and performed any necessary updates;
1428 	 * in this case the caller does not obtain the resource and has no
1429 	 * further work to do.
1430 	 */
1431 	if (status == ICE_ERR_AQ_NO_WORK)
1432 		goto ice_acquire_res_exit;
1433 
1434 	if (status)
1435 		ice_debug(hw, ICE_DBG_RES,
1436 			  "resource %d acquire type %d failed.\n", res, access);
1437 
1438 	/* If necessary, poll until the current lock owner timeouts */
1439 	timeout = time_left;
1440 	while (status && timeout && time_left) {
1441 		mdelay(delay);
1442 		timeout = (timeout > delay) ? timeout - delay : 0;
1443 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1444 
1445 		if (status == ICE_ERR_AQ_NO_WORK)
1446 			/* lock free, but no work to do */
1447 			break;
1448 
1449 		if (!status)
1450 			/* lock acquired */
1451 			break;
1452 	}
1453 	if (status && status != ICE_ERR_AQ_NO_WORK)
1454 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1455 
1456 ice_acquire_res_exit:
1457 	if (status == ICE_ERR_AQ_NO_WORK) {
1458 		if (access == ICE_RES_WRITE)
1459 			ice_debug(hw, ICE_DBG_RES,
1460 				  "resource indicates no work to do.\n");
1461 		else
1462 			ice_debug(hw, ICE_DBG_RES,
1463 				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1464 	}
1465 	return status;
1466 }
1467 
1468 /**
1469  * ice_release_res
1470  * @hw: pointer to the HW structure
1471  * @res: resource ID
1472  *
1473  * This function will release a resource using the proper Admin Command.
1474  */
1475 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1476 {
1477 	enum ice_status status;
1478 	u32 total_delay = 0;
1479 
1480 	status = ice_aq_release_res(hw, res, 0, NULL);
1481 
1482 	/* there are some rare cases when trying to release the resource
1483 	 * results in an admin queue timeout, so handle them correctly
1484 	 */
1485 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1486 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1487 		mdelay(1);
1488 		status = ice_aq_release_res(hw, res, 0, NULL);
1489 		total_delay++;
1490 	}
1491 }
1492 
1493 /**
1494  * ice_aq_alloc_free_res - command to allocate/free resources
1495  * @hw: pointer to the HW struct
1496  * @num_entries: number of resource entries in buffer
1497  * @buf: Indirect buffer to hold data parameters and response
1498  * @buf_size: size of buffer for indirect commands
1499  * @opc: pass in the command opcode
1500  * @cd: pointer to command details structure or NULL
1501  *
1502  * Helper function to allocate/free resources using the admin queue commands
1503  */
1504 enum ice_status
1505 ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1506 		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1507 		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1508 {
1509 	struct ice_aqc_alloc_free_res_cmd *cmd;
1510 	struct ice_aq_desc desc;
1511 
1512 	cmd = &desc.params.sw_res_ctrl;
1513 
1514 	if (!buf)
1515 		return ICE_ERR_PARAM;
1516 
1517 	if (buf_size < (num_entries * sizeof(buf->elem[0])))
1518 		return ICE_ERR_PARAM;
1519 
1520 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1521 
1522 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1523 
1524 	cmd->num_entries = cpu_to_le16(num_entries);
1525 
1526 	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1527 }
1528 
1529 /**
1530  * ice_alloc_hw_res - allocate resource
1531  * @hw: pointer to the HW struct
1532  * @type: type of resource
1533  * @num: number of resources to allocate
1534  * @btm: allocate from bottom
1535  * @res: pointer to array that will receive the resources
1536  */
1537 enum ice_status
1538 ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1539 {
1540 	struct ice_aqc_alloc_free_res_elem *buf;
1541 	enum ice_status status;
1542 	u16 buf_len;
1543 
1544 	buf_len = struct_size(buf, elem, num - 1);
1545 	buf = kzalloc(buf_len, GFP_KERNEL);
1546 	if (!buf)
1547 		return ICE_ERR_NO_MEMORY;
1548 
1549 	/* Prepare buffer to allocate resource. */
1550 	buf->num_elems = cpu_to_le16(num);
1551 	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1552 				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1553 	if (btm)
1554 		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1555 
1556 	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1557 				       ice_aqc_opc_alloc_res, NULL);
1558 	if (status)
1559 		goto ice_alloc_res_exit;
1560 
1561 	memcpy(res, buf->elem, sizeof(buf->elem) * num);
1562 
1563 ice_alloc_res_exit:
1564 	kfree(buf);
1565 	return status;
1566 }
1567 
1568 /**
1569  * ice_free_hw_res - free allocated HW resource
1570  * @hw: pointer to the HW struct
1571  * @type: type of resource to free
1572  * @num: number of resources
1573  * @res: pointer to array that contains the resources to free
1574  */
1575 enum ice_status
1576 ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1577 {
1578 	struct ice_aqc_alloc_free_res_elem *buf;
1579 	enum ice_status status;
1580 	u16 buf_len;
1581 
1582 	buf_len = struct_size(buf, elem, num - 1);
1583 	buf = kzalloc(buf_len, GFP_KERNEL);
1584 	if (!buf)
1585 		return ICE_ERR_NO_MEMORY;
1586 
1587 	/* Prepare buffer to free resource. */
1588 	buf->num_elems = cpu_to_le16(num);
1589 	buf->res_type = cpu_to_le16(type);
1590 	memcpy(buf->elem, res, sizeof(buf->elem) * num);
1591 
1592 	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1593 				       ice_aqc_opc_free_res, NULL);
1594 	if (status)
1595 		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1596 
1597 	kfree(buf);
1598 	return status;
1599 }
1600 
1601 /**
1602  * ice_get_num_per_func - determine number of resources per PF
1603  * @hw: pointer to the HW structure
1604  * @max: value to be evenly split between each PF
1605  *
1606  * Determine the number of valid functions by going through the bitmap returned
1607  * from parsing capabilities and use this to calculate the number of resources
1608  * per PF based on the max value passed in.
1609  */
1610 static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1611 {
1612 	u8 funcs;
1613 
1614 #define ICE_CAPS_VALID_FUNCS_M	0xFF
1615 	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1616 			 ICE_CAPS_VALID_FUNCS_M);
1617 
1618 	if (!funcs)
1619 		return 0;
1620 
1621 	return max / funcs;
1622 }
1623 
1624 /**
1625  * ice_parse_caps - parse function/device capabilities
1626  * @hw: pointer to the HW struct
1627  * @buf: pointer to a buffer containing function/device capability records
1628  * @cap_count: number of capability records in the list
1629  * @opc: type of capabilities list to parse
1630  *
1631  * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1632  */
1633 static void
1634 ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1635 	       enum ice_adminq_opc opc)
1636 {
1637 	struct ice_aqc_list_caps_elem *cap_resp;
1638 	struct ice_hw_func_caps *func_p = NULL;
1639 	struct ice_hw_dev_caps *dev_p = NULL;
1640 	struct ice_hw_common_caps *caps;
1641 	char const *prefix;
1642 	u32 i;
1643 
1644 	if (!buf)
1645 		return;
1646 
1647 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1648 
1649 	if (opc == ice_aqc_opc_list_dev_caps) {
1650 		dev_p = &hw->dev_caps;
1651 		caps = &dev_p->common_cap;
1652 		prefix = "dev cap";
1653 	} else if (opc == ice_aqc_opc_list_func_caps) {
1654 		func_p = &hw->func_caps;
1655 		caps = &func_p->common_cap;
1656 		prefix = "func cap";
1657 	} else {
1658 		ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1659 		return;
1660 	}
1661 
1662 	for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1663 		u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1664 		u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1665 		u32 number = le32_to_cpu(cap_resp->number);
1666 		u16 cap = le16_to_cpu(cap_resp->cap);
1667 
1668 		switch (cap) {
1669 		case ICE_AQC_CAPS_VALID_FUNCTIONS:
1670 			caps->valid_functions = number;
1671 			ice_debug(hw, ICE_DBG_INIT,
1672 				  "%s: valid_functions (bitmap) = %d\n", prefix,
1673 				  caps->valid_functions);
1674 
1675 			/* store func count for resource management purposes */
1676 			if (dev_p)
1677 				dev_p->num_funcs = hweight32(number);
1678 			break;
1679 		case ICE_AQC_CAPS_SRIOV:
1680 			caps->sr_iov_1_1 = (number == 1);
1681 			ice_debug(hw, ICE_DBG_INIT,
1682 				  "%s: sr_iov_1_1 = %d\n", prefix,
1683 				  caps->sr_iov_1_1);
1684 			break;
1685 		case ICE_AQC_CAPS_VF:
1686 			if (dev_p) {
1687 				dev_p->num_vfs_exposed = number;
1688 				ice_debug(hw, ICE_DBG_INIT,
1689 					  "%s: num_vfs_exposed = %d\n", prefix,
1690 					  dev_p->num_vfs_exposed);
1691 			} else if (func_p) {
1692 				func_p->num_allocd_vfs = number;
1693 				func_p->vf_base_id = logical_id;
1694 				ice_debug(hw, ICE_DBG_INIT,
1695 					  "%s: num_allocd_vfs = %d\n", prefix,
1696 					  func_p->num_allocd_vfs);
1697 				ice_debug(hw, ICE_DBG_INIT,
1698 					  "%s: vf_base_id = %d\n", prefix,
1699 					  func_p->vf_base_id);
1700 			}
1701 			break;
1702 		case ICE_AQC_CAPS_VSI:
1703 			if (dev_p) {
1704 				dev_p->num_vsi_allocd_to_host = number;
1705 				ice_debug(hw, ICE_DBG_INIT,
1706 					  "%s: num_vsi_allocd_to_host = %d\n",
1707 					  prefix,
1708 					  dev_p->num_vsi_allocd_to_host);
1709 			} else if (func_p) {
1710 				func_p->guar_num_vsi =
1711 					ice_get_num_per_func(hw, ICE_MAX_VSI);
1712 				ice_debug(hw, ICE_DBG_INIT,
1713 					  "%s: guar_num_vsi (fw) = %d\n",
1714 					  prefix, number);
1715 				ice_debug(hw, ICE_DBG_INIT,
1716 					  "%s: guar_num_vsi = %d\n",
1717 					  prefix, func_p->guar_num_vsi);
1718 			}
1719 			break;
1720 		case ICE_AQC_CAPS_DCB:
1721 			caps->dcb = (number == 1);
1722 			caps->active_tc_bitmap = logical_id;
1723 			caps->maxtc = phys_id;
1724 			ice_debug(hw, ICE_DBG_INIT,
1725 				  "%s: dcb = %d\n", prefix, caps->dcb);
1726 			ice_debug(hw, ICE_DBG_INIT,
1727 				  "%s: active_tc_bitmap = %d\n", prefix,
1728 				  caps->active_tc_bitmap);
1729 			ice_debug(hw, ICE_DBG_INIT,
1730 				  "%s: maxtc = %d\n", prefix, caps->maxtc);
1731 			break;
1732 		case ICE_AQC_CAPS_RSS:
1733 			caps->rss_table_size = number;
1734 			caps->rss_table_entry_width = logical_id;
1735 			ice_debug(hw, ICE_DBG_INIT,
1736 				  "%s: rss_table_size = %d\n", prefix,
1737 				  caps->rss_table_size);
1738 			ice_debug(hw, ICE_DBG_INIT,
1739 				  "%s: rss_table_entry_width = %d\n", prefix,
1740 				  caps->rss_table_entry_width);
1741 			break;
1742 		case ICE_AQC_CAPS_RXQS:
1743 			caps->num_rxq = number;
1744 			caps->rxq_first_id = phys_id;
1745 			ice_debug(hw, ICE_DBG_INIT,
1746 				  "%s: num_rxq = %d\n", prefix,
1747 				  caps->num_rxq);
1748 			ice_debug(hw, ICE_DBG_INIT,
1749 				  "%s: rxq_first_id = %d\n", prefix,
1750 				  caps->rxq_first_id);
1751 			break;
1752 		case ICE_AQC_CAPS_TXQS:
1753 			caps->num_txq = number;
1754 			caps->txq_first_id = phys_id;
1755 			ice_debug(hw, ICE_DBG_INIT,
1756 				  "%s: num_txq = %d\n", prefix,
1757 				  caps->num_txq);
1758 			ice_debug(hw, ICE_DBG_INIT,
1759 				  "%s: txq_first_id = %d\n", prefix,
1760 				  caps->txq_first_id);
1761 			break;
1762 		case ICE_AQC_CAPS_MSIX:
1763 			caps->num_msix_vectors = number;
1764 			caps->msix_vector_first_id = phys_id;
1765 			ice_debug(hw, ICE_DBG_INIT,
1766 				  "%s: num_msix_vectors = %d\n", prefix,
1767 				  caps->num_msix_vectors);
1768 			ice_debug(hw, ICE_DBG_INIT,
1769 				  "%s: msix_vector_first_id = %d\n", prefix,
1770 				  caps->msix_vector_first_id);
1771 			break;
1772 		case ICE_AQC_CAPS_FD:
1773 			if (dev_p) {
1774 				dev_p->num_flow_director_fltr = number;
1775 				ice_debug(hw, ICE_DBG_INIT,
1776 					  "%s: num_flow_director_fltr = %d\n",
1777 					  prefix,
1778 					  dev_p->num_flow_director_fltr);
1779 			}
1780 			if (func_p) {
1781 				u32 reg_val, val;
1782 
1783 				reg_val = rd32(hw, GLQF_FD_SIZE);
1784 				val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
1785 				      GLQF_FD_SIZE_FD_GSIZE_S;
1786 				func_p->fd_fltr_guar =
1787 				      ice_get_num_per_func(hw, val);
1788 				val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
1789 				      GLQF_FD_SIZE_FD_BSIZE_S;
1790 				func_p->fd_fltr_best_effort = val;
1791 				ice_debug(hw, ICE_DBG_INIT,
1792 					  "%s: fd_fltr_guar = %d\n",
1793 					  prefix, func_p->fd_fltr_guar);
1794 				ice_debug(hw, ICE_DBG_INIT,
1795 					  "%s: fd_fltr_best_effort = %d\n",
1796 					  prefix, func_p->fd_fltr_best_effort);
1797 			}
1798 			break;
1799 		case ICE_AQC_CAPS_MAX_MTU:
1800 			caps->max_mtu = number;
1801 			ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
1802 				  prefix, caps->max_mtu);
1803 			break;
1804 		default:
1805 			ice_debug(hw, ICE_DBG_INIT,
1806 				  "%s: unknown capability[%d]: 0x%x\n", prefix,
1807 				  i, cap);
1808 			break;
1809 		}
1810 	}
1811 
1812 	/* Re-calculate capabilities that are dependent on the number of
1813 	 * physical ports; i.e. some features are not supported or function
1814 	 * differently on devices with more than 4 ports.
1815 	 */
1816 	if (hw->dev_caps.num_funcs > 4) {
1817 		/* Max 4 TCs per port */
1818 		caps->maxtc = 4;
1819 		ice_debug(hw, ICE_DBG_INIT,
1820 			  "%s: maxtc = %d (based on #ports)\n", prefix,
1821 			  caps->maxtc);
1822 	}
1823 }
1824 
1825 /**
1826  * ice_aq_discover_caps - query function/device capabilities
1827  * @hw: pointer to the HW struct
1828  * @buf: a virtual buffer to hold the capabilities
1829  * @buf_size: Size of the virtual buffer
1830  * @cap_count: cap count needed if AQ err==ENOMEM
1831  * @opc: capabilities type to discover - pass in the command opcode
1832  * @cd: pointer to command details structure or NULL
1833  *
1834  * Get the function(0x000a)/device(0x000b) capabilities description from
1835  * the firmware.
1836  */
1837 static enum ice_status
1838 ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
1839 		     enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1840 {
1841 	struct ice_aqc_list_caps *cmd;
1842 	struct ice_aq_desc desc;
1843 	enum ice_status status;
1844 
1845 	cmd = &desc.params.get_cap;
1846 
1847 	if (opc != ice_aqc_opc_list_func_caps &&
1848 	    opc != ice_aqc_opc_list_dev_caps)
1849 		return ICE_ERR_PARAM;
1850 
1851 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1852 
1853 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1854 	if (!status)
1855 		ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1856 	else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
1857 		*cap_count = le32_to_cpu(cmd->count);
1858 	return status;
1859 }
1860 
1861 /**
1862  * ice_discover_caps - get info about the HW
1863  * @hw: pointer to the hardware structure
1864  * @opc: capabilities type to discover - pass in the command opcode
1865  */
1866 static enum ice_status
1867 ice_discover_caps(struct ice_hw *hw, enum ice_adminq_opc opc)
1868 {
1869 	enum ice_status status;
1870 	u32 cap_count;
1871 	u16 cbuf_len;
1872 	u8 retries;
1873 
1874 	/* The driver doesn't know how many capabilities the device will return
1875 	 * so the buffer size required isn't known ahead of time. The driver
1876 	 * starts with cbuf_len and if this turns out to be insufficient, the
1877 	 * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
1878 	 * The driver then allocates the buffer based on the count and retries
1879 	 * the operation. So it follows that the retry count is 2.
1880 	 */
1881 #define ICE_GET_CAP_BUF_COUNT	40
1882 #define ICE_GET_CAP_RETRY_COUNT	2
1883 
1884 	cap_count = ICE_GET_CAP_BUF_COUNT;
1885 	retries = ICE_GET_CAP_RETRY_COUNT;
1886 
1887 	do {
1888 		void *cbuf;
1889 
1890 		cbuf_len = (u16)(cap_count *
1891 				 sizeof(struct ice_aqc_list_caps_elem));
1892 		cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1893 		if (!cbuf)
1894 			return ICE_ERR_NO_MEMORY;
1895 
1896 		status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
1897 					      opc, NULL);
1898 		devm_kfree(ice_hw_to_dev(hw), cbuf);
1899 
1900 		if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1901 			break;
1902 
1903 		/* If ENOMEM is returned, try again with bigger buffer */
1904 	} while (--retries);
1905 
1906 	return status;
1907 }
1908 
1909 /**
1910  * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
1911  * @hw: pointer to the hardware structure
1912  */
1913 void ice_set_safe_mode_caps(struct ice_hw *hw)
1914 {
1915 	struct ice_hw_func_caps *func_caps = &hw->func_caps;
1916 	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
1917 	u32 valid_func, rxq_first_id, txq_first_id;
1918 	u32 msix_vector_first_id, max_mtu;
1919 	u32 num_funcs;
1920 
1921 	/* cache some func_caps values that should be restored after memset */
1922 	valid_func = func_caps->common_cap.valid_functions;
1923 	txq_first_id = func_caps->common_cap.txq_first_id;
1924 	rxq_first_id = func_caps->common_cap.rxq_first_id;
1925 	msix_vector_first_id = func_caps->common_cap.msix_vector_first_id;
1926 	max_mtu = func_caps->common_cap.max_mtu;
1927 
1928 	/* unset func capabilities */
1929 	memset(func_caps, 0, sizeof(*func_caps));
1930 
1931 	/* restore cached values */
1932 	func_caps->common_cap.valid_functions = valid_func;
1933 	func_caps->common_cap.txq_first_id = txq_first_id;
1934 	func_caps->common_cap.rxq_first_id = rxq_first_id;
1935 	func_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
1936 	func_caps->common_cap.max_mtu = max_mtu;
1937 
1938 	/* one Tx and one Rx queue in safe mode */
1939 	func_caps->common_cap.num_rxq = 1;
1940 	func_caps->common_cap.num_txq = 1;
1941 
1942 	/* two MSIX vectors, one for traffic and one for misc causes */
1943 	func_caps->common_cap.num_msix_vectors = 2;
1944 	func_caps->guar_num_vsi = 1;
1945 
1946 	/* cache some dev_caps values that should be restored after memset */
1947 	valid_func = dev_caps->common_cap.valid_functions;
1948 	txq_first_id = dev_caps->common_cap.txq_first_id;
1949 	rxq_first_id = dev_caps->common_cap.rxq_first_id;
1950 	msix_vector_first_id = dev_caps->common_cap.msix_vector_first_id;
1951 	max_mtu = dev_caps->common_cap.max_mtu;
1952 	num_funcs = dev_caps->num_funcs;
1953 
1954 	/* unset dev capabilities */
1955 	memset(dev_caps, 0, sizeof(*dev_caps));
1956 
1957 	/* restore cached values */
1958 	dev_caps->common_cap.valid_functions = valid_func;
1959 	dev_caps->common_cap.txq_first_id = txq_first_id;
1960 	dev_caps->common_cap.rxq_first_id = rxq_first_id;
1961 	dev_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
1962 	dev_caps->common_cap.max_mtu = max_mtu;
1963 	dev_caps->num_funcs = num_funcs;
1964 
1965 	/* one Tx and one Rx queue per function in safe mode */
1966 	dev_caps->common_cap.num_rxq = num_funcs;
1967 	dev_caps->common_cap.num_txq = num_funcs;
1968 
1969 	/* two MSIX vectors per function */
1970 	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
1971 }
1972 
1973 /**
1974  * ice_get_caps - get info about the HW
1975  * @hw: pointer to the hardware structure
1976  */
1977 enum ice_status ice_get_caps(struct ice_hw *hw)
1978 {
1979 	enum ice_status status;
1980 
1981 	status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
1982 	if (!status)
1983 		status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
1984 
1985 	return status;
1986 }
1987 
1988 /**
1989  * ice_aq_manage_mac_write - manage MAC address write command
1990  * @hw: pointer to the HW struct
1991  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1992  * @flags: flags to control write behavior
1993  * @cd: pointer to command details structure or NULL
1994  *
1995  * This function is used to write MAC address to the NVM (0x0108).
1996  */
1997 enum ice_status
1998 ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
1999 			struct ice_sq_cd *cd)
2000 {
2001 	struct ice_aqc_manage_mac_write *cmd;
2002 	struct ice_aq_desc desc;
2003 
2004 	cmd = &desc.params.mac_write;
2005 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2006 
2007 	cmd->flags = flags;
2008 	ether_addr_copy(cmd->mac_addr, mac_addr);
2009 
2010 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2011 }
2012 
2013 /**
2014  * ice_aq_clear_pxe_mode
2015  * @hw: pointer to the HW struct
2016  *
2017  * Tell the firmware that the driver is taking over from PXE (0x0110).
2018  */
2019 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2020 {
2021 	struct ice_aq_desc desc;
2022 
2023 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2024 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2025 
2026 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2027 }
2028 
2029 /**
2030  * ice_clear_pxe_mode - clear pxe operations mode
2031  * @hw: pointer to the HW struct
2032  *
2033  * Make sure all PXE mode settings are cleared, including things
2034  * like descriptor fetch/write-back mode.
2035  */
2036 void ice_clear_pxe_mode(struct ice_hw *hw)
2037 {
2038 	if (ice_check_sq_alive(hw, &hw->adminq))
2039 		ice_aq_clear_pxe_mode(hw);
2040 }
2041 
2042 /**
2043  * ice_get_link_speed_based_on_phy_type - returns link speed
2044  * @phy_type_low: lower part of phy_type
2045  * @phy_type_high: higher part of phy_type
2046  *
2047  * This helper function will convert an entry in PHY type structure
2048  * [phy_type_low, phy_type_high] to its corresponding link speed.
2049  * Note: In the structure of [phy_type_low, phy_type_high], there should
2050  * be one bit set, as this function will convert one PHY type to its
2051  * speed.
2052  * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2053  * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2054  */
2055 static u16
2056 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2057 {
2058 	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2059 	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2060 
2061 	switch (phy_type_low) {
2062 	case ICE_PHY_TYPE_LOW_100BASE_TX:
2063 	case ICE_PHY_TYPE_LOW_100M_SGMII:
2064 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2065 		break;
2066 	case ICE_PHY_TYPE_LOW_1000BASE_T:
2067 	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2068 	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2069 	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2070 	case ICE_PHY_TYPE_LOW_1G_SGMII:
2071 		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2072 		break;
2073 	case ICE_PHY_TYPE_LOW_2500BASE_T:
2074 	case ICE_PHY_TYPE_LOW_2500BASE_X:
2075 	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2076 		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2077 		break;
2078 	case ICE_PHY_TYPE_LOW_5GBASE_T:
2079 	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2080 		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2081 		break;
2082 	case ICE_PHY_TYPE_LOW_10GBASE_T:
2083 	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2084 	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2085 	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2086 	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2087 	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2088 	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2089 		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2090 		break;
2091 	case ICE_PHY_TYPE_LOW_25GBASE_T:
2092 	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2093 	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2094 	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2095 	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2096 	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2097 	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2098 	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2099 	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2100 	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2101 	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2102 		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2103 		break;
2104 	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2105 	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2106 	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2107 	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2108 	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2109 	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2110 		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2111 		break;
2112 	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2113 	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2114 	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2115 	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2116 	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2117 	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2118 	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2119 	case ICE_PHY_TYPE_LOW_50G_AUI2:
2120 	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2121 	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2122 	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2123 	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2124 	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2125 	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2126 	case ICE_PHY_TYPE_LOW_50G_AUI1:
2127 		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2128 		break;
2129 	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2130 	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2131 	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2132 	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2133 	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2134 	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2135 	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2136 	case ICE_PHY_TYPE_LOW_100G_AUI4:
2137 	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2138 	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2139 	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2140 	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2141 	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2142 		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2143 		break;
2144 	default:
2145 		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2146 		break;
2147 	}
2148 
2149 	switch (phy_type_high) {
2150 	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2151 	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2152 	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2153 	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2154 	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2155 		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2156 		break;
2157 	default:
2158 		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2159 		break;
2160 	}
2161 
2162 	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2163 	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2164 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2165 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2166 		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2167 		return ICE_AQ_LINK_SPEED_UNKNOWN;
2168 	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2169 		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2170 		return speed_phy_type_low;
2171 	else
2172 		return speed_phy_type_high;
2173 }
2174 
2175 /**
2176  * ice_update_phy_type
2177  * @phy_type_low: pointer to the lower part of phy_type
2178  * @phy_type_high: pointer to the higher part of phy_type
2179  * @link_speeds_bitmap: targeted link speeds bitmap
2180  *
2181  * Note: For the link_speeds_bitmap structure, you can check it at
2182  * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2183  * link_speeds_bitmap include multiple speeds.
2184  *
2185  * Each entry in this [phy_type_low, phy_type_high] structure will
2186  * present a certain link speed. This helper function will turn on bits
2187  * in [phy_type_low, phy_type_high] structure based on the value of
2188  * link_speeds_bitmap input parameter.
2189  */
2190 void
2191 ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2192 		    u16 link_speeds_bitmap)
2193 {
2194 	u64 pt_high;
2195 	u64 pt_low;
2196 	int index;
2197 	u16 speed;
2198 
2199 	/* We first check with low part of phy_type */
2200 	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2201 		pt_low = BIT_ULL(index);
2202 		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2203 
2204 		if (link_speeds_bitmap & speed)
2205 			*phy_type_low |= BIT_ULL(index);
2206 	}
2207 
2208 	/* We then check with high part of phy_type */
2209 	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2210 		pt_high = BIT_ULL(index);
2211 		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2212 
2213 		if (link_speeds_bitmap & speed)
2214 			*phy_type_high |= BIT_ULL(index);
2215 	}
2216 }
2217 
2218 /**
2219  * ice_aq_set_phy_cfg
2220  * @hw: pointer to the HW struct
2221  * @lport: logical port number
2222  * @cfg: structure with PHY configuration data to be set
2223  * @cd: pointer to command details structure or NULL
2224  *
2225  * Set the various PHY configuration parameters supported on the Port.
2226  * One or more of the Set PHY config parameters may be ignored in an MFP
2227  * mode as the PF may not have the privilege to set some of the PHY Config
2228  * parameters. This status will be indicated by the command response (0x0601).
2229  */
2230 enum ice_status
2231 ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
2232 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2233 {
2234 	struct ice_aq_desc desc;
2235 	enum ice_status status;
2236 
2237 	if (!cfg)
2238 		return ICE_ERR_PARAM;
2239 
2240 	/* Ensure that only valid bits of cfg->caps can be turned on. */
2241 	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2242 		ice_debug(hw, ICE_DBG_PHY,
2243 			  "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2244 			  cfg->caps);
2245 
2246 		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2247 	}
2248 
2249 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2250 	desc.params.set_phy.lport_num = lport;
2251 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2252 
2253 	ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
2254 		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2255 	ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
2256 		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2257 	ice_debug(hw, ICE_DBG_LINK, "caps = 0x%x\n", cfg->caps);
2258 	ice_debug(hw, ICE_DBG_LINK, "low_power_ctrl = 0x%x\n",
2259 		  cfg->low_power_ctrl);
2260 	ice_debug(hw, ICE_DBG_LINK, "eee_cap = 0x%x\n", cfg->eee_cap);
2261 	ice_debug(hw, ICE_DBG_LINK, "eeer_value = 0x%x\n", cfg->eeer_value);
2262 	ice_debug(hw, ICE_DBG_LINK, "link_fec_opt = 0x%x\n", cfg->link_fec_opt);
2263 
2264 	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2265 	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2266 		status = 0;
2267 
2268 	return status;
2269 }
2270 
2271 /**
2272  * ice_update_link_info - update status of the HW network link
2273  * @pi: port info structure of the interested logical port
2274  */
2275 enum ice_status ice_update_link_info(struct ice_port_info *pi)
2276 {
2277 	struct ice_link_status *li;
2278 	enum ice_status status;
2279 
2280 	if (!pi)
2281 		return ICE_ERR_PARAM;
2282 
2283 	li = &pi->phy.link_info;
2284 
2285 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
2286 	if (status)
2287 		return status;
2288 
2289 	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2290 		struct ice_aqc_get_phy_caps_data *pcaps;
2291 		struct ice_hw *hw;
2292 
2293 		hw = pi->hw;
2294 		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2295 				     GFP_KERNEL);
2296 		if (!pcaps)
2297 			return ICE_ERR_NO_MEMORY;
2298 
2299 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2300 					     pcaps, NULL);
2301 		if (!status)
2302 			memcpy(li->module_type, &pcaps->module_type,
2303 			       sizeof(li->module_type));
2304 
2305 		devm_kfree(ice_hw_to_dev(hw), pcaps);
2306 	}
2307 
2308 	return status;
2309 }
2310 
2311 /**
2312  * ice_set_fc
2313  * @pi: port information structure
2314  * @aq_failures: pointer to status code, specific to ice_set_fc routine
2315  * @ena_auto_link_update: enable automatic link update
2316  *
2317  * Set the requested flow control mode.
2318  */
2319 enum ice_status
2320 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
2321 {
2322 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
2323 	struct ice_aqc_get_phy_caps_data *pcaps;
2324 	enum ice_status status;
2325 	u8 pause_mask = 0x0;
2326 	struct ice_hw *hw;
2327 
2328 	if (!pi)
2329 		return ICE_ERR_PARAM;
2330 	hw = pi->hw;
2331 	*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
2332 
2333 	switch (pi->fc.req_mode) {
2334 	case ICE_FC_FULL:
2335 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2336 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2337 		break;
2338 	case ICE_FC_RX_PAUSE:
2339 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2340 		break;
2341 	case ICE_FC_TX_PAUSE:
2342 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2343 		break;
2344 	default:
2345 		break;
2346 	}
2347 
2348 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2349 	if (!pcaps)
2350 		return ICE_ERR_NO_MEMORY;
2351 
2352 	/* Get the current PHY config */
2353 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
2354 				     NULL);
2355 	if (status) {
2356 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2357 		goto out;
2358 	}
2359 
2360 	/* clear the old pause settings */
2361 	cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2362 				   ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2363 
2364 	/* set the new capabilities */
2365 	cfg.caps |= pause_mask;
2366 
2367 	/* If the capabilities have changed, then set the new config */
2368 	if (cfg.caps != pcaps->caps) {
2369 		int retry_count, retry_max = 10;
2370 
2371 		/* Auto restart link so settings take effect */
2372 		if (ena_auto_link_update)
2373 			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2374 		/* Copy over all the old settings */
2375 		cfg.phy_type_high = pcaps->phy_type_high;
2376 		cfg.phy_type_low = pcaps->phy_type_low;
2377 		cfg.low_power_ctrl = pcaps->low_power_ctrl;
2378 		cfg.eee_cap = pcaps->eee_cap;
2379 		cfg.eeer_value = pcaps->eeer_value;
2380 		cfg.link_fec_opt = pcaps->link_fec_options;
2381 
2382 		status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
2383 		if (status) {
2384 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2385 			goto out;
2386 		}
2387 
2388 		/* Update the link info
2389 		 * It sometimes takes a really long time for link to
2390 		 * come back from the atomic reset. Thus, we wait a
2391 		 * little bit.
2392 		 */
2393 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
2394 			status = ice_update_link_info(pi);
2395 
2396 			if (!status)
2397 				break;
2398 
2399 			mdelay(100);
2400 		}
2401 
2402 		if (status)
2403 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2404 	}
2405 
2406 out:
2407 	devm_kfree(ice_hw_to_dev(hw), pcaps);
2408 	return status;
2409 }
2410 
2411 /**
2412  * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
2413  * @caps: PHY ability structure to copy date from
2414  * @cfg: PHY configuration structure to copy data to
2415  *
2416  * Helper function to copy AQC PHY get ability data to PHY set configuration
2417  * data structure
2418  */
2419 void
2420 ice_copy_phy_caps_to_cfg(struct ice_aqc_get_phy_caps_data *caps,
2421 			 struct ice_aqc_set_phy_cfg_data *cfg)
2422 {
2423 	if (!caps || !cfg)
2424 		return;
2425 
2426 	cfg->phy_type_low = caps->phy_type_low;
2427 	cfg->phy_type_high = caps->phy_type_high;
2428 	cfg->caps = caps->caps;
2429 	cfg->low_power_ctrl = caps->low_power_ctrl;
2430 	cfg->eee_cap = caps->eee_cap;
2431 	cfg->eeer_value = caps->eeer_value;
2432 	cfg->link_fec_opt = caps->link_fec_options;
2433 }
2434 
2435 /**
2436  * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
2437  * @cfg: PHY configuration data to set FEC mode
2438  * @fec: FEC mode to configure
2439  *
2440  * Caller should copy ice_aqc_get_phy_caps_data.caps ICE_AQC_PHY_EN_AUTO_FEC
2441  * (bit 7) and ice_aqc_get_phy_caps_data.link_fec_options to cfg.caps
2442  * ICE_AQ_PHY_ENA_AUTO_FEC (bit 7) and cfg.link_fec_options before calling.
2443  */
2444 void
2445 ice_cfg_phy_fec(struct ice_aqc_set_phy_cfg_data *cfg, enum ice_fec_mode fec)
2446 {
2447 	switch (fec) {
2448 	case ICE_FEC_BASER:
2449 		/* Clear RS bits, and AND BASE-R ability
2450 		 * bits and OR request bits.
2451 		 */
2452 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2453 				     ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
2454 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2455 				     ICE_AQC_PHY_FEC_25G_KR_REQ;
2456 		break;
2457 	case ICE_FEC_RS:
2458 		/* Clear BASE-R bits, and AND RS ability
2459 		 * bits and OR request bits.
2460 		 */
2461 		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
2462 		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2463 				     ICE_AQC_PHY_FEC_25G_RS_544_REQ;
2464 		break;
2465 	case ICE_FEC_NONE:
2466 		/* Clear all FEC option bits. */
2467 		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
2468 		break;
2469 	case ICE_FEC_AUTO:
2470 		/* AND auto FEC bit, and all caps bits. */
2471 		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
2472 		break;
2473 	}
2474 }
2475 
2476 /**
2477  * ice_get_link_status - get status of the HW network link
2478  * @pi: port information structure
2479  * @link_up: pointer to bool (true/false = linkup/linkdown)
2480  *
2481  * Variable link_up is true if link is up, false if link is down.
2482  * The variable link_up is invalid if status is non zero. As a
2483  * result of this call, link status reporting becomes enabled
2484  */
2485 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
2486 {
2487 	struct ice_phy_info *phy_info;
2488 	enum ice_status status = 0;
2489 
2490 	if (!pi || !link_up)
2491 		return ICE_ERR_PARAM;
2492 
2493 	phy_info = &pi->phy;
2494 
2495 	if (phy_info->get_link_info) {
2496 		status = ice_update_link_info(pi);
2497 
2498 		if (status)
2499 			ice_debug(pi->hw, ICE_DBG_LINK,
2500 				  "get link status error, status = %d\n",
2501 				  status);
2502 	}
2503 
2504 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
2505 
2506 	return status;
2507 }
2508 
2509 /**
2510  * ice_aq_set_link_restart_an
2511  * @pi: pointer to the port information structure
2512  * @ena_link: if true: enable link, if false: disable link
2513  * @cd: pointer to command details structure or NULL
2514  *
2515  * Sets up the link and restarts the Auto-Negotiation over the link.
2516  */
2517 enum ice_status
2518 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
2519 			   struct ice_sq_cd *cd)
2520 {
2521 	struct ice_aqc_restart_an *cmd;
2522 	struct ice_aq_desc desc;
2523 
2524 	cmd = &desc.params.restart_an;
2525 
2526 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
2527 
2528 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
2529 	cmd->lport_num = pi->lport;
2530 	if (ena_link)
2531 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
2532 	else
2533 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
2534 
2535 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
2536 }
2537 
2538 /**
2539  * ice_aq_set_event_mask
2540  * @hw: pointer to the HW struct
2541  * @port_num: port number of the physical function
2542  * @mask: event mask to be set
2543  * @cd: pointer to command details structure or NULL
2544  *
2545  * Set event mask (0x0613)
2546  */
2547 enum ice_status
2548 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
2549 		      struct ice_sq_cd *cd)
2550 {
2551 	struct ice_aqc_set_event_mask *cmd;
2552 	struct ice_aq_desc desc;
2553 
2554 	cmd = &desc.params.set_event_mask;
2555 
2556 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
2557 
2558 	cmd->lport_num = port_num;
2559 
2560 	cmd->event_mask = cpu_to_le16(mask);
2561 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2562 }
2563 
2564 /**
2565  * ice_aq_set_mac_loopback
2566  * @hw: pointer to the HW struct
2567  * @ena_lpbk: Enable or Disable loopback
2568  * @cd: pointer to command details structure or NULL
2569  *
2570  * Enable/disable loopback on a given port
2571  */
2572 enum ice_status
2573 ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
2574 {
2575 	struct ice_aqc_set_mac_lb *cmd;
2576 	struct ice_aq_desc desc;
2577 
2578 	cmd = &desc.params.set_mac_lb;
2579 
2580 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
2581 	if (ena_lpbk)
2582 		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
2583 
2584 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2585 }
2586 
2587 /**
2588  * ice_aq_set_port_id_led
2589  * @pi: pointer to the port information
2590  * @is_orig_mode: is this LED set to original mode (by the net-list)
2591  * @cd: pointer to command details structure or NULL
2592  *
2593  * Set LED value for the given port (0x06e9)
2594  */
2595 enum ice_status
2596 ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
2597 		       struct ice_sq_cd *cd)
2598 {
2599 	struct ice_aqc_set_port_id_led *cmd;
2600 	struct ice_hw *hw = pi->hw;
2601 	struct ice_aq_desc desc;
2602 
2603 	cmd = &desc.params.set_port_id_led;
2604 
2605 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
2606 
2607 	if (is_orig_mode)
2608 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
2609 	else
2610 		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
2611 
2612 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2613 }
2614 
2615 /**
2616  * ice_aq_sff_eeprom
2617  * @hw: pointer to the HW struct
2618  * @lport: bits [7:0] = logical port, bit [8] = logical port valid
2619  * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
2620  * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
2621  * @page: QSFP page
2622  * @set_page: set or ignore the page
2623  * @data: pointer to data buffer to be read/written to the I2C device.
2624  * @length: 1-16 for read, 1 for write.
2625  * @write: 0 read, 1 for write.
2626  * @cd: pointer to command details structure or NULL
2627  *
2628  * Read/Write SFF EEPROM (0x06EE)
2629  */
2630 enum ice_status
2631 ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
2632 		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
2633 		  bool write, struct ice_sq_cd *cd)
2634 {
2635 	struct ice_aqc_sff_eeprom *cmd;
2636 	struct ice_aq_desc desc;
2637 	enum ice_status status;
2638 
2639 	if (!data || (mem_addr & 0xff00))
2640 		return ICE_ERR_PARAM;
2641 
2642 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
2643 	cmd = &desc.params.read_write_sff_param;
2644 	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF);
2645 	cmd->lport_num = (u8)(lport & 0xff);
2646 	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
2647 	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
2648 					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
2649 					((set_page <<
2650 					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
2651 					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
2652 	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
2653 	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
2654 	if (write)
2655 		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
2656 
2657 	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
2658 	return status;
2659 }
2660 
2661 /**
2662  * __ice_aq_get_set_rss_lut
2663  * @hw: pointer to the hardware structure
2664  * @vsi_id: VSI FW index
2665  * @lut_type: LUT table type
2666  * @lut: pointer to the LUT buffer provided by the caller
2667  * @lut_size: size of the LUT buffer
2668  * @glob_lut_idx: global LUT index
2669  * @set: set true to set the table, false to get the table
2670  *
2671  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
2672  */
2673 static enum ice_status
2674 __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
2675 			 u16 lut_size, u8 glob_lut_idx, bool set)
2676 {
2677 	struct ice_aqc_get_set_rss_lut *cmd_resp;
2678 	struct ice_aq_desc desc;
2679 	enum ice_status status;
2680 	u16 flags = 0;
2681 
2682 	cmd_resp = &desc.params.get_set_rss_lut;
2683 
2684 	if (set) {
2685 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
2686 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2687 	} else {
2688 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
2689 	}
2690 
2691 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2692 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
2693 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
2694 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
2695 
2696 	switch (lut_type) {
2697 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
2698 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
2699 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
2700 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
2701 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
2702 		break;
2703 	default:
2704 		status = ICE_ERR_PARAM;
2705 		goto ice_aq_get_set_rss_lut_exit;
2706 	}
2707 
2708 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
2709 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
2710 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
2711 
2712 		if (!set)
2713 			goto ice_aq_get_set_rss_lut_send;
2714 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2715 		if (!set)
2716 			goto ice_aq_get_set_rss_lut_send;
2717 	} else {
2718 		goto ice_aq_get_set_rss_lut_send;
2719 	}
2720 
2721 	/* LUT size is only valid for Global and PF table types */
2722 	switch (lut_size) {
2723 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
2724 		break;
2725 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
2726 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
2727 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2728 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2729 		break;
2730 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
2731 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2732 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
2733 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2734 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2735 			break;
2736 		}
2737 		fallthrough;
2738 	default:
2739 		status = ICE_ERR_PARAM;
2740 		goto ice_aq_get_set_rss_lut_exit;
2741 	}
2742 
2743 ice_aq_get_set_rss_lut_send:
2744 	cmd_resp->flags = cpu_to_le16(flags);
2745 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
2746 
2747 ice_aq_get_set_rss_lut_exit:
2748 	return status;
2749 }
2750 
2751 /**
2752  * ice_aq_get_rss_lut
2753  * @hw: pointer to the hardware structure
2754  * @vsi_handle: software VSI handle
2755  * @lut_type: LUT table type
2756  * @lut: pointer to the LUT buffer provided by the caller
2757  * @lut_size: size of the LUT buffer
2758  *
2759  * get the RSS lookup table, PF or VSI type
2760  */
2761 enum ice_status
2762 ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2763 		   u8 *lut, u16 lut_size)
2764 {
2765 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2766 		return ICE_ERR_PARAM;
2767 
2768 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2769 					lut_type, lut, lut_size, 0, false);
2770 }
2771 
2772 /**
2773  * ice_aq_set_rss_lut
2774  * @hw: pointer to the hardware structure
2775  * @vsi_handle: software VSI handle
2776  * @lut_type: LUT table type
2777  * @lut: pointer to the LUT buffer provided by the caller
2778  * @lut_size: size of the LUT buffer
2779  *
2780  * set the RSS lookup table, PF or VSI type
2781  */
2782 enum ice_status
2783 ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2784 		   u8 *lut, u16 lut_size)
2785 {
2786 	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2787 		return ICE_ERR_PARAM;
2788 
2789 	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2790 					lut_type, lut, lut_size, 0, true);
2791 }
2792 
2793 /**
2794  * __ice_aq_get_set_rss_key
2795  * @hw: pointer to the HW struct
2796  * @vsi_id: VSI FW index
2797  * @key: pointer to key info struct
2798  * @set: set true to set the key, false to get the key
2799  *
2800  * get (0x0B04) or set (0x0B02) the RSS key per VSI
2801  */
2802 static enum
2803 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
2804 				    struct ice_aqc_get_set_rss_keys *key,
2805 				    bool set)
2806 {
2807 	struct ice_aqc_get_set_rss_key *cmd_resp;
2808 	u16 key_size = sizeof(*key);
2809 	struct ice_aq_desc desc;
2810 
2811 	cmd_resp = &desc.params.get_set_rss_key;
2812 
2813 	if (set) {
2814 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
2815 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2816 	} else {
2817 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
2818 	}
2819 
2820 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2821 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
2822 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
2823 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
2824 
2825 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
2826 }
2827 
2828 /**
2829  * ice_aq_get_rss_key
2830  * @hw: pointer to the HW struct
2831  * @vsi_handle: software VSI handle
2832  * @key: pointer to key info struct
2833  *
2834  * get the RSS key per VSI
2835  */
2836 enum ice_status
2837 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
2838 		   struct ice_aqc_get_set_rss_keys *key)
2839 {
2840 	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
2841 		return ICE_ERR_PARAM;
2842 
2843 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2844 					key, false);
2845 }
2846 
2847 /**
2848  * ice_aq_set_rss_key
2849  * @hw: pointer to the HW struct
2850  * @vsi_handle: software VSI handle
2851  * @keys: pointer to key info struct
2852  *
2853  * set the RSS key per VSI
2854  */
2855 enum ice_status
2856 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
2857 		   struct ice_aqc_get_set_rss_keys *keys)
2858 {
2859 	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
2860 		return ICE_ERR_PARAM;
2861 
2862 	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2863 					keys, true);
2864 }
2865 
2866 /**
2867  * ice_aq_add_lan_txq
2868  * @hw: pointer to the hardware structure
2869  * @num_qgrps: Number of added queue groups
2870  * @qg_list: list of queue groups to be added
2871  * @buf_size: size of buffer for indirect command
2872  * @cd: pointer to command details structure or NULL
2873  *
2874  * Add Tx LAN queue (0x0C30)
2875  *
2876  * NOTE:
2877  * Prior to calling add Tx LAN queue:
2878  * Initialize the following as part of the Tx queue context:
2879  * Completion queue ID if the queue uses Completion queue, Quanta profile,
2880  * Cache profile and Packet shaper profile.
2881  *
2882  * After add Tx LAN queue AQ command is completed:
2883  * Interrupts should be associated with specific queues,
2884  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
2885  * flow.
2886  */
2887 static enum ice_status
2888 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2889 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
2890 		   struct ice_sq_cd *cd)
2891 {
2892 	u16 i, sum_header_size, sum_q_size = 0;
2893 	struct ice_aqc_add_tx_qgrp *list;
2894 	struct ice_aqc_add_txqs *cmd;
2895 	struct ice_aq_desc desc;
2896 
2897 	cmd = &desc.params.add_txqs;
2898 
2899 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
2900 
2901 	if (!qg_list)
2902 		return ICE_ERR_PARAM;
2903 
2904 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2905 		return ICE_ERR_PARAM;
2906 
2907 	sum_header_size = num_qgrps *
2908 		(sizeof(*qg_list) - sizeof(*qg_list->txqs));
2909 
2910 	list = qg_list;
2911 	for (i = 0; i < num_qgrps; i++) {
2912 		struct ice_aqc_add_txqs_perq *q = list->txqs;
2913 
2914 		sum_q_size += list->num_txqs * sizeof(*q);
2915 		list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
2916 	}
2917 
2918 	if (buf_size != (sum_header_size + sum_q_size))
2919 		return ICE_ERR_PARAM;
2920 
2921 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2922 
2923 	cmd->num_qgrps = num_qgrps;
2924 
2925 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2926 }
2927 
2928 /**
2929  * ice_aq_dis_lan_txq
2930  * @hw: pointer to the hardware structure
2931  * @num_qgrps: number of groups in the list
2932  * @qg_list: the list of groups to disable
2933  * @buf_size: the total size of the qg_list buffer in bytes
2934  * @rst_src: if called due to reset, specifies the reset source
2935  * @vmvf_num: the relative VM or VF number that is undergoing the reset
2936  * @cd: pointer to command details structure or NULL
2937  *
2938  * Disable LAN Tx queue (0x0C31)
2939  */
2940 static enum ice_status
2941 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2942 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
2943 		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
2944 		   struct ice_sq_cd *cd)
2945 {
2946 	struct ice_aqc_dis_txqs *cmd;
2947 	struct ice_aq_desc desc;
2948 	enum ice_status status;
2949 	u16 i, sz = 0;
2950 
2951 	cmd = &desc.params.dis_txqs;
2952 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
2953 
2954 	/* qg_list can be NULL only in VM/VF reset flow */
2955 	if (!qg_list && !rst_src)
2956 		return ICE_ERR_PARAM;
2957 
2958 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2959 		return ICE_ERR_PARAM;
2960 
2961 	cmd->num_entries = num_qgrps;
2962 
2963 	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
2964 					    ICE_AQC_Q_DIS_TIMEOUT_M);
2965 
2966 	switch (rst_src) {
2967 	case ICE_VM_RESET:
2968 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
2969 		cmd->vmvf_and_timeout |=
2970 			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
2971 		break;
2972 	case ICE_VF_RESET:
2973 		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
2974 		/* In this case, FW expects vmvf_num to be absolute VF ID */
2975 		cmd->vmvf_and_timeout |=
2976 			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
2977 				    ICE_AQC_Q_DIS_VMVF_NUM_M);
2978 		break;
2979 	case ICE_NO_RESET:
2980 	default:
2981 		break;
2982 	}
2983 
2984 	/* flush pipe on time out */
2985 	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
2986 	/* If no queue group info, we are in a reset flow. Issue the AQ */
2987 	if (!qg_list)
2988 		goto do_aq;
2989 
2990 	/* set RD bit to indicate that command buffer is provided by the driver
2991 	 * and it needs to be read by the firmware
2992 	 */
2993 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2994 
2995 	for (i = 0; i < num_qgrps; ++i) {
2996 		/* Calculate the size taken up by the queue IDs in this group */
2997 		sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
2998 
2999 		/* Add the size of the group header */
3000 		sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
3001 
3002 		/* If the num of queues is even, add 2 bytes of padding */
3003 		if ((qg_list[i].num_qs % 2) == 0)
3004 			sz += 2;
3005 	}
3006 
3007 	if (buf_size != sz)
3008 		return ICE_ERR_PARAM;
3009 
3010 do_aq:
3011 	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3012 	if (status) {
3013 		if (!qg_list)
3014 			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3015 				  vmvf_num, hw->adminq.sq_last_status);
3016 		else
3017 			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3018 				  le16_to_cpu(qg_list[0].q_id[0]),
3019 				  hw->adminq.sq_last_status);
3020 	}
3021 	return status;
3022 }
3023 
3024 /* End of FW Admin Queue command wrappers */
3025 
3026 /**
3027  * ice_write_byte - write a byte to a packed context structure
3028  * @src_ctx:  the context structure to read from
3029  * @dest_ctx: the context to be written to
3030  * @ce_info:  a description of the struct to be filled
3031  */
3032 static void
3033 ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3034 {
3035 	u8 src_byte, dest_byte, mask;
3036 	u8 *from, *dest;
3037 	u16 shift_width;
3038 
3039 	/* copy from the next struct field */
3040 	from = src_ctx + ce_info->offset;
3041 
3042 	/* prepare the bits and mask */
3043 	shift_width = ce_info->lsb % 8;
3044 	mask = (u8)(BIT(ce_info->width) - 1);
3045 
3046 	src_byte = *from;
3047 	src_byte &= mask;
3048 
3049 	/* shift to correct alignment */
3050 	mask <<= shift_width;
3051 	src_byte <<= shift_width;
3052 
3053 	/* get the current bits from the target bit string */
3054 	dest = dest_ctx + (ce_info->lsb / 8);
3055 
3056 	memcpy(&dest_byte, dest, sizeof(dest_byte));
3057 
3058 	dest_byte &= ~mask;	/* get the bits not changing */
3059 	dest_byte |= src_byte;	/* add in the new bits */
3060 
3061 	/* put it all back */
3062 	memcpy(dest, &dest_byte, sizeof(dest_byte));
3063 }
3064 
3065 /**
3066  * ice_write_word - write a word to a packed context structure
3067  * @src_ctx:  the context structure to read from
3068  * @dest_ctx: the context to be written to
3069  * @ce_info:  a description of the struct to be filled
3070  */
3071 static void
3072 ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3073 {
3074 	u16 src_word, mask;
3075 	__le16 dest_word;
3076 	u8 *from, *dest;
3077 	u16 shift_width;
3078 
3079 	/* copy from the next struct field */
3080 	from = src_ctx + ce_info->offset;
3081 
3082 	/* prepare the bits and mask */
3083 	shift_width = ce_info->lsb % 8;
3084 	mask = BIT(ce_info->width) - 1;
3085 
3086 	/* don't swizzle the bits until after the mask because the mask bits
3087 	 * will be in a different bit position on big endian machines
3088 	 */
3089 	src_word = *(u16 *)from;
3090 	src_word &= mask;
3091 
3092 	/* shift to correct alignment */
3093 	mask <<= shift_width;
3094 	src_word <<= shift_width;
3095 
3096 	/* get the current bits from the target bit string */
3097 	dest = dest_ctx + (ce_info->lsb / 8);
3098 
3099 	memcpy(&dest_word, dest, sizeof(dest_word));
3100 
3101 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
3102 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
3103 
3104 	/* put it all back */
3105 	memcpy(dest, &dest_word, sizeof(dest_word));
3106 }
3107 
3108 /**
3109  * ice_write_dword - write a dword to a packed context structure
3110  * @src_ctx:  the context structure to read from
3111  * @dest_ctx: the context to be written to
3112  * @ce_info:  a description of the struct to be filled
3113  */
3114 static void
3115 ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3116 {
3117 	u32 src_dword, mask;
3118 	__le32 dest_dword;
3119 	u8 *from, *dest;
3120 	u16 shift_width;
3121 
3122 	/* copy from the next struct field */
3123 	from = src_ctx + ce_info->offset;
3124 
3125 	/* prepare the bits and mask */
3126 	shift_width = ce_info->lsb % 8;
3127 
3128 	/* if the field width is exactly 32 on an x86 machine, then the shift
3129 	 * operation will not work because the SHL instructions count is masked
3130 	 * to 5 bits so the shift will do nothing
3131 	 */
3132 	if (ce_info->width < 32)
3133 		mask = BIT(ce_info->width) - 1;
3134 	else
3135 		mask = (u32)~0;
3136 
3137 	/* don't swizzle the bits until after the mask because the mask bits
3138 	 * will be in a different bit position on big endian machines
3139 	 */
3140 	src_dword = *(u32 *)from;
3141 	src_dword &= mask;
3142 
3143 	/* shift to correct alignment */
3144 	mask <<= shift_width;
3145 	src_dword <<= shift_width;
3146 
3147 	/* get the current bits from the target bit string */
3148 	dest = dest_ctx + (ce_info->lsb / 8);
3149 
3150 	memcpy(&dest_dword, dest, sizeof(dest_dword));
3151 
3152 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
3153 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
3154 
3155 	/* put it all back */
3156 	memcpy(dest, &dest_dword, sizeof(dest_dword));
3157 }
3158 
3159 /**
3160  * ice_write_qword - write a qword to a packed context structure
3161  * @src_ctx:  the context structure to read from
3162  * @dest_ctx: the context to be written to
3163  * @ce_info:  a description of the struct to be filled
3164  */
3165 static void
3166 ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3167 {
3168 	u64 src_qword, mask;
3169 	__le64 dest_qword;
3170 	u8 *from, *dest;
3171 	u16 shift_width;
3172 
3173 	/* copy from the next struct field */
3174 	from = src_ctx + ce_info->offset;
3175 
3176 	/* prepare the bits and mask */
3177 	shift_width = ce_info->lsb % 8;
3178 
3179 	/* if the field width is exactly 64 on an x86 machine, then the shift
3180 	 * operation will not work because the SHL instructions count is masked
3181 	 * to 6 bits so the shift will do nothing
3182 	 */
3183 	if (ce_info->width < 64)
3184 		mask = BIT_ULL(ce_info->width) - 1;
3185 	else
3186 		mask = (u64)~0;
3187 
3188 	/* don't swizzle the bits until after the mask because the mask bits
3189 	 * will be in a different bit position on big endian machines
3190 	 */
3191 	src_qword = *(u64 *)from;
3192 	src_qword &= mask;
3193 
3194 	/* shift to correct alignment */
3195 	mask <<= shift_width;
3196 	src_qword <<= shift_width;
3197 
3198 	/* get the current bits from the target bit string */
3199 	dest = dest_ctx + (ce_info->lsb / 8);
3200 
3201 	memcpy(&dest_qword, dest, sizeof(dest_qword));
3202 
3203 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
3204 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
3205 
3206 	/* put it all back */
3207 	memcpy(dest, &dest_qword, sizeof(dest_qword));
3208 }
3209 
3210 /**
3211  * ice_set_ctx - set context bits in packed structure
3212  * @hw: pointer to the hardware structure
3213  * @src_ctx:  pointer to a generic non-packed context structure
3214  * @dest_ctx: pointer to memory for the packed structure
3215  * @ce_info:  a description of the structure to be transformed
3216  */
3217 enum ice_status
3218 ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
3219 	    const struct ice_ctx_ele *ce_info)
3220 {
3221 	int f;
3222 
3223 	for (f = 0; ce_info[f].width; f++) {
3224 		/* We have to deal with each element of the FW response
3225 		 * using the correct size so that we are correct regardless
3226 		 * of the endianness of the machine.
3227 		 */
3228 		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
3229 			ice_debug(hw, ICE_DBG_QCTX,
3230 				  "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
3231 				  f, ce_info[f].width, ce_info[f].size_of);
3232 			continue;
3233 		}
3234 		switch (ce_info[f].size_of) {
3235 		case sizeof(u8):
3236 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
3237 			break;
3238 		case sizeof(u16):
3239 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
3240 			break;
3241 		case sizeof(u32):
3242 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
3243 			break;
3244 		case sizeof(u64):
3245 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
3246 			break;
3247 		default:
3248 			return ICE_ERR_INVAL_SIZE;
3249 		}
3250 	}
3251 
3252 	return 0;
3253 }
3254 
3255 /**
3256  * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
3257  * @hw: pointer to the HW struct
3258  * @vsi_handle: software VSI handle
3259  * @tc: TC number
3260  * @q_handle: software queue handle
3261  */
3262 struct ice_q_ctx *
3263 ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
3264 {
3265 	struct ice_vsi_ctx *vsi;
3266 	struct ice_q_ctx *q_ctx;
3267 
3268 	vsi = ice_get_vsi_ctx(hw, vsi_handle);
3269 	if (!vsi)
3270 		return NULL;
3271 	if (q_handle >= vsi->num_lan_q_entries[tc])
3272 		return NULL;
3273 	if (!vsi->lan_q_ctx[tc])
3274 		return NULL;
3275 	q_ctx = vsi->lan_q_ctx[tc];
3276 	return &q_ctx[q_handle];
3277 }
3278 
3279 /**
3280  * ice_ena_vsi_txq
3281  * @pi: port information structure
3282  * @vsi_handle: software VSI handle
3283  * @tc: TC number
3284  * @q_handle: software queue handle
3285  * @num_qgrps: Number of added queue groups
3286  * @buf: list of queue groups to be added
3287  * @buf_size: size of buffer for indirect command
3288  * @cd: pointer to command details structure or NULL
3289  *
3290  * This function adds one LAN queue
3291  */
3292 enum ice_status
3293 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
3294 		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
3295 		struct ice_sq_cd *cd)
3296 {
3297 	struct ice_aqc_txsched_elem_data node = { 0 };
3298 	struct ice_sched_node *parent;
3299 	struct ice_q_ctx *q_ctx;
3300 	enum ice_status status;
3301 	struct ice_hw *hw;
3302 
3303 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3304 		return ICE_ERR_CFG;
3305 
3306 	if (num_qgrps > 1 || buf->num_txqs > 1)
3307 		return ICE_ERR_MAX_LIMIT;
3308 
3309 	hw = pi->hw;
3310 
3311 	if (!ice_is_vsi_valid(hw, vsi_handle))
3312 		return ICE_ERR_PARAM;
3313 
3314 	mutex_lock(&pi->sched_lock);
3315 
3316 	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
3317 	if (!q_ctx) {
3318 		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
3319 			  q_handle);
3320 		status = ICE_ERR_PARAM;
3321 		goto ena_txq_exit;
3322 	}
3323 
3324 	/* find a parent node */
3325 	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
3326 					    ICE_SCHED_NODE_OWNER_LAN);
3327 	if (!parent) {
3328 		status = ICE_ERR_PARAM;
3329 		goto ena_txq_exit;
3330 	}
3331 
3332 	buf->parent_teid = parent->info.node_teid;
3333 	node.parent_teid = parent->info.node_teid;
3334 	/* Mark that the values in the "generic" section as valid. The default
3335 	 * value in the "generic" section is zero. This means that :
3336 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
3337 	 * - 0 priority among siblings, indicated by Bit 1-3.
3338 	 * - WFQ, indicated by Bit 4.
3339 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
3340 	 * Bit 5-6.
3341 	 * - Bit 7 is reserved.
3342 	 * Without setting the generic section as valid in valid_sections, the
3343 	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
3344 	 */
3345 	buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
3346 
3347 	/* add the LAN queue */
3348 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
3349 	if (status) {
3350 		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
3351 			  le16_to_cpu(buf->txqs[0].txq_id),
3352 			  hw->adminq.sq_last_status);
3353 		goto ena_txq_exit;
3354 	}
3355 
3356 	node.node_teid = buf->txqs[0].q_teid;
3357 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
3358 	q_ctx->q_handle = q_handle;
3359 	q_ctx->q_teid = le32_to_cpu(node.node_teid);
3360 
3361 	/* add a leaf node into scheduler tree queue layer */
3362 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
3363 	if (!status)
3364 		status = ice_sched_replay_q_bw(pi, q_ctx);
3365 
3366 ena_txq_exit:
3367 	mutex_unlock(&pi->sched_lock);
3368 	return status;
3369 }
3370 
3371 /**
3372  * ice_dis_vsi_txq
3373  * @pi: port information structure
3374  * @vsi_handle: software VSI handle
3375  * @tc: TC number
3376  * @num_queues: number of queues
3377  * @q_handles: pointer to software queue handle array
3378  * @q_ids: pointer to the q_id array
3379  * @q_teids: pointer to queue node teids
3380  * @rst_src: if called due to reset, specifies the reset source
3381  * @vmvf_num: the relative VM or VF number that is undergoing the reset
3382  * @cd: pointer to command details structure or NULL
3383  *
3384  * This function removes queues and their corresponding nodes in SW DB
3385  */
3386 enum ice_status
3387 ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
3388 		u16 *q_handles, u16 *q_ids, u32 *q_teids,
3389 		enum ice_disq_rst_src rst_src, u16 vmvf_num,
3390 		struct ice_sq_cd *cd)
3391 {
3392 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
3393 	struct ice_aqc_dis_txq_item qg_list;
3394 	struct ice_q_ctx *q_ctx;
3395 	u16 i;
3396 
3397 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3398 		return ICE_ERR_CFG;
3399 
3400 	if (!num_queues) {
3401 		/* if queue is disabled already yet the disable queue command
3402 		 * has to be sent to complete the VF reset, then call
3403 		 * ice_aq_dis_lan_txq without any queue information
3404 		 */
3405 		if (rst_src)
3406 			return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src,
3407 						  vmvf_num, NULL);
3408 		return ICE_ERR_CFG;
3409 	}
3410 
3411 	mutex_lock(&pi->sched_lock);
3412 
3413 	for (i = 0; i < num_queues; i++) {
3414 		struct ice_sched_node *node;
3415 
3416 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
3417 		if (!node)
3418 			continue;
3419 		q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handles[i]);
3420 		if (!q_ctx) {
3421 			ice_debug(pi->hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
3422 				  q_handles[i]);
3423 			continue;
3424 		}
3425 		if (q_ctx->q_handle != q_handles[i]) {
3426 			ice_debug(pi->hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
3427 				  q_ctx->q_handle, q_handles[i]);
3428 			continue;
3429 		}
3430 		qg_list.parent_teid = node->info.parent_teid;
3431 		qg_list.num_qs = 1;
3432 		qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
3433 		status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
3434 					    sizeof(qg_list), rst_src, vmvf_num,
3435 					    cd);
3436 
3437 		if (status)
3438 			break;
3439 		ice_free_sched_node(pi, node);
3440 		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
3441 	}
3442 	mutex_unlock(&pi->sched_lock);
3443 	return status;
3444 }
3445 
3446 /**
3447  * ice_cfg_vsi_qs - configure the new/existing VSI queues
3448  * @pi: port information structure
3449  * @vsi_handle: software VSI handle
3450  * @tc_bitmap: TC bitmap
3451  * @maxqs: max queues array per TC
3452  * @owner: LAN or RDMA
3453  *
3454  * This function adds/updates the VSI queues per TC.
3455  */
3456 static enum ice_status
3457 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3458 	       u16 *maxqs, u8 owner)
3459 {
3460 	enum ice_status status = 0;
3461 	u8 i;
3462 
3463 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3464 		return ICE_ERR_CFG;
3465 
3466 	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3467 		return ICE_ERR_PARAM;
3468 
3469 	mutex_lock(&pi->sched_lock);
3470 
3471 	ice_for_each_traffic_class(i) {
3472 		/* configuration is possible only if TC node is present */
3473 		if (!ice_sched_get_tc_node(pi, i))
3474 			continue;
3475 
3476 		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
3477 					   ice_is_tc_ena(tc_bitmap, i));
3478 		if (status)
3479 			break;
3480 	}
3481 
3482 	mutex_unlock(&pi->sched_lock);
3483 	return status;
3484 }
3485 
3486 /**
3487  * ice_cfg_vsi_lan - configure VSI LAN queues
3488  * @pi: port information structure
3489  * @vsi_handle: software VSI handle
3490  * @tc_bitmap: TC bitmap
3491  * @max_lanqs: max LAN queues array per TC
3492  *
3493  * This function adds/updates the VSI LAN queues per TC.
3494  */
3495 enum ice_status
3496 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3497 		u16 *max_lanqs)
3498 {
3499 	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
3500 			      ICE_SCHED_NODE_OWNER_LAN);
3501 }
3502 
3503 /**
3504  * ice_replay_pre_init - replay pre initialization
3505  * @hw: pointer to the HW struct
3506  *
3507  * Initializes required config data for VSI, FD, ACL, and RSS before replay.
3508  */
3509 static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
3510 {
3511 	struct ice_switch_info *sw = hw->switch_info;
3512 	u8 i;
3513 
3514 	/* Delete old entries from replay filter list head if there is any */
3515 	ice_rm_all_sw_replay_rule_info(hw);
3516 	/* In start of replay, move entries into replay_rules list, it
3517 	 * will allow adding rules entries back to filt_rules list,
3518 	 * which is operational list.
3519 	 */
3520 	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
3521 		list_replace_init(&sw->recp_list[i].filt_rules,
3522 				  &sw->recp_list[i].filt_replay_rules);
3523 
3524 	return 0;
3525 }
3526 
3527 /**
3528  * ice_replay_vsi - replay VSI configuration
3529  * @hw: pointer to the HW struct
3530  * @vsi_handle: driver VSI handle
3531  *
3532  * Restore all VSI configuration after reset. It is required to call this
3533  * function with main VSI first.
3534  */
3535 enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
3536 {
3537 	enum ice_status status;
3538 
3539 	if (!ice_is_vsi_valid(hw, vsi_handle))
3540 		return ICE_ERR_PARAM;
3541 
3542 	/* Replay pre-initialization if there is any */
3543 	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
3544 		status = ice_replay_pre_init(hw);
3545 		if (status)
3546 			return status;
3547 	}
3548 	/* Replay per VSI all RSS configurations */
3549 	status = ice_replay_rss_cfg(hw, vsi_handle);
3550 	if (status)
3551 		return status;
3552 	/* Replay per VSI all filters */
3553 	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
3554 	return status;
3555 }
3556 
3557 /**
3558  * ice_replay_post - post replay configuration cleanup
3559  * @hw: pointer to the HW struct
3560  *
3561  * Post replay cleanup.
3562  */
3563 void ice_replay_post(struct ice_hw *hw)
3564 {
3565 	/* Delete old entries from replay filter list head */
3566 	ice_rm_all_sw_replay_rule_info(hw);
3567 }
3568 
3569 /**
3570  * ice_stat_update40 - read 40 bit stat from the chip and update stat values
3571  * @hw: ptr to the hardware info
3572  * @reg: offset of 64 bit HW register to read from
3573  * @prev_stat_loaded: bool to specify if previous stats are loaded
3574  * @prev_stat: ptr to previous loaded stat value
3575  * @cur_stat: ptr to current stat value
3576  */
3577 void
3578 ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3579 		  u64 *prev_stat, u64 *cur_stat)
3580 {
3581 	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
3582 
3583 	/* device stats are not reset at PFR, they likely will not be zeroed
3584 	 * when the driver starts. Thus, save the value from the first read
3585 	 * without adding to the statistic value so that we report stats which
3586 	 * count up from zero.
3587 	 */
3588 	if (!prev_stat_loaded) {
3589 		*prev_stat = new_data;
3590 		return;
3591 	}
3592 
3593 	/* Calculate the difference between the new and old values, and then
3594 	 * add it to the software stat value.
3595 	 */
3596 	if (new_data >= *prev_stat)
3597 		*cur_stat += new_data - *prev_stat;
3598 	else
3599 		/* to manage the potential roll-over */
3600 		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
3601 
3602 	/* Update the previously stored value to prepare for next read */
3603 	*prev_stat = new_data;
3604 }
3605 
3606 /**
3607  * ice_stat_update32 - read 32 bit stat from the chip and update stat values
3608  * @hw: ptr to the hardware info
3609  * @reg: offset of HW register to read from
3610  * @prev_stat_loaded: bool to specify if previous stats are loaded
3611  * @prev_stat: ptr to previous loaded stat value
3612  * @cur_stat: ptr to current stat value
3613  */
3614 void
3615 ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3616 		  u64 *prev_stat, u64 *cur_stat)
3617 {
3618 	u32 new_data;
3619 
3620 	new_data = rd32(hw, reg);
3621 
3622 	/* device stats are not reset at PFR, they likely will not be zeroed
3623 	 * when the driver starts. Thus, save the value from the first read
3624 	 * without adding to the statistic value so that we report stats which
3625 	 * count up from zero.
3626 	 */
3627 	if (!prev_stat_loaded) {
3628 		*prev_stat = new_data;
3629 		return;
3630 	}
3631 
3632 	/* Calculate the difference between the new and old values, and then
3633 	 * add it to the software stat value.
3634 	 */
3635 	if (new_data >= *prev_stat)
3636 		*cur_stat += new_data - *prev_stat;
3637 	else
3638 		/* to manage the potential roll-over */
3639 		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
3640 
3641 	/* Update the previously stored value to prepare for next read */
3642 	*prev_stat = new_data;
3643 }
3644 
3645 /**
3646  * ice_sched_query_elem - query element information from HW
3647  * @hw: pointer to the HW struct
3648  * @node_teid: node TEID to be queried
3649  * @buf: buffer to element information
3650  *
3651  * This function queries HW element information
3652  */
3653 enum ice_status
3654 ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
3655 		     struct ice_aqc_get_elem *buf)
3656 {
3657 	u16 buf_size, num_elem_ret = 0;
3658 	enum ice_status status;
3659 
3660 	buf_size = sizeof(*buf);
3661 	memset(buf, 0, buf_size);
3662 	buf->generic[0].node_teid = cpu_to_le32(node_teid);
3663 	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
3664 					  NULL);
3665 	if (status || num_elem_ret != 1)
3666 		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
3667 	return status;
3668 }
3669