xref: /openbmc/linux/drivers/net/ethernet/intel/i40e/i40e_txrx.c (revision 7f3650a0b6615f230d798f11c18ff032172a4045)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/mpls.h>
7 #include <net/xdp.h>
8 #include "i40e.h"
9 #include "i40e_trace.h"
10 #include "i40e_prototype.h"
11 #include "i40e_txrx_common.h"
12 #include "i40e_xsk.h"
13 
14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15 /**
16  * i40e_fdir - Generate a Flow Director descriptor based on fdata
17  * @tx_ring: Tx ring to send buffer on
18  * @fdata: Flow director filter data
19  * @add: Indicate if we are adding a rule or deleting one
20  *
21  **/
22 static void i40e_fdir(struct i40e_ring *tx_ring,
23 		      struct i40e_fdir_filter *fdata, bool add)
24 {
25 	struct i40e_filter_program_desc *fdir_desc;
26 	struct i40e_pf *pf = tx_ring->vsi->back;
27 	u32 flex_ptype, dtype_cmd;
28 	u16 i;
29 
30 	/* grab the next descriptor */
31 	i = tx_ring->next_to_use;
32 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33 
34 	i++;
35 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36 
37 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
38 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
39 
40 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
41 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
42 
43 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
44 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
45 
46 	/* Use LAN VSI Id if not programmed by user */
47 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
48 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
49 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
50 
51 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
52 
53 	dtype_cmd |= add ?
54 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
55 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
56 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
57 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
58 
59 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
60 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
61 
62 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
63 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
64 
65 	if (fdata->cnt_index) {
66 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
67 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
68 			     ((u32)fdata->cnt_index <<
69 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
70 	}
71 
72 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
73 	fdir_desc->rsvd = cpu_to_le32(0);
74 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
75 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
76 }
77 
78 #define I40E_FD_CLEAN_DELAY 10
79 /**
80  * i40e_program_fdir_filter - Program a Flow Director filter
81  * @fdir_data: Packet data that will be filter parameters
82  * @raw_packet: the pre-allocated packet buffer for FDir
83  * @pf: The PF pointer
84  * @add: True for add/update, False for remove
85  **/
86 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
87 				    u8 *raw_packet, struct i40e_pf *pf,
88 				    bool add)
89 {
90 	struct i40e_tx_buffer *tx_buf, *first;
91 	struct i40e_tx_desc *tx_desc;
92 	struct i40e_ring *tx_ring;
93 	struct i40e_vsi *vsi;
94 	struct device *dev;
95 	dma_addr_t dma;
96 	u32 td_cmd = 0;
97 	u16 i;
98 
99 	/* find existing FDIR VSI */
100 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
101 	if (!vsi)
102 		return -ENOENT;
103 
104 	tx_ring = vsi->tx_rings[0];
105 	dev = tx_ring->dev;
106 
107 	/* we need two descriptors to add/del a filter and we can wait */
108 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
109 		if (!i)
110 			return -EAGAIN;
111 		msleep_interruptible(1);
112 	}
113 
114 	dma = dma_map_single(dev, raw_packet,
115 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
116 	if (dma_mapping_error(dev, dma))
117 		goto dma_fail;
118 
119 	/* grab the next descriptor */
120 	i = tx_ring->next_to_use;
121 	first = &tx_ring->tx_bi[i];
122 	i40e_fdir(tx_ring, fdir_data, add);
123 
124 	/* Now program a dummy descriptor */
125 	i = tx_ring->next_to_use;
126 	tx_desc = I40E_TX_DESC(tx_ring, i);
127 	tx_buf = &tx_ring->tx_bi[i];
128 
129 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
130 
131 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
132 
133 	/* record length, and DMA address */
134 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
135 	dma_unmap_addr_set(tx_buf, dma, dma);
136 
137 	tx_desc->buffer_addr = cpu_to_le64(dma);
138 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
139 
140 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
141 	tx_buf->raw_buf = (void *)raw_packet;
142 
143 	tx_desc->cmd_type_offset_bsz =
144 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
145 
146 	/* Force memory writes to complete before letting h/w
147 	 * know there are new descriptors to fetch.
148 	 */
149 	wmb();
150 
151 	/* Mark the data descriptor to be watched */
152 	first->next_to_watch = tx_desc;
153 
154 	writel(tx_ring->next_to_use, tx_ring->tail);
155 	return 0;
156 
157 dma_fail:
158 	return -1;
159 }
160 
161 /**
162  * i40e_create_dummy_packet - Constructs dummy packet for HW
163  * @dummy_packet: preallocated space for dummy packet
164  * @ipv4: is layer 3 packet of version 4 or 6
165  * @l4proto: next level protocol used in data portion of l3
166  * @data: filter data
167  *
168  * Returns address of layer 4 protocol dummy packet.
169  **/
170 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
171 				      struct i40e_fdir_filter *data)
172 {
173 	bool is_vlan = !!data->vlan_tag;
174 	struct vlan_hdr vlan = {};
175 	struct ipv6hdr ipv6 = {};
176 	struct ethhdr eth = {};
177 	struct iphdr ip = {};
178 	u8 *tmp;
179 
180 	if (ipv4) {
181 		eth.h_proto = cpu_to_be16(ETH_P_IP);
182 		ip.protocol = l4proto;
183 		ip.version = 0x4;
184 		ip.ihl = 0x5;
185 
186 		ip.daddr = data->dst_ip;
187 		ip.saddr = data->src_ip;
188 	} else {
189 		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
190 		ipv6.nexthdr = l4proto;
191 		ipv6.version = 0x6;
192 
193 		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
194 		       sizeof(__be32) * 4);
195 		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
196 		       sizeof(__be32) * 4);
197 	}
198 
199 	if (is_vlan) {
200 		vlan.h_vlan_TCI = data->vlan_tag;
201 		vlan.h_vlan_encapsulated_proto = eth.h_proto;
202 		eth.h_proto = data->vlan_etype;
203 	}
204 
205 	tmp = dummy_packet;
206 	memcpy(tmp, &eth, sizeof(eth));
207 	tmp += sizeof(eth);
208 
209 	if (is_vlan) {
210 		memcpy(tmp, &vlan, sizeof(vlan));
211 		tmp += sizeof(vlan);
212 	}
213 
214 	if (ipv4) {
215 		memcpy(tmp, &ip, sizeof(ip));
216 		tmp += sizeof(ip);
217 	} else {
218 		memcpy(tmp, &ipv6, sizeof(ipv6));
219 		tmp += sizeof(ipv6);
220 	}
221 
222 	return tmp;
223 }
224 
225 /**
226  * i40e_create_dummy_udp_packet - helper function to create UDP packet
227  * @raw_packet: preallocated space for dummy packet
228  * @ipv4: is layer 3 packet of version 4 or 6
229  * @l4proto: next level protocol used in data portion of l3
230  * @data: filter data
231  *
232  * Helper function to populate udp fields.
233  **/
234 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
235 					 struct i40e_fdir_filter *data)
236 {
237 	struct udphdr *udp;
238 	u8 *tmp;
239 
240 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
241 	udp = (struct udphdr *)(tmp);
242 	udp->dest = data->dst_port;
243 	udp->source = data->src_port;
244 }
245 
246 /**
247  * i40e_create_dummy_tcp_packet - helper function to create TCP packet
248  * @raw_packet: preallocated space for dummy packet
249  * @ipv4: is layer 3 packet of version 4 or 6
250  * @l4proto: next level protocol used in data portion of l3
251  * @data: filter data
252  *
253  * Helper function to populate tcp fields.
254  **/
255 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
256 					 struct i40e_fdir_filter *data)
257 {
258 	struct tcphdr *tcp;
259 	u8 *tmp;
260 	/* Dummy tcp packet */
261 	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
262 		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
263 
264 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
265 
266 	tcp = (struct tcphdr *)tmp;
267 	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
268 	tcp->dest = data->dst_port;
269 	tcp->source = data->src_port;
270 }
271 
272 /**
273  * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
274  * @raw_packet: preallocated space for dummy packet
275  * @ipv4: is layer 3 packet of version 4 or 6
276  * @l4proto: next level protocol used in data portion of l3
277  * @data: filter data
278  *
279  * Helper function to populate sctp fields.
280  **/
281 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
282 					  u8 l4proto,
283 					  struct i40e_fdir_filter *data)
284 {
285 	struct sctphdr *sctp;
286 	u8 *tmp;
287 
288 	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
289 
290 	sctp = (struct sctphdr *)tmp;
291 	sctp->dest = data->dst_port;
292 	sctp->source = data->src_port;
293 }
294 
295 /**
296  * i40e_prepare_fdir_filter - Prepare and program fdir filter
297  * @pf: physical function to attach filter to
298  * @fd_data: filter data
299  * @add: add or delete filter
300  * @packet_addr: address of dummy packet, used in filtering
301  * @payload_offset: offset from dummy packet address to user defined data
302  * @pctype: Packet type for which filter is used
303  *
304  * Helper function to offset data of dummy packet, program it and
305  * handle errors.
306  **/
307 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
308 				    struct i40e_fdir_filter *fd_data,
309 				    bool add, char *packet_addr,
310 				    int payload_offset, u8 pctype)
311 {
312 	int ret;
313 
314 	if (fd_data->flex_filter) {
315 		u8 *payload;
316 		__be16 pattern = fd_data->flex_word;
317 		u16 off = fd_data->flex_offset;
318 
319 		payload = packet_addr + payload_offset;
320 
321 		/* If user provided vlan, offset payload by vlan header length */
322 		if (!!fd_data->vlan_tag)
323 			payload += VLAN_HLEN;
324 
325 		*((__force __be16 *)(payload + off)) = pattern;
326 	}
327 
328 	fd_data->pctype = pctype;
329 	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
330 	if (ret) {
331 		dev_info(&pf->pdev->dev,
332 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
333 			 fd_data->pctype, fd_data->fd_id, ret);
334 		/* Free the packet buffer since it wasn't added to the ring */
335 		return -EOPNOTSUPP;
336 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
337 		if (add)
338 			dev_info(&pf->pdev->dev,
339 				 "Filter OK for PCTYPE %d loc = %d\n",
340 				 fd_data->pctype, fd_data->fd_id);
341 		else
342 			dev_info(&pf->pdev->dev,
343 				 "Filter deleted for PCTYPE %d loc = %d\n",
344 				 fd_data->pctype, fd_data->fd_id);
345 	}
346 
347 	return ret;
348 }
349 
350 /**
351  * i40e_change_filter_num - Prepare and program fdir filter
352  * @ipv4: is layer 3 packet of version 4 or 6
353  * @add: add or delete filter
354  * @ipv4_filter_num: field to update
355  * @ipv6_filter_num: field to update
356  *
357  * Update filter number field for pf.
358  **/
359 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
360 				   u16 *ipv6_filter_num)
361 {
362 	if (add) {
363 		if (ipv4)
364 			(*ipv4_filter_num)++;
365 		else
366 			(*ipv6_filter_num)++;
367 	} else {
368 		if (ipv4)
369 			(*ipv4_filter_num)--;
370 		else
371 			(*ipv6_filter_num)--;
372 	}
373 }
374 
375 #define I40E_UDPIP_DUMMY_PACKET_LEN	42
376 #define I40E_UDPIP6_DUMMY_PACKET_LEN	62
377 /**
378  * i40e_add_del_fdir_udp - Add/Remove UDP filters
379  * @vsi: pointer to the targeted VSI
380  * @fd_data: the flow director data required for the FDir descriptor
381  * @add: true adds a filter, false removes it
382  * @ipv4: true is v4, false is v6
383  *
384  * Returns 0 if the filters were successfully added or removed
385  **/
386 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
387 				 struct i40e_fdir_filter *fd_data,
388 				 bool add,
389 				 bool ipv4)
390 {
391 	struct i40e_pf *pf = vsi->back;
392 	u8 *raw_packet;
393 	int ret;
394 
395 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
396 	if (!raw_packet)
397 		return -ENOMEM;
398 
399 	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
400 
401 	if (ipv4)
402 		ret = i40e_prepare_fdir_filter
403 			(pf, fd_data, add, raw_packet,
404 			 I40E_UDPIP_DUMMY_PACKET_LEN,
405 			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
406 	else
407 		ret = i40e_prepare_fdir_filter
408 			(pf, fd_data, add, raw_packet,
409 			 I40E_UDPIP6_DUMMY_PACKET_LEN,
410 			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
411 
412 	if (ret) {
413 		kfree(raw_packet);
414 		return ret;
415 	}
416 
417 	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
418 			       &pf->fd_udp6_filter_cnt);
419 
420 	return 0;
421 }
422 
423 #define I40E_TCPIP_DUMMY_PACKET_LEN	54
424 #define I40E_TCPIP6_DUMMY_PACKET_LEN	74
425 /**
426  * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
427  * @vsi: pointer to the targeted VSI
428  * @fd_data: the flow director data required for the FDir descriptor
429  * @add: true adds a filter, false removes it
430  * @ipv4: true is v4, false is v6
431  *
432  * Returns 0 if the filters were successfully added or removed
433  **/
434 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
435 				 struct i40e_fdir_filter *fd_data,
436 				 bool add,
437 				 bool ipv4)
438 {
439 	struct i40e_pf *pf = vsi->back;
440 	u8 *raw_packet;
441 	int ret;
442 
443 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
444 	if (!raw_packet)
445 		return -ENOMEM;
446 
447 	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
448 	if (ipv4)
449 		ret = i40e_prepare_fdir_filter
450 			(pf, fd_data, add, raw_packet,
451 			 I40E_TCPIP_DUMMY_PACKET_LEN,
452 			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
453 	else
454 		ret = i40e_prepare_fdir_filter
455 			(pf, fd_data, add, raw_packet,
456 			 I40E_TCPIP6_DUMMY_PACKET_LEN,
457 			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
458 
459 	if (ret) {
460 		kfree(raw_packet);
461 		return ret;
462 	}
463 
464 	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
465 			       &pf->fd_tcp6_filter_cnt);
466 
467 	if (add) {
468 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
469 		    I40E_DEBUG_FD & pf->hw.debug_mask)
470 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
471 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
472 	}
473 	return 0;
474 }
475 
476 #define I40E_SCTPIP_DUMMY_PACKET_LEN	46
477 #define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
478 /**
479  * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
480  * a specific flow spec
481  * @vsi: pointer to the targeted VSI
482  * @fd_data: the flow director data required for the FDir descriptor
483  * @add: true adds a filter, false removes it
484  * @ipv4: true is v4, false is v6
485  *
486  * Returns 0 if the filters were successfully added or removed
487  **/
488 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
489 				  struct i40e_fdir_filter *fd_data,
490 				  bool add,
491 				  bool ipv4)
492 {
493 	struct i40e_pf *pf = vsi->back;
494 	u8 *raw_packet;
495 	int ret;
496 
497 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
498 	if (!raw_packet)
499 		return -ENOMEM;
500 
501 	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
502 
503 	if (ipv4)
504 		ret = i40e_prepare_fdir_filter
505 			(pf, fd_data, add, raw_packet,
506 			 I40E_SCTPIP_DUMMY_PACKET_LEN,
507 			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
508 	else
509 		ret = i40e_prepare_fdir_filter
510 			(pf, fd_data, add, raw_packet,
511 			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
512 			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
513 
514 	if (ret) {
515 		kfree(raw_packet);
516 		return ret;
517 	}
518 
519 	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
520 			       &pf->fd_sctp6_filter_cnt);
521 
522 	return 0;
523 }
524 
525 #define I40E_IP_DUMMY_PACKET_LEN	34
526 #define I40E_IP6_DUMMY_PACKET_LEN	54
527 /**
528  * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
529  * a specific flow spec
530  * @vsi: pointer to the targeted VSI
531  * @fd_data: the flow director data required for the FDir descriptor
532  * @add: true adds a filter, false removes it
533  * @ipv4: true is v4, false is v6
534  *
535  * Returns 0 if the filters were successfully added or removed
536  **/
537 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
538 				struct i40e_fdir_filter *fd_data,
539 				bool add,
540 				bool ipv4)
541 {
542 	struct i40e_pf *pf = vsi->back;
543 	int payload_offset;
544 	u8 *raw_packet;
545 	int iter_start;
546 	int iter_end;
547 	int ret;
548 	int i;
549 
550 	if (ipv4) {
551 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
552 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
553 	} else {
554 		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
555 		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
556 	}
557 
558 	for (i = iter_start; i <= iter_end; i++) {
559 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
560 		if (!raw_packet)
561 			return -ENOMEM;
562 
563 		/* IPv6 no header option differs from IPv4 */
564 		(void)i40e_create_dummy_packet
565 			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
566 			 fd_data);
567 
568 		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
569 			I40E_IP6_DUMMY_PACKET_LEN;
570 		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
571 					       payload_offset, i);
572 		if (ret)
573 			goto err;
574 	}
575 
576 	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
577 			       &pf->fd_ip6_filter_cnt);
578 
579 	return 0;
580 err:
581 	kfree(raw_packet);
582 	return ret;
583 }
584 
585 /**
586  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
587  * @vsi: pointer to the targeted VSI
588  * @input: filter to add or delete
589  * @add: true adds a filter, false removes it
590  *
591  **/
592 int i40e_add_del_fdir(struct i40e_vsi *vsi,
593 		      struct i40e_fdir_filter *input, bool add)
594 {
595 	enum ip_ver { ipv6 = 0, ipv4 = 1 };
596 	struct i40e_pf *pf = vsi->back;
597 	int ret;
598 
599 	switch (input->flow_type & ~FLOW_EXT) {
600 	case TCP_V4_FLOW:
601 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
602 		break;
603 	case UDP_V4_FLOW:
604 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
605 		break;
606 	case SCTP_V4_FLOW:
607 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
608 		break;
609 	case TCP_V6_FLOW:
610 		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
611 		break;
612 	case UDP_V6_FLOW:
613 		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
614 		break;
615 	case SCTP_V6_FLOW:
616 		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
617 		break;
618 	case IP_USER_FLOW:
619 		switch (input->ipl4_proto) {
620 		case IPPROTO_TCP:
621 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
622 			break;
623 		case IPPROTO_UDP:
624 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
625 			break;
626 		case IPPROTO_SCTP:
627 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
628 			break;
629 		case IPPROTO_IP:
630 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
631 			break;
632 		default:
633 			/* We cannot support masking based on protocol */
634 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
635 				 input->ipl4_proto);
636 			return -EINVAL;
637 		}
638 		break;
639 	case IPV6_USER_FLOW:
640 		switch (input->ipl4_proto) {
641 		case IPPROTO_TCP:
642 			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
643 			break;
644 		case IPPROTO_UDP:
645 			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
646 			break;
647 		case IPPROTO_SCTP:
648 			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
649 			break;
650 		case IPPROTO_IP:
651 			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
652 			break;
653 		default:
654 			/* We cannot support masking based on protocol */
655 			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
656 				 input->ipl4_proto);
657 			return -EINVAL;
658 		}
659 		break;
660 	default:
661 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
662 			 input->flow_type);
663 		return -EINVAL;
664 	}
665 
666 	/* The buffer allocated here will be normally be freed by
667 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
668 	 * completion. In the event of an error adding the buffer to the FDIR
669 	 * ring, it will immediately be freed. It may also be freed by
670 	 * i40e_clean_tx_ring() when closing the VSI.
671 	 */
672 	return ret;
673 }
674 
675 /**
676  * i40e_fd_handle_status - check the Programming Status for FD
677  * @rx_ring: the Rx ring for this descriptor
678  * @qword0_raw: qword0
679  * @qword1: qword1 after le_to_cpu
680  * @prog_id: the id originally used for programming
681  *
682  * This is used to verify if the FD programming or invalidation
683  * requested by SW to the HW is successful or not and take actions accordingly.
684  **/
685 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
686 				  u64 qword1, u8 prog_id)
687 {
688 	struct i40e_pf *pf = rx_ring->vsi->back;
689 	struct pci_dev *pdev = pf->pdev;
690 	struct i40e_16b_rx_wb_qw0 *qw0;
691 	u32 fcnt_prog, fcnt_avail;
692 	u32 error;
693 
694 	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
695 	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
696 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
697 
698 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
699 		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
700 		if (qw0->hi_dword.fd_id != 0 ||
701 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
702 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
703 				 pf->fd_inv);
704 
705 		/* Check if the programming error is for ATR.
706 		 * If so, auto disable ATR and set a state for
707 		 * flush in progress. Next time we come here if flush is in
708 		 * progress do nothing, once flush is complete the state will
709 		 * be cleared.
710 		 */
711 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
712 			return;
713 
714 		pf->fd_add_err++;
715 		/* store the current atr filter count */
716 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
717 
718 		if (qw0->hi_dword.fd_id == 0 &&
719 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
720 			/* These set_bit() calls aren't atomic with the
721 			 * test_bit() here, but worse case we potentially
722 			 * disable ATR and queue a flush right after SB
723 			 * support is re-enabled. That shouldn't cause an
724 			 * issue in practice
725 			 */
726 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
727 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
728 		}
729 
730 		/* filter programming failed most likely due to table full */
731 		fcnt_prog = i40e_get_global_fd_count(pf);
732 		fcnt_avail = pf->fdir_pf_filter_count;
733 		/* If ATR is running fcnt_prog can quickly change,
734 		 * if we are very close to full, it makes sense to disable
735 		 * FD ATR/SB and then re-enable it when there is room.
736 		 */
737 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
738 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
739 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
740 					      pf->state))
741 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
742 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
743 		}
744 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
745 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
746 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
747 				 qw0->hi_dword.fd_id);
748 	}
749 }
750 
751 /**
752  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
753  * @ring:      the ring that owns the buffer
754  * @tx_buffer: the buffer to free
755  **/
756 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
757 					    struct i40e_tx_buffer *tx_buffer)
758 {
759 	if (tx_buffer->skb) {
760 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
761 			kfree(tx_buffer->raw_buf);
762 		else if (ring_is_xdp(ring))
763 			xdp_return_frame(tx_buffer->xdpf);
764 		else
765 			dev_kfree_skb_any(tx_buffer->skb);
766 		if (dma_unmap_len(tx_buffer, len))
767 			dma_unmap_single(ring->dev,
768 					 dma_unmap_addr(tx_buffer, dma),
769 					 dma_unmap_len(tx_buffer, len),
770 					 DMA_TO_DEVICE);
771 	} else if (dma_unmap_len(tx_buffer, len)) {
772 		dma_unmap_page(ring->dev,
773 			       dma_unmap_addr(tx_buffer, dma),
774 			       dma_unmap_len(tx_buffer, len),
775 			       DMA_TO_DEVICE);
776 	}
777 
778 	tx_buffer->next_to_watch = NULL;
779 	tx_buffer->skb = NULL;
780 	dma_unmap_len_set(tx_buffer, len, 0);
781 	/* tx_buffer must be completely set up in the transmit path */
782 }
783 
784 /**
785  * i40e_clean_tx_ring - Free any empty Tx buffers
786  * @tx_ring: ring to be cleaned
787  **/
788 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
789 {
790 	unsigned long bi_size;
791 	u16 i;
792 
793 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
794 		i40e_xsk_clean_tx_ring(tx_ring);
795 	} else {
796 		/* ring already cleared, nothing to do */
797 		if (!tx_ring->tx_bi)
798 			return;
799 
800 		/* Free all the Tx ring sk_buffs */
801 		for (i = 0; i < tx_ring->count; i++)
802 			i40e_unmap_and_free_tx_resource(tx_ring,
803 							&tx_ring->tx_bi[i]);
804 	}
805 
806 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
807 	memset(tx_ring->tx_bi, 0, bi_size);
808 
809 	/* Zero out the descriptor ring */
810 	memset(tx_ring->desc, 0, tx_ring->size);
811 
812 	tx_ring->next_to_use = 0;
813 	tx_ring->next_to_clean = 0;
814 
815 	if (!tx_ring->netdev)
816 		return;
817 
818 	/* cleanup Tx queue statistics */
819 	netdev_tx_reset_queue(txring_txq(tx_ring));
820 }
821 
822 /**
823  * i40e_free_tx_resources - Free Tx resources per queue
824  * @tx_ring: Tx descriptor ring for a specific queue
825  *
826  * Free all transmit software resources
827  **/
828 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
829 {
830 	i40e_clean_tx_ring(tx_ring);
831 	kfree(tx_ring->tx_bi);
832 	tx_ring->tx_bi = NULL;
833 
834 	if (tx_ring->desc) {
835 		dma_free_coherent(tx_ring->dev, tx_ring->size,
836 				  tx_ring->desc, tx_ring->dma);
837 		tx_ring->desc = NULL;
838 	}
839 }
840 
841 /**
842  * i40e_get_tx_pending - how many tx descriptors not processed
843  * @ring: the ring of descriptors
844  * @in_sw: use SW variables
845  *
846  * Since there is no access to the ring head register
847  * in XL710, we need to use our local copies
848  **/
849 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
850 {
851 	u32 head, tail;
852 
853 	if (!in_sw) {
854 		head = i40e_get_head(ring);
855 		tail = readl(ring->tail);
856 	} else {
857 		head = ring->next_to_clean;
858 		tail = ring->next_to_use;
859 	}
860 
861 	if (head != tail)
862 		return (head < tail) ?
863 			tail - head : (tail + ring->count - head);
864 
865 	return 0;
866 }
867 
868 /**
869  * i40e_detect_recover_hung - Function to detect and recover hung_queues
870  * @vsi:  pointer to vsi struct with tx queues
871  *
872  * VSI has netdev and netdev has TX queues. This function is to check each of
873  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
874  **/
875 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
876 {
877 	struct i40e_ring *tx_ring = NULL;
878 	struct net_device *netdev;
879 	unsigned int i;
880 	int packets;
881 
882 	if (!vsi)
883 		return;
884 
885 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
886 		return;
887 
888 	netdev = vsi->netdev;
889 	if (!netdev)
890 		return;
891 
892 	if (!netif_carrier_ok(netdev))
893 		return;
894 
895 	for (i = 0; i < vsi->num_queue_pairs; i++) {
896 		tx_ring = vsi->tx_rings[i];
897 		if (tx_ring && tx_ring->desc) {
898 			/* If packet counter has not changed the queue is
899 			 * likely stalled, so force an interrupt for this
900 			 * queue.
901 			 *
902 			 * prev_pkt_ctr would be negative if there was no
903 			 * pending work.
904 			 */
905 			packets = tx_ring->stats.packets & INT_MAX;
906 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
907 				i40e_force_wb(vsi, tx_ring->q_vector);
908 				continue;
909 			}
910 
911 			/* Memory barrier between read of packet count and call
912 			 * to i40e_get_tx_pending()
913 			 */
914 			smp_rmb();
915 			tx_ring->tx_stats.prev_pkt_ctr =
916 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
917 		}
918 	}
919 }
920 
921 /**
922  * i40e_clean_tx_irq - Reclaim resources after transmit completes
923  * @vsi: the VSI we care about
924  * @tx_ring: Tx ring to clean
925  * @napi_budget: Used to determine if we are in netpoll
926  * @tx_cleaned: Out parameter set to the number of TXes cleaned
927  *
928  * Returns true if there's any budget left (e.g. the clean is finished)
929  **/
930 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
931 			      struct i40e_ring *tx_ring, int napi_budget,
932 			      unsigned int *tx_cleaned)
933 {
934 	int i = tx_ring->next_to_clean;
935 	struct i40e_tx_buffer *tx_buf;
936 	struct i40e_tx_desc *tx_head;
937 	struct i40e_tx_desc *tx_desc;
938 	unsigned int total_bytes = 0, total_packets = 0;
939 	unsigned int budget = vsi->work_limit;
940 
941 	tx_buf = &tx_ring->tx_bi[i];
942 	tx_desc = I40E_TX_DESC(tx_ring, i);
943 	i -= tx_ring->count;
944 
945 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
946 
947 	do {
948 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
949 
950 		/* if next_to_watch is not set then there is no work pending */
951 		if (!eop_desc)
952 			break;
953 
954 		/* prevent any other reads prior to eop_desc */
955 		smp_rmb();
956 
957 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
958 		/* we have caught up to head, no work left to do */
959 		if (tx_head == tx_desc)
960 			break;
961 
962 		/* clear next_to_watch to prevent false hangs */
963 		tx_buf->next_to_watch = NULL;
964 
965 		/* update the statistics for this packet */
966 		total_bytes += tx_buf->bytecount;
967 		total_packets += tx_buf->gso_segs;
968 
969 		/* free the skb/XDP data */
970 		if (ring_is_xdp(tx_ring))
971 			xdp_return_frame(tx_buf->xdpf);
972 		else
973 			napi_consume_skb(tx_buf->skb, napi_budget);
974 
975 		/* unmap skb header data */
976 		dma_unmap_single(tx_ring->dev,
977 				 dma_unmap_addr(tx_buf, dma),
978 				 dma_unmap_len(tx_buf, len),
979 				 DMA_TO_DEVICE);
980 
981 		/* clear tx_buffer data */
982 		tx_buf->skb = NULL;
983 		dma_unmap_len_set(tx_buf, len, 0);
984 
985 		/* unmap remaining buffers */
986 		while (tx_desc != eop_desc) {
987 			i40e_trace(clean_tx_irq_unmap,
988 				   tx_ring, tx_desc, tx_buf);
989 
990 			tx_buf++;
991 			tx_desc++;
992 			i++;
993 			if (unlikely(!i)) {
994 				i -= tx_ring->count;
995 				tx_buf = tx_ring->tx_bi;
996 				tx_desc = I40E_TX_DESC(tx_ring, 0);
997 			}
998 
999 			/* unmap any remaining paged data */
1000 			if (dma_unmap_len(tx_buf, len)) {
1001 				dma_unmap_page(tx_ring->dev,
1002 					       dma_unmap_addr(tx_buf, dma),
1003 					       dma_unmap_len(tx_buf, len),
1004 					       DMA_TO_DEVICE);
1005 				dma_unmap_len_set(tx_buf, len, 0);
1006 			}
1007 		}
1008 
1009 		/* move us one more past the eop_desc for start of next pkt */
1010 		tx_buf++;
1011 		tx_desc++;
1012 		i++;
1013 		if (unlikely(!i)) {
1014 			i -= tx_ring->count;
1015 			tx_buf = tx_ring->tx_bi;
1016 			tx_desc = I40E_TX_DESC(tx_ring, 0);
1017 		}
1018 
1019 		prefetch(tx_desc);
1020 
1021 		/* update budget accounting */
1022 		budget--;
1023 	} while (likely(budget));
1024 
1025 	i += tx_ring->count;
1026 	tx_ring->next_to_clean = i;
1027 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1028 	i40e_arm_wb(tx_ring, vsi, budget);
1029 
1030 	if (ring_is_xdp(tx_ring))
1031 		return !!budget;
1032 
1033 	/* notify netdev of completed buffers */
1034 	netdev_tx_completed_queue(txring_txq(tx_ring),
1035 				  total_packets, total_bytes);
1036 
1037 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1038 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1039 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1040 		/* Make sure that anybody stopping the queue after this
1041 		 * sees the new next_to_clean.
1042 		 */
1043 		smp_mb();
1044 		if (__netif_subqueue_stopped(tx_ring->netdev,
1045 					     tx_ring->queue_index) &&
1046 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1047 			netif_wake_subqueue(tx_ring->netdev,
1048 					    tx_ring->queue_index);
1049 			++tx_ring->tx_stats.restart_queue;
1050 		}
1051 	}
1052 
1053 	*tx_cleaned = total_packets;
1054 	return !!budget;
1055 }
1056 
1057 /**
1058  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1059  * @vsi: the VSI we care about
1060  * @q_vector: the vector on which to enable writeback
1061  *
1062  **/
1063 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1064 				  struct i40e_q_vector *q_vector)
1065 {
1066 	u16 flags = q_vector->tx.ring[0].flags;
1067 	u32 val;
1068 
1069 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1070 		return;
1071 
1072 	if (q_vector->arm_wb_state)
1073 		return;
1074 
1075 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1076 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1077 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1078 
1079 		wr32(&vsi->back->hw,
1080 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1081 		     val);
1082 	} else {
1083 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1084 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1085 
1086 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1087 	}
1088 	q_vector->arm_wb_state = true;
1089 }
1090 
1091 /**
1092  * i40e_force_wb - Issue SW Interrupt so HW does a wb
1093  * @vsi: the VSI we care about
1094  * @q_vector: the vector  on which to force writeback
1095  *
1096  **/
1097 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1098 {
1099 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1100 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1101 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1102 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1103 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1104 			  /* allow 00 to be written to the index */
1105 
1106 		wr32(&vsi->back->hw,
1107 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1108 	} else {
1109 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1110 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1111 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1112 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1113 			/* allow 00 to be written to the index */
1114 
1115 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1116 	}
1117 }
1118 
1119 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1120 					struct i40e_ring_container *rc)
1121 {
1122 	return &q_vector->rx == rc;
1123 }
1124 
1125 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1126 {
1127 	unsigned int divisor;
1128 
1129 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1130 	case I40E_LINK_SPEED_40GB:
1131 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1132 		break;
1133 	case I40E_LINK_SPEED_25GB:
1134 	case I40E_LINK_SPEED_20GB:
1135 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1136 		break;
1137 	default:
1138 	case I40E_LINK_SPEED_10GB:
1139 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1140 		break;
1141 	case I40E_LINK_SPEED_1GB:
1142 	case I40E_LINK_SPEED_100MB:
1143 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1144 		break;
1145 	}
1146 
1147 	return divisor;
1148 }
1149 
1150 /**
1151  * i40e_update_itr - update the dynamic ITR value based on statistics
1152  * @q_vector: structure containing interrupt and ring information
1153  * @rc: structure containing ring performance data
1154  *
1155  * Stores a new ITR value based on packets and byte
1156  * counts during the last interrupt.  The advantage of per interrupt
1157  * computation is faster updates and more accurate ITR for the current
1158  * traffic pattern.  Constants in this function were computed
1159  * based on theoretical maximum wire speed and thresholds were set based
1160  * on testing data as well as attempting to minimize response time
1161  * while increasing bulk throughput.
1162  **/
1163 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1164 			    struct i40e_ring_container *rc)
1165 {
1166 	unsigned int avg_wire_size, packets, bytes, itr;
1167 	unsigned long next_update = jiffies;
1168 
1169 	/* If we don't have any rings just leave ourselves set for maximum
1170 	 * possible latency so we take ourselves out of the equation.
1171 	 */
1172 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1173 		return;
1174 
1175 	/* For Rx we want to push the delay up and default to low latency.
1176 	 * for Tx we want to pull the delay down and default to high latency.
1177 	 */
1178 	itr = i40e_container_is_rx(q_vector, rc) ?
1179 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1180 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1181 
1182 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1183 	 * that either packets are coming in so slow there hasn't been
1184 	 * any work, or that there is so much work that NAPI is dealing
1185 	 * with interrupt moderation and we don't need to do anything.
1186 	 */
1187 	if (time_after(next_update, rc->next_update))
1188 		goto clear_counts;
1189 
1190 	/* If itr_countdown is set it means we programmed an ITR within
1191 	 * the last 4 interrupt cycles. This has a side effect of us
1192 	 * potentially firing an early interrupt. In order to work around
1193 	 * this we need to throw out any data received for a few
1194 	 * interrupts following the update.
1195 	 */
1196 	if (q_vector->itr_countdown) {
1197 		itr = rc->target_itr;
1198 		goto clear_counts;
1199 	}
1200 
1201 	packets = rc->total_packets;
1202 	bytes = rc->total_bytes;
1203 
1204 	if (i40e_container_is_rx(q_vector, rc)) {
1205 		/* If Rx there are 1 to 4 packets and bytes are less than
1206 		 * 9000 assume insufficient data to use bulk rate limiting
1207 		 * approach unless Tx is already in bulk rate limiting. We
1208 		 * are likely latency driven.
1209 		 */
1210 		if (packets && packets < 4 && bytes < 9000 &&
1211 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1212 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1213 			goto adjust_by_size;
1214 		}
1215 	} else if (packets < 4) {
1216 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1217 		 * bulk mode and we are receiving 4 or fewer packets just
1218 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1219 		 * that the Rx can relax.
1220 		 */
1221 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1222 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1223 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1224 			goto clear_counts;
1225 	} else if (packets > 32) {
1226 		/* If we have processed over 32 packets in a single interrupt
1227 		 * for Tx assume we need to switch over to "bulk" mode.
1228 		 */
1229 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1230 	}
1231 
1232 	/* We have no packets to actually measure against. This means
1233 	 * either one of the other queues on this vector is active or
1234 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1235 	 *
1236 	 * Between 4 and 56 we can assume that our current interrupt delay
1237 	 * is only slightly too low. As such we should increase it by a small
1238 	 * fixed amount.
1239 	 */
1240 	if (packets < 56) {
1241 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1242 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1243 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1244 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1245 		}
1246 		goto clear_counts;
1247 	}
1248 
1249 	if (packets <= 256) {
1250 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1251 		itr &= I40E_ITR_MASK;
1252 
1253 		/* Between 56 and 112 is our "goldilocks" zone where we are
1254 		 * working out "just right". Just report that our current
1255 		 * ITR is good for us.
1256 		 */
1257 		if (packets <= 112)
1258 			goto clear_counts;
1259 
1260 		/* If packet count is 128 or greater we are likely looking
1261 		 * at a slight overrun of the delay we want. Try halving
1262 		 * our delay to see if that will cut the number of packets
1263 		 * in half per interrupt.
1264 		 */
1265 		itr /= 2;
1266 		itr &= I40E_ITR_MASK;
1267 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1268 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1269 
1270 		goto clear_counts;
1271 	}
1272 
1273 	/* The paths below assume we are dealing with a bulk ITR since
1274 	 * number of packets is greater than 256. We are just going to have
1275 	 * to compute a value and try to bring the count under control,
1276 	 * though for smaller packet sizes there isn't much we can do as
1277 	 * NAPI polling will likely be kicking in sooner rather than later.
1278 	 */
1279 	itr = I40E_ITR_ADAPTIVE_BULK;
1280 
1281 adjust_by_size:
1282 	/* If packet counts are 256 or greater we can assume we have a gross
1283 	 * overestimation of what the rate should be. Instead of trying to fine
1284 	 * tune it just use the formula below to try and dial in an exact value
1285 	 * give the current packet size of the frame.
1286 	 */
1287 	avg_wire_size = bytes / packets;
1288 
1289 	/* The following is a crude approximation of:
1290 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1291 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1292 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1293 	 *
1294 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1295 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1296 	 * formula down to
1297 	 *
1298 	 *  (170 * (size + 24)) / (size + 640) = ITR
1299 	 *
1300 	 * We first do some math on the packet size and then finally bitshift
1301 	 * by 8 after rounding up. We also have to account for PCIe link speed
1302 	 * difference as ITR scales based on this.
1303 	 */
1304 	if (avg_wire_size <= 60) {
1305 		/* Start at 250k ints/sec */
1306 		avg_wire_size = 4096;
1307 	} else if (avg_wire_size <= 380) {
1308 		/* 250K ints/sec to 60K ints/sec */
1309 		avg_wire_size *= 40;
1310 		avg_wire_size += 1696;
1311 	} else if (avg_wire_size <= 1084) {
1312 		/* 60K ints/sec to 36K ints/sec */
1313 		avg_wire_size *= 15;
1314 		avg_wire_size += 11452;
1315 	} else if (avg_wire_size <= 1980) {
1316 		/* 36K ints/sec to 30K ints/sec */
1317 		avg_wire_size *= 5;
1318 		avg_wire_size += 22420;
1319 	} else {
1320 		/* plateau at a limit of 30K ints/sec */
1321 		avg_wire_size = 32256;
1322 	}
1323 
1324 	/* If we are in low latency mode halve our delay which doubles the
1325 	 * rate to somewhere between 100K to 16K ints/sec
1326 	 */
1327 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1328 		avg_wire_size /= 2;
1329 
1330 	/* Resultant value is 256 times larger than it needs to be. This
1331 	 * gives us room to adjust the value as needed to either increase
1332 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1333 	 *
1334 	 * Use addition as we have already recorded the new latency flag
1335 	 * for the ITR value.
1336 	 */
1337 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1338 	       I40E_ITR_ADAPTIVE_MIN_INC;
1339 
1340 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1341 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1342 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1343 	}
1344 
1345 clear_counts:
1346 	/* write back value */
1347 	rc->target_itr = itr;
1348 
1349 	/* next update should occur within next jiffy */
1350 	rc->next_update = next_update + 1;
1351 
1352 	rc->total_bytes = 0;
1353 	rc->total_packets = 0;
1354 }
1355 
1356 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1357 {
1358 	return &rx_ring->rx_bi[idx];
1359 }
1360 
1361 /**
1362  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1363  * @rx_ring: rx descriptor ring to store buffers on
1364  * @old_buff: donor buffer to have page reused
1365  *
1366  * Synchronizes page for reuse by the adapter
1367  **/
1368 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1369 			       struct i40e_rx_buffer *old_buff)
1370 {
1371 	struct i40e_rx_buffer *new_buff;
1372 	u16 nta = rx_ring->next_to_alloc;
1373 
1374 	new_buff = i40e_rx_bi(rx_ring, nta);
1375 
1376 	/* update, and store next to alloc */
1377 	nta++;
1378 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1379 
1380 	/* transfer page from old buffer to new buffer */
1381 	new_buff->dma		= old_buff->dma;
1382 	new_buff->page		= old_buff->page;
1383 	new_buff->page_offset	= old_buff->page_offset;
1384 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1385 
1386 	/* clear contents of buffer_info */
1387 	old_buff->page = NULL;
1388 }
1389 
1390 /**
1391  * i40e_clean_programming_status - clean the programming status descriptor
1392  * @rx_ring: the rx ring that has this descriptor
1393  * @qword0_raw: qword0
1394  * @qword1: qword1 representing status_error_len in CPU ordering
1395  *
1396  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1397  * status being successful or not and take actions accordingly. FCoE should
1398  * handle its context/filter programming/invalidation status and take actions.
1399  *
1400  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1401  **/
1402 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1403 				   u64 qword1)
1404 {
1405 	u8 id;
1406 
1407 	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1408 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1409 
1410 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1411 		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1412 }
1413 
1414 /**
1415  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1416  * @tx_ring: the tx ring to set up
1417  *
1418  * Return 0 on success, negative on error
1419  **/
1420 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1421 {
1422 	struct device *dev = tx_ring->dev;
1423 	int bi_size;
1424 
1425 	if (!dev)
1426 		return -ENOMEM;
1427 
1428 	/* warn if we are about to overwrite the pointer */
1429 	WARN_ON(tx_ring->tx_bi);
1430 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1431 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1432 	if (!tx_ring->tx_bi)
1433 		goto err;
1434 
1435 	u64_stats_init(&tx_ring->syncp);
1436 
1437 	/* round up to nearest 4K */
1438 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1439 	/* add u32 for head writeback, align after this takes care of
1440 	 * guaranteeing this is at least one cache line in size
1441 	 */
1442 	tx_ring->size += sizeof(u32);
1443 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1444 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1445 					   &tx_ring->dma, GFP_KERNEL);
1446 	if (!tx_ring->desc) {
1447 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1448 			 tx_ring->size);
1449 		goto err;
1450 	}
1451 
1452 	tx_ring->next_to_use = 0;
1453 	tx_ring->next_to_clean = 0;
1454 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1455 	return 0;
1456 
1457 err:
1458 	kfree(tx_ring->tx_bi);
1459 	tx_ring->tx_bi = NULL;
1460 	return -ENOMEM;
1461 }
1462 
1463 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1464 {
1465 	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1466 }
1467 
1468 /**
1469  * i40e_clean_rx_ring - Free Rx buffers
1470  * @rx_ring: ring to be cleaned
1471  **/
1472 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1473 {
1474 	u16 i;
1475 
1476 	/* ring already cleared, nothing to do */
1477 	if (!rx_ring->rx_bi)
1478 		return;
1479 
1480 	if (rx_ring->xsk_pool) {
1481 		i40e_xsk_clean_rx_ring(rx_ring);
1482 		goto skip_free;
1483 	}
1484 
1485 	/* Free all the Rx ring sk_buffs */
1486 	for (i = 0; i < rx_ring->count; i++) {
1487 		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1488 
1489 		if (!rx_bi->page)
1490 			continue;
1491 
1492 		/* Invalidate cache lines that may have been written to by
1493 		 * device so that we avoid corrupting memory.
1494 		 */
1495 		dma_sync_single_range_for_cpu(rx_ring->dev,
1496 					      rx_bi->dma,
1497 					      rx_bi->page_offset,
1498 					      rx_ring->rx_buf_len,
1499 					      DMA_FROM_DEVICE);
1500 
1501 		/* free resources associated with mapping */
1502 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1503 				     i40e_rx_pg_size(rx_ring),
1504 				     DMA_FROM_DEVICE,
1505 				     I40E_RX_DMA_ATTR);
1506 
1507 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1508 
1509 		rx_bi->page = NULL;
1510 		rx_bi->page_offset = 0;
1511 	}
1512 
1513 skip_free:
1514 	if (rx_ring->xsk_pool)
1515 		i40e_clear_rx_bi_zc(rx_ring);
1516 	else
1517 		i40e_clear_rx_bi(rx_ring);
1518 
1519 	/* Zero out the descriptor ring */
1520 	memset(rx_ring->desc, 0, rx_ring->size);
1521 
1522 	rx_ring->next_to_alloc = 0;
1523 	rx_ring->next_to_clean = 0;
1524 	rx_ring->next_to_process = 0;
1525 	rx_ring->next_to_use = 0;
1526 }
1527 
1528 /**
1529  * i40e_free_rx_resources - Free Rx resources
1530  * @rx_ring: ring to clean the resources from
1531  *
1532  * Free all receive software resources
1533  **/
1534 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1535 {
1536 	i40e_clean_rx_ring(rx_ring);
1537 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1538 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1539 	rx_ring->xdp_prog = NULL;
1540 	kfree(rx_ring->rx_bi);
1541 	rx_ring->rx_bi = NULL;
1542 
1543 	if (rx_ring->desc) {
1544 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1545 				  rx_ring->desc, rx_ring->dma);
1546 		rx_ring->desc = NULL;
1547 	}
1548 }
1549 
1550 /**
1551  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1552  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1553  *
1554  * Returns 0 on success, negative on failure
1555  **/
1556 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1557 {
1558 	struct device *dev = rx_ring->dev;
1559 	int err;
1560 
1561 	u64_stats_init(&rx_ring->syncp);
1562 
1563 	/* Round up to nearest 4K */
1564 	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1565 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1566 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1567 					   &rx_ring->dma, GFP_KERNEL);
1568 
1569 	if (!rx_ring->desc) {
1570 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1571 			 rx_ring->size);
1572 		return -ENOMEM;
1573 	}
1574 
1575 	rx_ring->next_to_alloc = 0;
1576 	rx_ring->next_to_clean = 0;
1577 	rx_ring->next_to_process = 0;
1578 	rx_ring->next_to_use = 0;
1579 
1580 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1581 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1582 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1583 				       rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1584 		if (err < 0)
1585 			return err;
1586 	}
1587 
1588 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1589 
1590 	rx_ring->rx_bi =
1591 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1592 	if (!rx_ring->rx_bi)
1593 		return -ENOMEM;
1594 
1595 	return 0;
1596 }
1597 
1598 /**
1599  * i40e_release_rx_desc - Store the new tail and head values
1600  * @rx_ring: ring to bump
1601  * @val: new head index
1602  **/
1603 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1604 {
1605 	rx_ring->next_to_use = val;
1606 
1607 	/* update next to alloc since we have filled the ring */
1608 	rx_ring->next_to_alloc = val;
1609 
1610 	/* Force memory writes to complete before letting h/w
1611 	 * know there are new descriptors to fetch.  (Only
1612 	 * applicable for weak-ordered memory model archs,
1613 	 * such as IA-64).
1614 	 */
1615 	wmb();
1616 	writel(val, rx_ring->tail);
1617 }
1618 
1619 #if (PAGE_SIZE >= 8192)
1620 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1621 					   unsigned int size)
1622 {
1623 	unsigned int truesize;
1624 
1625 	truesize = rx_ring->rx_offset ?
1626 		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1627 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1628 		SKB_DATA_ALIGN(size);
1629 	return truesize;
1630 }
1631 #endif
1632 
1633 /**
1634  * i40e_alloc_mapped_page - recycle or make a new page
1635  * @rx_ring: ring to use
1636  * @bi: rx_buffer struct to modify
1637  *
1638  * Returns true if the page was successfully allocated or
1639  * reused.
1640  **/
1641 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1642 				   struct i40e_rx_buffer *bi)
1643 {
1644 	struct page *page = bi->page;
1645 	dma_addr_t dma;
1646 
1647 	/* since we are recycling buffers we should seldom need to alloc */
1648 	if (likely(page)) {
1649 		rx_ring->rx_stats.page_reuse_count++;
1650 		return true;
1651 	}
1652 
1653 	/* alloc new page for storage */
1654 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1655 	if (unlikely(!page)) {
1656 		rx_ring->rx_stats.alloc_page_failed++;
1657 		return false;
1658 	}
1659 
1660 	rx_ring->rx_stats.page_alloc_count++;
1661 
1662 	/* map page for use */
1663 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1664 				 i40e_rx_pg_size(rx_ring),
1665 				 DMA_FROM_DEVICE,
1666 				 I40E_RX_DMA_ATTR);
1667 
1668 	/* if mapping failed free memory back to system since
1669 	 * there isn't much point in holding memory we can't use
1670 	 */
1671 	if (dma_mapping_error(rx_ring->dev, dma)) {
1672 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1673 		rx_ring->rx_stats.alloc_page_failed++;
1674 		return false;
1675 	}
1676 
1677 	bi->dma = dma;
1678 	bi->page = page;
1679 	bi->page_offset = rx_ring->rx_offset;
1680 	page_ref_add(page, USHRT_MAX - 1);
1681 	bi->pagecnt_bias = USHRT_MAX;
1682 
1683 	return true;
1684 }
1685 
1686 /**
1687  * i40e_alloc_rx_buffers - Replace used receive buffers
1688  * @rx_ring: ring to place buffers on
1689  * @cleaned_count: number of buffers to replace
1690  *
1691  * Returns false if all allocations were successful, true if any fail
1692  **/
1693 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1694 {
1695 	u16 ntu = rx_ring->next_to_use;
1696 	union i40e_rx_desc *rx_desc;
1697 	struct i40e_rx_buffer *bi;
1698 
1699 	/* do nothing if no valid netdev defined */
1700 	if (!rx_ring->netdev || !cleaned_count)
1701 		return false;
1702 
1703 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1704 	bi = i40e_rx_bi(rx_ring, ntu);
1705 
1706 	do {
1707 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1708 			goto no_buffers;
1709 
1710 		/* sync the buffer for use by the device */
1711 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1712 						 bi->page_offset,
1713 						 rx_ring->rx_buf_len,
1714 						 DMA_FROM_DEVICE);
1715 
1716 		/* Refresh the desc even if buffer_addrs didn't change
1717 		 * because each write-back erases this info.
1718 		 */
1719 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1720 
1721 		rx_desc++;
1722 		bi++;
1723 		ntu++;
1724 		if (unlikely(ntu == rx_ring->count)) {
1725 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1726 			bi = i40e_rx_bi(rx_ring, 0);
1727 			ntu = 0;
1728 		}
1729 
1730 		/* clear the status bits for the next_to_use descriptor */
1731 		rx_desc->wb.qword1.status_error_len = 0;
1732 
1733 		cleaned_count--;
1734 	} while (cleaned_count);
1735 
1736 	if (rx_ring->next_to_use != ntu)
1737 		i40e_release_rx_desc(rx_ring, ntu);
1738 
1739 	return false;
1740 
1741 no_buffers:
1742 	if (rx_ring->next_to_use != ntu)
1743 		i40e_release_rx_desc(rx_ring, ntu);
1744 
1745 	/* make sure to come back via polling to try again after
1746 	 * allocation failure
1747 	 */
1748 	return true;
1749 }
1750 
1751 /**
1752  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1753  * @vsi: the VSI we care about
1754  * @skb: skb currently being received and modified
1755  * @rx_desc: the receive descriptor
1756  **/
1757 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1758 				    struct sk_buff *skb,
1759 				    union i40e_rx_desc *rx_desc)
1760 {
1761 	struct i40e_rx_ptype_decoded decoded;
1762 	u32 rx_error, rx_status;
1763 	bool ipv4, ipv6;
1764 	u8 ptype;
1765 	u64 qword;
1766 
1767 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1768 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1769 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1770 		   I40E_RXD_QW1_ERROR_SHIFT;
1771 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1772 		    I40E_RXD_QW1_STATUS_SHIFT;
1773 	decoded = decode_rx_desc_ptype(ptype);
1774 
1775 	skb->ip_summed = CHECKSUM_NONE;
1776 
1777 	skb_checksum_none_assert(skb);
1778 
1779 	/* Rx csum enabled and ip headers found? */
1780 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1781 		return;
1782 
1783 	/* did the hardware decode the packet and checksum? */
1784 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1785 		return;
1786 
1787 	/* both known and outer_ip must be set for the below code to work */
1788 	if (!(decoded.known && decoded.outer_ip))
1789 		return;
1790 
1791 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1792 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1793 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1794 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1795 
1796 	if (ipv4 &&
1797 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1798 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1799 		goto checksum_fail;
1800 
1801 	/* likely incorrect csum if alternate IP extension headers found */
1802 	if (ipv6 &&
1803 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1804 		/* don't increment checksum err here, non-fatal err */
1805 		return;
1806 
1807 	/* there was some L4 error, count error and punt packet to the stack */
1808 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1809 		goto checksum_fail;
1810 
1811 	/* handle packets that were not able to be checksummed due
1812 	 * to arrival speed, in this case the stack can compute
1813 	 * the csum.
1814 	 */
1815 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1816 		return;
1817 
1818 	/* If there is an outer header present that might contain a checksum
1819 	 * we need to bump the checksum level by 1 to reflect the fact that
1820 	 * we are indicating we validated the inner checksum.
1821 	 */
1822 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1823 		skb->csum_level = 1;
1824 
1825 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1826 	switch (decoded.inner_prot) {
1827 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1828 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1829 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1830 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1831 		fallthrough;
1832 	default:
1833 		break;
1834 	}
1835 
1836 	return;
1837 
1838 checksum_fail:
1839 	vsi->back->hw_csum_rx_error++;
1840 }
1841 
1842 /**
1843  * i40e_ptype_to_htype - get a hash type
1844  * @ptype: the ptype value from the descriptor
1845  *
1846  * Returns a hash type to be used by skb_set_hash
1847  **/
1848 static inline int i40e_ptype_to_htype(u8 ptype)
1849 {
1850 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1851 
1852 	if (!decoded.known)
1853 		return PKT_HASH_TYPE_NONE;
1854 
1855 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1856 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1857 		return PKT_HASH_TYPE_L4;
1858 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1859 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1860 		return PKT_HASH_TYPE_L3;
1861 	else
1862 		return PKT_HASH_TYPE_L2;
1863 }
1864 
1865 /**
1866  * i40e_rx_hash - set the hash value in the skb
1867  * @ring: descriptor ring
1868  * @rx_desc: specific descriptor
1869  * @skb: skb currently being received and modified
1870  * @rx_ptype: Rx packet type
1871  **/
1872 static inline void i40e_rx_hash(struct i40e_ring *ring,
1873 				union i40e_rx_desc *rx_desc,
1874 				struct sk_buff *skb,
1875 				u8 rx_ptype)
1876 {
1877 	u32 hash;
1878 	const __le64 rss_mask =
1879 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1880 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1881 
1882 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1883 		return;
1884 
1885 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1886 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1887 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1888 	}
1889 }
1890 
1891 /**
1892  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1893  * @rx_ring: rx descriptor ring packet is being transacted on
1894  * @rx_desc: pointer to the EOP Rx descriptor
1895  * @skb: pointer to current skb being populated
1896  *
1897  * This function checks the ring, descriptor, and packet information in
1898  * order to populate the hash, checksum, VLAN, protocol, and
1899  * other fields within the skb.
1900  **/
1901 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1902 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1903 {
1904 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1905 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1906 			I40E_RXD_QW1_STATUS_SHIFT;
1907 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1908 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1909 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1910 	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1911 		      I40E_RXD_QW1_PTYPE_SHIFT;
1912 
1913 	if (unlikely(tsynvalid))
1914 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1915 
1916 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1917 
1918 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1919 
1920 	skb_record_rx_queue(skb, rx_ring->queue_index);
1921 
1922 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1923 		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1924 
1925 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1926 				       le16_to_cpu(vlan_tag));
1927 	}
1928 
1929 	/* modifies the skb - consumes the enet header */
1930 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1931 }
1932 
1933 /**
1934  * i40e_cleanup_headers - Correct empty headers
1935  * @rx_ring: rx descriptor ring packet is being transacted on
1936  * @skb: pointer to current skb being fixed
1937  * @rx_desc: pointer to the EOP Rx descriptor
1938  *
1939  * In addition if skb is not at least 60 bytes we need to pad it so that
1940  * it is large enough to qualify as a valid Ethernet frame.
1941  *
1942  * Returns true if an error was encountered and skb was freed.
1943  **/
1944 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1945 				 union i40e_rx_desc *rx_desc)
1946 
1947 {
1948 	/* ERR_MASK will only have valid bits if EOP set, and
1949 	 * what we are doing here is actually checking
1950 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1951 	 * the error field
1952 	 */
1953 	if (unlikely(i40e_test_staterr(rx_desc,
1954 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1955 		dev_kfree_skb_any(skb);
1956 		return true;
1957 	}
1958 
1959 	/* if eth_skb_pad returns an error the skb was freed */
1960 	if (eth_skb_pad(skb))
1961 		return true;
1962 
1963 	return false;
1964 }
1965 
1966 /**
1967  * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1968  * @rx_buffer: buffer containing the page
1969  * @rx_stats: rx stats structure for the rx ring
1970  *
1971  * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1972  * which will assign the current buffer to the buffer that next_to_alloc is
1973  * pointing to; otherwise, the DMA mapping needs to be destroyed and
1974  * page freed.
1975  *
1976  * rx_stats will be updated to indicate whether the page was waived
1977  * or busy if it could not be reused.
1978  */
1979 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1980 				   struct i40e_rx_queue_stats *rx_stats)
1981 {
1982 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1983 	struct page *page = rx_buffer->page;
1984 
1985 	/* Is any reuse possible? */
1986 	if (!dev_page_is_reusable(page)) {
1987 		rx_stats->page_waive_count++;
1988 		return false;
1989 	}
1990 
1991 #if (PAGE_SIZE < 8192)
1992 	/* if we are only owner of page we can reuse it */
1993 	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1994 		rx_stats->page_busy_count++;
1995 		return false;
1996 	}
1997 #else
1998 #define I40E_LAST_OFFSET \
1999 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
2000 	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
2001 		rx_stats->page_busy_count++;
2002 		return false;
2003 	}
2004 #endif
2005 
2006 	/* If we have drained the page fragment pool we need to update
2007 	 * the pagecnt_bias and page count so that we fully restock the
2008 	 * number of references the driver holds.
2009 	 */
2010 	if (unlikely(pagecnt_bias == 1)) {
2011 		page_ref_add(page, USHRT_MAX - 1);
2012 		rx_buffer->pagecnt_bias = USHRT_MAX;
2013 	}
2014 
2015 	return true;
2016 }
2017 
2018 /**
2019  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2020  * @rx_buffer: Rx buffer to adjust
2021  * @truesize: Size of adjustment
2022  **/
2023 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2024 				unsigned int truesize)
2025 {
2026 #if (PAGE_SIZE < 8192)
2027 	rx_buffer->page_offset ^= truesize;
2028 #else
2029 	rx_buffer->page_offset += truesize;
2030 #endif
2031 }
2032 
2033 /**
2034  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2035  * @rx_ring: rx descriptor ring to transact packets on
2036  * @size: size of buffer to add to skb
2037  *
2038  * This function will pull an Rx buffer from the ring and synchronize it
2039  * for use by the CPU.
2040  */
2041 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2042 						 const unsigned int size)
2043 {
2044 	struct i40e_rx_buffer *rx_buffer;
2045 
2046 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2047 	rx_buffer->page_count =
2048 #if (PAGE_SIZE < 8192)
2049 		page_count(rx_buffer->page);
2050 #else
2051 		0;
2052 #endif
2053 	prefetch_page_address(rx_buffer->page);
2054 
2055 	/* we are reusing so sync this buffer for CPU use */
2056 	dma_sync_single_range_for_cpu(rx_ring->dev,
2057 				      rx_buffer->dma,
2058 				      rx_buffer->page_offset,
2059 				      size,
2060 				      DMA_FROM_DEVICE);
2061 
2062 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2063 	rx_buffer->pagecnt_bias--;
2064 
2065 	return rx_buffer;
2066 }
2067 
2068 /**
2069  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2070  * @rx_ring: rx descriptor ring to transact packets on
2071  * @rx_buffer: rx buffer to pull data from
2072  *
2073  * This function will clean up the contents of the rx_buffer.  It will
2074  * either recycle the buffer or unmap it and free the associated resources.
2075  */
2076 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2077 			       struct i40e_rx_buffer *rx_buffer)
2078 {
2079 	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2080 		/* hand second half of page back to the ring */
2081 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2082 	} else {
2083 		/* we are not reusing the buffer so unmap it */
2084 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2085 				     i40e_rx_pg_size(rx_ring),
2086 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2087 		__page_frag_cache_drain(rx_buffer->page,
2088 					rx_buffer->pagecnt_bias);
2089 		/* clear contents of buffer_info */
2090 		rx_buffer->page = NULL;
2091 	}
2092 }
2093 
2094 /**
2095  * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2096  * @rx_ring: Rx descriptor ring to transact packets on
2097  * @xdp_res: Result of the XDP program
2098  * @xdp: xdp_buff pointing to the data
2099  **/
2100 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2101 				  struct xdp_buff *xdp)
2102 {
2103 	u32 next = rx_ring->next_to_clean;
2104 	struct i40e_rx_buffer *rx_buffer;
2105 
2106 	xdp->flags = 0;
2107 
2108 	while (1) {
2109 		rx_buffer = i40e_rx_bi(rx_ring, next);
2110 		if (++next == rx_ring->count)
2111 			next = 0;
2112 
2113 		if (!rx_buffer->page)
2114 			continue;
2115 
2116 		if (xdp_res == I40E_XDP_CONSUMED)
2117 			rx_buffer->pagecnt_bias++;
2118 		else
2119 			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2120 
2121 		/* EOP buffer will be put in i40e_clean_rx_irq() */
2122 		if (next == rx_ring->next_to_process)
2123 			return;
2124 
2125 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2126 	}
2127 }
2128 
2129 /**
2130  * i40e_construct_skb - Allocate skb and populate it
2131  * @rx_ring: rx descriptor ring to transact packets on
2132  * @xdp: xdp_buff pointing to the data
2133  * @nr_frags: number of buffers for the packet
2134  *
2135  * This function allocates an skb.  It then populates it with the page
2136  * data from the current receive descriptor, taking care to set up the
2137  * skb correctly.
2138  */
2139 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2140 					  struct xdp_buff *xdp,
2141 					  u32 nr_frags)
2142 {
2143 	unsigned int size = xdp->data_end - xdp->data;
2144 	struct i40e_rx_buffer *rx_buffer;
2145 	unsigned int headlen;
2146 	struct sk_buff *skb;
2147 
2148 	/* prefetch first cache line of first page */
2149 	net_prefetch(xdp->data);
2150 
2151 	/* Note, we get here by enabling legacy-rx via:
2152 	 *
2153 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2154 	 *
2155 	 * In this mode, we currently get 0 extra XDP headroom as
2156 	 * opposed to having legacy-rx off, where we process XDP
2157 	 * packets going to stack via i40e_build_skb(). The latter
2158 	 * provides us currently with 192 bytes of headroom.
2159 	 *
2160 	 * For i40e_construct_skb() mode it means that the
2161 	 * xdp->data_meta will always point to xdp->data, since
2162 	 * the helper cannot expand the head. Should this ever
2163 	 * change in future for legacy-rx mode on, then lets also
2164 	 * add xdp->data_meta handling here.
2165 	 */
2166 
2167 	/* allocate a skb to store the frags */
2168 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2169 			       I40E_RX_HDR_SIZE,
2170 			       GFP_ATOMIC | __GFP_NOWARN);
2171 	if (unlikely(!skb))
2172 		return NULL;
2173 
2174 	/* Determine available headroom for copy */
2175 	headlen = size;
2176 	if (headlen > I40E_RX_HDR_SIZE)
2177 		headlen = eth_get_headlen(skb->dev, xdp->data,
2178 					  I40E_RX_HDR_SIZE);
2179 
2180 	/* align pull length to size of long to optimize memcpy performance */
2181 	memcpy(__skb_put(skb, headlen), xdp->data,
2182 	       ALIGN(headlen, sizeof(long)));
2183 
2184 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2185 	/* update all of the pointers */
2186 	size -= headlen;
2187 	if (size) {
2188 		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2189 			dev_kfree_skb(skb);
2190 			return NULL;
2191 		}
2192 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2193 				rx_buffer->page_offset + headlen,
2194 				size, xdp->frame_sz);
2195 		/* buffer is used by skb, update page_offset */
2196 		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2197 	} else {
2198 		/* buffer is unused, reset bias back to rx_buffer */
2199 		rx_buffer->pagecnt_bias++;
2200 	}
2201 
2202 	if (unlikely(xdp_buff_has_frags(xdp))) {
2203 		struct skb_shared_info *sinfo, *skinfo = skb_shinfo(skb);
2204 
2205 		sinfo = xdp_get_shared_info_from_buff(xdp);
2206 		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2207 		       sizeof(skb_frag_t) * nr_frags);
2208 
2209 		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2210 					   sinfo->xdp_frags_size,
2211 					   nr_frags * xdp->frame_sz,
2212 					   xdp_buff_is_frag_pfmemalloc(xdp));
2213 
2214 		/* First buffer has already been processed, so bump ntc */
2215 		if (++rx_ring->next_to_clean == rx_ring->count)
2216 			rx_ring->next_to_clean = 0;
2217 
2218 		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2219 	}
2220 
2221 	return skb;
2222 }
2223 
2224 /**
2225  * i40e_build_skb - Build skb around an existing buffer
2226  * @rx_ring: Rx descriptor ring to transact packets on
2227  * @xdp: xdp_buff pointing to the data
2228  * @nr_frags: number of buffers for the packet
2229  *
2230  * This function builds an skb around an existing Rx buffer, taking care
2231  * to set up the skb correctly and avoid any memcpy overhead.
2232  */
2233 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2234 				      struct xdp_buff *xdp,
2235 				      u32 nr_frags)
2236 {
2237 	unsigned int metasize = xdp->data - xdp->data_meta;
2238 	struct sk_buff *skb;
2239 
2240 	/* Prefetch first cache line of first page. If xdp->data_meta
2241 	 * is unused, this points exactly as xdp->data, otherwise we
2242 	 * likely have a consumer accessing first few bytes of meta
2243 	 * data, and then actual data.
2244 	 */
2245 	net_prefetch(xdp->data_meta);
2246 
2247 	/* build an skb around the page buffer */
2248 	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2249 	if (unlikely(!skb))
2250 		return NULL;
2251 
2252 	/* update pointers within the skb to store the data */
2253 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2254 	__skb_put(skb, xdp->data_end - xdp->data);
2255 	if (metasize)
2256 		skb_metadata_set(skb, metasize);
2257 
2258 	if (unlikely(xdp_buff_has_frags(xdp))) {
2259 		struct skb_shared_info *sinfo;
2260 
2261 		sinfo = xdp_get_shared_info_from_buff(xdp);
2262 		xdp_update_skb_shared_info(skb, nr_frags,
2263 					   sinfo->xdp_frags_size,
2264 					   nr_frags * xdp->frame_sz,
2265 					   xdp_buff_is_frag_pfmemalloc(xdp));
2266 
2267 		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2268 	} else {
2269 		struct i40e_rx_buffer *rx_buffer;
2270 
2271 		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2272 		/* buffer is used by skb, update page_offset */
2273 		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2274 	}
2275 
2276 	return skb;
2277 }
2278 
2279 /**
2280  * i40e_is_non_eop - process handling of non-EOP buffers
2281  * @rx_ring: Rx ring being processed
2282  * @rx_desc: Rx descriptor for current buffer
2283  *
2284  * If the buffer is an EOP buffer, this function exits returning false,
2285  * otherwise return true indicating that this is in fact a non-EOP buffer.
2286  */
2287 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2288 		     union i40e_rx_desc *rx_desc)
2289 {
2290 	/* if we are the last buffer then there is nothing else to do */
2291 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2292 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2293 		return false;
2294 
2295 	rx_ring->rx_stats.non_eop_descs++;
2296 
2297 	return true;
2298 }
2299 
2300 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2301 			      struct i40e_ring *xdp_ring);
2302 
2303 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2304 {
2305 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2306 
2307 	if (unlikely(!xdpf))
2308 		return I40E_XDP_CONSUMED;
2309 
2310 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2311 }
2312 
2313 /**
2314  * i40e_run_xdp - run an XDP program
2315  * @rx_ring: Rx ring being processed
2316  * @xdp: XDP buffer containing the frame
2317  * @xdp_prog: XDP program to run
2318  **/
2319 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2320 {
2321 	int err, result = I40E_XDP_PASS;
2322 	struct i40e_ring *xdp_ring;
2323 	u32 act;
2324 
2325 	if (!xdp_prog)
2326 		goto xdp_out;
2327 
2328 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2329 
2330 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2331 	switch (act) {
2332 	case XDP_PASS:
2333 		break;
2334 	case XDP_TX:
2335 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2336 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2337 		if (result == I40E_XDP_CONSUMED)
2338 			goto out_failure;
2339 		break;
2340 	case XDP_REDIRECT:
2341 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2342 		if (err)
2343 			goto out_failure;
2344 		result = I40E_XDP_REDIR;
2345 		break;
2346 	default:
2347 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2348 		fallthrough;
2349 	case XDP_ABORTED:
2350 out_failure:
2351 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2352 		fallthrough; /* handle aborts by dropping packet */
2353 	case XDP_DROP:
2354 		result = I40E_XDP_CONSUMED;
2355 		break;
2356 	}
2357 xdp_out:
2358 	return result;
2359 }
2360 
2361 /**
2362  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2363  * @xdp_ring: XDP Tx ring
2364  *
2365  * This function updates the XDP Tx ring tail register.
2366  **/
2367 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2368 {
2369 	/* Force memory writes to complete before letting h/w
2370 	 * know there are new descriptors to fetch.
2371 	 */
2372 	wmb();
2373 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2374 }
2375 
2376 /**
2377  * i40e_update_rx_stats - Update Rx ring statistics
2378  * @rx_ring: rx descriptor ring
2379  * @total_rx_bytes: number of bytes received
2380  * @total_rx_packets: number of packets received
2381  *
2382  * This function updates the Rx ring statistics.
2383  **/
2384 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2385 			  unsigned int total_rx_bytes,
2386 			  unsigned int total_rx_packets)
2387 {
2388 	u64_stats_update_begin(&rx_ring->syncp);
2389 	rx_ring->stats.packets += total_rx_packets;
2390 	rx_ring->stats.bytes += total_rx_bytes;
2391 	u64_stats_update_end(&rx_ring->syncp);
2392 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2393 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2394 }
2395 
2396 /**
2397  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2398  * @rx_ring: Rx ring
2399  * @xdp_res: Result of the receive batch
2400  *
2401  * This function bumps XDP Tx tail and/or flush redirect map, and
2402  * should be called when a batch of packets has been processed in the
2403  * napi loop.
2404  **/
2405 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2406 {
2407 	if (xdp_res & I40E_XDP_REDIR)
2408 		xdp_do_flush_map();
2409 
2410 	if (xdp_res & I40E_XDP_TX) {
2411 		struct i40e_ring *xdp_ring =
2412 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2413 
2414 		i40e_xdp_ring_update_tail(xdp_ring);
2415 	}
2416 }
2417 
2418 /**
2419  * i40e_inc_ntp: Advance the next_to_process index
2420  * @rx_ring: Rx ring
2421  **/
2422 static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2423 {
2424 	u32 ntp = rx_ring->next_to_process + 1;
2425 
2426 	ntp = (ntp < rx_ring->count) ? ntp : 0;
2427 	rx_ring->next_to_process = ntp;
2428 	prefetch(I40E_RX_DESC(rx_ring, ntp));
2429 }
2430 
2431 /**
2432  * i40e_add_xdp_frag: Add a frag to xdp_buff
2433  * @xdp: xdp_buff pointing to the data
2434  * @nr_frags: return number of buffers for the packet
2435  * @rx_buffer: rx_buffer holding data of the current frag
2436  * @size: size of data of current frag
2437  */
2438 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2439 			     struct i40e_rx_buffer *rx_buffer, u32 size)
2440 {
2441 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2442 
2443 	if (!xdp_buff_has_frags(xdp)) {
2444 		sinfo->nr_frags = 0;
2445 		sinfo->xdp_frags_size = 0;
2446 		xdp_buff_set_frags_flag(xdp);
2447 	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2448 		/* Overflowing packet: All frags need to be dropped */
2449 		return -ENOMEM;
2450 	}
2451 
2452 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2453 				   rx_buffer->page_offset, size);
2454 
2455 	sinfo->xdp_frags_size += size;
2456 
2457 	if (page_is_pfmemalloc(rx_buffer->page))
2458 		xdp_buff_set_frag_pfmemalloc(xdp);
2459 	*nr_frags = sinfo->nr_frags;
2460 
2461 	return 0;
2462 }
2463 
2464 /**
2465  * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2466  * @rx_ring: rx descriptor ring to transact packets on
2467  * @xdp: xdp_buff pointing to the data
2468  * @rx_buffer: rx_buffer of eop desc
2469  */
2470 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2471 				  struct xdp_buff *xdp,
2472 				  struct i40e_rx_buffer *rx_buffer)
2473 {
2474 	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2475 	i40e_put_rx_buffer(rx_ring, rx_buffer);
2476 	rx_ring->next_to_clean = rx_ring->next_to_process;
2477 	xdp->data = NULL;
2478 }
2479 
2480 /**
2481  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2482  * @rx_ring: rx descriptor ring to transact packets on
2483  * @budget: Total limit on number of packets to process
2484  * @rx_cleaned: Out parameter of the number of packets processed
2485  *
2486  * This function provides a "bounce buffer" approach to Rx interrupt
2487  * processing.  The advantage to this is that on systems that have
2488  * expensive overhead for IOMMU access this provides a means of avoiding
2489  * it by maintaining the mapping of the page to the system.
2490  *
2491  * Returns amount of work completed
2492  **/
2493 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2494 			     unsigned int *rx_cleaned)
2495 {
2496 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2497 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2498 	u16 clean_threshold = rx_ring->count / 2;
2499 	unsigned int offset = rx_ring->rx_offset;
2500 	struct xdp_buff *xdp = &rx_ring->xdp;
2501 	unsigned int xdp_xmit = 0;
2502 	struct bpf_prog *xdp_prog;
2503 	bool failure = false;
2504 	int xdp_res = 0;
2505 
2506 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2507 
2508 	while (likely(total_rx_packets < (unsigned int)budget)) {
2509 		u16 ntp = rx_ring->next_to_process;
2510 		struct i40e_rx_buffer *rx_buffer;
2511 		union i40e_rx_desc *rx_desc;
2512 		struct sk_buff *skb;
2513 		unsigned int size;
2514 		u32 nfrags = 0;
2515 		bool neop;
2516 		u64 qword;
2517 
2518 		/* return some buffers to hardware, one at a time is too slow */
2519 		if (cleaned_count >= clean_threshold) {
2520 			failure = failure ||
2521 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2522 			cleaned_count = 0;
2523 		}
2524 
2525 		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2526 
2527 		/* status_error_len will always be zero for unused descriptors
2528 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2529 		 * which is always zero because packet split isn't used, if the
2530 		 * hardware wrote DD then the length will be non-zero
2531 		 */
2532 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2533 
2534 		/* This memory barrier is needed to keep us from reading
2535 		 * any other fields out of the rx_desc until we have
2536 		 * verified the descriptor has been written back.
2537 		 */
2538 		dma_rmb();
2539 
2540 		if (i40e_rx_is_programming_status(qword)) {
2541 			i40e_clean_programming_status(rx_ring,
2542 						      rx_desc->raw.qword[0],
2543 						      qword);
2544 			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2545 			i40e_inc_ntp(rx_ring);
2546 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2547 			/* Update ntc and bump cleaned count if not in the
2548 			 * middle of mb packet.
2549 			 */
2550 			if (rx_ring->next_to_clean == ntp) {
2551 				rx_ring->next_to_clean =
2552 					rx_ring->next_to_process;
2553 				cleaned_count++;
2554 			}
2555 			continue;
2556 		}
2557 
2558 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2559 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2560 		if (!size)
2561 			break;
2562 
2563 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2564 		/* retrieve a buffer from the ring */
2565 		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2566 
2567 		neop = i40e_is_non_eop(rx_ring, rx_desc);
2568 		i40e_inc_ntp(rx_ring);
2569 
2570 		if (!xdp->data) {
2571 			unsigned char *hard_start;
2572 
2573 			hard_start = page_address(rx_buffer->page) +
2574 				     rx_buffer->page_offset - offset;
2575 			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2576 #if (PAGE_SIZE > 4096)
2577 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2578 			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2579 #endif
2580 		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2581 			   !neop) {
2582 			/* Overflowing packet: Drop all frags on EOP */
2583 			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2584 			break;
2585 		}
2586 
2587 		if (neop)
2588 			continue;
2589 
2590 		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2591 
2592 		if (xdp_res) {
2593 			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2594 
2595 			if (unlikely(xdp_buff_has_frags(xdp))) {
2596 				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2597 				size = xdp_get_buff_len(xdp);
2598 			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2599 				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2600 			} else {
2601 				rx_buffer->pagecnt_bias++;
2602 			}
2603 			total_rx_bytes += size;
2604 		} else {
2605 			if (ring_uses_build_skb(rx_ring))
2606 				skb = i40e_build_skb(rx_ring, xdp, nfrags);
2607 			else
2608 				skb = i40e_construct_skb(rx_ring, xdp, nfrags);
2609 
2610 			/* drop if we failed to retrieve a buffer */
2611 			if (!skb) {
2612 				rx_ring->rx_stats.alloc_buff_failed++;
2613 				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2614 				break;
2615 			}
2616 
2617 			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2618 				goto process_next;
2619 
2620 			/* probably a little skewed due to removing CRC */
2621 			total_rx_bytes += skb->len;
2622 
2623 			/* populate checksum, VLAN, and protocol */
2624 			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2625 
2626 			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2627 			napi_gro_receive(&rx_ring->q_vector->napi, skb);
2628 		}
2629 
2630 		/* update budget accounting */
2631 		total_rx_packets++;
2632 process_next:
2633 		cleaned_count += nfrags + 1;
2634 		i40e_put_rx_buffer(rx_ring, rx_buffer);
2635 		rx_ring->next_to_clean = rx_ring->next_to_process;
2636 
2637 		xdp->data = NULL;
2638 	}
2639 
2640 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2641 
2642 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2643 
2644 	*rx_cleaned = total_rx_packets;
2645 
2646 	/* guarantee a trip back through this routine if there was a failure */
2647 	return failure ? budget : (int)total_rx_packets;
2648 }
2649 
2650 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2651 {
2652 	u32 val;
2653 
2654 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2655 	 * points out doing so is "meaningless since it was already
2656 	 * auto-cleared". The auto-clearing happens when the interrupt is
2657 	 * asserted.
2658 	 *
2659 	 * Hardware errata 28 for also indicates that writing to a
2660 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2661 	 * an event in the PBA anyway so we need to rely on the automask
2662 	 * to hold pending events for us until the interrupt is re-enabled
2663 	 *
2664 	 * The itr value is reported in microseconds, and the register
2665 	 * value is recorded in 2 microsecond units. For this reason we
2666 	 * only need to shift by the interval shift - 1 instead of the
2667 	 * full value.
2668 	 */
2669 	itr &= I40E_ITR_MASK;
2670 
2671 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2672 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2673 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2674 
2675 	return val;
2676 }
2677 
2678 /* a small macro to shorten up some long lines */
2679 #define INTREG I40E_PFINT_DYN_CTLN
2680 
2681 /* The act of updating the ITR will cause it to immediately trigger. In order
2682  * to prevent this from throwing off adaptive update statistics we defer the
2683  * update so that it can only happen so often. So after either Tx or Rx are
2684  * updated we make the adaptive scheme wait until either the ITR completely
2685  * expires via the next_update expiration or we have been through at least
2686  * 3 interrupts.
2687  */
2688 #define ITR_COUNTDOWN_START 3
2689 
2690 /**
2691  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2692  * @vsi: the VSI we care about
2693  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2694  *
2695  **/
2696 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2697 					  struct i40e_q_vector *q_vector)
2698 {
2699 	struct i40e_hw *hw = &vsi->back->hw;
2700 	u32 intval;
2701 
2702 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2703 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2704 		i40e_irq_dynamic_enable_icr0(vsi->back);
2705 		return;
2706 	}
2707 
2708 	/* These will do nothing if dynamic updates are not enabled */
2709 	i40e_update_itr(q_vector, &q_vector->tx);
2710 	i40e_update_itr(q_vector, &q_vector->rx);
2711 
2712 	/* This block of logic allows us to get away with only updating
2713 	 * one ITR value with each interrupt. The idea is to perform a
2714 	 * pseudo-lazy update with the following criteria.
2715 	 *
2716 	 * 1. Rx is given higher priority than Tx if both are in same state
2717 	 * 2. If we must reduce an ITR that is given highest priority.
2718 	 * 3. We then give priority to increasing ITR based on amount.
2719 	 */
2720 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2721 		/* Rx ITR needs to be reduced, this is highest priority */
2722 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2723 					   q_vector->rx.target_itr);
2724 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2725 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2726 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2727 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2728 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2729 		/* Tx ITR needs to be reduced, this is second priority
2730 		 * Tx ITR needs to be increased more than Rx, fourth priority
2731 		 */
2732 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2733 					   q_vector->tx.target_itr);
2734 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2735 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2736 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2737 		/* Rx ITR needs to be increased, third priority */
2738 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2739 					   q_vector->rx.target_itr);
2740 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2741 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2742 	} else {
2743 		/* No ITR update, lowest priority */
2744 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2745 		if (q_vector->itr_countdown)
2746 			q_vector->itr_countdown--;
2747 	}
2748 
2749 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2750 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2751 }
2752 
2753 /**
2754  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2755  * @napi: napi struct with our devices info in it
2756  * @budget: amount of work driver is allowed to do this pass, in packets
2757  *
2758  * This function will clean all queues associated with a q_vector.
2759  *
2760  * Returns the amount of work done
2761  **/
2762 int i40e_napi_poll(struct napi_struct *napi, int budget)
2763 {
2764 	struct i40e_q_vector *q_vector =
2765 			       container_of(napi, struct i40e_q_vector, napi);
2766 	struct i40e_vsi *vsi = q_vector->vsi;
2767 	struct i40e_ring *ring;
2768 	bool tx_clean_complete = true;
2769 	bool rx_clean_complete = true;
2770 	unsigned int tx_cleaned = 0;
2771 	unsigned int rx_cleaned = 0;
2772 	bool clean_complete = true;
2773 	bool arm_wb = false;
2774 	int budget_per_ring;
2775 	int work_done = 0;
2776 
2777 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2778 		napi_complete(napi);
2779 		return 0;
2780 	}
2781 
2782 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2783 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2784 	 */
2785 	i40e_for_each_ring(ring, q_vector->tx) {
2786 		bool wd = ring->xsk_pool ?
2787 			  i40e_clean_xdp_tx_irq(vsi, ring) :
2788 			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2789 
2790 		if (!wd) {
2791 			clean_complete = tx_clean_complete = false;
2792 			continue;
2793 		}
2794 		arm_wb |= ring->arm_wb;
2795 		ring->arm_wb = false;
2796 	}
2797 
2798 	/* Handle case where we are called by netpoll with a budget of 0 */
2799 	if (budget <= 0)
2800 		goto tx_only;
2801 
2802 	/* normally we have 1 Rx ring per q_vector */
2803 	if (unlikely(q_vector->num_ringpairs > 1))
2804 		/* We attempt to distribute budget to each Rx queue fairly, but
2805 		 * don't allow the budget to go below 1 because that would exit
2806 		 * polling early.
2807 		 */
2808 		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2809 	else
2810 		/* Max of 1 Rx ring in this q_vector so give it the budget */
2811 		budget_per_ring = budget;
2812 
2813 	i40e_for_each_ring(ring, q_vector->rx) {
2814 		int cleaned = ring->xsk_pool ?
2815 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2816 			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2817 
2818 		work_done += cleaned;
2819 		/* if we clean as many as budgeted, we must not be done */
2820 		if (cleaned >= budget_per_ring)
2821 			clean_complete = rx_clean_complete = false;
2822 	}
2823 
2824 	if (!i40e_enabled_xdp_vsi(vsi))
2825 		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2826 				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2827 
2828 	/* If work not completed, return budget and polling will return */
2829 	if (!clean_complete) {
2830 		int cpu_id = smp_processor_id();
2831 
2832 		/* It is possible that the interrupt affinity has changed but,
2833 		 * if the cpu is pegged at 100%, polling will never exit while
2834 		 * traffic continues and the interrupt will be stuck on this
2835 		 * cpu.  We check to make sure affinity is correct before we
2836 		 * continue to poll, otherwise we must stop polling so the
2837 		 * interrupt can move to the correct cpu.
2838 		 */
2839 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2840 			/* Tell napi that we are done polling */
2841 			napi_complete_done(napi, work_done);
2842 
2843 			/* Force an interrupt */
2844 			i40e_force_wb(vsi, q_vector);
2845 
2846 			/* Return budget-1 so that polling stops */
2847 			return budget - 1;
2848 		}
2849 tx_only:
2850 		if (arm_wb) {
2851 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2852 			i40e_enable_wb_on_itr(vsi, q_vector);
2853 		}
2854 		return budget;
2855 	}
2856 
2857 	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2858 		q_vector->arm_wb_state = false;
2859 
2860 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2861 	 * poll us due to busy-polling
2862 	 */
2863 	if (likely(napi_complete_done(napi, work_done)))
2864 		i40e_update_enable_itr(vsi, q_vector);
2865 
2866 	return min(work_done, budget - 1);
2867 }
2868 
2869 /**
2870  * i40e_atr - Add a Flow Director ATR filter
2871  * @tx_ring:  ring to add programming descriptor to
2872  * @skb:      send buffer
2873  * @tx_flags: send tx flags
2874  **/
2875 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2876 		     u32 tx_flags)
2877 {
2878 	struct i40e_filter_program_desc *fdir_desc;
2879 	struct i40e_pf *pf = tx_ring->vsi->back;
2880 	union {
2881 		unsigned char *network;
2882 		struct iphdr *ipv4;
2883 		struct ipv6hdr *ipv6;
2884 	} hdr;
2885 	struct tcphdr *th;
2886 	unsigned int hlen;
2887 	u32 flex_ptype, dtype_cmd;
2888 	int l4_proto;
2889 	u16 i;
2890 
2891 	/* make sure ATR is enabled */
2892 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2893 		return;
2894 
2895 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2896 		return;
2897 
2898 	/* if sampling is disabled do nothing */
2899 	if (!tx_ring->atr_sample_rate)
2900 		return;
2901 
2902 	/* Currently only IPv4/IPv6 with TCP is supported */
2903 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2904 		return;
2905 
2906 	/* snag network header to get L4 type and address */
2907 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2908 		      skb_inner_network_header(skb) : skb_network_header(skb);
2909 
2910 	/* Note: tx_flags gets modified to reflect inner protocols in
2911 	 * tx_enable_csum function if encap is enabled.
2912 	 */
2913 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2914 		/* access ihl as u8 to avoid unaligned access on ia64 */
2915 		hlen = (hdr.network[0] & 0x0F) << 2;
2916 		l4_proto = hdr.ipv4->protocol;
2917 	} else {
2918 		/* find the start of the innermost ipv6 header */
2919 		unsigned int inner_hlen = hdr.network - skb->data;
2920 		unsigned int h_offset = inner_hlen;
2921 
2922 		/* this function updates h_offset to the end of the header */
2923 		l4_proto =
2924 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2925 		/* hlen will contain our best estimate of the tcp header */
2926 		hlen = h_offset - inner_hlen;
2927 	}
2928 
2929 	if (l4_proto != IPPROTO_TCP)
2930 		return;
2931 
2932 	th = (struct tcphdr *)(hdr.network + hlen);
2933 
2934 	/* Due to lack of space, no more new filters can be programmed */
2935 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2936 		return;
2937 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2938 		/* HW ATR eviction will take care of removing filters on FIN
2939 		 * and RST packets.
2940 		 */
2941 		if (th->fin || th->rst)
2942 			return;
2943 	}
2944 
2945 	tx_ring->atr_count++;
2946 
2947 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2948 	if (!th->fin &&
2949 	    !th->syn &&
2950 	    !th->rst &&
2951 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2952 		return;
2953 
2954 	tx_ring->atr_count = 0;
2955 
2956 	/* grab the next descriptor */
2957 	i = tx_ring->next_to_use;
2958 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2959 
2960 	i++;
2961 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2962 
2963 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2964 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2965 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2966 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2967 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2968 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2969 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2970 
2971 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2972 
2973 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2974 
2975 	dtype_cmd |= (th->fin || th->rst) ?
2976 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2977 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2978 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2979 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2980 
2981 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2982 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2983 
2984 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2985 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2986 
2987 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2988 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2989 		dtype_cmd |=
2990 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2991 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2992 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2993 	else
2994 		dtype_cmd |=
2995 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2996 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2997 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2998 
2999 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
3000 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
3001 
3002 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
3003 	fdir_desc->rsvd = cpu_to_le32(0);
3004 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
3005 	fdir_desc->fd_id = cpu_to_le32(0);
3006 }
3007 
3008 /**
3009  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
3010  * @skb:     send buffer
3011  * @tx_ring: ring to send buffer on
3012  * @flags:   the tx flags to be set
3013  *
3014  * Checks the skb and set up correspondingly several generic transmit flags
3015  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3016  *
3017  * Returns error code indicate the frame should be dropped upon error and the
3018  * otherwise  returns 0 to indicate the flags has been set properly.
3019  **/
3020 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3021 					     struct i40e_ring *tx_ring,
3022 					     u32 *flags)
3023 {
3024 	__be16 protocol = skb->protocol;
3025 	u32  tx_flags = 0;
3026 
3027 	if (protocol == htons(ETH_P_8021Q) &&
3028 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3029 		/* When HW VLAN acceleration is turned off by the user the
3030 		 * stack sets the protocol to 8021q so that the driver
3031 		 * can take any steps required to support the SW only
3032 		 * VLAN handling.  In our case the driver doesn't need
3033 		 * to take any further steps so just set the protocol
3034 		 * to the encapsulated ethertype.
3035 		 */
3036 		skb->protocol = vlan_get_protocol(skb);
3037 		goto out;
3038 	}
3039 
3040 	/* if we have a HW VLAN tag being added, default to the HW one */
3041 	if (skb_vlan_tag_present(skb)) {
3042 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3043 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3044 	/* else if it is a SW VLAN, check the next protocol and store the tag */
3045 	} else if (protocol == htons(ETH_P_8021Q)) {
3046 		struct vlan_hdr *vhdr, _vhdr;
3047 
3048 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3049 		if (!vhdr)
3050 			return -EINVAL;
3051 
3052 		protocol = vhdr->h_vlan_encapsulated_proto;
3053 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3054 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3055 	}
3056 
3057 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
3058 		goto out;
3059 
3060 	/* Insert 802.1p priority into VLAN header */
3061 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3062 	    (skb->priority != TC_PRIO_CONTROL)) {
3063 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3064 		tx_flags |= (skb->priority & 0x7) <<
3065 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3066 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3067 			struct vlan_ethhdr *vhdr;
3068 			int rc;
3069 
3070 			rc = skb_cow_head(skb, 0);
3071 			if (rc < 0)
3072 				return rc;
3073 			vhdr = skb_vlan_eth_hdr(skb);
3074 			vhdr->h_vlan_TCI = htons(tx_flags >>
3075 						 I40E_TX_FLAGS_VLAN_SHIFT);
3076 		} else {
3077 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3078 		}
3079 	}
3080 
3081 out:
3082 	*flags = tx_flags;
3083 	return 0;
3084 }
3085 
3086 /**
3087  * i40e_tso - set up the tso context descriptor
3088  * @first:    pointer to first Tx buffer for xmit
3089  * @hdr_len:  ptr to the size of the packet header
3090  * @cd_type_cmd_tso_mss: Quad Word 1
3091  *
3092  * Returns 0 if no TSO can happen, 1 if tso is going, or error
3093  **/
3094 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3095 		    u64 *cd_type_cmd_tso_mss)
3096 {
3097 	struct sk_buff *skb = first->skb;
3098 	u64 cd_cmd, cd_tso_len, cd_mss;
3099 	__be16 protocol;
3100 	union {
3101 		struct iphdr *v4;
3102 		struct ipv6hdr *v6;
3103 		unsigned char *hdr;
3104 	} ip;
3105 	union {
3106 		struct tcphdr *tcp;
3107 		struct udphdr *udp;
3108 		unsigned char *hdr;
3109 	} l4;
3110 	u32 paylen, l4_offset;
3111 	u16 gso_size;
3112 	int err;
3113 
3114 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3115 		return 0;
3116 
3117 	if (!skb_is_gso(skb))
3118 		return 0;
3119 
3120 	err = skb_cow_head(skb, 0);
3121 	if (err < 0)
3122 		return err;
3123 
3124 	protocol = vlan_get_protocol(skb);
3125 
3126 	if (eth_p_mpls(protocol))
3127 		ip.hdr = skb_inner_network_header(skb);
3128 	else
3129 		ip.hdr = skb_network_header(skb);
3130 	l4.hdr = skb_checksum_start(skb);
3131 
3132 	/* initialize outer IP header fields */
3133 	if (ip.v4->version == 4) {
3134 		ip.v4->tot_len = 0;
3135 		ip.v4->check = 0;
3136 
3137 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3138 	} else {
3139 		ip.v6->payload_len = 0;
3140 		first->tx_flags |= I40E_TX_FLAGS_TSO;
3141 	}
3142 
3143 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3144 					 SKB_GSO_GRE_CSUM |
3145 					 SKB_GSO_IPXIP4 |
3146 					 SKB_GSO_IPXIP6 |
3147 					 SKB_GSO_UDP_TUNNEL |
3148 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3149 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3150 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3151 			l4.udp->len = 0;
3152 
3153 			/* determine offset of outer transport header */
3154 			l4_offset = l4.hdr - skb->data;
3155 
3156 			/* remove payload length from outer checksum */
3157 			paylen = skb->len - l4_offset;
3158 			csum_replace_by_diff(&l4.udp->check,
3159 					     (__force __wsum)htonl(paylen));
3160 		}
3161 
3162 		/* reset pointers to inner headers */
3163 		ip.hdr = skb_inner_network_header(skb);
3164 		l4.hdr = skb_inner_transport_header(skb);
3165 
3166 		/* initialize inner IP header fields */
3167 		if (ip.v4->version == 4) {
3168 			ip.v4->tot_len = 0;
3169 			ip.v4->check = 0;
3170 		} else {
3171 			ip.v6->payload_len = 0;
3172 		}
3173 	}
3174 
3175 	/* determine offset of inner transport header */
3176 	l4_offset = l4.hdr - skb->data;
3177 
3178 	/* remove payload length from inner checksum */
3179 	paylen = skb->len - l4_offset;
3180 
3181 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3182 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3183 		/* compute length of segmentation header */
3184 		*hdr_len = sizeof(*l4.udp) + l4_offset;
3185 	} else {
3186 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3187 		/* compute length of segmentation header */
3188 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3189 	}
3190 
3191 	/* pull values out of skb_shinfo */
3192 	gso_size = skb_shinfo(skb)->gso_size;
3193 
3194 	/* update GSO size and bytecount with header size */
3195 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3196 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3197 
3198 	/* find the field values */
3199 	cd_cmd = I40E_TX_CTX_DESC_TSO;
3200 	cd_tso_len = skb->len - *hdr_len;
3201 	cd_mss = gso_size;
3202 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3203 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3204 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3205 	return 1;
3206 }
3207 
3208 /**
3209  * i40e_tsyn - set up the tsyn context descriptor
3210  * @tx_ring:  ptr to the ring to send
3211  * @skb:      ptr to the skb we're sending
3212  * @tx_flags: the collected send information
3213  * @cd_type_cmd_tso_mss: Quad Word 1
3214  *
3215  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3216  **/
3217 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3218 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3219 {
3220 	struct i40e_pf *pf;
3221 
3222 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3223 		return 0;
3224 
3225 	/* Tx timestamps cannot be sampled when doing TSO */
3226 	if (tx_flags & I40E_TX_FLAGS_TSO)
3227 		return 0;
3228 
3229 	/* only timestamp the outbound packet if the user has requested it and
3230 	 * we are not already transmitting a packet to be timestamped
3231 	 */
3232 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3233 	if (!(pf->flags & I40E_FLAG_PTP))
3234 		return 0;
3235 
3236 	if (pf->ptp_tx &&
3237 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3238 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3239 		pf->ptp_tx_start = jiffies;
3240 		pf->ptp_tx_skb = skb_get(skb);
3241 	} else {
3242 		pf->tx_hwtstamp_skipped++;
3243 		return 0;
3244 	}
3245 
3246 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3247 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3248 
3249 	return 1;
3250 }
3251 
3252 /**
3253  * i40e_tx_enable_csum - Enable Tx checksum offloads
3254  * @skb: send buffer
3255  * @tx_flags: pointer to Tx flags currently set
3256  * @td_cmd: Tx descriptor command bits to set
3257  * @td_offset: Tx descriptor header offsets to set
3258  * @tx_ring: Tx descriptor ring
3259  * @cd_tunneling: ptr to context desc bits
3260  **/
3261 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3262 			       u32 *td_cmd, u32 *td_offset,
3263 			       struct i40e_ring *tx_ring,
3264 			       u32 *cd_tunneling)
3265 {
3266 	union {
3267 		struct iphdr *v4;
3268 		struct ipv6hdr *v6;
3269 		unsigned char *hdr;
3270 	} ip;
3271 	union {
3272 		struct tcphdr *tcp;
3273 		struct udphdr *udp;
3274 		unsigned char *hdr;
3275 	} l4;
3276 	unsigned char *exthdr;
3277 	u32 offset, cmd = 0;
3278 	__be16 frag_off;
3279 	__be16 protocol;
3280 	u8 l4_proto = 0;
3281 
3282 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3283 		return 0;
3284 
3285 	protocol = vlan_get_protocol(skb);
3286 
3287 	if (eth_p_mpls(protocol)) {
3288 		ip.hdr = skb_inner_network_header(skb);
3289 		l4.hdr = skb_checksum_start(skb);
3290 	} else {
3291 		ip.hdr = skb_network_header(skb);
3292 		l4.hdr = skb_transport_header(skb);
3293 	}
3294 
3295 	/* set the tx_flags to indicate the IP protocol type. this is
3296 	 * required so that checksum header computation below is accurate.
3297 	 */
3298 	if (ip.v4->version == 4)
3299 		*tx_flags |= I40E_TX_FLAGS_IPV4;
3300 	else
3301 		*tx_flags |= I40E_TX_FLAGS_IPV6;
3302 
3303 	/* compute outer L2 header size */
3304 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3305 
3306 	if (skb->encapsulation) {
3307 		u32 tunnel = 0;
3308 		/* define outer network header type */
3309 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3310 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3311 				  I40E_TX_CTX_EXT_IP_IPV4 :
3312 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3313 
3314 			l4_proto = ip.v4->protocol;
3315 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3316 			int ret;
3317 
3318 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3319 
3320 			exthdr = ip.hdr + sizeof(*ip.v6);
3321 			l4_proto = ip.v6->nexthdr;
3322 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3323 					       &l4_proto, &frag_off);
3324 			if (ret < 0)
3325 				return -1;
3326 		}
3327 
3328 		/* define outer transport */
3329 		switch (l4_proto) {
3330 		case IPPROTO_UDP:
3331 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3332 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3333 			break;
3334 		case IPPROTO_GRE:
3335 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3336 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3337 			break;
3338 		case IPPROTO_IPIP:
3339 		case IPPROTO_IPV6:
3340 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3341 			l4.hdr = skb_inner_network_header(skb);
3342 			break;
3343 		default:
3344 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3345 				return -1;
3346 
3347 			skb_checksum_help(skb);
3348 			return 0;
3349 		}
3350 
3351 		/* compute outer L3 header size */
3352 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3353 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3354 
3355 		/* switch IP header pointer from outer to inner header */
3356 		ip.hdr = skb_inner_network_header(skb);
3357 
3358 		/* compute tunnel header size */
3359 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3360 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3361 
3362 		/* indicate if we need to offload outer UDP header */
3363 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3364 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3365 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3366 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3367 
3368 		/* record tunnel offload values */
3369 		*cd_tunneling |= tunnel;
3370 
3371 		/* switch L4 header pointer from outer to inner */
3372 		l4.hdr = skb_inner_transport_header(skb);
3373 		l4_proto = 0;
3374 
3375 		/* reset type as we transition from outer to inner headers */
3376 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3377 		if (ip.v4->version == 4)
3378 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3379 		if (ip.v6->version == 6)
3380 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3381 	}
3382 
3383 	/* Enable IP checksum offloads */
3384 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3385 		l4_proto = ip.v4->protocol;
3386 		/* the stack computes the IP header already, the only time we
3387 		 * need the hardware to recompute it is in the case of TSO.
3388 		 */
3389 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3390 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3391 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3392 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3393 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3394 
3395 		exthdr = ip.hdr + sizeof(*ip.v6);
3396 		l4_proto = ip.v6->nexthdr;
3397 		if (l4.hdr != exthdr)
3398 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3399 					 &l4_proto, &frag_off);
3400 	}
3401 
3402 	/* compute inner L3 header size */
3403 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3404 
3405 	/* Enable L4 checksum offloads */
3406 	switch (l4_proto) {
3407 	case IPPROTO_TCP:
3408 		/* enable checksum offloads */
3409 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3410 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3411 		break;
3412 	case IPPROTO_SCTP:
3413 		/* enable SCTP checksum offload */
3414 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3415 		offset |= (sizeof(struct sctphdr) >> 2) <<
3416 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3417 		break;
3418 	case IPPROTO_UDP:
3419 		/* enable UDP checksum offload */
3420 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3421 		offset |= (sizeof(struct udphdr) >> 2) <<
3422 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3423 		break;
3424 	default:
3425 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3426 			return -1;
3427 		skb_checksum_help(skb);
3428 		return 0;
3429 	}
3430 
3431 	*td_cmd |= cmd;
3432 	*td_offset |= offset;
3433 
3434 	return 1;
3435 }
3436 
3437 /**
3438  * i40e_create_tx_ctx - Build the Tx context descriptor
3439  * @tx_ring:  ring to create the descriptor on
3440  * @cd_type_cmd_tso_mss: Quad Word 1
3441  * @cd_tunneling: Quad Word 0 - bits 0-31
3442  * @cd_l2tag2: Quad Word 0 - bits 32-63
3443  **/
3444 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3445 			       const u64 cd_type_cmd_tso_mss,
3446 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3447 {
3448 	struct i40e_tx_context_desc *context_desc;
3449 	int i = tx_ring->next_to_use;
3450 
3451 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3452 	    !cd_tunneling && !cd_l2tag2)
3453 		return;
3454 
3455 	/* grab the next descriptor */
3456 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3457 
3458 	i++;
3459 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3460 
3461 	/* cpu_to_le32 and assign to struct fields */
3462 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3463 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3464 	context_desc->rsvd = cpu_to_le16(0);
3465 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3466 }
3467 
3468 /**
3469  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3470  * @tx_ring: the ring to be checked
3471  * @size:    the size buffer we want to assure is available
3472  *
3473  * Returns -EBUSY if a stop is needed, else 0
3474  **/
3475 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3476 {
3477 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3478 	/* Memory barrier before checking head and tail */
3479 	smp_mb();
3480 
3481 	++tx_ring->tx_stats.tx_stopped;
3482 
3483 	/* Check again in a case another CPU has just made room available. */
3484 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3485 		return -EBUSY;
3486 
3487 	/* A reprieve! - use start_queue because it doesn't call schedule */
3488 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3489 	++tx_ring->tx_stats.restart_queue;
3490 	return 0;
3491 }
3492 
3493 /**
3494  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3495  * @skb:      send buffer
3496  *
3497  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3498  * and so we need to figure out the cases where we need to linearize the skb.
3499  *
3500  * For TSO we need to count the TSO header and segment payload separately.
3501  * As such we need to check cases where we have 7 fragments or more as we
3502  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3503  * the segment payload in the first descriptor, and another 7 for the
3504  * fragments.
3505  **/
3506 bool __i40e_chk_linearize(struct sk_buff *skb)
3507 {
3508 	const skb_frag_t *frag, *stale;
3509 	int nr_frags, sum;
3510 
3511 	/* no need to check if number of frags is less than 7 */
3512 	nr_frags = skb_shinfo(skb)->nr_frags;
3513 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3514 		return false;
3515 
3516 	/* We need to walk through the list and validate that each group
3517 	 * of 6 fragments totals at least gso_size.
3518 	 */
3519 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3520 	frag = &skb_shinfo(skb)->frags[0];
3521 
3522 	/* Initialize size to the negative value of gso_size minus 1.  We
3523 	 * use this as the worst case scenerio in which the frag ahead
3524 	 * of us only provides one byte which is why we are limited to 6
3525 	 * descriptors for a single transmit as the header and previous
3526 	 * fragment are already consuming 2 descriptors.
3527 	 */
3528 	sum = 1 - skb_shinfo(skb)->gso_size;
3529 
3530 	/* Add size of frags 0 through 4 to create our initial sum */
3531 	sum += skb_frag_size(frag++);
3532 	sum += skb_frag_size(frag++);
3533 	sum += skb_frag_size(frag++);
3534 	sum += skb_frag_size(frag++);
3535 	sum += skb_frag_size(frag++);
3536 
3537 	/* Walk through fragments adding latest fragment, testing it, and
3538 	 * then removing stale fragments from the sum.
3539 	 */
3540 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3541 		int stale_size = skb_frag_size(stale);
3542 
3543 		sum += skb_frag_size(frag++);
3544 
3545 		/* The stale fragment may present us with a smaller
3546 		 * descriptor than the actual fragment size. To account
3547 		 * for that we need to remove all the data on the front and
3548 		 * figure out what the remainder would be in the last
3549 		 * descriptor associated with the fragment.
3550 		 */
3551 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3552 			int align_pad = -(skb_frag_off(stale)) &
3553 					(I40E_MAX_READ_REQ_SIZE - 1);
3554 
3555 			sum -= align_pad;
3556 			stale_size -= align_pad;
3557 
3558 			do {
3559 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3560 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3561 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3562 		}
3563 
3564 		/* if sum is negative we failed to make sufficient progress */
3565 		if (sum < 0)
3566 			return true;
3567 
3568 		if (!nr_frags--)
3569 			break;
3570 
3571 		sum -= stale_size;
3572 	}
3573 
3574 	return false;
3575 }
3576 
3577 /**
3578  * i40e_tx_map - Build the Tx descriptor
3579  * @tx_ring:  ring to send buffer on
3580  * @skb:      send buffer
3581  * @first:    first buffer info buffer to use
3582  * @tx_flags: collected send information
3583  * @hdr_len:  size of the packet header
3584  * @td_cmd:   the command field in the descriptor
3585  * @td_offset: offset for checksum or crc
3586  *
3587  * Returns 0 on success, -1 on failure to DMA
3588  **/
3589 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3590 			      struct i40e_tx_buffer *first, u32 tx_flags,
3591 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3592 {
3593 	unsigned int data_len = skb->data_len;
3594 	unsigned int size = skb_headlen(skb);
3595 	skb_frag_t *frag;
3596 	struct i40e_tx_buffer *tx_bi;
3597 	struct i40e_tx_desc *tx_desc;
3598 	u16 i = tx_ring->next_to_use;
3599 	u32 td_tag = 0;
3600 	dma_addr_t dma;
3601 	u16 desc_count = 1;
3602 
3603 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3604 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3605 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3606 			 I40E_TX_FLAGS_VLAN_SHIFT;
3607 	}
3608 
3609 	first->tx_flags = tx_flags;
3610 
3611 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3612 
3613 	tx_desc = I40E_TX_DESC(tx_ring, i);
3614 	tx_bi = first;
3615 
3616 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3617 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3618 
3619 		if (dma_mapping_error(tx_ring->dev, dma))
3620 			goto dma_error;
3621 
3622 		/* record length, and DMA address */
3623 		dma_unmap_len_set(tx_bi, len, size);
3624 		dma_unmap_addr_set(tx_bi, dma, dma);
3625 
3626 		/* align size to end of page */
3627 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3628 		tx_desc->buffer_addr = cpu_to_le64(dma);
3629 
3630 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3631 			tx_desc->cmd_type_offset_bsz =
3632 				build_ctob(td_cmd, td_offset,
3633 					   max_data, td_tag);
3634 
3635 			tx_desc++;
3636 			i++;
3637 			desc_count++;
3638 
3639 			if (i == tx_ring->count) {
3640 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3641 				i = 0;
3642 			}
3643 
3644 			dma += max_data;
3645 			size -= max_data;
3646 
3647 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3648 			tx_desc->buffer_addr = cpu_to_le64(dma);
3649 		}
3650 
3651 		if (likely(!data_len))
3652 			break;
3653 
3654 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3655 							  size, td_tag);
3656 
3657 		tx_desc++;
3658 		i++;
3659 		desc_count++;
3660 
3661 		if (i == tx_ring->count) {
3662 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3663 			i = 0;
3664 		}
3665 
3666 		size = skb_frag_size(frag);
3667 		data_len -= size;
3668 
3669 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3670 				       DMA_TO_DEVICE);
3671 
3672 		tx_bi = &tx_ring->tx_bi[i];
3673 	}
3674 
3675 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3676 
3677 	i++;
3678 	if (i == tx_ring->count)
3679 		i = 0;
3680 
3681 	tx_ring->next_to_use = i;
3682 
3683 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3684 
3685 	/* write last descriptor with EOP bit */
3686 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3687 
3688 	/* We OR these values together to check both against 4 (WB_STRIDE)
3689 	 * below. This is safe since we don't re-use desc_count afterwards.
3690 	 */
3691 	desc_count |= ++tx_ring->packet_stride;
3692 
3693 	if (desc_count >= WB_STRIDE) {
3694 		/* write last descriptor with RS bit set */
3695 		td_cmd |= I40E_TX_DESC_CMD_RS;
3696 		tx_ring->packet_stride = 0;
3697 	}
3698 
3699 	tx_desc->cmd_type_offset_bsz =
3700 			build_ctob(td_cmd, td_offset, size, td_tag);
3701 
3702 	skb_tx_timestamp(skb);
3703 
3704 	/* Force memory writes to complete before letting h/w know there
3705 	 * are new descriptors to fetch.
3706 	 *
3707 	 * We also use this memory barrier to make certain all of the
3708 	 * status bits have been updated before next_to_watch is written.
3709 	 */
3710 	wmb();
3711 
3712 	/* set next_to_watch value indicating a packet is present */
3713 	first->next_to_watch = tx_desc;
3714 
3715 	/* notify HW of packet */
3716 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3717 		writel(i, tx_ring->tail);
3718 	}
3719 
3720 	return 0;
3721 
3722 dma_error:
3723 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3724 
3725 	/* clear dma mappings for failed tx_bi map */
3726 	for (;;) {
3727 		tx_bi = &tx_ring->tx_bi[i];
3728 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3729 		if (tx_bi == first)
3730 			break;
3731 		if (i == 0)
3732 			i = tx_ring->count;
3733 		i--;
3734 	}
3735 
3736 	tx_ring->next_to_use = i;
3737 
3738 	return -1;
3739 }
3740 
3741 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3742 				  const struct sk_buff *skb,
3743 				  u16 num_tx_queues)
3744 {
3745 	u32 jhash_initval_salt = 0xd631614b;
3746 	u32 hash;
3747 
3748 	if (skb->sk && skb->sk->sk_hash)
3749 		hash = skb->sk->sk_hash;
3750 	else
3751 		hash = (__force u16)skb->protocol ^ skb->hash;
3752 
3753 	hash = jhash_1word(hash, jhash_initval_salt);
3754 
3755 	return (u16)(((u64)hash * num_tx_queues) >> 32);
3756 }
3757 
3758 u16 i40e_lan_select_queue(struct net_device *netdev,
3759 			  struct sk_buff *skb,
3760 			  struct net_device __always_unused *sb_dev)
3761 {
3762 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3763 	struct i40e_vsi *vsi = np->vsi;
3764 	struct i40e_hw *hw;
3765 	u16 qoffset;
3766 	u16 qcount;
3767 	u8 tclass;
3768 	u16 hash;
3769 	u8 prio;
3770 
3771 	/* is DCB enabled at all? */
3772 	if (vsi->tc_config.numtc == 1 ||
3773 	    i40e_is_tc_mqprio_enabled(vsi->back))
3774 		return netdev_pick_tx(netdev, skb, sb_dev);
3775 
3776 	prio = skb->priority;
3777 	hw = &vsi->back->hw;
3778 	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3779 	/* sanity check */
3780 	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3781 		tclass = 0;
3782 
3783 	/* select a queue assigned for the given TC */
3784 	qcount = vsi->tc_config.tc_info[tclass].qcount;
3785 	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3786 
3787 	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3788 	return qoffset + hash;
3789 }
3790 
3791 /**
3792  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3793  * @xdpf: data to transmit
3794  * @xdp_ring: XDP Tx ring
3795  **/
3796 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3797 			      struct i40e_ring *xdp_ring)
3798 {
3799 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3800 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3801 	u16 i = 0, index = xdp_ring->next_to_use;
3802 	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3803 	struct i40e_tx_buffer *tx_bi = tx_head;
3804 	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3805 	void *data = xdpf->data;
3806 	u32 size = xdpf->len;
3807 
3808 	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3809 		xdp_ring->tx_stats.tx_busy++;
3810 		return I40E_XDP_CONSUMED;
3811 	}
3812 
3813 	tx_head->bytecount = xdp_get_frame_len(xdpf);
3814 	tx_head->gso_segs = 1;
3815 	tx_head->xdpf = xdpf;
3816 
3817 	for (;;) {
3818 		dma_addr_t dma;
3819 
3820 		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3821 		if (dma_mapping_error(xdp_ring->dev, dma))
3822 			goto unmap;
3823 
3824 		/* record length, and DMA address */
3825 		dma_unmap_len_set(tx_bi, len, size);
3826 		dma_unmap_addr_set(tx_bi, dma, dma);
3827 
3828 		tx_desc->buffer_addr = cpu_to_le64(dma);
3829 		tx_desc->cmd_type_offset_bsz =
3830 			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3831 
3832 		if (++index == xdp_ring->count)
3833 			index = 0;
3834 
3835 		if (i == nr_frags)
3836 			break;
3837 
3838 		tx_bi = &xdp_ring->tx_bi[index];
3839 		tx_desc = I40E_TX_DESC(xdp_ring, index);
3840 
3841 		data = skb_frag_address(&sinfo->frags[i]);
3842 		size = skb_frag_size(&sinfo->frags[i]);
3843 		i++;
3844 	}
3845 
3846 	tx_desc->cmd_type_offset_bsz |=
3847 		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3848 
3849 	/* Make certain all of the status bits have been updated
3850 	 * before next_to_watch is written.
3851 	 */
3852 	smp_wmb();
3853 
3854 	xdp_ring->xdp_tx_active++;
3855 
3856 	tx_head->next_to_watch = tx_desc;
3857 	xdp_ring->next_to_use = index;
3858 
3859 	return I40E_XDP_TX;
3860 
3861 unmap:
3862 	for (;;) {
3863 		tx_bi = &xdp_ring->tx_bi[index];
3864 		if (dma_unmap_len(tx_bi, len))
3865 			dma_unmap_page(xdp_ring->dev,
3866 				       dma_unmap_addr(tx_bi, dma),
3867 				       dma_unmap_len(tx_bi, len),
3868 				       DMA_TO_DEVICE);
3869 		dma_unmap_len_set(tx_bi, len, 0);
3870 		if (tx_bi == tx_head)
3871 			break;
3872 
3873 		if (!index)
3874 			index += xdp_ring->count;
3875 		index--;
3876 	}
3877 
3878 	return I40E_XDP_CONSUMED;
3879 }
3880 
3881 /**
3882  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3883  * @skb:     send buffer
3884  * @tx_ring: ring to send buffer on
3885  *
3886  * Returns NETDEV_TX_OK if sent, else an error code
3887  **/
3888 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3889 					struct i40e_ring *tx_ring)
3890 {
3891 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3892 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3893 	struct i40e_tx_buffer *first;
3894 	u32 td_offset = 0;
3895 	u32 tx_flags = 0;
3896 	u32 td_cmd = 0;
3897 	u8 hdr_len = 0;
3898 	int tso, count;
3899 	int tsyn;
3900 
3901 	/* prefetch the data, we'll need it later */
3902 	prefetch(skb->data);
3903 
3904 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3905 
3906 	count = i40e_xmit_descriptor_count(skb);
3907 	if (i40e_chk_linearize(skb, count)) {
3908 		if (__skb_linearize(skb)) {
3909 			dev_kfree_skb_any(skb);
3910 			return NETDEV_TX_OK;
3911 		}
3912 		count = i40e_txd_use_count(skb->len);
3913 		tx_ring->tx_stats.tx_linearize++;
3914 	}
3915 
3916 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3917 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3918 	 *       + 4 desc gap to avoid the cache line where head is,
3919 	 *       + 1 desc for context descriptor,
3920 	 * otherwise try next time
3921 	 */
3922 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3923 		tx_ring->tx_stats.tx_busy++;
3924 		return NETDEV_TX_BUSY;
3925 	}
3926 
3927 	/* record the location of the first descriptor for this packet */
3928 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3929 	first->skb = skb;
3930 	first->bytecount = skb->len;
3931 	first->gso_segs = 1;
3932 
3933 	/* prepare the xmit flags */
3934 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3935 		goto out_drop;
3936 
3937 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3938 
3939 	if (tso < 0)
3940 		goto out_drop;
3941 	else if (tso)
3942 		tx_flags |= I40E_TX_FLAGS_TSO;
3943 
3944 	/* Always offload the checksum, since it's in the data descriptor */
3945 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3946 				  tx_ring, &cd_tunneling);
3947 	if (tso < 0)
3948 		goto out_drop;
3949 
3950 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3951 
3952 	if (tsyn)
3953 		tx_flags |= I40E_TX_FLAGS_TSYN;
3954 
3955 	/* always enable CRC insertion offload */
3956 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3957 
3958 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3959 			   cd_tunneling, cd_l2tag2);
3960 
3961 	/* Add Flow Director ATR if it's enabled.
3962 	 *
3963 	 * NOTE: this must always be directly before the data descriptor.
3964 	 */
3965 	i40e_atr(tx_ring, skb, tx_flags);
3966 
3967 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3968 			td_cmd, td_offset))
3969 		goto cleanup_tx_tstamp;
3970 
3971 	return NETDEV_TX_OK;
3972 
3973 out_drop:
3974 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3975 	dev_kfree_skb_any(first->skb);
3976 	first->skb = NULL;
3977 cleanup_tx_tstamp:
3978 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3979 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3980 
3981 		dev_kfree_skb_any(pf->ptp_tx_skb);
3982 		pf->ptp_tx_skb = NULL;
3983 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3984 	}
3985 
3986 	return NETDEV_TX_OK;
3987 }
3988 
3989 /**
3990  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3991  * @skb:    send buffer
3992  * @netdev: network interface device structure
3993  *
3994  * Returns NETDEV_TX_OK if sent, else an error code
3995  **/
3996 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3997 {
3998 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3999 	struct i40e_vsi *vsi = np->vsi;
4000 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
4001 
4002 	/* hardware can't handle really short frames, hardware padding works
4003 	 * beyond this point
4004 	 */
4005 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
4006 		return NETDEV_TX_OK;
4007 
4008 	return i40e_xmit_frame_ring(skb, tx_ring);
4009 }
4010 
4011 /**
4012  * i40e_xdp_xmit - Implements ndo_xdp_xmit
4013  * @dev: netdev
4014  * @n: number of frames
4015  * @frames: array of XDP buffer pointers
4016  * @flags: XDP extra info
4017  *
4018  * Returns number of frames successfully sent. Failed frames
4019  * will be free'ed by XDP core.
4020  *
4021  * For error cases, a negative errno code is returned and no-frames
4022  * are transmitted (caller must handle freeing frames).
4023  **/
4024 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4025 		  u32 flags)
4026 {
4027 	struct i40e_netdev_priv *np = netdev_priv(dev);
4028 	unsigned int queue_index = smp_processor_id();
4029 	struct i40e_vsi *vsi = np->vsi;
4030 	struct i40e_pf *pf = vsi->back;
4031 	struct i40e_ring *xdp_ring;
4032 	int nxmit = 0;
4033 	int i;
4034 
4035 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4036 		return -ENETDOWN;
4037 
4038 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4039 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4040 		return -ENXIO;
4041 
4042 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4043 		return -EINVAL;
4044 
4045 	xdp_ring = vsi->xdp_rings[queue_index];
4046 
4047 	for (i = 0; i < n; i++) {
4048 		struct xdp_frame *xdpf = frames[i];
4049 		int err;
4050 
4051 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4052 		if (err != I40E_XDP_TX)
4053 			break;
4054 		nxmit++;
4055 	}
4056 
4057 	if (unlikely(flags & XDP_XMIT_FLUSH))
4058 		i40e_xdp_ring_update_tail(xdp_ring);
4059 
4060 	return nxmit;
4061 }
4062