xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c (revision 3381df0954199458fa3993db72fb427f0ed1e43b)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18 
19 static struct workqueue_struct *hclgevf_wq;
20 
21 static const struct pci_device_id ae_algovf_pci_tbl[] = {
22 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
23 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
24 	/* required last entry */
25 	{0, }
26 };
27 
28 static const u8 hclgevf_hash_key[] = {
29 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
30 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
31 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
32 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
33 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
34 };
35 
36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
37 
38 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
39 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
40 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
41 					 HCLGEVF_CMDQ_TX_TAIL_REG,
42 					 HCLGEVF_CMDQ_TX_HEAD_REG,
43 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
44 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
45 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
46 					 HCLGEVF_CMDQ_RX_TAIL_REG,
47 					 HCLGEVF_CMDQ_RX_HEAD_REG,
48 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
49 					 HCLGEVF_CMDQ_INTR_STS_REG,
50 					 HCLGEVF_CMDQ_INTR_EN_REG,
51 					 HCLGEVF_CMDQ_INTR_GEN_REG};
52 
53 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
54 					   HCLGEVF_RST_ING,
55 					   HCLGEVF_GRO_EN_REG};
56 
57 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
58 					 HCLGEVF_RING_RX_ADDR_H_REG,
59 					 HCLGEVF_RING_RX_BD_NUM_REG,
60 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
61 					 HCLGEVF_RING_RX_MERGE_EN_REG,
62 					 HCLGEVF_RING_RX_TAIL_REG,
63 					 HCLGEVF_RING_RX_HEAD_REG,
64 					 HCLGEVF_RING_RX_FBD_NUM_REG,
65 					 HCLGEVF_RING_RX_OFFSET_REG,
66 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
67 					 HCLGEVF_RING_RX_STASH_REG,
68 					 HCLGEVF_RING_RX_BD_ERR_REG,
69 					 HCLGEVF_RING_TX_ADDR_L_REG,
70 					 HCLGEVF_RING_TX_ADDR_H_REG,
71 					 HCLGEVF_RING_TX_BD_NUM_REG,
72 					 HCLGEVF_RING_TX_PRIORITY_REG,
73 					 HCLGEVF_RING_TX_TC_REG,
74 					 HCLGEVF_RING_TX_MERGE_EN_REG,
75 					 HCLGEVF_RING_TX_TAIL_REG,
76 					 HCLGEVF_RING_TX_HEAD_REG,
77 					 HCLGEVF_RING_TX_FBD_NUM_REG,
78 					 HCLGEVF_RING_TX_OFFSET_REG,
79 					 HCLGEVF_RING_TX_EBD_NUM_REG,
80 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
81 					 HCLGEVF_RING_TX_BD_ERR_REG,
82 					 HCLGEVF_RING_EN_REG};
83 
84 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
85 					     HCLGEVF_TQP_INTR_GL0_REG,
86 					     HCLGEVF_TQP_INTR_GL1_REG,
87 					     HCLGEVF_TQP_INTR_GL2_REG,
88 					     HCLGEVF_TQP_INTR_RL_REG};
89 
90 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
91 {
92 	if (!handle->client)
93 		return container_of(handle, struct hclgevf_dev, nic);
94 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
95 		return container_of(handle, struct hclgevf_dev, roce);
96 	else
97 		return container_of(handle, struct hclgevf_dev, nic);
98 }
99 
100 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
101 {
102 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
103 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
104 	struct hclgevf_desc desc;
105 	struct hclgevf_tqp *tqp;
106 	int status;
107 	int i;
108 
109 	for (i = 0; i < kinfo->num_tqps; i++) {
110 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
111 		hclgevf_cmd_setup_basic_desc(&desc,
112 					     HCLGEVF_OPC_QUERY_RX_STATUS,
113 					     true);
114 
115 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
116 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
117 		if (status) {
118 			dev_err(&hdev->pdev->dev,
119 				"Query tqp stat fail, status = %d,queue = %d\n",
120 				status,	i);
121 			return status;
122 		}
123 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
124 			le32_to_cpu(desc.data[1]);
125 
126 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
127 					     true);
128 
129 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
130 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
131 		if (status) {
132 			dev_err(&hdev->pdev->dev,
133 				"Query tqp stat fail, status = %d,queue = %d\n",
134 				status, i);
135 			return status;
136 		}
137 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
138 			le32_to_cpu(desc.data[1]);
139 	}
140 
141 	return 0;
142 }
143 
144 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
145 {
146 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
147 	struct hclgevf_tqp *tqp;
148 	u64 *buff = data;
149 	int i;
150 
151 	for (i = 0; i < kinfo->num_tqps; i++) {
152 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
153 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
154 	}
155 	for (i = 0; i < kinfo->num_tqps; i++) {
156 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
158 	}
159 
160 	return buff;
161 }
162 
163 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
164 {
165 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
166 
167 	return kinfo->num_tqps * 2;
168 }
169 
170 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
171 {
172 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
173 	u8 *buff = data;
174 	int i = 0;
175 
176 	for (i = 0; i < kinfo->num_tqps; i++) {
177 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
178 						       struct hclgevf_tqp, q);
179 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
180 			 tqp->index);
181 		buff += ETH_GSTRING_LEN;
182 	}
183 
184 	for (i = 0; i < kinfo->num_tqps; i++) {
185 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
186 						       struct hclgevf_tqp, q);
187 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
188 			 tqp->index);
189 		buff += ETH_GSTRING_LEN;
190 	}
191 
192 	return buff;
193 }
194 
195 static void hclgevf_update_stats(struct hnae3_handle *handle,
196 				 struct net_device_stats *net_stats)
197 {
198 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
199 	int status;
200 
201 	status = hclgevf_tqps_update_stats(handle);
202 	if (status)
203 		dev_err(&hdev->pdev->dev,
204 			"VF update of TQPS stats fail, status = %d.\n",
205 			status);
206 }
207 
208 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
209 {
210 	if (strset == ETH_SS_TEST)
211 		return -EOPNOTSUPP;
212 	else if (strset == ETH_SS_STATS)
213 		return hclgevf_tqps_get_sset_count(handle, strset);
214 
215 	return 0;
216 }
217 
218 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
219 				u8 *data)
220 {
221 	u8 *p = (char *)data;
222 
223 	if (strset == ETH_SS_STATS)
224 		p = hclgevf_tqps_get_strings(handle, p);
225 }
226 
227 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
228 {
229 	hclgevf_tqps_get_stats(handle, data);
230 }
231 
232 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
233 				   u8 subcode)
234 {
235 	if (msg) {
236 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
237 		msg->code = code;
238 		msg->subcode = subcode;
239 	}
240 }
241 
242 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
243 {
244 	struct hclge_vf_to_pf_msg send_msg;
245 	u8 resp_msg;
246 	int status;
247 
248 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
249 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
250 				      sizeof(resp_msg));
251 	if (status) {
252 		dev_err(&hdev->pdev->dev,
253 			"VF request to get TC info from PF failed %d",
254 			status);
255 		return status;
256 	}
257 
258 	hdev->hw_tc_map = resp_msg;
259 
260 	return 0;
261 }
262 
263 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
264 {
265 	struct hnae3_handle *nic = &hdev->nic;
266 	struct hclge_vf_to_pf_msg send_msg;
267 	u8 resp_msg;
268 	int ret;
269 
270 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
271 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
272 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
273 				   sizeof(u8));
274 	if (ret) {
275 		dev_err(&hdev->pdev->dev,
276 			"VF request to get port based vlan state failed %d",
277 			ret);
278 		return ret;
279 	}
280 
281 	nic->port_base_vlan_state = resp_msg;
282 
283 	return 0;
284 }
285 
286 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
287 {
288 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
289 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
290 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
291 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
292 
293 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
294 	struct hclge_vf_to_pf_msg send_msg;
295 	int status;
296 
297 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
298 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
299 				      HCLGEVF_TQPS_RSS_INFO_LEN);
300 	if (status) {
301 		dev_err(&hdev->pdev->dev,
302 			"VF request to get tqp info from PF failed %d",
303 			status);
304 		return status;
305 	}
306 
307 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
308 	       sizeof(u16));
309 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
310 	       sizeof(u16));
311 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
312 	       sizeof(u16));
313 
314 	return 0;
315 }
316 
317 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
318 {
319 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
320 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
321 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
322 
323 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
324 	struct hclge_vf_to_pf_msg send_msg;
325 	int ret;
326 
327 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
328 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
329 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
330 	if (ret) {
331 		dev_err(&hdev->pdev->dev,
332 			"VF request to get tqp depth info from PF failed %d",
333 			ret);
334 		return ret;
335 	}
336 
337 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
338 	       sizeof(u16));
339 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
340 	       sizeof(u16));
341 
342 	return 0;
343 }
344 
345 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
346 {
347 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
348 	struct hclge_vf_to_pf_msg send_msg;
349 	u16 qid_in_pf = 0;
350 	u8 resp_data[2];
351 	int ret;
352 
353 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
354 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
355 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
356 				   sizeof(resp_data));
357 	if (!ret)
358 		qid_in_pf = *(u16 *)resp_data;
359 
360 	return qid_in_pf;
361 }
362 
363 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
364 {
365 	struct hclge_vf_to_pf_msg send_msg;
366 	u8 resp_msg[2];
367 	int ret;
368 
369 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
370 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
371 				   sizeof(resp_msg));
372 	if (ret) {
373 		dev_err(&hdev->pdev->dev,
374 			"VF request to get the pf port media type failed %d",
375 			ret);
376 		return ret;
377 	}
378 
379 	hdev->hw.mac.media_type = resp_msg[0];
380 	hdev->hw.mac.module_type = resp_msg[1];
381 
382 	return 0;
383 }
384 
385 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
386 {
387 	struct hclgevf_tqp *tqp;
388 	int i;
389 
390 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
391 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
392 	if (!hdev->htqp)
393 		return -ENOMEM;
394 
395 	tqp = hdev->htqp;
396 
397 	for (i = 0; i < hdev->num_tqps; i++) {
398 		tqp->dev = &hdev->pdev->dev;
399 		tqp->index = i;
400 
401 		tqp->q.ae_algo = &ae_algovf;
402 		tqp->q.buf_size = hdev->rx_buf_len;
403 		tqp->q.tx_desc_num = hdev->num_tx_desc;
404 		tqp->q.rx_desc_num = hdev->num_rx_desc;
405 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
406 			i * HCLGEVF_TQP_REG_SIZE;
407 
408 		tqp++;
409 	}
410 
411 	return 0;
412 }
413 
414 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
415 {
416 	struct hnae3_handle *nic = &hdev->nic;
417 	struct hnae3_knic_private_info *kinfo;
418 	u16 new_tqps = hdev->num_tqps;
419 	unsigned int i;
420 
421 	kinfo = &nic->kinfo;
422 	kinfo->num_tc = 0;
423 	kinfo->num_tx_desc = hdev->num_tx_desc;
424 	kinfo->num_rx_desc = hdev->num_rx_desc;
425 	kinfo->rx_buf_len = hdev->rx_buf_len;
426 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
427 		if (hdev->hw_tc_map & BIT(i))
428 			kinfo->num_tc++;
429 
430 	kinfo->rss_size
431 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
432 	new_tqps = kinfo->rss_size * kinfo->num_tc;
433 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
434 
435 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
436 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
437 	if (!kinfo->tqp)
438 		return -ENOMEM;
439 
440 	for (i = 0; i < kinfo->num_tqps; i++) {
441 		hdev->htqp[i].q.handle = &hdev->nic;
442 		hdev->htqp[i].q.tqp_index = i;
443 		kinfo->tqp[i] = &hdev->htqp[i].q;
444 	}
445 
446 	/* after init the max rss_size and tqps, adjust the default tqp numbers
447 	 * and rss size with the actual vector numbers
448 	 */
449 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
450 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
451 				kinfo->rss_size);
452 
453 	return 0;
454 }
455 
456 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
457 {
458 	struct hclge_vf_to_pf_msg send_msg;
459 	int status;
460 
461 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
462 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
463 	if (status)
464 		dev_err(&hdev->pdev->dev,
465 			"VF failed to fetch link status(%d) from PF", status);
466 }
467 
468 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
469 {
470 	struct hnae3_handle *rhandle = &hdev->roce;
471 	struct hnae3_handle *handle = &hdev->nic;
472 	struct hnae3_client *rclient;
473 	struct hnae3_client *client;
474 
475 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
476 		return;
477 
478 	client = handle->client;
479 	rclient = hdev->roce_client;
480 
481 	link_state =
482 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
483 
484 	if (link_state != hdev->hw.mac.link) {
485 		client->ops->link_status_change(handle, !!link_state);
486 		if (rclient && rclient->ops->link_status_change)
487 			rclient->ops->link_status_change(rhandle, !!link_state);
488 		hdev->hw.mac.link = link_state;
489 	}
490 
491 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
492 }
493 
494 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
495 {
496 #define HCLGEVF_ADVERTISING	0
497 #define HCLGEVF_SUPPORTED	1
498 
499 	struct hclge_vf_to_pf_msg send_msg;
500 
501 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
502 	send_msg.data[0] = HCLGEVF_ADVERTISING;
503 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
504 	send_msg.data[0] = HCLGEVF_SUPPORTED;
505 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
506 }
507 
508 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
509 {
510 	struct hnae3_handle *nic = &hdev->nic;
511 	int ret;
512 
513 	nic->ae_algo = &ae_algovf;
514 	nic->pdev = hdev->pdev;
515 	nic->numa_node_mask = hdev->numa_node_mask;
516 	nic->flags |= HNAE3_SUPPORT_VF;
517 
518 	ret = hclgevf_knic_setup(hdev);
519 	if (ret)
520 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
521 			ret);
522 	return ret;
523 }
524 
525 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
526 {
527 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
528 		dev_warn(&hdev->pdev->dev,
529 			 "vector(vector_id %d) has been freed.\n", vector_id);
530 		return;
531 	}
532 
533 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
534 	hdev->num_msi_left += 1;
535 	hdev->num_msi_used -= 1;
536 }
537 
538 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
539 			      struct hnae3_vector_info *vector_info)
540 {
541 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
542 	struct hnae3_vector_info *vector = vector_info;
543 	int alloc = 0;
544 	int i, j;
545 
546 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
547 	vector_num = min(hdev->num_msi_left, vector_num);
548 
549 	for (j = 0; j < vector_num; j++) {
550 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
551 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
552 				vector->vector = pci_irq_vector(hdev->pdev, i);
553 				vector->io_addr = hdev->hw.io_base +
554 					HCLGEVF_VECTOR_REG_BASE +
555 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
556 				hdev->vector_status[i] = 0;
557 				hdev->vector_irq[i] = vector->vector;
558 
559 				vector++;
560 				alloc++;
561 
562 				break;
563 			}
564 		}
565 	}
566 	hdev->num_msi_left -= alloc;
567 	hdev->num_msi_used += alloc;
568 
569 	return alloc;
570 }
571 
572 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
573 {
574 	int i;
575 
576 	for (i = 0; i < hdev->num_msi; i++)
577 		if (vector == hdev->vector_irq[i])
578 			return i;
579 
580 	return -EINVAL;
581 }
582 
583 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
584 				    const u8 hfunc, const u8 *key)
585 {
586 	struct hclgevf_rss_config_cmd *req;
587 	unsigned int key_offset = 0;
588 	struct hclgevf_desc desc;
589 	int key_counts;
590 	int key_size;
591 	int ret;
592 
593 	key_counts = HCLGEVF_RSS_KEY_SIZE;
594 	req = (struct hclgevf_rss_config_cmd *)desc.data;
595 
596 	while (key_counts) {
597 		hclgevf_cmd_setup_basic_desc(&desc,
598 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
599 					     false);
600 
601 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
602 		req->hash_config |=
603 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
604 
605 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
606 		memcpy(req->hash_key,
607 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
608 
609 		key_counts -= key_size;
610 		key_offset++;
611 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
612 		if (ret) {
613 			dev_err(&hdev->pdev->dev,
614 				"Configure RSS config fail, status = %d\n",
615 				ret);
616 			return ret;
617 		}
618 	}
619 
620 	return 0;
621 }
622 
623 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
624 {
625 	return HCLGEVF_RSS_KEY_SIZE;
626 }
627 
628 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
629 {
630 	return HCLGEVF_RSS_IND_TBL_SIZE;
631 }
632 
633 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
634 {
635 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
636 	struct hclgevf_rss_indirection_table_cmd *req;
637 	struct hclgevf_desc desc;
638 	int status;
639 	int i, j;
640 
641 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
642 
643 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
644 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
645 					     false);
646 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
647 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
648 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
649 			req->rss_result[j] =
650 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
651 
652 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
653 		if (status) {
654 			dev_err(&hdev->pdev->dev,
655 				"VF failed(=%d) to set RSS indirection table\n",
656 				status);
657 			return status;
658 		}
659 	}
660 
661 	return 0;
662 }
663 
664 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
665 {
666 	struct hclgevf_rss_tc_mode_cmd *req;
667 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
668 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
669 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
670 	struct hclgevf_desc desc;
671 	u16 roundup_size;
672 	int status;
673 	unsigned int i;
674 
675 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
676 
677 	roundup_size = roundup_pow_of_two(rss_size);
678 	roundup_size = ilog2(roundup_size);
679 
680 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
681 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
682 		tc_size[i] = roundup_size;
683 		tc_offset[i] = rss_size * i;
684 	}
685 
686 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
687 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
688 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
689 			      (tc_valid[i] & 0x1));
690 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
691 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
692 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
693 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
694 	}
695 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
696 	if (status)
697 		dev_err(&hdev->pdev->dev,
698 			"VF failed(=%d) to set rss tc mode\n", status);
699 
700 	return status;
701 }
702 
703 /* for revision 0x20, vf shared the same rss config with pf */
704 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
705 {
706 #define HCLGEVF_RSS_MBX_RESP_LEN	8
707 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
708 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
709 	struct hclge_vf_to_pf_msg send_msg;
710 	u16 msg_num, hash_key_index;
711 	u8 index;
712 	int ret;
713 
714 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
715 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
716 			HCLGEVF_RSS_MBX_RESP_LEN;
717 	for (index = 0; index < msg_num; index++) {
718 		send_msg.data[0] = index;
719 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
720 					   HCLGEVF_RSS_MBX_RESP_LEN);
721 		if (ret) {
722 			dev_err(&hdev->pdev->dev,
723 				"VF get rss hash key from PF failed, ret=%d",
724 				ret);
725 			return ret;
726 		}
727 
728 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
729 		if (index == msg_num - 1)
730 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
731 			       &resp_msg[0],
732 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
733 		else
734 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
735 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
736 	}
737 
738 	return 0;
739 }
740 
741 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
742 			   u8 *hfunc)
743 {
744 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
745 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
746 	int i, ret;
747 
748 	if (handle->pdev->revision >= 0x21) {
749 		/* Get hash algorithm */
750 		if (hfunc) {
751 			switch (rss_cfg->hash_algo) {
752 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
753 				*hfunc = ETH_RSS_HASH_TOP;
754 				break;
755 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
756 				*hfunc = ETH_RSS_HASH_XOR;
757 				break;
758 			default:
759 				*hfunc = ETH_RSS_HASH_UNKNOWN;
760 				break;
761 			}
762 		}
763 
764 		/* Get the RSS Key required by the user */
765 		if (key)
766 			memcpy(key, rss_cfg->rss_hash_key,
767 			       HCLGEVF_RSS_KEY_SIZE);
768 	} else {
769 		if (hfunc)
770 			*hfunc = ETH_RSS_HASH_TOP;
771 		if (key) {
772 			ret = hclgevf_get_rss_hash_key(hdev);
773 			if (ret)
774 				return ret;
775 			memcpy(key, rss_cfg->rss_hash_key,
776 			       HCLGEVF_RSS_KEY_SIZE);
777 		}
778 	}
779 
780 	if (indir)
781 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
782 			indir[i] = rss_cfg->rss_indirection_tbl[i];
783 
784 	return 0;
785 }
786 
787 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
788 			   const u8 *key, const u8 hfunc)
789 {
790 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
791 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
792 	int ret, i;
793 
794 	if (handle->pdev->revision >= 0x21) {
795 		/* Set the RSS Hash Key if specififed by the user */
796 		if (key) {
797 			switch (hfunc) {
798 			case ETH_RSS_HASH_TOP:
799 				rss_cfg->hash_algo =
800 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
801 				break;
802 			case ETH_RSS_HASH_XOR:
803 				rss_cfg->hash_algo =
804 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
805 				break;
806 			case ETH_RSS_HASH_NO_CHANGE:
807 				break;
808 			default:
809 				return -EINVAL;
810 			}
811 
812 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
813 						       key);
814 			if (ret)
815 				return ret;
816 
817 			/* Update the shadow RSS key with user specified qids */
818 			memcpy(rss_cfg->rss_hash_key, key,
819 			       HCLGEVF_RSS_KEY_SIZE);
820 		}
821 	}
822 
823 	/* update the shadow RSS table with user specified qids */
824 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
825 		rss_cfg->rss_indirection_tbl[i] = indir[i];
826 
827 	/* update the hardware */
828 	return hclgevf_set_rss_indir_table(hdev);
829 }
830 
831 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
832 {
833 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
834 
835 	if (nfc->data & RXH_L4_B_2_3)
836 		hash_sets |= HCLGEVF_D_PORT_BIT;
837 	else
838 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
839 
840 	if (nfc->data & RXH_IP_SRC)
841 		hash_sets |= HCLGEVF_S_IP_BIT;
842 	else
843 		hash_sets &= ~HCLGEVF_S_IP_BIT;
844 
845 	if (nfc->data & RXH_IP_DST)
846 		hash_sets |= HCLGEVF_D_IP_BIT;
847 	else
848 		hash_sets &= ~HCLGEVF_D_IP_BIT;
849 
850 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
851 		hash_sets |= HCLGEVF_V_TAG_BIT;
852 
853 	return hash_sets;
854 }
855 
856 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
857 				 struct ethtool_rxnfc *nfc)
858 {
859 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
860 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
861 	struct hclgevf_rss_input_tuple_cmd *req;
862 	struct hclgevf_desc desc;
863 	u8 tuple_sets;
864 	int ret;
865 
866 	if (handle->pdev->revision == 0x20)
867 		return -EOPNOTSUPP;
868 
869 	if (nfc->data &
870 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
871 		return -EINVAL;
872 
873 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
874 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
875 
876 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
877 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
878 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
879 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
880 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
881 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
882 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
883 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
884 
885 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
886 	switch (nfc->flow_type) {
887 	case TCP_V4_FLOW:
888 		req->ipv4_tcp_en = tuple_sets;
889 		break;
890 	case TCP_V6_FLOW:
891 		req->ipv6_tcp_en = tuple_sets;
892 		break;
893 	case UDP_V4_FLOW:
894 		req->ipv4_udp_en = tuple_sets;
895 		break;
896 	case UDP_V6_FLOW:
897 		req->ipv6_udp_en = tuple_sets;
898 		break;
899 	case SCTP_V4_FLOW:
900 		req->ipv4_sctp_en = tuple_sets;
901 		break;
902 	case SCTP_V6_FLOW:
903 		if ((nfc->data & RXH_L4_B_0_1) ||
904 		    (nfc->data & RXH_L4_B_2_3))
905 			return -EINVAL;
906 
907 		req->ipv6_sctp_en = tuple_sets;
908 		break;
909 	case IPV4_FLOW:
910 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
911 		break;
912 	case IPV6_FLOW:
913 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
914 		break;
915 	default:
916 		return -EINVAL;
917 	}
918 
919 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
920 	if (ret) {
921 		dev_err(&hdev->pdev->dev,
922 			"Set rss tuple fail, status = %d\n", ret);
923 		return ret;
924 	}
925 
926 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
927 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
928 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
929 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
930 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
931 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
932 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
933 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
934 	return 0;
935 }
936 
937 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
938 				 struct ethtool_rxnfc *nfc)
939 {
940 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
941 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
942 	u8 tuple_sets;
943 
944 	if (handle->pdev->revision == 0x20)
945 		return -EOPNOTSUPP;
946 
947 	nfc->data = 0;
948 
949 	switch (nfc->flow_type) {
950 	case TCP_V4_FLOW:
951 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
952 		break;
953 	case UDP_V4_FLOW:
954 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
955 		break;
956 	case TCP_V6_FLOW:
957 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
958 		break;
959 	case UDP_V6_FLOW:
960 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
961 		break;
962 	case SCTP_V4_FLOW:
963 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
964 		break;
965 	case SCTP_V6_FLOW:
966 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
967 		break;
968 	case IPV4_FLOW:
969 	case IPV6_FLOW:
970 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
971 		break;
972 	default:
973 		return -EINVAL;
974 	}
975 
976 	if (!tuple_sets)
977 		return 0;
978 
979 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
980 		nfc->data |= RXH_L4_B_2_3;
981 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
982 		nfc->data |= RXH_L4_B_0_1;
983 	if (tuple_sets & HCLGEVF_D_IP_BIT)
984 		nfc->data |= RXH_IP_DST;
985 	if (tuple_sets & HCLGEVF_S_IP_BIT)
986 		nfc->data |= RXH_IP_SRC;
987 
988 	return 0;
989 }
990 
991 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
992 				       struct hclgevf_rss_cfg *rss_cfg)
993 {
994 	struct hclgevf_rss_input_tuple_cmd *req;
995 	struct hclgevf_desc desc;
996 	int ret;
997 
998 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
999 
1000 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1001 
1002 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1003 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1004 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1005 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1006 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1007 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1008 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1009 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1010 
1011 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1012 	if (ret)
1013 		dev_err(&hdev->pdev->dev,
1014 			"Configure rss input fail, status = %d\n", ret);
1015 	return ret;
1016 }
1017 
1018 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1019 {
1020 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1021 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1022 
1023 	return rss_cfg->rss_size;
1024 }
1025 
1026 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1027 				       int vector_id,
1028 				       struct hnae3_ring_chain_node *ring_chain)
1029 {
1030 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1031 	struct hclge_vf_to_pf_msg send_msg;
1032 	struct hnae3_ring_chain_node *node;
1033 	int status;
1034 	int i = 0;
1035 
1036 	memset(&send_msg, 0, sizeof(send_msg));
1037 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1038 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1039 	send_msg.vector_id = vector_id;
1040 
1041 	for (node = ring_chain; node; node = node->next) {
1042 		send_msg.param[i].ring_type =
1043 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1044 
1045 		send_msg.param[i].tqp_index = node->tqp_index;
1046 		send_msg.param[i].int_gl_index =
1047 					hnae3_get_field(node->int_gl_idx,
1048 							HNAE3_RING_GL_IDX_M,
1049 							HNAE3_RING_GL_IDX_S);
1050 
1051 		i++;
1052 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1053 			send_msg.ring_num = i;
1054 
1055 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1056 						      NULL, 0);
1057 			if (status) {
1058 				dev_err(&hdev->pdev->dev,
1059 					"Map TQP fail, status is %d.\n",
1060 					status);
1061 				return status;
1062 			}
1063 			i = 0;
1064 		}
1065 	}
1066 
1067 	return 0;
1068 }
1069 
1070 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1071 				      struct hnae3_ring_chain_node *ring_chain)
1072 {
1073 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1074 	int vector_id;
1075 
1076 	vector_id = hclgevf_get_vector_index(hdev, vector);
1077 	if (vector_id < 0) {
1078 		dev_err(&handle->pdev->dev,
1079 			"Get vector index fail. ret =%d\n", vector_id);
1080 		return vector_id;
1081 	}
1082 
1083 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1084 }
1085 
1086 static int hclgevf_unmap_ring_from_vector(
1087 				struct hnae3_handle *handle,
1088 				int vector,
1089 				struct hnae3_ring_chain_node *ring_chain)
1090 {
1091 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1092 	int ret, vector_id;
1093 
1094 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1095 		return 0;
1096 
1097 	vector_id = hclgevf_get_vector_index(hdev, vector);
1098 	if (vector_id < 0) {
1099 		dev_err(&handle->pdev->dev,
1100 			"Get vector index fail. ret =%d\n", vector_id);
1101 		return vector_id;
1102 	}
1103 
1104 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1105 	if (ret)
1106 		dev_err(&handle->pdev->dev,
1107 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1108 			vector_id,
1109 			ret);
1110 
1111 	return ret;
1112 }
1113 
1114 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1115 {
1116 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1117 	int vector_id;
1118 
1119 	vector_id = hclgevf_get_vector_index(hdev, vector);
1120 	if (vector_id < 0) {
1121 		dev_err(&handle->pdev->dev,
1122 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1123 			vector_id);
1124 		return vector_id;
1125 	}
1126 
1127 	hclgevf_free_vector(hdev, vector_id);
1128 
1129 	return 0;
1130 }
1131 
1132 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1133 					bool en_uc_pmc, bool en_mc_pmc,
1134 					bool en_bc_pmc)
1135 {
1136 	struct hclge_vf_to_pf_msg send_msg;
1137 	int ret;
1138 
1139 	memset(&send_msg, 0, sizeof(send_msg));
1140 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1141 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1142 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1143 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1144 
1145 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1146 
1147 	if (ret)
1148 		dev_err(&hdev->pdev->dev,
1149 			"Set promisc mode fail, status is %d.\n", ret);
1150 
1151 	return ret;
1152 }
1153 
1154 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1155 				    bool en_mc_pmc)
1156 {
1157 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1158 	struct pci_dev *pdev = hdev->pdev;
1159 	bool en_bc_pmc;
1160 
1161 	en_bc_pmc = pdev->revision != 0x20;
1162 
1163 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1164 					    en_bc_pmc);
1165 }
1166 
1167 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1168 			      int stream_id, bool enable)
1169 {
1170 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1171 	struct hclgevf_desc desc;
1172 	int status;
1173 
1174 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1175 
1176 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1177 				     false);
1178 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1179 	req->stream_id = cpu_to_le16(stream_id);
1180 	if (enable)
1181 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1182 
1183 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1184 	if (status)
1185 		dev_err(&hdev->pdev->dev,
1186 			"TQP enable fail, status =%d.\n", status);
1187 
1188 	return status;
1189 }
1190 
1191 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1192 {
1193 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1194 	struct hclgevf_tqp *tqp;
1195 	int i;
1196 
1197 	for (i = 0; i < kinfo->num_tqps; i++) {
1198 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1199 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1200 	}
1201 }
1202 
1203 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1204 {
1205 	struct hclge_vf_to_pf_msg send_msg;
1206 	u8 host_mac[ETH_ALEN];
1207 	int status;
1208 
1209 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1210 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1211 				      ETH_ALEN);
1212 	if (status) {
1213 		dev_err(&hdev->pdev->dev,
1214 			"fail to get VF MAC from host %d", status);
1215 		return status;
1216 	}
1217 
1218 	ether_addr_copy(p, host_mac);
1219 
1220 	return 0;
1221 }
1222 
1223 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1224 {
1225 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1226 	u8 host_mac_addr[ETH_ALEN];
1227 
1228 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1229 		return;
1230 
1231 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1232 	if (hdev->has_pf_mac)
1233 		ether_addr_copy(p, host_mac_addr);
1234 	else
1235 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1236 }
1237 
1238 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1239 				bool is_first)
1240 {
1241 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1242 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1243 	struct hclge_vf_to_pf_msg send_msg;
1244 	u8 *new_mac_addr = (u8 *)p;
1245 	int status;
1246 
1247 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1248 	send_msg.subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1249 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1250 	ether_addr_copy(send_msg.data, new_mac_addr);
1251 	ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1252 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1253 	if (!status)
1254 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1255 
1256 	return status;
1257 }
1258 
1259 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1260 			       const unsigned char *addr)
1261 {
1262 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1263 	struct hclge_vf_to_pf_msg send_msg;
1264 
1265 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST,
1266 			       HCLGE_MBX_MAC_VLAN_UC_ADD);
1267 	ether_addr_copy(send_msg.data, addr);
1268 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1269 }
1270 
1271 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1272 			      const unsigned char *addr)
1273 {
1274 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1275 	struct hclge_vf_to_pf_msg send_msg;
1276 
1277 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST,
1278 			       HCLGE_MBX_MAC_VLAN_UC_REMOVE);
1279 	ether_addr_copy(send_msg.data, addr);
1280 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1281 }
1282 
1283 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1284 			       const unsigned char *addr)
1285 {
1286 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1287 	struct hclge_vf_to_pf_msg send_msg;
1288 
1289 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MULTICAST,
1290 			       HCLGE_MBX_MAC_VLAN_MC_ADD);
1291 	ether_addr_copy(send_msg.data, addr);
1292 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1293 }
1294 
1295 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1296 			      const unsigned char *addr)
1297 {
1298 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1299 	struct hclge_vf_to_pf_msg send_msg;
1300 
1301 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MULTICAST,
1302 			       HCLGE_MBX_MAC_VLAN_MC_REMOVE);
1303 	ether_addr_copy(send_msg.data, addr);
1304 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1305 }
1306 
1307 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1308 				   __be16 proto, u16 vlan_id,
1309 				   bool is_kill)
1310 {
1311 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1312 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1313 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1314 
1315 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1316 	struct hclge_vf_to_pf_msg send_msg;
1317 	int ret;
1318 
1319 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1320 		return -EINVAL;
1321 
1322 	if (proto != htons(ETH_P_8021Q))
1323 		return -EPROTONOSUPPORT;
1324 
1325 	/* When device is resetting, firmware is unable to handle
1326 	 * mailbox. Just record the vlan id, and remove it after
1327 	 * reset finished.
1328 	 */
1329 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1330 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1331 		return -EBUSY;
1332 	}
1333 
1334 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1335 			       HCLGE_MBX_VLAN_FILTER);
1336 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1337 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1338 	       sizeof(vlan_id));
1339 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1340 	       sizeof(proto));
1341 	/* when remove hw vlan filter failed, record the vlan id,
1342 	 * and try to remove it from hw later, to be consistence
1343 	 * with stack.
1344 	 */
1345 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1346 	if (is_kill && ret)
1347 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1348 
1349 	return ret;
1350 }
1351 
1352 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1353 {
1354 #define HCLGEVF_MAX_SYNC_COUNT	60
1355 	struct hnae3_handle *handle = &hdev->nic;
1356 	int ret, sync_cnt = 0;
1357 	u16 vlan_id;
1358 
1359 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1360 	while (vlan_id != VLAN_N_VID) {
1361 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1362 					      vlan_id, true);
1363 		if (ret)
1364 			return;
1365 
1366 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1367 		sync_cnt++;
1368 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1369 			return;
1370 
1371 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1372 	}
1373 }
1374 
1375 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1376 {
1377 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1378 	struct hclge_vf_to_pf_msg send_msg;
1379 
1380 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1381 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1382 	send_msg.data[0] = enable ? 1 : 0;
1383 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1384 }
1385 
1386 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1387 {
1388 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1389 	struct hclge_vf_to_pf_msg send_msg;
1390 	int ret;
1391 
1392 	/* disable vf queue before send queue reset msg to PF */
1393 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1394 	if (ret)
1395 		return ret;
1396 
1397 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1398 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1399 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1400 }
1401 
1402 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1403 {
1404 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1405 	struct hclge_vf_to_pf_msg send_msg;
1406 
1407 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1408 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1409 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1410 }
1411 
1412 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1413 				 enum hnae3_reset_notify_type type)
1414 {
1415 	struct hnae3_client *client = hdev->nic_client;
1416 	struct hnae3_handle *handle = &hdev->nic;
1417 	int ret;
1418 
1419 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1420 	    !client)
1421 		return 0;
1422 
1423 	if (!client->ops->reset_notify)
1424 		return -EOPNOTSUPP;
1425 
1426 	ret = client->ops->reset_notify(handle, type);
1427 	if (ret)
1428 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1429 			type, ret);
1430 
1431 	return ret;
1432 }
1433 
1434 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1435 {
1436 #define HCLGEVF_RESET_WAIT_US	20000
1437 #define HCLGEVF_RESET_WAIT_CNT	2000
1438 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1439 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1440 
1441 	u32 val;
1442 	int ret;
1443 
1444 	if (hdev->reset_type == HNAE3_VF_RESET)
1445 		ret = readl_poll_timeout(hdev->hw.io_base +
1446 					 HCLGEVF_VF_RST_ING, val,
1447 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1448 					 HCLGEVF_RESET_WAIT_US,
1449 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1450 	else
1451 		ret = readl_poll_timeout(hdev->hw.io_base +
1452 					 HCLGEVF_RST_ING, val,
1453 					 !(val & HCLGEVF_RST_ING_BITS),
1454 					 HCLGEVF_RESET_WAIT_US,
1455 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1456 
1457 	/* hardware completion status should be available by this time */
1458 	if (ret) {
1459 		dev_err(&hdev->pdev->dev,
1460 			"could'nt get reset done status from h/w, timeout!\n");
1461 		return ret;
1462 	}
1463 
1464 	/* we will wait a bit more to let reset of the stack to complete. This
1465 	 * might happen in case reset assertion was made by PF. Yes, this also
1466 	 * means we might end up waiting bit more even for VF reset.
1467 	 */
1468 	msleep(5000);
1469 
1470 	return 0;
1471 }
1472 
1473 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1474 {
1475 	u32 reg_val;
1476 
1477 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1478 	if (enable)
1479 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1480 	else
1481 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1482 
1483 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1484 			  reg_val);
1485 }
1486 
1487 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1488 {
1489 	int ret;
1490 
1491 	/* uninitialize the nic client */
1492 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1493 	if (ret)
1494 		return ret;
1495 
1496 	/* re-initialize the hclge device */
1497 	ret = hclgevf_reset_hdev(hdev);
1498 	if (ret) {
1499 		dev_err(&hdev->pdev->dev,
1500 			"hclge device re-init failed, VF is disabled!\n");
1501 		return ret;
1502 	}
1503 
1504 	/* bring up the nic client again */
1505 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1506 	if (ret)
1507 		return ret;
1508 
1509 	ret = hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1510 	if (ret)
1511 		return ret;
1512 
1513 	/* clear handshake status with IMP */
1514 	hclgevf_reset_handshake(hdev, false);
1515 
1516 	/* bring up the nic to enable TX/RX again */
1517 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1518 }
1519 
1520 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1521 {
1522 #define HCLGEVF_RESET_SYNC_TIME 100
1523 
1524 	struct hclge_vf_to_pf_msg send_msg;
1525 	int ret = 0;
1526 
1527 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1528 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1529 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1530 		hdev->rst_stats.vf_func_rst_cnt++;
1531 	}
1532 
1533 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1534 	/* inform hardware that preparatory work is done */
1535 	msleep(HCLGEVF_RESET_SYNC_TIME);
1536 	hclgevf_reset_handshake(hdev, true);
1537 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1538 		 hdev->reset_type, ret);
1539 
1540 	return ret;
1541 }
1542 
1543 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1544 {
1545 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1546 		 hdev->rst_stats.vf_func_rst_cnt);
1547 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1548 		 hdev->rst_stats.flr_rst_cnt);
1549 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1550 		 hdev->rst_stats.vf_rst_cnt);
1551 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1552 		 hdev->rst_stats.rst_done_cnt);
1553 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1554 		 hdev->rst_stats.hw_rst_done_cnt);
1555 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1556 		 hdev->rst_stats.rst_cnt);
1557 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1558 		 hdev->rst_stats.rst_fail_cnt);
1559 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1560 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1561 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1562 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STAT_REG));
1563 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1564 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1565 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1566 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1567 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1568 }
1569 
1570 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1571 {
1572 	/* recover handshake status with IMP when reset fail */
1573 	hclgevf_reset_handshake(hdev, true);
1574 	hdev->rst_stats.rst_fail_cnt++;
1575 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1576 		hdev->rst_stats.rst_fail_cnt);
1577 
1578 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1579 		set_bit(hdev->reset_type, &hdev->reset_pending);
1580 
1581 	if (hclgevf_is_reset_pending(hdev)) {
1582 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1583 		hclgevf_reset_task_schedule(hdev);
1584 	} else {
1585 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1586 		hclgevf_dump_rst_info(hdev);
1587 	}
1588 }
1589 
1590 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1591 {
1592 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1593 	int ret;
1594 
1595 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1596 	 * know if device is undergoing reset
1597 	 */
1598 	ae_dev->reset_type = hdev->reset_type;
1599 	hdev->rst_stats.rst_cnt++;
1600 
1601 	rtnl_lock();
1602 	/* bring down the nic to stop any ongoing TX/RX */
1603 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1604 	rtnl_unlock();
1605 	if (ret)
1606 		return ret;
1607 
1608 	return hclgevf_reset_prepare_wait(hdev);
1609 }
1610 
1611 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1612 {
1613 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1614 	int ret;
1615 
1616 	hdev->rst_stats.hw_rst_done_cnt++;
1617 
1618 	rtnl_lock();
1619 	/* now, re-initialize the nic client and ae device */
1620 	ret = hclgevf_reset_stack(hdev);
1621 	rtnl_unlock();
1622 	if (ret) {
1623 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1624 		return ret;
1625 	}
1626 
1627 	hdev->last_reset_time = jiffies;
1628 	ae_dev->reset_type = HNAE3_NONE_RESET;
1629 	hdev->rst_stats.rst_done_cnt++;
1630 	hdev->rst_stats.rst_fail_cnt = 0;
1631 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1632 
1633 	return 0;
1634 }
1635 
1636 static void hclgevf_reset(struct hclgevf_dev *hdev)
1637 {
1638 	if (hclgevf_reset_prepare(hdev))
1639 		goto err_reset;
1640 
1641 	/* check if VF could successfully fetch the hardware reset completion
1642 	 * status from the hardware
1643 	 */
1644 	if (hclgevf_reset_wait(hdev)) {
1645 		/* can't do much in this situation, will disable VF */
1646 		dev_err(&hdev->pdev->dev,
1647 			"failed to fetch H/W reset completion status\n");
1648 		goto err_reset;
1649 	}
1650 
1651 	if (hclgevf_reset_rebuild(hdev))
1652 		goto err_reset;
1653 
1654 	return;
1655 
1656 err_reset:
1657 	hclgevf_reset_err_handle(hdev);
1658 }
1659 
1660 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1661 						     unsigned long *addr)
1662 {
1663 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1664 
1665 	/* return the highest priority reset level amongst all */
1666 	if (test_bit(HNAE3_VF_RESET, addr)) {
1667 		rst_level = HNAE3_VF_RESET;
1668 		clear_bit(HNAE3_VF_RESET, addr);
1669 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1670 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1671 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1672 		rst_level = HNAE3_VF_FULL_RESET;
1673 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1674 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1675 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1676 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1677 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1678 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1679 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1680 		rst_level = HNAE3_VF_FUNC_RESET;
1681 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1682 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1683 		rst_level = HNAE3_FLR_RESET;
1684 		clear_bit(HNAE3_FLR_RESET, addr);
1685 	}
1686 
1687 	return rst_level;
1688 }
1689 
1690 static void hclgevf_reset_event(struct pci_dev *pdev,
1691 				struct hnae3_handle *handle)
1692 {
1693 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1694 	struct hclgevf_dev *hdev = ae_dev->priv;
1695 
1696 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1697 
1698 	if (hdev->default_reset_request)
1699 		hdev->reset_level =
1700 			hclgevf_get_reset_level(hdev,
1701 						&hdev->default_reset_request);
1702 	else
1703 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1704 
1705 	/* reset of this VF requested */
1706 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1707 	hclgevf_reset_task_schedule(hdev);
1708 
1709 	hdev->last_reset_time = jiffies;
1710 }
1711 
1712 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1713 					  enum hnae3_reset_type rst_type)
1714 {
1715 	struct hclgevf_dev *hdev = ae_dev->priv;
1716 
1717 	set_bit(rst_type, &hdev->default_reset_request);
1718 }
1719 
1720 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1721 {
1722 	writel(en ? 1 : 0, vector->addr);
1723 }
1724 
1725 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1726 {
1727 #define HCLGEVF_FLR_RETRY_WAIT_MS	500
1728 #define HCLGEVF_FLR_RETRY_CNT		5
1729 
1730 	struct hclgevf_dev *hdev = ae_dev->priv;
1731 	int retry_cnt = 0;
1732 	int ret;
1733 
1734 retry:
1735 	down(&hdev->reset_sem);
1736 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1737 	hdev->reset_type = HNAE3_FLR_RESET;
1738 	ret = hclgevf_reset_prepare(hdev);
1739 	if (ret) {
1740 		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
1741 			ret);
1742 		if (hdev->reset_pending ||
1743 		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
1744 			dev_err(&hdev->pdev->dev,
1745 				"reset_pending:0x%lx, retry_cnt:%d\n",
1746 				hdev->reset_pending, retry_cnt);
1747 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1748 			up(&hdev->reset_sem);
1749 			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
1750 			goto retry;
1751 		}
1752 	}
1753 
1754 	/* disable misc vector before FLR done */
1755 	hclgevf_enable_vector(&hdev->misc_vector, false);
1756 	hdev->rst_stats.flr_rst_cnt++;
1757 }
1758 
1759 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1760 {
1761 	struct hclgevf_dev *hdev = ae_dev->priv;
1762 	int ret;
1763 
1764 	hclgevf_enable_vector(&hdev->misc_vector, true);
1765 
1766 	ret = hclgevf_reset_rebuild(hdev);
1767 	if (ret)
1768 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1769 			 ret);
1770 
1771 	hdev->reset_type = HNAE3_NONE_RESET;
1772 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1773 	up(&hdev->reset_sem);
1774 }
1775 
1776 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1777 {
1778 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1779 
1780 	return hdev->fw_version;
1781 }
1782 
1783 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1784 {
1785 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1786 
1787 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1788 					    HCLGEVF_MISC_VECTOR_NUM);
1789 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1790 	/* vector status always valid for Vector 0 */
1791 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1792 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1793 
1794 	hdev->num_msi_left -= 1;
1795 	hdev->num_msi_used += 1;
1796 }
1797 
1798 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1799 {
1800 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1801 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1802 			      &hdev->state))
1803 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1804 }
1805 
1806 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1807 {
1808 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1809 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1810 			      &hdev->state))
1811 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1812 }
1813 
1814 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1815 				  unsigned long delay)
1816 {
1817 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1818 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1819 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1820 }
1821 
1822 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1823 {
1824 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
1825 
1826 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1827 		return;
1828 
1829 	down(&hdev->reset_sem);
1830 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1831 
1832 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1833 			       &hdev->reset_state)) {
1834 		/* PF has initmated that it is about to reset the hardware.
1835 		 * We now have to poll & check if hardware has actually
1836 		 * completed the reset sequence. On hardware reset completion,
1837 		 * VF needs to reset the client and ae device.
1838 		 */
1839 		hdev->reset_attempts = 0;
1840 
1841 		hdev->last_reset_time = jiffies;
1842 		while ((hdev->reset_type =
1843 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1844 		       != HNAE3_NONE_RESET)
1845 			hclgevf_reset(hdev);
1846 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1847 				      &hdev->reset_state)) {
1848 		/* we could be here when either of below happens:
1849 		 * 1. reset was initiated due to watchdog timeout caused by
1850 		 *    a. IMP was earlier reset and our TX got choked down and
1851 		 *       which resulted in watchdog reacting and inducing VF
1852 		 *       reset. This also means our cmdq would be unreliable.
1853 		 *    b. problem in TX due to other lower layer(example link
1854 		 *       layer not functioning properly etc.)
1855 		 * 2. VF reset might have been initiated due to some config
1856 		 *    change.
1857 		 *
1858 		 * NOTE: Theres no clear way to detect above cases than to react
1859 		 * to the response of PF for this reset request. PF will ack the
1860 		 * 1b and 2. cases but we will not get any intimation about 1a
1861 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1862 		 * communication between PF and VF would be broken.
1863 		 *
1864 		 * if we are never geting into pending state it means either:
1865 		 * 1. PF is not receiving our request which could be due to IMP
1866 		 *    reset
1867 		 * 2. PF is screwed
1868 		 * We cannot do much for 2. but to check first we can try reset
1869 		 * our PCIe + stack and see if it alleviates the problem.
1870 		 */
1871 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1872 			/* prepare for full reset of stack + pcie interface */
1873 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1874 
1875 			/* "defer" schedule the reset task again */
1876 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1877 		} else {
1878 			hdev->reset_attempts++;
1879 
1880 			set_bit(hdev->reset_level, &hdev->reset_pending);
1881 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1882 		}
1883 		hclgevf_reset_task_schedule(hdev);
1884 	}
1885 
1886 	hdev->reset_type = HNAE3_NONE_RESET;
1887 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1888 	up(&hdev->reset_sem);
1889 }
1890 
1891 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1892 {
1893 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1894 		return;
1895 
1896 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1897 		return;
1898 
1899 	hclgevf_mbx_async_handler(hdev);
1900 
1901 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1902 }
1903 
1904 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1905 {
1906 	struct hclge_vf_to_pf_msg send_msg;
1907 	int ret;
1908 
1909 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1910 		return;
1911 
1912 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1913 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1914 	if (ret)
1915 		dev_err(&hdev->pdev->dev,
1916 			"VF sends keep alive cmd failed(=%d)\n", ret);
1917 }
1918 
1919 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1920 {
1921 	unsigned long delta = round_jiffies_relative(HZ);
1922 	struct hnae3_handle *handle = &hdev->nic;
1923 
1924 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1925 		delta = jiffies - hdev->last_serv_processed;
1926 
1927 		if (delta < round_jiffies_relative(HZ)) {
1928 			delta = round_jiffies_relative(HZ) - delta;
1929 			goto out;
1930 		}
1931 	}
1932 
1933 	hdev->serv_processed_cnt++;
1934 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1935 		hclgevf_keep_alive(hdev);
1936 
1937 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1938 		hdev->last_serv_processed = jiffies;
1939 		goto out;
1940 	}
1941 
1942 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1943 		hclgevf_tqps_update_stats(handle);
1944 
1945 	/* request the link status from the PF. PF would be able to tell VF
1946 	 * about such updates in future so we might remove this later
1947 	 */
1948 	hclgevf_request_link_info(hdev);
1949 
1950 	hclgevf_update_link_mode(hdev);
1951 
1952 	hclgevf_sync_vlan_filter(hdev);
1953 
1954 	hdev->last_serv_processed = jiffies;
1955 
1956 out:
1957 	hclgevf_task_schedule(hdev, delta);
1958 }
1959 
1960 static void hclgevf_service_task(struct work_struct *work)
1961 {
1962 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1963 						service_task.work);
1964 
1965 	hclgevf_reset_service_task(hdev);
1966 	hclgevf_mailbox_service_task(hdev);
1967 	hclgevf_periodic_service_task(hdev);
1968 
1969 	/* Handle reset and mbx again in case periodical task delays the
1970 	 * handling by calling hclgevf_task_schedule() in
1971 	 * hclgevf_periodic_service_task()
1972 	 */
1973 	hclgevf_reset_service_task(hdev);
1974 	hclgevf_mailbox_service_task(hdev);
1975 }
1976 
1977 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1978 {
1979 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1980 }
1981 
1982 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1983 						      u32 *clearval)
1984 {
1985 	u32 val, cmdq_stat_reg, rst_ing_reg;
1986 
1987 	/* fetch the events from their corresponding regs */
1988 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1989 					 HCLGEVF_VECTOR0_CMDQ_STAT_REG);
1990 
1991 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1992 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1993 		dev_info(&hdev->pdev->dev,
1994 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1995 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1996 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1997 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1998 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1999 		hdev->rst_stats.vf_rst_cnt++;
2000 		/* set up VF hardware reset status, its PF will clear
2001 		 * this status when PF has initialized done.
2002 		 */
2003 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2004 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2005 				  val | HCLGEVF_VF_RST_ING_BIT);
2006 		return HCLGEVF_VECTOR0_EVENT_RST;
2007 	}
2008 
2009 	/* check for vector0 mailbox(=CMDQ RX) event source */
2010 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2011 		/* for revision 0x21, clearing interrupt is writing bit 0
2012 		 * to the clear register, writing bit 1 means to keep the
2013 		 * old value.
2014 		 * for revision 0x20, the clear register is a read & write
2015 		 * register, so we should just write 0 to the bit we are
2016 		 * handling, and keep other bits as cmdq_stat_reg.
2017 		 */
2018 		if (hdev->pdev->revision >= 0x21)
2019 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2020 		else
2021 			*clearval = cmdq_stat_reg &
2022 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2023 
2024 		return HCLGEVF_VECTOR0_EVENT_MBX;
2025 	}
2026 
2027 	/* print other vector0 event source */
2028 	dev_info(&hdev->pdev->dev,
2029 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2030 		 cmdq_stat_reg);
2031 
2032 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2033 }
2034 
2035 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2036 {
2037 	enum hclgevf_evt_cause event_cause;
2038 	struct hclgevf_dev *hdev = data;
2039 	u32 clearval;
2040 
2041 	hclgevf_enable_vector(&hdev->misc_vector, false);
2042 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2043 
2044 	switch (event_cause) {
2045 	case HCLGEVF_VECTOR0_EVENT_RST:
2046 		hclgevf_reset_task_schedule(hdev);
2047 		break;
2048 	case HCLGEVF_VECTOR0_EVENT_MBX:
2049 		hclgevf_mbx_handler(hdev);
2050 		break;
2051 	default:
2052 		break;
2053 	}
2054 
2055 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2056 		hclgevf_clear_event_cause(hdev, clearval);
2057 		hclgevf_enable_vector(&hdev->misc_vector, true);
2058 	}
2059 
2060 	return IRQ_HANDLED;
2061 }
2062 
2063 static int hclgevf_configure(struct hclgevf_dev *hdev)
2064 {
2065 	int ret;
2066 
2067 	/* get current port based vlan state from PF */
2068 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2069 	if (ret)
2070 		return ret;
2071 
2072 	/* get queue configuration from PF */
2073 	ret = hclgevf_get_queue_info(hdev);
2074 	if (ret)
2075 		return ret;
2076 
2077 	/* get queue depth info from PF */
2078 	ret = hclgevf_get_queue_depth(hdev);
2079 	if (ret)
2080 		return ret;
2081 
2082 	ret = hclgevf_get_pf_media_type(hdev);
2083 	if (ret)
2084 		return ret;
2085 
2086 	/* get tc configuration from PF */
2087 	return hclgevf_get_tc_info(hdev);
2088 }
2089 
2090 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2091 {
2092 	struct pci_dev *pdev = ae_dev->pdev;
2093 	struct hclgevf_dev *hdev;
2094 
2095 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2096 	if (!hdev)
2097 		return -ENOMEM;
2098 
2099 	hdev->pdev = pdev;
2100 	hdev->ae_dev = ae_dev;
2101 	ae_dev->priv = hdev;
2102 
2103 	return 0;
2104 }
2105 
2106 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2107 {
2108 	struct hnae3_handle *roce = &hdev->roce;
2109 	struct hnae3_handle *nic = &hdev->nic;
2110 
2111 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2112 
2113 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2114 	    hdev->num_msi_left == 0)
2115 		return -EINVAL;
2116 
2117 	roce->rinfo.base_vector = hdev->roce_base_vector;
2118 
2119 	roce->rinfo.netdev = nic->kinfo.netdev;
2120 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2121 
2122 	roce->pdev = nic->pdev;
2123 	roce->ae_algo = nic->ae_algo;
2124 	roce->numa_node_mask = nic->numa_node_mask;
2125 
2126 	return 0;
2127 }
2128 
2129 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2130 {
2131 	struct hclgevf_cfg_gro_status_cmd *req;
2132 	struct hclgevf_desc desc;
2133 	int ret;
2134 
2135 	if (!hnae3_dev_gro_supported(hdev))
2136 		return 0;
2137 
2138 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2139 				     false);
2140 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2141 
2142 	req->gro_en = cpu_to_le16(en ? 1 : 0);
2143 
2144 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2145 	if (ret)
2146 		dev_err(&hdev->pdev->dev,
2147 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2148 
2149 	return ret;
2150 }
2151 
2152 static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2153 {
2154 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2155 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2156 	u32 i;
2157 
2158 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2159 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2160 	tuple_sets = &rss_cfg->rss_tuple_sets;
2161 	if (hdev->pdev->revision >= 0x21) {
2162 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2163 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2164 		       HCLGEVF_RSS_KEY_SIZE);
2165 
2166 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2167 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2168 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2169 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2170 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2171 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2172 		tuple_sets->ipv6_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2173 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2174 	}
2175 
2176 	/* Initialize RSS indirect table */
2177 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2178 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2179 }
2180 
2181 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2182 {
2183 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2184 	int ret;
2185 
2186 	if (hdev->pdev->revision >= 0x21) {
2187 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2188 					       rss_cfg->rss_hash_key);
2189 		if (ret)
2190 			return ret;
2191 
2192 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2193 		if (ret)
2194 			return ret;
2195 	}
2196 
2197 	ret = hclgevf_set_rss_indir_table(hdev);
2198 	if (ret)
2199 		return ret;
2200 
2201 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2202 }
2203 
2204 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2205 {
2206 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2207 				       false);
2208 }
2209 
2210 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2211 {
2212 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2213 
2214 	unsigned long last = hdev->serv_processed_cnt;
2215 	int i = 0;
2216 
2217 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2218 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2219 	       last == hdev->serv_processed_cnt)
2220 		usleep_range(1, 1);
2221 }
2222 
2223 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2224 {
2225 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2226 
2227 	if (enable) {
2228 		hclgevf_task_schedule(hdev, 0);
2229 	} else {
2230 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2231 
2232 		/* flush memory to make sure DOWN is seen by service task */
2233 		smp_mb__before_atomic();
2234 		hclgevf_flush_link_update(hdev);
2235 	}
2236 }
2237 
2238 static int hclgevf_ae_start(struct hnae3_handle *handle)
2239 {
2240 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2241 
2242 	hclgevf_reset_tqp_stats(handle);
2243 
2244 	hclgevf_request_link_info(hdev);
2245 
2246 	hclgevf_update_link_mode(hdev);
2247 
2248 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2249 
2250 	return 0;
2251 }
2252 
2253 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2254 {
2255 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2256 	int i;
2257 
2258 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2259 
2260 	if (hdev->reset_type != HNAE3_VF_RESET)
2261 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2262 			if (hclgevf_reset_tqp(handle, i))
2263 				break;
2264 
2265 	hclgevf_reset_tqp_stats(handle);
2266 	hclgevf_update_link_status(hdev, 0);
2267 }
2268 
2269 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2270 {
2271 #define HCLGEVF_STATE_ALIVE	1
2272 #define HCLGEVF_STATE_NOT_ALIVE	0
2273 
2274 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2275 	struct hclge_vf_to_pf_msg send_msg;
2276 
2277 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2278 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2279 				HCLGEVF_STATE_NOT_ALIVE;
2280 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2281 }
2282 
2283 static int hclgevf_client_start(struct hnae3_handle *handle)
2284 {
2285 	int ret;
2286 
2287 	ret = hclgevf_set_alive(handle, true);
2288 	if (ret)
2289 		return ret;
2290 
2291 	return 0;
2292 }
2293 
2294 static void hclgevf_client_stop(struct hnae3_handle *handle)
2295 {
2296 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2297 	int ret;
2298 
2299 	ret = hclgevf_set_alive(handle, false);
2300 	if (ret)
2301 		dev_warn(&hdev->pdev->dev,
2302 			 "%s failed %d\n", __func__, ret);
2303 }
2304 
2305 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2306 {
2307 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2308 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2309 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2310 
2311 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2312 
2313 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2314 	sema_init(&hdev->reset_sem, 1);
2315 
2316 	/* bring the device down */
2317 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2318 }
2319 
2320 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2321 {
2322 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2323 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2324 
2325 	if (hdev->service_task.work.func)
2326 		cancel_delayed_work_sync(&hdev->service_task);
2327 
2328 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2329 }
2330 
2331 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2332 {
2333 	struct pci_dev *pdev = hdev->pdev;
2334 	int vectors;
2335 	int i;
2336 
2337 	if (hnae3_dev_roce_supported(hdev))
2338 		vectors = pci_alloc_irq_vectors(pdev,
2339 						hdev->roce_base_msix_offset + 1,
2340 						hdev->num_msi,
2341 						PCI_IRQ_MSIX);
2342 	else
2343 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2344 						hdev->num_msi,
2345 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2346 
2347 	if (vectors < 0) {
2348 		dev_err(&pdev->dev,
2349 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2350 			vectors);
2351 		return vectors;
2352 	}
2353 	if (vectors < hdev->num_msi)
2354 		dev_warn(&hdev->pdev->dev,
2355 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2356 			 hdev->num_msi, vectors);
2357 
2358 	hdev->num_msi = vectors;
2359 	hdev->num_msi_left = vectors;
2360 
2361 	hdev->base_msi_vector = pdev->irq;
2362 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2363 
2364 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2365 					   sizeof(u16), GFP_KERNEL);
2366 	if (!hdev->vector_status) {
2367 		pci_free_irq_vectors(pdev);
2368 		return -ENOMEM;
2369 	}
2370 
2371 	for (i = 0; i < hdev->num_msi; i++)
2372 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2373 
2374 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2375 					sizeof(int), GFP_KERNEL);
2376 	if (!hdev->vector_irq) {
2377 		devm_kfree(&pdev->dev, hdev->vector_status);
2378 		pci_free_irq_vectors(pdev);
2379 		return -ENOMEM;
2380 	}
2381 
2382 	return 0;
2383 }
2384 
2385 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2386 {
2387 	struct pci_dev *pdev = hdev->pdev;
2388 
2389 	devm_kfree(&pdev->dev, hdev->vector_status);
2390 	devm_kfree(&pdev->dev, hdev->vector_irq);
2391 	pci_free_irq_vectors(pdev);
2392 }
2393 
2394 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2395 {
2396 	int ret;
2397 
2398 	hclgevf_get_misc_vector(hdev);
2399 
2400 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2401 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2402 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2403 			  0, hdev->misc_vector.name, hdev);
2404 	if (ret) {
2405 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2406 			hdev->misc_vector.vector_irq);
2407 		return ret;
2408 	}
2409 
2410 	hclgevf_clear_event_cause(hdev, 0);
2411 
2412 	/* enable misc. vector(vector 0) */
2413 	hclgevf_enable_vector(&hdev->misc_vector, true);
2414 
2415 	return ret;
2416 }
2417 
2418 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2419 {
2420 	/* disable misc vector(vector 0) */
2421 	hclgevf_enable_vector(&hdev->misc_vector, false);
2422 	synchronize_irq(hdev->misc_vector.vector_irq);
2423 	free_irq(hdev->misc_vector.vector_irq, hdev);
2424 	hclgevf_free_vector(hdev, 0);
2425 }
2426 
2427 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2428 {
2429 	struct device *dev = &hdev->pdev->dev;
2430 
2431 	dev_info(dev, "VF info begin:\n");
2432 
2433 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2434 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2435 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2436 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2437 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2438 	dev_info(dev, "PF media type of this VF: %u\n",
2439 		 hdev->hw.mac.media_type);
2440 
2441 	dev_info(dev, "VF info end.\n");
2442 }
2443 
2444 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2445 					    struct hnae3_client *client)
2446 {
2447 	struct hclgevf_dev *hdev = ae_dev->priv;
2448 	int ret;
2449 
2450 	ret = client->ops->init_instance(&hdev->nic);
2451 	if (ret)
2452 		return ret;
2453 
2454 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2455 	hnae3_set_client_init_flag(client, ae_dev, 1);
2456 
2457 	if (netif_msg_drv(&hdev->nic))
2458 		hclgevf_info_show(hdev);
2459 
2460 	return 0;
2461 }
2462 
2463 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2464 					     struct hnae3_client *client)
2465 {
2466 	struct hclgevf_dev *hdev = ae_dev->priv;
2467 	int ret;
2468 
2469 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2470 	    !hdev->nic_client)
2471 		return 0;
2472 
2473 	ret = hclgevf_init_roce_base_info(hdev);
2474 	if (ret)
2475 		return ret;
2476 
2477 	ret = client->ops->init_instance(&hdev->roce);
2478 	if (ret)
2479 		return ret;
2480 
2481 	hnae3_set_client_init_flag(client, ae_dev, 1);
2482 
2483 	return 0;
2484 }
2485 
2486 static int hclgevf_init_client_instance(struct hnae3_client *client,
2487 					struct hnae3_ae_dev *ae_dev)
2488 {
2489 	struct hclgevf_dev *hdev = ae_dev->priv;
2490 	int ret;
2491 
2492 	switch (client->type) {
2493 	case HNAE3_CLIENT_KNIC:
2494 		hdev->nic_client = client;
2495 		hdev->nic.client = client;
2496 
2497 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2498 		if (ret)
2499 			goto clear_nic;
2500 
2501 		ret = hclgevf_init_roce_client_instance(ae_dev,
2502 							hdev->roce_client);
2503 		if (ret)
2504 			goto clear_roce;
2505 
2506 		break;
2507 	case HNAE3_CLIENT_ROCE:
2508 		if (hnae3_dev_roce_supported(hdev)) {
2509 			hdev->roce_client = client;
2510 			hdev->roce.client = client;
2511 		}
2512 
2513 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2514 		if (ret)
2515 			goto clear_roce;
2516 
2517 		break;
2518 	default:
2519 		return -EINVAL;
2520 	}
2521 
2522 	return 0;
2523 
2524 clear_nic:
2525 	hdev->nic_client = NULL;
2526 	hdev->nic.client = NULL;
2527 	return ret;
2528 clear_roce:
2529 	hdev->roce_client = NULL;
2530 	hdev->roce.client = NULL;
2531 	return ret;
2532 }
2533 
2534 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2535 					   struct hnae3_ae_dev *ae_dev)
2536 {
2537 	struct hclgevf_dev *hdev = ae_dev->priv;
2538 
2539 	/* un-init roce, if it exists */
2540 	if (hdev->roce_client) {
2541 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2542 		hdev->roce_client = NULL;
2543 		hdev->roce.client = NULL;
2544 	}
2545 
2546 	/* un-init nic/unic, if this was not called by roce client */
2547 	if (client->ops->uninit_instance && hdev->nic_client &&
2548 	    client->type != HNAE3_CLIENT_ROCE) {
2549 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2550 
2551 		client->ops->uninit_instance(&hdev->nic, 0);
2552 		hdev->nic_client = NULL;
2553 		hdev->nic.client = NULL;
2554 	}
2555 }
2556 
2557 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2558 {
2559 	struct pci_dev *pdev = hdev->pdev;
2560 	struct hclgevf_hw *hw;
2561 	int ret;
2562 
2563 	ret = pci_enable_device(pdev);
2564 	if (ret) {
2565 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2566 		return ret;
2567 	}
2568 
2569 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2570 	if (ret) {
2571 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2572 		goto err_disable_device;
2573 	}
2574 
2575 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2576 	if (ret) {
2577 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2578 		goto err_disable_device;
2579 	}
2580 
2581 	pci_set_master(pdev);
2582 	hw = &hdev->hw;
2583 	hw->hdev = hdev;
2584 	hw->io_base = pci_iomap(pdev, 2, 0);
2585 	if (!hw->io_base) {
2586 		dev_err(&pdev->dev, "can't map configuration register space\n");
2587 		ret = -ENOMEM;
2588 		goto err_clr_master;
2589 	}
2590 
2591 	return 0;
2592 
2593 err_clr_master:
2594 	pci_clear_master(pdev);
2595 	pci_release_regions(pdev);
2596 err_disable_device:
2597 	pci_disable_device(pdev);
2598 
2599 	return ret;
2600 }
2601 
2602 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2603 {
2604 	struct pci_dev *pdev = hdev->pdev;
2605 
2606 	pci_iounmap(pdev, hdev->hw.io_base);
2607 	pci_clear_master(pdev);
2608 	pci_release_regions(pdev);
2609 	pci_disable_device(pdev);
2610 }
2611 
2612 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2613 {
2614 	struct hclgevf_query_res_cmd *req;
2615 	struct hclgevf_desc desc;
2616 	int ret;
2617 
2618 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2619 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2620 	if (ret) {
2621 		dev_err(&hdev->pdev->dev,
2622 			"query vf resource failed, ret = %d.\n", ret);
2623 		return ret;
2624 	}
2625 
2626 	req = (struct hclgevf_query_res_cmd *)desc.data;
2627 
2628 	if (hnae3_dev_roce_supported(hdev)) {
2629 		hdev->roce_base_msix_offset =
2630 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2631 				HCLGEVF_MSIX_OFT_ROCEE_M,
2632 				HCLGEVF_MSIX_OFT_ROCEE_S);
2633 		hdev->num_roce_msix =
2634 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2635 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2636 
2637 		/* nic's msix numbers is always equals to the roce's. */
2638 		hdev->num_nic_msix = hdev->num_roce_msix;
2639 
2640 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2641 		 * are queued before Roce vectors. The offset is fixed to 64.
2642 		 */
2643 		hdev->num_msi = hdev->num_roce_msix +
2644 				hdev->roce_base_msix_offset;
2645 	} else {
2646 		hdev->num_msi =
2647 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2648 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2649 
2650 		hdev->num_nic_msix = hdev->num_msi;
2651 	}
2652 
2653 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2654 		dev_err(&hdev->pdev->dev,
2655 			"Just %u msi resources, not enough for vf(min:2).\n",
2656 			hdev->num_nic_msix);
2657 		return -EINVAL;
2658 	}
2659 
2660 	return 0;
2661 }
2662 
2663 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2664 {
2665 	struct pci_dev *pdev = hdev->pdev;
2666 	int ret = 0;
2667 
2668 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2669 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2670 		hclgevf_misc_irq_uninit(hdev);
2671 		hclgevf_uninit_msi(hdev);
2672 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2673 	}
2674 
2675 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2676 		pci_set_master(pdev);
2677 		ret = hclgevf_init_msi(hdev);
2678 		if (ret) {
2679 			dev_err(&pdev->dev,
2680 				"failed(%d) to init MSI/MSI-X\n", ret);
2681 			return ret;
2682 		}
2683 
2684 		ret = hclgevf_misc_irq_init(hdev);
2685 		if (ret) {
2686 			hclgevf_uninit_msi(hdev);
2687 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2688 				ret);
2689 			return ret;
2690 		}
2691 
2692 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2693 	}
2694 
2695 	return ret;
2696 }
2697 
2698 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2699 {
2700 	struct pci_dev *pdev = hdev->pdev;
2701 	int ret;
2702 
2703 	ret = hclgevf_pci_reset(hdev);
2704 	if (ret) {
2705 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2706 		return ret;
2707 	}
2708 
2709 	ret = hclgevf_cmd_init(hdev);
2710 	if (ret) {
2711 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2712 		return ret;
2713 	}
2714 
2715 	ret = hclgevf_rss_init_hw(hdev);
2716 	if (ret) {
2717 		dev_err(&hdev->pdev->dev,
2718 			"failed(%d) to initialize RSS\n", ret);
2719 		return ret;
2720 	}
2721 
2722 	ret = hclgevf_config_gro(hdev, true);
2723 	if (ret)
2724 		return ret;
2725 
2726 	ret = hclgevf_init_vlan_config(hdev);
2727 	if (ret) {
2728 		dev_err(&hdev->pdev->dev,
2729 			"failed(%d) to initialize VLAN config\n", ret);
2730 		return ret;
2731 	}
2732 
2733 	dev_info(&hdev->pdev->dev, "Reset done\n");
2734 
2735 	return 0;
2736 }
2737 
2738 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2739 {
2740 	struct pci_dev *pdev = hdev->pdev;
2741 	int ret;
2742 
2743 	ret = hclgevf_pci_init(hdev);
2744 	if (ret)
2745 		return ret;
2746 
2747 	ret = hclgevf_cmd_queue_init(hdev);
2748 	if (ret)
2749 		goto err_cmd_queue_init;
2750 
2751 	ret = hclgevf_cmd_init(hdev);
2752 	if (ret)
2753 		goto err_cmd_init;
2754 
2755 	/* Get vf resource */
2756 	ret = hclgevf_query_vf_resource(hdev);
2757 	if (ret)
2758 		goto err_cmd_init;
2759 
2760 	ret = hclgevf_init_msi(hdev);
2761 	if (ret) {
2762 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2763 		goto err_cmd_init;
2764 	}
2765 
2766 	hclgevf_state_init(hdev);
2767 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2768 	hdev->reset_type = HNAE3_NONE_RESET;
2769 
2770 	ret = hclgevf_misc_irq_init(hdev);
2771 	if (ret)
2772 		goto err_misc_irq_init;
2773 
2774 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2775 
2776 	ret = hclgevf_configure(hdev);
2777 	if (ret) {
2778 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2779 		goto err_config;
2780 	}
2781 
2782 	ret = hclgevf_alloc_tqps(hdev);
2783 	if (ret) {
2784 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2785 		goto err_config;
2786 	}
2787 
2788 	ret = hclgevf_set_handle_info(hdev);
2789 	if (ret)
2790 		goto err_config;
2791 
2792 	ret = hclgevf_config_gro(hdev, true);
2793 	if (ret)
2794 		goto err_config;
2795 
2796 	/* Initialize RSS for this VF */
2797 	hclgevf_rss_init_cfg(hdev);
2798 	ret = hclgevf_rss_init_hw(hdev);
2799 	if (ret) {
2800 		dev_err(&hdev->pdev->dev,
2801 			"failed(%d) to initialize RSS\n", ret);
2802 		goto err_config;
2803 	}
2804 
2805 	ret = hclgevf_init_vlan_config(hdev);
2806 	if (ret) {
2807 		dev_err(&hdev->pdev->dev,
2808 			"failed(%d) to initialize VLAN config\n", ret);
2809 		goto err_config;
2810 	}
2811 
2812 	hdev->last_reset_time = jiffies;
2813 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2814 		 HCLGEVF_DRIVER_NAME);
2815 
2816 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2817 
2818 	return 0;
2819 
2820 err_config:
2821 	hclgevf_misc_irq_uninit(hdev);
2822 err_misc_irq_init:
2823 	hclgevf_state_uninit(hdev);
2824 	hclgevf_uninit_msi(hdev);
2825 err_cmd_init:
2826 	hclgevf_cmd_uninit(hdev);
2827 err_cmd_queue_init:
2828 	hclgevf_pci_uninit(hdev);
2829 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2830 	return ret;
2831 }
2832 
2833 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2834 {
2835 	struct hclge_vf_to_pf_msg send_msg;
2836 
2837 	hclgevf_state_uninit(hdev);
2838 
2839 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
2840 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2841 
2842 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2843 		hclgevf_misc_irq_uninit(hdev);
2844 		hclgevf_uninit_msi(hdev);
2845 	}
2846 
2847 	hclgevf_pci_uninit(hdev);
2848 	hclgevf_cmd_uninit(hdev);
2849 }
2850 
2851 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2852 {
2853 	struct pci_dev *pdev = ae_dev->pdev;
2854 	int ret;
2855 
2856 	ret = hclgevf_alloc_hdev(ae_dev);
2857 	if (ret) {
2858 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2859 		return ret;
2860 	}
2861 
2862 	ret = hclgevf_init_hdev(ae_dev->priv);
2863 	if (ret) {
2864 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2865 		return ret;
2866 	}
2867 
2868 	return 0;
2869 }
2870 
2871 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2872 {
2873 	struct hclgevf_dev *hdev = ae_dev->priv;
2874 
2875 	hclgevf_uninit_hdev(hdev);
2876 	ae_dev->priv = NULL;
2877 }
2878 
2879 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2880 {
2881 	struct hnae3_handle *nic = &hdev->nic;
2882 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2883 
2884 	return min_t(u32, hdev->rss_size_max,
2885 		     hdev->num_tqps / kinfo->num_tc);
2886 }
2887 
2888 /**
2889  * hclgevf_get_channels - Get the current channels enabled and max supported.
2890  * @handle: hardware information for network interface
2891  * @ch: ethtool channels structure
2892  *
2893  * We don't support separate tx and rx queues as channels. The other count
2894  * represents how many queues are being used for control. max_combined counts
2895  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2896  * q_vectors since we support a lot more queue pairs than q_vectors.
2897  **/
2898 static void hclgevf_get_channels(struct hnae3_handle *handle,
2899 				 struct ethtool_channels *ch)
2900 {
2901 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2902 
2903 	ch->max_combined = hclgevf_get_max_channels(hdev);
2904 	ch->other_count = 0;
2905 	ch->max_other = 0;
2906 	ch->combined_count = handle->kinfo.rss_size;
2907 }
2908 
2909 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2910 					  u16 *alloc_tqps, u16 *max_rss_size)
2911 {
2912 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2913 
2914 	*alloc_tqps = hdev->num_tqps;
2915 	*max_rss_size = hdev->rss_size_max;
2916 }
2917 
2918 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
2919 				    u32 new_tqps_num)
2920 {
2921 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2922 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2923 	u16 max_rss_size;
2924 
2925 	kinfo->req_rss_size = new_tqps_num;
2926 
2927 	max_rss_size = min_t(u16, hdev->rss_size_max,
2928 			     hdev->num_tqps / kinfo->num_tc);
2929 
2930 	/* Use the user's configuration when it is not larger than
2931 	 * max_rss_size, otherwise, use the maximum specification value.
2932 	 */
2933 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
2934 	    kinfo->req_rss_size <= max_rss_size)
2935 		kinfo->rss_size = kinfo->req_rss_size;
2936 	else if (kinfo->rss_size > max_rss_size ||
2937 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
2938 		kinfo->rss_size = max_rss_size;
2939 
2940 	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
2941 }
2942 
2943 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
2944 				bool rxfh_configured)
2945 {
2946 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2947 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2948 	u16 cur_rss_size = kinfo->rss_size;
2949 	u16 cur_tqps = kinfo->num_tqps;
2950 	u32 *rss_indir;
2951 	unsigned int i;
2952 	int ret;
2953 
2954 	hclgevf_update_rss_size(handle, new_tqps_num);
2955 
2956 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
2957 	if (ret)
2958 		return ret;
2959 
2960 	/* RSS indirection table has been configuared by user */
2961 	if (rxfh_configured)
2962 		goto out;
2963 
2964 	/* Reinitializes the rss indirect table according to the new RSS size */
2965 	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
2966 	if (!rss_indir)
2967 		return -ENOMEM;
2968 
2969 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2970 		rss_indir[i] = i % kinfo->rss_size;
2971 
2972 	hdev->rss_cfg.rss_size = kinfo->rss_size;
2973 
2974 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
2975 	if (ret)
2976 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
2977 			ret);
2978 
2979 	kfree(rss_indir);
2980 
2981 out:
2982 	if (!ret)
2983 		dev_info(&hdev->pdev->dev,
2984 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
2985 			 cur_rss_size, kinfo->rss_size,
2986 			 cur_tqps, kinfo->rss_size * kinfo->num_tc);
2987 
2988 	return ret;
2989 }
2990 
2991 static int hclgevf_get_status(struct hnae3_handle *handle)
2992 {
2993 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2994 
2995 	return hdev->hw.mac.link;
2996 }
2997 
2998 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2999 					    u8 *auto_neg, u32 *speed,
3000 					    u8 *duplex)
3001 {
3002 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3003 
3004 	if (speed)
3005 		*speed = hdev->hw.mac.speed;
3006 	if (duplex)
3007 		*duplex = hdev->hw.mac.duplex;
3008 	if (auto_neg)
3009 		*auto_neg = AUTONEG_DISABLE;
3010 }
3011 
3012 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3013 				 u8 duplex)
3014 {
3015 	hdev->hw.mac.speed = speed;
3016 	hdev->hw.mac.duplex = duplex;
3017 }
3018 
3019 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3020 {
3021 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3022 
3023 	return hclgevf_config_gro(hdev, enable);
3024 }
3025 
3026 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3027 				   u8 *module_type)
3028 {
3029 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3030 
3031 	if (media_type)
3032 		*media_type = hdev->hw.mac.media_type;
3033 
3034 	if (module_type)
3035 		*module_type = hdev->hw.mac.module_type;
3036 }
3037 
3038 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3039 {
3040 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3041 
3042 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3043 }
3044 
3045 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3046 {
3047 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3048 
3049 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3050 }
3051 
3052 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3053 {
3054 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3055 
3056 	return hdev->rst_stats.hw_rst_done_cnt;
3057 }
3058 
3059 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3060 				  unsigned long *supported,
3061 				  unsigned long *advertising)
3062 {
3063 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3064 
3065 	*supported = hdev->hw.mac.supported;
3066 	*advertising = hdev->hw.mac.advertising;
3067 }
3068 
3069 #define MAX_SEPARATE_NUM	4
3070 #define SEPARATOR_VALUE		0xFFFFFFFF
3071 #define REG_NUM_PER_LINE	4
3072 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3073 
3074 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3075 {
3076 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3077 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3078 
3079 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3080 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3081 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3082 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3083 
3084 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3085 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3086 }
3087 
3088 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3089 			     void *data)
3090 {
3091 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3092 	int i, j, reg_um, separator_num;
3093 	u32 *reg = data;
3094 
3095 	*version = hdev->fw_version;
3096 
3097 	/* fetching per-VF registers values from VF PCIe register space */
3098 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3099 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3100 	for (i = 0; i < reg_um; i++)
3101 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3102 	for (i = 0; i < separator_num; i++)
3103 		*reg++ = SEPARATOR_VALUE;
3104 
3105 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3106 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3107 	for (i = 0; i < reg_um; i++)
3108 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3109 	for (i = 0; i < separator_num; i++)
3110 		*reg++ = SEPARATOR_VALUE;
3111 
3112 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3113 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3114 	for (j = 0; j < hdev->num_tqps; j++) {
3115 		for (i = 0; i < reg_um; i++)
3116 			*reg++ = hclgevf_read_dev(&hdev->hw,
3117 						  ring_reg_addr_list[i] +
3118 						  0x200 * j);
3119 		for (i = 0; i < separator_num; i++)
3120 			*reg++ = SEPARATOR_VALUE;
3121 	}
3122 
3123 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3124 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3125 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3126 		for (i = 0; i < reg_um; i++)
3127 			*reg++ = hclgevf_read_dev(&hdev->hw,
3128 						  tqp_intr_reg_addr_list[i] +
3129 						  4 * j);
3130 		for (i = 0; i < separator_num; i++)
3131 			*reg++ = SEPARATOR_VALUE;
3132 	}
3133 }
3134 
3135 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3136 					u8 *port_base_vlan_info, u8 data_size)
3137 {
3138 	struct hnae3_handle *nic = &hdev->nic;
3139 	struct hclge_vf_to_pf_msg send_msg;
3140 
3141 	rtnl_lock();
3142 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3143 	rtnl_unlock();
3144 
3145 	/* send msg to PF and wait update port based vlan info */
3146 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3147 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3148 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3149 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3150 
3151 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3152 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
3153 	else
3154 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3155 
3156 	rtnl_lock();
3157 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3158 	rtnl_unlock();
3159 }
3160 
3161 static const struct hnae3_ae_ops hclgevf_ops = {
3162 	.init_ae_dev = hclgevf_init_ae_dev,
3163 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3164 	.flr_prepare = hclgevf_flr_prepare,
3165 	.flr_done = hclgevf_flr_done,
3166 	.init_client_instance = hclgevf_init_client_instance,
3167 	.uninit_client_instance = hclgevf_uninit_client_instance,
3168 	.start = hclgevf_ae_start,
3169 	.stop = hclgevf_ae_stop,
3170 	.client_start = hclgevf_client_start,
3171 	.client_stop = hclgevf_client_stop,
3172 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3173 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3174 	.get_vector = hclgevf_get_vector,
3175 	.put_vector = hclgevf_put_vector,
3176 	.reset_queue = hclgevf_reset_tqp,
3177 	.get_mac_addr = hclgevf_get_mac_addr,
3178 	.set_mac_addr = hclgevf_set_mac_addr,
3179 	.add_uc_addr = hclgevf_add_uc_addr,
3180 	.rm_uc_addr = hclgevf_rm_uc_addr,
3181 	.add_mc_addr = hclgevf_add_mc_addr,
3182 	.rm_mc_addr = hclgevf_rm_mc_addr,
3183 	.get_stats = hclgevf_get_stats,
3184 	.update_stats = hclgevf_update_stats,
3185 	.get_strings = hclgevf_get_strings,
3186 	.get_sset_count = hclgevf_get_sset_count,
3187 	.get_rss_key_size = hclgevf_get_rss_key_size,
3188 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3189 	.get_rss = hclgevf_get_rss,
3190 	.set_rss = hclgevf_set_rss,
3191 	.get_rss_tuple = hclgevf_get_rss_tuple,
3192 	.set_rss_tuple = hclgevf_set_rss_tuple,
3193 	.get_tc_size = hclgevf_get_tc_size,
3194 	.get_fw_version = hclgevf_get_fw_version,
3195 	.set_vlan_filter = hclgevf_set_vlan_filter,
3196 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3197 	.reset_event = hclgevf_reset_event,
3198 	.set_default_reset_request = hclgevf_set_def_reset_request,
3199 	.set_channels = hclgevf_set_channels,
3200 	.get_channels = hclgevf_get_channels,
3201 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3202 	.get_regs_len = hclgevf_get_regs_len,
3203 	.get_regs = hclgevf_get_regs,
3204 	.get_status = hclgevf_get_status,
3205 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3206 	.get_media_type = hclgevf_get_media_type,
3207 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3208 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3209 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3210 	.set_gro_en = hclgevf_gro_en,
3211 	.set_mtu = hclgevf_set_mtu,
3212 	.get_global_queue_id = hclgevf_get_qid_global,
3213 	.set_timer_task = hclgevf_set_timer_task,
3214 	.get_link_mode = hclgevf_get_link_mode,
3215 	.set_promisc_mode = hclgevf_set_promisc_mode,
3216 };
3217 
3218 static struct hnae3_ae_algo ae_algovf = {
3219 	.ops = &hclgevf_ops,
3220 	.pdev_id_table = ae_algovf_pci_tbl,
3221 };
3222 
3223 static int hclgevf_init(void)
3224 {
3225 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3226 
3227 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3228 	if (!hclgevf_wq) {
3229 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3230 		return -ENOMEM;
3231 	}
3232 
3233 	hnae3_register_ae_algo(&ae_algovf);
3234 
3235 	return 0;
3236 }
3237 
3238 static void hclgevf_exit(void)
3239 {
3240 	hnae3_unregister_ae_algo(&ae_algovf);
3241 	destroy_workqueue(hclgevf_wq);
3242 }
3243 module_init(hclgevf_init);
3244 module_exit(hclgevf_exit);
3245 
3246 MODULE_LICENSE("GPL");
3247 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3248 MODULE_DESCRIPTION("HCLGEVF Driver");
3249 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3250