xref: /openbmc/linux/drivers/net/ethernet/freescale/gianfar.c (revision d59a24fd1bdbeea88c621cae746a5a2531f62a50)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/kernel.h>
63 #include <linux/string.h>
64 #include <linux/errno.h>
65 #include <linux/unistd.h>
66 #include <linux/slab.h>
67 #include <linux/interrupt.h>
68 #include <linux/delay.h>
69 #include <linux/netdevice.h>
70 #include <linux/etherdevice.h>
71 #include <linux/skbuff.h>
72 #include <linux/if_vlan.h>
73 #include <linux/spinlock.h>
74 #include <linux/mm.h>
75 #include <linux/of_address.h>
76 #include <linux/of_irq.h>
77 #include <linux/of_mdio.h>
78 #include <linux/of_platform.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83 #include <linux/net_tstamp.h>
84 
85 #include <asm/io.h>
86 #ifdef CONFIG_PPC
87 #include <asm/reg.h>
88 #include <asm/mpc85xx.h>
89 #endif
90 #include <asm/irq.h>
91 #include <linux/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97 #include <linux/phy_fixed.h>
98 #include <linux/of.h>
99 #include <linux/of_net.h>
100 
101 #include "gianfar.h"
102 
103 #define TX_TIMEOUT      (5*HZ)
104 
105 MODULE_AUTHOR("Freescale Semiconductor, Inc");
106 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
107 MODULE_LICENSE("GPL");
108 
109 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
110 			    dma_addr_t buf)
111 {
112 	u32 lstatus;
113 
114 	bdp->bufPtr = cpu_to_be32(buf);
115 
116 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
117 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
118 		lstatus |= BD_LFLAG(RXBD_WRAP);
119 
120 	gfar_wmb();
121 
122 	bdp->lstatus = cpu_to_be32(lstatus);
123 }
124 
125 static void gfar_init_tx_rx_base(struct gfar_private *priv)
126 {
127 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
128 	u32 __iomem *baddr;
129 	int i;
130 
131 	baddr = &regs->tbase0;
132 	for (i = 0; i < priv->num_tx_queues; i++) {
133 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
134 		baddr += 2;
135 	}
136 
137 	baddr = &regs->rbase0;
138 	for (i = 0; i < priv->num_rx_queues; i++) {
139 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
140 		baddr += 2;
141 	}
142 }
143 
144 static void gfar_init_rqprm(struct gfar_private *priv)
145 {
146 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
147 	u32 __iomem *baddr;
148 	int i;
149 
150 	baddr = &regs->rqprm0;
151 	for (i = 0; i < priv->num_rx_queues; i++) {
152 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
153 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
154 		baddr++;
155 	}
156 }
157 
158 static void gfar_rx_offload_en(struct gfar_private *priv)
159 {
160 	/* set this when rx hw offload (TOE) functions are being used */
161 	priv->uses_rxfcb = 0;
162 
163 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
164 		priv->uses_rxfcb = 1;
165 
166 	if (priv->hwts_rx_en || priv->rx_filer_enable)
167 		priv->uses_rxfcb = 1;
168 }
169 
170 static void gfar_mac_rx_config(struct gfar_private *priv)
171 {
172 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
173 	u32 rctrl = 0;
174 
175 	if (priv->rx_filer_enable) {
176 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
177 		/* Program the RIR0 reg with the required distribution */
178 		gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
179 	}
180 
181 	/* Restore PROMISC mode */
182 	if (priv->ndev->flags & IFF_PROMISC)
183 		rctrl |= RCTRL_PROM;
184 
185 	if (priv->ndev->features & NETIF_F_RXCSUM)
186 		rctrl |= RCTRL_CHECKSUMMING;
187 
188 	if (priv->extended_hash)
189 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
190 
191 	if (priv->padding) {
192 		rctrl &= ~RCTRL_PAL_MASK;
193 		rctrl |= RCTRL_PADDING(priv->padding);
194 	}
195 
196 	/* Enable HW time stamping if requested from user space */
197 	if (priv->hwts_rx_en)
198 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
199 
200 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
201 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
202 
203 	/* Clear the LFC bit */
204 	gfar_write(&regs->rctrl, rctrl);
205 	/* Init flow control threshold values */
206 	gfar_init_rqprm(priv);
207 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
208 	rctrl |= RCTRL_LFC;
209 
210 	/* Init rctrl based on our settings */
211 	gfar_write(&regs->rctrl, rctrl);
212 }
213 
214 static void gfar_mac_tx_config(struct gfar_private *priv)
215 {
216 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
217 	u32 tctrl = 0;
218 
219 	if (priv->ndev->features & NETIF_F_IP_CSUM)
220 		tctrl |= TCTRL_INIT_CSUM;
221 
222 	if (priv->prio_sched_en)
223 		tctrl |= TCTRL_TXSCHED_PRIO;
224 	else {
225 		tctrl |= TCTRL_TXSCHED_WRRS;
226 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
227 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
228 	}
229 
230 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
231 		tctrl |= TCTRL_VLINS;
232 
233 	gfar_write(&regs->tctrl, tctrl);
234 }
235 
236 static void gfar_configure_coalescing(struct gfar_private *priv,
237 			       unsigned long tx_mask, unsigned long rx_mask)
238 {
239 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
240 	u32 __iomem *baddr;
241 
242 	if (priv->mode == MQ_MG_MODE) {
243 		int i = 0;
244 
245 		baddr = &regs->txic0;
246 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
247 			gfar_write(baddr + i, 0);
248 			if (likely(priv->tx_queue[i]->txcoalescing))
249 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
250 		}
251 
252 		baddr = &regs->rxic0;
253 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
254 			gfar_write(baddr + i, 0);
255 			if (likely(priv->rx_queue[i]->rxcoalescing))
256 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
257 		}
258 	} else {
259 		/* Backward compatible case -- even if we enable
260 		 * multiple queues, there's only single reg to program
261 		 */
262 		gfar_write(&regs->txic, 0);
263 		if (likely(priv->tx_queue[0]->txcoalescing))
264 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
265 
266 		gfar_write(&regs->rxic, 0);
267 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
268 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
269 	}
270 }
271 
272 static void gfar_configure_coalescing_all(struct gfar_private *priv)
273 {
274 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
275 }
276 
277 static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
278 {
279 	struct gfar_private *priv = netdev_priv(dev);
280 	int i;
281 
282 	for (i = 0; i < priv->num_rx_queues; i++) {
283 		stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
284 		stats->rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
285 		stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
286 	}
287 
288 	for (i = 0; i < priv->num_tx_queues; i++) {
289 		stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
290 		stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
291 	}
292 }
293 
294 /* Set the appropriate hash bit for the given addr */
295 /* The algorithm works like so:
296  * 1) Take the Destination Address (ie the multicast address), and
297  * do a CRC on it (little endian), and reverse the bits of the
298  * result.
299  * 2) Use the 8 most significant bits as a hash into a 256-entry
300  * table.  The table is controlled through 8 32-bit registers:
301  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
302  * gaddr7.  This means that the 3 most significant bits in the
303  * hash index which gaddr register to use, and the 5 other bits
304  * indicate which bit (assuming an IBM numbering scheme, which
305  * for PowerPC (tm) is usually the case) in the register holds
306  * the entry.
307  */
308 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
309 {
310 	u32 tempval;
311 	struct gfar_private *priv = netdev_priv(dev);
312 	u32 result = ether_crc(ETH_ALEN, addr);
313 	int width = priv->hash_width;
314 	u8 whichbit = (result >> (32 - width)) & 0x1f;
315 	u8 whichreg = result >> (32 - width + 5);
316 	u32 value = (1 << (31-whichbit));
317 
318 	tempval = gfar_read(priv->hash_regs[whichreg]);
319 	tempval |= value;
320 	gfar_write(priv->hash_regs[whichreg], tempval);
321 }
322 
323 /* There are multiple MAC Address register pairs on some controllers
324  * This function sets the numth pair to a given address
325  */
326 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
327 				  const u8 *addr)
328 {
329 	struct gfar_private *priv = netdev_priv(dev);
330 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
331 	u32 tempval;
332 	u32 __iomem *macptr = &regs->macstnaddr1;
333 
334 	macptr += num*2;
335 
336 	/* For a station address of 0x12345678ABCD in transmission
337 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
338 	 * MACnADDR2 is set to 0x34120000.
339 	 */
340 	tempval = (addr[5] << 24) | (addr[4] << 16) |
341 		  (addr[3] << 8)  |  addr[2];
342 
343 	gfar_write(macptr, tempval);
344 
345 	tempval = (addr[1] << 24) | (addr[0] << 16);
346 
347 	gfar_write(macptr+1, tempval);
348 }
349 
350 static int gfar_set_mac_addr(struct net_device *dev, void *p)
351 {
352 	int ret;
353 
354 	ret = eth_mac_addr(dev, p);
355 	if (ret)
356 		return ret;
357 
358 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
359 
360 	return 0;
361 }
362 
363 static void gfar_ints_disable(struct gfar_private *priv)
364 {
365 	int i;
366 	for (i = 0; i < priv->num_grps; i++) {
367 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
368 		/* Clear IEVENT */
369 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
370 
371 		/* Initialize IMASK */
372 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
373 	}
374 }
375 
376 static void gfar_ints_enable(struct gfar_private *priv)
377 {
378 	int i;
379 	for (i = 0; i < priv->num_grps; i++) {
380 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
381 		/* Unmask the interrupts we look for */
382 		gfar_write(&regs->imask, IMASK_DEFAULT);
383 	}
384 }
385 
386 static int gfar_alloc_tx_queues(struct gfar_private *priv)
387 {
388 	int i;
389 
390 	for (i = 0; i < priv->num_tx_queues; i++) {
391 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
392 					    GFP_KERNEL);
393 		if (!priv->tx_queue[i])
394 			return -ENOMEM;
395 
396 		priv->tx_queue[i]->tx_skbuff = NULL;
397 		priv->tx_queue[i]->qindex = i;
398 		priv->tx_queue[i]->dev = priv->ndev;
399 		spin_lock_init(&(priv->tx_queue[i]->txlock));
400 	}
401 	return 0;
402 }
403 
404 static int gfar_alloc_rx_queues(struct gfar_private *priv)
405 {
406 	int i;
407 
408 	for (i = 0; i < priv->num_rx_queues; i++) {
409 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
410 					    GFP_KERNEL);
411 		if (!priv->rx_queue[i])
412 			return -ENOMEM;
413 
414 		priv->rx_queue[i]->qindex = i;
415 		priv->rx_queue[i]->ndev = priv->ndev;
416 	}
417 	return 0;
418 }
419 
420 static void gfar_free_tx_queues(struct gfar_private *priv)
421 {
422 	int i;
423 
424 	for (i = 0; i < priv->num_tx_queues; i++)
425 		kfree(priv->tx_queue[i]);
426 }
427 
428 static void gfar_free_rx_queues(struct gfar_private *priv)
429 {
430 	int i;
431 
432 	for (i = 0; i < priv->num_rx_queues; i++)
433 		kfree(priv->rx_queue[i]);
434 }
435 
436 static void unmap_group_regs(struct gfar_private *priv)
437 {
438 	int i;
439 
440 	for (i = 0; i < MAXGROUPS; i++)
441 		if (priv->gfargrp[i].regs)
442 			iounmap(priv->gfargrp[i].regs);
443 }
444 
445 static void free_gfar_dev(struct gfar_private *priv)
446 {
447 	int i, j;
448 
449 	for (i = 0; i < priv->num_grps; i++)
450 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
451 			kfree(priv->gfargrp[i].irqinfo[j]);
452 			priv->gfargrp[i].irqinfo[j] = NULL;
453 		}
454 
455 	free_netdev(priv->ndev);
456 }
457 
458 static void disable_napi(struct gfar_private *priv)
459 {
460 	int i;
461 
462 	for (i = 0; i < priv->num_grps; i++) {
463 		napi_disable(&priv->gfargrp[i].napi_rx);
464 		napi_disable(&priv->gfargrp[i].napi_tx);
465 	}
466 }
467 
468 static void enable_napi(struct gfar_private *priv)
469 {
470 	int i;
471 
472 	for (i = 0; i < priv->num_grps; i++) {
473 		napi_enable(&priv->gfargrp[i].napi_rx);
474 		napi_enable(&priv->gfargrp[i].napi_tx);
475 	}
476 }
477 
478 static int gfar_parse_group(struct device_node *np,
479 			    struct gfar_private *priv, const char *model)
480 {
481 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
482 	int i;
483 
484 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
485 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
486 					  GFP_KERNEL);
487 		if (!grp->irqinfo[i])
488 			return -ENOMEM;
489 	}
490 
491 	grp->regs = of_iomap(np, 0);
492 	if (!grp->regs)
493 		return -ENOMEM;
494 
495 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
496 
497 	/* If we aren't the FEC we have multiple interrupts */
498 	if (model && strcasecmp(model, "FEC")) {
499 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
500 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
501 		if (!gfar_irq(grp, TX)->irq ||
502 		    !gfar_irq(grp, RX)->irq ||
503 		    !gfar_irq(grp, ER)->irq)
504 			return -EINVAL;
505 	}
506 
507 	grp->priv = priv;
508 	spin_lock_init(&grp->grplock);
509 	if (priv->mode == MQ_MG_MODE) {
510 		/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
511 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
512 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
513 	} else {
514 		grp->rx_bit_map = 0xFF;
515 		grp->tx_bit_map = 0xFF;
516 	}
517 
518 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
519 	 * right to left, so we need to revert the 8 bits to get the q index
520 	 */
521 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
522 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
523 
524 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
525 	 * also assign queues to groups
526 	 */
527 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
528 		if (!grp->rx_queue)
529 			grp->rx_queue = priv->rx_queue[i];
530 		grp->num_rx_queues++;
531 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
532 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
533 		priv->rx_queue[i]->grp = grp;
534 	}
535 
536 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
537 		if (!grp->tx_queue)
538 			grp->tx_queue = priv->tx_queue[i];
539 		grp->num_tx_queues++;
540 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
541 		priv->tqueue |= (TQUEUE_EN0 >> i);
542 		priv->tx_queue[i]->grp = grp;
543 	}
544 
545 	priv->num_grps++;
546 
547 	return 0;
548 }
549 
550 static int gfar_of_group_count(struct device_node *np)
551 {
552 	struct device_node *child;
553 	int num = 0;
554 
555 	for_each_available_child_of_node(np, child)
556 		if (of_node_name_eq(child, "queue-group"))
557 			num++;
558 
559 	return num;
560 }
561 
562 /* Reads the controller's registers to determine what interface
563  * connects it to the PHY.
564  */
565 static phy_interface_t gfar_get_interface(struct net_device *dev)
566 {
567 	struct gfar_private *priv = netdev_priv(dev);
568 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
569 	u32 ecntrl;
570 
571 	ecntrl = gfar_read(&regs->ecntrl);
572 
573 	if (ecntrl & ECNTRL_SGMII_MODE)
574 		return PHY_INTERFACE_MODE_SGMII;
575 
576 	if (ecntrl & ECNTRL_TBI_MODE) {
577 		if (ecntrl & ECNTRL_REDUCED_MODE)
578 			return PHY_INTERFACE_MODE_RTBI;
579 		else
580 			return PHY_INTERFACE_MODE_TBI;
581 	}
582 
583 	if (ecntrl & ECNTRL_REDUCED_MODE) {
584 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
585 			return PHY_INTERFACE_MODE_RMII;
586 		}
587 		else {
588 			phy_interface_t interface = priv->interface;
589 
590 			/* This isn't autodetected right now, so it must
591 			 * be set by the device tree or platform code.
592 			 */
593 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
594 				return PHY_INTERFACE_MODE_RGMII_ID;
595 
596 			return PHY_INTERFACE_MODE_RGMII;
597 		}
598 	}
599 
600 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
601 		return PHY_INTERFACE_MODE_GMII;
602 
603 	return PHY_INTERFACE_MODE_MII;
604 }
605 
606 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
607 {
608 	const char *model;
609 	int err = 0, i;
610 	phy_interface_t interface;
611 	struct net_device *dev = NULL;
612 	struct gfar_private *priv = NULL;
613 	struct device_node *np = ofdev->dev.of_node;
614 	struct device_node *child = NULL;
615 	u32 stash_len = 0;
616 	u32 stash_idx = 0;
617 	unsigned int num_tx_qs, num_rx_qs;
618 	unsigned short mode;
619 
620 	if (!np)
621 		return -ENODEV;
622 
623 	if (of_device_is_compatible(np, "fsl,etsec2"))
624 		mode = MQ_MG_MODE;
625 	else
626 		mode = SQ_SG_MODE;
627 
628 	if (mode == SQ_SG_MODE) {
629 		num_tx_qs = 1;
630 		num_rx_qs = 1;
631 	} else { /* MQ_MG_MODE */
632 		/* get the actual number of supported groups */
633 		unsigned int num_grps = gfar_of_group_count(np);
634 
635 		if (num_grps == 0 || num_grps > MAXGROUPS) {
636 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
637 				num_grps);
638 			pr_err("Cannot do alloc_etherdev, aborting\n");
639 			return -EINVAL;
640 		}
641 
642 		num_tx_qs = num_grps; /* one txq per int group */
643 		num_rx_qs = num_grps; /* one rxq per int group */
644 	}
645 
646 	if (num_tx_qs > MAX_TX_QS) {
647 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
648 		       num_tx_qs, MAX_TX_QS);
649 		pr_err("Cannot do alloc_etherdev, aborting\n");
650 		return -EINVAL;
651 	}
652 
653 	if (num_rx_qs > MAX_RX_QS) {
654 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
655 		       num_rx_qs, MAX_RX_QS);
656 		pr_err("Cannot do alloc_etherdev, aborting\n");
657 		return -EINVAL;
658 	}
659 
660 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
661 	dev = *pdev;
662 	if (NULL == dev)
663 		return -ENOMEM;
664 
665 	priv = netdev_priv(dev);
666 	priv->ndev = dev;
667 
668 	priv->mode = mode;
669 
670 	priv->num_tx_queues = num_tx_qs;
671 	netif_set_real_num_rx_queues(dev, num_rx_qs);
672 	priv->num_rx_queues = num_rx_qs;
673 
674 	err = gfar_alloc_tx_queues(priv);
675 	if (err)
676 		goto tx_alloc_failed;
677 
678 	err = gfar_alloc_rx_queues(priv);
679 	if (err)
680 		goto rx_alloc_failed;
681 
682 	err = of_property_read_string(np, "model", &model);
683 	if (err) {
684 		pr_err("Device model property missing, aborting\n");
685 		goto rx_alloc_failed;
686 	}
687 
688 	/* Init Rx queue filer rule set linked list */
689 	INIT_LIST_HEAD(&priv->rx_list.list);
690 	priv->rx_list.count = 0;
691 	mutex_init(&priv->rx_queue_access);
692 
693 	for (i = 0; i < MAXGROUPS; i++)
694 		priv->gfargrp[i].regs = NULL;
695 
696 	/* Parse and initialize group specific information */
697 	if (priv->mode == MQ_MG_MODE) {
698 		for_each_available_child_of_node(np, child) {
699 			if (!of_node_name_eq(child, "queue-group"))
700 				continue;
701 
702 			err = gfar_parse_group(child, priv, model);
703 			if (err) {
704 				of_node_put(child);
705 				goto err_grp_init;
706 			}
707 		}
708 	} else { /* SQ_SG_MODE */
709 		err = gfar_parse_group(np, priv, model);
710 		if (err)
711 			goto err_grp_init;
712 	}
713 
714 	if (of_property_read_bool(np, "bd-stash")) {
715 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
716 		priv->bd_stash_en = 1;
717 	}
718 
719 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
720 
721 	if (err == 0)
722 		priv->rx_stash_size = stash_len;
723 
724 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
725 
726 	if (err == 0)
727 		priv->rx_stash_index = stash_idx;
728 
729 	if (stash_len || stash_idx)
730 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
731 
732 	err = of_get_mac_address(np, dev->dev_addr);
733 	if (err) {
734 		eth_hw_addr_random(dev);
735 		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
736 	}
737 
738 	if (model && !strcasecmp(model, "TSEC"))
739 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
740 				     FSL_GIANFAR_DEV_HAS_COALESCE |
741 				     FSL_GIANFAR_DEV_HAS_RMON |
742 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
743 
744 	if (model && !strcasecmp(model, "eTSEC"))
745 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
746 				     FSL_GIANFAR_DEV_HAS_COALESCE |
747 				     FSL_GIANFAR_DEV_HAS_RMON |
748 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
749 				     FSL_GIANFAR_DEV_HAS_CSUM |
750 				     FSL_GIANFAR_DEV_HAS_VLAN |
751 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
752 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
753 				     FSL_GIANFAR_DEV_HAS_TIMER |
754 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
755 
756 	/* Use PHY connection type from the DT node if one is specified there.
757 	 * rgmii-id really needs to be specified. Other types can be
758 	 * detected by hardware
759 	 */
760 	err = of_get_phy_mode(np, &interface);
761 	if (!err)
762 		priv->interface = interface;
763 	else
764 		priv->interface = gfar_get_interface(dev);
765 
766 	if (of_find_property(np, "fsl,magic-packet", NULL))
767 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
768 
769 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
770 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
771 
772 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
773 
774 	/* In the case of a fixed PHY, the DT node associated
775 	 * to the PHY is the Ethernet MAC DT node.
776 	 */
777 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
778 		err = of_phy_register_fixed_link(np);
779 		if (err)
780 			goto err_grp_init;
781 
782 		priv->phy_node = of_node_get(np);
783 	}
784 
785 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
786 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
787 
788 	return 0;
789 
790 err_grp_init:
791 	unmap_group_regs(priv);
792 rx_alloc_failed:
793 	gfar_free_rx_queues(priv);
794 tx_alloc_failed:
795 	gfar_free_tx_queues(priv);
796 	free_gfar_dev(priv);
797 	return err;
798 }
799 
800 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
801 				   u32 class)
802 {
803 	u32 rqfpr = FPR_FILER_MASK;
804 	u32 rqfcr = 0x0;
805 
806 	rqfar--;
807 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
808 	priv->ftp_rqfpr[rqfar] = rqfpr;
809 	priv->ftp_rqfcr[rqfar] = rqfcr;
810 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
811 
812 	rqfar--;
813 	rqfcr = RQFCR_CMP_NOMATCH;
814 	priv->ftp_rqfpr[rqfar] = rqfpr;
815 	priv->ftp_rqfcr[rqfar] = rqfcr;
816 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
817 
818 	rqfar--;
819 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
820 	rqfpr = class;
821 	priv->ftp_rqfcr[rqfar] = rqfcr;
822 	priv->ftp_rqfpr[rqfar] = rqfpr;
823 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
824 
825 	rqfar--;
826 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
827 	rqfpr = class;
828 	priv->ftp_rqfcr[rqfar] = rqfcr;
829 	priv->ftp_rqfpr[rqfar] = rqfpr;
830 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
831 
832 	return rqfar;
833 }
834 
835 static void gfar_init_filer_table(struct gfar_private *priv)
836 {
837 	int i = 0x0;
838 	u32 rqfar = MAX_FILER_IDX;
839 	u32 rqfcr = 0x0;
840 	u32 rqfpr = FPR_FILER_MASK;
841 
842 	/* Default rule */
843 	rqfcr = RQFCR_CMP_MATCH;
844 	priv->ftp_rqfcr[rqfar] = rqfcr;
845 	priv->ftp_rqfpr[rqfar] = rqfpr;
846 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
847 
848 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
849 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
850 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
851 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
852 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
853 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
854 
855 	/* cur_filer_idx indicated the first non-masked rule */
856 	priv->cur_filer_idx = rqfar;
857 
858 	/* Rest are masked rules */
859 	rqfcr = RQFCR_CMP_NOMATCH;
860 	for (i = 0; i < rqfar; i++) {
861 		priv->ftp_rqfcr[i] = rqfcr;
862 		priv->ftp_rqfpr[i] = rqfpr;
863 		gfar_write_filer(priv, i, rqfcr, rqfpr);
864 	}
865 }
866 
867 #ifdef CONFIG_PPC
868 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
869 {
870 	unsigned int pvr = mfspr(SPRN_PVR);
871 	unsigned int svr = mfspr(SPRN_SVR);
872 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
873 	unsigned int rev = svr & 0xffff;
874 
875 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
876 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
877 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
878 		priv->errata |= GFAR_ERRATA_74;
879 
880 	/* MPC8313 and MPC837x all rev */
881 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
882 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
883 		priv->errata |= GFAR_ERRATA_76;
884 
885 	/* MPC8313 Rev < 2.0 */
886 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
887 		priv->errata |= GFAR_ERRATA_12;
888 }
889 
890 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
891 {
892 	unsigned int svr = mfspr(SPRN_SVR);
893 
894 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
895 		priv->errata |= GFAR_ERRATA_12;
896 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
897 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
898 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
899 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
900 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
901 }
902 #endif
903 
904 static void gfar_detect_errata(struct gfar_private *priv)
905 {
906 	struct device *dev = &priv->ofdev->dev;
907 
908 	/* no plans to fix */
909 	priv->errata |= GFAR_ERRATA_A002;
910 
911 #ifdef CONFIG_PPC
912 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
913 		__gfar_detect_errata_85xx(priv);
914 	else /* non-mpc85xx parts, i.e. e300 core based */
915 		__gfar_detect_errata_83xx(priv);
916 #endif
917 
918 	if (priv->errata)
919 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
920 			 priv->errata);
921 }
922 
923 static void gfar_init_addr_hash_table(struct gfar_private *priv)
924 {
925 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
926 
927 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
928 		priv->extended_hash = 1;
929 		priv->hash_width = 9;
930 
931 		priv->hash_regs[0] = &regs->igaddr0;
932 		priv->hash_regs[1] = &regs->igaddr1;
933 		priv->hash_regs[2] = &regs->igaddr2;
934 		priv->hash_regs[3] = &regs->igaddr3;
935 		priv->hash_regs[4] = &regs->igaddr4;
936 		priv->hash_regs[5] = &regs->igaddr5;
937 		priv->hash_regs[6] = &regs->igaddr6;
938 		priv->hash_regs[7] = &regs->igaddr7;
939 		priv->hash_regs[8] = &regs->gaddr0;
940 		priv->hash_regs[9] = &regs->gaddr1;
941 		priv->hash_regs[10] = &regs->gaddr2;
942 		priv->hash_regs[11] = &regs->gaddr3;
943 		priv->hash_regs[12] = &regs->gaddr4;
944 		priv->hash_regs[13] = &regs->gaddr5;
945 		priv->hash_regs[14] = &regs->gaddr6;
946 		priv->hash_regs[15] = &regs->gaddr7;
947 
948 	} else {
949 		priv->extended_hash = 0;
950 		priv->hash_width = 8;
951 
952 		priv->hash_regs[0] = &regs->gaddr0;
953 		priv->hash_regs[1] = &regs->gaddr1;
954 		priv->hash_regs[2] = &regs->gaddr2;
955 		priv->hash_regs[3] = &regs->gaddr3;
956 		priv->hash_regs[4] = &regs->gaddr4;
957 		priv->hash_regs[5] = &regs->gaddr5;
958 		priv->hash_regs[6] = &regs->gaddr6;
959 		priv->hash_regs[7] = &regs->gaddr7;
960 	}
961 }
962 
963 static int __gfar_is_rx_idle(struct gfar_private *priv)
964 {
965 	u32 res;
966 
967 	/* Normaly TSEC should not hang on GRS commands, so we should
968 	 * actually wait for IEVENT_GRSC flag.
969 	 */
970 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
971 		return 0;
972 
973 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
974 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
975 	 * and the Rx can be safely reset.
976 	 */
977 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
978 	res &= 0x7f807f80;
979 	if ((res & 0xffff) == (res >> 16))
980 		return 1;
981 
982 	return 0;
983 }
984 
985 /* Halt the receive and transmit queues */
986 static void gfar_halt_nodisable(struct gfar_private *priv)
987 {
988 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
989 	u32 tempval;
990 	unsigned int timeout;
991 	int stopped;
992 
993 	gfar_ints_disable(priv);
994 
995 	if (gfar_is_dma_stopped(priv))
996 		return;
997 
998 	/* Stop the DMA, and wait for it to stop */
999 	tempval = gfar_read(&regs->dmactrl);
1000 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1001 	gfar_write(&regs->dmactrl, tempval);
1002 
1003 retry:
1004 	timeout = 1000;
1005 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1006 		cpu_relax();
1007 		timeout--;
1008 	}
1009 
1010 	if (!timeout)
1011 		stopped = gfar_is_dma_stopped(priv);
1012 
1013 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1014 	    !__gfar_is_rx_idle(priv))
1015 		goto retry;
1016 }
1017 
1018 /* Halt the receive and transmit queues */
1019 static void gfar_halt(struct gfar_private *priv)
1020 {
1021 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1022 	u32 tempval;
1023 
1024 	/* Dissable the Rx/Tx hw queues */
1025 	gfar_write(&regs->rqueue, 0);
1026 	gfar_write(&regs->tqueue, 0);
1027 
1028 	mdelay(10);
1029 
1030 	gfar_halt_nodisable(priv);
1031 
1032 	/* Disable Rx/Tx DMA */
1033 	tempval = gfar_read(&regs->maccfg1);
1034 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1035 	gfar_write(&regs->maccfg1, tempval);
1036 }
1037 
1038 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1039 {
1040 	struct txbd8 *txbdp;
1041 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1042 	int i, j;
1043 
1044 	txbdp = tx_queue->tx_bd_base;
1045 
1046 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1047 		if (!tx_queue->tx_skbuff[i])
1048 			continue;
1049 
1050 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1051 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1052 		txbdp->lstatus = 0;
1053 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1054 		     j++) {
1055 			txbdp++;
1056 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1057 				       be16_to_cpu(txbdp->length),
1058 				       DMA_TO_DEVICE);
1059 		}
1060 		txbdp++;
1061 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1062 		tx_queue->tx_skbuff[i] = NULL;
1063 	}
1064 	kfree(tx_queue->tx_skbuff);
1065 	tx_queue->tx_skbuff = NULL;
1066 }
1067 
1068 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1069 {
1070 	int i;
1071 
1072 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1073 
1074 	dev_kfree_skb(rx_queue->skb);
1075 
1076 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1077 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1078 
1079 		rxbdp->lstatus = 0;
1080 		rxbdp->bufPtr = 0;
1081 		rxbdp++;
1082 
1083 		if (!rxb->page)
1084 			continue;
1085 
1086 		dma_unmap_page(rx_queue->dev, rxb->dma,
1087 			       PAGE_SIZE, DMA_FROM_DEVICE);
1088 		__free_page(rxb->page);
1089 
1090 		rxb->page = NULL;
1091 	}
1092 
1093 	kfree(rx_queue->rx_buff);
1094 	rx_queue->rx_buff = NULL;
1095 }
1096 
1097 /* If there are any tx skbs or rx skbs still around, free them.
1098  * Then free tx_skbuff and rx_skbuff
1099  */
1100 static void free_skb_resources(struct gfar_private *priv)
1101 {
1102 	struct gfar_priv_tx_q *tx_queue = NULL;
1103 	struct gfar_priv_rx_q *rx_queue = NULL;
1104 	int i;
1105 
1106 	/* Go through all the buffer descriptors and free their data buffers */
1107 	for (i = 0; i < priv->num_tx_queues; i++) {
1108 		struct netdev_queue *txq;
1109 
1110 		tx_queue = priv->tx_queue[i];
1111 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1112 		if (tx_queue->tx_skbuff)
1113 			free_skb_tx_queue(tx_queue);
1114 		netdev_tx_reset_queue(txq);
1115 	}
1116 
1117 	for (i = 0; i < priv->num_rx_queues; i++) {
1118 		rx_queue = priv->rx_queue[i];
1119 		if (rx_queue->rx_buff)
1120 			free_skb_rx_queue(rx_queue);
1121 	}
1122 
1123 	dma_free_coherent(priv->dev,
1124 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1125 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1126 			  priv->tx_queue[0]->tx_bd_base,
1127 			  priv->tx_queue[0]->tx_bd_dma_base);
1128 }
1129 
1130 void stop_gfar(struct net_device *dev)
1131 {
1132 	struct gfar_private *priv = netdev_priv(dev);
1133 
1134 	netif_tx_stop_all_queues(dev);
1135 
1136 	smp_mb__before_atomic();
1137 	set_bit(GFAR_DOWN, &priv->state);
1138 	smp_mb__after_atomic();
1139 
1140 	disable_napi(priv);
1141 
1142 	/* disable ints and gracefully shut down Rx/Tx DMA */
1143 	gfar_halt(priv);
1144 
1145 	phy_stop(dev->phydev);
1146 
1147 	free_skb_resources(priv);
1148 }
1149 
1150 static void gfar_start(struct gfar_private *priv)
1151 {
1152 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1153 	u32 tempval;
1154 	int i = 0;
1155 
1156 	/* Enable Rx/Tx hw queues */
1157 	gfar_write(&regs->rqueue, priv->rqueue);
1158 	gfar_write(&regs->tqueue, priv->tqueue);
1159 
1160 	/* Initialize DMACTRL to have WWR and WOP */
1161 	tempval = gfar_read(&regs->dmactrl);
1162 	tempval |= DMACTRL_INIT_SETTINGS;
1163 	gfar_write(&regs->dmactrl, tempval);
1164 
1165 	/* Make sure we aren't stopped */
1166 	tempval = gfar_read(&regs->dmactrl);
1167 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1168 	gfar_write(&regs->dmactrl, tempval);
1169 
1170 	for (i = 0; i < priv->num_grps; i++) {
1171 		regs = priv->gfargrp[i].regs;
1172 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1173 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1174 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1175 	}
1176 
1177 	/* Enable Rx/Tx DMA */
1178 	tempval = gfar_read(&regs->maccfg1);
1179 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1180 	gfar_write(&regs->maccfg1, tempval);
1181 
1182 	gfar_ints_enable(priv);
1183 
1184 	netif_trans_update(priv->ndev); /* prevent tx timeout */
1185 }
1186 
1187 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1188 {
1189 	struct page *page;
1190 	dma_addr_t addr;
1191 
1192 	page = dev_alloc_page();
1193 	if (unlikely(!page))
1194 		return false;
1195 
1196 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1197 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1198 		__free_page(page);
1199 
1200 		return false;
1201 	}
1202 
1203 	rxb->dma = addr;
1204 	rxb->page = page;
1205 	rxb->page_offset = 0;
1206 
1207 	return true;
1208 }
1209 
1210 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1211 {
1212 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1213 	struct gfar_extra_stats *estats = &priv->extra_stats;
1214 
1215 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1216 	atomic64_inc(&estats->rx_alloc_err);
1217 }
1218 
1219 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1220 				int alloc_cnt)
1221 {
1222 	struct rxbd8 *bdp;
1223 	struct gfar_rx_buff *rxb;
1224 	int i;
1225 
1226 	i = rx_queue->next_to_use;
1227 	bdp = &rx_queue->rx_bd_base[i];
1228 	rxb = &rx_queue->rx_buff[i];
1229 
1230 	while (alloc_cnt--) {
1231 		/* try reuse page */
1232 		if (unlikely(!rxb->page)) {
1233 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1234 				gfar_rx_alloc_err(rx_queue);
1235 				break;
1236 			}
1237 		}
1238 
1239 		/* Setup the new RxBD */
1240 		gfar_init_rxbdp(rx_queue, bdp,
1241 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1242 
1243 		/* Update to the next pointer */
1244 		bdp++;
1245 		rxb++;
1246 
1247 		if (unlikely(++i == rx_queue->rx_ring_size)) {
1248 			i = 0;
1249 			bdp = rx_queue->rx_bd_base;
1250 			rxb = rx_queue->rx_buff;
1251 		}
1252 	}
1253 
1254 	rx_queue->next_to_use = i;
1255 	rx_queue->next_to_alloc = i;
1256 }
1257 
1258 static void gfar_init_bds(struct net_device *ndev)
1259 {
1260 	struct gfar_private *priv = netdev_priv(ndev);
1261 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1262 	struct gfar_priv_tx_q *tx_queue = NULL;
1263 	struct gfar_priv_rx_q *rx_queue = NULL;
1264 	struct txbd8 *txbdp;
1265 	u32 __iomem *rfbptr;
1266 	int i, j;
1267 
1268 	for (i = 0; i < priv->num_tx_queues; i++) {
1269 		tx_queue = priv->tx_queue[i];
1270 		/* Initialize some variables in our dev structure */
1271 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1272 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1273 		tx_queue->cur_tx = tx_queue->tx_bd_base;
1274 		tx_queue->skb_curtx = 0;
1275 		tx_queue->skb_dirtytx = 0;
1276 
1277 		/* Initialize Transmit Descriptor Ring */
1278 		txbdp = tx_queue->tx_bd_base;
1279 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1280 			txbdp->lstatus = 0;
1281 			txbdp->bufPtr = 0;
1282 			txbdp++;
1283 		}
1284 
1285 		/* Set the last descriptor in the ring to indicate wrap */
1286 		txbdp--;
1287 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1288 					    TXBD_WRAP);
1289 	}
1290 
1291 	rfbptr = &regs->rfbptr0;
1292 	for (i = 0; i < priv->num_rx_queues; i++) {
1293 		rx_queue = priv->rx_queue[i];
1294 
1295 		rx_queue->next_to_clean = 0;
1296 		rx_queue->next_to_use = 0;
1297 		rx_queue->next_to_alloc = 0;
1298 
1299 		/* make sure next_to_clean != next_to_use after this
1300 		 * by leaving at least 1 unused descriptor
1301 		 */
1302 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1303 
1304 		rx_queue->rfbptr = rfbptr;
1305 		rfbptr += 2;
1306 	}
1307 }
1308 
1309 static int gfar_alloc_skb_resources(struct net_device *ndev)
1310 {
1311 	void *vaddr;
1312 	dma_addr_t addr;
1313 	int i, j;
1314 	struct gfar_private *priv = netdev_priv(ndev);
1315 	struct device *dev = priv->dev;
1316 	struct gfar_priv_tx_q *tx_queue = NULL;
1317 	struct gfar_priv_rx_q *rx_queue = NULL;
1318 
1319 	priv->total_tx_ring_size = 0;
1320 	for (i = 0; i < priv->num_tx_queues; i++)
1321 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1322 
1323 	priv->total_rx_ring_size = 0;
1324 	for (i = 0; i < priv->num_rx_queues; i++)
1325 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1326 
1327 	/* Allocate memory for the buffer descriptors */
1328 	vaddr = dma_alloc_coherent(dev,
1329 				   (priv->total_tx_ring_size *
1330 				    sizeof(struct txbd8)) +
1331 				   (priv->total_rx_ring_size *
1332 				    sizeof(struct rxbd8)),
1333 				   &addr, GFP_KERNEL);
1334 	if (!vaddr)
1335 		return -ENOMEM;
1336 
1337 	for (i = 0; i < priv->num_tx_queues; i++) {
1338 		tx_queue = priv->tx_queue[i];
1339 		tx_queue->tx_bd_base = vaddr;
1340 		tx_queue->tx_bd_dma_base = addr;
1341 		tx_queue->dev = ndev;
1342 		/* enet DMA only understands physical addresses */
1343 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1344 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1345 	}
1346 
1347 	/* Start the rx descriptor ring where the tx ring leaves off */
1348 	for (i = 0; i < priv->num_rx_queues; i++) {
1349 		rx_queue = priv->rx_queue[i];
1350 		rx_queue->rx_bd_base = vaddr;
1351 		rx_queue->rx_bd_dma_base = addr;
1352 		rx_queue->ndev = ndev;
1353 		rx_queue->dev = dev;
1354 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1355 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1356 	}
1357 
1358 	/* Setup the skbuff rings */
1359 	for (i = 0; i < priv->num_tx_queues; i++) {
1360 		tx_queue = priv->tx_queue[i];
1361 		tx_queue->tx_skbuff =
1362 			kmalloc_array(tx_queue->tx_ring_size,
1363 				      sizeof(*tx_queue->tx_skbuff),
1364 				      GFP_KERNEL);
1365 		if (!tx_queue->tx_skbuff)
1366 			goto cleanup;
1367 
1368 		for (j = 0; j < tx_queue->tx_ring_size; j++)
1369 			tx_queue->tx_skbuff[j] = NULL;
1370 	}
1371 
1372 	for (i = 0; i < priv->num_rx_queues; i++) {
1373 		rx_queue = priv->rx_queue[i];
1374 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1375 					    sizeof(*rx_queue->rx_buff),
1376 					    GFP_KERNEL);
1377 		if (!rx_queue->rx_buff)
1378 			goto cleanup;
1379 	}
1380 
1381 	gfar_init_bds(ndev);
1382 
1383 	return 0;
1384 
1385 cleanup:
1386 	free_skb_resources(priv);
1387 	return -ENOMEM;
1388 }
1389 
1390 /* Bring the controller up and running */
1391 int startup_gfar(struct net_device *ndev)
1392 {
1393 	struct gfar_private *priv = netdev_priv(ndev);
1394 	int err;
1395 
1396 	gfar_mac_reset(priv);
1397 
1398 	err = gfar_alloc_skb_resources(ndev);
1399 	if (err)
1400 		return err;
1401 
1402 	gfar_init_tx_rx_base(priv);
1403 
1404 	smp_mb__before_atomic();
1405 	clear_bit(GFAR_DOWN, &priv->state);
1406 	smp_mb__after_atomic();
1407 
1408 	/* Start Rx/Tx DMA and enable the interrupts */
1409 	gfar_start(priv);
1410 
1411 	/* force link state update after mac reset */
1412 	priv->oldlink = 0;
1413 	priv->oldspeed = 0;
1414 	priv->oldduplex = -1;
1415 
1416 	phy_start(ndev->phydev);
1417 
1418 	enable_napi(priv);
1419 
1420 	netif_tx_wake_all_queues(ndev);
1421 
1422 	return 0;
1423 }
1424 
1425 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1426 {
1427 	struct net_device *ndev = priv->ndev;
1428 	struct phy_device *phydev = ndev->phydev;
1429 	u32 val = 0;
1430 
1431 	if (!phydev->duplex)
1432 		return val;
1433 
1434 	if (!priv->pause_aneg_en) {
1435 		if (priv->tx_pause_en)
1436 			val |= MACCFG1_TX_FLOW;
1437 		if (priv->rx_pause_en)
1438 			val |= MACCFG1_RX_FLOW;
1439 	} else {
1440 		u16 lcl_adv, rmt_adv;
1441 		u8 flowctrl;
1442 		/* get link partner capabilities */
1443 		rmt_adv = 0;
1444 		if (phydev->pause)
1445 			rmt_adv = LPA_PAUSE_CAP;
1446 		if (phydev->asym_pause)
1447 			rmt_adv |= LPA_PAUSE_ASYM;
1448 
1449 		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1450 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1451 		if (flowctrl & FLOW_CTRL_TX)
1452 			val |= MACCFG1_TX_FLOW;
1453 		if (flowctrl & FLOW_CTRL_RX)
1454 			val |= MACCFG1_RX_FLOW;
1455 	}
1456 
1457 	return val;
1458 }
1459 
1460 static noinline void gfar_update_link_state(struct gfar_private *priv)
1461 {
1462 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1463 	struct net_device *ndev = priv->ndev;
1464 	struct phy_device *phydev = ndev->phydev;
1465 	struct gfar_priv_rx_q *rx_queue = NULL;
1466 	int i;
1467 
1468 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1469 		return;
1470 
1471 	if (phydev->link) {
1472 		u32 tempval1 = gfar_read(&regs->maccfg1);
1473 		u32 tempval = gfar_read(&regs->maccfg2);
1474 		u32 ecntrl = gfar_read(&regs->ecntrl);
1475 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1476 
1477 		if (phydev->duplex != priv->oldduplex) {
1478 			if (!(phydev->duplex))
1479 				tempval &= ~(MACCFG2_FULL_DUPLEX);
1480 			else
1481 				tempval |= MACCFG2_FULL_DUPLEX;
1482 
1483 			priv->oldduplex = phydev->duplex;
1484 		}
1485 
1486 		if (phydev->speed != priv->oldspeed) {
1487 			switch (phydev->speed) {
1488 			case 1000:
1489 				tempval =
1490 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1491 
1492 				ecntrl &= ~(ECNTRL_R100);
1493 				break;
1494 			case 100:
1495 			case 10:
1496 				tempval =
1497 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1498 
1499 				/* Reduced mode distinguishes
1500 				 * between 10 and 100
1501 				 */
1502 				if (phydev->speed == SPEED_100)
1503 					ecntrl |= ECNTRL_R100;
1504 				else
1505 					ecntrl &= ~(ECNTRL_R100);
1506 				break;
1507 			default:
1508 				netif_warn(priv, link, priv->ndev,
1509 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1510 					   phydev->speed);
1511 				break;
1512 			}
1513 
1514 			priv->oldspeed = phydev->speed;
1515 		}
1516 
1517 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1518 		tempval1 |= gfar_get_flowctrl_cfg(priv);
1519 
1520 		/* Turn last free buffer recording on */
1521 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1522 			for (i = 0; i < priv->num_rx_queues; i++) {
1523 				u32 bdp_dma;
1524 
1525 				rx_queue = priv->rx_queue[i];
1526 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1527 				gfar_write(rx_queue->rfbptr, bdp_dma);
1528 			}
1529 
1530 			priv->tx_actual_en = 1;
1531 		}
1532 
1533 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1534 			priv->tx_actual_en = 0;
1535 
1536 		gfar_write(&regs->maccfg1, tempval1);
1537 		gfar_write(&regs->maccfg2, tempval);
1538 		gfar_write(&regs->ecntrl, ecntrl);
1539 
1540 		if (!priv->oldlink)
1541 			priv->oldlink = 1;
1542 
1543 	} else if (priv->oldlink) {
1544 		priv->oldlink = 0;
1545 		priv->oldspeed = 0;
1546 		priv->oldduplex = -1;
1547 	}
1548 
1549 	if (netif_msg_link(priv))
1550 		phy_print_status(phydev);
1551 }
1552 
1553 /* Called every time the controller might need to be made
1554  * aware of new link state.  The PHY code conveys this
1555  * information through variables in the phydev structure, and this
1556  * function converts those variables into the appropriate
1557  * register values, and can bring down the device if needed.
1558  */
1559 static void adjust_link(struct net_device *dev)
1560 {
1561 	struct gfar_private *priv = netdev_priv(dev);
1562 	struct phy_device *phydev = dev->phydev;
1563 
1564 	if (unlikely(phydev->link != priv->oldlink ||
1565 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1566 				       phydev->speed != priv->oldspeed))))
1567 		gfar_update_link_state(priv);
1568 }
1569 
1570 /* Initialize TBI PHY interface for communicating with the
1571  * SERDES lynx PHY on the chip.  We communicate with this PHY
1572  * through the MDIO bus on each controller, treating it as a
1573  * "normal" PHY at the address found in the TBIPA register.  We assume
1574  * that the TBIPA register is valid.  Either the MDIO bus code will set
1575  * it to a value that doesn't conflict with other PHYs on the bus, or the
1576  * value doesn't matter, as there are no other PHYs on the bus.
1577  */
1578 static void gfar_configure_serdes(struct net_device *dev)
1579 {
1580 	struct gfar_private *priv = netdev_priv(dev);
1581 	struct phy_device *tbiphy;
1582 
1583 	if (!priv->tbi_node) {
1584 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1585 				    "device tree specify a tbi-handle\n");
1586 		return;
1587 	}
1588 
1589 	tbiphy = of_phy_find_device(priv->tbi_node);
1590 	if (!tbiphy) {
1591 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1592 		return;
1593 	}
1594 
1595 	/* If the link is already up, we must already be ok, and don't need to
1596 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1597 	 * everything for us?  Resetting it takes the link down and requires
1598 	 * several seconds for it to come back.
1599 	 */
1600 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1601 		put_device(&tbiphy->mdio.dev);
1602 		return;
1603 	}
1604 
1605 	/* Single clk mode, mii mode off(for serdes communication) */
1606 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1607 
1608 	phy_write(tbiphy, MII_ADVERTISE,
1609 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1610 		  ADVERTISE_1000XPSE_ASYM);
1611 
1612 	phy_write(tbiphy, MII_BMCR,
1613 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1614 		  BMCR_SPEED1000);
1615 
1616 	put_device(&tbiphy->mdio.dev);
1617 }
1618 
1619 /* Initializes driver's PHY state, and attaches to the PHY.
1620  * Returns 0 on success.
1621  */
1622 static int init_phy(struct net_device *dev)
1623 {
1624 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1625 	struct gfar_private *priv = netdev_priv(dev);
1626 	phy_interface_t interface = priv->interface;
1627 	struct phy_device *phydev;
1628 	struct ethtool_eee edata;
1629 
1630 	linkmode_set_bit_array(phy_10_100_features_array,
1631 			       ARRAY_SIZE(phy_10_100_features_array),
1632 			       mask);
1633 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1634 	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1635 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1636 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1637 
1638 	priv->oldlink = 0;
1639 	priv->oldspeed = 0;
1640 	priv->oldduplex = -1;
1641 
1642 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1643 				interface);
1644 	if (!phydev) {
1645 		dev_err(&dev->dev, "could not attach to PHY\n");
1646 		return -ENODEV;
1647 	}
1648 
1649 	if (interface == PHY_INTERFACE_MODE_SGMII)
1650 		gfar_configure_serdes(dev);
1651 
1652 	/* Remove any features not supported by the controller */
1653 	linkmode_and(phydev->supported, phydev->supported, mask);
1654 	linkmode_copy(phydev->advertising, phydev->supported);
1655 
1656 	/* Add support for flow control */
1657 	phy_support_asym_pause(phydev);
1658 
1659 	/* disable EEE autoneg, EEE not supported by eTSEC */
1660 	memset(&edata, 0, sizeof(struct ethtool_eee));
1661 	phy_ethtool_set_eee(phydev, &edata);
1662 
1663 	return 0;
1664 }
1665 
1666 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1667 {
1668 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1669 
1670 	memset(fcb, 0, GMAC_FCB_LEN);
1671 
1672 	return fcb;
1673 }
1674 
1675 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1676 				    int fcb_length)
1677 {
1678 	/* If we're here, it's a IP packet with a TCP or UDP
1679 	 * payload.  We set it to checksum, using a pseudo-header
1680 	 * we provide
1681 	 */
1682 	u8 flags = TXFCB_DEFAULT;
1683 
1684 	/* Tell the controller what the protocol is
1685 	 * And provide the already calculated phcs
1686 	 */
1687 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1688 		flags |= TXFCB_UDP;
1689 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1690 	} else
1691 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1692 
1693 	/* l3os is the distance between the start of the
1694 	 * frame (skb->data) and the start of the IP hdr.
1695 	 * l4os is the distance between the start of the
1696 	 * l3 hdr and the l4 hdr
1697 	 */
1698 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1699 	fcb->l4os = skb_network_header_len(skb);
1700 
1701 	fcb->flags = flags;
1702 }
1703 
1704 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1705 {
1706 	fcb->flags |= TXFCB_VLN;
1707 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1708 }
1709 
1710 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1711 				      struct txbd8 *base, int ring_size)
1712 {
1713 	struct txbd8 *new_bd = bdp + stride;
1714 
1715 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1716 }
1717 
1718 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1719 				      int ring_size)
1720 {
1721 	return skip_txbd(bdp, 1, base, ring_size);
1722 }
1723 
1724 /* eTSEC12: csum generation not supported for some fcb offsets */
1725 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1726 				       unsigned long fcb_addr)
1727 {
1728 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1729 	       (fcb_addr % 0x20) > 0x18);
1730 }
1731 
1732 /* eTSEC76: csum generation for frames larger than 2500 may
1733  * cause excess delays before start of transmission
1734  */
1735 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1736 				       unsigned int len)
1737 {
1738 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1739 	       (len > 2500));
1740 }
1741 
1742 /* This is called by the kernel when a frame is ready for transmission.
1743  * It is pointed to by the dev->hard_start_xmit function pointer
1744  */
1745 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1746 {
1747 	struct gfar_private *priv = netdev_priv(dev);
1748 	struct gfar_priv_tx_q *tx_queue = NULL;
1749 	struct netdev_queue *txq;
1750 	struct gfar __iomem *regs = NULL;
1751 	struct txfcb *fcb = NULL;
1752 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1753 	u32 lstatus;
1754 	skb_frag_t *frag;
1755 	int i, rq = 0;
1756 	int do_tstamp, do_csum, do_vlan;
1757 	u32 bufaddr;
1758 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1759 
1760 	rq = skb->queue_mapping;
1761 	tx_queue = priv->tx_queue[rq];
1762 	txq = netdev_get_tx_queue(dev, rq);
1763 	base = tx_queue->tx_bd_base;
1764 	regs = tx_queue->grp->regs;
1765 
1766 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1767 	do_vlan = skb_vlan_tag_present(skb);
1768 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1769 		    priv->hwts_tx_en;
1770 
1771 	if (do_csum || do_vlan)
1772 		fcb_len = GMAC_FCB_LEN;
1773 
1774 	/* check if time stamp should be generated */
1775 	if (unlikely(do_tstamp))
1776 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1777 
1778 	/* make space for additional header when fcb is needed */
1779 	if (fcb_len) {
1780 		if (unlikely(skb_cow_head(skb, fcb_len))) {
1781 			dev->stats.tx_errors++;
1782 			dev_kfree_skb_any(skb);
1783 			return NETDEV_TX_OK;
1784 		}
1785 	}
1786 
1787 	/* total number of fragments in the SKB */
1788 	nr_frags = skb_shinfo(skb)->nr_frags;
1789 
1790 	/* calculate the required number of TxBDs for this skb */
1791 	if (unlikely(do_tstamp))
1792 		nr_txbds = nr_frags + 2;
1793 	else
1794 		nr_txbds = nr_frags + 1;
1795 
1796 	/* check if there is space to queue this packet */
1797 	if (nr_txbds > tx_queue->num_txbdfree) {
1798 		/* no space, stop the queue */
1799 		netif_tx_stop_queue(txq);
1800 		dev->stats.tx_fifo_errors++;
1801 		return NETDEV_TX_BUSY;
1802 	}
1803 
1804 	/* Update transmit stats */
1805 	bytes_sent = skb->len;
1806 	tx_queue->stats.tx_bytes += bytes_sent;
1807 	/* keep Tx bytes on wire for BQL accounting */
1808 	GFAR_CB(skb)->bytes_sent = bytes_sent;
1809 	tx_queue->stats.tx_packets++;
1810 
1811 	txbdp = txbdp_start = tx_queue->cur_tx;
1812 	lstatus = be32_to_cpu(txbdp->lstatus);
1813 
1814 	/* Add TxPAL between FCB and frame if required */
1815 	if (unlikely(do_tstamp)) {
1816 		skb_push(skb, GMAC_TXPAL_LEN);
1817 		memset(skb->data, 0, GMAC_TXPAL_LEN);
1818 	}
1819 
1820 	/* Add TxFCB if required */
1821 	if (fcb_len) {
1822 		fcb = gfar_add_fcb(skb);
1823 		lstatus |= BD_LFLAG(TXBD_TOE);
1824 	}
1825 
1826 	/* Set up checksumming */
1827 	if (do_csum) {
1828 		gfar_tx_checksum(skb, fcb, fcb_len);
1829 
1830 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1831 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1832 			__skb_pull(skb, GMAC_FCB_LEN);
1833 			skb_checksum_help(skb);
1834 			if (do_vlan || do_tstamp) {
1835 				/* put back a new fcb for vlan/tstamp TOE */
1836 				fcb = gfar_add_fcb(skb);
1837 			} else {
1838 				/* Tx TOE not used */
1839 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1840 				fcb = NULL;
1841 			}
1842 		}
1843 	}
1844 
1845 	if (do_vlan)
1846 		gfar_tx_vlan(skb, fcb);
1847 
1848 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1849 				 DMA_TO_DEVICE);
1850 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1851 		goto dma_map_err;
1852 
1853 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1854 
1855 	/* Time stamp insertion requires one additional TxBD */
1856 	if (unlikely(do_tstamp))
1857 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1858 						 tx_queue->tx_ring_size);
1859 
1860 	if (likely(!nr_frags)) {
1861 		if (likely(!do_tstamp))
1862 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1863 	} else {
1864 		u32 lstatus_start = lstatus;
1865 
1866 		/* Place the fragment addresses and lengths into the TxBDs */
1867 		frag = &skb_shinfo(skb)->frags[0];
1868 		for (i = 0; i < nr_frags; i++, frag++) {
1869 			unsigned int size;
1870 
1871 			/* Point at the next BD, wrapping as needed */
1872 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1873 
1874 			size = skb_frag_size(frag);
1875 
1876 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1877 				  BD_LFLAG(TXBD_READY);
1878 
1879 			/* Handle the last BD specially */
1880 			if (i == nr_frags - 1)
1881 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1882 
1883 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1884 						   size, DMA_TO_DEVICE);
1885 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1886 				goto dma_map_err;
1887 
1888 			/* set the TxBD length and buffer pointer */
1889 			txbdp->bufPtr = cpu_to_be32(bufaddr);
1890 			txbdp->lstatus = cpu_to_be32(lstatus);
1891 		}
1892 
1893 		lstatus = lstatus_start;
1894 	}
1895 
1896 	/* If time stamping is requested one additional TxBD must be set up. The
1897 	 * first TxBD points to the FCB and must have a data length of
1898 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1899 	 * the full frame length.
1900 	 */
1901 	if (unlikely(do_tstamp)) {
1902 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1903 
1904 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1905 		bufaddr += fcb_len;
1906 
1907 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1908 			      (skb_headlen(skb) - fcb_len);
1909 		if (!nr_frags)
1910 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1911 
1912 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1913 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1914 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1915 
1916 		/* Setup tx hardware time stamping */
1917 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1918 		fcb->ptp = 1;
1919 	} else {
1920 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1921 	}
1922 
1923 	netdev_tx_sent_queue(txq, bytes_sent);
1924 
1925 	gfar_wmb();
1926 
1927 	txbdp_start->lstatus = cpu_to_be32(lstatus);
1928 
1929 	gfar_wmb(); /* force lstatus write before tx_skbuff */
1930 
1931 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1932 
1933 	/* Update the current skb pointer to the next entry we will use
1934 	 * (wrapping if necessary)
1935 	 */
1936 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1937 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1938 
1939 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1940 
1941 	/* We can work in parallel with gfar_clean_tx_ring(), except
1942 	 * when modifying num_txbdfree. Note that we didn't grab the lock
1943 	 * when we were reading the num_txbdfree and checking for available
1944 	 * space, that's because outside of this function it can only grow.
1945 	 */
1946 	spin_lock_bh(&tx_queue->txlock);
1947 	/* reduce TxBD free count */
1948 	tx_queue->num_txbdfree -= (nr_txbds);
1949 	spin_unlock_bh(&tx_queue->txlock);
1950 
1951 	/* If the next BD still needs to be cleaned up, then the bds
1952 	 * are full.  We need to tell the kernel to stop sending us stuff.
1953 	 */
1954 	if (!tx_queue->num_txbdfree) {
1955 		netif_tx_stop_queue(txq);
1956 
1957 		dev->stats.tx_fifo_errors++;
1958 	}
1959 
1960 	/* Tell the DMA to go go go */
1961 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1962 
1963 	return NETDEV_TX_OK;
1964 
1965 dma_map_err:
1966 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1967 	if (do_tstamp)
1968 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1969 	for (i = 0; i < nr_frags; i++) {
1970 		lstatus = be32_to_cpu(txbdp->lstatus);
1971 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
1972 			break;
1973 
1974 		lstatus &= ~BD_LFLAG(TXBD_READY);
1975 		txbdp->lstatus = cpu_to_be32(lstatus);
1976 		bufaddr = be32_to_cpu(txbdp->bufPtr);
1977 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
1978 			       DMA_TO_DEVICE);
1979 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1980 	}
1981 	gfar_wmb();
1982 	dev_kfree_skb_any(skb);
1983 	return NETDEV_TX_OK;
1984 }
1985 
1986 /* Changes the mac address if the controller is not running. */
1987 static int gfar_set_mac_address(struct net_device *dev)
1988 {
1989 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1990 
1991 	return 0;
1992 }
1993 
1994 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1995 {
1996 	struct gfar_private *priv = netdev_priv(dev);
1997 
1998 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
1999 		cpu_relax();
2000 
2001 	if (dev->flags & IFF_UP)
2002 		stop_gfar(dev);
2003 
2004 	dev->mtu = new_mtu;
2005 
2006 	if (dev->flags & IFF_UP)
2007 		startup_gfar(dev);
2008 
2009 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2010 
2011 	return 0;
2012 }
2013 
2014 static void reset_gfar(struct net_device *ndev)
2015 {
2016 	struct gfar_private *priv = netdev_priv(ndev);
2017 
2018 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2019 		cpu_relax();
2020 
2021 	stop_gfar(ndev);
2022 	startup_gfar(ndev);
2023 
2024 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2025 }
2026 
2027 /* gfar_reset_task gets scheduled when a packet has not been
2028  * transmitted after a set amount of time.
2029  * For now, assume that clearing out all the structures, and
2030  * starting over will fix the problem.
2031  */
2032 static void gfar_reset_task(struct work_struct *work)
2033 {
2034 	struct gfar_private *priv = container_of(work, struct gfar_private,
2035 						 reset_task);
2036 	reset_gfar(priv->ndev);
2037 }
2038 
2039 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2040 {
2041 	struct gfar_private *priv = netdev_priv(dev);
2042 
2043 	dev->stats.tx_errors++;
2044 	schedule_work(&priv->reset_task);
2045 }
2046 
2047 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2048 {
2049 	struct hwtstamp_config config;
2050 	struct gfar_private *priv = netdev_priv(netdev);
2051 
2052 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2053 		return -EFAULT;
2054 
2055 	/* reserved for future extensions */
2056 	if (config.flags)
2057 		return -EINVAL;
2058 
2059 	switch (config.tx_type) {
2060 	case HWTSTAMP_TX_OFF:
2061 		priv->hwts_tx_en = 0;
2062 		break;
2063 	case HWTSTAMP_TX_ON:
2064 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2065 			return -ERANGE;
2066 		priv->hwts_tx_en = 1;
2067 		break;
2068 	default:
2069 		return -ERANGE;
2070 	}
2071 
2072 	switch (config.rx_filter) {
2073 	case HWTSTAMP_FILTER_NONE:
2074 		if (priv->hwts_rx_en) {
2075 			priv->hwts_rx_en = 0;
2076 			reset_gfar(netdev);
2077 		}
2078 		break;
2079 	default:
2080 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2081 			return -ERANGE;
2082 		if (!priv->hwts_rx_en) {
2083 			priv->hwts_rx_en = 1;
2084 			reset_gfar(netdev);
2085 		}
2086 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2087 		break;
2088 	}
2089 
2090 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2091 		-EFAULT : 0;
2092 }
2093 
2094 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2095 {
2096 	struct hwtstamp_config config;
2097 	struct gfar_private *priv = netdev_priv(netdev);
2098 
2099 	config.flags = 0;
2100 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2101 	config.rx_filter = (priv->hwts_rx_en ?
2102 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2103 
2104 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2105 		-EFAULT : 0;
2106 }
2107 
2108 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2109 {
2110 	struct phy_device *phydev = dev->phydev;
2111 
2112 	if (!netif_running(dev))
2113 		return -EINVAL;
2114 
2115 	if (cmd == SIOCSHWTSTAMP)
2116 		return gfar_hwtstamp_set(dev, rq);
2117 	if (cmd == SIOCGHWTSTAMP)
2118 		return gfar_hwtstamp_get(dev, rq);
2119 
2120 	if (!phydev)
2121 		return -ENODEV;
2122 
2123 	return phy_mii_ioctl(phydev, rq, cmd);
2124 }
2125 
2126 /* Interrupt Handler for Transmit complete */
2127 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2128 {
2129 	struct net_device *dev = tx_queue->dev;
2130 	struct netdev_queue *txq;
2131 	struct gfar_private *priv = netdev_priv(dev);
2132 	struct txbd8 *bdp, *next = NULL;
2133 	struct txbd8 *lbdp = NULL;
2134 	struct txbd8 *base = tx_queue->tx_bd_base;
2135 	struct sk_buff *skb;
2136 	int skb_dirtytx;
2137 	int tx_ring_size = tx_queue->tx_ring_size;
2138 	int frags = 0, nr_txbds = 0;
2139 	int i;
2140 	int howmany = 0;
2141 	int tqi = tx_queue->qindex;
2142 	unsigned int bytes_sent = 0;
2143 	u32 lstatus;
2144 	size_t buflen;
2145 
2146 	txq = netdev_get_tx_queue(dev, tqi);
2147 	bdp = tx_queue->dirty_tx;
2148 	skb_dirtytx = tx_queue->skb_dirtytx;
2149 
2150 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2151 		bool do_tstamp;
2152 
2153 		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2154 			    priv->hwts_tx_en;
2155 
2156 		frags = skb_shinfo(skb)->nr_frags;
2157 
2158 		/* When time stamping, one additional TxBD must be freed.
2159 		 * Also, we need to dma_unmap_single() the TxPAL.
2160 		 */
2161 		if (unlikely(do_tstamp))
2162 			nr_txbds = frags + 2;
2163 		else
2164 			nr_txbds = frags + 1;
2165 
2166 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2167 
2168 		lstatus = be32_to_cpu(lbdp->lstatus);
2169 
2170 		/* Only clean completed frames */
2171 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2172 		    (lstatus & BD_LENGTH_MASK))
2173 			break;
2174 
2175 		if (unlikely(do_tstamp)) {
2176 			next = next_txbd(bdp, base, tx_ring_size);
2177 			buflen = be16_to_cpu(next->length) +
2178 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2179 		} else
2180 			buflen = be16_to_cpu(bdp->length);
2181 
2182 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2183 				 buflen, DMA_TO_DEVICE);
2184 
2185 		if (unlikely(do_tstamp)) {
2186 			struct skb_shared_hwtstamps shhwtstamps;
2187 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2188 					  ~0x7UL);
2189 
2190 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2191 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2192 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2193 			skb_tstamp_tx(skb, &shhwtstamps);
2194 			gfar_clear_txbd_status(bdp);
2195 			bdp = next;
2196 		}
2197 
2198 		gfar_clear_txbd_status(bdp);
2199 		bdp = next_txbd(bdp, base, tx_ring_size);
2200 
2201 		for (i = 0; i < frags; i++) {
2202 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2203 				       be16_to_cpu(bdp->length),
2204 				       DMA_TO_DEVICE);
2205 			gfar_clear_txbd_status(bdp);
2206 			bdp = next_txbd(bdp, base, tx_ring_size);
2207 		}
2208 
2209 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2210 
2211 		dev_kfree_skb_any(skb);
2212 
2213 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2214 
2215 		skb_dirtytx = (skb_dirtytx + 1) &
2216 			      TX_RING_MOD_MASK(tx_ring_size);
2217 
2218 		howmany++;
2219 		spin_lock(&tx_queue->txlock);
2220 		tx_queue->num_txbdfree += nr_txbds;
2221 		spin_unlock(&tx_queue->txlock);
2222 	}
2223 
2224 	/* If we freed a buffer, we can restart transmission, if necessary */
2225 	if (tx_queue->num_txbdfree &&
2226 	    netif_tx_queue_stopped(txq) &&
2227 	    !(test_bit(GFAR_DOWN, &priv->state)))
2228 		netif_wake_subqueue(priv->ndev, tqi);
2229 
2230 	/* Update dirty indicators */
2231 	tx_queue->skb_dirtytx = skb_dirtytx;
2232 	tx_queue->dirty_tx = bdp;
2233 
2234 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2235 }
2236 
2237 static void count_errors(u32 lstatus, struct net_device *ndev)
2238 {
2239 	struct gfar_private *priv = netdev_priv(ndev);
2240 	struct net_device_stats *stats = &ndev->stats;
2241 	struct gfar_extra_stats *estats = &priv->extra_stats;
2242 
2243 	/* If the packet was truncated, none of the other errors matter */
2244 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2245 		stats->rx_length_errors++;
2246 
2247 		atomic64_inc(&estats->rx_trunc);
2248 
2249 		return;
2250 	}
2251 	/* Count the errors, if there were any */
2252 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2253 		stats->rx_length_errors++;
2254 
2255 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2256 			atomic64_inc(&estats->rx_large);
2257 		else
2258 			atomic64_inc(&estats->rx_short);
2259 	}
2260 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2261 		stats->rx_frame_errors++;
2262 		atomic64_inc(&estats->rx_nonoctet);
2263 	}
2264 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2265 		atomic64_inc(&estats->rx_crcerr);
2266 		stats->rx_crc_errors++;
2267 	}
2268 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2269 		atomic64_inc(&estats->rx_overrun);
2270 		stats->rx_over_errors++;
2271 	}
2272 }
2273 
2274 static irqreturn_t gfar_receive(int irq, void *grp_id)
2275 {
2276 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2277 	unsigned long flags;
2278 	u32 imask, ievent;
2279 
2280 	ievent = gfar_read(&grp->regs->ievent);
2281 
2282 	if (unlikely(ievent & IEVENT_FGPI)) {
2283 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2284 		return IRQ_HANDLED;
2285 	}
2286 
2287 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2288 		spin_lock_irqsave(&grp->grplock, flags);
2289 		imask = gfar_read(&grp->regs->imask);
2290 		imask &= IMASK_RX_DISABLED;
2291 		gfar_write(&grp->regs->imask, imask);
2292 		spin_unlock_irqrestore(&grp->grplock, flags);
2293 		__napi_schedule(&grp->napi_rx);
2294 	} else {
2295 		/* Clear IEVENT, so interrupts aren't called again
2296 		 * because of the packets that have already arrived.
2297 		 */
2298 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2299 	}
2300 
2301 	return IRQ_HANDLED;
2302 }
2303 
2304 /* Interrupt Handler for Transmit complete */
2305 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2306 {
2307 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2308 	unsigned long flags;
2309 	u32 imask;
2310 
2311 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2312 		spin_lock_irqsave(&grp->grplock, flags);
2313 		imask = gfar_read(&grp->regs->imask);
2314 		imask &= IMASK_TX_DISABLED;
2315 		gfar_write(&grp->regs->imask, imask);
2316 		spin_unlock_irqrestore(&grp->grplock, flags);
2317 		__napi_schedule(&grp->napi_tx);
2318 	} else {
2319 		/* Clear IEVENT, so interrupts aren't called again
2320 		 * because of the packets that have already arrived.
2321 		 */
2322 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2323 	}
2324 
2325 	return IRQ_HANDLED;
2326 }
2327 
2328 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2329 			     struct sk_buff *skb, bool first)
2330 {
2331 	int size = lstatus & BD_LENGTH_MASK;
2332 	struct page *page = rxb->page;
2333 
2334 	if (likely(first)) {
2335 		skb_put(skb, size);
2336 	} else {
2337 		/* the last fragments' length contains the full frame length */
2338 		if (lstatus & BD_LFLAG(RXBD_LAST))
2339 			size -= skb->len;
2340 
2341 		WARN(size < 0, "gianfar: rx fragment size underflow");
2342 		if (size < 0)
2343 			return false;
2344 
2345 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2346 				rxb->page_offset + RXBUF_ALIGNMENT,
2347 				size, GFAR_RXB_TRUESIZE);
2348 	}
2349 
2350 	/* try reuse page */
2351 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2352 		return false;
2353 
2354 	/* change offset to the other half */
2355 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2356 
2357 	page_ref_inc(page);
2358 
2359 	return true;
2360 }
2361 
2362 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2363 			       struct gfar_rx_buff *old_rxb)
2364 {
2365 	struct gfar_rx_buff *new_rxb;
2366 	u16 nta = rxq->next_to_alloc;
2367 
2368 	new_rxb = &rxq->rx_buff[nta];
2369 
2370 	/* find next buf that can reuse a page */
2371 	nta++;
2372 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2373 
2374 	/* copy page reference */
2375 	*new_rxb = *old_rxb;
2376 
2377 	/* sync for use by the device */
2378 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2379 					 old_rxb->page_offset,
2380 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2381 }
2382 
2383 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2384 					    u32 lstatus, struct sk_buff *skb)
2385 {
2386 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2387 	struct page *page = rxb->page;
2388 	bool first = false;
2389 
2390 	if (likely(!skb)) {
2391 		void *buff_addr = page_address(page) + rxb->page_offset;
2392 
2393 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2394 		if (unlikely(!skb)) {
2395 			gfar_rx_alloc_err(rx_queue);
2396 			return NULL;
2397 		}
2398 		skb_reserve(skb, RXBUF_ALIGNMENT);
2399 		first = true;
2400 	}
2401 
2402 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2403 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2404 
2405 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2406 		/* reuse the free half of the page */
2407 		gfar_reuse_rx_page(rx_queue, rxb);
2408 	} else {
2409 		/* page cannot be reused, unmap it */
2410 		dma_unmap_page(rx_queue->dev, rxb->dma,
2411 			       PAGE_SIZE, DMA_FROM_DEVICE);
2412 	}
2413 
2414 	/* clear rxb content */
2415 	rxb->page = NULL;
2416 
2417 	return skb;
2418 }
2419 
2420 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2421 {
2422 	/* If valid headers were found, and valid sums
2423 	 * were verified, then we tell the kernel that no
2424 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2425 	 */
2426 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2427 	    (RXFCB_CIP | RXFCB_CTU))
2428 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2429 	else
2430 		skb_checksum_none_assert(skb);
2431 }
2432 
2433 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2434 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2435 {
2436 	struct gfar_private *priv = netdev_priv(ndev);
2437 	struct rxfcb *fcb = NULL;
2438 
2439 	/* fcb is at the beginning if exists */
2440 	fcb = (struct rxfcb *)skb->data;
2441 
2442 	/* Remove the FCB from the skb
2443 	 * Remove the padded bytes, if there are any
2444 	 */
2445 	if (priv->uses_rxfcb)
2446 		skb_pull(skb, GMAC_FCB_LEN);
2447 
2448 	/* Get receive timestamp from the skb */
2449 	if (priv->hwts_rx_en) {
2450 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2451 		u64 *ns = (u64 *) skb->data;
2452 
2453 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2454 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2455 	}
2456 
2457 	if (priv->padding)
2458 		skb_pull(skb, priv->padding);
2459 
2460 	/* Trim off the FCS */
2461 	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2462 
2463 	if (ndev->features & NETIF_F_RXCSUM)
2464 		gfar_rx_checksum(skb, fcb);
2465 
2466 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2467 	 * Even if vlan rx accel is disabled, on some chips
2468 	 * RXFCB_VLN is pseudo randomly set.
2469 	 */
2470 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2471 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2472 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2473 				       be16_to_cpu(fcb->vlctl));
2474 }
2475 
2476 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2477  * until the budget/quota has been reached. Returns the number
2478  * of frames handled
2479  */
2480 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2481 			      int rx_work_limit)
2482 {
2483 	struct net_device *ndev = rx_queue->ndev;
2484 	struct gfar_private *priv = netdev_priv(ndev);
2485 	struct rxbd8 *bdp;
2486 	int i, howmany = 0;
2487 	struct sk_buff *skb = rx_queue->skb;
2488 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2489 	unsigned int total_bytes = 0, total_pkts = 0;
2490 
2491 	/* Get the first full descriptor */
2492 	i = rx_queue->next_to_clean;
2493 
2494 	while (rx_work_limit--) {
2495 		u32 lstatus;
2496 
2497 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2498 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2499 			cleaned_cnt = 0;
2500 		}
2501 
2502 		bdp = &rx_queue->rx_bd_base[i];
2503 		lstatus = be32_to_cpu(bdp->lstatus);
2504 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2505 			break;
2506 
2507 		/* lost RXBD_LAST descriptor due to overrun */
2508 		if (skb &&
2509 		    (lstatus & BD_LFLAG(RXBD_FIRST))) {
2510 			/* discard faulty buffer */
2511 			dev_kfree_skb(skb);
2512 			skb = NULL;
2513 			rx_queue->stats.rx_dropped++;
2514 
2515 			/* can continue normally */
2516 		}
2517 
2518 		/* order rx buffer descriptor reads */
2519 		rmb();
2520 
2521 		/* fetch next to clean buffer from the ring */
2522 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2523 		if (unlikely(!skb))
2524 			break;
2525 
2526 		cleaned_cnt++;
2527 		howmany++;
2528 
2529 		if (unlikely(++i == rx_queue->rx_ring_size))
2530 			i = 0;
2531 
2532 		rx_queue->next_to_clean = i;
2533 
2534 		/* fetch next buffer if not the last in frame */
2535 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2536 			continue;
2537 
2538 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2539 			count_errors(lstatus, ndev);
2540 
2541 			/* discard faulty buffer */
2542 			dev_kfree_skb(skb);
2543 			skb = NULL;
2544 			rx_queue->stats.rx_dropped++;
2545 			continue;
2546 		}
2547 
2548 		gfar_process_frame(ndev, skb);
2549 
2550 		/* Increment the number of packets */
2551 		total_pkts++;
2552 		total_bytes += skb->len;
2553 
2554 		skb_record_rx_queue(skb, rx_queue->qindex);
2555 
2556 		skb->protocol = eth_type_trans(skb, ndev);
2557 
2558 		/* Send the packet up the stack */
2559 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2560 
2561 		skb = NULL;
2562 	}
2563 
2564 	/* Store incomplete frames for completion */
2565 	rx_queue->skb = skb;
2566 
2567 	rx_queue->stats.rx_packets += total_pkts;
2568 	rx_queue->stats.rx_bytes += total_bytes;
2569 
2570 	if (cleaned_cnt)
2571 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2572 
2573 	/* Update Last Free RxBD pointer for LFC */
2574 	if (unlikely(priv->tx_actual_en)) {
2575 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2576 
2577 		gfar_write(rx_queue->rfbptr, bdp_dma);
2578 	}
2579 
2580 	return howmany;
2581 }
2582 
2583 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2584 {
2585 	struct gfar_priv_grp *gfargrp =
2586 		container_of(napi, struct gfar_priv_grp, napi_rx);
2587 	struct gfar __iomem *regs = gfargrp->regs;
2588 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2589 	int work_done = 0;
2590 
2591 	/* Clear IEVENT, so interrupts aren't called again
2592 	 * because of the packets that have already arrived
2593 	 */
2594 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2595 
2596 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2597 
2598 	if (work_done < budget) {
2599 		u32 imask;
2600 		napi_complete_done(napi, work_done);
2601 		/* Clear the halt bit in RSTAT */
2602 		gfar_write(&regs->rstat, gfargrp->rstat);
2603 
2604 		spin_lock_irq(&gfargrp->grplock);
2605 		imask = gfar_read(&regs->imask);
2606 		imask |= IMASK_RX_DEFAULT;
2607 		gfar_write(&regs->imask, imask);
2608 		spin_unlock_irq(&gfargrp->grplock);
2609 	}
2610 
2611 	return work_done;
2612 }
2613 
2614 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2615 {
2616 	struct gfar_priv_grp *gfargrp =
2617 		container_of(napi, struct gfar_priv_grp, napi_tx);
2618 	struct gfar __iomem *regs = gfargrp->regs;
2619 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2620 	u32 imask;
2621 
2622 	/* Clear IEVENT, so interrupts aren't called again
2623 	 * because of the packets that have already arrived
2624 	 */
2625 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2626 
2627 	/* run Tx cleanup to completion */
2628 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2629 		gfar_clean_tx_ring(tx_queue);
2630 
2631 	napi_complete(napi);
2632 
2633 	spin_lock_irq(&gfargrp->grplock);
2634 	imask = gfar_read(&regs->imask);
2635 	imask |= IMASK_TX_DEFAULT;
2636 	gfar_write(&regs->imask, imask);
2637 	spin_unlock_irq(&gfargrp->grplock);
2638 
2639 	return 0;
2640 }
2641 
2642 /* GFAR error interrupt handler */
2643 static irqreturn_t gfar_error(int irq, void *grp_id)
2644 {
2645 	struct gfar_priv_grp *gfargrp = grp_id;
2646 	struct gfar __iomem *regs = gfargrp->regs;
2647 	struct gfar_private *priv= gfargrp->priv;
2648 	struct net_device *dev = priv->ndev;
2649 
2650 	/* Save ievent for future reference */
2651 	u32 events = gfar_read(&regs->ievent);
2652 
2653 	/* Clear IEVENT */
2654 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2655 
2656 	/* Magic Packet is not an error. */
2657 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2658 	    (events & IEVENT_MAG))
2659 		events &= ~IEVENT_MAG;
2660 
2661 	/* Hmm... */
2662 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2663 		netdev_dbg(dev,
2664 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2665 			   events, gfar_read(&regs->imask));
2666 
2667 	/* Update the error counters */
2668 	if (events & IEVENT_TXE) {
2669 		dev->stats.tx_errors++;
2670 
2671 		if (events & IEVENT_LC)
2672 			dev->stats.tx_window_errors++;
2673 		if (events & IEVENT_CRL)
2674 			dev->stats.tx_aborted_errors++;
2675 		if (events & IEVENT_XFUN) {
2676 			netif_dbg(priv, tx_err, dev,
2677 				  "TX FIFO underrun, packet dropped\n");
2678 			dev->stats.tx_dropped++;
2679 			atomic64_inc(&priv->extra_stats.tx_underrun);
2680 
2681 			schedule_work(&priv->reset_task);
2682 		}
2683 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2684 	}
2685 	if (events & IEVENT_BSY) {
2686 		dev->stats.rx_over_errors++;
2687 		atomic64_inc(&priv->extra_stats.rx_bsy);
2688 
2689 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2690 			  gfar_read(&regs->rstat));
2691 	}
2692 	if (events & IEVENT_BABR) {
2693 		dev->stats.rx_errors++;
2694 		atomic64_inc(&priv->extra_stats.rx_babr);
2695 
2696 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2697 	}
2698 	if (events & IEVENT_EBERR) {
2699 		atomic64_inc(&priv->extra_stats.eberr);
2700 		netif_dbg(priv, rx_err, dev, "bus error\n");
2701 	}
2702 	if (events & IEVENT_RXC)
2703 		netif_dbg(priv, rx_status, dev, "control frame\n");
2704 
2705 	if (events & IEVENT_BABT) {
2706 		atomic64_inc(&priv->extra_stats.tx_babt);
2707 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2708 	}
2709 	return IRQ_HANDLED;
2710 }
2711 
2712 /* The interrupt handler for devices with one interrupt */
2713 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2714 {
2715 	struct gfar_priv_grp *gfargrp = grp_id;
2716 
2717 	/* Save ievent for future reference */
2718 	u32 events = gfar_read(&gfargrp->regs->ievent);
2719 
2720 	/* Check for reception */
2721 	if (events & IEVENT_RX_MASK)
2722 		gfar_receive(irq, grp_id);
2723 
2724 	/* Check for transmit completion */
2725 	if (events & IEVENT_TX_MASK)
2726 		gfar_transmit(irq, grp_id);
2727 
2728 	/* Check for errors */
2729 	if (events & IEVENT_ERR_MASK)
2730 		gfar_error(irq, grp_id);
2731 
2732 	return IRQ_HANDLED;
2733 }
2734 
2735 #ifdef CONFIG_NET_POLL_CONTROLLER
2736 /* Polling 'interrupt' - used by things like netconsole to send skbs
2737  * without having to re-enable interrupts. It's not called while
2738  * the interrupt routine is executing.
2739  */
2740 static void gfar_netpoll(struct net_device *dev)
2741 {
2742 	struct gfar_private *priv = netdev_priv(dev);
2743 	int i;
2744 
2745 	/* If the device has multiple interrupts, run tx/rx */
2746 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2747 		for (i = 0; i < priv->num_grps; i++) {
2748 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2749 
2750 			disable_irq(gfar_irq(grp, TX)->irq);
2751 			disable_irq(gfar_irq(grp, RX)->irq);
2752 			disable_irq(gfar_irq(grp, ER)->irq);
2753 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2754 			enable_irq(gfar_irq(grp, ER)->irq);
2755 			enable_irq(gfar_irq(grp, RX)->irq);
2756 			enable_irq(gfar_irq(grp, TX)->irq);
2757 		}
2758 	} else {
2759 		for (i = 0; i < priv->num_grps; i++) {
2760 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2761 
2762 			disable_irq(gfar_irq(grp, TX)->irq);
2763 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2764 			enable_irq(gfar_irq(grp, TX)->irq);
2765 		}
2766 	}
2767 }
2768 #endif
2769 
2770 static void free_grp_irqs(struct gfar_priv_grp *grp)
2771 {
2772 	free_irq(gfar_irq(grp, TX)->irq, grp);
2773 	free_irq(gfar_irq(grp, RX)->irq, grp);
2774 	free_irq(gfar_irq(grp, ER)->irq, grp);
2775 }
2776 
2777 static int register_grp_irqs(struct gfar_priv_grp *grp)
2778 {
2779 	struct gfar_private *priv = grp->priv;
2780 	struct net_device *dev = priv->ndev;
2781 	int err;
2782 
2783 	/* If the device has multiple interrupts, register for
2784 	 * them.  Otherwise, only register for the one
2785 	 */
2786 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2787 		/* Install our interrupt handlers for Error,
2788 		 * Transmit, and Receive
2789 		 */
2790 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2791 				  gfar_irq(grp, ER)->name, grp);
2792 		if (err < 0) {
2793 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2794 				  gfar_irq(grp, ER)->irq);
2795 
2796 			goto err_irq_fail;
2797 		}
2798 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2799 
2800 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2801 				  gfar_irq(grp, TX)->name, grp);
2802 		if (err < 0) {
2803 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2804 				  gfar_irq(grp, TX)->irq);
2805 			goto tx_irq_fail;
2806 		}
2807 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2808 				  gfar_irq(grp, RX)->name, grp);
2809 		if (err < 0) {
2810 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2811 				  gfar_irq(grp, RX)->irq);
2812 			goto rx_irq_fail;
2813 		}
2814 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2815 
2816 	} else {
2817 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2818 				  gfar_irq(grp, TX)->name, grp);
2819 		if (err < 0) {
2820 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2821 				  gfar_irq(grp, TX)->irq);
2822 			goto err_irq_fail;
2823 		}
2824 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2825 	}
2826 
2827 	return 0;
2828 
2829 rx_irq_fail:
2830 	free_irq(gfar_irq(grp, TX)->irq, grp);
2831 tx_irq_fail:
2832 	free_irq(gfar_irq(grp, ER)->irq, grp);
2833 err_irq_fail:
2834 	return err;
2835 
2836 }
2837 
2838 static void gfar_free_irq(struct gfar_private *priv)
2839 {
2840 	int i;
2841 
2842 	/* Free the IRQs */
2843 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2844 		for (i = 0; i < priv->num_grps; i++)
2845 			free_grp_irqs(&priv->gfargrp[i]);
2846 	} else {
2847 		for (i = 0; i < priv->num_grps; i++)
2848 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2849 				 &priv->gfargrp[i]);
2850 	}
2851 }
2852 
2853 static int gfar_request_irq(struct gfar_private *priv)
2854 {
2855 	int err, i, j;
2856 
2857 	for (i = 0; i < priv->num_grps; i++) {
2858 		err = register_grp_irqs(&priv->gfargrp[i]);
2859 		if (err) {
2860 			for (j = 0; j < i; j++)
2861 				free_grp_irqs(&priv->gfargrp[j]);
2862 			return err;
2863 		}
2864 	}
2865 
2866 	return 0;
2867 }
2868 
2869 /* Called when something needs to use the ethernet device
2870  * Returns 0 for success.
2871  */
2872 static int gfar_enet_open(struct net_device *dev)
2873 {
2874 	struct gfar_private *priv = netdev_priv(dev);
2875 	int err;
2876 
2877 	err = init_phy(dev);
2878 	if (err)
2879 		return err;
2880 
2881 	err = gfar_request_irq(priv);
2882 	if (err)
2883 		return err;
2884 
2885 	err = startup_gfar(dev);
2886 	if (err)
2887 		return err;
2888 
2889 	return err;
2890 }
2891 
2892 /* Stops the kernel queue, and halts the controller */
2893 static int gfar_close(struct net_device *dev)
2894 {
2895 	struct gfar_private *priv = netdev_priv(dev);
2896 
2897 	cancel_work_sync(&priv->reset_task);
2898 	stop_gfar(dev);
2899 
2900 	/* Disconnect from the PHY */
2901 	phy_disconnect(dev->phydev);
2902 
2903 	gfar_free_irq(priv);
2904 
2905 	return 0;
2906 }
2907 
2908 /* Clears each of the exact match registers to zero, so they
2909  * don't interfere with normal reception
2910  */
2911 static void gfar_clear_exact_match(struct net_device *dev)
2912 {
2913 	int idx;
2914 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2915 
2916 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2917 		gfar_set_mac_for_addr(dev, idx, zero_arr);
2918 }
2919 
2920 /* Update the hash table based on the current list of multicast
2921  * addresses we subscribe to.  Also, change the promiscuity of
2922  * the device based on the flags (this function is called
2923  * whenever dev->flags is changed
2924  */
2925 static void gfar_set_multi(struct net_device *dev)
2926 {
2927 	struct netdev_hw_addr *ha;
2928 	struct gfar_private *priv = netdev_priv(dev);
2929 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2930 	u32 tempval;
2931 
2932 	if (dev->flags & IFF_PROMISC) {
2933 		/* Set RCTRL to PROM */
2934 		tempval = gfar_read(&regs->rctrl);
2935 		tempval |= RCTRL_PROM;
2936 		gfar_write(&regs->rctrl, tempval);
2937 	} else {
2938 		/* Set RCTRL to not PROM */
2939 		tempval = gfar_read(&regs->rctrl);
2940 		tempval &= ~(RCTRL_PROM);
2941 		gfar_write(&regs->rctrl, tempval);
2942 	}
2943 
2944 	if (dev->flags & IFF_ALLMULTI) {
2945 		/* Set the hash to rx all multicast frames */
2946 		gfar_write(&regs->igaddr0, 0xffffffff);
2947 		gfar_write(&regs->igaddr1, 0xffffffff);
2948 		gfar_write(&regs->igaddr2, 0xffffffff);
2949 		gfar_write(&regs->igaddr3, 0xffffffff);
2950 		gfar_write(&regs->igaddr4, 0xffffffff);
2951 		gfar_write(&regs->igaddr5, 0xffffffff);
2952 		gfar_write(&regs->igaddr6, 0xffffffff);
2953 		gfar_write(&regs->igaddr7, 0xffffffff);
2954 		gfar_write(&regs->gaddr0, 0xffffffff);
2955 		gfar_write(&regs->gaddr1, 0xffffffff);
2956 		gfar_write(&regs->gaddr2, 0xffffffff);
2957 		gfar_write(&regs->gaddr3, 0xffffffff);
2958 		gfar_write(&regs->gaddr4, 0xffffffff);
2959 		gfar_write(&regs->gaddr5, 0xffffffff);
2960 		gfar_write(&regs->gaddr6, 0xffffffff);
2961 		gfar_write(&regs->gaddr7, 0xffffffff);
2962 	} else {
2963 		int em_num;
2964 		int idx;
2965 
2966 		/* zero out the hash */
2967 		gfar_write(&regs->igaddr0, 0x0);
2968 		gfar_write(&regs->igaddr1, 0x0);
2969 		gfar_write(&regs->igaddr2, 0x0);
2970 		gfar_write(&regs->igaddr3, 0x0);
2971 		gfar_write(&regs->igaddr4, 0x0);
2972 		gfar_write(&regs->igaddr5, 0x0);
2973 		gfar_write(&regs->igaddr6, 0x0);
2974 		gfar_write(&regs->igaddr7, 0x0);
2975 		gfar_write(&regs->gaddr0, 0x0);
2976 		gfar_write(&regs->gaddr1, 0x0);
2977 		gfar_write(&regs->gaddr2, 0x0);
2978 		gfar_write(&regs->gaddr3, 0x0);
2979 		gfar_write(&regs->gaddr4, 0x0);
2980 		gfar_write(&regs->gaddr5, 0x0);
2981 		gfar_write(&regs->gaddr6, 0x0);
2982 		gfar_write(&regs->gaddr7, 0x0);
2983 
2984 		/* If we have extended hash tables, we need to
2985 		 * clear the exact match registers to prepare for
2986 		 * setting them
2987 		 */
2988 		if (priv->extended_hash) {
2989 			em_num = GFAR_EM_NUM + 1;
2990 			gfar_clear_exact_match(dev);
2991 			idx = 1;
2992 		} else {
2993 			idx = 0;
2994 			em_num = 0;
2995 		}
2996 
2997 		if (netdev_mc_empty(dev))
2998 			return;
2999 
3000 		/* Parse the list, and set the appropriate bits */
3001 		netdev_for_each_mc_addr(ha, dev) {
3002 			if (idx < em_num) {
3003 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3004 				idx++;
3005 			} else
3006 				gfar_set_hash_for_addr(dev, ha->addr);
3007 		}
3008 	}
3009 }
3010 
3011 void gfar_mac_reset(struct gfar_private *priv)
3012 {
3013 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3014 	u32 tempval;
3015 
3016 	/* Reset MAC layer */
3017 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3018 
3019 	/* We need to delay at least 3 TX clocks */
3020 	udelay(3);
3021 
3022 	/* the soft reset bit is not self-resetting, so we need to
3023 	 * clear it before resuming normal operation
3024 	 */
3025 	gfar_write(&regs->maccfg1, 0);
3026 
3027 	udelay(3);
3028 
3029 	gfar_rx_offload_en(priv);
3030 
3031 	/* Initialize the max receive frame/buffer lengths */
3032 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3033 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3034 
3035 	/* Initialize the Minimum Frame Length Register */
3036 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3037 
3038 	/* Initialize MACCFG2. */
3039 	tempval = MACCFG2_INIT_SETTINGS;
3040 
3041 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3042 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3043 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3044 	 */
3045 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3046 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3047 
3048 	gfar_write(&regs->maccfg2, tempval);
3049 
3050 	/* Clear mac addr hash registers */
3051 	gfar_write(&regs->igaddr0, 0);
3052 	gfar_write(&regs->igaddr1, 0);
3053 	gfar_write(&regs->igaddr2, 0);
3054 	gfar_write(&regs->igaddr3, 0);
3055 	gfar_write(&regs->igaddr4, 0);
3056 	gfar_write(&regs->igaddr5, 0);
3057 	gfar_write(&regs->igaddr6, 0);
3058 	gfar_write(&regs->igaddr7, 0);
3059 
3060 	gfar_write(&regs->gaddr0, 0);
3061 	gfar_write(&regs->gaddr1, 0);
3062 	gfar_write(&regs->gaddr2, 0);
3063 	gfar_write(&regs->gaddr3, 0);
3064 	gfar_write(&regs->gaddr4, 0);
3065 	gfar_write(&regs->gaddr5, 0);
3066 	gfar_write(&regs->gaddr6, 0);
3067 	gfar_write(&regs->gaddr7, 0);
3068 
3069 	if (priv->extended_hash)
3070 		gfar_clear_exact_match(priv->ndev);
3071 
3072 	gfar_mac_rx_config(priv);
3073 
3074 	gfar_mac_tx_config(priv);
3075 
3076 	gfar_set_mac_address(priv->ndev);
3077 
3078 	gfar_set_multi(priv->ndev);
3079 
3080 	/* clear ievent and imask before configuring coalescing */
3081 	gfar_ints_disable(priv);
3082 
3083 	/* Configure the coalescing support */
3084 	gfar_configure_coalescing_all(priv);
3085 }
3086 
3087 static void gfar_hw_init(struct gfar_private *priv)
3088 {
3089 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3090 	u32 attrs;
3091 
3092 	/* Stop the DMA engine now, in case it was running before
3093 	 * (The firmware could have used it, and left it running).
3094 	 */
3095 	gfar_halt(priv);
3096 
3097 	gfar_mac_reset(priv);
3098 
3099 	/* Zero out the rmon mib registers if it has them */
3100 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3101 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3102 
3103 		/* Mask off the CAM interrupts */
3104 		gfar_write(&regs->rmon.cam1, 0xffffffff);
3105 		gfar_write(&regs->rmon.cam2, 0xffffffff);
3106 	}
3107 
3108 	/* Initialize ECNTRL */
3109 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3110 
3111 	/* Set the extraction length and index */
3112 	attrs = ATTRELI_EL(priv->rx_stash_size) |
3113 		ATTRELI_EI(priv->rx_stash_index);
3114 
3115 	gfar_write(&regs->attreli, attrs);
3116 
3117 	/* Start with defaults, and add stashing
3118 	 * depending on driver parameters
3119 	 */
3120 	attrs = ATTR_INIT_SETTINGS;
3121 
3122 	if (priv->bd_stash_en)
3123 		attrs |= ATTR_BDSTASH;
3124 
3125 	if (priv->rx_stash_size != 0)
3126 		attrs |= ATTR_BUFSTASH;
3127 
3128 	gfar_write(&regs->attr, attrs);
3129 
3130 	/* FIFO configs */
3131 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3132 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3133 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3134 
3135 	/* Program the interrupt steering regs, only for MG devices */
3136 	if (priv->num_grps > 1)
3137 		gfar_write_isrg(priv);
3138 }
3139 
3140 static const struct net_device_ops gfar_netdev_ops = {
3141 	.ndo_open = gfar_enet_open,
3142 	.ndo_start_xmit = gfar_start_xmit,
3143 	.ndo_stop = gfar_close,
3144 	.ndo_change_mtu = gfar_change_mtu,
3145 	.ndo_set_features = gfar_set_features,
3146 	.ndo_set_rx_mode = gfar_set_multi,
3147 	.ndo_tx_timeout = gfar_timeout,
3148 	.ndo_do_ioctl = gfar_ioctl,
3149 	.ndo_get_stats64 = gfar_get_stats64,
3150 	.ndo_change_carrier = fixed_phy_change_carrier,
3151 	.ndo_set_mac_address = gfar_set_mac_addr,
3152 	.ndo_validate_addr = eth_validate_addr,
3153 #ifdef CONFIG_NET_POLL_CONTROLLER
3154 	.ndo_poll_controller = gfar_netpoll,
3155 #endif
3156 };
3157 
3158 /* Set up the ethernet device structure, private data,
3159  * and anything else we need before we start
3160  */
3161 static int gfar_probe(struct platform_device *ofdev)
3162 {
3163 	struct device_node *np = ofdev->dev.of_node;
3164 	struct net_device *dev = NULL;
3165 	struct gfar_private *priv = NULL;
3166 	int err = 0, i;
3167 
3168 	err = gfar_of_init(ofdev, &dev);
3169 
3170 	if (err)
3171 		return err;
3172 
3173 	priv = netdev_priv(dev);
3174 	priv->ndev = dev;
3175 	priv->ofdev = ofdev;
3176 	priv->dev = &ofdev->dev;
3177 	SET_NETDEV_DEV(dev, &ofdev->dev);
3178 
3179 	INIT_WORK(&priv->reset_task, gfar_reset_task);
3180 
3181 	platform_set_drvdata(ofdev, priv);
3182 
3183 	gfar_detect_errata(priv);
3184 
3185 	/* Set the dev->base_addr to the gfar reg region */
3186 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3187 
3188 	/* Fill in the dev structure */
3189 	dev->watchdog_timeo = TX_TIMEOUT;
3190 	/* MTU range: 50 - 9586 */
3191 	dev->mtu = 1500;
3192 	dev->min_mtu = 50;
3193 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3194 	dev->netdev_ops = &gfar_netdev_ops;
3195 	dev->ethtool_ops = &gfar_ethtool_ops;
3196 
3197 	/* Register for napi ...We are registering NAPI for each grp */
3198 	for (i = 0; i < priv->num_grps; i++) {
3199 		netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3200 			       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3201 		netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3202 				  gfar_poll_tx_sq, 2);
3203 	}
3204 
3205 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3206 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3207 				   NETIF_F_RXCSUM;
3208 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3209 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3210 	}
3211 
3212 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3213 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3214 				    NETIF_F_HW_VLAN_CTAG_RX;
3215 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3216 	}
3217 
3218 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3219 
3220 	gfar_init_addr_hash_table(priv);
3221 
3222 	/* Insert receive time stamps into padding alignment bytes, and
3223 	 * plus 2 bytes padding to ensure the cpu alignment.
3224 	 */
3225 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3226 		priv->padding = 8 + DEFAULT_PADDING;
3227 
3228 	if (dev->features & NETIF_F_IP_CSUM ||
3229 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3230 		dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3231 
3232 	/* Initializing some of the rx/tx queue level parameters */
3233 	for (i = 0; i < priv->num_tx_queues; i++) {
3234 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3235 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3236 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3237 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3238 	}
3239 
3240 	for (i = 0; i < priv->num_rx_queues; i++) {
3241 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3242 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3243 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3244 	}
3245 
3246 	/* Always enable rx filer if available */
3247 	priv->rx_filer_enable =
3248 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3249 	/* Enable most messages by default */
3250 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3251 	/* use pritority h/w tx queue scheduling for single queue devices */
3252 	if (priv->num_tx_queues == 1)
3253 		priv->prio_sched_en = 1;
3254 
3255 	set_bit(GFAR_DOWN, &priv->state);
3256 
3257 	gfar_hw_init(priv);
3258 
3259 	/* Carrier starts down, phylib will bring it up */
3260 	netif_carrier_off(dev);
3261 
3262 	err = register_netdev(dev);
3263 
3264 	if (err) {
3265 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3266 		goto register_fail;
3267 	}
3268 
3269 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3270 		priv->wol_supported |= GFAR_WOL_MAGIC;
3271 
3272 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3273 	    priv->rx_filer_enable)
3274 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3275 
3276 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3277 
3278 	/* fill out IRQ number and name fields */
3279 	for (i = 0; i < priv->num_grps; i++) {
3280 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3281 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3282 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3283 				dev->name, "_g", '0' + i, "_tx");
3284 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3285 				dev->name, "_g", '0' + i, "_rx");
3286 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3287 				dev->name, "_g", '0' + i, "_er");
3288 		} else
3289 			strcpy(gfar_irq(grp, TX)->name, dev->name);
3290 	}
3291 
3292 	/* Initialize the filer table */
3293 	gfar_init_filer_table(priv);
3294 
3295 	/* Print out the device info */
3296 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3297 
3298 	/* Even more device info helps when determining which kernel
3299 	 * provided which set of benchmarks.
3300 	 */
3301 	netdev_info(dev, "Running with NAPI enabled\n");
3302 	for (i = 0; i < priv->num_rx_queues; i++)
3303 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3304 			    i, priv->rx_queue[i]->rx_ring_size);
3305 	for (i = 0; i < priv->num_tx_queues; i++)
3306 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3307 			    i, priv->tx_queue[i]->tx_ring_size);
3308 
3309 	return 0;
3310 
3311 register_fail:
3312 	if (of_phy_is_fixed_link(np))
3313 		of_phy_deregister_fixed_link(np);
3314 	unmap_group_regs(priv);
3315 	gfar_free_rx_queues(priv);
3316 	gfar_free_tx_queues(priv);
3317 	of_node_put(priv->phy_node);
3318 	of_node_put(priv->tbi_node);
3319 	free_gfar_dev(priv);
3320 	return err;
3321 }
3322 
3323 static int gfar_remove(struct platform_device *ofdev)
3324 {
3325 	struct gfar_private *priv = platform_get_drvdata(ofdev);
3326 	struct device_node *np = ofdev->dev.of_node;
3327 
3328 	of_node_put(priv->phy_node);
3329 	of_node_put(priv->tbi_node);
3330 
3331 	unregister_netdev(priv->ndev);
3332 
3333 	if (of_phy_is_fixed_link(np))
3334 		of_phy_deregister_fixed_link(np);
3335 
3336 	unmap_group_regs(priv);
3337 	gfar_free_rx_queues(priv);
3338 	gfar_free_tx_queues(priv);
3339 	free_gfar_dev(priv);
3340 
3341 	return 0;
3342 }
3343 
3344 #ifdef CONFIG_PM
3345 
3346 static void __gfar_filer_disable(struct gfar_private *priv)
3347 {
3348 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3349 	u32 temp;
3350 
3351 	temp = gfar_read(&regs->rctrl);
3352 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3353 	gfar_write(&regs->rctrl, temp);
3354 }
3355 
3356 static void __gfar_filer_enable(struct gfar_private *priv)
3357 {
3358 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3359 	u32 temp;
3360 
3361 	temp = gfar_read(&regs->rctrl);
3362 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3363 	gfar_write(&regs->rctrl, temp);
3364 }
3365 
3366 /* Filer rules implementing wol capabilities */
3367 static void gfar_filer_config_wol(struct gfar_private *priv)
3368 {
3369 	unsigned int i;
3370 	u32 rqfcr;
3371 
3372 	__gfar_filer_disable(priv);
3373 
3374 	/* clear the filer table, reject any packet by default */
3375 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3376 	for (i = 0; i <= MAX_FILER_IDX; i++)
3377 		gfar_write_filer(priv, i, rqfcr, 0);
3378 
3379 	i = 0;
3380 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3381 		/* unicast packet, accept it */
3382 		struct net_device *ndev = priv->ndev;
3383 		/* get the default rx queue index */
3384 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3385 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3386 				    (ndev->dev_addr[1] << 8) |
3387 				     ndev->dev_addr[2];
3388 
3389 		rqfcr = (qindex << 10) | RQFCR_AND |
3390 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3391 
3392 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3393 
3394 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3395 				(ndev->dev_addr[4] << 8) |
3396 				 ndev->dev_addr[5];
3397 		rqfcr = (qindex << 10) | RQFCR_GPI |
3398 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3399 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3400 	}
3401 
3402 	__gfar_filer_enable(priv);
3403 }
3404 
3405 static void gfar_filer_restore_table(struct gfar_private *priv)
3406 {
3407 	u32 rqfcr, rqfpr;
3408 	unsigned int i;
3409 
3410 	__gfar_filer_disable(priv);
3411 
3412 	for (i = 0; i <= MAX_FILER_IDX; i++) {
3413 		rqfcr = priv->ftp_rqfcr[i];
3414 		rqfpr = priv->ftp_rqfpr[i];
3415 		gfar_write_filer(priv, i, rqfcr, rqfpr);
3416 	}
3417 
3418 	__gfar_filer_enable(priv);
3419 }
3420 
3421 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3422 static void gfar_start_wol_filer(struct gfar_private *priv)
3423 {
3424 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3425 	u32 tempval;
3426 	int i = 0;
3427 
3428 	/* Enable Rx hw queues */
3429 	gfar_write(&regs->rqueue, priv->rqueue);
3430 
3431 	/* Initialize DMACTRL to have WWR and WOP */
3432 	tempval = gfar_read(&regs->dmactrl);
3433 	tempval |= DMACTRL_INIT_SETTINGS;
3434 	gfar_write(&regs->dmactrl, tempval);
3435 
3436 	/* Make sure we aren't stopped */
3437 	tempval = gfar_read(&regs->dmactrl);
3438 	tempval &= ~DMACTRL_GRS;
3439 	gfar_write(&regs->dmactrl, tempval);
3440 
3441 	for (i = 0; i < priv->num_grps; i++) {
3442 		regs = priv->gfargrp[i].regs;
3443 		/* Clear RHLT, so that the DMA starts polling now */
3444 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3445 		/* enable the Filer General Purpose Interrupt */
3446 		gfar_write(&regs->imask, IMASK_FGPI);
3447 	}
3448 
3449 	/* Enable Rx DMA */
3450 	tempval = gfar_read(&regs->maccfg1);
3451 	tempval |= MACCFG1_RX_EN;
3452 	gfar_write(&regs->maccfg1, tempval);
3453 }
3454 
3455 static int gfar_suspend(struct device *dev)
3456 {
3457 	struct gfar_private *priv = dev_get_drvdata(dev);
3458 	struct net_device *ndev = priv->ndev;
3459 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3460 	u32 tempval;
3461 	u16 wol = priv->wol_opts;
3462 
3463 	if (!netif_running(ndev))
3464 		return 0;
3465 
3466 	disable_napi(priv);
3467 	netif_tx_lock(ndev);
3468 	netif_device_detach(ndev);
3469 	netif_tx_unlock(ndev);
3470 
3471 	gfar_halt(priv);
3472 
3473 	if (wol & GFAR_WOL_MAGIC) {
3474 		/* Enable interrupt on Magic Packet */
3475 		gfar_write(&regs->imask, IMASK_MAG);
3476 
3477 		/* Enable Magic Packet mode */
3478 		tempval = gfar_read(&regs->maccfg2);
3479 		tempval |= MACCFG2_MPEN;
3480 		gfar_write(&regs->maccfg2, tempval);
3481 
3482 		/* re-enable the Rx block */
3483 		tempval = gfar_read(&regs->maccfg1);
3484 		tempval |= MACCFG1_RX_EN;
3485 		gfar_write(&regs->maccfg1, tempval);
3486 
3487 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3488 		gfar_filer_config_wol(priv);
3489 		gfar_start_wol_filer(priv);
3490 
3491 	} else {
3492 		phy_stop(ndev->phydev);
3493 	}
3494 
3495 	return 0;
3496 }
3497 
3498 static int gfar_resume(struct device *dev)
3499 {
3500 	struct gfar_private *priv = dev_get_drvdata(dev);
3501 	struct net_device *ndev = priv->ndev;
3502 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3503 	u32 tempval;
3504 	u16 wol = priv->wol_opts;
3505 
3506 	if (!netif_running(ndev))
3507 		return 0;
3508 
3509 	if (wol & GFAR_WOL_MAGIC) {
3510 		/* Disable Magic Packet mode */
3511 		tempval = gfar_read(&regs->maccfg2);
3512 		tempval &= ~MACCFG2_MPEN;
3513 		gfar_write(&regs->maccfg2, tempval);
3514 
3515 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3516 		/* need to stop rx only, tx is already down */
3517 		gfar_halt(priv);
3518 		gfar_filer_restore_table(priv);
3519 
3520 	} else {
3521 		phy_start(ndev->phydev);
3522 	}
3523 
3524 	gfar_start(priv);
3525 
3526 	netif_device_attach(ndev);
3527 	enable_napi(priv);
3528 
3529 	return 0;
3530 }
3531 
3532 static int gfar_restore(struct device *dev)
3533 {
3534 	struct gfar_private *priv = dev_get_drvdata(dev);
3535 	struct net_device *ndev = priv->ndev;
3536 
3537 	if (!netif_running(ndev)) {
3538 		netif_device_attach(ndev);
3539 
3540 		return 0;
3541 	}
3542 
3543 	gfar_init_bds(ndev);
3544 
3545 	gfar_mac_reset(priv);
3546 
3547 	gfar_init_tx_rx_base(priv);
3548 
3549 	gfar_start(priv);
3550 
3551 	priv->oldlink = 0;
3552 	priv->oldspeed = 0;
3553 	priv->oldduplex = -1;
3554 
3555 	if (ndev->phydev)
3556 		phy_start(ndev->phydev);
3557 
3558 	netif_device_attach(ndev);
3559 	enable_napi(priv);
3560 
3561 	return 0;
3562 }
3563 
3564 static const struct dev_pm_ops gfar_pm_ops = {
3565 	.suspend = gfar_suspend,
3566 	.resume = gfar_resume,
3567 	.freeze = gfar_suspend,
3568 	.thaw = gfar_resume,
3569 	.restore = gfar_restore,
3570 };
3571 
3572 #define GFAR_PM_OPS (&gfar_pm_ops)
3573 
3574 #else
3575 
3576 #define GFAR_PM_OPS NULL
3577 
3578 #endif
3579 
3580 static const struct of_device_id gfar_match[] =
3581 {
3582 	{
3583 		.type = "network",
3584 		.compatible = "gianfar",
3585 	},
3586 	{
3587 		.compatible = "fsl,etsec2",
3588 	},
3589 	{},
3590 };
3591 MODULE_DEVICE_TABLE(of, gfar_match);
3592 
3593 /* Structure for a device driver */
3594 static struct platform_driver gfar_driver = {
3595 	.driver = {
3596 		.name = "fsl-gianfar",
3597 		.pm = GFAR_PM_OPS,
3598 		.of_match_table = gfar_match,
3599 	},
3600 	.probe = gfar_probe,
3601 	.remove = gfar_remove,
3602 };
3603 
3604 module_platform_driver(gfar_driver);
3605