xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_base.c (revision 67bb66d32905627e29400e2cb7f87a7c4c8cf667)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 
9 /**
10  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
11  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
12  *
13  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
14  */
15 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
16 {
17 	unsigned int offset, i;
18 
19 	mutex_lock(qs_cfg->qs_mutex);
20 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
21 					    0, qs_cfg->q_count, 0);
22 	if (offset >= qs_cfg->pf_map_size) {
23 		mutex_unlock(qs_cfg->qs_mutex);
24 		return -ENOMEM;
25 	}
26 
27 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
28 	for (i = 0; i < qs_cfg->q_count; i++)
29 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
30 	mutex_unlock(qs_cfg->qs_mutex);
31 
32 	return 0;
33 }
34 
35 /**
36  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
37  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
38  *
39  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
40  */
41 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
42 {
43 	unsigned int i, index = 0;
44 
45 	mutex_lock(qs_cfg->qs_mutex);
46 	for (i = 0; i < qs_cfg->q_count; i++) {
47 		index = find_next_zero_bit(qs_cfg->pf_map,
48 					   qs_cfg->pf_map_size, index);
49 		if (index >= qs_cfg->pf_map_size)
50 			goto err_scatter;
51 		set_bit(index, qs_cfg->pf_map);
52 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
53 	}
54 	mutex_unlock(qs_cfg->qs_mutex);
55 
56 	return 0;
57 err_scatter:
58 	for (index = 0; index < i; index++) {
59 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
60 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
61 	}
62 	mutex_unlock(qs_cfg->qs_mutex);
63 
64 	return -ENOMEM;
65 }
66 
67 /**
68  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
69  * @pf: the PF being configured
70  * @pf_q: the PF queue
71  * @ena: enable or disable state of the queue
72  *
73  * This routine will wait for the given Rx queue of the PF to reach the
74  * enabled or disabled state.
75  * Returns -ETIMEDOUT in case of failing to reach the requested state after
76  * multiple retries; else will return 0 in case of success.
77  */
78 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
79 {
80 	int i;
81 
82 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
83 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
84 			      QRX_CTRL_QENA_STAT_M))
85 			return 0;
86 
87 		usleep_range(20, 40);
88 	}
89 
90 	return -ETIMEDOUT;
91 }
92 
93 /**
94  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
95  * @vsi: the VSI being configured
96  * @v_idx: index of the vector in the VSI struct
97  *
98  * We allocate one q_vector and set default value for ITR setting associated
99  * with this q_vector. If allocation fails we return -ENOMEM.
100  */
101 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
102 {
103 	struct ice_pf *pf = vsi->back;
104 	struct ice_q_vector *q_vector;
105 
106 	/* allocate q_vector */
107 	q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
108 				GFP_KERNEL);
109 	if (!q_vector)
110 		return -ENOMEM;
111 
112 	q_vector->vsi = vsi;
113 	q_vector->v_idx = v_idx;
114 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
115 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
116 	q_vector->tx.itr_mode = ITR_DYNAMIC;
117 	q_vector->rx.itr_mode = ITR_DYNAMIC;
118 
119 	if (vsi->type == ICE_VSI_VF)
120 		goto out;
121 	/* only set affinity_mask if the CPU is online */
122 	if (cpu_online(v_idx))
123 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
124 
125 	/* This will not be called in the driver load path because the netdev
126 	 * will not be created yet. All other cases with register the NAPI
127 	 * handler here (i.e. resume, reset/rebuild, etc.)
128 	 */
129 	if (vsi->netdev)
130 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
131 			       NAPI_POLL_WEIGHT);
132 
133 out:
134 	/* tie q_vector and VSI together */
135 	vsi->q_vectors[v_idx] = q_vector;
136 
137 	return 0;
138 }
139 
140 /**
141  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
142  * @vsi: VSI having the memory freed
143  * @v_idx: index of the vector to be freed
144  */
145 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
146 {
147 	struct ice_q_vector *q_vector;
148 	struct ice_pf *pf = vsi->back;
149 	struct ice_ring *ring;
150 	struct device *dev;
151 
152 	dev = ice_pf_to_dev(pf);
153 	if (!vsi->q_vectors[v_idx]) {
154 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
155 		return;
156 	}
157 	q_vector = vsi->q_vectors[v_idx];
158 
159 	ice_for_each_ring(ring, q_vector->tx)
160 		ring->q_vector = NULL;
161 	ice_for_each_ring(ring, q_vector->rx)
162 		ring->q_vector = NULL;
163 
164 	/* only VSI with an associated netdev is set up with NAPI */
165 	if (vsi->netdev)
166 		netif_napi_del(&q_vector->napi);
167 
168 	devm_kfree(dev, q_vector);
169 	vsi->q_vectors[v_idx] = NULL;
170 }
171 
172 /**
173  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
174  * @hw: board specific structure
175  */
176 static void ice_cfg_itr_gran(struct ice_hw *hw)
177 {
178 	u32 regval = rd32(hw, GLINT_CTL);
179 
180 	/* no need to update global register if ITR gran is already set */
181 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
182 	    (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
183 	     GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
184 	    (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
185 	     GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
186 	    (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
187 	     GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
188 	    (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
189 	      GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
190 		return;
191 
192 	regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
193 		  GLINT_CTL_ITR_GRAN_200_M) |
194 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
195 		  GLINT_CTL_ITR_GRAN_100_M) |
196 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
197 		  GLINT_CTL_ITR_GRAN_50_M) |
198 		 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
199 		  GLINT_CTL_ITR_GRAN_25_M);
200 	wr32(hw, GLINT_CTL, regval);
201 }
202 
203 /**
204  * ice_calc_q_handle - calculate the queue handle
205  * @vsi: VSI that ring belongs to
206  * @ring: ring to get the absolute queue index
207  * @tc: traffic class number
208  */
209 static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
210 {
211 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
212 
213 	/* Idea here for calculation is that we subtract the number of queue
214 	 * count from TC that ring belongs to from it's absolute queue index
215 	 * and as a result we get the queue's index within TC.
216 	 */
217 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
218 }
219 
220 /**
221  * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
222  * @ring: The Tx ring to configure
223  *
224  * This enables/disables XPS for a given Tx descriptor ring
225  * based on the TCs enabled for the VSI that ring belongs to.
226  */
227 static void ice_cfg_xps_tx_ring(struct ice_ring *ring)
228 {
229 	if (!ring->q_vector || !ring->netdev)
230 		return;
231 
232 	/* We only initialize XPS once, so as not to overwrite user settings */
233 	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
234 		return;
235 
236 	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
237 			    ring->q_index);
238 }
239 
240 /**
241  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
242  * @ring: The Tx ring to configure
243  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
244  * @pf_q: queue index in the PF space
245  *
246  * Configure the Tx descriptor ring in TLAN context.
247  */
248 static void
249 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
250 {
251 	struct ice_vsi *vsi = ring->vsi;
252 	struct ice_hw *hw = &vsi->back->hw;
253 
254 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
255 
256 	tlan_ctx->port_num = vsi->port_info->lport;
257 
258 	/* Transmit Queue Length */
259 	tlan_ctx->qlen = ring->count;
260 
261 	ice_set_cgd_num(tlan_ctx, ring);
262 
263 	/* PF number */
264 	tlan_ctx->pf_num = hw->pf_id;
265 
266 	/* queue belongs to a specific VSI type
267 	 * VF / VM index should be programmed per vmvf_type setting:
268 	 * for vmvf_type = VF, it is VF number between 0-256
269 	 * for vmvf_type = VM, it is VM number between 0-767
270 	 * for PF or EMP this field should be set to zero
271 	 */
272 	switch (vsi->type) {
273 	case ICE_VSI_LB:
274 	case ICE_VSI_CTRL:
275 	case ICE_VSI_PF:
276 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
277 		break;
278 	case ICE_VSI_VF:
279 		/* Firmware expects vmvf_num to be absolute VF ID */
280 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
281 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
282 		break;
283 	default:
284 		return;
285 	}
286 
287 	/* make sure the context is associated with the right VSI */
288 	tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
289 
290 	/* Restrict Tx timestamps to the PF VSI */
291 	switch (vsi->type) {
292 	case ICE_VSI_PF:
293 		tlan_ctx->tsyn_ena = 1;
294 		break;
295 	default:
296 		break;
297 	}
298 
299 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
300 	tlan_ctx->tso_qnum = pf_q;
301 
302 	/* Legacy or Advanced Host Interface:
303 	 * 0: Advanced Host Interface
304 	 * 1: Legacy Host Interface
305 	 */
306 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
307 }
308 
309 /**
310  * ice_rx_offset - Return expected offset into page to access data
311  * @rx_ring: Ring we are requesting offset of
312  *
313  * Returns the offset value for ring into the data buffer.
314  */
315 static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
316 {
317 	if (ice_ring_uses_build_skb(rx_ring))
318 		return ICE_SKB_PAD;
319 	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
320 		return XDP_PACKET_HEADROOM;
321 
322 	return 0;
323 }
324 
325 /**
326  * ice_setup_rx_ctx - Configure a receive ring context
327  * @ring: The Rx ring to configure
328  *
329  * Configure the Rx descriptor ring in RLAN context.
330  */
331 static int ice_setup_rx_ctx(struct ice_ring *ring)
332 {
333 	int chain_len = ICE_MAX_CHAINED_RX_BUFS;
334 	struct ice_vsi *vsi = ring->vsi;
335 	u32 rxdid = ICE_RXDID_FLEX_NIC;
336 	struct ice_rlan_ctx rlan_ctx;
337 	struct ice_hw *hw;
338 	u16 pf_q;
339 	int err;
340 
341 	hw = &vsi->back->hw;
342 
343 	/* what is Rx queue number in global space of 2K Rx queues */
344 	pf_q = vsi->rxq_map[ring->q_index];
345 
346 	/* clear the context structure first */
347 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
348 
349 	/* Receive Queue Base Address.
350 	 * Indicates the starting address of the descriptor queue defined in
351 	 * 128 Byte units.
352 	 */
353 	rlan_ctx.base = ring->dma >> 7;
354 
355 	rlan_ctx.qlen = ring->count;
356 
357 	/* Receive Packet Data Buffer Size.
358 	 * The Packet Data Buffer Size is defined in 128 byte units.
359 	 */
360 	rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
361 
362 	/* use 32 byte descriptors */
363 	rlan_ctx.dsize = 1;
364 
365 	/* Strip the Ethernet CRC bytes before the packet is posted to host
366 	 * memory.
367 	 */
368 	rlan_ctx.crcstrip = 1;
369 
370 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
371 	rlan_ctx.l2tsel = 1;
372 
373 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
374 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
375 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
376 
377 	/* This controls whether VLAN is stripped from inner headers
378 	 * The VLAN in the inner L2 header is stripped to the receive
379 	 * descriptor if enabled by this flag.
380 	 */
381 	rlan_ctx.showiv = 0;
382 
383 	/* For AF_XDP ZC, we disallow packets to span on
384 	 * multiple buffers, thus letting us skip that
385 	 * handling in the fast-path.
386 	 */
387 	if (ring->xsk_pool)
388 		chain_len = 1;
389 	/* Max packet size for this queue - must not be set to a larger value
390 	 * than 5 x DBUF
391 	 */
392 	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
393 			       chain_len * ring->rx_buf_len);
394 
395 	/* Rx queue threshold in units of 64 */
396 	rlan_ctx.lrxqthresh = 1;
397 
398 	/* Enable Flexible Descriptors in the queue context which
399 	 * allows this driver to select a specific receive descriptor format
400 	 * increasing context priority to pick up profile ID; default is 0x01;
401 	 * setting to 0x03 to ensure profile is programming if prev context is
402 	 * of same priority
403 	 */
404 	if (vsi->type != ICE_VSI_VF)
405 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
406 	else
407 		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
408 					false);
409 
410 	/* Absolute queue number out of 2K needs to be passed */
411 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
412 	if (err) {
413 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
414 			pf_q, err);
415 		return -EIO;
416 	}
417 
418 	if (vsi->type == ICE_VSI_VF)
419 		return 0;
420 
421 	/* configure Rx buffer alignment */
422 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
423 		ice_clear_ring_build_skb_ena(ring);
424 	else
425 		ice_set_ring_build_skb_ena(ring);
426 
427 	ring->rx_offset = ice_rx_offset(ring);
428 
429 	/* init queue specific tail register */
430 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
431 	writel(0, ring->tail);
432 
433 	return 0;
434 }
435 
436 /**
437  * ice_vsi_cfg_rxq - Configure an Rx queue
438  * @ring: the ring being configured
439  *
440  * Return 0 on success and a negative value on error.
441  */
442 int ice_vsi_cfg_rxq(struct ice_ring *ring)
443 {
444 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
445 	u16 num_bufs = ICE_DESC_UNUSED(ring);
446 	int err;
447 
448 	ring->rx_buf_len = ring->vsi->rx_buf_len;
449 
450 	if (ring->vsi->type == ICE_VSI_PF) {
451 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
452 			/* coverity[check_return] */
453 			xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
454 					 ring->q_index, ring->q_vector->napi.napi_id);
455 
456 		ring->xsk_pool = ice_xsk_pool(ring);
457 		if (ring->xsk_pool) {
458 			xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
459 
460 			ring->rx_buf_len =
461 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
462 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
463 							 MEM_TYPE_XSK_BUFF_POOL,
464 							 NULL);
465 			if (err)
466 				return err;
467 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
468 
469 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
470 				 ring->q_index);
471 		} else {
472 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
473 				/* coverity[check_return] */
474 				xdp_rxq_info_reg(&ring->xdp_rxq,
475 						 ring->netdev,
476 						 ring->q_index, ring->q_vector->napi.napi_id);
477 
478 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
479 							 MEM_TYPE_PAGE_SHARED,
480 							 NULL);
481 			if (err)
482 				return err;
483 		}
484 	}
485 
486 	err = ice_setup_rx_ctx(ring);
487 	if (err) {
488 		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
489 			ring->q_index, err);
490 		return err;
491 	}
492 
493 	if (ring->xsk_pool) {
494 		bool ok;
495 
496 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
497 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
498 				 num_bufs, ring->q_index);
499 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
500 
501 			return 0;
502 		}
503 
504 		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
505 		if (!ok) {
506 			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
507 
508 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
509 				 ring->q_index, pf_q);
510 		}
511 
512 		return 0;
513 	}
514 
515 	ice_alloc_rx_bufs(ring, num_bufs);
516 
517 	return 0;
518 }
519 
520 /**
521  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
522  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
523  *
524  * This function first tries to find contiguous space. If it is not successful,
525  * it tries with the scatter approach.
526  *
527  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
528  */
529 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
530 {
531 	int ret = 0;
532 
533 	ret = __ice_vsi_get_qs_contig(qs_cfg);
534 	if (ret) {
535 		/* contig failed, so try with scatter approach */
536 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
537 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
538 					qs_cfg->scatter_count);
539 		ret = __ice_vsi_get_qs_sc(qs_cfg);
540 	}
541 	return ret;
542 }
543 
544 /**
545  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
546  * @vsi: the VSI being configured
547  * @ena: start or stop the Rx ring
548  * @rxq_idx: 0-based Rx queue index for the VSI passed in
549  * @wait: wait or don't wait for configuration to finish in hardware
550  *
551  * Return 0 on success and negative on error.
552  */
553 int
554 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
555 {
556 	int pf_q = vsi->rxq_map[rxq_idx];
557 	struct ice_pf *pf = vsi->back;
558 	struct ice_hw *hw = &pf->hw;
559 	u32 rx_reg;
560 
561 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
562 
563 	/* Skip if the queue is already in the requested state */
564 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
565 		return 0;
566 
567 	/* turn on/off the queue */
568 	if (ena)
569 		rx_reg |= QRX_CTRL_QENA_REQ_M;
570 	else
571 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
572 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
573 
574 	if (!wait)
575 		return 0;
576 
577 	ice_flush(hw);
578 	return ice_pf_rxq_wait(pf, pf_q, ena);
579 }
580 
581 /**
582  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
583  * @vsi: the VSI being configured
584  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
585  * @rxq_idx: 0-based Rx queue index for the VSI passed in
586  *
587  * This routine will wait for the given Rx queue of the VSI to reach the
588  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
589  * the requested state after multiple retries; else will return 0 in case of
590  * success.
591  */
592 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
593 {
594 	int pf_q = vsi->rxq_map[rxq_idx];
595 	struct ice_pf *pf = vsi->back;
596 
597 	return ice_pf_rxq_wait(pf, pf_q, ena);
598 }
599 
600 /**
601  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
602  * @vsi: the VSI being configured
603  *
604  * We allocate one q_vector per queue interrupt. If allocation fails we
605  * return -ENOMEM.
606  */
607 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
608 {
609 	struct device *dev = ice_pf_to_dev(vsi->back);
610 	u16 v_idx;
611 	int err;
612 
613 	if (vsi->q_vectors[0]) {
614 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
615 		return -EEXIST;
616 	}
617 
618 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
619 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
620 		if (err)
621 			goto err_out;
622 	}
623 
624 	return 0;
625 
626 err_out:
627 	while (v_idx--)
628 		ice_free_q_vector(vsi, v_idx);
629 
630 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
631 		vsi->num_q_vectors, vsi->vsi_num, err);
632 	vsi->num_q_vectors = 0;
633 	return err;
634 }
635 
636 /**
637  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
638  * @vsi: the VSI being configured
639  *
640  * This function maps descriptor rings to the queue-specific vectors allotted
641  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
642  * and Rx rings to the vector as "efficiently" as possible.
643  */
644 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
645 {
646 	int q_vectors = vsi->num_q_vectors;
647 	u16 tx_rings_rem, rx_rings_rem;
648 	int v_id;
649 
650 	/* initially assigning remaining rings count to VSIs num queue value */
651 	tx_rings_rem = vsi->num_txq;
652 	rx_rings_rem = vsi->num_rxq;
653 
654 	for (v_id = 0; v_id < q_vectors; v_id++) {
655 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
656 		u8 tx_rings_per_v, rx_rings_per_v;
657 		u16 q_id, q_base;
658 
659 		/* Tx rings mapping to vector */
660 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
661 						  q_vectors - v_id);
662 		q_vector->num_ring_tx = tx_rings_per_v;
663 		q_vector->tx.ring = NULL;
664 		q_vector->tx.itr_idx = ICE_TX_ITR;
665 		q_base = vsi->num_txq - tx_rings_rem;
666 
667 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
668 			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
669 
670 			tx_ring->q_vector = q_vector;
671 			tx_ring->next = q_vector->tx.ring;
672 			q_vector->tx.ring = tx_ring;
673 		}
674 		tx_rings_rem -= tx_rings_per_v;
675 
676 		/* Rx rings mapping to vector */
677 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
678 						  q_vectors - v_id);
679 		q_vector->num_ring_rx = rx_rings_per_v;
680 		q_vector->rx.ring = NULL;
681 		q_vector->rx.itr_idx = ICE_RX_ITR;
682 		q_base = vsi->num_rxq - rx_rings_rem;
683 
684 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
685 			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
686 
687 			rx_ring->q_vector = q_vector;
688 			rx_ring->next = q_vector->rx.ring;
689 			q_vector->rx.ring = rx_ring;
690 		}
691 		rx_rings_rem -= rx_rings_per_v;
692 	}
693 }
694 
695 /**
696  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
697  * @vsi: the VSI having memory freed
698  */
699 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
700 {
701 	int v_idx;
702 
703 	ice_for_each_q_vector(vsi, v_idx)
704 		ice_free_q_vector(vsi, v_idx);
705 }
706 
707 /**
708  * ice_vsi_cfg_txq - Configure single Tx queue
709  * @vsi: the VSI that queue belongs to
710  * @ring: Tx ring to be configured
711  * @qg_buf: queue group buffer
712  */
713 int
714 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
715 		struct ice_aqc_add_tx_qgrp *qg_buf)
716 {
717 	u8 buf_len = struct_size(qg_buf, txqs, 1);
718 	struct ice_tlan_ctx tlan_ctx = { 0 };
719 	struct ice_aqc_add_txqs_perq *txq;
720 	struct ice_pf *pf = vsi->back;
721 	struct ice_hw *hw = &pf->hw;
722 	enum ice_status status;
723 	u16 pf_q;
724 	u8 tc;
725 
726 	/* Configure XPS */
727 	ice_cfg_xps_tx_ring(ring);
728 
729 	pf_q = ring->reg_idx;
730 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
731 	/* copy context contents into the qg_buf */
732 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
733 	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
734 		    ice_tlan_ctx_info);
735 
736 	/* init queue specific tail reg. It is referred as
737 	 * transmit comm scheduler queue doorbell.
738 	 */
739 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
740 
741 	if (IS_ENABLED(CONFIG_DCB))
742 		tc = ring->dcb_tc;
743 	else
744 		tc = 0;
745 
746 	/* Add unique software queue handle of the Tx queue per
747 	 * TC into the VSI Tx ring
748 	 */
749 	ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
750 
751 	status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
752 				 1, qg_buf, buf_len, NULL);
753 	if (status) {
754 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n",
755 			ice_stat_str(status));
756 		return -ENODEV;
757 	}
758 
759 	/* Add Tx Queue TEID into the VSI Tx ring from the
760 	 * response. This will complete configuring and
761 	 * enabling the queue.
762 	 */
763 	txq = &qg_buf->txqs[0];
764 	if (pf_q == le16_to_cpu(txq->txq_id))
765 		ring->txq_teid = le32_to_cpu(txq->q_teid);
766 
767 	return 0;
768 }
769 
770 /**
771  * ice_cfg_itr - configure the initial interrupt throttle values
772  * @hw: pointer to the HW structure
773  * @q_vector: interrupt vector that's being configured
774  *
775  * Configure interrupt throttling values for the ring containers that are
776  * associated with the interrupt vector passed in.
777  */
778 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
779 {
780 	ice_cfg_itr_gran(hw);
781 
782 	if (q_vector->num_ring_rx)
783 		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
784 
785 	if (q_vector->num_ring_tx)
786 		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
787 
788 	ice_write_intrl(q_vector, q_vector->intrl);
789 }
790 
791 /**
792  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
793  * @vsi: the VSI being configured
794  * @txq: Tx queue being mapped to MSI-X vector
795  * @msix_idx: MSI-X vector index within the function
796  * @itr_idx: ITR index of the interrupt cause
797  *
798  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
799  * within the function space.
800  */
801 void
802 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
803 {
804 	struct ice_pf *pf = vsi->back;
805 	struct ice_hw *hw = &pf->hw;
806 	u32 val;
807 
808 	itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
809 
810 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
811 	      ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
812 
813 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
814 	if (ice_is_xdp_ena_vsi(vsi)) {
815 		u32 xdp_txq = txq + vsi->num_xdp_txq;
816 
817 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
818 		     val);
819 	}
820 	ice_flush(hw);
821 }
822 
823 /**
824  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
825  * @vsi: the VSI being configured
826  * @rxq: Rx queue being mapped to MSI-X vector
827  * @msix_idx: MSI-X vector index within the function
828  * @itr_idx: ITR index of the interrupt cause
829  *
830  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
831  * within the function space.
832  */
833 void
834 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
835 {
836 	struct ice_pf *pf = vsi->back;
837 	struct ice_hw *hw = &pf->hw;
838 	u32 val;
839 
840 	itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
841 
842 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
843 	      ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
844 
845 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
846 
847 	ice_flush(hw);
848 }
849 
850 /**
851  * ice_trigger_sw_intr - trigger a software interrupt
852  * @hw: pointer to the HW structure
853  * @q_vector: interrupt vector to trigger the software interrupt for
854  */
855 void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
856 {
857 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
858 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
859 	     GLINT_DYN_CTL_SWINT_TRIG_M |
860 	     GLINT_DYN_CTL_INTENA_M);
861 }
862 
863 /**
864  * ice_vsi_stop_tx_ring - Disable single Tx ring
865  * @vsi: the VSI being configured
866  * @rst_src: reset source
867  * @rel_vmvf_num: Relative ID of VF/VM
868  * @ring: Tx ring to be stopped
869  * @txq_meta: Meta data of Tx ring to be stopped
870  */
871 int
872 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
873 		     u16 rel_vmvf_num, struct ice_ring *ring,
874 		     struct ice_txq_meta *txq_meta)
875 {
876 	struct ice_pf *pf = vsi->back;
877 	struct ice_q_vector *q_vector;
878 	struct ice_hw *hw = &pf->hw;
879 	enum ice_status status;
880 	u32 val;
881 
882 	/* clear cause_ena bit for disabled queues */
883 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
884 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
885 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
886 
887 	/* software is expected to wait for 100 ns */
888 	ndelay(100);
889 
890 	/* trigger a software interrupt for the vector
891 	 * associated to the queue to schedule NAPI handler
892 	 */
893 	q_vector = ring->q_vector;
894 	if (q_vector)
895 		ice_trigger_sw_intr(hw, q_vector);
896 
897 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
898 				 txq_meta->tc, 1, &txq_meta->q_handle,
899 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
900 				 rel_vmvf_num, NULL);
901 
902 	/* if the disable queue command was exercised during an
903 	 * active reset flow, ICE_ERR_RESET_ONGOING is returned.
904 	 * This is not an error as the reset operation disables
905 	 * queues at the hardware level anyway.
906 	 */
907 	if (status == ICE_ERR_RESET_ONGOING) {
908 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
909 	} else if (status == ICE_ERR_DOES_NOT_EXIST) {
910 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
911 	} else if (status) {
912 		dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n",
913 			ice_stat_str(status));
914 		return -ENODEV;
915 	}
916 
917 	return 0;
918 }
919 
920 /**
921  * ice_fill_txq_meta - Prepare the Tx queue's meta data
922  * @vsi: VSI that ring belongs to
923  * @ring: ring that txq_meta will be based on
924  * @txq_meta: a helper struct that wraps Tx queue's information
925  *
926  * Set up a helper struct that will contain all the necessary fields that
927  * are needed for stopping Tx queue
928  */
929 void
930 ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
931 		  struct ice_txq_meta *txq_meta)
932 {
933 	u8 tc;
934 
935 	if (IS_ENABLED(CONFIG_DCB))
936 		tc = ring->dcb_tc;
937 	else
938 		tc = 0;
939 
940 	txq_meta->q_id = ring->reg_idx;
941 	txq_meta->q_teid = ring->txq_teid;
942 	txq_meta->q_handle = ring->q_handle;
943 	txq_meta->vsi_idx = vsi->idx;
944 	txq_meta->tc = tc;
945 }
946