xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c (revision 4e541b06b0e8ae6ebd85a913dba8db43d3ce6fe3)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/gro.h>
21 #include <net/ip6_checksum.h>
22 #include <net/pkt_cls.h>
23 #include <net/tcp.h>
24 #include <net/vxlan.h>
25 #include <net/geneve.h>
26 
27 #include "hnae3.h"
28 #include "hns3_enet.h"
29 /* All hns3 tracepoints are defined by the include below, which
30  * must be included exactly once across the whole kernel with
31  * CREATE_TRACE_POINTS defined
32  */
33 #define CREATE_TRACE_POINTS
34 #include "hns3_trace.h"
35 
36 #define hns3_set_field(origin, shift, val)	((origin) |= (val) << (shift))
37 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
38 
39 #define hns3_rl_err(fmt, ...)						\
40 	do {								\
41 		if (net_ratelimit())					\
42 			netdev_err(fmt, ##__VA_ARGS__);			\
43 	} while (0)
44 
45 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
46 
47 static const char hns3_driver_name[] = "hns3";
48 static const char hns3_driver_string[] =
49 			"Hisilicon Ethernet Network Driver for Hip08 Family";
50 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
51 static struct hnae3_client client;
52 
53 static int debug = -1;
54 module_param(debug, int, 0);
55 MODULE_PARM_DESC(debug, " Network interface message level setting");
56 
57 static unsigned int tx_sgl = 1;
58 module_param(tx_sgl, uint, 0600);
59 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping");
60 
61 static bool page_pool_enabled = true;
62 module_param(page_pool_enabled, bool, 0400);
63 
64 #define HNS3_SGL_SIZE(nfrag)	(sizeof(struct scatterlist) * (nfrag) +	\
65 				 sizeof(struct sg_table))
66 #define HNS3_MAX_SGL_SIZE	ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \
67 				      dma_get_cache_alignment())
68 
69 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
70 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
71 
72 #define HNS3_INNER_VLAN_TAG	1
73 #define HNS3_OUTER_VLAN_TAG	2
74 
75 #define HNS3_MIN_TX_LEN		33U
76 #define HNS3_MIN_TUN_PKT_LEN	65U
77 
78 /* hns3_pci_tbl - PCI Device ID Table
79  *
80  * Last entry must be all 0s
81  *
82  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
83  *   Class, Class Mask, private data (not used) }
84  */
85 static const struct pci_device_id hns3_pci_tbl[] = {
86 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
87 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
88 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
89 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
90 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
91 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
92 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
93 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
94 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
95 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
96 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
97 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
98 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
99 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
100 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
101 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
102 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
103 	/* required last entry */
104 	{0,}
105 };
106 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
107 
108 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t) \
109 	{	ptype, \
110 		l, \
111 		CHECKSUM_##s, \
112 		HNS3_L3_TYPE_##t, \
113 		1 }
114 
115 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \
116 		{ ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0 }
117 
118 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
119 	HNS3_RX_PTYPE_UNUSED_ENTRY(0),
120 	HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP),
121 	HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP),
122 	HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP),
123 	HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL),
124 	HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL),
125 	HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL),
126 	HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM),
127 	HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL),
128 	HNS3_RX_PTYPE_UNUSED_ENTRY(9),
129 	HNS3_RX_PTYPE_UNUSED_ENTRY(10),
130 	HNS3_RX_PTYPE_UNUSED_ENTRY(11),
131 	HNS3_RX_PTYPE_UNUSED_ENTRY(12),
132 	HNS3_RX_PTYPE_UNUSED_ENTRY(13),
133 	HNS3_RX_PTYPE_UNUSED_ENTRY(14),
134 	HNS3_RX_PTYPE_UNUSED_ENTRY(15),
135 	HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL),
136 	HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4),
137 	HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4),
138 	HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4),
139 	HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4),
140 	HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4),
141 	HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4),
142 	HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4),
143 	HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4),
144 	HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4),
145 	HNS3_RX_PTYPE_UNUSED_ENTRY(26),
146 	HNS3_RX_PTYPE_UNUSED_ENTRY(27),
147 	HNS3_RX_PTYPE_UNUSED_ENTRY(28),
148 	HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL),
149 	HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL),
150 	HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4),
151 	HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4),
152 	HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4),
153 	HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4),
154 	HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4),
155 	HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4),
156 	HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4),
157 	HNS3_RX_PTYPE_UNUSED_ENTRY(38),
158 	HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6),
159 	HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6),
160 	HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6),
161 	HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6),
162 	HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6),
163 	HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6),
164 	HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6),
165 	HNS3_RX_PTYPE_UNUSED_ENTRY(46),
166 	HNS3_RX_PTYPE_UNUSED_ENTRY(47),
167 	HNS3_RX_PTYPE_UNUSED_ENTRY(48),
168 	HNS3_RX_PTYPE_UNUSED_ENTRY(49),
169 	HNS3_RX_PTYPE_UNUSED_ENTRY(50),
170 	HNS3_RX_PTYPE_UNUSED_ENTRY(51),
171 	HNS3_RX_PTYPE_UNUSED_ENTRY(52),
172 	HNS3_RX_PTYPE_UNUSED_ENTRY(53),
173 	HNS3_RX_PTYPE_UNUSED_ENTRY(54),
174 	HNS3_RX_PTYPE_UNUSED_ENTRY(55),
175 	HNS3_RX_PTYPE_UNUSED_ENTRY(56),
176 	HNS3_RX_PTYPE_UNUSED_ENTRY(57),
177 	HNS3_RX_PTYPE_UNUSED_ENTRY(58),
178 	HNS3_RX_PTYPE_UNUSED_ENTRY(59),
179 	HNS3_RX_PTYPE_UNUSED_ENTRY(60),
180 	HNS3_RX_PTYPE_UNUSED_ENTRY(61),
181 	HNS3_RX_PTYPE_UNUSED_ENTRY(62),
182 	HNS3_RX_PTYPE_UNUSED_ENTRY(63),
183 	HNS3_RX_PTYPE_UNUSED_ENTRY(64),
184 	HNS3_RX_PTYPE_UNUSED_ENTRY(65),
185 	HNS3_RX_PTYPE_UNUSED_ENTRY(66),
186 	HNS3_RX_PTYPE_UNUSED_ENTRY(67),
187 	HNS3_RX_PTYPE_UNUSED_ENTRY(68),
188 	HNS3_RX_PTYPE_UNUSED_ENTRY(69),
189 	HNS3_RX_PTYPE_UNUSED_ENTRY(70),
190 	HNS3_RX_PTYPE_UNUSED_ENTRY(71),
191 	HNS3_RX_PTYPE_UNUSED_ENTRY(72),
192 	HNS3_RX_PTYPE_UNUSED_ENTRY(73),
193 	HNS3_RX_PTYPE_UNUSED_ENTRY(74),
194 	HNS3_RX_PTYPE_UNUSED_ENTRY(75),
195 	HNS3_RX_PTYPE_UNUSED_ENTRY(76),
196 	HNS3_RX_PTYPE_UNUSED_ENTRY(77),
197 	HNS3_RX_PTYPE_UNUSED_ENTRY(78),
198 	HNS3_RX_PTYPE_UNUSED_ENTRY(79),
199 	HNS3_RX_PTYPE_UNUSED_ENTRY(80),
200 	HNS3_RX_PTYPE_UNUSED_ENTRY(81),
201 	HNS3_RX_PTYPE_UNUSED_ENTRY(82),
202 	HNS3_RX_PTYPE_UNUSED_ENTRY(83),
203 	HNS3_RX_PTYPE_UNUSED_ENTRY(84),
204 	HNS3_RX_PTYPE_UNUSED_ENTRY(85),
205 	HNS3_RX_PTYPE_UNUSED_ENTRY(86),
206 	HNS3_RX_PTYPE_UNUSED_ENTRY(87),
207 	HNS3_RX_PTYPE_UNUSED_ENTRY(88),
208 	HNS3_RX_PTYPE_UNUSED_ENTRY(89),
209 	HNS3_RX_PTYPE_UNUSED_ENTRY(90),
210 	HNS3_RX_PTYPE_UNUSED_ENTRY(91),
211 	HNS3_RX_PTYPE_UNUSED_ENTRY(92),
212 	HNS3_RX_PTYPE_UNUSED_ENTRY(93),
213 	HNS3_RX_PTYPE_UNUSED_ENTRY(94),
214 	HNS3_RX_PTYPE_UNUSED_ENTRY(95),
215 	HNS3_RX_PTYPE_UNUSED_ENTRY(96),
216 	HNS3_RX_PTYPE_UNUSED_ENTRY(97),
217 	HNS3_RX_PTYPE_UNUSED_ENTRY(98),
218 	HNS3_RX_PTYPE_UNUSED_ENTRY(99),
219 	HNS3_RX_PTYPE_UNUSED_ENTRY(100),
220 	HNS3_RX_PTYPE_UNUSED_ENTRY(101),
221 	HNS3_RX_PTYPE_UNUSED_ENTRY(102),
222 	HNS3_RX_PTYPE_UNUSED_ENTRY(103),
223 	HNS3_RX_PTYPE_UNUSED_ENTRY(104),
224 	HNS3_RX_PTYPE_UNUSED_ENTRY(105),
225 	HNS3_RX_PTYPE_UNUSED_ENTRY(106),
226 	HNS3_RX_PTYPE_UNUSED_ENTRY(107),
227 	HNS3_RX_PTYPE_UNUSED_ENTRY(108),
228 	HNS3_RX_PTYPE_UNUSED_ENTRY(109),
229 	HNS3_RX_PTYPE_UNUSED_ENTRY(110),
230 	HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6),
231 	HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6),
232 	HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6),
233 	HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6),
234 	HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6),
235 	HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6),
236 	HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6),
237 	HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6),
238 	HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6),
239 	HNS3_RX_PTYPE_UNUSED_ENTRY(120),
240 	HNS3_RX_PTYPE_UNUSED_ENTRY(121),
241 	HNS3_RX_PTYPE_UNUSED_ENTRY(122),
242 	HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL),
243 	HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL),
244 	HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4),
245 	HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4),
246 	HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4),
247 	HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4),
248 	HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4),
249 	HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4),
250 	HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4),
251 	HNS3_RX_PTYPE_UNUSED_ENTRY(132),
252 	HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6),
253 	HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6),
254 	HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6),
255 	HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6),
256 	HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6),
257 	HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6),
258 	HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6),
259 	HNS3_RX_PTYPE_UNUSED_ENTRY(140),
260 	HNS3_RX_PTYPE_UNUSED_ENTRY(141),
261 	HNS3_RX_PTYPE_UNUSED_ENTRY(142),
262 	HNS3_RX_PTYPE_UNUSED_ENTRY(143),
263 	HNS3_RX_PTYPE_UNUSED_ENTRY(144),
264 	HNS3_RX_PTYPE_UNUSED_ENTRY(145),
265 	HNS3_RX_PTYPE_UNUSED_ENTRY(146),
266 	HNS3_RX_PTYPE_UNUSED_ENTRY(147),
267 	HNS3_RX_PTYPE_UNUSED_ENTRY(148),
268 	HNS3_RX_PTYPE_UNUSED_ENTRY(149),
269 	HNS3_RX_PTYPE_UNUSED_ENTRY(150),
270 	HNS3_RX_PTYPE_UNUSED_ENTRY(151),
271 	HNS3_RX_PTYPE_UNUSED_ENTRY(152),
272 	HNS3_RX_PTYPE_UNUSED_ENTRY(153),
273 	HNS3_RX_PTYPE_UNUSED_ENTRY(154),
274 	HNS3_RX_PTYPE_UNUSED_ENTRY(155),
275 	HNS3_RX_PTYPE_UNUSED_ENTRY(156),
276 	HNS3_RX_PTYPE_UNUSED_ENTRY(157),
277 	HNS3_RX_PTYPE_UNUSED_ENTRY(158),
278 	HNS3_RX_PTYPE_UNUSED_ENTRY(159),
279 	HNS3_RX_PTYPE_UNUSED_ENTRY(160),
280 	HNS3_RX_PTYPE_UNUSED_ENTRY(161),
281 	HNS3_RX_PTYPE_UNUSED_ENTRY(162),
282 	HNS3_RX_PTYPE_UNUSED_ENTRY(163),
283 	HNS3_RX_PTYPE_UNUSED_ENTRY(164),
284 	HNS3_RX_PTYPE_UNUSED_ENTRY(165),
285 	HNS3_RX_PTYPE_UNUSED_ENTRY(166),
286 	HNS3_RX_PTYPE_UNUSED_ENTRY(167),
287 	HNS3_RX_PTYPE_UNUSED_ENTRY(168),
288 	HNS3_RX_PTYPE_UNUSED_ENTRY(169),
289 	HNS3_RX_PTYPE_UNUSED_ENTRY(170),
290 	HNS3_RX_PTYPE_UNUSED_ENTRY(171),
291 	HNS3_RX_PTYPE_UNUSED_ENTRY(172),
292 	HNS3_RX_PTYPE_UNUSED_ENTRY(173),
293 	HNS3_RX_PTYPE_UNUSED_ENTRY(174),
294 	HNS3_RX_PTYPE_UNUSED_ENTRY(175),
295 	HNS3_RX_PTYPE_UNUSED_ENTRY(176),
296 	HNS3_RX_PTYPE_UNUSED_ENTRY(177),
297 	HNS3_RX_PTYPE_UNUSED_ENTRY(178),
298 	HNS3_RX_PTYPE_UNUSED_ENTRY(179),
299 	HNS3_RX_PTYPE_UNUSED_ENTRY(180),
300 	HNS3_RX_PTYPE_UNUSED_ENTRY(181),
301 	HNS3_RX_PTYPE_UNUSED_ENTRY(182),
302 	HNS3_RX_PTYPE_UNUSED_ENTRY(183),
303 	HNS3_RX_PTYPE_UNUSED_ENTRY(184),
304 	HNS3_RX_PTYPE_UNUSED_ENTRY(185),
305 	HNS3_RX_PTYPE_UNUSED_ENTRY(186),
306 	HNS3_RX_PTYPE_UNUSED_ENTRY(187),
307 	HNS3_RX_PTYPE_UNUSED_ENTRY(188),
308 	HNS3_RX_PTYPE_UNUSED_ENTRY(189),
309 	HNS3_RX_PTYPE_UNUSED_ENTRY(190),
310 	HNS3_RX_PTYPE_UNUSED_ENTRY(191),
311 	HNS3_RX_PTYPE_UNUSED_ENTRY(192),
312 	HNS3_RX_PTYPE_UNUSED_ENTRY(193),
313 	HNS3_RX_PTYPE_UNUSED_ENTRY(194),
314 	HNS3_RX_PTYPE_UNUSED_ENTRY(195),
315 	HNS3_RX_PTYPE_UNUSED_ENTRY(196),
316 	HNS3_RX_PTYPE_UNUSED_ENTRY(197),
317 	HNS3_RX_PTYPE_UNUSED_ENTRY(198),
318 	HNS3_RX_PTYPE_UNUSED_ENTRY(199),
319 	HNS3_RX_PTYPE_UNUSED_ENTRY(200),
320 	HNS3_RX_PTYPE_UNUSED_ENTRY(201),
321 	HNS3_RX_PTYPE_UNUSED_ENTRY(202),
322 	HNS3_RX_PTYPE_UNUSED_ENTRY(203),
323 	HNS3_RX_PTYPE_UNUSED_ENTRY(204),
324 	HNS3_RX_PTYPE_UNUSED_ENTRY(205),
325 	HNS3_RX_PTYPE_UNUSED_ENTRY(206),
326 	HNS3_RX_PTYPE_UNUSED_ENTRY(207),
327 	HNS3_RX_PTYPE_UNUSED_ENTRY(208),
328 	HNS3_RX_PTYPE_UNUSED_ENTRY(209),
329 	HNS3_RX_PTYPE_UNUSED_ENTRY(210),
330 	HNS3_RX_PTYPE_UNUSED_ENTRY(211),
331 	HNS3_RX_PTYPE_UNUSED_ENTRY(212),
332 	HNS3_RX_PTYPE_UNUSED_ENTRY(213),
333 	HNS3_RX_PTYPE_UNUSED_ENTRY(214),
334 	HNS3_RX_PTYPE_UNUSED_ENTRY(215),
335 	HNS3_RX_PTYPE_UNUSED_ENTRY(216),
336 	HNS3_RX_PTYPE_UNUSED_ENTRY(217),
337 	HNS3_RX_PTYPE_UNUSED_ENTRY(218),
338 	HNS3_RX_PTYPE_UNUSED_ENTRY(219),
339 	HNS3_RX_PTYPE_UNUSED_ENTRY(220),
340 	HNS3_RX_PTYPE_UNUSED_ENTRY(221),
341 	HNS3_RX_PTYPE_UNUSED_ENTRY(222),
342 	HNS3_RX_PTYPE_UNUSED_ENTRY(223),
343 	HNS3_RX_PTYPE_UNUSED_ENTRY(224),
344 	HNS3_RX_PTYPE_UNUSED_ENTRY(225),
345 	HNS3_RX_PTYPE_UNUSED_ENTRY(226),
346 	HNS3_RX_PTYPE_UNUSED_ENTRY(227),
347 	HNS3_RX_PTYPE_UNUSED_ENTRY(228),
348 	HNS3_RX_PTYPE_UNUSED_ENTRY(229),
349 	HNS3_RX_PTYPE_UNUSED_ENTRY(230),
350 	HNS3_RX_PTYPE_UNUSED_ENTRY(231),
351 	HNS3_RX_PTYPE_UNUSED_ENTRY(232),
352 	HNS3_RX_PTYPE_UNUSED_ENTRY(233),
353 	HNS3_RX_PTYPE_UNUSED_ENTRY(234),
354 	HNS3_RX_PTYPE_UNUSED_ENTRY(235),
355 	HNS3_RX_PTYPE_UNUSED_ENTRY(236),
356 	HNS3_RX_PTYPE_UNUSED_ENTRY(237),
357 	HNS3_RX_PTYPE_UNUSED_ENTRY(238),
358 	HNS3_RX_PTYPE_UNUSED_ENTRY(239),
359 	HNS3_RX_PTYPE_UNUSED_ENTRY(240),
360 	HNS3_RX_PTYPE_UNUSED_ENTRY(241),
361 	HNS3_RX_PTYPE_UNUSED_ENTRY(242),
362 	HNS3_RX_PTYPE_UNUSED_ENTRY(243),
363 	HNS3_RX_PTYPE_UNUSED_ENTRY(244),
364 	HNS3_RX_PTYPE_UNUSED_ENTRY(245),
365 	HNS3_RX_PTYPE_UNUSED_ENTRY(246),
366 	HNS3_RX_PTYPE_UNUSED_ENTRY(247),
367 	HNS3_RX_PTYPE_UNUSED_ENTRY(248),
368 	HNS3_RX_PTYPE_UNUSED_ENTRY(249),
369 	HNS3_RX_PTYPE_UNUSED_ENTRY(250),
370 	HNS3_RX_PTYPE_UNUSED_ENTRY(251),
371 	HNS3_RX_PTYPE_UNUSED_ENTRY(252),
372 	HNS3_RX_PTYPE_UNUSED_ENTRY(253),
373 	HNS3_RX_PTYPE_UNUSED_ENTRY(254),
374 	HNS3_RX_PTYPE_UNUSED_ENTRY(255),
375 };
376 
377 #define HNS3_INVALID_PTYPE \
378 		ARRAY_SIZE(hns3_rx_ptype_tbl)
379 
380 static irqreturn_t hns3_irq_handle(int irq, void *vector)
381 {
382 	struct hns3_enet_tqp_vector *tqp_vector = vector;
383 
384 	napi_schedule_irqoff(&tqp_vector->napi);
385 	tqp_vector->event_cnt++;
386 
387 	return IRQ_HANDLED;
388 }
389 
390 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
391 {
392 	struct hns3_enet_tqp_vector *tqp_vectors;
393 	unsigned int i;
394 
395 	for (i = 0; i < priv->vector_num; i++) {
396 		tqp_vectors = &priv->tqp_vector[i];
397 
398 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
399 			continue;
400 
401 		/* clear the affinity mask */
402 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
403 
404 		/* release the irq resource */
405 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
406 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
407 	}
408 }
409 
410 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
411 {
412 	struct hns3_enet_tqp_vector *tqp_vectors;
413 	int txrx_int_idx = 0;
414 	int rx_int_idx = 0;
415 	int tx_int_idx = 0;
416 	unsigned int i;
417 	int ret;
418 
419 	for (i = 0; i < priv->vector_num; i++) {
420 		tqp_vectors = &priv->tqp_vector[i];
421 
422 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
423 			continue;
424 
425 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
426 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
427 				 "%s-%s-%s-%d", hns3_driver_name,
428 				 pci_name(priv->ae_handle->pdev),
429 				 "TxRx", txrx_int_idx++);
430 			txrx_int_idx++;
431 		} else if (tqp_vectors->rx_group.ring) {
432 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
433 				 "%s-%s-%s-%d", hns3_driver_name,
434 				 pci_name(priv->ae_handle->pdev),
435 				 "Rx", rx_int_idx++);
436 		} else if (tqp_vectors->tx_group.ring) {
437 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
438 				 "%s-%s-%s-%d", hns3_driver_name,
439 				 pci_name(priv->ae_handle->pdev),
440 				 "Tx", tx_int_idx++);
441 		} else {
442 			/* Skip this unused q_vector */
443 			continue;
444 		}
445 
446 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
447 
448 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
449 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
450 				  tqp_vectors->name, tqp_vectors);
451 		if (ret) {
452 			netdev_err(priv->netdev, "request irq(%d) fail\n",
453 				   tqp_vectors->vector_irq);
454 			hns3_nic_uninit_irq(priv);
455 			return ret;
456 		}
457 
458 		irq_set_affinity_hint(tqp_vectors->vector_irq,
459 				      &tqp_vectors->affinity_mask);
460 
461 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
462 	}
463 
464 	return 0;
465 }
466 
467 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
468 				 u32 mask_en)
469 {
470 	writel(mask_en, tqp_vector->mask_addr);
471 }
472 
473 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
474 {
475 	napi_enable(&tqp_vector->napi);
476 	enable_irq(tqp_vector->vector_irq);
477 
478 	/* enable vector */
479 	hns3_mask_vector_irq(tqp_vector, 1);
480 }
481 
482 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
483 {
484 	/* disable vector */
485 	hns3_mask_vector_irq(tqp_vector, 0);
486 
487 	disable_irq(tqp_vector->vector_irq);
488 	napi_disable(&tqp_vector->napi);
489 	cancel_work_sync(&tqp_vector->rx_group.dim.work);
490 	cancel_work_sync(&tqp_vector->tx_group.dim.work);
491 }
492 
493 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
494 				 u32 rl_value)
495 {
496 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
497 
498 	/* this defines the configuration for RL (Interrupt Rate Limiter).
499 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
500 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
501 	 */
502 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
503 	    !tqp_vector->rx_group.coal.adapt_enable)
504 		/* According to the hardware, the range of rl_reg is
505 		 * 0-59 and the unit is 4.
506 		 */
507 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
508 
509 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
510 }
511 
512 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
513 				    u32 gl_value)
514 {
515 	u32 new_val;
516 
517 	if (tqp_vector->rx_group.coal.unit_1us)
518 		new_val = gl_value | HNS3_INT_GL_1US;
519 	else
520 		new_val = hns3_gl_usec_to_reg(gl_value);
521 
522 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
523 }
524 
525 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
526 				    u32 gl_value)
527 {
528 	u32 new_val;
529 
530 	if (tqp_vector->tx_group.coal.unit_1us)
531 		new_val = gl_value | HNS3_INT_GL_1US;
532 	else
533 		new_val = hns3_gl_usec_to_reg(gl_value);
534 
535 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
536 }
537 
538 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
539 				    u32 ql_value)
540 {
541 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
542 }
543 
544 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
545 				    u32 ql_value)
546 {
547 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
548 }
549 
550 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
551 				      struct hns3_nic_priv *priv)
552 {
553 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
554 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
555 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
556 	struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
557 	struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
558 
559 	tx_coal->adapt_enable = ptx_coal->adapt_enable;
560 	rx_coal->adapt_enable = prx_coal->adapt_enable;
561 
562 	tx_coal->int_gl = ptx_coal->int_gl;
563 	rx_coal->int_gl = prx_coal->int_gl;
564 
565 	rx_coal->flow_level = prx_coal->flow_level;
566 	tx_coal->flow_level = ptx_coal->flow_level;
567 
568 	/* device version above V3(include V3), GL can configure 1us
569 	 * unit, so uses 1us unit.
570 	 */
571 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
572 		tx_coal->unit_1us = 1;
573 		rx_coal->unit_1us = 1;
574 	}
575 
576 	if (ae_dev->dev_specs.int_ql_max) {
577 		tx_coal->ql_enable = 1;
578 		rx_coal->ql_enable = 1;
579 		tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
580 		rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
581 		tx_coal->int_ql = ptx_coal->int_ql;
582 		rx_coal->int_ql = prx_coal->int_ql;
583 	}
584 }
585 
586 static void
587 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
588 			     struct hns3_nic_priv *priv)
589 {
590 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
591 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
592 	struct hnae3_handle *h = priv->ae_handle;
593 
594 	hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
595 	hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
596 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
597 
598 	if (tx_coal->ql_enable)
599 		hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
600 
601 	if (rx_coal->ql_enable)
602 		hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
603 }
604 
605 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
606 {
607 	struct hnae3_handle *h = hns3_get_handle(netdev);
608 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
609 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
610 	unsigned int queue_size = kinfo->num_tqps;
611 	int i, ret;
612 
613 	if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
614 		netdev_reset_tc(netdev);
615 	} else {
616 		ret = netdev_set_num_tc(netdev, tc_info->num_tc);
617 		if (ret) {
618 			netdev_err(netdev,
619 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
620 			return ret;
621 		}
622 
623 		for (i = 0; i < tc_info->num_tc; i++)
624 			netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
625 					    tc_info->tqp_offset[i]);
626 	}
627 
628 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
629 	if (ret) {
630 		netdev_err(netdev,
631 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
632 		return ret;
633 	}
634 
635 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
636 	if (ret) {
637 		netdev_err(netdev,
638 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
639 		return ret;
640 	}
641 
642 	return 0;
643 }
644 
645 u16 hns3_get_max_available_channels(struct hnae3_handle *h)
646 {
647 	u16 alloc_tqps, max_rss_size, rss_size;
648 
649 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
650 	rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
651 
652 	return min_t(u16, rss_size, max_rss_size);
653 }
654 
655 static void hns3_tqp_enable(struct hnae3_queue *tqp)
656 {
657 	u32 rcb_reg;
658 
659 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
660 	rcb_reg |= BIT(HNS3_RING_EN_B);
661 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
662 }
663 
664 static void hns3_tqp_disable(struct hnae3_queue *tqp)
665 {
666 	u32 rcb_reg;
667 
668 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
669 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
670 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
671 }
672 
673 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
674 {
675 #ifdef CONFIG_RFS_ACCEL
676 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
677 	netdev->rx_cpu_rmap = NULL;
678 #endif
679 }
680 
681 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
682 {
683 #ifdef CONFIG_RFS_ACCEL
684 	struct hns3_nic_priv *priv = netdev_priv(netdev);
685 	struct hns3_enet_tqp_vector *tqp_vector;
686 	int i, ret;
687 
688 	if (!netdev->rx_cpu_rmap) {
689 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
690 		if (!netdev->rx_cpu_rmap)
691 			return -ENOMEM;
692 	}
693 
694 	for (i = 0; i < priv->vector_num; i++) {
695 		tqp_vector = &priv->tqp_vector[i];
696 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
697 				       tqp_vector->vector_irq);
698 		if (ret) {
699 			hns3_free_rx_cpu_rmap(netdev);
700 			return ret;
701 		}
702 	}
703 #endif
704 	return 0;
705 }
706 
707 static int hns3_nic_net_up(struct net_device *netdev)
708 {
709 	struct hns3_nic_priv *priv = netdev_priv(netdev);
710 	struct hnae3_handle *h = priv->ae_handle;
711 	int i, j;
712 	int ret;
713 
714 	ret = hns3_nic_reset_all_ring(h);
715 	if (ret)
716 		return ret;
717 
718 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
719 
720 	/* enable the vectors */
721 	for (i = 0; i < priv->vector_num; i++)
722 		hns3_vector_enable(&priv->tqp_vector[i]);
723 
724 	/* enable rcb */
725 	for (j = 0; j < h->kinfo.num_tqps; j++)
726 		hns3_tqp_enable(h->kinfo.tqp[j]);
727 
728 	/* start the ae_dev */
729 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
730 	if (ret) {
731 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
732 		while (j--)
733 			hns3_tqp_disable(h->kinfo.tqp[j]);
734 
735 		for (j = i - 1; j >= 0; j--)
736 			hns3_vector_disable(&priv->tqp_vector[j]);
737 	}
738 
739 	return ret;
740 }
741 
742 static void hns3_config_xps(struct hns3_nic_priv *priv)
743 {
744 	int i;
745 
746 	for (i = 0; i < priv->vector_num; i++) {
747 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
748 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
749 
750 		while (ring) {
751 			int ret;
752 
753 			ret = netif_set_xps_queue(priv->netdev,
754 						  &tqp_vector->affinity_mask,
755 						  ring->tqp->tqp_index);
756 			if (ret)
757 				netdev_warn(priv->netdev,
758 					    "set xps queue failed: %d", ret);
759 
760 			ring = ring->next;
761 		}
762 	}
763 }
764 
765 static int hns3_nic_net_open(struct net_device *netdev)
766 {
767 	struct hns3_nic_priv *priv = netdev_priv(netdev);
768 	struct hnae3_handle *h = hns3_get_handle(netdev);
769 	struct hnae3_knic_private_info *kinfo;
770 	int i, ret;
771 
772 	if (hns3_nic_resetting(netdev))
773 		return -EBUSY;
774 
775 	if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
776 		netdev_warn(netdev, "net open repeatedly!\n");
777 		return 0;
778 	}
779 
780 	netif_carrier_off(netdev);
781 
782 	ret = hns3_nic_set_real_num_queue(netdev);
783 	if (ret)
784 		return ret;
785 
786 	ret = hns3_nic_net_up(netdev);
787 	if (ret) {
788 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
789 		return ret;
790 	}
791 
792 	kinfo = &h->kinfo;
793 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
794 		netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
795 
796 	if (h->ae_algo->ops->set_timer_task)
797 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
798 
799 	hns3_config_xps(priv);
800 
801 	netif_dbg(h, drv, netdev, "net open\n");
802 
803 	return 0;
804 }
805 
806 static void hns3_reset_tx_queue(struct hnae3_handle *h)
807 {
808 	struct net_device *ndev = h->kinfo.netdev;
809 	struct hns3_nic_priv *priv = netdev_priv(ndev);
810 	struct netdev_queue *dev_queue;
811 	u32 i;
812 
813 	for (i = 0; i < h->kinfo.num_tqps; i++) {
814 		dev_queue = netdev_get_tx_queue(ndev,
815 						priv->ring[i].queue_index);
816 		netdev_tx_reset_queue(dev_queue);
817 	}
818 }
819 
820 static void hns3_nic_net_down(struct net_device *netdev)
821 {
822 	struct hns3_nic_priv *priv = netdev_priv(netdev);
823 	struct hnae3_handle *h = hns3_get_handle(netdev);
824 	const struct hnae3_ae_ops *ops;
825 	int i;
826 
827 	/* disable vectors */
828 	for (i = 0; i < priv->vector_num; i++)
829 		hns3_vector_disable(&priv->tqp_vector[i]);
830 
831 	/* disable rcb */
832 	for (i = 0; i < h->kinfo.num_tqps; i++)
833 		hns3_tqp_disable(h->kinfo.tqp[i]);
834 
835 	/* stop ae_dev */
836 	ops = priv->ae_handle->ae_algo->ops;
837 	if (ops->stop)
838 		ops->stop(priv->ae_handle);
839 
840 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
841 	 * during reset process, because driver may not be able
842 	 * to disable the ring through firmware when downing the netdev.
843 	 */
844 	if (!hns3_nic_resetting(netdev))
845 		hns3_clear_all_ring(priv->ae_handle, false);
846 
847 	hns3_reset_tx_queue(priv->ae_handle);
848 }
849 
850 static int hns3_nic_net_stop(struct net_device *netdev)
851 {
852 	struct hns3_nic_priv *priv = netdev_priv(netdev);
853 	struct hnae3_handle *h = hns3_get_handle(netdev);
854 
855 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
856 		return 0;
857 
858 	netif_dbg(h, drv, netdev, "net stop\n");
859 
860 	if (h->ae_algo->ops->set_timer_task)
861 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
862 
863 	netif_carrier_off(netdev);
864 	netif_tx_disable(netdev);
865 
866 	hns3_nic_net_down(netdev);
867 
868 	return 0;
869 }
870 
871 static int hns3_nic_uc_sync(struct net_device *netdev,
872 			    const unsigned char *addr)
873 {
874 	struct hnae3_handle *h = hns3_get_handle(netdev);
875 
876 	if (h->ae_algo->ops->add_uc_addr)
877 		return h->ae_algo->ops->add_uc_addr(h, addr);
878 
879 	return 0;
880 }
881 
882 static int hns3_nic_uc_unsync(struct net_device *netdev,
883 			      const unsigned char *addr)
884 {
885 	struct hnae3_handle *h = hns3_get_handle(netdev);
886 
887 	/* need ignore the request of removing device address, because
888 	 * we store the device address and other addresses of uc list
889 	 * in the function's mac filter list.
890 	 */
891 	if (ether_addr_equal(addr, netdev->dev_addr))
892 		return 0;
893 
894 	if (h->ae_algo->ops->rm_uc_addr)
895 		return h->ae_algo->ops->rm_uc_addr(h, addr);
896 
897 	return 0;
898 }
899 
900 static int hns3_nic_mc_sync(struct net_device *netdev,
901 			    const unsigned char *addr)
902 {
903 	struct hnae3_handle *h = hns3_get_handle(netdev);
904 
905 	if (h->ae_algo->ops->add_mc_addr)
906 		return h->ae_algo->ops->add_mc_addr(h, addr);
907 
908 	return 0;
909 }
910 
911 static int hns3_nic_mc_unsync(struct net_device *netdev,
912 			      const unsigned char *addr)
913 {
914 	struct hnae3_handle *h = hns3_get_handle(netdev);
915 
916 	if (h->ae_algo->ops->rm_mc_addr)
917 		return h->ae_algo->ops->rm_mc_addr(h, addr);
918 
919 	return 0;
920 }
921 
922 static u8 hns3_get_netdev_flags(struct net_device *netdev)
923 {
924 	u8 flags = 0;
925 
926 	if (netdev->flags & IFF_PROMISC)
927 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
928 	else if (netdev->flags & IFF_ALLMULTI)
929 		flags = HNAE3_USER_MPE;
930 
931 	return flags;
932 }
933 
934 static void hns3_nic_set_rx_mode(struct net_device *netdev)
935 {
936 	struct hnae3_handle *h = hns3_get_handle(netdev);
937 	u8 new_flags;
938 
939 	new_flags = hns3_get_netdev_flags(netdev);
940 
941 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
942 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
943 
944 	/* User mode Promisc mode enable and vlan filtering is disabled to
945 	 * let all packets in.
946 	 */
947 	h->netdev_flags = new_flags;
948 	hns3_request_update_promisc_mode(h);
949 }
950 
951 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
952 {
953 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
954 
955 	if (ops->request_update_promisc_mode)
956 		ops->request_update_promisc_mode(handle);
957 }
958 
959 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring)
960 {
961 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
962 	u32 ntc, ntu;
963 
964 	/* This smp_load_acquire() pairs with smp_store_release() in
965 	 * hns3_tx_spare_update() called in tx desc cleaning process.
966 	 */
967 	ntc = smp_load_acquire(&tx_spare->last_to_clean);
968 	ntu = tx_spare->next_to_use;
969 
970 	if (ntc > ntu)
971 		return ntc - ntu - 1;
972 
973 	/* The free tx buffer is divided into two part, so pick the
974 	 * larger one.
975 	 */
976 	return max(ntc, tx_spare->len - ntu) - 1;
977 }
978 
979 static void hns3_tx_spare_update(struct hns3_enet_ring *ring)
980 {
981 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
982 
983 	if (!tx_spare ||
984 	    tx_spare->last_to_clean == tx_spare->next_to_clean)
985 		return;
986 
987 	/* This smp_store_release() pairs with smp_load_acquire() in
988 	 * hns3_tx_spare_space() called in xmit process.
989 	 */
990 	smp_store_release(&tx_spare->last_to_clean,
991 			  tx_spare->next_to_clean);
992 }
993 
994 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring,
995 				   struct sk_buff *skb,
996 				   u32 space)
997 {
998 	u32 len = skb->len <= ring->tx_copybreak ? skb->len :
999 				skb_headlen(skb);
1000 
1001 	if (len > ring->tx_copybreak)
1002 		return false;
1003 
1004 	if (ALIGN(len, dma_get_cache_alignment()) > space) {
1005 		hns3_ring_stats_update(ring, tx_spare_full);
1006 		return false;
1007 	}
1008 
1009 	return true;
1010 }
1011 
1012 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring,
1013 				struct sk_buff *skb,
1014 				u32 space)
1015 {
1016 	if (skb->len <= ring->tx_copybreak || !tx_sgl ||
1017 	    (!skb_has_frag_list(skb) &&
1018 	     skb_shinfo(skb)->nr_frags < tx_sgl))
1019 		return false;
1020 
1021 	if (space < HNS3_MAX_SGL_SIZE) {
1022 		hns3_ring_stats_update(ring, tx_spare_full);
1023 		return false;
1024 	}
1025 
1026 	return true;
1027 }
1028 
1029 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
1030 {
1031 	struct hns3_tx_spare *tx_spare;
1032 	struct page *page;
1033 	u32 alloc_size;
1034 	dma_addr_t dma;
1035 	int order;
1036 
1037 	alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size;
1038 	if (!alloc_size)
1039 		return;
1040 
1041 	order = get_order(alloc_size);
1042 	tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare),
1043 				GFP_KERNEL);
1044 	if (!tx_spare) {
1045 		/* The driver still work without the tx spare buffer */
1046 		dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n");
1047 		return;
1048 	}
1049 
1050 	page = alloc_pages_node(dev_to_node(ring_to_dev(ring)),
1051 				GFP_KERNEL, order);
1052 	if (!page) {
1053 		dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n");
1054 		devm_kfree(ring_to_dev(ring), tx_spare);
1055 		return;
1056 	}
1057 
1058 	dma = dma_map_page(ring_to_dev(ring), page, 0,
1059 			   PAGE_SIZE << order, DMA_TO_DEVICE);
1060 	if (dma_mapping_error(ring_to_dev(ring), dma)) {
1061 		dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n");
1062 		put_page(page);
1063 		devm_kfree(ring_to_dev(ring), tx_spare);
1064 		return;
1065 	}
1066 
1067 	tx_spare->dma = dma;
1068 	tx_spare->buf = page_address(page);
1069 	tx_spare->len = PAGE_SIZE << order;
1070 	ring->tx_spare = tx_spare;
1071 }
1072 
1073 /* Use hns3_tx_spare_space() to make sure there is enough buffer
1074  * before calling below function to allocate tx buffer.
1075  */
1076 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring,
1077 				 unsigned int size, dma_addr_t *dma,
1078 				 u32 *cb_len)
1079 {
1080 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1081 	u32 ntu = tx_spare->next_to_use;
1082 
1083 	size = ALIGN(size, dma_get_cache_alignment());
1084 	*cb_len = size;
1085 
1086 	/* Tx spare buffer wraps back here because the end of
1087 	 * freed tx buffer is not enough.
1088 	 */
1089 	if (ntu + size > tx_spare->len) {
1090 		*cb_len += (tx_spare->len - ntu);
1091 		ntu = 0;
1092 	}
1093 
1094 	tx_spare->next_to_use = ntu + size;
1095 	if (tx_spare->next_to_use == tx_spare->len)
1096 		tx_spare->next_to_use = 0;
1097 
1098 	*dma = tx_spare->dma + ntu;
1099 
1100 	return tx_spare->buf + ntu;
1101 }
1102 
1103 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len)
1104 {
1105 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1106 
1107 	if (len > tx_spare->next_to_use) {
1108 		len -= tx_spare->next_to_use;
1109 		tx_spare->next_to_use = tx_spare->len - len;
1110 	} else {
1111 		tx_spare->next_to_use -= len;
1112 	}
1113 }
1114 
1115 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring,
1116 				     struct hns3_desc_cb *cb)
1117 {
1118 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1119 	u32 ntc = tx_spare->next_to_clean;
1120 	u32 len = cb->length;
1121 
1122 	tx_spare->next_to_clean += len;
1123 
1124 	if (tx_spare->next_to_clean >= tx_spare->len) {
1125 		tx_spare->next_to_clean -= tx_spare->len;
1126 
1127 		if (tx_spare->next_to_clean) {
1128 			ntc = 0;
1129 			len = tx_spare->next_to_clean;
1130 		}
1131 	}
1132 
1133 	/* This tx spare buffer is only really reclaimed after calling
1134 	 * hns3_tx_spare_update(), so it is still safe to use the info in
1135 	 * the tx buffer to do the dma sync or sg unmapping after
1136 	 * tx_spare->next_to_clean is moved forword.
1137 	 */
1138 	if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) {
1139 		dma_addr_t dma = tx_spare->dma + ntc;
1140 
1141 		dma_sync_single_for_cpu(ring_to_dev(ring), dma, len,
1142 					DMA_TO_DEVICE);
1143 	} else {
1144 		struct sg_table *sgt = tx_spare->buf + ntc;
1145 
1146 		dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
1147 			     DMA_TO_DEVICE);
1148 	}
1149 }
1150 
1151 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
1152 			u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
1153 {
1154 	u32 l4_offset, hdr_len;
1155 	union l3_hdr_info l3;
1156 	union l4_hdr_info l4;
1157 	u32 l4_paylen;
1158 	int ret;
1159 
1160 	if (!skb_is_gso(skb))
1161 		return 0;
1162 
1163 	ret = skb_cow_head(skb, 0);
1164 	if (unlikely(ret < 0))
1165 		return ret;
1166 
1167 	l3.hdr = skb_network_header(skb);
1168 	l4.hdr = skb_transport_header(skb);
1169 
1170 	/* Software should clear the IPv4's checksum field when tso is
1171 	 * needed.
1172 	 */
1173 	if (l3.v4->version == 4)
1174 		l3.v4->check = 0;
1175 
1176 	/* tunnel packet */
1177 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1178 					 SKB_GSO_GRE_CSUM |
1179 					 SKB_GSO_UDP_TUNNEL |
1180 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1181 		/* reset l3&l4 pointers from outer to inner headers */
1182 		l3.hdr = skb_inner_network_header(skb);
1183 		l4.hdr = skb_inner_transport_header(skb);
1184 
1185 		/* Software should clear the IPv4's checksum field when
1186 		 * tso is needed.
1187 		 */
1188 		if (l3.v4->version == 4)
1189 			l3.v4->check = 0;
1190 	}
1191 
1192 	/* normal or tunnel packet */
1193 	l4_offset = l4.hdr - skb->data;
1194 
1195 	/* remove payload length from inner pseudo checksum when tso */
1196 	l4_paylen = skb->len - l4_offset;
1197 
1198 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1199 		hdr_len = sizeof(*l4.udp) + l4_offset;
1200 		csum_replace_by_diff(&l4.udp->check,
1201 				     (__force __wsum)htonl(l4_paylen));
1202 	} else {
1203 		hdr_len = (l4.tcp->doff << 2) + l4_offset;
1204 		csum_replace_by_diff(&l4.tcp->check,
1205 				     (__force __wsum)htonl(l4_paylen));
1206 	}
1207 
1208 	*send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
1209 
1210 	/* find the txbd field values */
1211 	*paylen_fdop_ol4cs = skb->len - hdr_len;
1212 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
1213 
1214 	/* offload outer UDP header checksum */
1215 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
1216 		hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
1217 
1218 	/* get MSS for TSO */
1219 	*mss = skb_shinfo(skb)->gso_size;
1220 
1221 	trace_hns3_tso(skb);
1222 
1223 	return 0;
1224 }
1225 
1226 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
1227 				u8 *il4_proto)
1228 {
1229 	union l3_hdr_info l3;
1230 	unsigned char *l4_hdr;
1231 	unsigned char *exthdr;
1232 	u8 l4_proto_tmp;
1233 	__be16 frag_off;
1234 
1235 	/* find outer header point */
1236 	l3.hdr = skb_network_header(skb);
1237 	l4_hdr = skb_transport_header(skb);
1238 
1239 	if (skb->protocol == htons(ETH_P_IPV6)) {
1240 		exthdr = l3.hdr + sizeof(*l3.v6);
1241 		l4_proto_tmp = l3.v6->nexthdr;
1242 		if (l4_hdr != exthdr)
1243 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1244 					 &l4_proto_tmp, &frag_off);
1245 	} else if (skb->protocol == htons(ETH_P_IP)) {
1246 		l4_proto_tmp = l3.v4->protocol;
1247 	} else {
1248 		return -EINVAL;
1249 	}
1250 
1251 	*ol4_proto = l4_proto_tmp;
1252 
1253 	/* tunnel packet */
1254 	if (!skb->encapsulation) {
1255 		*il4_proto = 0;
1256 		return 0;
1257 	}
1258 
1259 	/* find inner header point */
1260 	l3.hdr = skb_inner_network_header(skb);
1261 	l4_hdr = skb_inner_transport_header(skb);
1262 
1263 	if (l3.v6->version == 6) {
1264 		exthdr = l3.hdr + sizeof(*l3.v6);
1265 		l4_proto_tmp = l3.v6->nexthdr;
1266 		if (l4_hdr != exthdr)
1267 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1268 					 &l4_proto_tmp, &frag_off);
1269 	} else if (l3.v4->version == 4) {
1270 		l4_proto_tmp = l3.v4->protocol;
1271 	}
1272 
1273 	*il4_proto = l4_proto_tmp;
1274 
1275 	return 0;
1276 }
1277 
1278 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
1279  * and it is udp packet, which has a dest port as the IANA assigned.
1280  * the hardware is expected to do the checksum offload, but the
1281  * hardware will not do the checksum offload when udp dest port is
1282  * 4789, 4790 or 6081.
1283  */
1284 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
1285 {
1286 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1287 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
1288 	union l4_hdr_info l4;
1289 
1290 	/* device version above V3(include V3), the hardware can
1291 	 * do this checksum offload.
1292 	 */
1293 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
1294 		return false;
1295 
1296 	l4.hdr = skb_transport_header(skb);
1297 
1298 	if (!(!skb->encapsulation &&
1299 	      (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
1300 	      l4.udp->dest == htons(GENEVE_UDP_PORT) ||
1301 	      l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT))))
1302 		return false;
1303 
1304 	return true;
1305 }
1306 
1307 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1308 				  u32 *ol_type_vlan_len_msec)
1309 {
1310 	u32 l2_len, l3_len, l4_len;
1311 	unsigned char *il2_hdr;
1312 	union l3_hdr_info l3;
1313 	union l4_hdr_info l4;
1314 
1315 	l3.hdr = skb_network_header(skb);
1316 	l4.hdr = skb_transport_header(skb);
1317 
1318 	/* compute OL2 header size, defined in 2 Bytes */
1319 	l2_len = l3.hdr - skb->data;
1320 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
1321 
1322 	/* compute OL3 header size, defined in 4 Bytes */
1323 	l3_len = l4.hdr - l3.hdr;
1324 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
1325 
1326 	il2_hdr = skb_inner_mac_header(skb);
1327 	/* compute OL4 header size, defined in 4 Bytes */
1328 	l4_len = il2_hdr - l4.hdr;
1329 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
1330 
1331 	/* define outer network header type */
1332 	if (skb->protocol == htons(ETH_P_IP)) {
1333 		if (skb_is_gso(skb))
1334 			hns3_set_field(*ol_type_vlan_len_msec,
1335 				       HNS3_TXD_OL3T_S,
1336 				       HNS3_OL3T_IPV4_CSUM);
1337 		else
1338 			hns3_set_field(*ol_type_vlan_len_msec,
1339 				       HNS3_TXD_OL3T_S,
1340 				       HNS3_OL3T_IPV4_NO_CSUM);
1341 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
1342 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
1343 			       HNS3_OL3T_IPV6);
1344 	}
1345 
1346 	if (ol4_proto == IPPROTO_UDP)
1347 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1348 			       HNS3_TUN_MAC_IN_UDP);
1349 	else if (ol4_proto == IPPROTO_GRE)
1350 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1351 			       HNS3_TUN_NVGRE);
1352 }
1353 
1354 static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3,
1355 			     u32 *type_cs_vlan_tso)
1356 {
1357 	if (l3.v4->version == 4) {
1358 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1359 			       HNS3_L3T_IPV4);
1360 
1361 		/* the stack computes the IP header already, the only time we
1362 		 * need the hardware to recompute it is in the case of TSO.
1363 		 */
1364 		if (skb_is_gso(skb))
1365 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
1366 	} else if (l3.v6->version == 6) {
1367 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1368 			       HNS3_L3T_IPV6);
1369 	}
1370 }
1371 
1372 static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4,
1373 				   u32 l4_proto, u32 *type_cs_vlan_tso)
1374 {
1375 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
1376 	switch (l4_proto) {
1377 	case IPPROTO_TCP:
1378 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1379 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1380 			       HNS3_L4T_TCP);
1381 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1382 			       l4.tcp->doff);
1383 		break;
1384 	case IPPROTO_UDP:
1385 		if (hns3_tunnel_csum_bug(skb)) {
1386 			int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
1387 
1388 			return ret ? ret : skb_checksum_help(skb);
1389 		}
1390 
1391 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1392 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1393 			       HNS3_L4T_UDP);
1394 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1395 			       (sizeof(struct udphdr) >> 2));
1396 		break;
1397 	case IPPROTO_SCTP:
1398 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1399 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1400 			       HNS3_L4T_SCTP);
1401 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1402 			       (sizeof(struct sctphdr) >> 2));
1403 		break;
1404 	default:
1405 		/* drop the skb tunnel packet if hardware don't support,
1406 		 * because hardware can't calculate csum when TSO.
1407 		 */
1408 		if (skb_is_gso(skb))
1409 			return -EDOM;
1410 
1411 		/* the stack computes the IP header already,
1412 		 * driver calculate l4 checksum when not TSO.
1413 		 */
1414 		return skb_checksum_help(skb);
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1421 			   u8 il4_proto, u32 *type_cs_vlan_tso,
1422 			   u32 *ol_type_vlan_len_msec)
1423 {
1424 	unsigned char *l2_hdr = skb->data;
1425 	u32 l4_proto = ol4_proto;
1426 	union l4_hdr_info l4;
1427 	union l3_hdr_info l3;
1428 	u32 l2_len, l3_len;
1429 
1430 	l4.hdr = skb_transport_header(skb);
1431 	l3.hdr = skb_network_header(skb);
1432 
1433 	/* handle encapsulation skb */
1434 	if (skb->encapsulation) {
1435 		/* If this is a not UDP/GRE encapsulation skb */
1436 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
1437 			/* drop the skb tunnel packet if hardware don't support,
1438 			 * because hardware can't calculate csum when TSO.
1439 			 */
1440 			if (skb_is_gso(skb))
1441 				return -EDOM;
1442 
1443 			/* the stack computes the IP header already,
1444 			 * driver calculate l4 checksum when not TSO.
1445 			 */
1446 			return skb_checksum_help(skb);
1447 		}
1448 
1449 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
1450 
1451 		/* switch to inner header */
1452 		l2_hdr = skb_inner_mac_header(skb);
1453 		l3.hdr = skb_inner_network_header(skb);
1454 		l4.hdr = skb_inner_transport_header(skb);
1455 		l4_proto = il4_proto;
1456 	}
1457 
1458 	hns3_set_l3_type(skb, l3, type_cs_vlan_tso);
1459 
1460 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
1461 	l2_len = l3.hdr - l2_hdr;
1462 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
1463 
1464 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
1465 	l3_len = l4.hdr - l3.hdr;
1466 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
1467 
1468 	return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso);
1469 }
1470 
1471 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1472 			     struct sk_buff *skb)
1473 {
1474 	struct hnae3_handle *handle = tx_ring->tqp->handle;
1475 	struct hnae3_ae_dev *ae_dev;
1476 	struct vlan_ethhdr *vhdr;
1477 	int rc;
1478 
1479 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
1480 	      skb_vlan_tag_present(skb)))
1481 		return 0;
1482 
1483 	/* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1484 	 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1485 	 * will cause RAS error.
1486 	 */
1487 	ae_dev = pci_get_drvdata(handle->pdev);
1488 	if (unlikely(skb_vlan_tagged_multi(skb) &&
1489 		     ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1490 		     handle->port_base_vlan_state ==
1491 		     HNAE3_PORT_BASE_VLAN_ENABLE))
1492 		return -EINVAL;
1493 
1494 	if (skb->protocol == htons(ETH_P_8021Q) &&
1495 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1496 		/* When HW VLAN acceleration is turned off, and the stack
1497 		 * sets the protocol to 802.1q, the driver just need to
1498 		 * set the protocol to the encapsulated ethertype.
1499 		 */
1500 		skb->protocol = vlan_get_protocol(skb);
1501 		return 0;
1502 	}
1503 
1504 	if (skb_vlan_tag_present(skb)) {
1505 		/* Based on hw strategy, use out_vtag in two layer tag case,
1506 		 * and use inner_vtag in one tag case.
1507 		 */
1508 		if (skb->protocol == htons(ETH_P_8021Q) &&
1509 		    handle->port_base_vlan_state ==
1510 		    HNAE3_PORT_BASE_VLAN_DISABLE)
1511 			rc = HNS3_OUTER_VLAN_TAG;
1512 		else
1513 			rc = HNS3_INNER_VLAN_TAG;
1514 
1515 		skb->protocol = vlan_get_protocol(skb);
1516 		return rc;
1517 	}
1518 
1519 	rc = skb_cow_head(skb, 0);
1520 	if (unlikely(rc < 0))
1521 		return rc;
1522 
1523 	vhdr = (struct vlan_ethhdr *)skb->data;
1524 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1525 					 & VLAN_PRIO_MASK);
1526 
1527 	skb->protocol = vlan_get_protocol(skb);
1528 	return 0;
1529 }
1530 
1531 /* check if the hardware is capable of checksum offloading */
1532 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1533 {
1534 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1535 
1536 	/* Kindly note, due to backward compatibility of the TX descriptor,
1537 	 * HW checksum of the non-IP packets and GSO packets is handled at
1538 	 * different place in the following code
1539 	 */
1540 	if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1541 	    !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1542 		return false;
1543 
1544 	return true;
1545 }
1546 
1547 struct hns3_desc_param {
1548 	u32 paylen_ol4cs;
1549 	u32 ol_type_vlan_len_msec;
1550 	u32 type_cs_vlan_tso;
1551 	u16 mss_hw_csum;
1552 	u16 inner_vtag;
1553 	u16 out_vtag;
1554 };
1555 
1556 static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa)
1557 {
1558 	pa->paylen_ol4cs = skb->len;
1559 	pa->ol_type_vlan_len_msec = 0;
1560 	pa->type_cs_vlan_tso = 0;
1561 	pa->mss_hw_csum = 0;
1562 	pa->inner_vtag = 0;
1563 	pa->out_vtag = 0;
1564 }
1565 
1566 static int hns3_handle_vlan_info(struct hns3_enet_ring *ring,
1567 				 struct sk_buff *skb,
1568 				 struct hns3_desc_param *param)
1569 {
1570 	int ret;
1571 
1572 	ret = hns3_handle_vtags(ring, skb);
1573 	if (unlikely(ret < 0)) {
1574 		hns3_ring_stats_update(ring, tx_vlan_err);
1575 		return ret;
1576 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1577 		param->inner_vtag = skb_vlan_tag_get(skb);
1578 		param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1579 				VLAN_PRIO_MASK;
1580 		hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1581 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1582 		param->out_vtag = skb_vlan_tag_get(skb);
1583 		param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1584 				VLAN_PRIO_MASK;
1585 		hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1586 			       1);
1587 	}
1588 	return 0;
1589 }
1590 
1591 static int hns3_handle_csum_partial(struct hns3_enet_ring *ring,
1592 				    struct sk_buff *skb,
1593 				    struct hns3_desc_cb *desc_cb,
1594 				    struct hns3_desc_param *param)
1595 {
1596 	u8 ol4_proto, il4_proto;
1597 	int ret;
1598 
1599 	if (hns3_check_hw_tx_csum(skb)) {
1600 		/* set checksum start and offset, defined in 2 Bytes */
1601 		hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1602 			       skb_checksum_start_offset(skb) >> 1);
1603 		hns3_set_field(param->ol_type_vlan_len_msec,
1604 			       HNS3_TXD_CSUM_OFFSET_S,
1605 			       skb->csum_offset >> 1);
1606 		param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1607 		return 0;
1608 	}
1609 
1610 	skb_reset_mac_len(skb);
1611 
1612 	ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1613 	if (unlikely(ret < 0)) {
1614 		hns3_ring_stats_update(ring, tx_l4_proto_err);
1615 		return ret;
1616 	}
1617 
1618 	ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1619 			      &param->type_cs_vlan_tso,
1620 			      &param->ol_type_vlan_len_msec);
1621 	if (unlikely(ret < 0)) {
1622 		hns3_ring_stats_update(ring, tx_l2l3l4_err);
1623 		return ret;
1624 	}
1625 
1626 	ret = hns3_set_tso(skb, &param->paylen_ol4cs, &param->mss_hw_csum,
1627 			   &param->type_cs_vlan_tso, &desc_cb->send_bytes);
1628 	if (unlikely(ret < 0)) {
1629 		hns3_ring_stats_update(ring, tx_tso_err);
1630 		return ret;
1631 	}
1632 	return 0;
1633 }
1634 
1635 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1636 			      struct sk_buff *skb, struct hns3_desc *desc,
1637 			      struct hns3_desc_cb *desc_cb)
1638 {
1639 	struct hns3_desc_param param;
1640 	int ret;
1641 
1642 	hns3_init_desc_data(skb, &param);
1643 	ret = hns3_handle_vlan_info(ring, skb, &param);
1644 	if (unlikely(ret < 0))
1645 		return ret;
1646 
1647 	desc_cb->send_bytes = skb->len;
1648 
1649 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1650 		ret = hns3_handle_csum_partial(ring, skb, desc_cb, &param);
1651 		if (ret)
1652 			return ret;
1653 	}
1654 
1655 	/* Set txbd */
1656 	desc->tx.ol_type_vlan_len_msec =
1657 		cpu_to_le32(param.ol_type_vlan_len_msec);
1658 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso);
1659 	desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs);
1660 	desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum);
1661 	desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag);
1662 	desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag);
1663 
1664 	return 0;
1665 }
1666 
1667 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma,
1668 			  unsigned int size)
1669 {
1670 #define HNS3_LIKELY_BD_NUM	1
1671 
1672 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1673 	unsigned int frag_buf_num;
1674 	int k, sizeoflast;
1675 
1676 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1677 		desc->addr = cpu_to_le64(dma);
1678 		desc->tx.send_size = cpu_to_le16(size);
1679 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1680 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1681 
1682 		trace_hns3_tx_desc(ring, ring->next_to_use);
1683 		ring_ptr_move_fw(ring, next_to_use);
1684 		return HNS3_LIKELY_BD_NUM;
1685 	}
1686 
1687 	frag_buf_num = hns3_tx_bd_count(size);
1688 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1689 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1690 
1691 	/* When frag size is bigger than hardware limit, split this frag */
1692 	for (k = 0; k < frag_buf_num; k++) {
1693 		/* now, fill the descriptor */
1694 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1695 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1696 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1697 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1698 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1699 
1700 		trace_hns3_tx_desc(ring, ring->next_to_use);
1701 		/* move ring pointer to next */
1702 		ring_ptr_move_fw(ring, next_to_use);
1703 
1704 		desc = &ring->desc[ring->next_to_use];
1705 	}
1706 
1707 	return frag_buf_num;
1708 }
1709 
1710 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
1711 				  unsigned int type)
1712 {
1713 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1714 	struct device *dev = ring_to_dev(ring);
1715 	unsigned int size;
1716 	dma_addr_t dma;
1717 
1718 	if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) {
1719 		struct sk_buff *skb = (struct sk_buff *)priv;
1720 
1721 		size = skb_headlen(skb);
1722 		if (!size)
1723 			return 0;
1724 
1725 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1726 	} else if (type & DESC_TYPE_BOUNCE_HEAD) {
1727 		/* Head data has been filled in hns3_handle_tx_bounce(),
1728 		 * just return 0 here.
1729 		 */
1730 		return 0;
1731 	} else {
1732 		skb_frag_t *frag = (skb_frag_t *)priv;
1733 
1734 		size = skb_frag_size(frag);
1735 		if (!size)
1736 			return 0;
1737 
1738 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1739 	}
1740 
1741 	if (unlikely(dma_mapping_error(dev, dma))) {
1742 		hns3_ring_stats_update(ring, sw_err_cnt);
1743 		return -ENOMEM;
1744 	}
1745 
1746 	desc_cb->priv = priv;
1747 	desc_cb->length = size;
1748 	desc_cb->dma = dma;
1749 	desc_cb->type = type;
1750 
1751 	return hns3_fill_desc(ring, dma, size);
1752 }
1753 
1754 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1755 				    unsigned int bd_num)
1756 {
1757 	unsigned int size;
1758 	int i;
1759 
1760 	size = skb_headlen(skb);
1761 	while (size > HNS3_MAX_BD_SIZE) {
1762 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1763 		size -= HNS3_MAX_BD_SIZE;
1764 
1765 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1766 			return bd_num;
1767 	}
1768 
1769 	if (size) {
1770 		bd_size[bd_num++] = size;
1771 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1772 			return bd_num;
1773 	}
1774 
1775 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1776 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1777 		size = skb_frag_size(frag);
1778 		if (!size)
1779 			continue;
1780 
1781 		while (size > HNS3_MAX_BD_SIZE) {
1782 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1783 			size -= HNS3_MAX_BD_SIZE;
1784 
1785 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1786 				return bd_num;
1787 		}
1788 
1789 		bd_size[bd_num++] = size;
1790 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1791 			return bd_num;
1792 	}
1793 
1794 	return bd_num;
1795 }
1796 
1797 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1798 				   u8 max_non_tso_bd_num, unsigned int bd_num,
1799 				   unsigned int recursion_level)
1800 {
1801 #define HNS3_MAX_RECURSION_LEVEL	24
1802 
1803 	struct sk_buff *frag_skb;
1804 
1805 	/* If the total len is within the max bd limit */
1806 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1807 		   !skb_has_frag_list(skb) &&
1808 		   skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1809 		return skb_shinfo(skb)->nr_frags + 1U;
1810 
1811 	if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1812 		return UINT_MAX;
1813 
1814 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1815 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1816 		return bd_num;
1817 
1818 	skb_walk_frags(skb, frag_skb) {
1819 		bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1820 					bd_num, recursion_level + 1);
1821 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1822 			return bd_num;
1823 	}
1824 
1825 	return bd_num;
1826 }
1827 
1828 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1829 {
1830 	if (!skb->encapsulation)
1831 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1832 
1833 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1834 }
1835 
1836 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1837  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1838  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1839  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1840  * than MSS except the last max_non_tso_bd_num - 1 frags.
1841  */
1842 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1843 				     unsigned int bd_num, u8 max_non_tso_bd_num)
1844 {
1845 	unsigned int tot_len = 0;
1846 	int i;
1847 
1848 	for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1849 		tot_len += bd_size[i];
1850 
1851 	/* ensure the first max_non_tso_bd_num frags is greater than
1852 	 * mss + header
1853 	 */
1854 	if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1855 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1856 		return true;
1857 
1858 	/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1859 	 * than mss except the last one.
1860 	 */
1861 	for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1862 		tot_len -= bd_size[i];
1863 		tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1864 
1865 		if (tot_len < skb_shinfo(skb)->gso_size)
1866 			return true;
1867 	}
1868 
1869 	return false;
1870 }
1871 
1872 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1873 {
1874 	int i;
1875 
1876 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1877 		size[i] = skb_frag_size(&shinfo->frags[i]);
1878 }
1879 
1880 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1881 			      struct sk_buff *skb,
1882 			      unsigned int bd_num)
1883 {
1884 	/* 'bd_num == UINT_MAX' means the skb' fraglist has a
1885 	 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1886 	 */
1887 	if (bd_num == UINT_MAX) {
1888 		hns3_ring_stats_update(ring, over_max_recursion);
1889 		return -ENOMEM;
1890 	}
1891 
1892 	/* The skb->len has exceeded the hw limitation, linearization
1893 	 * will not help.
1894 	 */
1895 	if (skb->len > HNS3_MAX_TSO_SIZE ||
1896 	    (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) {
1897 		hns3_ring_stats_update(ring, hw_limitation);
1898 		return -ENOMEM;
1899 	}
1900 
1901 	if (__skb_linearize(skb)) {
1902 		hns3_ring_stats_update(ring, sw_err_cnt);
1903 		return -ENOMEM;
1904 	}
1905 
1906 	return 0;
1907 }
1908 
1909 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1910 				  struct net_device *netdev,
1911 				  struct sk_buff *skb)
1912 {
1913 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1914 	u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1915 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1916 	unsigned int bd_num;
1917 
1918 	bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1919 	if (unlikely(bd_num > max_non_tso_bd_num)) {
1920 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1921 		    !hns3_skb_need_linearized(skb, bd_size, bd_num,
1922 					      max_non_tso_bd_num)) {
1923 			trace_hns3_over_max_bd(skb);
1924 			goto out;
1925 		}
1926 
1927 		if (hns3_skb_linearize(ring, skb, bd_num))
1928 			return -ENOMEM;
1929 
1930 		bd_num = hns3_tx_bd_count(skb->len);
1931 
1932 		hns3_ring_stats_update(ring, tx_copy);
1933 	}
1934 
1935 out:
1936 	if (likely(ring_space(ring) >= bd_num))
1937 		return bd_num;
1938 
1939 	netif_stop_subqueue(netdev, ring->queue_index);
1940 	smp_mb(); /* Memory barrier before checking ring_space */
1941 
1942 	/* Start queue in case hns3_clean_tx_ring has just made room
1943 	 * available and has not seen the queue stopped state performed
1944 	 * by netif_stop_subqueue above.
1945 	 */
1946 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1947 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1948 		netif_start_subqueue(netdev, ring->queue_index);
1949 		return bd_num;
1950 	}
1951 
1952 	hns3_ring_stats_update(ring, tx_busy);
1953 
1954 	return -EBUSY;
1955 }
1956 
1957 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1958 {
1959 	struct device *dev = ring_to_dev(ring);
1960 	unsigned int i;
1961 
1962 	for (i = 0; i < ring->desc_num; i++) {
1963 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1964 		struct hns3_desc_cb *desc_cb;
1965 
1966 		memset(desc, 0, sizeof(*desc));
1967 
1968 		/* check if this is where we started */
1969 		if (ring->next_to_use == next_to_use_orig)
1970 			break;
1971 
1972 		/* rollback one */
1973 		ring_ptr_move_bw(ring, next_to_use);
1974 
1975 		desc_cb = &ring->desc_cb[ring->next_to_use];
1976 
1977 		if (!desc_cb->dma)
1978 			continue;
1979 
1980 		/* unmap the descriptor dma address */
1981 		if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
1982 			dma_unmap_single(dev, desc_cb->dma, desc_cb->length,
1983 					 DMA_TO_DEVICE);
1984 		else if (desc_cb->type &
1985 			 (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL))
1986 			hns3_tx_spare_rollback(ring, desc_cb->length);
1987 		else if (desc_cb->length)
1988 			dma_unmap_page(dev, desc_cb->dma, desc_cb->length,
1989 				       DMA_TO_DEVICE);
1990 
1991 		desc_cb->length = 0;
1992 		desc_cb->dma = 0;
1993 		desc_cb->type = DESC_TYPE_UNKNOWN;
1994 	}
1995 }
1996 
1997 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1998 				 struct sk_buff *skb, unsigned int type)
1999 {
2000 	struct sk_buff *frag_skb;
2001 	int i, ret, bd_num = 0;
2002 
2003 	ret = hns3_map_and_fill_desc(ring, skb, type);
2004 	if (unlikely(ret < 0))
2005 		return ret;
2006 
2007 	bd_num += ret;
2008 
2009 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2010 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2011 
2012 		ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE);
2013 		if (unlikely(ret < 0))
2014 			return ret;
2015 
2016 		bd_num += ret;
2017 	}
2018 
2019 	skb_walk_frags(skb, frag_skb) {
2020 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
2021 					    DESC_TYPE_FRAGLIST_SKB);
2022 		if (unlikely(ret < 0))
2023 			return ret;
2024 
2025 		bd_num += ret;
2026 	}
2027 
2028 	return bd_num;
2029 }
2030 
2031 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
2032 			     bool doorbell)
2033 {
2034 	ring->pending_buf += num;
2035 
2036 	if (!doorbell) {
2037 		hns3_ring_stats_update(ring, tx_more);
2038 		return;
2039 	}
2040 
2041 	if (!ring->pending_buf)
2042 		return;
2043 
2044 	writel(ring->pending_buf,
2045 	       ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
2046 	ring->pending_buf = 0;
2047 	WRITE_ONCE(ring->last_to_use, ring->next_to_use);
2048 }
2049 
2050 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb,
2051 		      struct hns3_desc *desc)
2052 {
2053 	struct hnae3_handle *h = hns3_get_handle(netdev);
2054 
2055 	if (!(h->ae_algo->ops->set_tx_hwts_info &&
2056 	      h->ae_algo->ops->set_tx_hwts_info(h, skb)))
2057 		return;
2058 
2059 	desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B));
2060 }
2061 
2062 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring,
2063 				 struct sk_buff *skb)
2064 {
2065 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2066 	unsigned int type = DESC_TYPE_BOUNCE_HEAD;
2067 	unsigned int size = skb_headlen(skb);
2068 	dma_addr_t dma;
2069 	int bd_num = 0;
2070 	u32 cb_len;
2071 	void *buf;
2072 	int ret;
2073 
2074 	if (skb->len <= ring->tx_copybreak) {
2075 		size = skb->len;
2076 		type = DESC_TYPE_BOUNCE_ALL;
2077 	}
2078 
2079 	/* hns3_can_use_tx_bounce() is called to ensure the below
2080 	 * function can always return the tx buffer.
2081 	 */
2082 	buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len);
2083 
2084 	ret = skb_copy_bits(skb, 0, buf, size);
2085 	if (unlikely(ret < 0)) {
2086 		hns3_tx_spare_rollback(ring, cb_len);
2087 		hns3_ring_stats_update(ring, copy_bits_err);
2088 		return ret;
2089 	}
2090 
2091 	desc_cb->priv = skb;
2092 	desc_cb->length = cb_len;
2093 	desc_cb->dma = dma;
2094 	desc_cb->type = type;
2095 
2096 	bd_num += hns3_fill_desc(ring, dma, size);
2097 
2098 	if (type == DESC_TYPE_BOUNCE_HEAD) {
2099 		ret = hns3_fill_skb_to_desc(ring, skb,
2100 					    DESC_TYPE_BOUNCE_HEAD);
2101 		if (unlikely(ret < 0))
2102 			return ret;
2103 
2104 		bd_num += ret;
2105 	}
2106 
2107 	dma_sync_single_for_device(ring_to_dev(ring), dma, size,
2108 				   DMA_TO_DEVICE);
2109 
2110 	hns3_ring_stats_update(ring, tx_bounce);
2111 
2112 	return bd_num;
2113 }
2114 
2115 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring,
2116 			      struct sk_buff *skb)
2117 {
2118 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2119 	u32 nfrag = skb_shinfo(skb)->nr_frags + 1;
2120 	struct sg_table *sgt;
2121 	int i, bd_num = 0;
2122 	dma_addr_t dma;
2123 	u32 cb_len;
2124 	int nents;
2125 
2126 	if (skb_has_frag_list(skb))
2127 		nfrag = HNS3_MAX_TSO_BD_NUM;
2128 
2129 	/* hns3_can_use_tx_sgl() is called to ensure the below
2130 	 * function can always return the tx buffer.
2131 	 */
2132 	sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag),
2133 				  &dma, &cb_len);
2134 
2135 	/* scatterlist follows by the sg table */
2136 	sgt->sgl = (struct scatterlist *)(sgt + 1);
2137 	sg_init_table(sgt->sgl, nfrag);
2138 	nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len);
2139 	if (unlikely(nents < 0)) {
2140 		hns3_tx_spare_rollback(ring, cb_len);
2141 		hns3_ring_stats_update(ring, skb2sgl_err);
2142 		return -ENOMEM;
2143 	}
2144 
2145 	sgt->orig_nents = nents;
2146 	sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
2147 				DMA_TO_DEVICE);
2148 	if (unlikely(!sgt->nents)) {
2149 		hns3_tx_spare_rollback(ring, cb_len);
2150 		hns3_ring_stats_update(ring, map_sg_err);
2151 		return -ENOMEM;
2152 	}
2153 
2154 	desc_cb->priv = skb;
2155 	desc_cb->length = cb_len;
2156 	desc_cb->dma = dma;
2157 	desc_cb->type = DESC_TYPE_SGL_SKB;
2158 
2159 	for (i = 0; i < sgt->nents; i++)
2160 		bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i),
2161 					 sg_dma_len(sgt->sgl + i));
2162 	hns3_ring_stats_update(ring, tx_sgl);
2163 
2164 	return bd_num;
2165 }
2166 
2167 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring,
2168 				    struct sk_buff *skb)
2169 {
2170 	u32 space;
2171 
2172 	if (!ring->tx_spare)
2173 		goto out;
2174 
2175 	space = hns3_tx_spare_space(ring);
2176 
2177 	if (hns3_can_use_tx_sgl(ring, skb, space))
2178 		return hns3_handle_tx_sgl(ring, skb);
2179 
2180 	if (hns3_can_use_tx_bounce(ring, skb, space))
2181 		return hns3_handle_tx_bounce(ring, skb);
2182 
2183 out:
2184 	return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
2185 }
2186 
2187 static int hns3_handle_skb_desc(struct hns3_enet_ring *ring,
2188 				struct sk_buff *skb,
2189 				struct hns3_desc_cb *desc_cb,
2190 				int next_to_use_head)
2191 {
2192 	int ret;
2193 
2194 	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
2195 				 desc_cb);
2196 	if (unlikely(ret < 0))
2197 		goto fill_err;
2198 
2199 	/* 'ret < 0' means filling error, 'ret == 0' means skb->len is
2200 	 * zero, which is unlikely, and 'ret > 0' means how many tx desc
2201 	 * need to be notified to the hw.
2202 	 */
2203 	ret = hns3_handle_desc_filling(ring, skb);
2204 	if (likely(ret > 0))
2205 		return ret;
2206 
2207 fill_err:
2208 	hns3_clear_desc(ring, next_to_use_head);
2209 	return ret;
2210 }
2211 
2212 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
2213 {
2214 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2215 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
2216 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2217 	struct netdev_queue *dev_queue;
2218 	int pre_ntu, ret;
2219 	bool doorbell;
2220 
2221 	/* Hardware can only handle short frames above 32 bytes */
2222 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
2223 		hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2224 
2225 		hns3_ring_stats_update(ring, sw_err_cnt);
2226 
2227 		return NETDEV_TX_OK;
2228 	}
2229 
2230 	/* Prefetch the data used later */
2231 	prefetch(skb->data);
2232 
2233 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
2234 	if (unlikely(ret <= 0)) {
2235 		if (ret == -EBUSY) {
2236 			hns3_tx_doorbell(ring, 0, true);
2237 			return NETDEV_TX_BUSY;
2238 		}
2239 
2240 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
2241 		goto out_err_tx_ok;
2242 	}
2243 
2244 	ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use);
2245 	if (unlikely(ret <= 0))
2246 		goto out_err_tx_ok;
2247 
2248 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
2249 					(ring->desc_num - 1);
2250 
2251 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
2252 		hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]);
2253 
2254 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
2255 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
2256 	trace_hns3_tx_desc(ring, pre_ntu);
2257 
2258 	skb_tx_timestamp(skb);
2259 
2260 	/* Complete translate all packets */
2261 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
2262 	doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
2263 					  netdev_xmit_more());
2264 	hns3_tx_doorbell(ring, ret, doorbell);
2265 
2266 	return NETDEV_TX_OK;
2267 
2268 out_err_tx_ok:
2269 	dev_kfree_skb_any(skb);
2270 	hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2271 	return NETDEV_TX_OK;
2272 }
2273 
2274 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
2275 {
2276 	char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN];
2277 	char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN];
2278 	struct hnae3_handle *h = hns3_get_handle(netdev);
2279 	struct sockaddr *mac_addr = p;
2280 	int ret;
2281 
2282 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
2283 		return -EADDRNOTAVAIL;
2284 
2285 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
2286 		hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2287 		netdev_info(netdev, "already using mac address %s\n",
2288 			    format_mac_addr_sa);
2289 		return 0;
2290 	}
2291 
2292 	/* For VF device, if there is a perm_addr, then the user will not
2293 	 * be allowed to change the address.
2294 	 */
2295 	if (!hns3_is_phys_func(h->pdev) &&
2296 	    !is_zero_ether_addr(netdev->perm_addr)) {
2297 		hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr);
2298 		hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2299 		netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n",
2300 			   format_mac_addr_perm, format_mac_addr_sa);
2301 		return -EPERM;
2302 	}
2303 
2304 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
2305 	if (ret) {
2306 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
2307 		return ret;
2308 	}
2309 
2310 	eth_hw_addr_set(netdev, mac_addr->sa_data);
2311 
2312 	return 0;
2313 }
2314 
2315 static int hns3_nic_do_ioctl(struct net_device *netdev,
2316 			     struct ifreq *ifr, int cmd)
2317 {
2318 	struct hnae3_handle *h = hns3_get_handle(netdev);
2319 
2320 	if (!netif_running(netdev))
2321 		return -EINVAL;
2322 
2323 	if (!h->ae_algo->ops->do_ioctl)
2324 		return -EOPNOTSUPP;
2325 
2326 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
2327 }
2328 
2329 static int hns3_nic_set_features(struct net_device *netdev,
2330 				 netdev_features_t features)
2331 {
2332 	netdev_features_t changed = netdev->features ^ features;
2333 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2334 	struct hnae3_handle *h = priv->ae_handle;
2335 	bool enable;
2336 	int ret;
2337 
2338 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
2339 		enable = !!(features & NETIF_F_GRO_HW);
2340 		ret = h->ae_algo->ops->set_gro_en(h, enable);
2341 		if (ret)
2342 			return ret;
2343 	}
2344 
2345 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
2346 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
2347 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
2348 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
2349 		if (ret)
2350 			return ret;
2351 	}
2352 
2353 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
2354 		enable = !!(features & NETIF_F_NTUPLE);
2355 		h->ae_algo->ops->enable_fd(h, enable);
2356 	}
2357 
2358 	if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
2359 	    h->ae_algo->ops->cls_flower_active(h)) {
2360 		netdev_err(netdev,
2361 			   "there are offloaded TC filters active, cannot disable HW TC offload");
2362 		return -EINVAL;
2363 	}
2364 
2365 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2366 	    h->ae_algo->ops->enable_vlan_filter) {
2367 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
2368 		ret = h->ae_algo->ops->enable_vlan_filter(h, enable);
2369 		if (ret)
2370 			return ret;
2371 	}
2372 
2373 	netdev->features = features;
2374 	return 0;
2375 }
2376 
2377 static netdev_features_t hns3_features_check(struct sk_buff *skb,
2378 					     struct net_device *dev,
2379 					     netdev_features_t features)
2380 {
2381 #define HNS3_MAX_HDR_LEN	480U
2382 #define HNS3_MAX_L4_HDR_LEN	60U
2383 
2384 	size_t len;
2385 
2386 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2387 		return features;
2388 
2389 	if (skb->encapsulation)
2390 		len = skb_inner_transport_header(skb) - skb->data;
2391 	else
2392 		len = skb_transport_header(skb) - skb->data;
2393 
2394 	/* Assume L4 is 60 byte as TCP is the only protocol with a
2395 	 * a flexible value, and it's max len is 60 bytes.
2396 	 */
2397 	len += HNS3_MAX_L4_HDR_LEN;
2398 
2399 	/* Hardware only supports checksum on the skb with a max header
2400 	 * len of 480 bytes.
2401 	 */
2402 	if (len > HNS3_MAX_HDR_LEN)
2403 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2404 
2405 	return features;
2406 }
2407 
2408 static void hns3_fetch_stats(struct rtnl_link_stats64 *stats,
2409 			     struct hns3_enet_ring *ring, bool is_tx)
2410 {
2411 	unsigned int start;
2412 
2413 	do {
2414 		start = u64_stats_fetch_begin_irq(&ring->syncp);
2415 		if (is_tx) {
2416 			stats->tx_bytes += ring->stats.tx_bytes;
2417 			stats->tx_packets += ring->stats.tx_pkts;
2418 			stats->tx_dropped += ring->stats.sw_err_cnt;
2419 			stats->tx_dropped += ring->stats.tx_vlan_err;
2420 			stats->tx_dropped += ring->stats.tx_l4_proto_err;
2421 			stats->tx_dropped += ring->stats.tx_l2l3l4_err;
2422 			stats->tx_dropped += ring->stats.tx_tso_err;
2423 			stats->tx_dropped += ring->stats.over_max_recursion;
2424 			stats->tx_dropped += ring->stats.hw_limitation;
2425 			stats->tx_dropped += ring->stats.copy_bits_err;
2426 			stats->tx_dropped += ring->stats.skb2sgl_err;
2427 			stats->tx_dropped += ring->stats.map_sg_err;
2428 			stats->tx_errors += ring->stats.sw_err_cnt;
2429 			stats->tx_errors += ring->stats.tx_vlan_err;
2430 			stats->tx_errors += ring->stats.tx_l4_proto_err;
2431 			stats->tx_errors += ring->stats.tx_l2l3l4_err;
2432 			stats->tx_errors += ring->stats.tx_tso_err;
2433 			stats->tx_errors += ring->stats.over_max_recursion;
2434 			stats->tx_errors += ring->stats.hw_limitation;
2435 			stats->tx_errors += ring->stats.copy_bits_err;
2436 			stats->tx_errors += ring->stats.skb2sgl_err;
2437 			stats->tx_errors += ring->stats.map_sg_err;
2438 		} else {
2439 			stats->rx_bytes += ring->stats.rx_bytes;
2440 			stats->rx_packets += ring->stats.rx_pkts;
2441 			stats->rx_dropped += ring->stats.l2_err;
2442 			stats->rx_errors += ring->stats.l2_err;
2443 			stats->rx_errors += ring->stats.l3l4_csum_err;
2444 			stats->rx_crc_errors += ring->stats.l2_err;
2445 			stats->multicast += ring->stats.rx_multicast;
2446 			stats->rx_length_errors += ring->stats.err_pkt_len;
2447 		}
2448 	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
2449 }
2450 
2451 static void hns3_nic_get_stats64(struct net_device *netdev,
2452 				 struct rtnl_link_stats64 *stats)
2453 {
2454 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2455 	int queue_num = priv->ae_handle->kinfo.num_tqps;
2456 	struct hnae3_handle *handle = priv->ae_handle;
2457 	struct rtnl_link_stats64 ring_total_stats;
2458 	struct hns3_enet_ring *ring;
2459 	unsigned int idx;
2460 
2461 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
2462 		return;
2463 
2464 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
2465 
2466 	memset(&ring_total_stats, 0, sizeof(ring_total_stats));
2467 	for (idx = 0; idx < queue_num; idx++) {
2468 		/* fetch the tx stats */
2469 		ring = &priv->ring[idx];
2470 		hns3_fetch_stats(&ring_total_stats, ring, true);
2471 
2472 		/* fetch the rx stats */
2473 		ring = &priv->ring[idx + queue_num];
2474 		hns3_fetch_stats(&ring_total_stats, ring, false);
2475 	}
2476 
2477 	stats->tx_bytes = ring_total_stats.tx_bytes;
2478 	stats->tx_packets = ring_total_stats.tx_packets;
2479 	stats->rx_bytes = ring_total_stats.rx_bytes;
2480 	stats->rx_packets = ring_total_stats.rx_packets;
2481 
2482 	stats->rx_errors = ring_total_stats.rx_errors;
2483 	stats->multicast = ring_total_stats.multicast;
2484 	stats->rx_length_errors = ring_total_stats.rx_length_errors;
2485 	stats->rx_crc_errors = ring_total_stats.rx_crc_errors;
2486 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
2487 
2488 	stats->tx_errors = ring_total_stats.tx_errors;
2489 	stats->rx_dropped = ring_total_stats.rx_dropped;
2490 	stats->tx_dropped = ring_total_stats.tx_dropped;
2491 	stats->collisions = netdev->stats.collisions;
2492 	stats->rx_over_errors = netdev->stats.rx_over_errors;
2493 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
2494 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
2495 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
2496 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
2497 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
2498 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
2499 	stats->tx_window_errors = netdev->stats.tx_window_errors;
2500 	stats->rx_compressed = netdev->stats.rx_compressed;
2501 	stats->tx_compressed = netdev->stats.tx_compressed;
2502 }
2503 
2504 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
2505 {
2506 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2507 	struct hnae3_knic_private_info *kinfo;
2508 	u8 tc = mqprio_qopt->qopt.num_tc;
2509 	u16 mode = mqprio_qopt->mode;
2510 	u8 hw = mqprio_qopt->qopt.hw;
2511 	struct hnae3_handle *h;
2512 
2513 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
2514 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
2515 		return -EOPNOTSUPP;
2516 
2517 	if (tc > HNAE3_MAX_TC)
2518 		return -EINVAL;
2519 
2520 	if (!netdev)
2521 		return -EINVAL;
2522 
2523 	h = hns3_get_handle(netdev);
2524 	kinfo = &h->kinfo;
2525 
2526 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
2527 
2528 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
2529 		kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
2530 }
2531 
2532 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
2533 				    struct flow_cls_offload *flow)
2534 {
2535 	int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
2536 	struct hnae3_handle *h = hns3_get_handle(priv->netdev);
2537 
2538 	switch (flow->command) {
2539 	case FLOW_CLS_REPLACE:
2540 		if (h->ae_algo->ops->add_cls_flower)
2541 			return h->ae_algo->ops->add_cls_flower(h, flow, tc);
2542 		break;
2543 	case FLOW_CLS_DESTROY:
2544 		if (h->ae_algo->ops->del_cls_flower)
2545 			return h->ae_algo->ops->del_cls_flower(h, flow);
2546 		break;
2547 	default:
2548 		break;
2549 	}
2550 
2551 	return -EOPNOTSUPP;
2552 }
2553 
2554 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2555 				  void *cb_priv)
2556 {
2557 	struct hns3_nic_priv *priv = cb_priv;
2558 
2559 	if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
2560 		return -EOPNOTSUPP;
2561 
2562 	switch (type) {
2563 	case TC_SETUP_CLSFLOWER:
2564 		return hns3_setup_tc_cls_flower(priv, type_data);
2565 	default:
2566 		return -EOPNOTSUPP;
2567 	}
2568 }
2569 
2570 static LIST_HEAD(hns3_block_cb_list);
2571 
2572 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
2573 			     void *type_data)
2574 {
2575 	struct hns3_nic_priv *priv = netdev_priv(dev);
2576 	int ret;
2577 
2578 	switch (type) {
2579 	case TC_SETUP_QDISC_MQPRIO:
2580 		ret = hns3_setup_tc(dev, type_data);
2581 		break;
2582 	case TC_SETUP_BLOCK:
2583 		ret = flow_block_cb_setup_simple(type_data,
2584 						 &hns3_block_cb_list,
2585 						 hns3_setup_tc_block_cb,
2586 						 priv, priv, true);
2587 		break;
2588 	default:
2589 		return -EOPNOTSUPP;
2590 	}
2591 
2592 	return ret;
2593 }
2594 
2595 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
2596 				__be16 proto, u16 vid)
2597 {
2598 	struct hnae3_handle *h = hns3_get_handle(netdev);
2599 	int ret = -EIO;
2600 
2601 	if (h->ae_algo->ops->set_vlan_filter)
2602 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
2603 
2604 	return ret;
2605 }
2606 
2607 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
2608 				 __be16 proto, u16 vid)
2609 {
2610 	struct hnae3_handle *h = hns3_get_handle(netdev);
2611 	int ret = -EIO;
2612 
2613 	if (h->ae_algo->ops->set_vlan_filter)
2614 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
2615 
2616 	return ret;
2617 }
2618 
2619 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
2620 				u8 qos, __be16 vlan_proto)
2621 {
2622 	struct hnae3_handle *h = hns3_get_handle(netdev);
2623 	int ret = -EIO;
2624 
2625 	netif_dbg(h, drv, netdev,
2626 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
2627 		  vf, vlan, qos, ntohs(vlan_proto));
2628 
2629 	if (h->ae_algo->ops->set_vf_vlan_filter)
2630 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
2631 							  qos, vlan_proto);
2632 
2633 	return ret;
2634 }
2635 
2636 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
2637 {
2638 	struct hnae3_handle *handle = hns3_get_handle(netdev);
2639 
2640 	if (hns3_nic_resetting(netdev))
2641 		return -EBUSY;
2642 
2643 	if (!handle->ae_algo->ops->set_vf_spoofchk)
2644 		return -EOPNOTSUPP;
2645 
2646 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
2647 }
2648 
2649 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
2650 {
2651 	struct hnae3_handle *handle = hns3_get_handle(netdev);
2652 
2653 	if (!handle->ae_algo->ops->set_vf_trust)
2654 		return -EOPNOTSUPP;
2655 
2656 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
2657 }
2658 
2659 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
2660 {
2661 	struct hnae3_handle *h = hns3_get_handle(netdev);
2662 	int ret;
2663 
2664 	if (hns3_nic_resetting(netdev))
2665 		return -EBUSY;
2666 
2667 	if (!h->ae_algo->ops->set_mtu)
2668 		return -EOPNOTSUPP;
2669 
2670 	netif_dbg(h, drv, netdev,
2671 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2672 
2673 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2674 	if (ret)
2675 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
2676 			   ret);
2677 	else
2678 		netdev->mtu = new_mtu;
2679 
2680 	return ret;
2681 }
2682 
2683 static int hns3_get_timeout_queue(struct net_device *ndev)
2684 {
2685 	int i;
2686 
2687 	/* Find the stopped queue the same way the stack does */
2688 	for (i = 0; i < ndev->num_tx_queues; i++) {
2689 		struct netdev_queue *q;
2690 		unsigned long trans_start;
2691 
2692 		q = netdev_get_tx_queue(ndev, i);
2693 		trans_start = READ_ONCE(q->trans_start);
2694 		if (netif_xmit_stopped(q) &&
2695 		    time_after(jiffies,
2696 			       (trans_start + ndev->watchdog_timeo))) {
2697 #ifdef CONFIG_BQL
2698 			struct dql *dql = &q->dql;
2699 
2700 			netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n",
2701 				    dql->last_obj_cnt, dql->num_queued,
2702 				    dql->adj_limit, dql->num_completed);
2703 #endif
2704 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2705 				    q->state,
2706 				    jiffies_to_msecs(jiffies - trans_start));
2707 			break;
2708 		}
2709 	}
2710 
2711 	return i;
2712 }
2713 
2714 static void hns3_dump_queue_stats(struct net_device *ndev,
2715 				  struct hns3_enet_ring *tx_ring,
2716 				  int timeout_queue)
2717 {
2718 	struct napi_struct *napi = &tx_ring->tqp_vector->napi;
2719 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2720 
2721 	netdev_info(ndev,
2722 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2723 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2724 		    tx_ring->next_to_clean, napi->state);
2725 
2726 	netdev_info(ndev,
2727 		    "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2728 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2729 		    tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2730 
2731 	netdev_info(ndev,
2732 		    "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2733 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2734 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2735 }
2736 
2737 static void hns3_dump_queue_reg(struct net_device *ndev,
2738 				struct hns3_enet_ring *tx_ring)
2739 {
2740 	netdev_info(ndev,
2741 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2742 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG),
2743 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG),
2744 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG),
2745 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG),
2746 		    readl(tx_ring->tqp_vector->mask_addr));
2747 	netdev_info(ndev,
2748 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2749 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG),
2750 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG),
2751 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG),
2752 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG),
2753 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG),
2754 		    hns3_tqp_read_reg(tx_ring,
2755 				      HNS3_RING_TX_RING_EBD_OFFSET_REG));
2756 }
2757 
2758 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2759 {
2760 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2761 	struct hnae3_handle *h = hns3_get_handle(ndev);
2762 	struct hns3_enet_ring *tx_ring;
2763 	int timeout_queue;
2764 
2765 	timeout_queue = hns3_get_timeout_queue(ndev);
2766 	if (timeout_queue >= ndev->num_tx_queues) {
2767 		netdev_info(ndev,
2768 			    "no netdev TX timeout queue found, timeout count: %llu\n",
2769 			    priv->tx_timeout_count);
2770 		return false;
2771 	}
2772 
2773 	priv->tx_timeout_count++;
2774 
2775 	tx_ring = &priv->ring[timeout_queue];
2776 	hns3_dump_queue_stats(ndev, tx_ring, timeout_queue);
2777 
2778 	/* When mac received many pause frames continuous, it's unable to send
2779 	 * packets, which may cause tx timeout
2780 	 */
2781 	if (h->ae_algo->ops->get_mac_stats) {
2782 		struct hns3_mac_stats mac_stats;
2783 
2784 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2785 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2786 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2787 	}
2788 
2789 	hns3_dump_queue_reg(ndev, tx_ring);
2790 
2791 	return true;
2792 }
2793 
2794 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2795 {
2796 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2797 	struct hnae3_handle *h = priv->ae_handle;
2798 
2799 	if (!hns3_get_tx_timeo_queue_info(ndev))
2800 		return;
2801 
2802 	/* request the reset, and let the hclge to determine
2803 	 * which reset level should be done
2804 	 */
2805 	if (h->ae_algo->ops->reset_event)
2806 		h->ae_algo->ops->reset_event(h->pdev, h);
2807 }
2808 
2809 #ifdef CONFIG_RFS_ACCEL
2810 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2811 			      u16 rxq_index, u32 flow_id)
2812 {
2813 	struct hnae3_handle *h = hns3_get_handle(dev);
2814 	struct flow_keys fkeys;
2815 
2816 	if (!h->ae_algo->ops->add_arfs_entry)
2817 		return -EOPNOTSUPP;
2818 
2819 	if (skb->encapsulation)
2820 		return -EPROTONOSUPPORT;
2821 
2822 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2823 		return -EPROTONOSUPPORT;
2824 
2825 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2826 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2827 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
2828 	     fkeys.basic.ip_proto != IPPROTO_UDP))
2829 		return -EPROTONOSUPPORT;
2830 
2831 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2832 }
2833 #endif
2834 
2835 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2836 				  struct ifla_vf_info *ivf)
2837 {
2838 	struct hnae3_handle *h = hns3_get_handle(ndev);
2839 
2840 	if (!h->ae_algo->ops->get_vf_config)
2841 		return -EOPNOTSUPP;
2842 
2843 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2844 }
2845 
2846 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2847 				      int link_state)
2848 {
2849 	struct hnae3_handle *h = hns3_get_handle(ndev);
2850 
2851 	if (!h->ae_algo->ops->set_vf_link_state)
2852 		return -EOPNOTSUPP;
2853 
2854 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2855 }
2856 
2857 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2858 				int min_tx_rate, int max_tx_rate)
2859 {
2860 	struct hnae3_handle *h = hns3_get_handle(ndev);
2861 
2862 	if (!h->ae_algo->ops->set_vf_rate)
2863 		return -EOPNOTSUPP;
2864 
2865 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2866 					    false);
2867 }
2868 
2869 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2870 {
2871 	struct hnae3_handle *h = hns3_get_handle(netdev);
2872 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
2873 
2874 	if (!h->ae_algo->ops->set_vf_mac)
2875 		return -EOPNOTSUPP;
2876 
2877 	if (is_multicast_ether_addr(mac)) {
2878 		hnae3_format_mac_addr(format_mac_addr, mac);
2879 		netdev_err(netdev,
2880 			   "Invalid MAC:%s specified. Could not set MAC\n",
2881 			   format_mac_addr);
2882 		return -EINVAL;
2883 	}
2884 
2885 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2886 }
2887 
2888 static const struct net_device_ops hns3_nic_netdev_ops = {
2889 	.ndo_open		= hns3_nic_net_open,
2890 	.ndo_stop		= hns3_nic_net_stop,
2891 	.ndo_start_xmit		= hns3_nic_net_xmit,
2892 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2893 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2894 	.ndo_eth_ioctl		= hns3_nic_do_ioctl,
2895 	.ndo_change_mtu		= hns3_nic_change_mtu,
2896 	.ndo_set_features	= hns3_nic_set_features,
2897 	.ndo_features_check	= hns3_features_check,
2898 	.ndo_get_stats64	= hns3_nic_get_stats64,
2899 	.ndo_setup_tc		= hns3_nic_setup_tc,
2900 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2901 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2902 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2903 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2904 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2905 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2906 #ifdef CONFIG_RFS_ACCEL
2907 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2908 #endif
2909 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2910 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2911 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2912 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2913 };
2914 
2915 bool hns3_is_phys_func(struct pci_dev *pdev)
2916 {
2917 	u32 dev_id = pdev->device;
2918 
2919 	switch (dev_id) {
2920 	case HNAE3_DEV_ID_GE:
2921 	case HNAE3_DEV_ID_25GE:
2922 	case HNAE3_DEV_ID_25GE_RDMA:
2923 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2924 	case HNAE3_DEV_ID_50GE_RDMA:
2925 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2926 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2927 	case HNAE3_DEV_ID_200G_RDMA:
2928 		return true;
2929 	case HNAE3_DEV_ID_VF:
2930 	case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2931 		return false;
2932 	default:
2933 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2934 			 dev_id);
2935 	}
2936 
2937 	return false;
2938 }
2939 
2940 static void hns3_disable_sriov(struct pci_dev *pdev)
2941 {
2942 	/* If our VFs are assigned we cannot shut down SR-IOV
2943 	 * without causing issues, so just leave the hardware
2944 	 * available but disabled
2945 	 */
2946 	if (pci_vfs_assigned(pdev)) {
2947 		dev_warn(&pdev->dev,
2948 			 "disabling driver while VFs are assigned\n");
2949 		return;
2950 	}
2951 
2952 	pci_disable_sriov(pdev);
2953 }
2954 
2955 /* hns3_probe - Device initialization routine
2956  * @pdev: PCI device information struct
2957  * @ent: entry in hns3_pci_tbl
2958  *
2959  * hns3_probe initializes a PF identified by a pci_dev structure.
2960  * The OS initialization, configuring of the PF private structure,
2961  * and a hardware reset occur.
2962  *
2963  * Returns 0 on success, negative on failure
2964  */
2965 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2966 {
2967 	struct hnae3_ae_dev *ae_dev;
2968 	int ret;
2969 
2970 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2971 	if (!ae_dev)
2972 		return -ENOMEM;
2973 
2974 	ae_dev->pdev = pdev;
2975 	ae_dev->flag = ent->driver_data;
2976 	pci_set_drvdata(pdev, ae_dev);
2977 
2978 	ret = hnae3_register_ae_dev(ae_dev);
2979 	if (ret)
2980 		pci_set_drvdata(pdev, NULL);
2981 
2982 	return ret;
2983 }
2984 
2985 /* hns3_remove - Device removal routine
2986  * @pdev: PCI device information struct
2987  */
2988 static void hns3_remove(struct pci_dev *pdev)
2989 {
2990 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2991 
2992 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2993 		hns3_disable_sriov(pdev);
2994 
2995 	hnae3_unregister_ae_dev(ae_dev);
2996 	pci_set_drvdata(pdev, NULL);
2997 }
2998 
2999 /**
3000  * hns3_pci_sriov_configure
3001  * @pdev: pointer to a pci_dev structure
3002  * @num_vfs: number of VFs to allocate
3003  *
3004  * Enable or change the number of VFs. Called when the user updates the number
3005  * of VFs in sysfs.
3006  **/
3007 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
3008 {
3009 	int ret;
3010 
3011 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
3012 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
3013 		return -EINVAL;
3014 	}
3015 
3016 	if (num_vfs) {
3017 		ret = pci_enable_sriov(pdev, num_vfs);
3018 		if (ret)
3019 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
3020 		else
3021 			return num_vfs;
3022 	} else if (!pci_vfs_assigned(pdev)) {
3023 		pci_disable_sriov(pdev);
3024 	} else {
3025 		dev_warn(&pdev->dev,
3026 			 "Unable to free VFs because some are assigned to VMs.\n");
3027 	}
3028 
3029 	return 0;
3030 }
3031 
3032 static void hns3_shutdown(struct pci_dev *pdev)
3033 {
3034 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3035 
3036 	hnae3_unregister_ae_dev(ae_dev);
3037 	pci_set_drvdata(pdev, NULL);
3038 
3039 	if (system_state == SYSTEM_POWER_OFF)
3040 		pci_set_power_state(pdev, PCI_D3hot);
3041 }
3042 
3043 static int __maybe_unused hns3_suspend(struct device *dev)
3044 {
3045 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3046 
3047 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3048 		dev_info(dev, "Begin to suspend.\n");
3049 		if (ae_dev->ops && ae_dev->ops->reset_prepare)
3050 			ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
3051 	}
3052 
3053 	return 0;
3054 }
3055 
3056 static int __maybe_unused hns3_resume(struct device *dev)
3057 {
3058 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3059 
3060 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3061 		dev_info(dev, "Begin to resume.\n");
3062 		if (ae_dev->ops && ae_dev->ops->reset_done)
3063 			ae_dev->ops->reset_done(ae_dev);
3064 	}
3065 
3066 	return 0;
3067 }
3068 
3069 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
3070 					    pci_channel_state_t state)
3071 {
3072 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3073 	pci_ers_result_t ret;
3074 
3075 	dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
3076 
3077 	if (state == pci_channel_io_perm_failure)
3078 		return PCI_ERS_RESULT_DISCONNECT;
3079 
3080 	if (!ae_dev || !ae_dev->ops) {
3081 		dev_err(&pdev->dev,
3082 			"Can't recover - error happened before device initialized\n");
3083 		return PCI_ERS_RESULT_NONE;
3084 	}
3085 
3086 	if (ae_dev->ops->handle_hw_ras_error)
3087 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
3088 	else
3089 		return PCI_ERS_RESULT_NONE;
3090 
3091 	return ret;
3092 }
3093 
3094 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
3095 {
3096 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3097 	const struct hnae3_ae_ops *ops;
3098 	enum hnae3_reset_type reset_type;
3099 	struct device *dev = &pdev->dev;
3100 
3101 	if (!ae_dev || !ae_dev->ops)
3102 		return PCI_ERS_RESULT_NONE;
3103 
3104 	ops = ae_dev->ops;
3105 	/* request the reset */
3106 	if (ops->reset_event && ops->get_reset_level &&
3107 	    ops->set_default_reset_request) {
3108 		if (ae_dev->hw_err_reset_req) {
3109 			reset_type = ops->get_reset_level(ae_dev,
3110 						&ae_dev->hw_err_reset_req);
3111 			ops->set_default_reset_request(ae_dev, reset_type);
3112 			dev_info(dev, "requesting reset due to PCI error\n");
3113 			ops->reset_event(pdev, NULL);
3114 		}
3115 
3116 		return PCI_ERS_RESULT_RECOVERED;
3117 	}
3118 
3119 	return PCI_ERS_RESULT_DISCONNECT;
3120 }
3121 
3122 static void hns3_reset_prepare(struct pci_dev *pdev)
3123 {
3124 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3125 
3126 	dev_info(&pdev->dev, "FLR prepare\n");
3127 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
3128 		ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
3129 }
3130 
3131 static void hns3_reset_done(struct pci_dev *pdev)
3132 {
3133 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3134 
3135 	dev_info(&pdev->dev, "FLR done\n");
3136 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
3137 		ae_dev->ops->reset_done(ae_dev);
3138 }
3139 
3140 static const struct pci_error_handlers hns3_err_handler = {
3141 	.error_detected = hns3_error_detected,
3142 	.slot_reset     = hns3_slot_reset,
3143 	.reset_prepare	= hns3_reset_prepare,
3144 	.reset_done	= hns3_reset_done,
3145 };
3146 
3147 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
3148 
3149 static struct pci_driver hns3_driver = {
3150 	.name     = hns3_driver_name,
3151 	.id_table = hns3_pci_tbl,
3152 	.probe    = hns3_probe,
3153 	.remove   = hns3_remove,
3154 	.shutdown = hns3_shutdown,
3155 	.driver.pm  = &hns3_pm_ops,
3156 	.sriov_configure = hns3_pci_sriov_configure,
3157 	.err_handler    = &hns3_err_handler,
3158 };
3159 
3160 /* set default feature to hns3 */
3161 static void hns3_set_default_feature(struct net_device *netdev)
3162 {
3163 	struct hnae3_handle *h = hns3_get_handle(netdev);
3164 	struct pci_dev *pdev = h->pdev;
3165 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3166 
3167 	netdev->priv_flags |= IFF_UNICAST_FLT;
3168 
3169 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3170 
3171 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3172 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
3173 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
3174 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
3175 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
3176 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
3177 
3178 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
3179 		netdev->features |= NETIF_F_GRO_HW;
3180 
3181 		if (!(h->flags & HNAE3_SUPPORT_VF))
3182 			netdev->features |= NETIF_F_NTUPLE;
3183 	}
3184 
3185 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps))
3186 		netdev->features |= NETIF_F_GSO_UDP_L4;
3187 
3188 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
3189 		netdev->features |= NETIF_F_HW_CSUM;
3190 	else
3191 		netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3192 
3193 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps))
3194 		netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
3195 
3196 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps))
3197 		netdev->features |= NETIF_F_HW_TC;
3198 
3199 	netdev->hw_features |= netdev->features;
3200 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
3201 		netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3202 
3203 	netdev->vlan_features |= netdev->features &
3204 		~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX |
3205 		  NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE |
3206 		  NETIF_F_HW_TC);
3207 
3208 	netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID;
3209 }
3210 
3211 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
3212 			     struct hns3_desc_cb *cb)
3213 {
3214 	unsigned int order = hns3_page_order(ring);
3215 	struct page *p;
3216 
3217 	if (ring->page_pool) {
3218 		p = page_pool_dev_alloc_frag(ring->page_pool,
3219 					     &cb->page_offset,
3220 					     hns3_buf_size(ring));
3221 		if (unlikely(!p))
3222 			return -ENOMEM;
3223 
3224 		cb->priv = p;
3225 		cb->buf = page_address(p);
3226 		cb->dma = page_pool_get_dma_addr(p);
3227 		cb->type = DESC_TYPE_PP_FRAG;
3228 		cb->reuse_flag = 0;
3229 		return 0;
3230 	}
3231 
3232 	p = dev_alloc_pages(order);
3233 	if (!p)
3234 		return -ENOMEM;
3235 
3236 	cb->priv = p;
3237 	cb->page_offset = 0;
3238 	cb->reuse_flag = 0;
3239 	cb->buf  = page_address(p);
3240 	cb->length = hns3_page_size(ring);
3241 	cb->type = DESC_TYPE_PAGE;
3242 	page_ref_add(p, USHRT_MAX - 1);
3243 	cb->pagecnt_bias = USHRT_MAX;
3244 
3245 	return 0;
3246 }
3247 
3248 static void hns3_free_buffer(struct hns3_enet_ring *ring,
3249 			     struct hns3_desc_cb *cb, int budget)
3250 {
3251 	if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD |
3252 			DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB))
3253 		napi_consume_skb(cb->priv, budget);
3254 	else if (!HNAE3_IS_TX_RING(ring)) {
3255 		if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias)
3256 			__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
3257 		else if (cb->type & DESC_TYPE_PP_FRAG)
3258 			page_pool_put_full_page(ring->page_pool, cb->priv,
3259 						false);
3260 	}
3261 	memset(cb, 0, sizeof(*cb));
3262 }
3263 
3264 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
3265 {
3266 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
3267 			       cb->length, ring_to_dma_dir(ring));
3268 
3269 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
3270 		return -EIO;
3271 
3272 	return 0;
3273 }
3274 
3275 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
3276 			      struct hns3_desc_cb *cb)
3277 {
3278 	if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
3279 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
3280 				 ring_to_dma_dir(ring));
3281 	else if ((cb->type & DESC_TYPE_PAGE) && cb->length)
3282 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
3283 			       ring_to_dma_dir(ring));
3284 	else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD |
3285 			     DESC_TYPE_SGL_SKB))
3286 		hns3_tx_spare_reclaim_cb(ring, cb);
3287 }
3288 
3289 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
3290 {
3291 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3292 	ring->desc[i].addr = 0;
3293 	ring->desc_cb[i].refill = 0;
3294 }
3295 
3296 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
3297 				    int budget)
3298 {
3299 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
3300 
3301 	if (!ring->desc_cb[i].dma)
3302 		return;
3303 
3304 	hns3_buffer_detach(ring, i);
3305 	hns3_free_buffer(ring, cb, budget);
3306 }
3307 
3308 static void hns3_free_buffers(struct hns3_enet_ring *ring)
3309 {
3310 	int i;
3311 
3312 	for (i = 0; i < ring->desc_num; i++)
3313 		hns3_free_buffer_detach(ring, i, 0);
3314 }
3315 
3316 /* free desc along with its attached buffer */
3317 static void hns3_free_desc(struct hns3_enet_ring *ring)
3318 {
3319 	int size = ring->desc_num * sizeof(ring->desc[0]);
3320 
3321 	hns3_free_buffers(ring);
3322 
3323 	if (ring->desc) {
3324 		dma_free_coherent(ring_to_dev(ring), size,
3325 				  ring->desc, ring->desc_dma_addr);
3326 		ring->desc = NULL;
3327 	}
3328 }
3329 
3330 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
3331 {
3332 	int size = ring->desc_num * sizeof(ring->desc[0]);
3333 
3334 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
3335 					&ring->desc_dma_addr, GFP_KERNEL);
3336 	if (!ring->desc)
3337 		return -ENOMEM;
3338 
3339 	return 0;
3340 }
3341 
3342 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
3343 				   struct hns3_desc_cb *cb)
3344 {
3345 	int ret;
3346 
3347 	ret = hns3_alloc_buffer(ring, cb);
3348 	if (ret || ring->page_pool)
3349 		goto out;
3350 
3351 	ret = hns3_map_buffer(ring, cb);
3352 	if (ret)
3353 		goto out_with_buf;
3354 
3355 	return 0;
3356 
3357 out_with_buf:
3358 	hns3_free_buffer(ring, cb, 0);
3359 out:
3360 	return ret;
3361 }
3362 
3363 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
3364 {
3365 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
3366 
3367 	if (ret)
3368 		return ret;
3369 
3370 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3371 					 ring->desc_cb[i].page_offset);
3372 	ring->desc_cb[i].refill = 1;
3373 
3374 	return 0;
3375 }
3376 
3377 /* Allocate memory for raw pkg, and map with dma */
3378 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
3379 {
3380 	int i, j, ret;
3381 
3382 	for (i = 0; i < ring->desc_num; i++) {
3383 		ret = hns3_alloc_and_attach_buffer(ring, i);
3384 		if (ret)
3385 			goto out_buffer_fail;
3386 	}
3387 
3388 	return 0;
3389 
3390 out_buffer_fail:
3391 	for (j = i - 1; j >= 0; j--)
3392 		hns3_free_buffer_detach(ring, j, 0);
3393 	return ret;
3394 }
3395 
3396 /* detach a in-used buffer and replace with a reserved one */
3397 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
3398 				struct hns3_desc_cb *res_cb)
3399 {
3400 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3401 	ring->desc_cb[i] = *res_cb;
3402 	ring->desc_cb[i].refill = 1;
3403 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3404 					 ring->desc_cb[i].page_offset);
3405 	ring->desc[i].rx.bd_base_info = 0;
3406 }
3407 
3408 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
3409 {
3410 	ring->desc_cb[i].reuse_flag = 0;
3411 	ring->desc_cb[i].refill = 1;
3412 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3413 					 ring->desc_cb[i].page_offset);
3414 	ring->desc[i].rx.bd_base_info = 0;
3415 
3416 	dma_sync_single_for_device(ring_to_dev(ring),
3417 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
3418 			hns3_buf_size(ring),
3419 			DMA_FROM_DEVICE);
3420 }
3421 
3422 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
3423 				  int *bytes, int *pkts, int budget)
3424 {
3425 	/* pair with ring->last_to_use update in hns3_tx_doorbell(),
3426 	 * smp_store_release() is not used in hns3_tx_doorbell() because
3427 	 * the doorbell operation already have the needed barrier operation.
3428 	 */
3429 	int ltu = smp_load_acquire(&ring->last_to_use);
3430 	int ntc = ring->next_to_clean;
3431 	struct hns3_desc_cb *desc_cb;
3432 	bool reclaimed = false;
3433 	struct hns3_desc *desc;
3434 
3435 	while (ltu != ntc) {
3436 		desc = &ring->desc[ntc];
3437 
3438 		if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
3439 				BIT(HNS3_TXD_VLD_B))
3440 			break;
3441 
3442 		desc_cb = &ring->desc_cb[ntc];
3443 
3444 		if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL |
3445 				     DESC_TYPE_BOUNCE_HEAD |
3446 				     DESC_TYPE_SGL_SKB)) {
3447 			(*pkts)++;
3448 			(*bytes) += desc_cb->send_bytes;
3449 		}
3450 
3451 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
3452 		hns3_free_buffer_detach(ring, ntc, budget);
3453 
3454 		if (++ntc == ring->desc_num)
3455 			ntc = 0;
3456 
3457 		/* Issue prefetch for next Tx descriptor */
3458 		prefetch(&ring->desc_cb[ntc]);
3459 		reclaimed = true;
3460 	}
3461 
3462 	if (unlikely(!reclaimed))
3463 		return false;
3464 
3465 	/* This smp_store_release() pairs with smp_load_acquire() in
3466 	 * ring_space called by hns3_nic_net_xmit.
3467 	 */
3468 	smp_store_release(&ring->next_to_clean, ntc);
3469 
3470 	hns3_tx_spare_update(ring);
3471 
3472 	return true;
3473 }
3474 
3475 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
3476 {
3477 	struct net_device *netdev = ring_to_netdev(ring);
3478 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3479 	struct netdev_queue *dev_queue;
3480 	int bytes, pkts;
3481 
3482 	bytes = 0;
3483 	pkts = 0;
3484 
3485 	if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
3486 		return;
3487 
3488 	ring->tqp_vector->tx_group.total_bytes += bytes;
3489 	ring->tqp_vector->tx_group.total_packets += pkts;
3490 
3491 	u64_stats_update_begin(&ring->syncp);
3492 	ring->stats.tx_bytes += bytes;
3493 	ring->stats.tx_pkts += pkts;
3494 	u64_stats_update_end(&ring->syncp);
3495 
3496 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
3497 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
3498 
3499 	if (unlikely(netif_carrier_ok(netdev) &&
3500 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
3501 		/* Make sure that anybody stopping the queue after this
3502 		 * sees the new next_to_clean.
3503 		 */
3504 		smp_mb();
3505 		if (netif_tx_queue_stopped(dev_queue) &&
3506 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
3507 			netif_tx_wake_queue(dev_queue);
3508 			ring->stats.restart_queue++;
3509 		}
3510 	}
3511 }
3512 
3513 static int hns3_desc_unused(struct hns3_enet_ring *ring)
3514 {
3515 	int ntc = ring->next_to_clean;
3516 	int ntu = ring->next_to_use;
3517 
3518 	if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill))
3519 		return ring->desc_num;
3520 
3521 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
3522 }
3523 
3524 /* Return true if there is any allocation failure */
3525 static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
3526 				      int cleand_count)
3527 {
3528 	struct hns3_desc_cb *desc_cb;
3529 	struct hns3_desc_cb res_cbs;
3530 	int i, ret;
3531 
3532 	for (i = 0; i < cleand_count; i++) {
3533 		desc_cb = &ring->desc_cb[ring->next_to_use];
3534 		if (desc_cb->reuse_flag) {
3535 			hns3_ring_stats_update(ring, reuse_pg_cnt);
3536 
3537 			hns3_reuse_buffer(ring, ring->next_to_use);
3538 		} else {
3539 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
3540 			if (ret) {
3541 				hns3_ring_stats_update(ring, sw_err_cnt);
3542 
3543 				hns3_rl_err(ring_to_netdev(ring),
3544 					    "alloc rx buffer failed: %d\n",
3545 					    ret);
3546 
3547 				writel(i, ring->tqp->io_base +
3548 				       HNS3_RING_RX_RING_HEAD_REG);
3549 				return true;
3550 			}
3551 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
3552 
3553 			hns3_ring_stats_update(ring, non_reuse_pg);
3554 		}
3555 
3556 		ring_ptr_move_fw(ring, next_to_use);
3557 	}
3558 
3559 	writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
3560 	return false;
3561 }
3562 
3563 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
3564 {
3565 	return page_count(cb->priv) == cb->pagecnt_bias;
3566 }
3567 
3568 static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i,
3569 				    struct hns3_enet_ring *ring,
3570 				    int pull_len,
3571 				    struct hns3_desc_cb *desc_cb)
3572 {
3573 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3574 	u32 frag_offset = desc_cb->page_offset + pull_len;
3575 	int size = le16_to_cpu(desc->rx.size);
3576 	u32 frag_size = size - pull_len;
3577 	void *frag = napi_alloc_frag(frag_size);
3578 
3579 	if (unlikely(!frag)) {
3580 		hns3_ring_stats_update(ring, frag_alloc_err);
3581 
3582 		hns3_rl_err(ring_to_netdev(ring),
3583 			    "failed to allocate rx frag\n");
3584 		return -ENOMEM;
3585 	}
3586 
3587 	desc_cb->reuse_flag = 1;
3588 	memcpy(frag, desc_cb->buf + frag_offset, frag_size);
3589 	skb_add_rx_frag(skb, i, virt_to_page(frag),
3590 			offset_in_page(frag), frag_size, frag_size);
3591 
3592 	hns3_ring_stats_update(ring, frag_alloc);
3593 	return 0;
3594 }
3595 
3596 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
3597 				struct hns3_enet_ring *ring, int pull_len,
3598 				struct hns3_desc_cb *desc_cb)
3599 {
3600 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3601 	u32 frag_offset = desc_cb->page_offset + pull_len;
3602 	int size = le16_to_cpu(desc->rx.size);
3603 	u32 truesize = hns3_buf_size(ring);
3604 	u32 frag_size = size - pull_len;
3605 	int ret = 0;
3606 	bool reused;
3607 
3608 	if (ring->page_pool) {
3609 		skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3610 				frag_size, truesize);
3611 		return;
3612 	}
3613 
3614 	/* Avoid re-using remote or pfmem page */
3615 	if (unlikely(!dev_page_is_reusable(desc_cb->priv)))
3616 		goto out;
3617 
3618 	reused = hns3_can_reuse_page(desc_cb);
3619 
3620 	/* Rx page can be reused when:
3621 	 * 1. Rx page is only owned by the driver when page_offset
3622 	 *    is zero, which means 0 @ truesize will be used by
3623 	 *    stack after skb_add_rx_frag() is called, and the rest
3624 	 *    of rx page can be reused by driver.
3625 	 * Or
3626 	 * 2. Rx page is only owned by the driver when page_offset
3627 	 *    is non-zero, which means page_offset @ truesize will
3628 	 *    be used by stack after skb_add_rx_frag() is called,
3629 	 *    and 0 @ truesize can be reused by driver.
3630 	 */
3631 	if ((!desc_cb->page_offset && reused) ||
3632 	    ((desc_cb->page_offset + truesize + truesize) <=
3633 	     hns3_page_size(ring) && desc_cb->page_offset)) {
3634 		desc_cb->page_offset += truesize;
3635 		desc_cb->reuse_flag = 1;
3636 	} else if (desc_cb->page_offset && reused) {
3637 		desc_cb->page_offset = 0;
3638 		desc_cb->reuse_flag = 1;
3639 	} else if (frag_size <= ring->rx_copybreak) {
3640 		ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb);
3641 		if (ret)
3642 			goto out;
3643 	}
3644 
3645 out:
3646 	desc_cb->pagecnt_bias--;
3647 
3648 	if (unlikely(!desc_cb->pagecnt_bias)) {
3649 		page_ref_add(desc_cb->priv, USHRT_MAX);
3650 		desc_cb->pagecnt_bias = USHRT_MAX;
3651 	}
3652 
3653 	skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3654 			frag_size, truesize);
3655 
3656 	if (unlikely(!desc_cb->reuse_flag))
3657 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
3658 }
3659 
3660 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
3661 {
3662 	__be16 type = skb->protocol;
3663 	struct tcphdr *th;
3664 	int depth = 0;
3665 
3666 	while (eth_type_vlan(type)) {
3667 		struct vlan_hdr *vh;
3668 
3669 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
3670 			return -EFAULT;
3671 
3672 		vh = (struct vlan_hdr *)(skb->data + depth);
3673 		type = vh->h_vlan_encapsulated_proto;
3674 		depth += VLAN_HLEN;
3675 	}
3676 
3677 	skb_set_network_header(skb, depth);
3678 
3679 	if (type == htons(ETH_P_IP)) {
3680 		const struct iphdr *iph = ip_hdr(skb);
3681 
3682 		depth += sizeof(struct iphdr);
3683 		skb_set_transport_header(skb, depth);
3684 		th = tcp_hdr(skb);
3685 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
3686 					  iph->daddr, 0);
3687 	} else if (type == htons(ETH_P_IPV6)) {
3688 		const struct ipv6hdr *iph = ipv6_hdr(skb);
3689 
3690 		depth += sizeof(struct ipv6hdr);
3691 		skb_set_transport_header(skb, depth);
3692 		th = tcp_hdr(skb);
3693 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
3694 					  &iph->daddr, 0);
3695 	} else {
3696 		hns3_rl_err(skb->dev,
3697 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
3698 			    be16_to_cpu(type), depth);
3699 		return -EFAULT;
3700 	}
3701 
3702 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3703 	if (th->cwr)
3704 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3705 
3706 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
3707 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
3708 
3709 	skb->csum_start = (unsigned char *)th - skb->head;
3710 	skb->csum_offset = offsetof(struct tcphdr, check);
3711 	skb->ip_summed = CHECKSUM_PARTIAL;
3712 
3713 	trace_hns3_gro(skb);
3714 
3715 	return 0;
3716 }
3717 
3718 static bool hns3_checksum_complete(struct hns3_enet_ring *ring,
3719 				   struct sk_buff *skb, u32 ptype, u16 csum)
3720 {
3721 	if (ptype == HNS3_INVALID_PTYPE ||
3722 	    hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE)
3723 		return false;
3724 
3725 	hns3_ring_stats_update(ring, csum_complete);
3726 	skb->ip_summed = CHECKSUM_COMPLETE;
3727 	skb->csum = csum_unfold((__force __sum16)csum);
3728 
3729 	return true;
3730 }
3731 
3732 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info,
3733 				u32 ol_info, u32 ptype)
3734 {
3735 	int l3_type, l4_type;
3736 	int ol4_type;
3737 
3738 	if (ptype != HNS3_INVALID_PTYPE) {
3739 		skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level;
3740 		skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed;
3741 
3742 		return;
3743 	}
3744 
3745 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3746 				   HNS3_RXD_OL4ID_S);
3747 	switch (ol4_type) {
3748 	case HNS3_OL4_TYPE_MAC_IN_UDP:
3749 	case HNS3_OL4_TYPE_NVGRE:
3750 		skb->csum_level = 1;
3751 		fallthrough;
3752 	case HNS3_OL4_TYPE_NO_TUN:
3753 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3754 					  HNS3_RXD_L3ID_S);
3755 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3756 					  HNS3_RXD_L4ID_S);
3757 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3758 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3759 		     l3_type == HNS3_L3_TYPE_IPV6) &&
3760 		    (l4_type == HNS3_L4_TYPE_UDP ||
3761 		     l4_type == HNS3_L4_TYPE_TCP ||
3762 		     l4_type == HNS3_L4_TYPE_SCTP))
3763 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3764 		break;
3765 	default:
3766 		break;
3767 	}
3768 }
3769 
3770 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
3771 			     u32 l234info, u32 bd_base_info, u32 ol_info,
3772 			     u16 csum)
3773 {
3774 	struct net_device *netdev = ring_to_netdev(ring);
3775 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3776 	u32 ptype = HNS3_INVALID_PTYPE;
3777 
3778 	skb->ip_summed = CHECKSUM_NONE;
3779 
3780 	skb_checksum_none_assert(skb);
3781 
3782 	if (!(netdev->features & NETIF_F_RXCSUM))
3783 		return;
3784 
3785 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state))
3786 		ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3787 					HNS3_RXD_PTYPE_S);
3788 
3789 	if (hns3_checksum_complete(ring, skb, ptype, csum))
3790 		return;
3791 
3792 	/* check if hardware has done checksum */
3793 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3794 		return;
3795 
3796 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3797 				 BIT(HNS3_RXD_OL3E_B) |
3798 				 BIT(HNS3_RXD_OL4E_B)))) {
3799 		hns3_ring_stats_update(ring, l3l4_csum_err);
3800 
3801 		return;
3802 	}
3803 
3804 	hns3_rx_handle_csum(skb, l234info, ol_info, ptype);
3805 }
3806 
3807 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3808 {
3809 	if (skb_has_frag_list(skb))
3810 		napi_gro_flush(&ring->tqp_vector->napi, false);
3811 
3812 	napi_gro_receive(&ring->tqp_vector->napi, skb);
3813 }
3814 
3815 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3816 				struct hns3_desc *desc, u32 l234info,
3817 				u16 *vlan_tag)
3818 {
3819 	struct hnae3_handle *handle = ring->tqp->handle;
3820 	struct pci_dev *pdev = ring->tqp->handle->pdev;
3821 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3822 
3823 	if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3824 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3825 		if (!(*vlan_tag & VLAN_VID_MASK))
3826 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3827 
3828 		return (*vlan_tag != 0);
3829 	}
3830 
3831 #define HNS3_STRP_OUTER_VLAN	0x1
3832 #define HNS3_STRP_INNER_VLAN	0x2
3833 #define HNS3_STRP_BOTH		0x3
3834 
3835 	/* Hardware always insert VLAN tag into RX descriptor when
3836 	 * remove the tag from packet, driver needs to determine
3837 	 * reporting which tag to stack.
3838 	 */
3839 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3840 				HNS3_RXD_STRP_TAGP_S)) {
3841 	case HNS3_STRP_OUTER_VLAN:
3842 		if (handle->port_base_vlan_state !=
3843 				HNAE3_PORT_BASE_VLAN_DISABLE)
3844 			return false;
3845 
3846 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3847 		return true;
3848 	case HNS3_STRP_INNER_VLAN:
3849 		if (handle->port_base_vlan_state !=
3850 				HNAE3_PORT_BASE_VLAN_DISABLE)
3851 			return false;
3852 
3853 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3854 		return true;
3855 	case HNS3_STRP_BOTH:
3856 		if (handle->port_base_vlan_state ==
3857 				HNAE3_PORT_BASE_VLAN_DISABLE)
3858 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3859 		else
3860 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3861 
3862 		return true;
3863 	default:
3864 		return false;
3865 	}
3866 }
3867 
3868 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
3869 {
3870 	ring->desc[ring->next_to_clean].rx.bd_base_info &=
3871 		cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
3872 	ring->desc_cb[ring->next_to_clean].refill = 0;
3873 	ring->next_to_clean += 1;
3874 
3875 	if (unlikely(ring->next_to_clean == ring->desc_num))
3876 		ring->next_to_clean = 0;
3877 }
3878 
3879 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
3880 			  unsigned char *va)
3881 {
3882 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
3883 	struct net_device *netdev = ring_to_netdev(ring);
3884 	struct sk_buff *skb;
3885 
3886 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
3887 	skb = ring->skb;
3888 	if (unlikely(!skb)) {
3889 		hns3_rl_err(netdev, "alloc rx skb fail\n");
3890 		hns3_ring_stats_update(ring, sw_err_cnt);
3891 
3892 		return -ENOMEM;
3893 	}
3894 
3895 	trace_hns3_rx_desc(ring);
3896 	prefetchw(skb->data);
3897 
3898 	ring->pending_buf = 1;
3899 	ring->frag_num = 0;
3900 	ring->tail_skb = NULL;
3901 	if (length <= HNS3_RX_HEAD_SIZE) {
3902 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
3903 
3904 		/* We can reuse buffer as-is, just make sure it is reusable */
3905 		if (dev_page_is_reusable(desc_cb->priv))
3906 			desc_cb->reuse_flag = 1;
3907 		else if (desc_cb->type & DESC_TYPE_PP_FRAG)
3908 			page_pool_put_full_page(ring->page_pool, desc_cb->priv,
3909 						false);
3910 		else /* This page cannot be reused so discard it */
3911 			__page_frag_cache_drain(desc_cb->priv,
3912 						desc_cb->pagecnt_bias);
3913 
3914 		hns3_rx_ring_move_fw(ring);
3915 		return 0;
3916 	}
3917 
3918 	if (ring->page_pool)
3919 		skb_mark_for_recycle(skb);
3920 
3921 	hns3_ring_stats_update(ring, seg_pkt_cnt);
3922 
3923 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
3924 	__skb_put(skb, ring->pull_len);
3925 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
3926 			    desc_cb);
3927 	hns3_rx_ring_move_fw(ring);
3928 
3929 	return 0;
3930 }
3931 
3932 static int hns3_add_frag(struct hns3_enet_ring *ring)
3933 {
3934 	struct sk_buff *skb = ring->skb;
3935 	struct sk_buff *head_skb = skb;
3936 	struct sk_buff *new_skb;
3937 	struct hns3_desc_cb *desc_cb;
3938 	struct hns3_desc *desc;
3939 	u32 bd_base_info;
3940 
3941 	do {
3942 		desc = &ring->desc[ring->next_to_clean];
3943 		desc_cb = &ring->desc_cb[ring->next_to_clean];
3944 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3945 		/* make sure HW write desc complete */
3946 		dma_rmb();
3947 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
3948 			return -ENXIO;
3949 
3950 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
3951 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
3952 			if (unlikely(!new_skb)) {
3953 				hns3_rl_err(ring_to_netdev(ring),
3954 					    "alloc rx fraglist skb fail\n");
3955 				return -ENXIO;
3956 			}
3957 
3958 			if (ring->page_pool)
3959 				skb_mark_for_recycle(new_skb);
3960 
3961 			ring->frag_num = 0;
3962 
3963 			if (ring->tail_skb) {
3964 				ring->tail_skb->next = new_skb;
3965 				ring->tail_skb = new_skb;
3966 			} else {
3967 				skb_shinfo(skb)->frag_list = new_skb;
3968 				ring->tail_skb = new_skb;
3969 			}
3970 		}
3971 
3972 		if (ring->tail_skb) {
3973 			head_skb->truesize += hns3_buf_size(ring);
3974 			head_skb->data_len += le16_to_cpu(desc->rx.size);
3975 			head_skb->len += le16_to_cpu(desc->rx.size);
3976 			skb = ring->tail_skb;
3977 		}
3978 
3979 		dma_sync_single_for_cpu(ring_to_dev(ring),
3980 				desc_cb->dma + desc_cb->page_offset,
3981 				hns3_buf_size(ring),
3982 				DMA_FROM_DEVICE);
3983 
3984 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3985 		trace_hns3_rx_desc(ring);
3986 		hns3_rx_ring_move_fw(ring);
3987 		ring->pending_buf++;
3988 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3989 
3990 	return 0;
3991 }
3992 
3993 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3994 				     struct sk_buff *skb, u32 l234info,
3995 				     u32 bd_base_info, u32 ol_info, u16 csum)
3996 {
3997 	struct net_device *netdev = ring_to_netdev(ring);
3998 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3999 	u32 l3_type;
4000 
4001 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
4002 						    HNS3_RXD_GRO_SIZE_M,
4003 						    HNS3_RXD_GRO_SIZE_S);
4004 	/* if there is no HW GRO, do not set gro params */
4005 	if (!skb_shinfo(skb)->gso_size) {
4006 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info,
4007 				 csum);
4008 		return 0;
4009 	}
4010 
4011 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
4012 						  HNS3_RXD_GRO_COUNT_M,
4013 						  HNS3_RXD_GRO_COUNT_S);
4014 
4015 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4016 		u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4017 					    HNS3_RXD_PTYPE_S);
4018 
4019 		l3_type = hns3_rx_ptype_tbl[ptype].l3_type;
4020 	} else {
4021 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4022 					  HNS3_RXD_L3ID_S);
4023 	}
4024 
4025 	if (l3_type == HNS3_L3_TYPE_IPV4)
4026 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
4027 	else if (l3_type == HNS3_L3_TYPE_IPV6)
4028 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
4029 	else
4030 		return -EFAULT;
4031 
4032 	return  hns3_gro_complete(skb, l234info);
4033 }
4034 
4035 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
4036 				     struct sk_buff *skb, u32 rss_hash)
4037 {
4038 	struct hnae3_handle *handle = ring->tqp->handle;
4039 	enum pkt_hash_types rss_type;
4040 
4041 	if (rss_hash)
4042 		rss_type = handle->kinfo.rss_type;
4043 	else
4044 		rss_type = PKT_HASH_TYPE_NONE;
4045 
4046 	skb_set_hash(skb, rss_hash, rss_type);
4047 }
4048 
4049 static void hns3_handle_rx_ts_info(struct net_device *netdev,
4050 				   struct hns3_desc *desc, struct sk_buff *skb,
4051 				   u32 bd_base_info)
4052 {
4053 	if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) {
4054 		struct hnae3_handle *h = hns3_get_handle(netdev);
4055 		u32 nsec = le32_to_cpu(desc->ts_nsec);
4056 		u32 sec = le32_to_cpu(desc->ts_sec);
4057 
4058 		if (h->ae_algo->ops->get_rx_hwts)
4059 			h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec);
4060 	}
4061 }
4062 
4063 static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring,
4064 				    struct hns3_desc *desc, struct sk_buff *skb,
4065 				    u32 l234info)
4066 {
4067 	struct net_device *netdev = ring_to_netdev(ring);
4068 
4069 	/* Based on hw strategy, the tag offloaded will be stored at
4070 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
4071 	 * in one layer tag case.
4072 	 */
4073 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
4074 		u16 vlan_tag;
4075 
4076 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
4077 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
4078 					       vlan_tag);
4079 	}
4080 }
4081 
4082 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
4083 {
4084 	struct net_device *netdev = ring_to_netdev(ring);
4085 	enum hns3_pkt_l2t_type l2_frame_type;
4086 	u32 bd_base_info, l234info, ol_info;
4087 	struct hns3_desc *desc;
4088 	unsigned int len;
4089 	int pre_ntc, ret;
4090 	u16 csum;
4091 
4092 	/* bdinfo handled below is only valid on the last BD of the
4093 	 * current packet, and ring->next_to_clean indicates the first
4094 	 * descriptor of next packet, so need - 1 below.
4095 	 */
4096 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
4097 					(ring->desc_num - 1);
4098 	desc = &ring->desc[pre_ntc];
4099 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4100 	l234info = le32_to_cpu(desc->rx.l234_info);
4101 	ol_info = le32_to_cpu(desc->rx.ol_info);
4102 	csum = le16_to_cpu(desc->csum);
4103 
4104 	hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info);
4105 
4106 	hns3_handle_rx_vlan_tag(ring, desc, skb, l234info);
4107 
4108 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
4109 				  BIT(HNS3_RXD_L2E_B))))) {
4110 		u64_stats_update_begin(&ring->syncp);
4111 		if (l234info & BIT(HNS3_RXD_L2E_B))
4112 			ring->stats.l2_err++;
4113 		else
4114 			ring->stats.err_pkt_len++;
4115 		u64_stats_update_end(&ring->syncp);
4116 
4117 		return -EFAULT;
4118 	}
4119 
4120 	len = skb->len;
4121 
4122 	/* Do update ip stack process */
4123 	skb->protocol = eth_type_trans(skb, netdev);
4124 
4125 	/* This is needed in order to enable forwarding support */
4126 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
4127 					bd_base_info, ol_info, csum);
4128 	if (unlikely(ret)) {
4129 		hns3_ring_stats_update(ring, rx_err_cnt);
4130 		return ret;
4131 	}
4132 
4133 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
4134 					HNS3_RXD_DMAC_S);
4135 
4136 	u64_stats_update_begin(&ring->syncp);
4137 	ring->stats.rx_pkts++;
4138 	ring->stats.rx_bytes += len;
4139 
4140 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
4141 		ring->stats.rx_multicast++;
4142 
4143 	u64_stats_update_end(&ring->syncp);
4144 
4145 	ring->tqp_vector->rx_group.total_bytes += len;
4146 
4147 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
4148 	return 0;
4149 }
4150 
4151 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
4152 {
4153 	struct sk_buff *skb = ring->skb;
4154 	struct hns3_desc_cb *desc_cb;
4155 	struct hns3_desc *desc;
4156 	unsigned int length;
4157 	u32 bd_base_info;
4158 	int ret;
4159 
4160 	desc = &ring->desc[ring->next_to_clean];
4161 	desc_cb = &ring->desc_cb[ring->next_to_clean];
4162 
4163 	prefetch(desc);
4164 
4165 	if (!skb) {
4166 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4167 		/* Check valid BD */
4168 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
4169 			return -ENXIO;
4170 
4171 		dma_rmb();
4172 		length = le16_to_cpu(desc->rx.size);
4173 
4174 		ring->va = desc_cb->buf + desc_cb->page_offset;
4175 
4176 		dma_sync_single_for_cpu(ring_to_dev(ring),
4177 				desc_cb->dma + desc_cb->page_offset,
4178 				hns3_buf_size(ring),
4179 				DMA_FROM_DEVICE);
4180 
4181 		/* Prefetch first cache line of first page.
4182 		 * Idea is to cache few bytes of the header of the packet.
4183 		 * Our L1 Cache line size is 64B so need to prefetch twice to make
4184 		 * it 128B. But in actual we can have greater size of caches with
4185 		 * 128B Level 1 cache lines. In such a case, single fetch would
4186 		 * suffice to cache in the relevant part of the header.
4187 		 */
4188 		net_prefetch(ring->va);
4189 
4190 		ret = hns3_alloc_skb(ring, length, ring->va);
4191 		skb = ring->skb;
4192 
4193 		if (ret < 0) /* alloc buffer fail */
4194 			return ret;
4195 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
4196 			ret = hns3_add_frag(ring);
4197 			if (ret)
4198 				return ret;
4199 		}
4200 	} else {
4201 		ret = hns3_add_frag(ring);
4202 		if (ret)
4203 			return ret;
4204 	}
4205 
4206 	/* As the head data may be changed when GRO enable, copy
4207 	 * the head data in after other data rx completed
4208 	 */
4209 	if (skb->len > HNS3_RX_HEAD_SIZE)
4210 		memcpy(skb->data, ring->va,
4211 		       ALIGN(ring->pull_len, sizeof(long)));
4212 
4213 	ret = hns3_handle_bdinfo(ring, skb);
4214 	if (unlikely(ret)) {
4215 		dev_kfree_skb_any(skb);
4216 		return ret;
4217 	}
4218 
4219 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
4220 	return 0;
4221 }
4222 
4223 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
4224 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
4225 {
4226 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
4227 	int unused_count = hns3_desc_unused(ring);
4228 	bool failure = false;
4229 	int recv_pkts = 0;
4230 	int err;
4231 
4232 	unused_count -= ring->pending_buf;
4233 
4234 	while (recv_pkts < budget) {
4235 		/* Reuse or realloc buffers */
4236 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
4237 			failure = failure ||
4238 				hns3_nic_alloc_rx_buffers(ring, unused_count);
4239 			unused_count = 0;
4240 		}
4241 
4242 		/* Poll one pkt */
4243 		err = hns3_handle_rx_bd(ring);
4244 		/* Do not get FE for the packet or failed to alloc skb */
4245 		if (unlikely(!ring->skb || err == -ENXIO)) {
4246 			goto out;
4247 		} else if (likely(!err)) {
4248 			rx_fn(ring, ring->skb);
4249 			recv_pkts++;
4250 		}
4251 
4252 		unused_count += ring->pending_buf;
4253 		ring->skb = NULL;
4254 		ring->pending_buf = 0;
4255 	}
4256 
4257 out:
4258 	/* sync head pointer before exiting, since hardware will calculate
4259 	 * FBD number with head pointer
4260 	 */
4261 	if (unused_count > 0)
4262 		failure = failure ||
4263 			  hns3_nic_alloc_rx_buffers(ring, unused_count);
4264 
4265 	return failure ? budget : recv_pkts;
4266 }
4267 
4268 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4269 {
4270 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
4271 	struct dim_sample sample = {};
4272 
4273 	if (!rx_group->coal.adapt_enable)
4274 		return;
4275 
4276 	dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets,
4277 			  rx_group->total_bytes, &sample);
4278 	net_dim(&rx_group->dim, sample);
4279 }
4280 
4281 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4282 {
4283 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
4284 	struct dim_sample sample = {};
4285 
4286 	if (!tx_group->coal.adapt_enable)
4287 		return;
4288 
4289 	dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets,
4290 			  tx_group->total_bytes, &sample);
4291 	net_dim(&tx_group->dim, sample);
4292 }
4293 
4294 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
4295 {
4296 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
4297 	struct hns3_enet_ring *ring;
4298 	int rx_pkt_total = 0;
4299 
4300 	struct hns3_enet_tqp_vector *tqp_vector =
4301 		container_of(napi, struct hns3_enet_tqp_vector, napi);
4302 	bool clean_complete = true;
4303 	int rx_budget = budget;
4304 
4305 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4306 		napi_complete(napi);
4307 		return 0;
4308 	}
4309 
4310 	/* Since the actual Tx work is minimal, we can give the Tx a larger
4311 	 * budget and be more aggressive about cleaning up the Tx descriptors.
4312 	 */
4313 	hns3_for_each_ring(ring, tqp_vector->tx_group)
4314 		hns3_clean_tx_ring(ring, budget);
4315 
4316 	/* make sure rx ring budget not smaller than 1 */
4317 	if (tqp_vector->num_tqps > 1)
4318 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
4319 
4320 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
4321 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
4322 						    hns3_rx_skb);
4323 		if (rx_cleaned >= rx_budget)
4324 			clean_complete = false;
4325 
4326 		rx_pkt_total += rx_cleaned;
4327 	}
4328 
4329 	tqp_vector->rx_group.total_packets += rx_pkt_total;
4330 
4331 	if (!clean_complete)
4332 		return budget;
4333 
4334 	if (napi_complete(napi) &&
4335 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4336 		hns3_update_rx_int_coalesce(tqp_vector);
4337 		hns3_update_tx_int_coalesce(tqp_vector);
4338 
4339 		hns3_mask_vector_irq(tqp_vector, 1);
4340 	}
4341 
4342 	return rx_pkt_total;
4343 }
4344 
4345 static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4346 				  struct hnae3_ring_chain_node **head,
4347 				  bool is_tx)
4348 {
4349 	u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX;
4350 	u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX;
4351 	struct hnae3_ring_chain_node *cur_chain = *head;
4352 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4353 	struct hnae3_ring_chain_node *chain;
4354 	struct hns3_enet_ring *ring;
4355 
4356 	ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring;
4357 
4358 	if (cur_chain) {
4359 		while (cur_chain->next)
4360 			cur_chain = cur_chain->next;
4361 	}
4362 
4363 	while (ring) {
4364 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
4365 		if (!chain)
4366 			return -ENOMEM;
4367 		if (cur_chain)
4368 			cur_chain->next = chain;
4369 		else
4370 			*head = chain;
4371 		chain->tqp_index = ring->tqp->tqp_index;
4372 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4373 				bit_value);
4374 		hnae3_set_field(chain->int_gl_idx,
4375 				HNAE3_RING_GL_IDX_M,
4376 				HNAE3_RING_GL_IDX_S, field_value);
4377 
4378 		cur_chain = chain;
4379 
4380 		ring = ring->next;
4381 	}
4382 
4383 	return 0;
4384 }
4385 
4386 static struct hnae3_ring_chain_node *
4387 hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector)
4388 {
4389 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4390 	struct hnae3_ring_chain_node *cur_chain = NULL;
4391 	struct hnae3_ring_chain_node *chain;
4392 
4393 	if (hns3_create_ring_chain(tqp_vector, &cur_chain, true))
4394 		goto err_free_chain;
4395 
4396 	if (hns3_create_ring_chain(tqp_vector, &cur_chain, false))
4397 		goto err_free_chain;
4398 
4399 	return cur_chain;
4400 
4401 err_free_chain:
4402 	while (cur_chain) {
4403 		chain = cur_chain->next;
4404 		devm_kfree(&pdev->dev, cur_chain);
4405 		cur_chain = chain;
4406 	}
4407 
4408 	return NULL;
4409 }
4410 
4411 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4412 					struct hnae3_ring_chain_node *head)
4413 {
4414 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4415 	struct hnae3_ring_chain_node *chain_tmp, *chain;
4416 
4417 	chain = head;
4418 
4419 	while (chain) {
4420 		chain_tmp = chain->next;
4421 		devm_kfree(&pdev->dev, chain);
4422 		chain = chain_tmp;
4423 	}
4424 }
4425 
4426 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
4427 				   struct hns3_enet_ring *ring)
4428 {
4429 	ring->next = group->ring;
4430 	group->ring = ring;
4431 
4432 	group->count++;
4433 }
4434 
4435 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
4436 {
4437 	struct pci_dev *pdev = priv->ae_handle->pdev;
4438 	struct hns3_enet_tqp_vector *tqp_vector;
4439 	int num_vectors = priv->vector_num;
4440 	int numa_node;
4441 	int vector_i;
4442 
4443 	numa_node = dev_to_node(&pdev->dev);
4444 
4445 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
4446 		tqp_vector = &priv->tqp_vector[vector_i];
4447 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
4448 				&tqp_vector->affinity_mask);
4449 	}
4450 }
4451 
4452 static void hns3_rx_dim_work(struct work_struct *work)
4453 {
4454 	struct dim *dim = container_of(work, struct dim, work);
4455 	struct hns3_enet_ring_group *group = container_of(dim,
4456 		struct hns3_enet_ring_group, dim);
4457 	struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4458 	struct dim_cq_moder cur_moder =
4459 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
4460 
4461 	hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec);
4462 	tqp_vector->rx_group.coal.int_gl = cur_moder.usec;
4463 
4464 	if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) {
4465 		hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts);
4466 		tqp_vector->rx_group.coal.int_ql = cur_moder.pkts;
4467 	}
4468 
4469 	dim->state = DIM_START_MEASURE;
4470 }
4471 
4472 static void hns3_tx_dim_work(struct work_struct *work)
4473 {
4474 	struct dim *dim = container_of(work, struct dim, work);
4475 	struct hns3_enet_ring_group *group = container_of(dim,
4476 		struct hns3_enet_ring_group, dim);
4477 	struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4478 	struct dim_cq_moder cur_moder =
4479 		net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
4480 
4481 	hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec);
4482 	tqp_vector->tx_group.coal.int_gl = cur_moder.usec;
4483 
4484 	if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) {
4485 		hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts);
4486 		tqp_vector->tx_group.coal.int_ql = cur_moder.pkts;
4487 	}
4488 
4489 	dim->state = DIM_START_MEASURE;
4490 }
4491 
4492 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector)
4493 {
4494 	INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work);
4495 	INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work);
4496 }
4497 
4498 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
4499 {
4500 	struct hnae3_handle *h = priv->ae_handle;
4501 	struct hns3_enet_tqp_vector *tqp_vector;
4502 	int ret;
4503 	int i;
4504 
4505 	hns3_nic_set_cpumask(priv);
4506 
4507 	for (i = 0; i < priv->vector_num; i++) {
4508 		tqp_vector = &priv->tqp_vector[i];
4509 		hns3_vector_coalesce_init_hw(tqp_vector, priv);
4510 		tqp_vector->num_tqps = 0;
4511 		hns3_nic_init_dim(tqp_vector);
4512 	}
4513 
4514 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4515 		u16 vector_i = i % priv->vector_num;
4516 		u16 tqp_num = h->kinfo.num_tqps;
4517 
4518 		tqp_vector = &priv->tqp_vector[vector_i];
4519 
4520 		hns3_add_ring_to_group(&tqp_vector->tx_group,
4521 				       &priv->ring[i]);
4522 
4523 		hns3_add_ring_to_group(&tqp_vector->rx_group,
4524 				       &priv->ring[i + tqp_num]);
4525 
4526 		priv->ring[i].tqp_vector = tqp_vector;
4527 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
4528 		tqp_vector->num_tqps++;
4529 	}
4530 
4531 	for (i = 0; i < priv->vector_num; i++) {
4532 		struct hnae3_ring_chain_node *vector_ring_chain;
4533 
4534 		tqp_vector = &priv->tqp_vector[i];
4535 
4536 		tqp_vector->rx_group.total_bytes = 0;
4537 		tqp_vector->rx_group.total_packets = 0;
4538 		tqp_vector->tx_group.total_bytes = 0;
4539 		tqp_vector->tx_group.total_packets = 0;
4540 		tqp_vector->handle = h;
4541 
4542 		vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4543 		if (!vector_ring_chain) {
4544 			ret = -ENOMEM;
4545 			goto map_ring_fail;
4546 		}
4547 
4548 		ret = h->ae_algo->ops->map_ring_to_vector(h,
4549 			tqp_vector->vector_irq, vector_ring_chain);
4550 
4551 		hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4552 
4553 		if (ret)
4554 			goto map_ring_fail;
4555 
4556 		netif_napi_add(priv->netdev, &tqp_vector->napi,
4557 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
4558 	}
4559 
4560 	return 0;
4561 
4562 map_ring_fail:
4563 	while (i--)
4564 		netif_napi_del(&priv->tqp_vector[i].napi);
4565 
4566 	return ret;
4567 }
4568 
4569 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
4570 {
4571 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
4572 	struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
4573 	struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
4574 
4575 	/* initialize the configuration for interrupt coalescing.
4576 	 * 1. GL (Interrupt Gap Limiter)
4577 	 * 2. RL (Interrupt Rate Limiter)
4578 	 * 3. QL (Interrupt Quantity Limiter)
4579 	 *
4580 	 * Default: enable interrupt coalescing self-adaptive and GL
4581 	 */
4582 	tx_coal->adapt_enable = 1;
4583 	rx_coal->adapt_enable = 1;
4584 
4585 	tx_coal->int_gl = HNS3_INT_GL_50K;
4586 	rx_coal->int_gl = HNS3_INT_GL_50K;
4587 
4588 	rx_coal->flow_level = HNS3_FLOW_LOW;
4589 	tx_coal->flow_level = HNS3_FLOW_LOW;
4590 
4591 	if (ae_dev->dev_specs.int_ql_max) {
4592 		tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4593 		rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4594 	}
4595 }
4596 
4597 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
4598 {
4599 	struct hnae3_handle *h = priv->ae_handle;
4600 	struct hns3_enet_tqp_vector *tqp_vector;
4601 	struct hnae3_vector_info *vector;
4602 	struct pci_dev *pdev = h->pdev;
4603 	u16 tqp_num = h->kinfo.num_tqps;
4604 	u16 vector_num;
4605 	int ret = 0;
4606 	u16 i;
4607 
4608 	/* RSS size, cpu online and vector_num should be the same */
4609 	/* Should consider 2p/4p later */
4610 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
4611 
4612 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
4613 			      GFP_KERNEL);
4614 	if (!vector)
4615 		return -ENOMEM;
4616 
4617 	/* save the actual available vector number */
4618 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
4619 
4620 	priv->vector_num = vector_num;
4621 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
4622 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
4623 			     GFP_KERNEL);
4624 	if (!priv->tqp_vector) {
4625 		ret = -ENOMEM;
4626 		goto out;
4627 	}
4628 
4629 	for (i = 0; i < priv->vector_num; i++) {
4630 		tqp_vector = &priv->tqp_vector[i];
4631 		tqp_vector->idx = i;
4632 		tqp_vector->mask_addr = vector[i].io_addr;
4633 		tqp_vector->vector_irq = vector[i].vector;
4634 		hns3_vector_coalesce_init(tqp_vector, priv);
4635 	}
4636 
4637 out:
4638 	devm_kfree(&pdev->dev, vector);
4639 	return ret;
4640 }
4641 
4642 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
4643 {
4644 	group->ring = NULL;
4645 	group->count = 0;
4646 }
4647 
4648 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
4649 {
4650 	struct hnae3_ring_chain_node *vector_ring_chain;
4651 	struct hnae3_handle *h = priv->ae_handle;
4652 	struct hns3_enet_tqp_vector *tqp_vector;
4653 	int i;
4654 
4655 	for (i = 0; i < priv->vector_num; i++) {
4656 		tqp_vector = &priv->tqp_vector[i];
4657 
4658 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
4659 			continue;
4660 
4661 		/* Since the mapping can be overwritten, when fail to get the
4662 		 * chain between vector and ring, we should go on to deal with
4663 		 * the remaining options.
4664 		 */
4665 		vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4666 		if (!vector_ring_chain)
4667 			dev_warn(priv->dev, "failed to get ring chain\n");
4668 
4669 		h->ae_algo->ops->unmap_ring_from_vector(h,
4670 			tqp_vector->vector_irq, vector_ring_chain);
4671 
4672 		hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4673 
4674 		hns3_clear_ring_group(&tqp_vector->rx_group);
4675 		hns3_clear_ring_group(&tqp_vector->tx_group);
4676 		netif_napi_del(&priv->tqp_vector[i].napi);
4677 	}
4678 }
4679 
4680 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
4681 {
4682 	struct hnae3_handle *h = priv->ae_handle;
4683 	struct pci_dev *pdev = h->pdev;
4684 	int i, ret;
4685 
4686 	for (i = 0; i < priv->vector_num; i++) {
4687 		struct hns3_enet_tqp_vector *tqp_vector;
4688 
4689 		tqp_vector = &priv->tqp_vector[i];
4690 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
4691 		if (ret)
4692 			return;
4693 	}
4694 
4695 	devm_kfree(&pdev->dev, priv->tqp_vector);
4696 }
4697 
4698 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
4699 			      unsigned int ring_type)
4700 {
4701 	int queue_num = priv->ae_handle->kinfo.num_tqps;
4702 	struct hns3_enet_ring *ring;
4703 	int desc_num;
4704 
4705 	if (ring_type == HNAE3_RING_TYPE_TX) {
4706 		ring = &priv->ring[q->tqp_index];
4707 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
4708 		ring->queue_index = q->tqp_index;
4709 		ring->tx_copybreak = priv->tx_copybreak;
4710 		ring->last_to_use = 0;
4711 	} else {
4712 		ring = &priv->ring[q->tqp_index + queue_num];
4713 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
4714 		ring->queue_index = q->tqp_index;
4715 		ring->rx_copybreak = priv->rx_copybreak;
4716 	}
4717 
4718 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
4719 
4720 	ring->tqp = q;
4721 	ring->desc = NULL;
4722 	ring->desc_cb = NULL;
4723 	ring->dev = priv->dev;
4724 	ring->desc_dma_addr = 0;
4725 	ring->buf_size = q->buf_size;
4726 	ring->desc_num = desc_num;
4727 	ring->next_to_use = 0;
4728 	ring->next_to_clean = 0;
4729 }
4730 
4731 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
4732 			       struct hns3_nic_priv *priv)
4733 {
4734 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
4735 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
4736 }
4737 
4738 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
4739 {
4740 	struct hnae3_handle *h = priv->ae_handle;
4741 	struct pci_dev *pdev = h->pdev;
4742 	int i;
4743 
4744 	priv->ring = devm_kzalloc(&pdev->dev,
4745 				  array3_size(h->kinfo.num_tqps,
4746 					      sizeof(*priv->ring), 2),
4747 				  GFP_KERNEL);
4748 	if (!priv->ring)
4749 		return -ENOMEM;
4750 
4751 	for (i = 0; i < h->kinfo.num_tqps; i++)
4752 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4753 
4754 	return 0;
4755 }
4756 
4757 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4758 {
4759 	if (!priv->ring)
4760 		return;
4761 
4762 	devm_kfree(priv->dev, priv->ring);
4763 	priv->ring = NULL;
4764 }
4765 
4766 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring)
4767 {
4768 	struct page_pool_params pp_params = {
4769 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_PAGE_FRAG |
4770 				PP_FLAG_DMA_SYNC_DEV,
4771 		.order = hns3_page_order(ring),
4772 		.pool_size = ring->desc_num * hns3_buf_size(ring) /
4773 				(PAGE_SIZE << hns3_page_order(ring)),
4774 		.nid = dev_to_node(ring_to_dev(ring)),
4775 		.dev = ring_to_dev(ring),
4776 		.dma_dir = DMA_FROM_DEVICE,
4777 		.offset = 0,
4778 		.max_len = PAGE_SIZE << hns3_page_order(ring),
4779 	};
4780 
4781 	ring->page_pool = page_pool_create(&pp_params);
4782 	if (IS_ERR(ring->page_pool)) {
4783 		dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n",
4784 			 PTR_ERR(ring->page_pool));
4785 		ring->page_pool = NULL;
4786 	}
4787 }
4788 
4789 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4790 {
4791 	int ret;
4792 
4793 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
4794 		return -EINVAL;
4795 
4796 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
4797 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
4798 	if (!ring->desc_cb) {
4799 		ret = -ENOMEM;
4800 		goto out;
4801 	}
4802 
4803 	ret = hns3_alloc_desc(ring);
4804 	if (ret)
4805 		goto out_with_desc_cb;
4806 
4807 	if (!HNAE3_IS_TX_RING(ring)) {
4808 		if (page_pool_enabled)
4809 			hns3_alloc_page_pool(ring);
4810 
4811 		ret = hns3_alloc_ring_buffers(ring);
4812 		if (ret)
4813 			goto out_with_desc;
4814 	} else {
4815 		hns3_init_tx_spare_buffer(ring);
4816 	}
4817 
4818 	return 0;
4819 
4820 out_with_desc:
4821 	hns3_free_desc(ring);
4822 out_with_desc_cb:
4823 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
4824 	ring->desc_cb = NULL;
4825 out:
4826 	return ret;
4827 }
4828 
4829 void hns3_fini_ring(struct hns3_enet_ring *ring)
4830 {
4831 	hns3_free_desc(ring);
4832 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
4833 	ring->desc_cb = NULL;
4834 	ring->next_to_clean = 0;
4835 	ring->next_to_use = 0;
4836 	ring->last_to_use = 0;
4837 	ring->pending_buf = 0;
4838 	if (!HNAE3_IS_TX_RING(ring) && ring->skb) {
4839 		dev_kfree_skb_any(ring->skb);
4840 		ring->skb = NULL;
4841 	} else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) {
4842 		struct hns3_tx_spare *tx_spare = ring->tx_spare;
4843 
4844 		dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len,
4845 			       DMA_TO_DEVICE);
4846 		free_pages((unsigned long)tx_spare->buf,
4847 			   get_order(tx_spare->len));
4848 		devm_kfree(ring_to_dev(ring), tx_spare);
4849 		ring->tx_spare = NULL;
4850 	}
4851 
4852 	if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) {
4853 		page_pool_destroy(ring->page_pool);
4854 		ring->page_pool = NULL;
4855 	}
4856 }
4857 
4858 static int hns3_buf_size2type(u32 buf_size)
4859 {
4860 	int bd_size_type;
4861 
4862 	switch (buf_size) {
4863 	case 512:
4864 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
4865 		break;
4866 	case 1024:
4867 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
4868 		break;
4869 	case 2048:
4870 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4871 		break;
4872 	case 4096:
4873 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
4874 		break;
4875 	default:
4876 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4877 	}
4878 
4879 	return bd_size_type;
4880 }
4881 
4882 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
4883 {
4884 	dma_addr_t dma = ring->desc_dma_addr;
4885 	struct hnae3_queue *q = ring->tqp;
4886 
4887 	if (!HNAE3_IS_TX_RING(ring)) {
4888 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
4889 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
4890 			       (u32)((dma >> 31) >> 1));
4891 
4892 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
4893 			       hns3_buf_size2type(ring->buf_size));
4894 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
4895 			       ring->desc_num / 8 - 1);
4896 	} else {
4897 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
4898 			       (u32)dma);
4899 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
4900 			       (u32)((dma >> 31) >> 1));
4901 
4902 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
4903 			       ring->desc_num / 8 - 1);
4904 	}
4905 }
4906 
4907 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
4908 {
4909 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4910 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
4911 	int i;
4912 
4913 	for (i = 0; i < tc_info->num_tc; i++) {
4914 		int j;
4915 
4916 		for (j = 0; j < tc_info->tqp_count[i]; j++) {
4917 			struct hnae3_queue *q;
4918 
4919 			q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
4920 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
4921 		}
4922 	}
4923 }
4924 
4925 int hns3_init_all_ring(struct hns3_nic_priv *priv)
4926 {
4927 	struct hnae3_handle *h = priv->ae_handle;
4928 	int ring_num = h->kinfo.num_tqps * 2;
4929 	int i, j;
4930 	int ret;
4931 
4932 	for (i = 0; i < ring_num; i++) {
4933 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
4934 		if (ret) {
4935 			dev_err(priv->dev,
4936 				"Alloc ring memory fail! ret=%d\n", ret);
4937 			goto out_when_alloc_ring_memory;
4938 		}
4939 
4940 		u64_stats_init(&priv->ring[i].syncp);
4941 	}
4942 
4943 	return 0;
4944 
4945 out_when_alloc_ring_memory:
4946 	for (j = i - 1; j >= 0; j--)
4947 		hns3_fini_ring(&priv->ring[j]);
4948 
4949 	return -ENOMEM;
4950 }
4951 
4952 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
4953 {
4954 	struct hnae3_handle *h = priv->ae_handle;
4955 	int i;
4956 
4957 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4958 		hns3_fini_ring(&priv->ring[i]);
4959 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
4960 	}
4961 }
4962 
4963 /* Set mac addr if it is configured. or leave it to the AE driver */
4964 static int hns3_init_mac_addr(struct net_device *netdev)
4965 {
4966 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4967 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
4968 	struct hnae3_handle *h = priv->ae_handle;
4969 	u8 mac_addr_temp[ETH_ALEN];
4970 	int ret = 0;
4971 
4972 	if (h->ae_algo->ops->get_mac_addr)
4973 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
4974 
4975 	/* Check if the MAC address is valid, if not get a random one */
4976 	if (!is_valid_ether_addr(mac_addr_temp)) {
4977 		eth_hw_addr_random(netdev);
4978 		hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr);
4979 		dev_warn(priv->dev, "using random MAC address %s\n",
4980 			 format_mac_addr);
4981 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
4982 		eth_hw_addr_set(netdev, mac_addr_temp);
4983 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
4984 	} else {
4985 		return 0;
4986 	}
4987 
4988 	if (h->ae_algo->ops->set_mac_addr)
4989 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
4990 
4991 	return ret;
4992 }
4993 
4994 static int hns3_init_phy(struct net_device *netdev)
4995 {
4996 	struct hnae3_handle *h = hns3_get_handle(netdev);
4997 	int ret = 0;
4998 
4999 	if (h->ae_algo->ops->mac_connect_phy)
5000 		ret = h->ae_algo->ops->mac_connect_phy(h);
5001 
5002 	return ret;
5003 }
5004 
5005 static void hns3_uninit_phy(struct net_device *netdev)
5006 {
5007 	struct hnae3_handle *h = hns3_get_handle(netdev);
5008 
5009 	if (h->ae_algo->ops->mac_disconnect_phy)
5010 		h->ae_algo->ops->mac_disconnect_phy(h);
5011 }
5012 
5013 static int hns3_client_start(struct hnae3_handle *handle)
5014 {
5015 	if (!handle->ae_algo->ops->client_start)
5016 		return 0;
5017 
5018 	return handle->ae_algo->ops->client_start(handle);
5019 }
5020 
5021 static void hns3_client_stop(struct hnae3_handle *handle)
5022 {
5023 	if (!handle->ae_algo->ops->client_stop)
5024 		return;
5025 
5026 	handle->ae_algo->ops->client_stop(handle);
5027 }
5028 
5029 static void hns3_info_show(struct hns3_nic_priv *priv)
5030 {
5031 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5032 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5033 
5034 	hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr);
5035 	dev_info(priv->dev, "MAC address: %s\n", format_mac_addr);
5036 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
5037 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
5038 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
5039 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
5040 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
5041 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
5042 	dev_info(priv->dev, "Total number of enabled TCs: %u\n",
5043 		 kinfo->tc_info.num_tc);
5044 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
5045 }
5046 
5047 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv,
5048 				    enum dim_cq_period_mode mode, bool is_tx)
5049 {
5050 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
5051 	struct hnae3_handle *handle = priv->ae_handle;
5052 	int i;
5053 
5054 	if (is_tx) {
5055 		priv->tx_cqe_mode = mode;
5056 
5057 		for (i = 0; i < priv->vector_num; i++)
5058 			priv->tqp_vector[i].tx_group.dim.mode = mode;
5059 	} else {
5060 		priv->rx_cqe_mode = mode;
5061 
5062 		for (i = 0; i < priv->vector_num; i++)
5063 			priv->tqp_vector[i].rx_group.dim.mode = mode;
5064 	}
5065 
5066 	/* only device version above V3(include V3), GL can switch CQ/EQ
5067 	 * period mode.
5068 	 */
5069 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
5070 		u32 new_mode;
5071 		u64 reg;
5072 
5073 		new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ?
5074 			HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE;
5075 		reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG;
5076 
5077 		writel(new_mode, handle->kinfo.io_base + reg);
5078 	}
5079 }
5080 
5081 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv,
5082 			      enum dim_cq_period_mode tx_mode,
5083 			      enum dim_cq_period_mode rx_mode)
5084 {
5085 	hns3_set_cq_period_mode(priv, tx_mode, true);
5086 	hns3_set_cq_period_mode(priv, rx_mode, false);
5087 }
5088 
5089 static void hns3_state_init(struct hnae3_handle *handle)
5090 {
5091 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
5092 	struct net_device *netdev = handle->kinfo.netdev;
5093 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5094 
5095 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5096 
5097 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5098 		set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
5099 
5100 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
5101 		set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
5102 
5103 	if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev))
5104 		set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state);
5105 }
5106 
5107 static int hns3_client_init(struct hnae3_handle *handle)
5108 {
5109 	struct pci_dev *pdev = handle->pdev;
5110 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
5111 	u16 alloc_tqps, max_rss_size;
5112 	struct hns3_nic_priv *priv;
5113 	struct net_device *netdev;
5114 	int ret;
5115 
5116 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
5117 						    &max_rss_size);
5118 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
5119 	if (!netdev)
5120 		return -ENOMEM;
5121 
5122 	priv = netdev_priv(netdev);
5123 	priv->dev = &pdev->dev;
5124 	priv->netdev = netdev;
5125 	priv->ae_handle = handle;
5126 	priv->tx_timeout_count = 0;
5127 	priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
5128 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5129 
5130 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
5131 
5132 	handle->kinfo.netdev = netdev;
5133 	handle->priv = (void *)priv;
5134 
5135 	hns3_init_mac_addr(netdev);
5136 
5137 	hns3_set_default_feature(netdev);
5138 
5139 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
5140 	netdev->priv_flags |= IFF_UNICAST_FLT;
5141 	netdev->netdev_ops = &hns3_nic_netdev_ops;
5142 	SET_NETDEV_DEV(netdev, &pdev->dev);
5143 	hns3_ethtool_set_ops(netdev);
5144 
5145 	/* Carrier off reporting is important to ethtool even BEFORE open */
5146 	netif_carrier_off(netdev);
5147 
5148 	ret = hns3_get_ring_config(priv);
5149 	if (ret) {
5150 		ret = -ENOMEM;
5151 		goto out_get_ring_cfg;
5152 	}
5153 
5154 	hns3_nic_init_coal_cfg(priv);
5155 
5156 	ret = hns3_nic_alloc_vector_data(priv);
5157 	if (ret) {
5158 		ret = -ENOMEM;
5159 		goto out_alloc_vector_data;
5160 	}
5161 
5162 	ret = hns3_nic_init_vector_data(priv);
5163 	if (ret) {
5164 		ret = -ENOMEM;
5165 		goto out_init_vector_data;
5166 	}
5167 
5168 	ret = hns3_init_all_ring(priv);
5169 	if (ret) {
5170 		ret = -ENOMEM;
5171 		goto out_init_ring;
5172 	}
5173 
5174 	hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE,
5175 				 DIM_CQ_PERIOD_MODE_START_FROM_EQE);
5176 
5177 	ret = hns3_init_phy(netdev);
5178 	if (ret)
5179 		goto out_init_phy;
5180 
5181 	/* the device can work without cpu rmap, only aRFS needs it */
5182 	ret = hns3_set_rx_cpu_rmap(netdev);
5183 	if (ret)
5184 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5185 
5186 	ret = hns3_nic_init_irq(priv);
5187 	if (ret) {
5188 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5189 		hns3_free_rx_cpu_rmap(netdev);
5190 		goto out_init_irq_fail;
5191 	}
5192 
5193 	ret = hns3_client_start(handle);
5194 	if (ret) {
5195 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5196 		goto out_client_start;
5197 	}
5198 
5199 	hns3_dcbnl_setup(handle);
5200 
5201 	ret = hns3_dbg_init(handle);
5202 	if (ret) {
5203 		dev_err(priv->dev, "failed to init debugfs, ret = %d\n",
5204 			ret);
5205 		goto out_client_start;
5206 	}
5207 
5208 	netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
5209 
5210 	hns3_state_init(handle);
5211 
5212 	ret = register_netdev(netdev);
5213 	if (ret) {
5214 		dev_err(priv->dev, "probe register netdev fail!\n");
5215 		goto out_reg_netdev_fail;
5216 	}
5217 
5218 	if (netif_msg_drv(handle))
5219 		hns3_info_show(priv);
5220 
5221 	return ret;
5222 
5223 out_reg_netdev_fail:
5224 	hns3_dbg_uninit(handle);
5225 out_client_start:
5226 	hns3_free_rx_cpu_rmap(netdev);
5227 	hns3_nic_uninit_irq(priv);
5228 out_init_irq_fail:
5229 	hns3_uninit_phy(netdev);
5230 out_init_phy:
5231 	hns3_uninit_all_ring(priv);
5232 out_init_ring:
5233 	hns3_nic_uninit_vector_data(priv);
5234 out_init_vector_data:
5235 	hns3_nic_dealloc_vector_data(priv);
5236 out_alloc_vector_data:
5237 	priv->ring = NULL;
5238 out_get_ring_cfg:
5239 	priv->ae_handle = NULL;
5240 	free_netdev(netdev);
5241 	return ret;
5242 }
5243 
5244 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
5245 {
5246 	struct net_device *netdev = handle->kinfo.netdev;
5247 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5248 
5249 	if (netdev->reg_state != NETREG_UNINITIALIZED)
5250 		unregister_netdev(netdev);
5251 
5252 	hns3_client_stop(handle);
5253 
5254 	hns3_uninit_phy(netdev);
5255 
5256 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5257 		netdev_warn(netdev, "already uninitialized\n");
5258 		goto out_netdev_free;
5259 	}
5260 
5261 	hns3_free_rx_cpu_rmap(netdev);
5262 
5263 	hns3_nic_uninit_irq(priv);
5264 
5265 	hns3_clear_all_ring(handle, true);
5266 
5267 	hns3_nic_uninit_vector_data(priv);
5268 
5269 	hns3_nic_dealloc_vector_data(priv);
5270 
5271 	hns3_uninit_all_ring(priv);
5272 
5273 	hns3_put_ring_config(priv);
5274 
5275 out_netdev_free:
5276 	hns3_dbg_uninit(handle);
5277 	free_netdev(netdev);
5278 }
5279 
5280 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
5281 {
5282 	struct net_device *netdev = handle->kinfo.netdev;
5283 
5284 	if (!netdev)
5285 		return;
5286 
5287 	if (linkup) {
5288 		netif_tx_wake_all_queues(netdev);
5289 		netif_carrier_on(netdev);
5290 		if (netif_msg_link(handle))
5291 			netdev_info(netdev, "link up\n");
5292 	} else {
5293 		netif_carrier_off(netdev);
5294 		netif_tx_stop_all_queues(netdev);
5295 		if (netif_msg_link(handle))
5296 			netdev_info(netdev, "link down\n");
5297 	}
5298 }
5299 
5300 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
5301 {
5302 	while (ring->next_to_clean != ring->next_to_use) {
5303 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
5304 		hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
5305 		ring_ptr_move_fw(ring, next_to_clean);
5306 	}
5307 
5308 	ring->pending_buf = 0;
5309 }
5310 
5311 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
5312 {
5313 	struct hns3_desc_cb res_cbs;
5314 	int ret;
5315 
5316 	while (ring->next_to_use != ring->next_to_clean) {
5317 		/* When a buffer is not reused, it's memory has been
5318 		 * freed in hns3_handle_rx_bd or will be freed by
5319 		 * stack, so we need to replace the buffer here.
5320 		 */
5321 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5322 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
5323 			if (ret) {
5324 				hns3_ring_stats_update(ring, sw_err_cnt);
5325 				/* if alloc new buffer fail, exit directly
5326 				 * and reclear in up flow.
5327 				 */
5328 				netdev_warn(ring_to_netdev(ring),
5329 					    "reserve buffer map failed, ret = %d\n",
5330 					    ret);
5331 				return ret;
5332 			}
5333 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
5334 		}
5335 		ring_ptr_move_fw(ring, next_to_use);
5336 	}
5337 
5338 	/* Free the pending skb in rx ring */
5339 	if (ring->skb) {
5340 		dev_kfree_skb_any(ring->skb);
5341 		ring->skb = NULL;
5342 		ring->pending_buf = 0;
5343 	}
5344 
5345 	return 0;
5346 }
5347 
5348 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
5349 {
5350 	while (ring->next_to_use != ring->next_to_clean) {
5351 		/* When a buffer is not reused, it's memory has been
5352 		 * freed in hns3_handle_rx_bd or will be freed by
5353 		 * stack, so only need to unmap the buffer here.
5354 		 */
5355 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5356 			hns3_unmap_buffer(ring,
5357 					  &ring->desc_cb[ring->next_to_use]);
5358 			ring->desc_cb[ring->next_to_use].dma = 0;
5359 		}
5360 
5361 		ring_ptr_move_fw(ring, next_to_use);
5362 	}
5363 }
5364 
5365 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
5366 {
5367 	struct net_device *ndev = h->kinfo.netdev;
5368 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5369 	u32 i;
5370 
5371 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5372 		struct hns3_enet_ring *ring;
5373 
5374 		ring = &priv->ring[i];
5375 		hns3_clear_tx_ring(ring);
5376 
5377 		ring = &priv->ring[i + h->kinfo.num_tqps];
5378 		/* Continue to clear other rings even if clearing some
5379 		 * rings failed.
5380 		 */
5381 		if (force)
5382 			hns3_force_clear_rx_ring(ring);
5383 		else
5384 			hns3_clear_rx_ring(ring);
5385 	}
5386 }
5387 
5388 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
5389 {
5390 	struct net_device *ndev = h->kinfo.netdev;
5391 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5392 	struct hns3_enet_ring *rx_ring;
5393 	int i, j;
5394 	int ret;
5395 
5396 	ret = h->ae_algo->ops->reset_queue(h);
5397 	if (ret)
5398 		return ret;
5399 
5400 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5401 		hns3_init_ring_hw(&priv->ring[i]);
5402 
5403 		/* We need to clear tx ring here because self test will
5404 		 * use the ring and will not run down before up
5405 		 */
5406 		hns3_clear_tx_ring(&priv->ring[i]);
5407 		priv->ring[i].next_to_clean = 0;
5408 		priv->ring[i].next_to_use = 0;
5409 		priv->ring[i].last_to_use = 0;
5410 
5411 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
5412 		hns3_init_ring_hw(rx_ring);
5413 		ret = hns3_clear_rx_ring(rx_ring);
5414 		if (ret)
5415 			return ret;
5416 
5417 		/* We can not know the hardware head and tail when this
5418 		 * function is called in reset flow, so we reuse all desc.
5419 		 */
5420 		for (j = 0; j < rx_ring->desc_num; j++)
5421 			hns3_reuse_buffer(rx_ring, j);
5422 
5423 		rx_ring->next_to_clean = 0;
5424 		rx_ring->next_to_use = 0;
5425 	}
5426 
5427 	hns3_init_tx_ring_tc(priv);
5428 
5429 	return 0;
5430 }
5431 
5432 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
5433 {
5434 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5435 	struct net_device *ndev = kinfo->netdev;
5436 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5437 
5438 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
5439 		return 0;
5440 
5441 	if (!netif_running(ndev))
5442 		return 0;
5443 
5444 	return hns3_nic_net_stop(ndev);
5445 }
5446 
5447 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
5448 {
5449 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5450 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
5451 	int ret = 0;
5452 
5453 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5454 		netdev_err(kinfo->netdev, "device is not initialized yet\n");
5455 		return -EFAULT;
5456 	}
5457 
5458 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5459 
5460 	if (netif_running(kinfo->netdev)) {
5461 		ret = hns3_nic_net_open(kinfo->netdev);
5462 		if (ret) {
5463 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5464 			netdev_err(kinfo->netdev,
5465 				   "net up fail, ret=%d!\n", ret);
5466 			return ret;
5467 		}
5468 	}
5469 
5470 	return ret;
5471 }
5472 
5473 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
5474 {
5475 	struct net_device *netdev = handle->kinfo.netdev;
5476 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5477 	int ret;
5478 
5479 	/* Carrier off reporting is important to ethtool even BEFORE open */
5480 	netif_carrier_off(netdev);
5481 
5482 	ret = hns3_get_ring_config(priv);
5483 	if (ret)
5484 		return ret;
5485 
5486 	ret = hns3_nic_alloc_vector_data(priv);
5487 	if (ret)
5488 		goto err_put_ring;
5489 
5490 	ret = hns3_nic_init_vector_data(priv);
5491 	if (ret)
5492 		goto err_dealloc_vector;
5493 
5494 	ret = hns3_init_all_ring(priv);
5495 	if (ret)
5496 		goto err_uninit_vector;
5497 
5498 	hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode);
5499 
5500 	/* the device can work without cpu rmap, only aRFS needs it */
5501 	ret = hns3_set_rx_cpu_rmap(netdev);
5502 	if (ret)
5503 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5504 
5505 	ret = hns3_nic_init_irq(priv);
5506 	if (ret) {
5507 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5508 		hns3_free_rx_cpu_rmap(netdev);
5509 		goto err_init_irq_fail;
5510 	}
5511 
5512 	if (!hns3_is_phys_func(handle->pdev))
5513 		hns3_init_mac_addr(netdev);
5514 
5515 	ret = hns3_client_start(handle);
5516 	if (ret) {
5517 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5518 		goto err_client_start_fail;
5519 	}
5520 
5521 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5522 
5523 	return ret;
5524 
5525 err_client_start_fail:
5526 	hns3_free_rx_cpu_rmap(netdev);
5527 	hns3_nic_uninit_irq(priv);
5528 err_init_irq_fail:
5529 	hns3_uninit_all_ring(priv);
5530 err_uninit_vector:
5531 	hns3_nic_uninit_vector_data(priv);
5532 err_dealloc_vector:
5533 	hns3_nic_dealloc_vector_data(priv);
5534 err_put_ring:
5535 	hns3_put_ring_config(priv);
5536 
5537 	return ret;
5538 }
5539 
5540 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
5541 {
5542 	struct net_device *netdev = handle->kinfo.netdev;
5543 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5544 
5545 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5546 		netdev_warn(netdev, "already uninitialized\n");
5547 		return 0;
5548 	}
5549 
5550 	hns3_free_rx_cpu_rmap(netdev);
5551 	hns3_nic_uninit_irq(priv);
5552 	hns3_clear_all_ring(handle, true);
5553 	hns3_reset_tx_queue(priv->ae_handle);
5554 
5555 	hns3_nic_uninit_vector_data(priv);
5556 
5557 	hns3_nic_dealloc_vector_data(priv);
5558 
5559 	hns3_uninit_all_ring(priv);
5560 
5561 	hns3_put_ring_config(priv);
5562 
5563 	return 0;
5564 }
5565 
5566 int hns3_reset_notify(struct hnae3_handle *handle,
5567 		      enum hnae3_reset_notify_type type)
5568 {
5569 	int ret = 0;
5570 
5571 	switch (type) {
5572 	case HNAE3_UP_CLIENT:
5573 		ret = hns3_reset_notify_up_enet(handle);
5574 		break;
5575 	case HNAE3_DOWN_CLIENT:
5576 		ret = hns3_reset_notify_down_enet(handle);
5577 		break;
5578 	case HNAE3_INIT_CLIENT:
5579 		ret = hns3_reset_notify_init_enet(handle);
5580 		break;
5581 	case HNAE3_UNINIT_CLIENT:
5582 		ret = hns3_reset_notify_uninit_enet(handle);
5583 		break;
5584 	default:
5585 		break;
5586 	}
5587 
5588 	return ret;
5589 }
5590 
5591 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
5592 				bool rxfh_configured)
5593 {
5594 	int ret;
5595 
5596 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
5597 						 rxfh_configured);
5598 	if (ret) {
5599 		dev_err(&handle->pdev->dev,
5600 			"Change tqp num(%u) fail.\n", new_tqp_num);
5601 		return ret;
5602 	}
5603 
5604 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
5605 	if (ret)
5606 		return ret;
5607 
5608 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
5609 	if (ret)
5610 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
5611 
5612 	return ret;
5613 }
5614 
5615 int hns3_set_channels(struct net_device *netdev,
5616 		      struct ethtool_channels *ch)
5617 {
5618 	struct hnae3_handle *h = hns3_get_handle(netdev);
5619 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
5620 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
5621 	u32 new_tqp_num = ch->combined_count;
5622 	u16 org_tqp_num;
5623 	int ret;
5624 
5625 	if (hns3_nic_resetting(netdev))
5626 		return -EBUSY;
5627 
5628 	if (ch->rx_count || ch->tx_count)
5629 		return -EINVAL;
5630 
5631 	if (kinfo->tc_info.mqprio_active) {
5632 		dev_err(&netdev->dev,
5633 			"it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
5634 		return -EINVAL;
5635 	}
5636 
5637 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
5638 	    new_tqp_num < 1) {
5639 		dev_err(&netdev->dev,
5640 			"Change tqps fail, the tqp range is from 1 to %u",
5641 			hns3_get_max_available_channels(h));
5642 		return -EINVAL;
5643 	}
5644 
5645 	if (kinfo->rss_size == new_tqp_num)
5646 		return 0;
5647 
5648 	netif_dbg(h, drv, netdev,
5649 		  "set channels: tqp_num=%u, rxfh=%d\n",
5650 		  new_tqp_num, rxfh_configured);
5651 
5652 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
5653 	if (ret)
5654 		return ret;
5655 
5656 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
5657 	if (ret)
5658 		return ret;
5659 
5660 	org_tqp_num = h->kinfo.num_tqps;
5661 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
5662 	if (ret) {
5663 		int ret1;
5664 
5665 		netdev_warn(netdev,
5666 			    "Change channels fail, revert to old value\n");
5667 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
5668 		if (ret1) {
5669 			netdev_err(netdev,
5670 				   "revert to old channel fail\n");
5671 			return ret1;
5672 		}
5673 
5674 		return ret;
5675 	}
5676 
5677 	return 0;
5678 }
5679 
5680 static const struct hns3_hw_error_info hns3_hw_err[] = {
5681 	{ .type = HNAE3_PPU_POISON_ERROR,
5682 	  .msg = "PPU poison" },
5683 	{ .type = HNAE3_CMDQ_ECC_ERROR,
5684 	  .msg = "IMP CMDQ error" },
5685 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
5686 	  .msg = "IMP RD poison" },
5687 	{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
5688 	  .msg = "ROCEE AXI RESP error" },
5689 };
5690 
5691 static void hns3_process_hw_error(struct hnae3_handle *handle,
5692 				  enum hnae3_hw_error_type type)
5693 {
5694 	int i;
5695 
5696 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
5697 		if (hns3_hw_err[i].type == type) {
5698 			dev_err(&handle->pdev->dev, "Detected %s!\n",
5699 				hns3_hw_err[i].msg);
5700 			break;
5701 		}
5702 	}
5703 }
5704 
5705 static const struct hnae3_client_ops client_ops = {
5706 	.init_instance = hns3_client_init,
5707 	.uninit_instance = hns3_client_uninit,
5708 	.link_status_change = hns3_link_status_change,
5709 	.reset_notify = hns3_reset_notify,
5710 	.process_hw_error = hns3_process_hw_error,
5711 };
5712 
5713 /* hns3_init_module - Driver registration routine
5714  * hns3_init_module is the first routine called when the driver is
5715  * loaded. All it does is register with the PCI subsystem.
5716  */
5717 static int __init hns3_init_module(void)
5718 {
5719 	int ret;
5720 
5721 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
5722 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
5723 
5724 	client.type = HNAE3_CLIENT_KNIC;
5725 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
5726 		 hns3_driver_name);
5727 
5728 	client.ops = &client_ops;
5729 
5730 	INIT_LIST_HEAD(&client.node);
5731 
5732 	hns3_dbg_register_debugfs(hns3_driver_name);
5733 
5734 	ret = hnae3_register_client(&client);
5735 	if (ret)
5736 		goto err_reg_client;
5737 
5738 	ret = pci_register_driver(&hns3_driver);
5739 	if (ret)
5740 		goto err_reg_driver;
5741 
5742 	return ret;
5743 
5744 err_reg_driver:
5745 	hnae3_unregister_client(&client);
5746 err_reg_client:
5747 	hns3_dbg_unregister_debugfs();
5748 	return ret;
5749 }
5750 module_init(hns3_init_module);
5751 
5752 /* hns3_exit_module - Driver exit cleanup routine
5753  * hns3_exit_module is called just before the driver is removed
5754  * from memory.
5755  */
5756 static void __exit hns3_exit_module(void)
5757 {
5758 	pci_unregister_driver(&hns3_driver);
5759 	hnae3_unregister_client(&client);
5760 	hns3_dbg_unregister_debugfs();
5761 }
5762 module_exit(hns3_exit_module);
5763 
5764 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
5765 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
5766 MODULE_LICENSE("GPL");
5767 MODULE_ALIAS("pci:hns-nic");
5768