xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c (revision 6417f03132a6952cd17ddd8eaddbac92b61b17e0)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18 				  unsigned long delay);
19 
20 static struct hnae3_ae_algo ae_algovf;
21 
22 static struct workqueue_struct *hclgevf_wq;
23 
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28 	/* required last entry */
29 	{0, }
30 };
31 
32 static const u8 hclgevf_hash_key[] = {
33 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39 
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41 
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
44 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
45 					 HCLGEVF_CMDQ_TX_TAIL_REG,
46 					 HCLGEVF_CMDQ_TX_HEAD_REG,
47 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
48 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
49 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
50 					 HCLGEVF_CMDQ_RX_TAIL_REG,
51 					 HCLGEVF_CMDQ_RX_HEAD_REG,
52 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54 					 HCLGEVF_CMDQ_INTR_EN_REG,
55 					 HCLGEVF_CMDQ_INTR_GEN_REG};
56 
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58 					   HCLGEVF_RST_ING,
59 					   HCLGEVF_GRO_EN_REG};
60 
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62 					 HCLGEVF_RING_RX_ADDR_H_REG,
63 					 HCLGEVF_RING_RX_BD_NUM_REG,
64 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
65 					 HCLGEVF_RING_RX_MERGE_EN_REG,
66 					 HCLGEVF_RING_RX_TAIL_REG,
67 					 HCLGEVF_RING_RX_HEAD_REG,
68 					 HCLGEVF_RING_RX_FBD_NUM_REG,
69 					 HCLGEVF_RING_RX_OFFSET_REG,
70 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
71 					 HCLGEVF_RING_RX_STASH_REG,
72 					 HCLGEVF_RING_RX_BD_ERR_REG,
73 					 HCLGEVF_RING_TX_ADDR_L_REG,
74 					 HCLGEVF_RING_TX_ADDR_H_REG,
75 					 HCLGEVF_RING_TX_BD_NUM_REG,
76 					 HCLGEVF_RING_TX_PRIORITY_REG,
77 					 HCLGEVF_RING_TX_TC_REG,
78 					 HCLGEVF_RING_TX_MERGE_EN_REG,
79 					 HCLGEVF_RING_TX_TAIL_REG,
80 					 HCLGEVF_RING_TX_HEAD_REG,
81 					 HCLGEVF_RING_TX_FBD_NUM_REG,
82 					 HCLGEVF_RING_TX_OFFSET_REG,
83 					 HCLGEVF_RING_TX_EBD_NUM_REG,
84 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
85 					 HCLGEVF_RING_TX_BD_ERR_REG,
86 					 HCLGEVF_RING_EN_REG};
87 
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89 					     HCLGEVF_TQP_INTR_GL0_REG,
90 					     HCLGEVF_TQP_INTR_GL1_REG,
91 					     HCLGEVF_TQP_INTR_GL2_REG,
92 					     HCLGEVF_TQP_INTR_RL_REG};
93 
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96 	if (!handle->client)
97 		return container_of(handle, struct hclgevf_dev, nic);
98 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
99 		return container_of(handle, struct hclgevf_dev, roce);
100 	else
101 		return container_of(handle, struct hclgevf_dev, nic);
102 }
103 
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108 	struct hclgevf_desc desc;
109 	struct hclgevf_tqp *tqp;
110 	int status;
111 	int i;
112 
113 	for (i = 0; i < kinfo->num_tqps; i++) {
114 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115 		hclgevf_cmd_setup_basic_desc(&desc,
116 					     HCLGEVF_OPC_QUERY_RX_STATUS,
117 					     true);
118 
119 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121 		if (status) {
122 			dev_err(&hdev->pdev->dev,
123 				"Query tqp stat fail, status = %d,queue = %d\n",
124 				status,	i);
125 			return status;
126 		}
127 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128 			le32_to_cpu(desc.data[1]);
129 
130 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131 					     true);
132 
133 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135 		if (status) {
136 			dev_err(&hdev->pdev->dev,
137 				"Query tqp stat fail, status = %d,queue = %d\n",
138 				status, i);
139 			return status;
140 		}
141 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142 			le32_to_cpu(desc.data[1]);
143 	}
144 
145 	return 0;
146 }
147 
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151 	struct hclgevf_tqp *tqp;
152 	u64 *buff = data;
153 	int i;
154 
155 	for (i = 0; i < kinfo->num_tqps; i++) {
156 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158 	}
159 	for (i = 0; i < kinfo->num_tqps; i++) {
160 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162 	}
163 
164 	return buff;
165 }
166 
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 
171 	return kinfo->num_tqps * 2;
172 }
173 
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177 	u8 *buff = data;
178 	int i;
179 
180 	for (i = 0; i < kinfo->num_tqps; i++) {
181 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182 						       struct hclgevf_tqp, q);
183 		snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
184 			 tqp->index);
185 		buff += ETH_GSTRING_LEN;
186 	}
187 
188 	for (i = 0; i < kinfo->num_tqps; i++) {
189 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190 						       struct hclgevf_tqp, q);
191 		snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
192 			 tqp->index);
193 		buff += ETH_GSTRING_LEN;
194 	}
195 
196 	return buff;
197 }
198 
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200 				 struct net_device_stats *net_stats)
201 {
202 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203 	int status;
204 
205 	status = hclgevf_tqps_update_stats(handle);
206 	if (status)
207 		dev_err(&hdev->pdev->dev,
208 			"VF update of TQPS stats fail, status = %d.\n",
209 			status);
210 }
211 
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214 	if (strset == ETH_SS_TEST)
215 		return -EOPNOTSUPP;
216 	else if (strset == ETH_SS_STATS)
217 		return hclgevf_tqps_get_sset_count(handle, strset);
218 
219 	return 0;
220 }
221 
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223 				u8 *data)
224 {
225 	u8 *p = (char *)data;
226 
227 	if (strset == ETH_SS_STATS)
228 		p = hclgevf_tqps_get_strings(handle, p);
229 }
230 
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233 	hclgevf_tqps_get_stats(handle, data);
234 }
235 
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237 				   u8 subcode)
238 {
239 	if (msg) {
240 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241 		msg->code = code;
242 		msg->subcode = subcode;
243 	}
244 }
245 
246 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
247 {
248 	struct hclge_vf_to_pf_msg send_msg;
249 	u8 resp_msg;
250 	int status;
251 
252 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
253 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
254 				      sizeof(resp_msg));
255 	if (status) {
256 		dev_err(&hdev->pdev->dev,
257 			"VF request to get TC info from PF failed %d",
258 			status);
259 		return status;
260 	}
261 
262 	hdev->hw_tc_map = resp_msg;
263 
264 	return 0;
265 }
266 
267 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
268 {
269 	struct hnae3_handle *nic = &hdev->nic;
270 	struct hclge_vf_to_pf_msg send_msg;
271 	u8 resp_msg;
272 	int ret;
273 
274 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
275 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
276 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
277 				   sizeof(u8));
278 	if (ret) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get port based vlan state failed %d",
281 			ret);
282 		return ret;
283 	}
284 
285 	nic->port_base_vlan_state = resp_msg;
286 
287 	return 0;
288 }
289 
290 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
291 {
292 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
293 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
294 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
295 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
296 
297 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298 	struct hclge_vf_to_pf_msg send_msg;
299 	int status;
300 
301 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
302 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303 				      HCLGEVF_TQPS_RSS_INFO_LEN);
304 	if (status) {
305 		dev_err(&hdev->pdev->dev,
306 			"VF request to get tqp info from PF failed %d",
307 			status);
308 		return status;
309 	}
310 
311 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
312 	       sizeof(u16));
313 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
314 	       sizeof(u16));
315 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
316 	       sizeof(u16));
317 
318 	return 0;
319 }
320 
321 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
322 {
323 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
324 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
325 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
326 
327 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328 	struct hclge_vf_to_pf_msg send_msg;
329 	int ret;
330 
331 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
332 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
334 	if (ret) {
335 		dev_err(&hdev->pdev->dev,
336 			"VF request to get tqp depth info from PF failed %d",
337 			ret);
338 		return ret;
339 	}
340 
341 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
342 	       sizeof(u16));
343 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
344 	       sizeof(u16));
345 
346 	return 0;
347 }
348 
349 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
350 {
351 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352 	struct hclge_vf_to_pf_msg send_msg;
353 	u16 qid_in_pf = 0;
354 	u8 resp_data[2];
355 	int ret;
356 
357 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
358 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
359 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360 				   sizeof(resp_data));
361 	if (!ret)
362 		qid_in_pf = *(u16 *)resp_data;
363 
364 	return qid_in_pf;
365 }
366 
367 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
368 {
369 	struct hclge_vf_to_pf_msg send_msg;
370 	u8 resp_msg[2];
371 	int ret;
372 
373 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
374 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
375 				   sizeof(resp_msg));
376 	if (ret) {
377 		dev_err(&hdev->pdev->dev,
378 			"VF request to get the pf port media type failed %d",
379 			ret);
380 		return ret;
381 	}
382 
383 	hdev->hw.mac.media_type = resp_msg[0];
384 	hdev->hw.mac.module_type = resp_msg[1];
385 
386 	return 0;
387 }
388 
389 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
390 {
391 	struct hclgevf_tqp *tqp;
392 	int i;
393 
394 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
395 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
396 	if (!hdev->htqp)
397 		return -ENOMEM;
398 
399 	tqp = hdev->htqp;
400 
401 	for (i = 0; i < hdev->num_tqps; i++) {
402 		tqp->dev = &hdev->pdev->dev;
403 		tqp->index = i;
404 
405 		tqp->q.ae_algo = &ae_algovf;
406 		tqp->q.buf_size = hdev->rx_buf_len;
407 		tqp->q.tx_desc_num = hdev->num_tx_desc;
408 		tqp->q.rx_desc_num = hdev->num_rx_desc;
409 
410 		/* need an extended offset to configure queues >=
411 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
412 		 */
413 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
414 			tqp->q.io_base = hdev->hw.io_base +
415 					 HCLGEVF_TQP_REG_OFFSET +
416 					 i * HCLGEVF_TQP_REG_SIZE;
417 		else
418 			tqp->q.io_base = hdev->hw.io_base +
419 					 HCLGEVF_TQP_REG_OFFSET +
420 					 HCLGEVF_TQP_EXT_REG_OFFSET +
421 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
422 					 HCLGEVF_TQP_REG_SIZE;
423 
424 		tqp++;
425 	}
426 
427 	return 0;
428 }
429 
430 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
431 {
432 	struct hnae3_handle *nic = &hdev->nic;
433 	struct hnae3_knic_private_info *kinfo;
434 	u16 new_tqps = hdev->num_tqps;
435 	unsigned int i;
436 	u8 num_tc = 0;
437 
438 	kinfo = &nic->kinfo;
439 	kinfo->num_tx_desc = hdev->num_tx_desc;
440 	kinfo->num_rx_desc = hdev->num_rx_desc;
441 	kinfo->rx_buf_len = hdev->rx_buf_len;
442 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
443 		if (hdev->hw_tc_map & BIT(i))
444 			num_tc++;
445 
446 	num_tc = num_tc ? num_tc : 1;
447 	kinfo->tc_info.num_tc = num_tc;
448 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
449 	new_tqps = kinfo->rss_size * num_tc;
450 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
451 
452 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
453 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
454 	if (!kinfo->tqp)
455 		return -ENOMEM;
456 
457 	for (i = 0; i < kinfo->num_tqps; i++) {
458 		hdev->htqp[i].q.handle = &hdev->nic;
459 		hdev->htqp[i].q.tqp_index = i;
460 		kinfo->tqp[i] = &hdev->htqp[i].q;
461 	}
462 
463 	/* after init the max rss_size and tqps, adjust the default tqp numbers
464 	 * and rss size with the actual vector numbers
465 	 */
466 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
467 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
468 				kinfo->rss_size);
469 
470 	return 0;
471 }
472 
473 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
474 {
475 	struct hclge_vf_to_pf_msg send_msg;
476 	int status;
477 
478 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
479 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
480 	if (status)
481 		dev_err(&hdev->pdev->dev,
482 			"VF failed to fetch link status(%d) from PF", status);
483 }
484 
485 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
486 {
487 	struct hnae3_handle *rhandle = &hdev->roce;
488 	struct hnae3_handle *handle = &hdev->nic;
489 	struct hnae3_client *rclient;
490 	struct hnae3_client *client;
491 
492 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
493 		return;
494 
495 	client = handle->client;
496 	rclient = hdev->roce_client;
497 
498 	link_state =
499 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
500 
501 	if (link_state != hdev->hw.mac.link) {
502 		client->ops->link_status_change(handle, !!link_state);
503 		if (rclient && rclient->ops->link_status_change)
504 			rclient->ops->link_status_change(rhandle, !!link_state);
505 		hdev->hw.mac.link = link_state;
506 	}
507 
508 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
509 }
510 
511 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
512 {
513 #define HCLGEVF_ADVERTISING	0
514 #define HCLGEVF_SUPPORTED	1
515 
516 	struct hclge_vf_to_pf_msg send_msg;
517 
518 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
519 	send_msg.data[0] = HCLGEVF_ADVERTISING;
520 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
521 	send_msg.data[0] = HCLGEVF_SUPPORTED;
522 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
523 }
524 
525 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
526 {
527 	struct hnae3_handle *nic = &hdev->nic;
528 	int ret;
529 
530 	nic->ae_algo = &ae_algovf;
531 	nic->pdev = hdev->pdev;
532 	nic->numa_node_mask = hdev->numa_node_mask;
533 	nic->flags |= HNAE3_SUPPORT_VF;
534 
535 	ret = hclgevf_knic_setup(hdev);
536 	if (ret)
537 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
538 			ret);
539 	return ret;
540 }
541 
542 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
543 {
544 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
545 		dev_warn(&hdev->pdev->dev,
546 			 "vector(vector_id %d) has been freed.\n", vector_id);
547 		return;
548 	}
549 
550 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
551 	hdev->num_msi_left += 1;
552 	hdev->num_msi_used -= 1;
553 }
554 
555 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
556 			      struct hnae3_vector_info *vector_info)
557 {
558 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
559 	struct hnae3_vector_info *vector = vector_info;
560 	int alloc = 0;
561 	int i, j;
562 
563 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
564 	vector_num = min(hdev->num_msi_left, vector_num);
565 
566 	for (j = 0; j < vector_num; j++) {
567 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
568 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
569 				vector->vector = pci_irq_vector(hdev->pdev, i);
570 				vector->io_addr = hdev->hw.io_base +
571 					HCLGEVF_VECTOR_REG_BASE +
572 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
573 				hdev->vector_status[i] = 0;
574 				hdev->vector_irq[i] = vector->vector;
575 
576 				vector++;
577 				alloc++;
578 
579 				break;
580 			}
581 		}
582 	}
583 	hdev->num_msi_left -= alloc;
584 	hdev->num_msi_used += alloc;
585 
586 	return alloc;
587 }
588 
589 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
590 {
591 	int i;
592 
593 	for (i = 0; i < hdev->num_msi; i++)
594 		if (vector == hdev->vector_irq[i])
595 			return i;
596 
597 	return -EINVAL;
598 }
599 
600 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
601 				    const u8 hfunc, const u8 *key)
602 {
603 	struct hclgevf_rss_config_cmd *req;
604 	unsigned int key_offset = 0;
605 	struct hclgevf_desc desc;
606 	int key_counts;
607 	int key_size;
608 	int ret;
609 
610 	key_counts = HCLGEVF_RSS_KEY_SIZE;
611 	req = (struct hclgevf_rss_config_cmd *)desc.data;
612 
613 	while (key_counts) {
614 		hclgevf_cmd_setup_basic_desc(&desc,
615 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
616 					     false);
617 
618 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
619 		req->hash_config |=
620 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
621 
622 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
623 		memcpy(req->hash_key,
624 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
625 
626 		key_counts -= key_size;
627 		key_offset++;
628 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
629 		if (ret) {
630 			dev_err(&hdev->pdev->dev,
631 				"Configure RSS config fail, status = %d\n",
632 				ret);
633 			return ret;
634 		}
635 	}
636 
637 	return 0;
638 }
639 
640 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
641 {
642 	return HCLGEVF_RSS_KEY_SIZE;
643 }
644 
645 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
646 {
647 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
648 	struct hclgevf_rss_indirection_table_cmd *req;
649 	struct hclgevf_desc desc;
650 	int rss_cfg_tbl_num;
651 	int status;
652 	int i, j;
653 
654 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
655 	rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
656 			  HCLGEVF_RSS_CFG_TBL_SIZE;
657 
658 	for (i = 0; i < rss_cfg_tbl_num; i++) {
659 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
660 					     false);
661 		req->start_table_index =
662 			cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
663 		req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
664 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
665 			req->rss_result[j] =
666 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
667 
668 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
669 		if (status) {
670 			dev_err(&hdev->pdev->dev,
671 				"VF failed(=%d) to set RSS indirection table\n",
672 				status);
673 			return status;
674 		}
675 	}
676 
677 	return 0;
678 }
679 
680 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
681 {
682 	struct hclgevf_rss_tc_mode_cmd *req;
683 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
684 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
685 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
686 	struct hclgevf_desc desc;
687 	u16 roundup_size;
688 	unsigned int i;
689 	int status;
690 
691 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
692 
693 	roundup_size = roundup_pow_of_two(rss_size);
694 	roundup_size = ilog2(roundup_size);
695 
696 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
697 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
698 		tc_size[i] = roundup_size;
699 		tc_offset[i] = rss_size * i;
700 	}
701 
702 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
703 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
704 		u16 mode = 0;
705 
706 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
707 			      (tc_valid[i] & 0x1));
708 		hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
709 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
710 		hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
711 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
712 
713 		req->rss_tc_mode[i] = cpu_to_le16(mode);
714 	}
715 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
716 	if (status)
717 		dev_err(&hdev->pdev->dev,
718 			"VF failed(=%d) to set rss tc mode\n", status);
719 
720 	return status;
721 }
722 
723 /* for revision 0x20, vf shared the same rss config with pf */
724 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
725 {
726 #define HCLGEVF_RSS_MBX_RESP_LEN	8
727 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
728 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
729 	struct hclge_vf_to_pf_msg send_msg;
730 	u16 msg_num, hash_key_index;
731 	u8 index;
732 	int ret;
733 
734 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
735 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
736 			HCLGEVF_RSS_MBX_RESP_LEN;
737 	for (index = 0; index < msg_num; index++) {
738 		send_msg.data[0] = index;
739 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
740 					   HCLGEVF_RSS_MBX_RESP_LEN);
741 		if (ret) {
742 			dev_err(&hdev->pdev->dev,
743 				"VF get rss hash key from PF failed, ret=%d",
744 				ret);
745 			return ret;
746 		}
747 
748 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
749 		if (index == msg_num - 1)
750 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
751 			       &resp_msg[0],
752 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
753 		else
754 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
755 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
756 	}
757 
758 	return 0;
759 }
760 
761 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
762 			   u8 *hfunc)
763 {
764 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
765 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
766 	int i, ret;
767 
768 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
769 		/* Get hash algorithm */
770 		if (hfunc) {
771 			switch (rss_cfg->hash_algo) {
772 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
773 				*hfunc = ETH_RSS_HASH_TOP;
774 				break;
775 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
776 				*hfunc = ETH_RSS_HASH_XOR;
777 				break;
778 			default:
779 				*hfunc = ETH_RSS_HASH_UNKNOWN;
780 				break;
781 			}
782 		}
783 
784 		/* Get the RSS Key required by the user */
785 		if (key)
786 			memcpy(key, rss_cfg->rss_hash_key,
787 			       HCLGEVF_RSS_KEY_SIZE);
788 	} else {
789 		if (hfunc)
790 			*hfunc = ETH_RSS_HASH_TOP;
791 		if (key) {
792 			ret = hclgevf_get_rss_hash_key(hdev);
793 			if (ret)
794 				return ret;
795 			memcpy(key, rss_cfg->rss_hash_key,
796 			       HCLGEVF_RSS_KEY_SIZE);
797 		}
798 	}
799 
800 	if (indir)
801 		for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
802 			indir[i] = rss_cfg->rss_indirection_tbl[i];
803 
804 	return 0;
805 }
806 
807 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
808 			   const u8 *key, const u8 hfunc)
809 {
810 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
811 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
812 	int ret, i;
813 
814 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
815 		/* Set the RSS Hash Key if specififed by the user */
816 		if (key) {
817 			switch (hfunc) {
818 			case ETH_RSS_HASH_TOP:
819 				rss_cfg->hash_algo =
820 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
821 				break;
822 			case ETH_RSS_HASH_XOR:
823 				rss_cfg->hash_algo =
824 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
825 				break;
826 			case ETH_RSS_HASH_NO_CHANGE:
827 				break;
828 			default:
829 				return -EINVAL;
830 			}
831 
832 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
833 						       key);
834 			if (ret)
835 				return ret;
836 
837 			/* Update the shadow RSS key with user specified qids */
838 			memcpy(rss_cfg->rss_hash_key, key,
839 			       HCLGEVF_RSS_KEY_SIZE);
840 		}
841 	}
842 
843 	/* update the shadow RSS table with user specified qids */
844 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
845 		rss_cfg->rss_indirection_tbl[i] = indir[i];
846 
847 	/* update the hardware */
848 	return hclgevf_set_rss_indir_table(hdev);
849 }
850 
851 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
852 {
853 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
854 
855 	if (nfc->data & RXH_L4_B_2_3)
856 		hash_sets |= HCLGEVF_D_PORT_BIT;
857 	else
858 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
859 
860 	if (nfc->data & RXH_IP_SRC)
861 		hash_sets |= HCLGEVF_S_IP_BIT;
862 	else
863 		hash_sets &= ~HCLGEVF_S_IP_BIT;
864 
865 	if (nfc->data & RXH_IP_DST)
866 		hash_sets |= HCLGEVF_D_IP_BIT;
867 	else
868 		hash_sets &= ~HCLGEVF_D_IP_BIT;
869 
870 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
871 		hash_sets |= HCLGEVF_V_TAG_BIT;
872 
873 	return hash_sets;
874 }
875 
876 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
877 				      struct ethtool_rxnfc *nfc,
878 				      struct hclgevf_rss_input_tuple_cmd *req)
879 {
880 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
881 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
882 	u8 tuple_sets;
883 
884 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
885 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
886 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
887 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
888 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
889 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
890 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
891 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
892 
893 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
894 	switch (nfc->flow_type) {
895 	case TCP_V4_FLOW:
896 		req->ipv4_tcp_en = tuple_sets;
897 		break;
898 	case TCP_V6_FLOW:
899 		req->ipv6_tcp_en = tuple_sets;
900 		break;
901 	case UDP_V4_FLOW:
902 		req->ipv4_udp_en = tuple_sets;
903 		break;
904 	case UDP_V6_FLOW:
905 		req->ipv6_udp_en = tuple_sets;
906 		break;
907 	case SCTP_V4_FLOW:
908 		req->ipv4_sctp_en = tuple_sets;
909 		break;
910 	case SCTP_V6_FLOW:
911 		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
912 		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
913 			return -EINVAL;
914 
915 		req->ipv6_sctp_en = tuple_sets;
916 		break;
917 	case IPV4_FLOW:
918 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
919 		break;
920 	case IPV6_FLOW:
921 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
922 		break;
923 	default:
924 		return -EINVAL;
925 	}
926 
927 	return 0;
928 }
929 
930 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
931 				 struct ethtool_rxnfc *nfc)
932 {
933 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
934 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
935 	struct hclgevf_rss_input_tuple_cmd *req;
936 	struct hclgevf_desc desc;
937 	int ret;
938 
939 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
940 		return -EOPNOTSUPP;
941 
942 	if (nfc->data &
943 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
944 		return -EINVAL;
945 
946 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
947 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
948 
949 	ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
950 	if (ret) {
951 		dev_err(&hdev->pdev->dev,
952 			"failed to init rss tuple cmd, ret = %d\n", ret);
953 		return ret;
954 	}
955 
956 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
957 	if (ret) {
958 		dev_err(&hdev->pdev->dev,
959 			"Set rss tuple fail, status = %d\n", ret);
960 		return ret;
961 	}
962 
963 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
964 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
965 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
966 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
967 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
968 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
969 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
970 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
971 	return 0;
972 }
973 
974 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
975 					      int flow_type, u8 *tuple_sets)
976 {
977 	switch (flow_type) {
978 	case TCP_V4_FLOW:
979 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
980 		break;
981 	case UDP_V4_FLOW:
982 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
983 		break;
984 	case TCP_V6_FLOW:
985 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
986 		break;
987 	case UDP_V6_FLOW:
988 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
989 		break;
990 	case SCTP_V4_FLOW:
991 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
992 		break;
993 	case SCTP_V6_FLOW:
994 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
995 		break;
996 	case IPV4_FLOW:
997 	case IPV6_FLOW:
998 		*tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
999 		break;
1000 	default:
1001 		return -EINVAL;
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
1008 {
1009 	u64 tuple_data = 0;
1010 
1011 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
1012 		tuple_data |= RXH_L4_B_2_3;
1013 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
1014 		tuple_data |= RXH_L4_B_0_1;
1015 	if (tuple_sets & HCLGEVF_D_IP_BIT)
1016 		tuple_data |= RXH_IP_DST;
1017 	if (tuple_sets & HCLGEVF_S_IP_BIT)
1018 		tuple_data |= RXH_IP_SRC;
1019 
1020 	return tuple_data;
1021 }
1022 
1023 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
1024 				 struct ethtool_rxnfc *nfc)
1025 {
1026 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1027 	u8 tuple_sets;
1028 	int ret;
1029 
1030 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1031 		return -EOPNOTSUPP;
1032 
1033 	nfc->data = 0;
1034 
1035 	ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
1036 						 &tuple_sets);
1037 	if (ret || !tuple_sets)
1038 		return ret;
1039 
1040 	nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1041 
1042 	return 0;
1043 }
1044 
1045 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1046 				       struct hclgevf_rss_cfg *rss_cfg)
1047 {
1048 	struct hclgevf_rss_input_tuple_cmd *req;
1049 	struct hclgevf_desc desc;
1050 	int ret;
1051 
1052 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1053 
1054 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1055 
1056 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1057 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1058 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1059 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1060 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1061 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1062 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1063 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1064 
1065 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1066 	if (ret)
1067 		dev_err(&hdev->pdev->dev,
1068 			"Configure rss input fail, status = %d\n", ret);
1069 	return ret;
1070 }
1071 
1072 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1073 {
1074 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1075 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1076 
1077 	return rss_cfg->rss_size;
1078 }
1079 
1080 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1081 				       int vector_id,
1082 				       struct hnae3_ring_chain_node *ring_chain)
1083 {
1084 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1085 	struct hclge_vf_to_pf_msg send_msg;
1086 	struct hnae3_ring_chain_node *node;
1087 	int status;
1088 	int i = 0;
1089 
1090 	memset(&send_msg, 0, sizeof(send_msg));
1091 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1092 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1093 	send_msg.vector_id = vector_id;
1094 
1095 	for (node = ring_chain; node; node = node->next) {
1096 		send_msg.param[i].ring_type =
1097 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1098 
1099 		send_msg.param[i].tqp_index = node->tqp_index;
1100 		send_msg.param[i].int_gl_index =
1101 					hnae3_get_field(node->int_gl_idx,
1102 							HNAE3_RING_GL_IDX_M,
1103 							HNAE3_RING_GL_IDX_S);
1104 
1105 		i++;
1106 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1107 			send_msg.ring_num = i;
1108 
1109 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1110 						      NULL, 0);
1111 			if (status) {
1112 				dev_err(&hdev->pdev->dev,
1113 					"Map TQP fail, status is %d.\n",
1114 					status);
1115 				return status;
1116 			}
1117 			i = 0;
1118 		}
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1125 				      struct hnae3_ring_chain_node *ring_chain)
1126 {
1127 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1128 	int vector_id;
1129 
1130 	vector_id = hclgevf_get_vector_index(hdev, vector);
1131 	if (vector_id < 0) {
1132 		dev_err(&handle->pdev->dev,
1133 			"Get vector index fail. ret =%d\n", vector_id);
1134 		return vector_id;
1135 	}
1136 
1137 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1138 }
1139 
1140 static int hclgevf_unmap_ring_from_vector(
1141 				struct hnae3_handle *handle,
1142 				int vector,
1143 				struct hnae3_ring_chain_node *ring_chain)
1144 {
1145 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1146 	int ret, vector_id;
1147 
1148 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1149 		return 0;
1150 
1151 	vector_id = hclgevf_get_vector_index(hdev, vector);
1152 	if (vector_id < 0) {
1153 		dev_err(&handle->pdev->dev,
1154 			"Get vector index fail. ret =%d\n", vector_id);
1155 		return vector_id;
1156 	}
1157 
1158 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1159 	if (ret)
1160 		dev_err(&handle->pdev->dev,
1161 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1162 			vector_id,
1163 			ret);
1164 
1165 	return ret;
1166 }
1167 
1168 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1169 {
1170 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1171 	int vector_id;
1172 
1173 	vector_id = hclgevf_get_vector_index(hdev, vector);
1174 	if (vector_id < 0) {
1175 		dev_err(&handle->pdev->dev,
1176 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1177 			vector_id);
1178 		return vector_id;
1179 	}
1180 
1181 	hclgevf_free_vector(hdev, vector_id);
1182 
1183 	return 0;
1184 }
1185 
1186 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1187 					bool en_uc_pmc, bool en_mc_pmc,
1188 					bool en_bc_pmc)
1189 {
1190 	struct hnae3_handle *handle = &hdev->nic;
1191 	struct hclge_vf_to_pf_msg send_msg;
1192 	int ret;
1193 
1194 	memset(&send_msg, 0, sizeof(send_msg));
1195 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1196 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1197 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1198 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1199 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1200 					     &handle->priv_flags) ? 1 : 0;
1201 
1202 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1203 	if (ret)
1204 		dev_err(&hdev->pdev->dev,
1205 			"Set promisc mode fail, status is %d.\n", ret);
1206 
1207 	return ret;
1208 }
1209 
1210 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1211 				    bool en_mc_pmc)
1212 {
1213 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1214 	bool en_bc_pmc;
1215 
1216 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1217 
1218 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1219 					    en_bc_pmc);
1220 }
1221 
1222 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1223 {
1224 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1225 
1226 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1227 	hclgevf_task_schedule(hdev, 0);
1228 }
1229 
1230 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1231 {
1232 	struct hnae3_handle *handle = &hdev->nic;
1233 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1234 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1235 	int ret;
1236 
1237 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1238 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1239 		if (!ret)
1240 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1241 	}
1242 }
1243 
1244 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1245 			      int stream_id, bool enable)
1246 {
1247 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1248 	struct hclgevf_desc desc;
1249 	int status;
1250 
1251 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1252 
1253 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1254 				     false);
1255 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1256 	req->stream_id = cpu_to_le16(stream_id);
1257 	if (enable)
1258 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1259 
1260 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1261 	if (status)
1262 		dev_err(&hdev->pdev->dev,
1263 			"TQP enable fail, status =%d.\n", status);
1264 
1265 	return status;
1266 }
1267 
1268 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1269 {
1270 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1271 	struct hclgevf_tqp *tqp;
1272 	int i;
1273 
1274 	for (i = 0; i < kinfo->num_tqps; i++) {
1275 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1276 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1277 	}
1278 }
1279 
1280 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1281 {
1282 	struct hclge_vf_to_pf_msg send_msg;
1283 	u8 host_mac[ETH_ALEN];
1284 	int status;
1285 
1286 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1287 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1288 				      ETH_ALEN);
1289 	if (status) {
1290 		dev_err(&hdev->pdev->dev,
1291 			"fail to get VF MAC from host %d", status);
1292 		return status;
1293 	}
1294 
1295 	ether_addr_copy(p, host_mac);
1296 
1297 	return 0;
1298 }
1299 
1300 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1301 {
1302 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1303 	u8 host_mac_addr[ETH_ALEN];
1304 
1305 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1306 		return;
1307 
1308 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1309 	if (hdev->has_pf_mac)
1310 		ether_addr_copy(p, host_mac_addr);
1311 	else
1312 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1313 }
1314 
1315 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1316 				bool is_first)
1317 {
1318 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1319 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1320 	struct hclge_vf_to_pf_msg send_msg;
1321 	u8 *new_mac_addr = (u8 *)p;
1322 	int status;
1323 
1324 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1325 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1326 	ether_addr_copy(send_msg.data, new_mac_addr);
1327 	if (is_first && !hdev->has_pf_mac)
1328 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1329 	else
1330 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1331 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1332 	if (!status)
1333 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1334 
1335 	return status;
1336 }
1337 
1338 static struct hclgevf_mac_addr_node *
1339 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1340 {
1341 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1342 
1343 	list_for_each_entry_safe(mac_node, tmp, list, node)
1344 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1345 			return mac_node;
1346 
1347 	return NULL;
1348 }
1349 
1350 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1351 				    enum HCLGEVF_MAC_NODE_STATE state)
1352 {
1353 	switch (state) {
1354 	/* from set_rx_mode or tmp_add_list */
1355 	case HCLGEVF_MAC_TO_ADD:
1356 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1357 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1358 		break;
1359 	/* only from set_rx_mode */
1360 	case HCLGEVF_MAC_TO_DEL:
1361 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1362 			list_del(&mac_node->node);
1363 			kfree(mac_node);
1364 		} else {
1365 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1366 		}
1367 		break;
1368 	/* only from tmp_add_list, the mac_node->state won't be
1369 	 * HCLGEVF_MAC_ACTIVE
1370 	 */
1371 	case HCLGEVF_MAC_ACTIVE:
1372 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1373 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1374 		break;
1375 	}
1376 }
1377 
1378 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1379 				   enum HCLGEVF_MAC_NODE_STATE state,
1380 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1381 				   const unsigned char *addr)
1382 {
1383 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1384 	struct hclgevf_mac_addr_node *mac_node;
1385 	struct list_head *list;
1386 
1387 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1388 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1389 
1390 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1391 
1392 	/* if the mac addr is already in the mac list, no need to add a new
1393 	 * one into it, just check the mac addr state, convert it to a new
1394 	 * new state, or just remove it, or do nothing.
1395 	 */
1396 	mac_node = hclgevf_find_mac_node(list, addr);
1397 	if (mac_node) {
1398 		hclgevf_update_mac_node(mac_node, state);
1399 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1400 		return 0;
1401 	}
1402 	/* if this address is never added, unnecessary to delete */
1403 	if (state == HCLGEVF_MAC_TO_DEL) {
1404 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1405 		return -ENOENT;
1406 	}
1407 
1408 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1409 	if (!mac_node) {
1410 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1411 		return -ENOMEM;
1412 	}
1413 
1414 	mac_node->state = state;
1415 	ether_addr_copy(mac_node->mac_addr, addr);
1416 	list_add_tail(&mac_node->node, list);
1417 
1418 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1419 	return 0;
1420 }
1421 
1422 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1423 			       const unsigned char *addr)
1424 {
1425 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1426 				       HCLGEVF_MAC_ADDR_UC, addr);
1427 }
1428 
1429 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1430 			      const unsigned char *addr)
1431 {
1432 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1433 				       HCLGEVF_MAC_ADDR_UC, addr);
1434 }
1435 
1436 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1437 			       const unsigned char *addr)
1438 {
1439 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1440 				       HCLGEVF_MAC_ADDR_MC, addr);
1441 }
1442 
1443 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1444 			      const unsigned char *addr)
1445 {
1446 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1447 				       HCLGEVF_MAC_ADDR_MC, addr);
1448 }
1449 
1450 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1451 				    struct hclgevf_mac_addr_node *mac_node,
1452 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1453 {
1454 	struct hclge_vf_to_pf_msg send_msg;
1455 	u8 code, subcode;
1456 
1457 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1458 		code = HCLGE_MBX_SET_UNICAST;
1459 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1460 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1461 		else
1462 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1463 	} else {
1464 		code = HCLGE_MBX_SET_MULTICAST;
1465 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1466 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1467 		else
1468 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1469 	}
1470 
1471 	hclgevf_build_send_msg(&send_msg, code, subcode);
1472 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1473 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1474 }
1475 
1476 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1477 				    struct list_head *list,
1478 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1479 {
1480 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1481 	int ret;
1482 
1483 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1484 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1485 		if  (ret) {
1486 			dev_err(&hdev->pdev->dev,
1487 				"failed to configure mac %pM, state = %d, ret = %d\n",
1488 				mac_node->mac_addr, mac_node->state, ret);
1489 			return;
1490 		}
1491 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1492 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1493 		} else {
1494 			list_del(&mac_node->node);
1495 			kfree(mac_node);
1496 		}
1497 	}
1498 }
1499 
1500 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1501 				       struct list_head *mac_list)
1502 {
1503 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1504 
1505 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1506 		/* if the mac address from tmp_add_list is not in the
1507 		 * uc/mc_mac_list, it means have received a TO_DEL request
1508 		 * during the time window of sending mac config request to PF
1509 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1510 		 * then it will be removed at next time. If is TO_ADD, it means
1511 		 * send TO_ADD request failed, so just remove the mac node.
1512 		 */
1513 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1514 		if (new_node) {
1515 			hclgevf_update_mac_node(new_node, mac_node->state);
1516 			list_del(&mac_node->node);
1517 			kfree(mac_node);
1518 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1519 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1520 			list_del(&mac_node->node);
1521 			list_add_tail(&mac_node->node, mac_list);
1522 		} else {
1523 			list_del(&mac_node->node);
1524 			kfree(mac_node);
1525 		}
1526 	}
1527 }
1528 
1529 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1530 				       struct list_head *mac_list)
1531 {
1532 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1533 
1534 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1535 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1536 		if (new_node) {
1537 			/* If the mac addr is exist in the mac list, it means
1538 			 * received a new request TO_ADD during the time window
1539 			 * of sending mac addr configurrequest to PF, so just
1540 			 * change the mac state to ACTIVE.
1541 			 */
1542 			new_node->state = HCLGEVF_MAC_ACTIVE;
1543 			list_del(&mac_node->node);
1544 			kfree(mac_node);
1545 		} else {
1546 			list_del(&mac_node->node);
1547 			list_add_tail(&mac_node->node, mac_list);
1548 		}
1549 	}
1550 }
1551 
1552 static void hclgevf_clear_list(struct list_head *list)
1553 {
1554 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1555 
1556 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1557 		list_del(&mac_node->node);
1558 		kfree(mac_node);
1559 	}
1560 }
1561 
1562 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1563 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1564 {
1565 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1566 	struct list_head tmp_add_list, tmp_del_list;
1567 	struct list_head *list;
1568 
1569 	INIT_LIST_HEAD(&tmp_add_list);
1570 	INIT_LIST_HEAD(&tmp_del_list);
1571 
1572 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1573 	 * we can add/delete these mac addr outside the spin lock
1574 	 */
1575 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1576 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1577 
1578 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1579 
1580 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1581 		switch (mac_node->state) {
1582 		case HCLGEVF_MAC_TO_DEL:
1583 			list_del(&mac_node->node);
1584 			list_add_tail(&mac_node->node, &tmp_del_list);
1585 			break;
1586 		case HCLGEVF_MAC_TO_ADD:
1587 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1588 			if (!new_node)
1589 				goto stop_traverse;
1590 
1591 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1592 			new_node->state = mac_node->state;
1593 			list_add_tail(&new_node->node, &tmp_add_list);
1594 			break;
1595 		default:
1596 			break;
1597 		}
1598 	}
1599 
1600 stop_traverse:
1601 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1602 
1603 	/* delete first, in order to get max mac table space for adding */
1604 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1605 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1606 
1607 	/* if some mac addresses were added/deleted fail, move back to the
1608 	 * mac_list, and retry at next time.
1609 	 */
1610 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1611 
1612 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1613 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1614 
1615 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1616 }
1617 
1618 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1619 {
1620 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1621 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1622 }
1623 
1624 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1625 {
1626 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1627 
1628 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1629 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1630 
1631 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1632 }
1633 
1634 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1635 				   __be16 proto, u16 vlan_id,
1636 				   bool is_kill)
1637 {
1638 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1639 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1640 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1641 
1642 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1643 	struct hclge_vf_to_pf_msg send_msg;
1644 	int ret;
1645 
1646 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1647 		return -EINVAL;
1648 
1649 	if (proto != htons(ETH_P_8021Q))
1650 		return -EPROTONOSUPPORT;
1651 
1652 	/* When device is resetting or reset failed, firmware is unable to
1653 	 * handle mailbox. Just record the vlan id, and remove it after
1654 	 * reset finished.
1655 	 */
1656 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1657 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1658 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1659 		return -EBUSY;
1660 	}
1661 
1662 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1663 			       HCLGE_MBX_VLAN_FILTER);
1664 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1665 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1666 	       sizeof(vlan_id));
1667 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1668 	       sizeof(proto));
1669 	/* when remove hw vlan filter failed, record the vlan id,
1670 	 * and try to remove it from hw later, to be consistence
1671 	 * with stack.
1672 	 */
1673 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1674 	if (is_kill && ret)
1675 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1676 
1677 	return ret;
1678 }
1679 
1680 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1681 {
1682 #define HCLGEVF_MAX_SYNC_COUNT	60
1683 	struct hnae3_handle *handle = &hdev->nic;
1684 	int ret, sync_cnt = 0;
1685 	u16 vlan_id;
1686 
1687 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1688 	while (vlan_id != VLAN_N_VID) {
1689 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1690 					      vlan_id, true);
1691 		if (ret)
1692 			return;
1693 
1694 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1695 		sync_cnt++;
1696 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1697 			return;
1698 
1699 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1700 	}
1701 }
1702 
1703 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1704 {
1705 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1706 	struct hclge_vf_to_pf_msg send_msg;
1707 
1708 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1709 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1710 	send_msg.data[0] = enable ? 1 : 0;
1711 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1712 }
1713 
1714 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1715 {
1716 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1717 	struct hclge_vf_to_pf_msg send_msg;
1718 	int ret;
1719 
1720 	/* disable vf queue before send queue reset msg to PF */
1721 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1722 	if (ret)
1723 		return ret;
1724 
1725 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1726 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1727 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1728 }
1729 
1730 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1731 {
1732 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1733 	struct hclge_vf_to_pf_msg send_msg;
1734 
1735 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1736 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1737 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1738 }
1739 
1740 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1741 				 enum hnae3_reset_notify_type type)
1742 {
1743 	struct hnae3_client *client = hdev->nic_client;
1744 	struct hnae3_handle *handle = &hdev->nic;
1745 	int ret;
1746 
1747 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1748 	    !client)
1749 		return 0;
1750 
1751 	if (!client->ops->reset_notify)
1752 		return -EOPNOTSUPP;
1753 
1754 	ret = client->ops->reset_notify(handle, type);
1755 	if (ret)
1756 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1757 			type, ret);
1758 
1759 	return ret;
1760 }
1761 
1762 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1763 				      enum hnae3_reset_notify_type type)
1764 {
1765 	struct hnae3_client *client = hdev->roce_client;
1766 	struct hnae3_handle *handle = &hdev->roce;
1767 	int ret;
1768 
1769 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1770 		return 0;
1771 
1772 	if (!client->ops->reset_notify)
1773 		return -EOPNOTSUPP;
1774 
1775 	ret = client->ops->reset_notify(handle, type);
1776 	if (ret)
1777 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1778 			type, ret);
1779 	return ret;
1780 }
1781 
1782 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1783 {
1784 #define HCLGEVF_RESET_WAIT_US	20000
1785 #define HCLGEVF_RESET_WAIT_CNT	2000
1786 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1787 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1788 
1789 	u32 val;
1790 	int ret;
1791 
1792 	if (hdev->reset_type == HNAE3_VF_RESET)
1793 		ret = readl_poll_timeout(hdev->hw.io_base +
1794 					 HCLGEVF_VF_RST_ING, val,
1795 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1796 					 HCLGEVF_RESET_WAIT_US,
1797 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1798 	else
1799 		ret = readl_poll_timeout(hdev->hw.io_base +
1800 					 HCLGEVF_RST_ING, val,
1801 					 !(val & HCLGEVF_RST_ING_BITS),
1802 					 HCLGEVF_RESET_WAIT_US,
1803 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1804 
1805 	/* hardware completion status should be available by this time */
1806 	if (ret) {
1807 		dev_err(&hdev->pdev->dev,
1808 			"couldn't get reset done status from h/w, timeout!\n");
1809 		return ret;
1810 	}
1811 
1812 	/* we will wait a bit more to let reset of the stack to complete. This
1813 	 * might happen in case reset assertion was made by PF. Yes, this also
1814 	 * means we might end up waiting bit more even for VF reset.
1815 	 */
1816 	msleep(5000);
1817 
1818 	return 0;
1819 }
1820 
1821 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1822 {
1823 	u32 reg_val;
1824 
1825 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1826 	if (enable)
1827 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1828 	else
1829 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1830 
1831 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1832 			  reg_val);
1833 }
1834 
1835 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1836 {
1837 	int ret;
1838 
1839 	/* uninitialize the nic client */
1840 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1841 	if (ret)
1842 		return ret;
1843 
1844 	/* re-initialize the hclge device */
1845 	ret = hclgevf_reset_hdev(hdev);
1846 	if (ret) {
1847 		dev_err(&hdev->pdev->dev,
1848 			"hclge device re-init failed, VF is disabled!\n");
1849 		return ret;
1850 	}
1851 
1852 	/* bring up the nic client again */
1853 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1854 	if (ret)
1855 		return ret;
1856 
1857 	/* clear handshake status with IMP */
1858 	hclgevf_reset_handshake(hdev, false);
1859 
1860 	/* bring up the nic to enable TX/RX again */
1861 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1862 }
1863 
1864 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1865 {
1866 #define HCLGEVF_RESET_SYNC_TIME 100
1867 
1868 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1869 		struct hclge_vf_to_pf_msg send_msg;
1870 		int ret;
1871 
1872 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1873 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1874 		if (ret) {
1875 			dev_err(&hdev->pdev->dev,
1876 				"failed to assert VF reset, ret = %d\n", ret);
1877 			return ret;
1878 		}
1879 		hdev->rst_stats.vf_func_rst_cnt++;
1880 	}
1881 
1882 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1883 	/* inform hardware that preparatory work is done */
1884 	msleep(HCLGEVF_RESET_SYNC_TIME);
1885 	hclgevf_reset_handshake(hdev, true);
1886 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1887 		 hdev->reset_type);
1888 
1889 	return 0;
1890 }
1891 
1892 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1893 {
1894 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1895 		 hdev->rst_stats.vf_func_rst_cnt);
1896 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1897 		 hdev->rst_stats.flr_rst_cnt);
1898 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1899 		 hdev->rst_stats.vf_rst_cnt);
1900 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1901 		 hdev->rst_stats.rst_done_cnt);
1902 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1903 		 hdev->rst_stats.hw_rst_done_cnt);
1904 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1905 		 hdev->rst_stats.rst_cnt);
1906 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1907 		 hdev->rst_stats.rst_fail_cnt);
1908 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1909 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1910 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1911 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1912 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1913 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1914 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1915 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1916 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1917 }
1918 
1919 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1920 {
1921 	/* recover handshake status with IMP when reset fail */
1922 	hclgevf_reset_handshake(hdev, true);
1923 	hdev->rst_stats.rst_fail_cnt++;
1924 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1925 		hdev->rst_stats.rst_fail_cnt);
1926 
1927 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1928 		set_bit(hdev->reset_type, &hdev->reset_pending);
1929 
1930 	if (hclgevf_is_reset_pending(hdev)) {
1931 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1932 		hclgevf_reset_task_schedule(hdev);
1933 	} else {
1934 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1935 		hclgevf_dump_rst_info(hdev);
1936 	}
1937 }
1938 
1939 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1940 {
1941 	int ret;
1942 
1943 	hdev->rst_stats.rst_cnt++;
1944 
1945 	/* perform reset of the stack & ae device for a client */
1946 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1947 	if (ret)
1948 		return ret;
1949 
1950 	rtnl_lock();
1951 	/* bring down the nic to stop any ongoing TX/RX */
1952 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1953 	rtnl_unlock();
1954 	if (ret)
1955 		return ret;
1956 
1957 	return hclgevf_reset_prepare_wait(hdev);
1958 }
1959 
1960 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1961 {
1962 	int ret;
1963 
1964 	hdev->rst_stats.hw_rst_done_cnt++;
1965 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1966 	if (ret)
1967 		return ret;
1968 
1969 	rtnl_lock();
1970 	/* now, re-initialize the nic client and ae device */
1971 	ret = hclgevf_reset_stack(hdev);
1972 	rtnl_unlock();
1973 	if (ret) {
1974 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1975 		return ret;
1976 	}
1977 
1978 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1979 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1980 	 * times
1981 	 */
1982 	if (ret &&
1983 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1984 		return ret;
1985 
1986 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1987 	if (ret)
1988 		return ret;
1989 
1990 	hdev->last_reset_time = jiffies;
1991 	hdev->rst_stats.rst_done_cnt++;
1992 	hdev->rst_stats.rst_fail_cnt = 0;
1993 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1994 
1995 	return 0;
1996 }
1997 
1998 static void hclgevf_reset(struct hclgevf_dev *hdev)
1999 {
2000 	if (hclgevf_reset_prepare(hdev))
2001 		goto err_reset;
2002 
2003 	/* check if VF could successfully fetch the hardware reset completion
2004 	 * status from the hardware
2005 	 */
2006 	if (hclgevf_reset_wait(hdev)) {
2007 		/* can't do much in this situation, will disable VF */
2008 		dev_err(&hdev->pdev->dev,
2009 			"failed to fetch H/W reset completion status\n");
2010 		goto err_reset;
2011 	}
2012 
2013 	if (hclgevf_reset_rebuild(hdev))
2014 		goto err_reset;
2015 
2016 	return;
2017 
2018 err_reset:
2019 	hclgevf_reset_err_handle(hdev);
2020 }
2021 
2022 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
2023 						     unsigned long *addr)
2024 {
2025 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
2026 
2027 	/* return the highest priority reset level amongst all */
2028 	if (test_bit(HNAE3_VF_RESET, addr)) {
2029 		rst_level = HNAE3_VF_RESET;
2030 		clear_bit(HNAE3_VF_RESET, addr);
2031 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2032 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2033 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2034 		rst_level = HNAE3_VF_FULL_RESET;
2035 		clear_bit(HNAE3_VF_FULL_RESET, addr);
2036 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2037 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2038 		rst_level = HNAE3_VF_PF_FUNC_RESET;
2039 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2040 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2041 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2042 		rst_level = HNAE3_VF_FUNC_RESET;
2043 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2044 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
2045 		rst_level = HNAE3_FLR_RESET;
2046 		clear_bit(HNAE3_FLR_RESET, addr);
2047 	}
2048 
2049 	return rst_level;
2050 }
2051 
2052 static void hclgevf_reset_event(struct pci_dev *pdev,
2053 				struct hnae3_handle *handle)
2054 {
2055 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2056 	struct hclgevf_dev *hdev = ae_dev->priv;
2057 
2058 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2059 
2060 	if (hdev->default_reset_request)
2061 		hdev->reset_level =
2062 			hclgevf_get_reset_level(hdev,
2063 						&hdev->default_reset_request);
2064 	else
2065 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2066 
2067 	/* reset of this VF requested */
2068 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2069 	hclgevf_reset_task_schedule(hdev);
2070 
2071 	hdev->last_reset_time = jiffies;
2072 }
2073 
2074 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2075 					  enum hnae3_reset_type rst_type)
2076 {
2077 	struct hclgevf_dev *hdev = ae_dev->priv;
2078 
2079 	set_bit(rst_type, &hdev->default_reset_request);
2080 }
2081 
2082 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2083 {
2084 	writel(en ? 1 : 0, vector->addr);
2085 }
2086 
2087 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
2088 {
2089 #define HCLGEVF_FLR_RETRY_WAIT_MS	500
2090 #define HCLGEVF_FLR_RETRY_CNT		5
2091 
2092 	struct hclgevf_dev *hdev = ae_dev->priv;
2093 	int retry_cnt = 0;
2094 	int ret;
2095 
2096 retry:
2097 	down(&hdev->reset_sem);
2098 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2099 	hdev->reset_type = HNAE3_FLR_RESET;
2100 	ret = hclgevf_reset_prepare(hdev);
2101 	if (ret) {
2102 		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2103 			ret);
2104 		if (hdev->reset_pending ||
2105 		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2106 			dev_err(&hdev->pdev->dev,
2107 				"reset_pending:0x%lx, retry_cnt:%d\n",
2108 				hdev->reset_pending, retry_cnt);
2109 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2110 			up(&hdev->reset_sem);
2111 			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2112 			goto retry;
2113 		}
2114 	}
2115 
2116 	/* disable misc vector before FLR done */
2117 	hclgevf_enable_vector(&hdev->misc_vector, false);
2118 	hdev->rst_stats.flr_rst_cnt++;
2119 }
2120 
2121 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2122 {
2123 	struct hclgevf_dev *hdev = ae_dev->priv;
2124 	int ret;
2125 
2126 	hclgevf_enable_vector(&hdev->misc_vector, true);
2127 
2128 	ret = hclgevf_reset_rebuild(hdev);
2129 	if (ret)
2130 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2131 			 ret);
2132 
2133 	hdev->reset_type = HNAE3_NONE_RESET;
2134 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2135 	up(&hdev->reset_sem);
2136 }
2137 
2138 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2139 {
2140 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2141 
2142 	return hdev->fw_version;
2143 }
2144 
2145 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2146 {
2147 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2148 
2149 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2150 					    HCLGEVF_MISC_VECTOR_NUM);
2151 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2152 	/* vector status always valid for Vector 0 */
2153 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2154 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2155 
2156 	hdev->num_msi_left -= 1;
2157 	hdev->num_msi_used += 1;
2158 }
2159 
2160 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2161 {
2162 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2163 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2164 			      &hdev->state))
2165 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2166 }
2167 
2168 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2169 {
2170 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2171 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2172 			      &hdev->state))
2173 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2174 }
2175 
2176 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2177 				  unsigned long delay)
2178 {
2179 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2180 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2181 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2182 }
2183 
2184 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2185 {
2186 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2187 
2188 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2189 		return;
2190 
2191 	down(&hdev->reset_sem);
2192 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2193 
2194 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2195 			       &hdev->reset_state)) {
2196 		/* PF has initmated that it is about to reset the hardware.
2197 		 * We now have to poll & check if hardware has actually
2198 		 * completed the reset sequence. On hardware reset completion,
2199 		 * VF needs to reset the client and ae device.
2200 		 */
2201 		hdev->reset_attempts = 0;
2202 
2203 		hdev->last_reset_time = jiffies;
2204 		while ((hdev->reset_type =
2205 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2206 		       != HNAE3_NONE_RESET)
2207 			hclgevf_reset(hdev);
2208 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2209 				      &hdev->reset_state)) {
2210 		/* we could be here when either of below happens:
2211 		 * 1. reset was initiated due to watchdog timeout caused by
2212 		 *    a. IMP was earlier reset and our TX got choked down and
2213 		 *       which resulted in watchdog reacting and inducing VF
2214 		 *       reset. This also means our cmdq would be unreliable.
2215 		 *    b. problem in TX due to other lower layer(example link
2216 		 *       layer not functioning properly etc.)
2217 		 * 2. VF reset might have been initiated due to some config
2218 		 *    change.
2219 		 *
2220 		 * NOTE: Theres no clear way to detect above cases than to react
2221 		 * to the response of PF for this reset request. PF will ack the
2222 		 * 1b and 2. cases but we will not get any intimation about 1a
2223 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2224 		 * communication between PF and VF would be broken.
2225 		 *
2226 		 * if we are never geting into pending state it means either:
2227 		 * 1. PF is not receiving our request which could be due to IMP
2228 		 *    reset
2229 		 * 2. PF is screwed
2230 		 * We cannot do much for 2. but to check first we can try reset
2231 		 * our PCIe + stack and see if it alleviates the problem.
2232 		 */
2233 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2234 			/* prepare for full reset of stack + pcie interface */
2235 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2236 
2237 			/* "defer" schedule the reset task again */
2238 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2239 		} else {
2240 			hdev->reset_attempts++;
2241 
2242 			set_bit(hdev->reset_level, &hdev->reset_pending);
2243 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2244 		}
2245 		hclgevf_reset_task_schedule(hdev);
2246 	}
2247 
2248 	hdev->reset_type = HNAE3_NONE_RESET;
2249 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2250 	up(&hdev->reset_sem);
2251 }
2252 
2253 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2254 {
2255 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2256 		return;
2257 
2258 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2259 		return;
2260 
2261 	hclgevf_mbx_async_handler(hdev);
2262 
2263 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2264 }
2265 
2266 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2267 {
2268 	struct hclge_vf_to_pf_msg send_msg;
2269 	int ret;
2270 
2271 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2272 		return;
2273 
2274 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2275 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2276 	if (ret)
2277 		dev_err(&hdev->pdev->dev,
2278 			"VF sends keep alive cmd failed(=%d)\n", ret);
2279 }
2280 
2281 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2282 {
2283 	unsigned long delta = round_jiffies_relative(HZ);
2284 	struct hnae3_handle *handle = &hdev->nic;
2285 
2286 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2287 		return;
2288 
2289 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2290 		delta = jiffies - hdev->last_serv_processed;
2291 
2292 		if (delta < round_jiffies_relative(HZ)) {
2293 			delta = round_jiffies_relative(HZ) - delta;
2294 			goto out;
2295 		}
2296 	}
2297 
2298 	hdev->serv_processed_cnt++;
2299 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2300 		hclgevf_keep_alive(hdev);
2301 
2302 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2303 		hdev->last_serv_processed = jiffies;
2304 		goto out;
2305 	}
2306 
2307 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2308 		hclgevf_tqps_update_stats(handle);
2309 
2310 	/* request the link status from the PF. PF would be able to tell VF
2311 	 * about such updates in future so we might remove this later
2312 	 */
2313 	hclgevf_request_link_info(hdev);
2314 
2315 	hclgevf_update_link_mode(hdev);
2316 
2317 	hclgevf_sync_vlan_filter(hdev);
2318 
2319 	hclgevf_sync_mac_table(hdev);
2320 
2321 	hclgevf_sync_promisc_mode(hdev);
2322 
2323 	hdev->last_serv_processed = jiffies;
2324 
2325 out:
2326 	hclgevf_task_schedule(hdev, delta);
2327 }
2328 
2329 static void hclgevf_service_task(struct work_struct *work)
2330 {
2331 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2332 						service_task.work);
2333 
2334 	hclgevf_reset_service_task(hdev);
2335 	hclgevf_mailbox_service_task(hdev);
2336 	hclgevf_periodic_service_task(hdev);
2337 
2338 	/* Handle reset and mbx again in case periodical task delays the
2339 	 * handling by calling hclgevf_task_schedule() in
2340 	 * hclgevf_periodic_service_task()
2341 	 */
2342 	hclgevf_reset_service_task(hdev);
2343 	hclgevf_mailbox_service_task(hdev);
2344 }
2345 
2346 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2347 {
2348 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2349 }
2350 
2351 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2352 						      u32 *clearval)
2353 {
2354 	u32 val, cmdq_stat_reg, rst_ing_reg;
2355 
2356 	/* fetch the events from their corresponding regs */
2357 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2358 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2359 
2360 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2361 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2362 		dev_info(&hdev->pdev->dev,
2363 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2364 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2365 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2366 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2367 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2368 		hdev->rst_stats.vf_rst_cnt++;
2369 		/* set up VF hardware reset status, its PF will clear
2370 		 * this status when PF has initialized done.
2371 		 */
2372 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2373 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2374 				  val | HCLGEVF_VF_RST_ING_BIT);
2375 		return HCLGEVF_VECTOR0_EVENT_RST;
2376 	}
2377 
2378 	/* check for vector0 mailbox(=CMDQ RX) event source */
2379 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2380 		/* for revision 0x21, clearing interrupt is writing bit 0
2381 		 * to the clear register, writing bit 1 means to keep the
2382 		 * old value.
2383 		 * for revision 0x20, the clear register is a read & write
2384 		 * register, so we should just write 0 to the bit we are
2385 		 * handling, and keep other bits as cmdq_stat_reg.
2386 		 */
2387 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2388 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2389 		else
2390 			*clearval = cmdq_stat_reg &
2391 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2392 
2393 		return HCLGEVF_VECTOR0_EVENT_MBX;
2394 	}
2395 
2396 	/* print other vector0 event source */
2397 	dev_info(&hdev->pdev->dev,
2398 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2399 		 cmdq_stat_reg);
2400 
2401 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2402 }
2403 
2404 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2405 {
2406 	enum hclgevf_evt_cause event_cause;
2407 	struct hclgevf_dev *hdev = data;
2408 	u32 clearval;
2409 
2410 	hclgevf_enable_vector(&hdev->misc_vector, false);
2411 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2412 
2413 	switch (event_cause) {
2414 	case HCLGEVF_VECTOR0_EVENT_RST:
2415 		hclgevf_reset_task_schedule(hdev);
2416 		break;
2417 	case HCLGEVF_VECTOR0_EVENT_MBX:
2418 		hclgevf_mbx_handler(hdev);
2419 		break;
2420 	default:
2421 		break;
2422 	}
2423 
2424 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2425 		hclgevf_clear_event_cause(hdev, clearval);
2426 		hclgevf_enable_vector(&hdev->misc_vector, true);
2427 	}
2428 
2429 	return IRQ_HANDLED;
2430 }
2431 
2432 static int hclgevf_configure(struct hclgevf_dev *hdev)
2433 {
2434 	int ret;
2435 
2436 	/* get current port based vlan state from PF */
2437 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2438 	if (ret)
2439 		return ret;
2440 
2441 	/* get queue configuration from PF */
2442 	ret = hclgevf_get_queue_info(hdev);
2443 	if (ret)
2444 		return ret;
2445 
2446 	/* get queue depth info from PF */
2447 	ret = hclgevf_get_queue_depth(hdev);
2448 	if (ret)
2449 		return ret;
2450 
2451 	ret = hclgevf_get_pf_media_type(hdev);
2452 	if (ret)
2453 		return ret;
2454 
2455 	/* get tc configuration from PF */
2456 	return hclgevf_get_tc_info(hdev);
2457 }
2458 
2459 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2460 {
2461 	struct pci_dev *pdev = ae_dev->pdev;
2462 	struct hclgevf_dev *hdev;
2463 
2464 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2465 	if (!hdev)
2466 		return -ENOMEM;
2467 
2468 	hdev->pdev = pdev;
2469 	hdev->ae_dev = ae_dev;
2470 	ae_dev->priv = hdev;
2471 
2472 	return 0;
2473 }
2474 
2475 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2476 {
2477 	struct hnae3_handle *roce = &hdev->roce;
2478 	struct hnae3_handle *nic = &hdev->nic;
2479 
2480 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2481 
2482 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2483 	    hdev->num_msi_left == 0)
2484 		return -EINVAL;
2485 
2486 	roce->rinfo.base_vector = hdev->roce_base_vector;
2487 
2488 	roce->rinfo.netdev = nic->kinfo.netdev;
2489 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2490 	roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2491 
2492 	roce->pdev = nic->pdev;
2493 	roce->ae_algo = nic->ae_algo;
2494 	roce->numa_node_mask = nic->numa_node_mask;
2495 
2496 	return 0;
2497 }
2498 
2499 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2500 {
2501 	struct hclgevf_cfg_gro_status_cmd *req;
2502 	struct hclgevf_desc desc;
2503 	int ret;
2504 
2505 	if (!hnae3_dev_gro_supported(hdev))
2506 		return 0;
2507 
2508 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2509 				     false);
2510 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2511 
2512 	req->gro_en = en ? 1 : 0;
2513 
2514 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2515 	if (ret)
2516 		dev_err(&hdev->pdev->dev,
2517 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2518 
2519 	return ret;
2520 }
2521 
2522 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2523 {
2524 	u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2525 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2526 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2527 	u32 i;
2528 
2529 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2530 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2531 	tuple_sets = &rss_cfg->rss_tuple_sets;
2532 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2533 		u8 *rss_ind_tbl;
2534 
2535 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2536 
2537 		rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2538 					   sizeof(*rss_ind_tbl), GFP_KERNEL);
2539 		if (!rss_ind_tbl)
2540 			return -ENOMEM;
2541 
2542 		rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2543 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2544 		       HCLGEVF_RSS_KEY_SIZE);
2545 
2546 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2547 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2548 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2549 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2550 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2551 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2552 		tuple_sets->ipv6_sctp_en =
2553 			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2554 					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2555 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2556 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2557 	}
2558 
2559 	/* Initialize RSS indirect table */
2560 	for (i = 0; i < rss_ind_tbl_size; i++)
2561 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2562 
2563 	return 0;
2564 }
2565 
2566 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2567 {
2568 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2569 	int ret;
2570 
2571 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2572 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2573 					       rss_cfg->rss_hash_key);
2574 		if (ret)
2575 			return ret;
2576 
2577 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2578 		if (ret)
2579 			return ret;
2580 	}
2581 
2582 	ret = hclgevf_set_rss_indir_table(hdev);
2583 	if (ret)
2584 		return ret;
2585 
2586 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2587 }
2588 
2589 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2590 {
2591 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2592 				       false);
2593 }
2594 
2595 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2596 {
2597 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2598 
2599 	unsigned long last = hdev->serv_processed_cnt;
2600 	int i = 0;
2601 
2602 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2603 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2604 	       last == hdev->serv_processed_cnt)
2605 		usleep_range(1, 1);
2606 }
2607 
2608 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2609 {
2610 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2611 
2612 	if (enable) {
2613 		hclgevf_task_schedule(hdev, 0);
2614 	} else {
2615 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2616 
2617 		/* flush memory to make sure DOWN is seen by service task */
2618 		smp_mb__before_atomic();
2619 		hclgevf_flush_link_update(hdev);
2620 	}
2621 }
2622 
2623 static int hclgevf_ae_start(struct hnae3_handle *handle)
2624 {
2625 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2626 
2627 	hclgevf_reset_tqp_stats(handle);
2628 
2629 	hclgevf_request_link_info(hdev);
2630 
2631 	hclgevf_update_link_mode(hdev);
2632 
2633 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2634 
2635 	return 0;
2636 }
2637 
2638 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2639 {
2640 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2641 	int i;
2642 
2643 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2644 
2645 	if (hdev->reset_type != HNAE3_VF_RESET)
2646 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2647 			if (hclgevf_reset_tqp(handle, i))
2648 				break;
2649 
2650 	hclgevf_reset_tqp_stats(handle);
2651 	hclgevf_update_link_status(hdev, 0);
2652 }
2653 
2654 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2655 {
2656 #define HCLGEVF_STATE_ALIVE	1
2657 #define HCLGEVF_STATE_NOT_ALIVE	0
2658 
2659 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2660 	struct hclge_vf_to_pf_msg send_msg;
2661 
2662 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2663 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2664 				HCLGEVF_STATE_NOT_ALIVE;
2665 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2666 }
2667 
2668 static int hclgevf_client_start(struct hnae3_handle *handle)
2669 {
2670 	return hclgevf_set_alive(handle, true);
2671 }
2672 
2673 static void hclgevf_client_stop(struct hnae3_handle *handle)
2674 {
2675 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2676 	int ret;
2677 
2678 	ret = hclgevf_set_alive(handle, false);
2679 	if (ret)
2680 		dev_warn(&hdev->pdev->dev,
2681 			 "%s failed %d\n", __func__, ret);
2682 }
2683 
2684 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2685 {
2686 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2687 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2688 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2689 
2690 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2691 
2692 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2693 	sema_init(&hdev->reset_sem, 1);
2694 
2695 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2696 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2697 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2698 
2699 	/* bring the device down */
2700 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2701 }
2702 
2703 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2704 {
2705 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2706 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2707 
2708 	if (hdev->service_task.work.func)
2709 		cancel_delayed_work_sync(&hdev->service_task);
2710 
2711 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2712 }
2713 
2714 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2715 {
2716 	struct pci_dev *pdev = hdev->pdev;
2717 	int vectors;
2718 	int i;
2719 
2720 	if (hnae3_dev_roce_supported(hdev))
2721 		vectors = pci_alloc_irq_vectors(pdev,
2722 						hdev->roce_base_msix_offset + 1,
2723 						hdev->num_msi,
2724 						PCI_IRQ_MSIX);
2725 	else
2726 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2727 						hdev->num_msi,
2728 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2729 
2730 	if (vectors < 0) {
2731 		dev_err(&pdev->dev,
2732 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2733 			vectors);
2734 		return vectors;
2735 	}
2736 	if (vectors < hdev->num_msi)
2737 		dev_warn(&hdev->pdev->dev,
2738 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2739 			 hdev->num_msi, vectors);
2740 
2741 	hdev->num_msi = vectors;
2742 	hdev->num_msi_left = vectors;
2743 
2744 	hdev->base_msi_vector = pdev->irq;
2745 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2746 
2747 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2748 					   sizeof(u16), GFP_KERNEL);
2749 	if (!hdev->vector_status) {
2750 		pci_free_irq_vectors(pdev);
2751 		return -ENOMEM;
2752 	}
2753 
2754 	for (i = 0; i < hdev->num_msi; i++)
2755 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2756 
2757 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2758 					sizeof(int), GFP_KERNEL);
2759 	if (!hdev->vector_irq) {
2760 		devm_kfree(&pdev->dev, hdev->vector_status);
2761 		pci_free_irq_vectors(pdev);
2762 		return -ENOMEM;
2763 	}
2764 
2765 	return 0;
2766 }
2767 
2768 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2769 {
2770 	struct pci_dev *pdev = hdev->pdev;
2771 
2772 	devm_kfree(&pdev->dev, hdev->vector_status);
2773 	devm_kfree(&pdev->dev, hdev->vector_irq);
2774 	pci_free_irq_vectors(pdev);
2775 }
2776 
2777 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2778 {
2779 	int ret;
2780 
2781 	hclgevf_get_misc_vector(hdev);
2782 
2783 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2784 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2785 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2786 			  0, hdev->misc_vector.name, hdev);
2787 	if (ret) {
2788 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2789 			hdev->misc_vector.vector_irq);
2790 		return ret;
2791 	}
2792 
2793 	hclgevf_clear_event_cause(hdev, 0);
2794 
2795 	/* enable misc. vector(vector 0) */
2796 	hclgevf_enable_vector(&hdev->misc_vector, true);
2797 
2798 	return ret;
2799 }
2800 
2801 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2802 {
2803 	/* disable misc vector(vector 0) */
2804 	hclgevf_enable_vector(&hdev->misc_vector, false);
2805 	synchronize_irq(hdev->misc_vector.vector_irq);
2806 	free_irq(hdev->misc_vector.vector_irq, hdev);
2807 	hclgevf_free_vector(hdev, 0);
2808 }
2809 
2810 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2811 {
2812 	struct device *dev = &hdev->pdev->dev;
2813 
2814 	dev_info(dev, "VF info begin:\n");
2815 
2816 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2817 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2818 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2819 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2820 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2821 	dev_info(dev, "PF media type of this VF: %u\n",
2822 		 hdev->hw.mac.media_type);
2823 
2824 	dev_info(dev, "VF info end.\n");
2825 }
2826 
2827 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2828 					    struct hnae3_client *client)
2829 {
2830 	struct hclgevf_dev *hdev = ae_dev->priv;
2831 	int rst_cnt = hdev->rst_stats.rst_cnt;
2832 	int ret;
2833 
2834 	ret = client->ops->init_instance(&hdev->nic);
2835 	if (ret)
2836 		return ret;
2837 
2838 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2839 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2840 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2841 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2842 
2843 		client->ops->uninit_instance(&hdev->nic, 0);
2844 		return -EBUSY;
2845 	}
2846 
2847 	hnae3_set_client_init_flag(client, ae_dev, 1);
2848 
2849 	if (netif_msg_drv(&hdev->nic))
2850 		hclgevf_info_show(hdev);
2851 
2852 	return 0;
2853 }
2854 
2855 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2856 					     struct hnae3_client *client)
2857 {
2858 	struct hclgevf_dev *hdev = ae_dev->priv;
2859 	int ret;
2860 
2861 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2862 	    !hdev->nic_client)
2863 		return 0;
2864 
2865 	ret = hclgevf_init_roce_base_info(hdev);
2866 	if (ret)
2867 		return ret;
2868 
2869 	ret = client->ops->init_instance(&hdev->roce);
2870 	if (ret)
2871 		return ret;
2872 
2873 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2874 	hnae3_set_client_init_flag(client, ae_dev, 1);
2875 
2876 	return 0;
2877 }
2878 
2879 static int hclgevf_init_client_instance(struct hnae3_client *client,
2880 					struct hnae3_ae_dev *ae_dev)
2881 {
2882 	struct hclgevf_dev *hdev = ae_dev->priv;
2883 	int ret;
2884 
2885 	switch (client->type) {
2886 	case HNAE3_CLIENT_KNIC:
2887 		hdev->nic_client = client;
2888 		hdev->nic.client = client;
2889 
2890 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2891 		if (ret)
2892 			goto clear_nic;
2893 
2894 		ret = hclgevf_init_roce_client_instance(ae_dev,
2895 							hdev->roce_client);
2896 		if (ret)
2897 			goto clear_roce;
2898 
2899 		break;
2900 	case HNAE3_CLIENT_ROCE:
2901 		if (hnae3_dev_roce_supported(hdev)) {
2902 			hdev->roce_client = client;
2903 			hdev->roce.client = client;
2904 		}
2905 
2906 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2907 		if (ret)
2908 			goto clear_roce;
2909 
2910 		break;
2911 	default:
2912 		return -EINVAL;
2913 	}
2914 
2915 	return 0;
2916 
2917 clear_nic:
2918 	hdev->nic_client = NULL;
2919 	hdev->nic.client = NULL;
2920 	return ret;
2921 clear_roce:
2922 	hdev->roce_client = NULL;
2923 	hdev->roce.client = NULL;
2924 	return ret;
2925 }
2926 
2927 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2928 					   struct hnae3_ae_dev *ae_dev)
2929 {
2930 	struct hclgevf_dev *hdev = ae_dev->priv;
2931 
2932 	/* un-init roce, if it exists */
2933 	if (hdev->roce_client) {
2934 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2935 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2936 		hdev->roce_client = NULL;
2937 		hdev->roce.client = NULL;
2938 	}
2939 
2940 	/* un-init nic/unic, if this was not called by roce client */
2941 	if (client->ops->uninit_instance && hdev->nic_client &&
2942 	    client->type != HNAE3_CLIENT_ROCE) {
2943 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2944 
2945 		client->ops->uninit_instance(&hdev->nic, 0);
2946 		hdev->nic_client = NULL;
2947 		hdev->nic.client = NULL;
2948 	}
2949 }
2950 
2951 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2952 {
2953 #define HCLGEVF_MEM_BAR		4
2954 
2955 	struct pci_dev *pdev = hdev->pdev;
2956 	struct hclgevf_hw *hw = &hdev->hw;
2957 
2958 	/* for device does not have device memory, return directly */
2959 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2960 		return 0;
2961 
2962 	hw->mem_base = devm_ioremap_wc(&pdev->dev,
2963 				       pci_resource_start(pdev,
2964 							  HCLGEVF_MEM_BAR),
2965 				       pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2966 	if (!hw->mem_base) {
2967 		dev_err(&pdev->dev, "failed to map device memory\n");
2968 		return -EFAULT;
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2975 {
2976 	struct pci_dev *pdev = hdev->pdev;
2977 	struct hclgevf_hw *hw;
2978 	int ret;
2979 
2980 	ret = pci_enable_device(pdev);
2981 	if (ret) {
2982 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2983 		return ret;
2984 	}
2985 
2986 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2987 	if (ret) {
2988 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2989 		goto err_disable_device;
2990 	}
2991 
2992 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2993 	if (ret) {
2994 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2995 		goto err_disable_device;
2996 	}
2997 
2998 	pci_set_master(pdev);
2999 	hw = &hdev->hw;
3000 	hw->hdev = hdev;
3001 	hw->io_base = pci_iomap(pdev, 2, 0);
3002 	if (!hw->io_base) {
3003 		dev_err(&pdev->dev, "can't map configuration register space\n");
3004 		ret = -ENOMEM;
3005 		goto err_clr_master;
3006 	}
3007 
3008 	ret = hclgevf_dev_mem_map(hdev);
3009 	if (ret)
3010 		goto err_unmap_io_base;
3011 
3012 	return 0;
3013 
3014 err_unmap_io_base:
3015 	pci_iounmap(pdev, hdev->hw.io_base);
3016 err_clr_master:
3017 	pci_clear_master(pdev);
3018 	pci_release_regions(pdev);
3019 err_disable_device:
3020 	pci_disable_device(pdev);
3021 
3022 	return ret;
3023 }
3024 
3025 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
3026 {
3027 	struct pci_dev *pdev = hdev->pdev;
3028 
3029 	if (hdev->hw.mem_base)
3030 		devm_iounmap(&pdev->dev, hdev->hw.mem_base);
3031 
3032 	pci_iounmap(pdev, hdev->hw.io_base);
3033 	pci_clear_master(pdev);
3034 	pci_release_regions(pdev);
3035 	pci_disable_device(pdev);
3036 }
3037 
3038 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3039 {
3040 	struct hclgevf_query_res_cmd *req;
3041 	struct hclgevf_desc desc;
3042 	int ret;
3043 
3044 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3045 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3046 	if (ret) {
3047 		dev_err(&hdev->pdev->dev,
3048 			"query vf resource failed, ret = %d.\n", ret);
3049 		return ret;
3050 	}
3051 
3052 	req = (struct hclgevf_query_res_cmd *)desc.data;
3053 
3054 	if (hnae3_dev_roce_supported(hdev)) {
3055 		hdev->roce_base_msix_offset =
3056 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3057 				HCLGEVF_MSIX_OFT_ROCEE_M,
3058 				HCLGEVF_MSIX_OFT_ROCEE_S);
3059 		hdev->num_roce_msix =
3060 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3061 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3062 
3063 		/* nic's msix numbers is always equals to the roce's. */
3064 		hdev->num_nic_msix = hdev->num_roce_msix;
3065 
3066 		/* VF should have NIC vectors and Roce vectors, NIC vectors
3067 		 * are queued before Roce vectors. The offset is fixed to 64.
3068 		 */
3069 		hdev->num_msi = hdev->num_roce_msix +
3070 				hdev->roce_base_msix_offset;
3071 	} else {
3072 		hdev->num_msi =
3073 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3074 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3075 
3076 		hdev->num_nic_msix = hdev->num_msi;
3077 	}
3078 
3079 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3080 		dev_err(&hdev->pdev->dev,
3081 			"Just %u msi resources, not enough for vf(min:2).\n",
3082 			hdev->num_nic_msix);
3083 		return -EINVAL;
3084 	}
3085 
3086 	return 0;
3087 }
3088 
3089 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3090 {
3091 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
3092 
3093 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3094 
3095 	ae_dev->dev_specs.max_non_tso_bd_num =
3096 					HCLGEVF_MAX_NON_TSO_BD_NUM;
3097 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3098 	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3099 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3100 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3101 }
3102 
3103 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3104 				    struct hclgevf_desc *desc)
3105 {
3106 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3107 	struct hclgevf_dev_specs_0_cmd *req0;
3108 	struct hclgevf_dev_specs_1_cmd *req1;
3109 
3110 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3111 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3112 
3113 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3114 	ae_dev->dev_specs.rss_ind_tbl_size =
3115 					le16_to_cpu(req0->rss_ind_tbl_size);
3116 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3117 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3118 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3119 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3120 }
3121 
3122 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3123 {
3124 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3125 
3126 	if (!dev_specs->max_non_tso_bd_num)
3127 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3128 	if (!dev_specs->rss_ind_tbl_size)
3129 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3130 	if (!dev_specs->rss_key_size)
3131 		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3132 	if (!dev_specs->max_int_gl)
3133 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3134 	if (!dev_specs->max_frm_size)
3135 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3136 }
3137 
3138 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3139 {
3140 	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3141 	int ret;
3142 	int i;
3143 
3144 	/* set default specifications as devices lower than version V3 do not
3145 	 * support querying specifications from firmware.
3146 	 */
3147 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3148 		hclgevf_set_default_dev_specs(hdev);
3149 		return 0;
3150 	}
3151 
3152 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3153 		hclgevf_cmd_setup_basic_desc(&desc[i],
3154 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3155 		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3156 	}
3157 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3158 				     true);
3159 
3160 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3161 	if (ret)
3162 		return ret;
3163 
3164 	hclgevf_parse_dev_specs(hdev, desc);
3165 	hclgevf_check_dev_specs(hdev);
3166 
3167 	return 0;
3168 }
3169 
3170 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3171 {
3172 	struct pci_dev *pdev = hdev->pdev;
3173 	int ret = 0;
3174 
3175 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3176 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3177 		hclgevf_misc_irq_uninit(hdev);
3178 		hclgevf_uninit_msi(hdev);
3179 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3180 	}
3181 
3182 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3183 		pci_set_master(pdev);
3184 		ret = hclgevf_init_msi(hdev);
3185 		if (ret) {
3186 			dev_err(&pdev->dev,
3187 				"failed(%d) to init MSI/MSI-X\n", ret);
3188 			return ret;
3189 		}
3190 
3191 		ret = hclgevf_misc_irq_init(hdev);
3192 		if (ret) {
3193 			hclgevf_uninit_msi(hdev);
3194 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3195 				ret);
3196 			return ret;
3197 		}
3198 
3199 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3200 	}
3201 
3202 	return ret;
3203 }
3204 
3205 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3206 {
3207 	struct hclge_vf_to_pf_msg send_msg;
3208 
3209 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3210 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3211 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3212 }
3213 
3214 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3215 {
3216 	struct pci_dev *pdev = hdev->pdev;
3217 	int ret;
3218 
3219 	ret = hclgevf_pci_reset(hdev);
3220 	if (ret) {
3221 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3222 		return ret;
3223 	}
3224 
3225 	ret = hclgevf_cmd_init(hdev);
3226 	if (ret) {
3227 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3228 		return ret;
3229 	}
3230 
3231 	ret = hclgevf_rss_init_hw(hdev);
3232 	if (ret) {
3233 		dev_err(&hdev->pdev->dev,
3234 			"failed(%d) to initialize RSS\n", ret);
3235 		return ret;
3236 	}
3237 
3238 	ret = hclgevf_config_gro(hdev, true);
3239 	if (ret)
3240 		return ret;
3241 
3242 	ret = hclgevf_init_vlan_config(hdev);
3243 	if (ret) {
3244 		dev_err(&hdev->pdev->dev,
3245 			"failed(%d) to initialize VLAN config\n", ret);
3246 		return ret;
3247 	}
3248 
3249 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3250 
3251 	dev_info(&hdev->pdev->dev, "Reset done\n");
3252 
3253 	return 0;
3254 }
3255 
3256 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3257 {
3258 	struct pci_dev *pdev = hdev->pdev;
3259 	int ret;
3260 
3261 	ret = hclgevf_pci_init(hdev);
3262 	if (ret)
3263 		return ret;
3264 
3265 	ret = hclgevf_cmd_queue_init(hdev);
3266 	if (ret)
3267 		goto err_cmd_queue_init;
3268 
3269 	ret = hclgevf_cmd_init(hdev);
3270 	if (ret)
3271 		goto err_cmd_init;
3272 
3273 	/* Get vf resource */
3274 	ret = hclgevf_query_vf_resource(hdev);
3275 	if (ret)
3276 		goto err_cmd_init;
3277 
3278 	ret = hclgevf_query_dev_specs(hdev);
3279 	if (ret) {
3280 		dev_err(&pdev->dev,
3281 			"failed to query dev specifications, ret = %d\n", ret);
3282 		goto err_cmd_init;
3283 	}
3284 
3285 	ret = hclgevf_init_msi(hdev);
3286 	if (ret) {
3287 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3288 		goto err_cmd_init;
3289 	}
3290 
3291 	hclgevf_state_init(hdev);
3292 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3293 	hdev->reset_type = HNAE3_NONE_RESET;
3294 
3295 	ret = hclgevf_misc_irq_init(hdev);
3296 	if (ret)
3297 		goto err_misc_irq_init;
3298 
3299 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3300 
3301 	ret = hclgevf_configure(hdev);
3302 	if (ret) {
3303 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3304 		goto err_config;
3305 	}
3306 
3307 	ret = hclgevf_alloc_tqps(hdev);
3308 	if (ret) {
3309 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3310 		goto err_config;
3311 	}
3312 
3313 	ret = hclgevf_set_handle_info(hdev);
3314 	if (ret)
3315 		goto err_config;
3316 
3317 	ret = hclgevf_config_gro(hdev, true);
3318 	if (ret)
3319 		goto err_config;
3320 
3321 	/* Initialize RSS for this VF */
3322 	ret = hclgevf_rss_init_cfg(hdev);
3323 	if (ret) {
3324 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3325 		goto err_config;
3326 	}
3327 
3328 	ret = hclgevf_rss_init_hw(hdev);
3329 	if (ret) {
3330 		dev_err(&hdev->pdev->dev,
3331 			"failed(%d) to initialize RSS\n", ret);
3332 		goto err_config;
3333 	}
3334 
3335 	/* ensure vf tbl list as empty before init*/
3336 	ret = hclgevf_clear_vport_list(hdev);
3337 	if (ret) {
3338 		dev_err(&pdev->dev,
3339 			"failed to clear tbl list configuration, ret = %d.\n",
3340 			ret);
3341 		goto err_config;
3342 	}
3343 
3344 	ret = hclgevf_init_vlan_config(hdev);
3345 	if (ret) {
3346 		dev_err(&hdev->pdev->dev,
3347 			"failed(%d) to initialize VLAN config\n", ret);
3348 		goto err_config;
3349 	}
3350 
3351 	hdev->last_reset_time = jiffies;
3352 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3353 		 HCLGEVF_DRIVER_NAME);
3354 
3355 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3356 
3357 	return 0;
3358 
3359 err_config:
3360 	hclgevf_misc_irq_uninit(hdev);
3361 err_misc_irq_init:
3362 	hclgevf_state_uninit(hdev);
3363 	hclgevf_uninit_msi(hdev);
3364 err_cmd_init:
3365 	hclgevf_cmd_uninit(hdev);
3366 err_cmd_queue_init:
3367 	hclgevf_pci_uninit(hdev);
3368 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3369 	return ret;
3370 }
3371 
3372 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3373 {
3374 	struct hclge_vf_to_pf_msg send_msg;
3375 
3376 	hclgevf_state_uninit(hdev);
3377 
3378 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3379 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3380 
3381 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3382 		hclgevf_misc_irq_uninit(hdev);
3383 		hclgevf_uninit_msi(hdev);
3384 	}
3385 
3386 	hclgevf_cmd_uninit(hdev);
3387 	hclgevf_pci_uninit(hdev);
3388 	hclgevf_uninit_mac_list(hdev);
3389 }
3390 
3391 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3392 {
3393 	struct pci_dev *pdev = ae_dev->pdev;
3394 	int ret;
3395 
3396 	ret = hclgevf_alloc_hdev(ae_dev);
3397 	if (ret) {
3398 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3399 		return ret;
3400 	}
3401 
3402 	ret = hclgevf_init_hdev(ae_dev->priv);
3403 	if (ret) {
3404 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3405 		return ret;
3406 	}
3407 
3408 	return 0;
3409 }
3410 
3411 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3412 {
3413 	struct hclgevf_dev *hdev = ae_dev->priv;
3414 
3415 	hclgevf_uninit_hdev(hdev);
3416 	ae_dev->priv = NULL;
3417 }
3418 
3419 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3420 {
3421 	struct hnae3_handle *nic = &hdev->nic;
3422 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3423 
3424 	return min_t(u32, hdev->rss_size_max,
3425 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3426 }
3427 
3428 /**
3429  * hclgevf_get_channels - Get the current channels enabled and max supported.
3430  * @handle: hardware information for network interface
3431  * @ch: ethtool channels structure
3432  *
3433  * We don't support separate tx and rx queues as channels. The other count
3434  * represents how many queues are being used for control. max_combined counts
3435  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3436  * q_vectors since we support a lot more queue pairs than q_vectors.
3437  **/
3438 static void hclgevf_get_channels(struct hnae3_handle *handle,
3439 				 struct ethtool_channels *ch)
3440 {
3441 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3442 
3443 	ch->max_combined = hclgevf_get_max_channels(hdev);
3444 	ch->other_count = 0;
3445 	ch->max_other = 0;
3446 	ch->combined_count = handle->kinfo.rss_size;
3447 }
3448 
3449 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3450 					  u16 *alloc_tqps, u16 *max_rss_size)
3451 {
3452 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3453 
3454 	*alloc_tqps = hdev->num_tqps;
3455 	*max_rss_size = hdev->rss_size_max;
3456 }
3457 
3458 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3459 				    u32 new_tqps_num)
3460 {
3461 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3462 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3463 	u16 max_rss_size;
3464 
3465 	kinfo->req_rss_size = new_tqps_num;
3466 
3467 	max_rss_size = min_t(u16, hdev->rss_size_max,
3468 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3469 
3470 	/* Use the user's configuration when it is not larger than
3471 	 * max_rss_size, otherwise, use the maximum specification value.
3472 	 */
3473 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3474 	    kinfo->req_rss_size <= max_rss_size)
3475 		kinfo->rss_size = kinfo->req_rss_size;
3476 	else if (kinfo->rss_size > max_rss_size ||
3477 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3478 		kinfo->rss_size = max_rss_size;
3479 
3480 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3481 }
3482 
3483 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3484 				bool rxfh_configured)
3485 {
3486 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3487 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3488 	u16 cur_rss_size = kinfo->rss_size;
3489 	u16 cur_tqps = kinfo->num_tqps;
3490 	u32 *rss_indir;
3491 	unsigned int i;
3492 	int ret;
3493 
3494 	hclgevf_update_rss_size(handle, new_tqps_num);
3495 
3496 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3497 	if (ret)
3498 		return ret;
3499 
3500 	/* RSS indirection table has been configuared by user */
3501 	if (rxfh_configured)
3502 		goto out;
3503 
3504 	/* Reinitializes the rss indirect table according to the new RSS size */
3505 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3506 			    sizeof(u32), GFP_KERNEL);
3507 	if (!rss_indir)
3508 		return -ENOMEM;
3509 
3510 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3511 		rss_indir[i] = i % kinfo->rss_size;
3512 
3513 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3514 
3515 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3516 	if (ret)
3517 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3518 			ret);
3519 
3520 	kfree(rss_indir);
3521 
3522 out:
3523 	if (!ret)
3524 		dev_info(&hdev->pdev->dev,
3525 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3526 			 cur_rss_size, kinfo->rss_size,
3527 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3528 
3529 	return ret;
3530 }
3531 
3532 static int hclgevf_get_status(struct hnae3_handle *handle)
3533 {
3534 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3535 
3536 	return hdev->hw.mac.link;
3537 }
3538 
3539 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3540 					    u8 *auto_neg, u32 *speed,
3541 					    u8 *duplex)
3542 {
3543 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3544 
3545 	if (speed)
3546 		*speed = hdev->hw.mac.speed;
3547 	if (duplex)
3548 		*duplex = hdev->hw.mac.duplex;
3549 	if (auto_neg)
3550 		*auto_neg = AUTONEG_DISABLE;
3551 }
3552 
3553 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3554 				 u8 duplex)
3555 {
3556 	hdev->hw.mac.speed = speed;
3557 	hdev->hw.mac.duplex = duplex;
3558 }
3559 
3560 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3561 {
3562 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3563 
3564 	return hclgevf_config_gro(hdev, enable);
3565 }
3566 
3567 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3568 				   u8 *module_type)
3569 {
3570 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3571 
3572 	if (media_type)
3573 		*media_type = hdev->hw.mac.media_type;
3574 
3575 	if (module_type)
3576 		*module_type = hdev->hw.mac.module_type;
3577 }
3578 
3579 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3580 {
3581 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3582 
3583 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3584 }
3585 
3586 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3587 {
3588 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3589 
3590 	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3591 }
3592 
3593 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3594 {
3595 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3596 
3597 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3598 }
3599 
3600 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3601 {
3602 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3603 
3604 	return hdev->rst_stats.hw_rst_done_cnt;
3605 }
3606 
3607 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3608 				  unsigned long *supported,
3609 				  unsigned long *advertising)
3610 {
3611 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3612 
3613 	*supported = hdev->hw.mac.supported;
3614 	*advertising = hdev->hw.mac.advertising;
3615 }
3616 
3617 #define MAX_SEPARATE_NUM	4
3618 #define SEPARATOR_VALUE		0xFFFFFFFF
3619 #define REG_NUM_PER_LINE	4
3620 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3621 
3622 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3623 {
3624 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3625 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3626 
3627 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3628 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3629 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3630 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3631 
3632 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3633 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3634 }
3635 
3636 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3637 			     void *data)
3638 {
3639 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3640 	int i, j, reg_um, separator_num;
3641 	u32 *reg = data;
3642 
3643 	*version = hdev->fw_version;
3644 
3645 	/* fetching per-VF registers values from VF PCIe register space */
3646 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3647 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3648 	for (i = 0; i < reg_um; i++)
3649 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3650 	for (i = 0; i < separator_num; i++)
3651 		*reg++ = SEPARATOR_VALUE;
3652 
3653 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3654 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3655 	for (i = 0; i < reg_um; i++)
3656 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3657 	for (i = 0; i < separator_num; i++)
3658 		*reg++ = SEPARATOR_VALUE;
3659 
3660 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3661 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3662 	for (j = 0; j < hdev->num_tqps; j++) {
3663 		for (i = 0; i < reg_um; i++)
3664 			*reg++ = hclgevf_read_dev(&hdev->hw,
3665 						  ring_reg_addr_list[i] +
3666 						  0x200 * j);
3667 		for (i = 0; i < separator_num; i++)
3668 			*reg++ = SEPARATOR_VALUE;
3669 	}
3670 
3671 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3672 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3673 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3674 		for (i = 0; i < reg_um; i++)
3675 			*reg++ = hclgevf_read_dev(&hdev->hw,
3676 						  tqp_intr_reg_addr_list[i] +
3677 						  4 * j);
3678 		for (i = 0; i < separator_num; i++)
3679 			*reg++ = SEPARATOR_VALUE;
3680 	}
3681 }
3682 
3683 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3684 					u8 *port_base_vlan_info, u8 data_size)
3685 {
3686 	struct hnae3_handle *nic = &hdev->nic;
3687 	struct hclge_vf_to_pf_msg send_msg;
3688 	int ret;
3689 
3690 	rtnl_lock();
3691 
3692 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3693 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3694 		dev_warn(&hdev->pdev->dev,
3695 			 "is resetting when updating port based vlan info\n");
3696 		rtnl_unlock();
3697 		return;
3698 	}
3699 
3700 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3701 	if (ret) {
3702 		rtnl_unlock();
3703 		return;
3704 	}
3705 
3706 	/* send msg to PF and wait update port based vlan info */
3707 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3708 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3709 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3710 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3711 	if (!ret) {
3712 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3713 			nic->port_base_vlan_state = state;
3714 		else
3715 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3716 	}
3717 
3718 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3719 	rtnl_unlock();
3720 }
3721 
3722 static const struct hnae3_ae_ops hclgevf_ops = {
3723 	.init_ae_dev = hclgevf_init_ae_dev,
3724 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3725 	.flr_prepare = hclgevf_flr_prepare,
3726 	.flr_done = hclgevf_flr_done,
3727 	.init_client_instance = hclgevf_init_client_instance,
3728 	.uninit_client_instance = hclgevf_uninit_client_instance,
3729 	.start = hclgevf_ae_start,
3730 	.stop = hclgevf_ae_stop,
3731 	.client_start = hclgevf_client_start,
3732 	.client_stop = hclgevf_client_stop,
3733 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3734 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3735 	.get_vector = hclgevf_get_vector,
3736 	.put_vector = hclgevf_put_vector,
3737 	.reset_queue = hclgevf_reset_tqp,
3738 	.get_mac_addr = hclgevf_get_mac_addr,
3739 	.set_mac_addr = hclgevf_set_mac_addr,
3740 	.add_uc_addr = hclgevf_add_uc_addr,
3741 	.rm_uc_addr = hclgevf_rm_uc_addr,
3742 	.add_mc_addr = hclgevf_add_mc_addr,
3743 	.rm_mc_addr = hclgevf_rm_mc_addr,
3744 	.get_stats = hclgevf_get_stats,
3745 	.update_stats = hclgevf_update_stats,
3746 	.get_strings = hclgevf_get_strings,
3747 	.get_sset_count = hclgevf_get_sset_count,
3748 	.get_rss_key_size = hclgevf_get_rss_key_size,
3749 	.get_rss = hclgevf_get_rss,
3750 	.set_rss = hclgevf_set_rss,
3751 	.get_rss_tuple = hclgevf_get_rss_tuple,
3752 	.set_rss_tuple = hclgevf_set_rss_tuple,
3753 	.get_tc_size = hclgevf_get_tc_size,
3754 	.get_fw_version = hclgevf_get_fw_version,
3755 	.set_vlan_filter = hclgevf_set_vlan_filter,
3756 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3757 	.reset_event = hclgevf_reset_event,
3758 	.set_default_reset_request = hclgevf_set_def_reset_request,
3759 	.set_channels = hclgevf_set_channels,
3760 	.get_channels = hclgevf_get_channels,
3761 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3762 	.get_regs_len = hclgevf_get_regs_len,
3763 	.get_regs = hclgevf_get_regs,
3764 	.get_status = hclgevf_get_status,
3765 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3766 	.get_media_type = hclgevf_get_media_type,
3767 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3768 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3769 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3770 	.set_gro_en = hclgevf_gro_en,
3771 	.set_mtu = hclgevf_set_mtu,
3772 	.get_global_queue_id = hclgevf_get_qid_global,
3773 	.set_timer_task = hclgevf_set_timer_task,
3774 	.get_link_mode = hclgevf_get_link_mode,
3775 	.set_promisc_mode = hclgevf_set_promisc_mode,
3776 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3777 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3778 };
3779 
3780 static struct hnae3_ae_algo ae_algovf = {
3781 	.ops = &hclgevf_ops,
3782 	.pdev_id_table = ae_algovf_pci_tbl,
3783 };
3784 
3785 static int hclgevf_init(void)
3786 {
3787 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3788 
3789 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3790 	if (!hclgevf_wq) {
3791 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3792 		return -ENOMEM;
3793 	}
3794 
3795 	hnae3_register_ae_algo(&ae_algovf);
3796 
3797 	return 0;
3798 }
3799 
3800 static void hclgevf_exit(void)
3801 {
3802 	hnae3_unregister_ae_algo(&ae_algovf);
3803 	destroy_workqueue(hclgevf_wq);
3804 }
3805 module_init(hclgevf_init);
3806 module_exit(hclgevf_exit);
3807 
3808 MODULE_LICENSE("GPL");
3809 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3810 MODULE_DESCRIPTION("HCLGEVF Driver");
3811 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3812