1 /* drivers/net/ethernet/freescale/gianfar.c 2 * 3 * Gianfar Ethernet Driver 4 * This driver is designed for the non-CPM ethernet controllers 5 * on the 85xx and 83xx family of integrated processors 6 * Based on 8260_io/fcc_enet.c 7 * 8 * Author: Andy Fleming 9 * Maintainer: Kumar Gala 10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 11 * 12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 13 * Copyright 2007 MontaVista Software, Inc. 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 * 20 * Gianfar: AKA Lambda Draconis, "Dragon" 21 * RA 11 31 24.2 22 * Dec +69 19 52 23 * V 3.84 24 * B-V +1.62 25 * 26 * Theory of operation 27 * 28 * The driver is initialized through of_device. Configuration information 29 * is therefore conveyed through an OF-style device tree. 30 * 31 * The Gianfar Ethernet Controller uses a ring of buffer 32 * descriptors. The beginning is indicated by a register 33 * pointing to the physical address of the start of the ring. 34 * The end is determined by a "wrap" bit being set in the 35 * last descriptor of the ring. 36 * 37 * When a packet is received, the RXF bit in the 38 * IEVENT register is set, triggering an interrupt when the 39 * corresponding bit in the IMASK register is also set (if 40 * interrupt coalescing is active, then the interrupt may not 41 * happen immediately, but will wait until either a set number 42 * of frames or amount of time have passed). In NAPI, the 43 * interrupt handler will signal there is work to be done, and 44 * exit. This method will start at the last known empty 45 * descriptor, and process every subsequent descriptor until there 46 * are none left with data (NAPI will stop after a set number of 47 * packets to give time to other tasks, but will eventually 48 * process all the packets). The data arrives inside a 49 * pre-allocated skb, and so after the skb is passed up to the 50 * stack, a new skb must be allocated, and the address field in 51 * the buffer descriptor must be updated to indicate this new 52 * skb. 53 * 54 * When the kernel requests that a packet be transmitted, the 55 * driver starts where it left off last time, and points the 56 * descriptor at the buffer which was passed in. The driver 57 * then informs the DMA engine that there are packets ready to 58 * be transmitted. Once the controller is finished transmitting 59 * the packet, an interrupt may be triggered (under the same 60 * conditions as for reception, but depending on the TXF bit). 61 * The driver then cleans up the buffer. 62 */ 63 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 65 #define DEBUG 66 67 #include <linux/kernel.h> 68 #include <linux/string.h> 69 #include <linux/errno.h> 70 #include <linux/unistd.h> 71 #include <linux/slab.h> 72 #include <linux/interrupt.h> 73 #include <linux/delay.h> 74 #include <linux/netdevice.h> 75 #include <linux/etherdevice.h> 76 #include <linux/skbuff.h> 77 #include <linux/if_vlan.h> 78 #include <linux/spinlock.h> 79 #include <linux/mm.h> 80 #include <linux/of_address.h> 81 #include <linux/of_irq.h> 82 #include <linux/of_mdio.h> 83 #include <linux/of_platform.h> 84 #include <linux/ip.h> 85 #include <linux/tcp.h> 86 #include <linux/udp.h> 87 #include <linux/in.h> 88 #include <linux/net_tstamp.h> 89 90 #include <asm/io.h> 91 #include <asm/reg.h> 92 #include <asm/mpc85xx.h> 93 #include <asm/irq.h> 94 #include <asm/uaccess.h> 95 #include <linux/module.h> 96 #include <linux/dma-mapping.h> 97 #include <linux/crc32.h> 98 #include <linux/mii.h> 99 #include <linux/phy.h> 100 #include <linux/phy_fixed.h> 101 #include <linux/of.h> 102 #include <linux/of_net.h> 103 104 #include "gianfar.h" 105 106 #define TX_TIMEOUT (1*HZ) 107 108 const char gfar_driver_version[] = "1.3"; 109 110 static int gfar_enet_open(struct net_device *dev); 111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); 112 static void gfar_reset_task(struct work_struct *work); 113 static void gfar_timeout(struct net_device *dev); 114 static int gfar_close(struct net_device *dev); 115 struct sk_buff *gfar_new_skb(struct net_device *dev); 116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 117 struct sk_buff *skb); 118 static int gfar_set_mac_address(struct net_device *dev); 119 static int gfar_change_mtu(struct net_device *dev, int new_mtu); 120 static irqreturn_t gfar_error(int irq, void *dev_id); 121 static irqreturn_t gfar_transmit(int irq, void *dev_id); 122 static irqreturn_t gfar_interrupt(int irq, void *dev_id); 123 static void adjust_link(struct net_device *dev); 124 static int init_phy(struct net_device *dev); 125 static int gfar_probe(struct platform_device *ofdev); 126 static int gfar_remove(struct platform_device *ofdev); 127 static void free_skb_resources(struct gfar_private *priv); 128 static void gfar_set_multi(struct net_device *dev); 129 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); 130 static void gfar_configure_serdes(struct net_device *dev); 131 static int gfar_poll_rx(struct napi_struct *napi, int budget); 132 static int gfar_poll_tx(struct napi_struct *napi, int budget); 133 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget); 134 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget); 135 #ifdef CONFIG_NET_POLL_CONTROLLER 136 static void gfar_netpoll(struct net_device *dev); 137 #endif 138 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit); 139 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue); 140 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 141 int amount_pull, struct napi_struct *napi); 142 static void gfar_halt_nodisable(struct gfar_private *priv); 143 static void gfar_clear_exact_match(struct net_device *dev); 144 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 145 const u8 *addr); 146 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 147 148 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 149 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 150 MODULE_LICENSE("GPL"); 151 152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 153 dma_addr_t buf) 154 { 155 u32 lstatus; 156 157 bdp->bufPtr = buf; 158 159 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 160 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 161 lstatus |= BD_LFLAG(RXBD_WRAP); 162 163 eieio(); 164 165 bdp->lstatus = lstatus; 166 } 167 168 static int gfar_init_bds(struct net_device *ndev) 169 { 170 struct gfar_private *priv = netdev_priv(ndev); 171 struct gfar_priv_tx_q *tx_queue = NULL; 172 struct gfar_priv_rx_q *rx_queue = NULL; 173 struct txbd8 *txbdp; 174 struct rxbd8 *rxbdp; 175 int i, j; 176 177 for (i = 0; i < priv->num_tx_queues; i++) { 178 tx_queue = priv->tx_queue[i]; 179 /* Initialize some variables in our dev structure */ 180 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 181 tx_queue->dirty_tx = tx_queue->tx_bd_base; 182 tx_queue->cur_tx = tx_queue->tx_bd_base; 183 tx_queue->skb_curtx = 0; 184 tx_queue->skb_dirtytx = 0; 185 186 /* Initialize Transmit Descriptor Ring */ 187 txbdp = tx_queue->tx_bd_base; 188 for (j = 0; j < tx_queue->tx_ring_size; j++) { 189 txbdp->lstatus = 0; 190 txbdp->bufPtr = 0; 191 txbdp++; 192 } 193 194 /* Set the last descriptor in the ring to indicate wrap */ 195 txbdp--; 196 txbdp->status |= TXBD_WRAP; 197 } 198 199 for (i = 0; i < priv->num_rx_queues; i++) { 200 rx_queue = priv->rx_queue[i]; 201 rx_queue->cur_rx = rx_queue->rx_bd_base; 202 rx_queue->skb_currx = 0; 203 rxbdp = rx_queue->rx_bd_base; 204 205 for (j = 0; j < rx_queue->rx_ring_size; j++) { 206 struct sk_buff *skb = rx_queue->rx_skbuff[j]; 207 208 if (skb) { 209 gfar_init_rxbdp(rx_queue, rxbdp, 210 rxbdp->bufPtr); 211 } else { 212 skb = gfar_new_skb(ndev); 213 if (!skb) { 214 netdev_err(ndev, "Can't allocate RX buffers\n"); 215 return -ENOMEM; 216 } 217 rx_queue->rx_skbuff[j] = skb; 218 219 gfar_new_rxbdp(rx_queue, rxbdp, skb); 220 } 221 222 rxbdp++; 223 } 224 225 } 226 227 return 0; 228 } 229 230 static int gfar_alloc_skb_resources(struct net_device *ndev) 231 { 232 void *vaddr; 233 dma_addr_t addr; 234 int i, j, k; 235 struct gfar_private *priv = netdev_priv(ndev); 236 struct device *dev = priv->dev; 237 struct gfar_priv_tx_q *tx_queue = NULL; 238 struct gfar_priv_rx_q *rx_queue = NULL; 239 240 priv->total_tx_ring_size = 0; 241 for (i = 0; i < priv->num_tx_queues; i++) 242 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 243 244 priv->total_rx_ring_size = 0; 245 for (i = 0; i < priv->num_rx_queues; i++) 246 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 247 248 /* Allocate memory for the buffer descriptors */ 249 vaddr = dma_alloc_coherent(dev, 250 (priv->total_tx_ring_size * 251 sizeof(struct txbd8)) + 252 (priv->total_rx_ring_size * 253 sizeof(struct rxbd8)), 254 &addr, GFP_KERNEL); 255 if (!vaddr) 256 return -ENOMEM; 257 258 for (i = 0; i < priv->num_tx_queues; i++) { 259 tx_queue = priv->tx_queue[i]; 260 tx_queue->tx_bd_base = vaddr; 261 tx_queue->tx_bd_dma_base = addr; 262 tx_queue->dev = ndev; 263 /* enet DMA only understands physical addresses */ 264 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 265 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 266 } 267 268 /* Start the rx descriptor ring where the tx ring leaves off */ 269 for (i = 0; i < priv->num_rx_queues; i++) { 270 rx_queue = priv->rx_queue[i]; 271 rx_queue->rx_bd_base = vaddr; 272 rx_queue->rx_bd_dma_base = addr; 273 rx_queue->dev = ndev; 274 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 275 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 276 } 277 278 /* Setup the skbuff rings */ 279 for (i = 0; i < priv->num_tx_queues; i++) { 280 tx_queue = priv->tx_queue[i]; 281 tx_queue->tx_skbuff = 282 kmalloc_array(tx_queue->tx_ring_size, 283 sizeof(*tx_queue->tx_skbuff), 284 GFP_KERNEL); 285 if (!tx_queue->tx_skbuff) 286 goto cleanup; 287 288 for (k = 0; k < tx_queue->tx_ring_size; k++) 289 tx_queue->tx_skbuff[k] = NULL; 290 } 291 292 for (i = 0; i < priv->num_rx_queues; i++) { 293 rx_queue = priv->rx_queue[i]; 294 rx_queue->rx_skbuff = 295 kmalloc_array(rx_queue->rx_ring_size, 296 sizeof(*rx_queue->rx_skbuff), 297 GFP_KERNEL); 298 if (!rx_queue->rx_skbuff) 299 goto cleanup; 300 301 for (j = 0; j < rx_queue->rx_ring_size; j++) 302 rx_queue->rx_skbuff[j] = NULL; 303 } 304 305 if (gfar_init_bds(ndev)) 306 goto cleanup; 307 308 return 0; 309 310 cleanup: 311 free_skb_resources(priv); 312 return -ENOMEM; 313 } 314 315 static void gfar_init_tx_rx_base(struct gfar_private *priv) 316 { 317 struct gfar __iomem *regs = priv->gfargrp[0].regs; 318 u32 __iomem *baddr; 319 int i; 320 321 baddr = ®s->tbase0; 322 for (i = 0; i < priv->num_tx_queues; i++) { 323 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 324 baddr += 2; 325 } 326 327 baddr = ®s->rbase0; 328 for (i = 0; i < priv->num_rx_queues; i++) { 329 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 330 baddr += 2; 331 } 332 } 333 334 static void gfar_rx_buff_size_config(struct gfar_private *priv) 335 { 336 int frame_size = priv->ndev->mtu + ETH_HLEN; 337 338 /* set this when rx hw offload (TOE) functions are being used */ 339 priv->uses_rxfcb = 0; 340 341 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 342 priv->uses_rxfcb = 1; 343 344 if (priv->hwts_rx_en) 345 priv->uses_rxfcb = 1; 346 347 if (priv->uses_rxfcb) 348 frame_size += GMAC_FCB_LEN; 349 350 frame_size += priv->padding; 351 352 frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + 353 INCREMENTAL_BUFFER_SIZE; 354 355 priv->rx_buffer_size = frame_size; 356 } 357 358 static void gfar_mac_rx_config(struct gfar_private *priv) 359 { 360 struct gfar __iomem *regs = priv->gfargrp[0].regs; 361 u32 rctrl = 0; 362 363 if (priv->rx_filer_enable) { 364 rctrl |= RCTRL_FILREN; 365 /* Program the RIR0 reg with the required distribution */ 366 if (priv->poll_mode == GFAR_SQ_POLLING) 367 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 368 else /* GFAR_MQ_POLLING */ 369 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); 370 } 371 372 /* Restore PROMISC mode */ 373 if (priv->ndev->flags & IFF_PROMISC) 374 rctrl |= RCTRL_PROM; 375 376 if (priv->ndev->features & NETIF_F_RXCSUM) 377 rctrl |= RCTRL_CHECKSUMMING; 378 379 if (priv->extended_hash) 380 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 381 382 if (priv->padding) { 383 rctrl &= ~RCTRL_PAL_MASK; 384 rctrl |= RCTRL_PADDING(priv->padding); 385 } 386 387 /* Enable HW time stamping if requested from user space */ 388 if (priv->hwts_rx_en) 389 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 390 391 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 392 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 393 394 /* Init rctrl based on our settings */ 395 gfar_write(®s->rctrl, rctrl); 396 } 397 398 static void gfar_mac_tx_config(struct gfar_private *priv) 399 { 400 struct gfar __iomem *regs = priv->gfargrp[0].regs; 401 u32 tctrl = 0; 402 403 if (priv->ndev->features & NETIF_F_IP_CSUM) 404 tctrl |= TCTRL_INIT_CSUM; 405 406 if (priv->prio_sched_en) 407 tctrl |= TCTRL_TXSCHED_PRIO; 408 else { 409 tctrl |= TCTRL_TXSCHED_WRRS; 410 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 411 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 412 } 413 414 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 415 tctrl |= TCTRL_VLINS; 416 417 gfar_write(®s->tctrl, tctrl); 418 } 419 420 static void gfar_configure_coalescing(struct gfar_private *priv, 421 unsigned long tx_mask, unsigned long rx_mask) 422 { 423 struct gfar __iomem *regs = priv->gfargrp[0].regs; 424 u32 __iomem *baddr; 425 426 if (priv->mode == MQ_MG_MODE) { 427 int i = 0; 428 429 baddr = ®s->txic0; 430 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 431 gfar_write(baddr + i, 0); 432 if (likely(priv->tx_queue[i]->txcoalescing)) 433 gfar_write(baddr + i, priv->tx_queue[i]->txic); 434 } 435 436 baddr = ®s->rxic0; 437 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 438 gfar_write(baddr + i, 0); 439 if (likely(priv->rx_queue[i]->rxcoalescing)) 440 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 441 } 442 } else { 443 /* Backward compatible case -- even if we enable 444 * multiple queues, there's only single reg to program 445 */ 446 gfar_write(®s->txic, 0); 447 if (likely(priv->tx_queue[0]->txcoalescing)) 448 gfar_write(®s->txic, priv->tx_queue[0]->txic); 449 450 gfar_write(®s->rxic, 0); 451 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 452 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 453 } 454 } 455 456 void gfar_configure_coalescing_all(struct gfar_private *priv) 457 { 458 gfar_configure_coalescing(priv, 0xFF, 0xFF); 459 } 460 461 static struct net_device_stats *gfar_get_stats(struct net_device *dev) 462 { 463 struct gfar_private *priv = netdev_priv(dev); 464 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 465 unsigned long tx_packets = 0, tx_bytes = 0; 466 int i; 467 468 for (i = 0; i < priv->num_rx_queues; i++) { 469 rx_packets += priv->rx_queue[i]->stats.rx_packets; 470 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 471 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 472 } 473 474 dev->stats.rx_packets = rx_packets; 475 dev->stats.rx_bytes = rx_bytes; 476 dev->stats.rx_dropped = rx_dropped; 477 478 for (i = 0; i < priv->num_tx_queues; i++) { 479 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 480 tx_packets += priv->tx_queue[i]->stats.tx_packets; 481 } 482 483 dev->stats.tx_bytes = tx_bytes; 484 dev->stats.tx_packets = tx_packets; 485 486 return &dev->stats; 487 } 488 489 static const struct net_device_ops gfar_netdev_ops = { 490 .ndo_open = gfar_enet_open, 491 .ndo_start_xmit = gfar_start_xmit, 492 .ndo_stop = gfar_close, 493 .ndo_change_mtu = gfar_change_mtu, 494 .ndo_set_features = gfar_set_features, 495 .ndo_set_rx_mode = gfar_set_multi, 496 .ndo_tx_timeout = gfar_timeout, 497 .ndo_do_ioctl = gfar_ioctl, 498 .ndo_get_stats = gfar_get_stats, 499 .ndo_set_mac_address = eth_mac_addr, 500 .ndo_validate_addr = eth_validate_addr, 501 #ifdef CONFIG_NET_POLL_CONTROLLER 502 .ndo_poll_controller = gfar_netpoll, 503 #endif 504 }; 505 506 static void gfar_ints_disable(struct gfar_private *priv) 507 { 508 int i; 509 for (i = 0; i < priv->num_grps; i++) { 510 struct gfar __iomem *regs = priv->gfargrp[i].regs; 511 /* Clear IEVENT */ 512 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 513 514 /* Initialize IMASK */ 515 gfar_write(®s->imask, IMASK_INIT_CLEAR); 516 } 517 } 518 519 static void gfar_ints_enable(struct gfar_private *priv) 520 { 521 int i; 522 for (i = 0; i < priv->num_grps; i++) { 523 struct gfar __iomem *regs = priv->gfargrp[i].regs; 524 /* Unmask the interrupts we look for */ 525 gfar_write(®s->imask, IMASK_DEFAULT); 526 } 527 } 528 529 void lock_tx_qs(struct gfar_private *priv) 530 { 531 int i; 532 533 for (i = 0; i < priv->num_tx_queues; i++) 534 spin_lock(&priv->tx_queue[i]->txlock); 535 } 536 537 void unlock_tx_qs(struct gfar_private *priv) 538 { 539 int i; 540 541 for (i = 0; i < priv->num_tx_queues; i++) 542 spin_unlock(&priv->tx_queue[i]->txlock); 543 } 544 545 static int gfar_alloc_tx_queues(struct gfar_private *priv) 546 { 547 int i; 548 549 for (i = 0; i < priv->num_tx_queues; i++) { 550 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 551 GFP_KERNEL); 552 if (!priv->tx_queue[i]) 553 return -ENOMEM; 554 555 priv->tx_queue[i]->tx_skbuff = NULL; 556 priv->tx_queue[i]->qindex = i; 557 priv->tx_queue[i]->dev = priv->ndev; 558 spin_lock_init(&(priv->tx_queue[i]->txlock)); 559 } 560 return 0; 561 } 562 563 static int gfar_alloc_rx_queues(struct gfar_private *priv) 564 { 565 int i; 566 567 for (i = 0; i < priv->num_rx_queues; i++) { 568 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 569 GFP_KERNEL); 570 if (!priv->rx_queue[i]) 571 return -ENOMEM; 572 573 priv->rx_queue[i]->rx_skbuff = NULL; 574 priv->rx_queue[i]->qindex = i; 575 priv->rx_queue[i]->dev = priv->ndev; 576 } 577 return 0; 578 } 579 580 static void gfar_free_tx_queues(struct gfar_private *priv) 581 { 582 int i; 583 584 for (i = 0; i < priv->num_tx_queues; i++) 585 kfree(priv->tx_queue[i]); 586 } 587 588 static void gfar_free_rx_queues(struct gfar_private *priv) 589 { 590 int i; 591 592 for (i = 0; i < priv->num_rx_queues; i++) 593 kfree(priv->rx_queue[i]); 594 } 595 596 static void unmap_group_regs(struct gfar_private *priv) 597 { 598 int i; 599 600 for (i = 0; i < MAXGROUPS; i++) 601 if (priv->gfargrp[i].regs) 602 iounmap(priv->gfargrp[i].regs); 603 } 604 605 static void free_gfar_dev(struct gfar_private *priv) 606 { 607 int i, j; 608 609 for (i = 0; i < priv->num_grps; i++) 610 for (j = 0; j < GFAR_NUM_IRQS; j++) { 611 kfree(priv->gfargrp[i].irqinfo[j]); 612 priv->gfargrp[i].irqinfo[j] = NULL; 613 } 614 615 free_netdev(priv->ndev); 616 } 617 618 static void disable_napi(struct gfar_private *priv) 619 { 620 int i; 621 622 for (i = 0; i < priv->num_grps; i++) { 623 napi_disable(&priv->gfargrp[i].napi_rx); 624 napi_disable(&priv->gfargrp[i].napi_tx); 625 } 626 } 627 628 static void enable_napi(struct gfar_private *priv) 629 { 630 int i; 631 632 for (i = 0; i < priv->num_grps; i++) { 633 napi_enable(&priv->gfargrp[i].napi_rx); 634 napi_enable(&priv->gfargrp[i].napi_tx); 635 } 636 } 637 638 static int gfar_parse_group(struct device_node *np, 639 struct gfar_private *priv, const char *model) 640 { 641 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 642 int i; 643 644 for (i = 0; i < GFAR_NUM_IRQS; i++) { 645 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 646 GFP_KERNEL); 647 if (!grp->irqinfo[i]) 648 return -ENOMEM; 649 } 650 651 grp->regs = of_iomap(np, 0); 652 if (!grp->regs) 653 return -ENOMEM; 654 655 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 656 657 /* If we aren't the FEC we have multiple interrupts */ 658 if (model && strcasecmp(model, "FEC")) { 659 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 660 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 661 if (gfar_irq(grp, TX)->irq == NO_IRQ || 662 gfar_irq(grp, RX)->irq == NO_IRQ || 663 gfar_irq(grp, ER)->irq == NO_IRQ) 664 return -EINVAL; 665 } 666 667 grp->priv = priv; 668 spin_lock_init(&grp->grplock); 669 if (priv->mode == MQ_MG_MODE) { 670 u32 *rxq_mask, *txq_mask; 671 rxq_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL); 672 txq_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL); 673 674 if (priv->poll_mode == GFAR_SQ_POLLING) { 675 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 676 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 677 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 678 } else { /* GFAR_MQ_POLLING */ 679 grp->rx_bit_map = rxq_mask ? 680 *rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); 681 grp->tx_bit_map = txq_mask ? 682 *txq_mask : (DEFAULT_MAPPING >> priv->num_grps); 683 } 684 } else { 685 grp->rx_bit_map = 0xFF; 686 grp->tx_bit_map = 0xFF; 687 } 688 689 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 690 * right to left, so we need to revert the 8 bits to get the q index 691 */ 692 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 693 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 694 695 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 696 * also assign queues to groups 697 */ 698 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 699 if (!grp->rx_queue) 700 grp->rx_queue = priv->rx_queue[i]; 701 grp->num_rx_queues++; 702 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 703 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 704 priv->rx_queue[i]->grp = grp; 705 } 706 707 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 708 if (!grp->tx_queue) 709 grp->tx_queue = priv->tx_queue[i]; 710 grp->num_tx_queues++; 711 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 712 priv->tqueue |= (TQUEUE_EN0 >> i); 713 priv->tx_queue[i]->grp = grp; 714 } 715 716 priv->num_grps++; 717 718 return 0; 719 } 720 721 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 722 { 723 const char *model; 724 const char *ctype; 725 const void *mac_addr; 726 int err = 0, i; 727 struct net_device *dev = NULL; 728 struct gfar_private *priv = NULL; 729 struct device_node *np = ofdev->dev.of_node; 730 struct device_node *child = NULL; 731 const u32 *stash; 732 const u32 *stash_len; 733 const u32 *stash_idx; 734 unsigned int num_tx_qs, num_rx_qs; 735 u32 *tx_queues, *rx_queues; 736 737 if (!np || !of_device_is_available(np)) 738 return -ENODEV; 739 740 /* parse the num of HW tx and rx queues */ 741 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL); 742 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL); 743 744 if (priv->mode == SQ_SG_MODE) { 745 num_tx_qs = 1; 746 num_rx_qs = 1; 747 } else { /* MQ_MG_MODE */ 748 if (priv->poll_mode == GFAR_SQ_POLLING) { 749 num_tx_qs = 2; /* one q per int group */ 750 num_rx_qs = 2; /* one q per int group */ 751 } else { /* GFAR_MQ_POLLING */ 752 num_tx_qs = tx_queues ? *tx_queues : 1; 753 num_rx_qs = rx_queues ? *rx_queues : 1; 754 } 755 } 756 757 if (num_tx_qs > MAX_TX_QS) { 758 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 759 num_tx_qs, MAX_TX_QS); 760 pr_err("Cannot do alloc_etherdev, aborting\n"); 761 return -EINVAL; 762 } 763 764 if (num_rx_qs > MAX_RX_QS) { 765 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 766 num_rx_qs, MAX_RX_QS); 767 pr_err("Cannot do alloc_etherdev, aborting\n"); 768 return -EINVAL; 769 } 770 771 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 772 dev = *pdev; 773 if (NULL == dev) 774 return -ENOMEM; 775 776 priv = netdev_priv(dev); 777 priv->ndev = dev; 778 779 priv->num_tx_queues = num_tx_qs; 780 netif_set_real_num_rx_queues(dev, num_rx_qs); 781 priv->num_rx_queues = num_rx_qs; 782 783 err = gfar_alloc_tx_queues(priv); 784 if (err) 785 goto tx_alloc_failed; 786 787 err = gfar_alloc_rx_queues(priv); 788 if (err) 789 goto rx_alloc_failed; 790 791 /* Init Rx queue filer rule set linked list */ 792 INIT_LIST_HEAD(&priv->rx_list.list); 793 priv->rx_list.count = 0; 794 mutex_init(&priv->rx_queue_access); 795 796 model = of_get_property(np, "model", NULL); 797 798 for (i = 0; i < MAXGROUPS; i++) 799 priv->gfargrp[i].regs = NULL; 800 801 /* Parse and initialize group specific information */ 802 if (of_device_is_compatible(np, "fsl,etsec2")) { 803 priv->mode = MQ_MG_MODE; 804 priv->poll_mode = GFAR_SQ_POLLING; 805 for_each_child_of_node(np, child) { 806 err = gfar_parse_group(child, priv, model); 807 if (err) 808 goto err_grp_init; 809 } 810 } else { 811 priv->mode = SQ_SG_MODE; 812 priv->poll_mode = GFAR_SQ_POLLING; 813 err = gfar_parse_group(np, priv, model); 814 if (err) 815 goto err_grp_init; 816 } 817 818 stash = of_get_property(np, "bd-stash", NULL); 819 820 if (stash) { 821 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 822 priv->bd_stash_en = 1; 823 } 824 825 stash_len = of_get_property(np, "rx-stash-len", NULL); 826 827 if (stash_len) 828 priv->rx_stash_size = *stash_len; 829 830 stash_idx = of_get_property(np, "rx-stash-idx", NULL); 831 832 if (stash_idx) 833 priv->rx_stash_index = *stash_idx; 834 835 if (stash_len || stash_idx) 836 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 837 838 mac_addr = of_get_mac_address(np); 839 840 if (mac_addr) 841 memcpy(dev->dev_addr, mac_addr, ETH_ALEN); 842 843 if (model && !strcasecmp(model, "TSEC")) 844 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 845 FSL_GIANFAR_DEV_HAS_COALESCE | 846 FSL_GIANFAR_DEV_HAS_RMON | 847 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 848 849 if (model && !strcasecmp(model, "eTSEC")) 850 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 851 FSL_GIANFAR_DEV_HAS_COALESCE | 852 FSL_GIANFAR_DEV_HAS_RMON | 853 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 854 FSL_GIANFAR_DEV_HAS_CSUM | 855 FSL_GIANFAR_DEV_HAS_VLAN | 856 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 857 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 858 FSL_GIANFAR_DEV_HAS_TIMER; 859 860 ctype = of_get_property(np, "phy-connection-type", NULL); 861 862 /* We only care about rgmii-id. The rest are autodetected */ 863 if (ctype && !strcmp(ctype, "rgmii-id")) 864 priv->interface = PHY_INTERFACE_MODE_RGMII_ID; 865 else 866 priv->interface = PHY_INTERFACE_MODE_MII; 867 868 if (of_get_property(np, "fsl,magic-packet", NULL)) 869 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 870 871 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 872 873 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 874 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 875 876 return 0; 877 878 err_grp_init: 879 unmap_group_regs(priv); 880 rx_alloc_failed: 881 gfar_free_rx_queues(priv); 882 tx_alloc_failed: 883 gfar_free_tx_queues(priv); 884 free_gfar_dev(priv); 885 return err; 886 } 887 888 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 889 { 890 struct hwtstamp_config config; 891 struct gfar_private *priv = netdev_priv(netdev); 892 893 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 894 return -EFAULT; 895 896 /* reserved for future extensions */ 897 if (config.flags) 898 return -EINVAL; 899 900 switch (config.tx_type) { 901 case HWTSTAMP_TX_OFF: 902 priv->hwts_tx_en = 0; 903 break; 904 case HWTSTAMP_TX_ON: 905 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 906 return -ERANGE; 907 priv->hwts_tx_en = 1; 908 break; 909 default: 910 return -ERANGE; 911 } 912 913 switch (config.rx_filter) { 914 case HWTSTAMP_FILTER_NONE: 915 if (priv->hwts_rx_en) { 916 priv->hwts_rx_en = 0; 917 reset_gfar(netdev); 918 } 919 break; 920 default: 921 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 922 return -ERANGE; 923 if (!priv->hwts_rx_en) { 924 priv->hwts_rx_en = 1; 925 reset_gfar(netdev); 926 } 927 config.rx_filter = HWTSTAMP_FILTER_ALL; 928 break; 929 } 930 931 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 932 -EFAULT : 0; 933 } 934 935 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 936 { 937 struct hwtstamp_config config; 938 struct gfar_private *priv = netdev_priv(netdev); 939 940 config.flags = 0; 941 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 942 config.rx_filter = (priv->hwts_rx_en ? 943 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 944 945 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 946 -EFAULT : 0; 947 } 948 949 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 950 { 951 struct gfar_private *priv = netdev_priv(dev); 952 953 if (!netif_running(dev)) 954 return -EINVAL; 955 956 if (cmd == SIOCSHWTSTAMP) 957 return gfar_hwtstamp_set(dev, rq); 958 if (cmd == SIOCGHWTSTAMP) 959 return gfar_hwtstamp_get(dev, rq); 960 961 if (!priv->phydev) 962 return -ENODEV; 963 964 return phy_mii_ioctl(priv->phydev, rq, cmd); 965 } 966 967 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 968 u32 class) 969 { 970 u32 rqfpr = FPR_FILER_MASK; 971 u32 rqfcr = 0x0; 972 973 rqfar--; 974 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 975 priv->ftp_rqfpr[rqfar] = rqfpr; 976 priv->ftp_rqfcr[rqfar] = rqfcr; 977 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 978 979 rqfar--; 980 rqfcr = RQFCR_CMP_NOMATCH; 981 priv->ftp_rqfpr[rqfar] = rqfpr; 982 priv->ftp_rqfcr[rqfar] = rqfcr; 983 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 984 985 rqfar--; 986 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 987 rqfpr = class; 988 priv->ftp_rqfcr[rqfar] = rqfcr; 989 priv->ftp_rqfpr[rqfar] = rqfpr; 990 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 991 992 rqfar--; 993 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 994 rqfpr = class; 995 priv->ftp_rqfcr[rqfar] = rqfcr; 996 priv->ftp_rqfpr[rqfar] = rqfpr; 997 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 998 999 return rqfar; 1000 } 1001 1002 static void gfar_init_filer_table(struct gfar_private *priv) 1003 { 1004 int i = 0x0; 1005 u32 rqfar = MAX_FILER_IDX; 1006 u32 rqfcr = 0x0; 1007 u32 rqfpr = FPR_FILER_MASK; 1008 1009 /* Default rule */ 1010 rqfcr = RQFCR_CMP_MATCH; 1011 priv->ftp_rqfcr[rqfar] = rqfcr; 1012 priv->ftp_rqfpr[rqfar] = rqfpr; 1013 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 1014 1015 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 1016 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 1017 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 1018 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 1019 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 1020 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 1021 1022 /* cur_filer_idx indicated the first non-masked rule */ 1023 priv->cur_filer_idx = rqfar; 1024 1025 /* Rest are masked rules */ 1026 rqfcr = RQFCR_CMP_NOMATCH; 1027 for (i = 0; i < rqfar; i++) { 1028 priv->ftp_rqfcr[i] = rqfcr; 1029 priv->ftp_rqfpr[i] = rqfpr; 1030 gfar_write_filer(priv, i, rqfcr, rqfpr); 1031 } 1032 } 1033 1034 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 1035 { 1036 unsigned int pvr = mfspr(SPRN_PVR); 1037 unsigned int svr = mfspr(SPRN_SVR); 1038 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 1039 unsigned int rev = svr & 0xffff; 1040 1041 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 1042 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 1043 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 1044 priv->errata |= GFAR_ERRATA_74; 1045 1046 /* MPC8313 and MPC837x all rev */ 1047 if ((pvr == 0x80850010 && mod == 0x80b0) || 1048 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 1049 priv->errata |= GFAR_ERRATA_76; 1050 1051 /* MPC8313 Rev < 2.0 */ 1052 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 1053 priv->errata |= GFAR_ERRATA_12; 1054 } 1055 1056 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 1057 { 1058 unsigned int svr = mfspr(SPRN_SVR); 1059 1060 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 1061 priv->errata |= GFAR_ERRATA_12; 1062 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 1063 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20))) 1064 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 1065 } 1066 1067 static void gfar_detect_errata(struct gfar_private *priv) 1068 { 1069 struct device *dev = &priv->ofdev->dev; 1070 1071 /* no plans to fix */ 1072 priv->errata |= GFAR_ERRATA_A002; 1073 1074 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 1075 __gfar_detect_errata_85xx(priv); 1076 else /* non-mpc85xx parts, i.e. e300 core based */ 1077 __gfar_detect_errata_83xx(priv); 1078 1079 if (priv->errata) 1080 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 1081 priv->errata); 1082 } 1083 1084 void gfar_mac_reset(struct gfar_private *priv) 1085 { 1086 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1087 u32 tempval; 1088 1089 /* Reset MAC layer */ 1090 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 1091 1092 /* We need to delay at least 3 TX clocks */ 1093 udelay(3); 1094 1095 /* the soft reset bit is not self-resetting, so we need to 1096 * clear it before resuming normal operation 1097 */ 1098 gfar_write(®s->maccfg1, 0); 1099 1100 udelay(3); 1101 1102 /* Compute rx_buff_size based on config flags */ 1103 gfar_rx_buff_size_config(priv); 1104 1105 /* Initialize the max receive frame/buffer lengths */ 1106 gfar_write(®s->maxfrm, priv->rx_buffer_size); 1107 gfar_write(®s->mrblr, priv->rx_buffer_size); 1108 1109 /* Initialize the Minimum Frame Length Register */ 1110 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 1111 1112 /* Initialize MACCFG2. */ 1113 tempval = MACCFG2_INIT_SETTINGS; 1114 1115 /* If the mtu is larger than the max size for standard 1116 * ethernet frames (ie, a jumbo frame), then set maccfg2 1117 * to allow huge frames, and to check the length 1118 */ 1119 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE || 1120 gfar_has_errata(priv, GFAR_ERRATA_74)) 1121 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 1122 1123 gfar_write(®s->maccfg2, tempval); 1124 1125 /* Clear mac addr hash registers */ 1126 gfar_write(®s->igaddr0, 0); 1127 gfar_write(®s->igaddr1, 0); 1128 gfar_write(®s->igaddr2, 0); 1129 gfar_write(®s->igaddr3, 0); 1130 gfar_write(®s->igaddr4, 0); 1131 gfar_write(®s->igaddr5, 0); 1132 gfar_write(®s->igaddr6, 0); 1133 gfar_write(®s->igaddr7, 0); 1134 1135 gfar_write(®s->gaddr0, 0); 1136 gfar_write(®s->gaddr1, 0); 1137 gfar_write(®s->gaddr2, 0); 1138 gfar_write(®s->gaddr3, 0); 1139 gfar_write(®s->gaddr4, 0); 1140 gfar_write(®s->gaddr5, 0); 1141 gfar_write(®s->gaddr6, 0); 1142 gfar_write(®s->gaddr7, 0); 1143 1144 if (priv->extended_hash) 1145 gfar_clear_exact_match(priv->ndev); 1146 1147 gfar_mac_rx_config(priv); 1148 1149 gfar_mac_tx_config(priv); 1150 1151 gfar_set_mac_address(priv->ndev); 1152 1153 gfar_set_multi(priv->ndev); 1154 1155 /* clear ievent and imask before configuring coalescing */ 1156 gfar_ints_disable(priv); 1157 1158 /* Configure the coalescing support */ 1159 gfar_configure_coalescing_all(priv); 1160 } 1161 1162 static void gfar_hw_init(struct gfar_private *priv) 1163 { 1164 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1165 u32 attrs; 1166 1167 /* Stop the DMA engine now, in case it was running before 1168 * (The firmware could have used it, and left it running). 1169 */ 1170 gfar_halt(priv); 1171 1172 gfar_mac_reset(priv); 1173 1174 /* Zero out the rmon mib registers if it has them */ 1175 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 1176 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); 1177 1178 /* Mask off the CAM interrupts */ 1179 gfar_write(®s->rmon.cam1, 0xffffffff); 1180 gfar_write(®s->rmon.cam2, 0xffffffff); 1181 } 1182 1183 /* Initialize ECNTRL */ 1184 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 1185 1186 /* Set the extraction length and index */ 1187 attrs = ATTRELI_EL(priv->rx_stash_size) | 1188 ATTRELI_EI(priv->rx_stash_index); 1189 1190 gfar_write(®s->attreli, attrs); 1191 1192 /* Start with defaults, and add stashing 1193 * depending on driver parameters 1194 */ 1195 attrs = ATTR_INIT_SETTINGS; 1196 1197 if (priv->bd_stash_en) 1198 attrs |= ATTR_BDSTASH; 1199 1200 if (priv->rx_stash_size != 0) 1201 attrs |= ATTR_BUFSTASH; 1202 1203 gfar_write(®s->attr, attrs); 1204 1205 /* FIFO configs */ 1206 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 1207 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 1208 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 1209 1210 /* Program the interrupt steering regs, only for MG devices */ 1211 if (priv->num_grps > 1) 1212 gfar_write_isrg(priv); 1213 } 1214 1215 static void __init gfar_init_addr_hash_table(struct gfar_private *priv) 1216 { 1217 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1218 1219 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 1220 priv->extended_hash = 1; 1221 priv->hash_width = 9; 1222 1223 priv->hash_regs[0] = ®s->igaddr0; 1224 priv->hash_regs[1] = ®s->igaddr1; 1225 priv->hash_regs[2] = ®s->igaddr2; 1226 priv->hash_regs[3] = ®s->igaddr3; 1227 priv->hash_regs[4] = ®s->igaddr4; 1228 priv->hash_regs[5] = ®s->igaddr5; 1229 priv->hash_regs[6] = ®s->igaddr6; 1230 priv->hash_regs[7] = ®s->igaddr7; 1231 priv->hash_regs[8] = ®s->gaddr0; 1232 priv->hash_regs[9] = ®s->gaddr1; 1233 priv->hash_regs[10] = ®s->gaddr2; 1234 priv->hash_regs[11] = ®s->gaddr3; 1235 priv->hash_regs[12] = ®s->gaddr4; 1236 priv->hash_regs[13] = ®s->gaddr5; 1237 priv->hash_regs[14] = ®s->gaddr6; 1238 priv->hash_regs[15] = ®s->gaddr7; 1239 1240 } else { 1241 priv->extended_hash = 0; 1242 priv->hash_width = 8; 1243 1244 priv->hash_regs[0] = ®s->gaddr0; 1245 priv->hash_regs[1] = ®s->gaddr1; 1246 priv->hash_regs[2] = ®s->gaddr2; 1247 priv->hash_regs[3] = ®s->gaddr3; 1248 priv->hash_regs[4] = ®s->gaddr4; 1249 priv->hash_regs[5] = ®s->gaddr5; 1250 priv->hash_regs[6] = ®s->gaddr6; 1251 priv->hash_regs[7] = ®s->gaddr7; 1252 } 1253 } 1254 1255 /* Set up the ethernet device structure, private data, 1256 * and anything else we need before we start 1257 */ 1258 static int gfar_probe(struct platform_device *ofdev) 1259 { 1260 struct net_device *dev = NULL; 1261 struct gfar_private *priv = NULL; 1262 int err = 0, i; 1263 1264 err = gfar_of_init(ofdev, &dev); 1265 1266 if (err) 1267 return err; 1268 1269 priv = netdev_priv(dev); 1270 priv->ndev = dev; 1271 priv->ofdev = ofdev; 1272 priv->dev = &ofdev->dev; 1273 SET_NETDEV_DEV(dev, &ofdev->dev); 1274 1275 spin_lock_init(&priv->bflock); 1276 INIT_WORK(&priv->reset_task, gfar_reset_task); 1277 1278 platform_set_drvdata(ofdev, priv); 1279 1280 gfar_detect_errata(priv); 1281 1282 /* Set the dev->base_addr to the gfar reg region */ 1283 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 1284 1285 /* Fill in the dev structure */ 1286 dev->watchdog_timeo = TX_TIMEOUT; 1287 dev->mtu = 1500; 1288 dev->netdev_ops = &gfar_netdev_ops; 1289 dev->ethtool_ops = &gfar_ethtool_ops; 1290 1291 /* Register for napi ...We are registering NAPI for each grp */ 1292 for (i = 0; i < priv->num_grps; i++) { 1293 if (priv->poll_mode == GFAR_SQ_POLLING) { 1294 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 1295 gfar_poll_rx_sq, GFAR_DEV_WEIGHT); 1296 netif_napi_add(dev, &priv->gfargrp[i].napi_tx, 1297 gfar_poll_tx_sq, 2); 1298 } else { 1299 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 1300 gfar_poll_rx, GFAR_DEV_WEIGHT); 1301 netif_napi_add(dev, &priv->gfargrp[i].napi_tx, 1302 gfar_poll_tx, 2); 1303 } 1304 } 1305 1306 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 1307 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 1308 NETIF_F_RXCSUM; 1309 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 1310 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 1311 } 1312 1313 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 1314 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 1315 NETIF_F_HW_VLAN_CTAG_RX; 1316 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 1317 } 1318 1319 gfar_init_addr_hash_table(priv); 1320 1321 /* Insert receive time stamps into padding alignment bytes */ 1322 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 1323 priv->padding = 8; 1324 1325 if (dev->features & NETIF_F_IP_CSUM || 1326 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 1327 dev->needed_headroom = GMAC_FCB_LEN; 1328 1329 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; 1330 1331 /* Initializing some of the rx/tx queue level parameters */ 1332 for (i = 0; i < priv->num_tx_queues; i++) { 1333 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 1334 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 1335 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 1336 priv->tx_queue[i]->txic = DEFAULT_TXIC; 1337 } 1338 1339 for (i = 0; i < priv->num_rx_queues; i++) { 1340 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 1341 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 1342 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 1343 } 1344 1345 /* always enable rx filer */ 1346 priv->rx_filer_enable = 1; 1347 /* Enable most messages by default */ 1348 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 1349 /* use pritority h/w tx queue scheduling for single queue devices */ 1350 if (priv->num_tx_queues == 1) 1351 priv->prio_sched_en = 1; 1352 1353 set_bit(GFAR_DOWN, &priv->state); 1354 1355 gfar_hw_init(priv); 1356 1357 err = register_netdev(dev); 1358 1359 if (err) { 1360 pr_err("%s: Cannot register net device, aborting\n", dev->name); 1361 goto register_fail; 1362 } 1363 1364 /* Carrier starts down, phylib will bring it up */ 1365 netif_carrier_off(dev); 1366 1367 device_init_wakeup(&dev->dev, 1368 priv->device_flags & 1369 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1370 1371 /* fill out IRQ number and name fields */ 1372 for (i = 0; i < priv->num_grps; i++) { 1373 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 1374 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1375 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 1376 dev->name, "_g", '0' + i, "_tx"); 1377 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 1378 dev->name, "_g", '0' + i, "_rx"); 1379 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 1380 dev->name, "_g", '0' + i, "_er"); 1381 } else 1382 strcpy(gfar_irq(grp, TX)->name, dev->name); 1383 } 1384 1385 /* Initialize the filer table */ 1386 gfar_init_filer_table(priv); 1387 1388 /* Print out the device info */ 1389 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 1390 1391 /* Even more device info helps when determining which kernel 1392 * provided which set of benchmarks. 1393 */ 1394 netdev_info(dev, "Running with NAPI enabled\n"); 1395 for (i = 0; i < priv->num_rx_queues; i++) 1396 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 1397 i, priv->rx_queue[i]->rx_ring_size); 1398 for (i = 0; i < priv->num_tx_queues; i++) 1399 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 1400 i, priv->tx_queue[i]->tx_ring_size); 1401 1402 return 0; 1403 1404 register_fail: 1405 unmap_group_regs(priv); 1406 gfar_free_rx_queues(priv); 1407 gfar_free_tx_queues(priv); 1408 if (priv->phy_node) 1409 of_node_put(priv->phy_node); 1410 if (priv->tbi_node) 1411 of_node_put(priv->tbi_node); 1412 free_gfar_dev(priv); 1413 return err; 1414 } 1415 1416 static int gfar_remove(struct platform_device *ofdev) 1417 { 1418 struct gfar_private *priv = platform_get_drvdata(ofdev); 1419 1420 if (priv->phy_node) 1421 of_node_put(priv->phy_node); 1422 if (priv->tbi_node) 1423 of_node_put(priv->tbi_node); 1424 1425 unregister_netdev(priv->ndev); 1426 unmap_group_regs(priv); 1427 gfar_free_rx_queues(priv); 1428 gfar_free_tx_queues(priv); 1429 free_gfar_dev(priv); 1430 1431 return 0; 1432 } 1433 1434 #ifdef CONFIG_PM 1435 1436 static int gfar_suspend(struct device *dev) 1437 { 1438 struct gfar_private *priv = dev_get_drvdata(dev); 1439 struct net_device *ndev = priv->ndev; 1440 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1441 unsigned long flags; 1442 u32 tempval; 1443 1444 int magic_packet = priv->wol_en && 1445 (priv->device_flags & 1446 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1447 1448 netif_device_detach(ndev); 1449 1450 if (netif_running(ndev)) { 1451 1452 local_irq_save(flags); 1453 lock_tx_qs(priv); 1454 1455 gfar_halt_nodisable(priv); 1456 1457 /* Disable Tx, and Rx if wake-on-LAN is disabled. */ 1458 tempval = gfar_read(®s->maccfg1); 1459 1460 tempval &= ~MACCFG1_TX_EN; 1461 1462 if (!magic_packet) 1463 tempval &= ~MACCFG1_RX_EN; 1464 1465 gfar_write(®s->maccfg1, tempval); 1466 1467 unlock_tx_qs(priv); 1468 local_irq_restore(flags); 1469 1470 disable_napi(priv); 1471 1472 if (magic_packet) { 1473 /* Enable interrupt on Magic Packet */ 1474 gfar_write(®s->imask, IMASK_MAG); 1475 1476 /* Enable Magic Packet mode */ 1477 tempval = gfar_read(®s->maccfg2); 1478 tempval |= MACCFG2_MPEN; 1479 gfar_write(®s->maccfg2, tempval); 1480 } else { 1481 phy_stop(priv->phydev); 1482 } 1483 } 1484 1485 return 0; 1486 } 1487 1488 static int gfar_resume(struct device *dev) 1489 { 1490 struct gfar_private *priv = dev_get_drvdata(dev); 1491 struct net_device *ndev = priv->ndev; 1492 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1493 unsigned long flags; 1494 u32 tempval; 1495 int magic_packet = priv->wol_en && 1496 (priv->device_flags & 1497 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1498 1499 if (!netif_running(ndev)) { 1500 netif_device_attach(ndev); 1501 return 0; 1502 } 1503 1504 if (!magic_packet && priv->phydev) 1505 phy_start(priv->phydev); 1506 1507 /* Disable Magic Packet mode, in case something 1508 * else woke us up. 1509 */ 1510 local_irq_save(flags); 1511 lock_tx_qs(priv); 1512 1513 tempval = gfar_read(®s->maccfg2); 1514 tempval &= ~MACCFG2_MPEN; 1515 gfar_write(®s->maccfg2, tempval); 1516 1517 gfar_start(priv); 1518 1519 unlock_tx_qs(priv); 1520 local_irq_restore(flags); 1521 1522 netif_device_attach(ndev); 1523 1524 enable_napi(priv); 1525 1526 return 0; 1527 } 1528 1529 static int gfar_restore(struct device *dev) 1530 { 1531 struct gfar_private *priv = dev_get_drvdata(dev); 1532 struct net_device *ndev = priv->ndev; 1533 1534 if (!netif_running(ndev)) { 1535 netif_device_attach(ndev); 1536 1537 return 0; 1538 } 1539 1540 if (gfar_init_bds(ndev)) { 1541 free_skb_resources(priv); 1542 return -ENOMEM; 1543 } 1544 1545 gfar_mac_reset(priv); 1546 1547 gfar_init_tx_rx_base(priv); 1548 1549 gfar_start(priv); 1550 1551 priv->oldlink = 0; 1552 priv->oldspeed = 0; 1553 priv->oldduplex = -1; 1554 1555 if (priv->phydev) 1556 phy_start(priv->phydev); 1557 1558 netif_device_attach(ndev); 1559 enable_napi(priv); 1560 1561 return 0; 1562 } 1563 1564 static struct dev_pm_ops gfar_pm_ops = { 1565 .suspend = gfar_suspend, 1566 .resume = gfar_resume, 1567 .freeze = gfar_suspend, 1568 .thaw = gfar_resume, 1569 .restore = gfar_restore, 1570 }; 1571 1572 #define GFAR_PM_OPS (&gfar_pm_ops) 1573 1574 #else 1575 1576 #define GFAR_PM_OPS NULL 1577 1578 #endif 1579 1580 /* Reads the controller's registers to determine what interface 1581 * connects it to the PHY. 1582 */ 1583 static phy_interface_t gfar_get_interface(struct net_device *dev) 1584 { 1585 struct gfar_private *priv = netdev_priv(dev); 1586 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1587 u32 ecntrl; 1588 1589 ecntrl = gfar_read(®s->ecntrl); 1590 1591 if (ecntrl & ECNTRL_SGMII_MODE) 1592 return PHY_INTERFACE_MODE_SGMII; 1593 1594 if (ecntrl & ECNTRL_TBI_MODE) { 1595 if (ecntrl & ECNTRL_REDUCED_MODE) 1596 return PHY_INTERFACE_MODE_RTBI; 1597 else 1598 return PHY_INTERFACE_MODE_TBI; 1599 } 1600 1601 if (ecntrl & ECNTRL_REDUCED_MODE) { 1602 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 1603 return PHY_INTERFACE_MODE_RMII; 1604 } 1605 else { 1606 phy_interface_t interface = priv->interface; 1607 1608 /* This isn't autodetected right now, so it must 1609 * be set by the device tree or platform code. 1610 */ 1611 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 1612 return PHY_INTERFACE_MODE_RGMII_ID; 1613 1614 return PHY_INTERFACE_MODE_RGMII; 1615 } 1616 } 1617 1618 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1619 return PHY_INTERFACE_MODE_GMII; 1620 1621 return PHY_INTERFACE_MODE_MII; 1622 } 1623 1624 1625 /* Initializes driver's PHY state, and attaches to the PHY. 1626 * Returns 0 on success. 1627 */ 1628 static int init_phy(struct net_device *dev) 1629 { 1630 struct gfar_private *priv = netdev_priv(dev); 1631 uint gigabit_support = 1632 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? 1633 GFAR_SUPPORTED_GBIT : 0; 1634 phy_interface_t interface; 1635 1636 priv->oldlink = 0; 1637 priv->oldspeed = 0; 1638 priv->oldduplex = -1; 1639 1640 interface = gfar_get_interface(dev); 1641 1642 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1643 interface); 1644 if (!priv->phydev) 1645 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link, 1646 interface); 1647 if (!priv->phydev) { 1648 dev_err(&dev->dev, "could not attach to PHY\n"); 1649 return -ENODEV; 1650 } 1651 1652 if (interface == PHY_INTERFACE_MODE_SGMII) 1653 gfar_configure_serdes(dev); 1654 1655 /* Remove any features not supported by the controller */ 1656 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support); 1657 priv->phydev->advertising = priv->phydev->supported; 1658 1659 return 0; 1660 } 1661 1662 /* Initialize TBI PHY interface for communicating with the 1663 * SERDES lynx PHY on the chip. We communicate with this PHY 1664 * through the MDIO bus on each controller, treating it as a 1665 * "normal" PHY at the address found in the TBIPA register. We assume 1666 * that the TBIPA register is valid. Either the MDIO bus code will set 1667 * it to a value that doesn't conflict with other PHYs on the bus, or the 1668 * value doesn't matter, as there are no other PHYs on the bus. 1669 */ 1670 static void gfar_configure_serdes(struct net_device *dev) 1671 { 1672 struct gfar_private *priv = netdev_priv(dev); 1673 struct phy_device *tbiphy; 1674 1675 if (!priv->tbi_node) { 1676 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1677 "device tree specify a tbi-handle\n"); 1678 return; 1679 } 1680 1681 tbiphy = of_phy_find_device(priv->tbi_node); 1682 if (!tbiphy) { 1683 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1684 return; 1685 } 1686 1687 /* If the link is already up, we must already be ok, and don't need to 1688 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1689 * everything for us? Resetting it takes the link down and requires 1690 * several seconds for it to come back. 1691 */ 1692 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) 1693 return; 1694 1695 /* Single clk mode, mii mode off(for serdes communication) */ 1696 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1697 1698 phy_write(tbiphy, MII_ADVERTISE, 1699 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1700 ADVERTISE_1000XPSE_ASYM); 1701 1702 phy_write(tbiphy, MII_BMCR, 1703 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1704 BMCR_SPEED1000); 1705 } 1706 1707 static int __gfar_is_rx_idle(struct gfar_private *priv) 1708 { 1709 u32 res; 1710 1711 /* Normaly TSEC should not hang on GRS commands, so we should 1712 * actually wait for IEVENT_GRSC flag. 1713 */ 1714 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 1715 return 0; 1716 1717 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 1718 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 1719 * and the Rx can be safely reset. 1720 */ 1721 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1722 res &= 0x7f807f80; 1723 if ((res & 0xffff) == (res >> 16)) 1724 return 1; 1725 1726 return 0; 1727 } 1728 1729 /* Halt the receive and transmit queues */ 1730 static void gfar_halt_nodisable(struct gfar_private *priv) 1731 { 1732 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1733 u32 tempval; 1734 1735 gfar_ints_disable(priv); 1736 1737 /* Stop the DMA, and wait for it to stop */ 1738 tempval = gfar_read(®s->dmactrl); 1739 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) != 1740 (DMACTRL_GRS | DMACTRL_GTS)) { 1741 int ret; 1742 1743 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1744 gfar_write(®s->dmactrl, tempval); 1745 1746 do { 1747 ret = spin_event_timeout(((gfar_read(®s->ievent) & 1748 (IEVENT_GRSC | IEVENT_GTSC)) == 1749 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0); 1750 if (!ret && !(gfar_read(®s->ievent) & IEVENT_GRSC)) 1751 ret = __gfar_is_rx_idle(priv); 1752 } while (!ret); 1753 } 1754 } 1755 1756 /* Halt the receive and transmit queues */ 1757 void gfar_halt(struct gfar_private *priv) 1758 { 1759 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1760 u32 tempval; 1761 1762 /* Dissable the Rx/Tx hw queues */ 1763 gfar_write(®s->rqueue, 0); 1764 gfar_write(®s->tqueue, 0); 1765 1766 mdelay(10); 1767 1768 gfar_halt_nodisable(priv); 1769 1770 /* Disable Rx/Tx DMA */ 1771 tempval = gfar_read(®s->maccfg1); 1772 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1773 gfar_write(®s->maccfg1, tempval); 1774 } 1775 1776 void stop_gfar(struct net_device *dev) 1777 { 1778 struct gfar_private *priv = netdev_priv(dev); 1779 1780 netif_tx_stop_all_queues(dev); 1781 1782 smp_mb__before_clear_bit(); 1783 set_bit(GFAR_DOWN, &priv->state); 1784 smp_mb__after_clear_bit(); 1785 1786 disable_napi(priv); 1787 1788 /* disable ints and gracefully shut down Rx/Tx DMA */ 1789 gfar_halt(priv); 1790 1791 phy_stop(priv->phydev); 1792 1793 free_skb_resources(priv); 1794 } 1795 1796 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1797 { 1798 struct txbd8 *txbdp; 1799 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1800 int i, j; 1801 1802 txbdp = tx_queue->tx_bd_base; 1803 1804 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1805 if (!tx_queue->tx_skbuff[i]) 1806 continue; 1807 1808 dma_unmap_single(priv->dev, txbdp->bufPtr, 1809 txbdp->length, DMA_TO_DEVICE); 1810 txbdp->lstatus = 0; 1811 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1812 j++) { 1813 txbdp++; 1814 dma_unmap_page(priv->dev, txbdp->bufPtr, 1815 txbdp->length, DMA_TO_DEVICE); 1816 } 1817 txbdp++; 1818 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1819 tx_queue->tx_skbuff[i] = NULL; 1820 } 1821 kfree(tx_queue->tx_skbuff); 1822 tx_queue->tx_skbuff = NULL; 1823 } 1824 1825 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1826 { 1827 struct rxbd8 *rxbdp; 1828 struct gfar_private *priv = netdev_priv(rx_queue->dev); 1829 int i; 1830 1831 rxbdp = rx_queue->rx_bd_base; 1832 1833 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1834 if (rx_queue->rx_skbuff[i]) { 1835 dma_unmap_single(priv->dev, rxbdp->bufPtr, 1836 priv->rx_buffer_size, 1837 DMA_FROM_DEVICE); 1838 dev_kfree_skb_any(rx_queue->rx_skbuff[i]); 1839 rx_queue->rx_skbuff[i] = NULL; 1840 } 1841 rxbdp->lstatus = 0; 1842 rxbdp->bufPtr = 0; 1843 rxbdp++; 1844 } 1845 kfree(rx_queue->rx_skbuff); 1846 rx_queue->rx_skbuff = NULL; 1847 } 1848 1849 /* If there are any tx skbs or rx skbs still around, free them. 1850 * Then free tx_skbuff and rx_skbuff 1851 */ 1852 static void free_skb_resources(struct gfar_private *priv) 1853 { 1854 struct gfar_priv_tx_q *tx_queue = NULL; 1855 struct gfar_priv_rx_q *rx_queue = NULL; 1856 int i; 1857 1858 /* Go through all the buffer descriptors and free their data buffers */ 1859 for (i = 0; i < priv->num_tx_queues; i++) { 1860 struct netdev_queue *txq; 1861 1862 tx_queue = priv->tx_queue[i]; 1863 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1864 if (tx_queue->tx_skbuff) 1865 free_skb_tx_queue(tx_queue); 1866 netdev_tx_reset_queue(txq); 1867 } 1868 1869 for (i = 0; i < priv->num_rx_queues; i++) { 1870 rx_queue = priv->rx_queue[i]; 1871 if (rx_queue->rx_skbuff) 1872 free_skb_rx_queue(rx_queue); 1873 } 1874 1875 dma_free_coherent(priv->dev, 1876 sizeof(struct txbd8) * priv->total_tx_ring_size + 1877 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1878 priv->tx_queue[0]->tx_bd_base, 1879 priv->tx_queue[0]->tx_bd_dma_base); 1880 } 1881 1882 void gfar_start(struct gfar_private *priv) 1883 { 1884 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1885 u32 tempval; 1886 int i = 0; 1887 1888 /* Enable Rx/Tx hw queues */ 1889 gfar_write(®s->rqueue, priv->rqueue); 1890 gfar_write(®s->tqueue, priv->tqueue); 1891 1892 /* Initialize DMACTRL to have WWR and WOP */ 1893 tempval = gfar_read(®s->dmactrl); 1894 tempval |= DMACTRL_INIT_SETTINGS; 1895 gfar_write(®s->dmactrl, tempval); 1896 1897 /* Make sure we aren't stopped */ 1898 tempval = gfar_read(®s->dmactrl); 1899 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1900 gfar_write(®s->dmactrl, tempval); 1901 1902 for (i = 0; i < priv->num_grps; i++) { 1903 regs = priv->gfargrp[i].regs; 1904 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1905 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1906 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1907 } 1908 1909 /* Enable Rx/Tx DMA */ 1910 tempval = gfar_read(®s->maccfg1); 1911 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1912 gfar_write(®s->maccfg1, tempval); 1913 1914 gfar_ints_enable(priv); 1915 1916 priv->ndev->trans_start = jiffies; /* prevent tx timeout */ 1917 } 1918 1919 static void free_grp_irqs(struct gfar_priv_grp *grp) 1920 { 1921 free_irq(gfar_irq(grp, TX)->irq, grp); 1922 free_irq(gfar_irq(grp, RX)->irq, grp); 1923 free_irq(gfar_irq(grp, ER)->irq, grp); 1924 } 1925 1926 static int register_grp_irqs(struct gfar_priv_grp *grp) 1927 { 1928 struct gfar_private *priv = grp->priv; 1929 struct net_device *dev = priv->ndev; 1930 int err; 1931 1932 /* If the device has multiple interrupts, register for 1933 * them. Otherwise, only register for the one 1934 */ 1935 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1936 /* Install our interrupt handlers for Error, 1937 * Transmit, and Receive 1938 */ 1939 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 1940 gfar_irq(grp, ER)->name, grp); 1941 if (err < 0) { 1942 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1943 gfar_irq(grp, ER)->irq); 1944 1945 goto err_irq_fail; 1946 } 1947 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 1948 gfar_irq(grp, TX)->name, grp); 1949 if (err < 0) { 1950 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1951 gfar_irq(grp, TX)->irq); 1952 goto tx_irq_fail; 1953 } 1954 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 1955 gfar_irq(grp, RX)->name, grp); 1956 if (err < 0) { 1957 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1958 gfar_irq(grp, RX)->irq); 1959 goto rx_irq_fail; 1960 } 1961 } else { 1962 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 1963 gfar_irq(grp, TX)->name, grp); 1964 if (err < 0) { 1965 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1966 gfar_irq(grp, TX)->irq); 1967 goto err_irq_fail; 1968 } 1969 } 1970 1971 return 0; 1972 1973 rx_irq_fail: 1974 free_irq(gfar_irq(grp, TX)->irq, grp); 1975 tx_irq_fail: 1976 free_irq(gfar_irq(grp, ER)->irq, grp); 1977 err_irq_fail: 1978 return err; 1979 1980 } 1981 1982 static void gfar_free_irq(struct gfar_private *priv) 1983 { 1984 int i; 1985 1986 /* Free the IRQs */ 1987 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1988 for (i = 0; i < priv->num_grps; i++) 1989 free_grp_irqs(&priv->gfargrp[i]); 1990 } else { 1991 for (i = 0; i < priv->num_grps; i++) 1992 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 1993 &priv->gfargrp[i]); 1994 } 1995 } 1996 1997 static int gfar_request_irq(struct gfar_private *priv) 1998 { 1999 int err, i, j; 2000 2001 for (i = 0; i < priv->num_grps; i++) { 2002 err = register_grp_irqs(&priv->gfargrp[i]); 2003 if (err) { 2004 for (j = 0; j < i; j++) 2005 free_grp_irqs(&priv->gfargrp[j]); 2006 return err; 2007 } 2008 } 2009 2010 return 0; 2011 } 2012 2013 /* Bring the controller up and running */ 2014 int startup_gfar(struct net_device *ndev) 2015 { 2016 struct gfar_private *priv = netdev_priv(ndev); 2017 int err; 2018 2019 gfar_mac_reset(priv); 2020 2021 err = gfar_alloc_skb_resources(ndev); 2022 if (err) 2023 return err; 2024 2025 gfar_init_tx_rx_base(priv); 2026 2027 smp_mb__before_clear_bit(); 2028 clear_bit(GFAR_DOWN, &priv->state); 2029 smp_mb__after_clear_bit(); 2030 2031 /* Start Rx/Tx DMA and enable the interrupts */ 2032 gfar_start(priv); 2033 2034 phy_start(priv->phydev); 2035 2036 enable_napi(priv); 2037 2038 netif_tx_wake_all_queues(ndev); 2039 2040 return 0; 2041 } 2042 2043 /* Called when something needs to use the ethernet device 2044 * Returns 0 for success. 2045 */ 2046 static int gfar_enet_open(struct net_device *dev) 2047 { 2048 struct gfar_private *priv = netdev_priv(dev); 2049 int err; 2050 2051 err = init_phy(dev); 2052 if (err) 2053 return err; 2054 2055 err = gfar_request_irq(priv); 2056 if (err) 2057 return err; 2058 2059 err = startup_gfar(dev); 2060 if (err) 2061 return err; 2062 2063 device_set_wakeup_enable(&dev->dev, priv->wol_en); 2064 2065 return err; 2066 } 2067 2068 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 2069 { 2070 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN); 2071 2072 memset(fcb, 0, GMAC_FCB_LEN); 2073 2074 return fcb; 2075 } 2076 2077 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 2078 int fcb_length) 2079 { 2080 /* If we're here, it's a IP packet with a TCP or UDP 2081 * payload. We set it to checksum, using a pseudo-header 2082 * we provide 2083 */ 2084 u8 flags = TXFCB_DEFAULT; 2085 2086 /* Tell the controller what the protocol is 2087 * And provide the already calculated phcs 2088 */ 2089 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 2090 flags |= TXFCB_UDP; 2091 fcb->phcs = udp_hdr(skb)->check; 2092 } else 2093 fcb->phcs = tcp_hdr(skb)->check; 2094 2095 /* l3os is the distance between the start of the 2096 * frame (skb->data) and the start of the IP hdr. 2097 * l4os is the distance between the start of the 2098 * l3 hdr and the l4 hdr 2099 */ 2100 fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length); 2101 fcb->l4os = skb_network_header_len(skb); 2102 2103 fcb->flags = flags; 2104 } 2105 2106 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 2107 { 2108 fcb->flags |= TXFCB_VLN; 2109 fcb->vlctl = vlan_tx_tag_get(skb); 2110 } 2111 2112 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 2113 struct txbd8 *base, int ring_size) 2114 { 2115 struct txbd8 *new_bd = bdp + stride; 2116 2117 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 2118 } 2119 2120 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 2121 int ring_size) 2122 { 2123 return skip_txbd(bdp, 1, base, ring_size); 2124 } 2125 2126 /* eTSEC12: csum generation not supported for some fcb offsets */ 2127 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 2128 unsigned long fcb_addr) 2129 { 2130 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 2131 (fcb_addr % 0x20) > 0x18); 2132 } 2133 2134 /* eTSEC76: csum generation for frames larger than 2500 may 2135 * cause excess delays before start of transmission 2136 */ 2137 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 2138 unsigned int len) 2139 { 2140 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 2141 (len > 2500)); 2142 } 2143 2144 /* This is called by the kernel when a frame is ready for transmission. 2145 * It is pointed to by the dev->hard_start_xmit function pointer 2146 */ 2147 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 2148 { 2149 struct gfar_private *priv = netdev_priv(dev); 2150 struct gfar_priv_tx_q *tx_queue = NULL; 2151 struct netdev_queue *txq; 2152 struct gfar __iomem *regs = NULL; 2153 struct txfcb *fcb = NULL; 2154 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 2155 u32 lstatus; 2156 int i, rq = 0; 2157 int do_tstamp, do_csum, do_vlan; 2158 u32 bufaddr; 2159 unsigned long flags; 2160 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 2161 2162 rq = skb->queue_mapping; 2163 tx_queue = priv->tx_queue[rq]; 2164 txq = netdev_get_tx_queue(dev, rq); 2165 base = tx_queue->tx_bd_base; 2166 regs = tx_queue->grp->regs; 2167 2168 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 2169 do_vlan = vlan_tx_tag_present(skb); 2170 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2171 priv->hwts_tx_en; 2172 2173 if (do_csum || do_vlan) 2174 fcb_len = GMAC_FCB_LEN; 2175 2176 /* check if time stamp should be generated */ 2177 if (unlikely(do_tstamp)) 2178 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2179 2180 /* make space for additional header when fcb is needed */ 2181 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) { 2182 struct sk_buff *skb_new; 2183 2184 skb_new = skb_realloc_headroom(skb, fcb_len); 2185 if (!skb_new) { 2186 dev->stats.tx_errors++; 2187 kfree_skb(skb); 2188 return NETDEV_TX_OK; 2189 } 2190 2191 if (skb->sk) 2192 skb_set_owner_w(skb_new, skb->sk); 2193 consume_skb(skb); 2194 skb = skb_new; 2195 } 2196 2197 /* total number of fragments in the SKB */ 2198 nr_frags = skb_shinfo(skb)->nr_frags; 2199 2200 /* calculate the required number of TxBDs for this skb */ 2201 if (unlikely(do_tstamp)) 2202 nr_txbds = nr_frags + 2; 2203 else 2204 nr_txbds = nr_frags + 1; 2205 2206 /* check if there is space to queue this packet */ 2207 if (nr_txbds > tx_queue->num_txbdfree) { 2208 /* no space, stop the queue */ 2209 netif_tx_stop_queue(txq); 2210 dev->stats.tx_fifo_errors++; 2211 return NETDEV_TX_BUSY; 2212 } 2213 2214 /* Update transmit stats */ 2215 bytes_sent = skb->len; 2216 tx_queue->stats.tx_bytes += bytes_sent; 2217 /* keep Tx bytes on wire for BQL accounting */ 2218 GFAR_CB(skb)->bytes_sent = bytes_sent; 2219 tx_queue->stats.tx_packets++; 2220 2221 txbdp = txbdp_start = tx_queue->cur_tx; 2222 lstatus = txbdp->lstatus; 2223 2224 /* Time stamp insertion requires one additional TxBD */ 2225 if (unlikely(do_tstamp)) 2226 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 2227 tx_queue->tx_ring_size); 2228 2229 if (nr_frags == 0) { 2230 if (unlikely(do_tstamp)) 2231 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST | 2232 TXBD_INTERRUPT); 2233 else 2234 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2235 } else { 2236 /* Place the fragment addresses and lengths into the TxBDs */ 2237 for (i = 0; i < nr_frags; i++) { 2238 unsigned int frag_len; 2239 /* Point at the next BD, wrapping as needed */ 2240 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2241 2242 frag_len = skb_shinfo(skb)->frags[i].size; 2243 2244 lstatus = txbdp->lstatus | frag_len | 2245 BD_LFLAG(TXBD_READY); 2246 2247 /* Handle the last BD specially */ 2248 if (i == nr_frags - 1) 2249 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2250 2251 bufaddr = skb_frag_dma_map(priv->dev, 2252 &skb_shinfo(skb)->frags[i], 2253 0, 2254 frag_len, 2255 DMA_TO_DEVICE); 2256 2257 /* set the TxBD length and buffer pointer */ 2258 txbdp->bufPtr = bufaddr; 2259 txbdp->lstatus = lstatus; 2260 } 2261 2262 lstatus = txbdp_start->lstatus; 2263 } 2264 2265 /* Add TxPAL between FCB and frame if required */ 2266 if (unlikely(do_tstamp)) { 2267 skb_push(skb, GMAC_TXPAL_LEN); 2268 memset(skb->data, 0, GMAC_TXPAL_LEN); 2269 } 2270 2271 /* Add TxFCB if required */ 2272 if (fcb_len) { 2273 fcb = gfar_add_fcb(skb); 2274 lstatus |= BD_LFLAG(TXBD_TOE); 2275 } 2276 2277 /* Set up checksumming */ 2278 if (do_csum) { 2279 gfar_tx_checksum(skb, fcb, fcb_len); 2280 2281 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 2282 unlikely(gfar_csum_errata_76(priv, skb->len))) { 2283 __skb_pull(skb, GMAC_FCB_LEN); 2284 skb_checksum_help(skb); 2285 if (do_vlan || do_tstamp) { 2286 /* put back a new fcb for vlan/tstamp TOE */ 2287 fcb = gfar_add_fcb(skb); 2288 } else { 2289 /* Tx TOE not used */ 2290 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 2291 fcb = NULL; 2292 } 2293 } 2294 } 2295 2296 if (do_vlan) 2297 gfar_tx_vlan(skb, fcb); 2298 2299 /* Setup tx hardware time stamping if requested */ 2300 if (unlikely(do_tstamp)) { 2301 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2302 fcb->ptp = 1; 2303 } 2304 2305 txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data, 2306 skb_headlen(skb), DMA_TO_DEVICE); 2307 2308 /* If time stamping is requested one additional TxBD must be set up. The 2309 * first TxBD points to the FCB and must have a data length of 2310 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 2311 * the full frame length. 2312 */ 2313 if (unlikely(do_tstamp)) { 2314 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len; 2315 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) | 2316 (skb_headlen(skb) - fcb_len); 2317 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 2318 } else { 2319 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 2320 } 2321 2322 netdev_tx_sent_queue(txq, bytes_sent); 2323 2324 /* We can work in parallel with gfar_clean_tx_ring(), except 2325 * when modifying num_txbdfree. Note that we didn't grab the lock 2326 * when we were reading the num_txbdfree and checking for available 2327 * space, that's because outside of this function it can only grow, 2328 * and once we've got needed space, it cannot suddenly disappear. 2329 * 2330 * The lock also protects us from gfar_error(), which can modify 2331 * regs->tstat and thus retrigger the transfers, which is why we 2332 * also must grab the lock before setting ready bit for the first 2333 * to be transmitted BD. 2334 */ 2335 spin_lock_irqsave(&tx_queue->txlock, flags); 2336 2337 /* The powerpc-specific eieio() is used, as wmb() has too strong 2338 * semantics (it requires synchronization between cacheable and 2339 * uncacheable mappings, which eieio doesn't provide and which we 2340 * don't need), thus requiring a more expensive sync instruction. At 2341 * some point, the set of architecture-independent barrier functions 2342 * should be expanded to include weaker barriers. 2343 */ 2344 eieio(); 2345 2346 txbdp_start->lstatus = lstatus; 2347 2348 eieio(); /* force lstatus write before tx_skbuff */ 2349 2350 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 2351 2352 /* Update the current skb pointer to the next entry we will use 2353 * (wrapping if necessary) 2354 */ 2355 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 2356 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 2357 2358 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2359 2360 /* reduce TxBD free count */ 2361 tx_queue->num_txbdfree -= (nr_txbds); 2362 2363 /* If the next BD still needs to be cleaned up, then the bds 2364 * are full. We need to tell the kernel to stop sending us stuff. 2365 */ 2366 if (!tx_queue->num_txbdfree) { 2367 netif_tx_stop_queue(txq); 2368 2369 dev->stats.tx_fifo_errors++; 2370 } 2371 2372 /* Tell the DMA to go go go */ 2373 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2374 2375 /* Unlock priv */ 2376 spin_unlock_irqrestore(&tx_queue->txlock, flags); 2377 2378 return NETDEV_TX_OK; 2379 } 2380 2381 /* Stops the kernel queue, and halts the controller */ 2382 static int gfar_close(struct net_device *dev) 2383 { 2384 struct gfar_private *priv = netdev_priv(dev); 2385 2386 cancel_work_sync(&priv->reset_task); 2387 stop_gfar(dev); 2388 2389 /* Disconnect from the PHY */ 2390 phy_disconnect(priv->phydev); 2391 priv->phydev = NULL; 2392 2393 gfar_free_irq(priv); 2394 2395 return 0; 2396 } 2397 2398 /* Changes the mac address if the controller is not running. */ 2399 static int gfar_set_mac_address(struct net_device *dev) 2400 { 2401 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2402 2403 return 0; 2404 } 2405 2406 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2407 { 2408 struct gfar_private *priv = netdev_priv(dev); 2409 int frame_size = new_mtu + ETH_HLEN; 2410 2411 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { 2412 netif_err(priv, drv, dev, "Invalid MTU setting\n"); 2413 return -EINVAL; 2414 } 2415 2416 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2417 cpu_relax(); 2418 2419 if (dev->flags & IFF_UP) 2420 stop_gfar(dev); 2421 2422 dev->mtu = new_mtu; 2423 2424 if (dev->flags & IFF_UP) 2425 startup_gfar(dev); 2426 2427 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2428 2429 return 0; 2430 } 2431 2432 void reset_gfar(struct net_device *ndev) 2433 { 2434 struct gfar_private *priv = netdev_priv(ndev); 2435 2436 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2437 cpu_relax(); 2438 2439 stop_gfar(ndev); 2440 startup_gfar(ndev); 2441 2442 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2443 } 2444 2445 /* gfar_reset_task gets scheduled when a packet has not been 2446 * transmitted after a set amount of time. 2447 * For now, assume that clearing out all the structures, and 2448 * starting over will fix the problem. 2449 */ 2450 static void gfar_reset_task(struct work_struct *work) 2451 { 2452 struct gfar_private *priv = container_of(work, struct gfar_private, 2453 reset_task); 2454 reset_gfar(priv->ndev); 2455 } 2456 2457 static void gfar_timeout(struct net_device *dev) 2458 { 2459 struct gfar_private *priv = netdev_priv(dev); 2460 2461 dev->stats.tx_errors++; 2462 schedule_work(&priv->reset_task); 2463 } 2464 2465 static void gfar_align_skb(struct sk_buff *skb) 2466 { 2467 /* We need the data buffer to be aligned properly. We will reserve 2468 * as many bytes as needed to align the data properly 2469 */ 2470 skb_reserve(skb, RXBUF_ALIGNMENT - 2471 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1))); 2472 } 2473 2474 /* Interrupt Handler for Transmit complete */ 2475 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2476 { 2477 struct net_device *dev = tx_queue->dev; 2478 struct netdev_queue *txq; 2479 struct gfar_private *priv = netdev_priv(dev); 2480 struct txbd8 *bdp, *next = NULL; 2481 struct txbd8 *lbdp = NULL; 2482 struct txbd8 *base = tx_queue->tx_bd_base; 2483 struct sk_buff *skb; 2484 int skb_dirtytx; 2485 int tx_ring_size = tx_queue->tx_ring_size; 2486 int frags = 0, nr_txbds = 0; 2487 int i; 2488 int howmany = 0; 2489 int tqi = tx_queue->qindex; 2490 unsigned int bytes_sent = 0; 2491 u32 lstatus; 2492 size_t buflen; 2493 2494 txq = netdev_get_tx_queue(dev, tqi); 2495 bdp = tx_queue->dirty_tx; 2496 skb_dirtytx = tx_queue->skb_dirtytx; 2497 2498 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2499 unsigned long flags; 2500 2501 frags = skb_shinfo(skb)->nr_frags; 2502 2503 /* When time stamping, one additional TxBD must be freed. 2504 * Also, we need to dma_unmap_single() the TxPAL. 2505 */ 2506 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2507 nr_txbds = frags + 2; 2508 else 2509 nr_txbds = frags + 1; 2510 2511 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2512 2513 lstatus = lbdp->lstatus; 2514 2515 /* Only clean completed frames */ 2516 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2517 (lstatus & BD_LENGTH_MASK)) 2518 break; 2519 2520 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2521 next = next_txbd(bdp, base, tx_ring_size); 2522 buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2523 } else 2524 buflen = bdp->length; 2525 2526 dma_unmap_single(priv->dev, bdp->bufPtr, 2527 buflen, DMA_TO_DEVICE); 2528 2529 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2530 struct skb_shared_hwtstamps shhwtstamps; 2531 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7); 2532 2533 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2534 shhwtstamps.hwtstamp = ns_to_ktime(*ns); 2535 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2536 skb_tstamp_tx(skb, &shhwtstamps); 2537 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2538 bdp = next; 2539 } 2540 2541 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2542 bdp = next_txbd(bdp, base, tx_ring_size); 2543 2544 for (i = 0; i < frags; i++) { 2545 dma_unmap_page(priv->dev, bdp->bufPtr, 2546 bdp->length, DMA_TO_DEVICE); 2547 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2548 bdp = next_txbd(bdp, base, tx_ring_size); 2549 } 2550 2551 bytes_sent += GFAR_CB(skb)->bytes_sent; 2552 2553 dev_kfree_skb_any(skb); 2554 2555 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2556 2557 skb_dirtytx = (skb_dirtytx + 1) & 2558 TX_RING_MOD_MASK(tx_ring_size); 2559 2560 howmany++; 2561 spin_lock_irqsave(&tx_queue->txlock, flags); 2562 tx_queue->num_txbdfree += nr_txbds; 2563 spin_unlock_irqrestore(&tx_queue->txlock, flags); 2564 } 2565 2566 /* If we freed a buffer, we can restart transmission, if necessary */ 2567 if (tx_queue->num_txbdfree && 2568 netif_tx_queue_stopped(txq) && 2569 !(test_bit(GFAR_DOWN, &priv->state))) 2570 netif_wake_subqueue(priv->ndev, tqi); 2571 2572 /* Update dirty indicators */ 2573 tx_queue->skb_dirtytx = skb_dirtytx; 2574 tx_queue->dirty_tx = bdp; 2575 2576 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2577 } 2578 2579 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 2580 struct sk_buff *skb) 2581 { 2582 struct net_device *dev = rx_queue->dev; 2583 struct gfar_private *priv = netdev_priv(dev); 2584 dma_addr_t buf; 2585 2586 buf = dma_map_single(priv->dev, skb->data, 2587 priv->rx_buffer_size, DMA_FROM_DEVICE); 2588 gfar_init_rxbdp(rx_queue, bdp, buf); 2589 } 2590 2591 static struct sk_buff *gfar_alloc_skb(struct net_device *dev) 2592 { 2593 struct gfar_private *priv = netdev_priv(dev); 2594 struct sk_buff *skb; 2595 2596 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT); 2597 if (!skb) 2598 return NULL; 2599 2600 gfar_align_skb(skb); 2601 2602 return skb; 2603 } 2604 2605 struct sk_buff *gfar_new_skb(struct net_device *dev) 2606 { 2607 return gfar_alloc_skb(dev); 2608 } 2609 2610 static inline void count_errors(unsigned short status, struct net_device *dev) 2611 { 2612 struct gfar_private *priv = netdev_priv(dev); 2613 struct net_device_stats *stats = &dev->stats; 2614 struct gfar_extra_stats *estats = &priv->extra_stats; 2615 2616 /* If the packet was truncated, none of the other errors matter */ 2617 if (status & RXBD_TRUNCATED) { 2618 stats->rx_length_errors++; 2619 2620 atomic64_inc(&estats->rx_trunc); 2621 2622 return; 2623 } 2624 /* Count the errors, if there were any */ 2625 if (status & (RXBD_LARGE | RXBD_SHORT)) { 2626 stats->rx_length_errors++; 2627 2628 if (status & RXBD_LARGE) 2629 atomic64_inc(&estats->rx_large); 2630 else 2631 atomic64_inc(&estats->rx_short); 2632 } 2633 if (status & RXBD_NONOCTET) { 2634 stats->rx_frame_errors++; 2635 atomic64_inc(&estats->rx_nonoctet); 2636 } 2637 if (status & RXBD_CRCERR) { 2638 atomic64_inc(&estats->rx_crcerr); 2639 stats->rx_crc_errors++; 2640 } 2641 if (status & RXBD_OVERRUN) { 2642 atomic64_inc(&estats->rx_overrun); 2643 stats->rx_crc_errors++; 2644 } 2645 } 2646 2647 irqreturn_t gfar_receive(int irq, void *grp_id) 2648 { 2649 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2650 unsigned long flags; 2651 u32 imask; 2652 2653 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2654 spin_lock_irqsave(&grp->grplock, flags); 2655 imask = gfar_read(&grp->regs->imask); 2656 imask &= IMASK_RX_DISABLED; 2657 gfar_write(&grp->regs->imask, imask); 2658 spin_unlock_irqrestore(&grp->grplock, flags); 2659 __napi_schedule(&grp->napi_rx); 2660 } else { 2661 /* Clear IEVENT, so interrupts aren't called again 2662 * because of the packets that have already arrived. 2663 */ 2664 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2665 } 2666 2667 return IRQ_HANDLED; 2668 } 2669 2670 /* Interrupt Handler for Transmit complete */ 2671 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2672 { 2673 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2674 unsigned long flags; 2675 u32 imask; 2676 2677 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2678 spin_lock_irqsave(&grp->grplock, flags); 2679 imask = gfar_read(&grp->regs->imask); 2680 imask &= IMASK_TX_DISABLED; 2681 gfar_write(&grp->regs->imask, imask); 2682 spin_unlock_irqrestore(&grp->grplock, flags); 2683 __napi_schedule(&grp->napi_tx); 2684 } else { 2685 /* Clear IEVENT, so interrupts aren't called again 2686 * because of the packets that have already arrived. 2687 */ 2688 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2689 } 2690 2691 return IRQ_HANDLED; 2692 } 2693 2694 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2695 { 2696 /* If valid headers were found, and valid sums 2697 * were verified, then we tell the kernel that no 2698 * checksumming is necessary. Otherwise, it is [FIXME] 2699 */ 2700 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU)) 2701 skb->ip_summed = CHECKSUM_UNNECESSARY; 2702 else 2703 skb_checksum_none_assert(skb); 2704 } 2705 2706 2707 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2708 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 2709 int amount_pull, struct napi_struct *napi) 2710 { 2711 struct gfar_private *priv = netdev_priv(dev); 2712 struct rxfcb *fcb = NULL; 2713 2714 /* fcb is at the beginning if exists */ 2715 fcb = (struct rxfcb *)skb->data; 2716 2717 /* Remove the FCB from the skb 2718 * Remove the padded bytes, if there are any 2719 */ 2720 if (amount_pull) { 2721 skb_record_rx_queue(skb, fcb->rq); 2722 skb_pull(skb, amount_pull); 2723 } 2724 2725 /* Get receive timestamp from the skb */ 2726 if (priv->hwts_rx_en) { 2727 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2728 u64 *ns = (u64 *) skb->data; 2729 2730 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2731 shhwtstamps->hwtstamp = ns_to_ktime(*ns); 2732 } 2733 2734 if (priv->padding) 2735 skb_pull(skb, priv->padding); 2736 2737 if (dev->features & NETIF_F_RXCSUM) 2738 gfar_rx_checksum(skb, fcb); 2739 2740 /* Tell the skb what kind of packet this is */ 2741 skb->protocol = eth_type_trans(skb, dev); 2742 2743 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2744 * Even if vlan rx accel is disabled, on some chips 2745 * RXFCB_VLN is pseudo randomly set. 2746 */ 2747 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX && 2748 fcb->flags & RXFCB_VLN) 2749 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl); 2750 2751 /* Send the packet up the stack */ 2752 napi_gro_receive(napi, skb); 2753 2754 } 2755 2756 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2757 * until the budget/quota has been reached. Returns the number 2758 * of frames handled 2759 */ 2760 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit) 2761 { 2762 struct net_device *dev = rx_queue->dev; 2763 struct rxbd8 *bdp, *base; 2764 struct sk_buff *skb; 2765 int pkt_len; 2766 int amount_pull; 2767 int howmany = 0; 2768 struct gfar_private *priv = netdev_priv(dev); 2769 2770 /* Get the first full descriptor */ 2771 bdp = rx_queue->cur_rx; 2772 base = rx_queue->rx_bd_base; 2773 2774 amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0; 2775 2776 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) { 2777 struct sk_buff *newskb; 2778 2779 rmb(); 2780 2781 /* Add another skb for the future */ 2782 newskb = gfar_new_skb(dev); 2783 2784 skb = rx_queue->rx_skbuff[rx_queue->skb_currx]; 2785 2786 dma_unmap_single(priv->dev, bdp->bufPtr, 2787 priv->rx_buffer_size, DMA_FROM_DEVICE); 2788 2789 if (unlikely(!(bdp->status & RXBD_ERR) && 2790 bdp->length > priv->rx_buffer_size)) 2791 bdp->status = RXBD_LARGE; 2792 2793 /* We drop the frame if we failed to allocate a new buffer */ 2794 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) || 2795 bdp->status & RXBD_ERR)) { 2796 count_errors(bdp->status, dev); 2797 2798 if (unlikely(!newskb)) 2799 newskb = skb; 2800 else if (skb) 2801 dev_kfree_skb(skb); 2802 } else { 2803 /* Increment the number of packets */ 2804 rx_queue->stats.rx_packets++; 2805 howmany++; 2806 2807 if (likely(skb)) { 2808 pkt_len = bdp->length - ETH_FCS_LEN; 2809 /* Remove the FCS from the packet length */ 2810 skb_put(skb, pkt_len); 2811 rx_queue->stats.rx_bytes += pkt_len; 2812 skb_record_rx_queue(skb, rx_queue->qindex); 2813 gfar_process_frame(dev, skb, amount_pull, 2814 &rx_queue->grp->napi_rx); 2815 2816 } else { 2817 netif_warn(priv, rx_err, dev, "Missing skb!\n"); 2818 rx_queue->stats.rx_dropped++; 2819 atomic64_inc(&priv->extra_stats.rx_skbmissing); 2820 } 2821 2822 } 2823 2824 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb; 2825 2826 /* Setup the new bdp */ 2827 gfar_new_rxbdp(rx_queue, bdp, newskb); 2828 2829 /* Update to the next pointer */ 2830 bdp = next_bd(bdp, base, rx_queue->rx_ring_size); 2831 2832 /* update to point at the next skb */ 2833 rx_queue->skb_currx = (rx_queue->skb_currx + 1) & 2834 RX_RING_MOD_MASK(rx_queue->rx_ring_size); 2835 } 2836 2837 /* Update the current rxbd pointer to be the next one */ 2838 rx_queue->cur_rx = bdp; 2839 2840 return howmany; 2841 } 2842 2843 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2844 { 2845 struct gfar_priv_grp *gfargrp = 2846 container_of(napi, struct gfar_priv_grp, napi_rx); 2847 struct gfar __iomem *regs = gfargrp->regs; 2848 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2849 int work_done = 0; 2850 2851 /* Clear IEVENT, so interrupts aren't called again 2852 * because of the packets that have already arrived 2853 */ 2854 gfar_write(®s->ievent, IEVENT_RX_MASK); 2855 2856 work_done = gfar_clean_rx_ring(rx_queue, budget); 2857 2858 if (work_done < budget) { 2859 u32 imask; 2860 napi_complete(napi); 2861 /* Clear the halt bit in RSTAT */ 2862 gfar_write(®s->rstat, gfargrp->rstat); 2863 2864 spin_lock_irq(&gfargrp->grplock); 2865 imask = gfar_read(®s->imask); 2866 imask |= IMASK_RX_DEFAULT; 2867 gfar_write(®s->imask, imask); 2868 spin_unlock_irq(&gfargrp->grplock); 2869 } 2870 2871 return work_done; 2872 } 2873 2874 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 2875 { 2876 struct gfar_priv_grp *gfargrp = 2877 container_of(napi, struct gfar_priv_grp, napi_tx); 2878 struct gfar __iomem *regs = gfargrp->regs; 2879 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 2880 u32 imask; 2881 2882 /* Clear IEVENT, so interrupts aren't called again 2883 * because of the packets that have already arrived 2884 */ 2885 gfar_write(®s->ievent, IEVENT_TX_MASK); 2886 2887 /* run Tx cleanup to completion */ 2888 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 2889 gfar_clean_tx_ring(tx_queue); 2890 2891 napi_complete(napi); 2892 2893 spin_lock_irq(&gfargrp->grplock); 2894 imask = gfar_read(®s->imask); 2895 imask |= IMASK_TX_DEFAULT; 2896 gfar_write(®s->imask, imask); 2897 spin_unlock_irq(&gfargrp->grplock); 2898 2899 return 0; 2900 } 2901 2902 static int gfar_poll_rx(struct napi_struct *napi, int budget) 2903 { 2904 struct gfar_priv_grp *gfargrp = 2905 container_of(napi, struct gfar_priv_grp, napi_rx); 2906 struct gfar_private *priv = gfargrp->priv; 2907 struct gfar __iomem *regs = gfargrp->regs; 2908 struct gfar_priv_rx_q *rx_queue = NULL; 2909 int work_done = 0, work_done_per_q = 0; 2910 int i, budget_per_q = 0; 2911 unsigned long rstat_rxf; 2912 int num_act_queues; 2913 2914 /* Clear IEVENT, so interrupts aren't called again 2915 * because of the packets that have already arrived 2916 */ 2917 gfar_write(®s->ievent, IEVENT_RX_MASK); 2918 2919 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; 2920 2921 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); 2922 if (num_act_queues) 2923 budget_per_q = budget/num_act_queues; 2924 2925 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 2926 /* skip queue if not active */ 2927 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) 2928 continue; 2929 2930 rx_queue = priv->rx_queue[i]; 2931 work_done_per_q = 2932 gfar_clean_rx_ring(rx_queue, budget_per_q); 2933 work_done += work_done_per_q; 2934 2935 /* finished processing this queue */ 2936 if (work_done_per_q < budget_per_q) { 2937 /* clear active queue hw indication */ 2938 gfar_write(®s->rstat, 2939 RSTAT_CLEAR_RXF0 >> i); 2940 num_act_queues--; 2941 2942 if (!num_act_queues) 2943 break; 2944 } 2945 } 2946 2947 if (!num_act_queues) { 2948 u32 imask; 2949 napi_complete(napi); 2950 2951 /* Clear the halt bit in RSTAT */ 2952 gfar_write(®s->rstat, gfargrp->rstat); 2953 2954 spin_lock_irq(&gfargrp->grplock); 2955 imask = gfar_read(®s->imask); 2956 imask |= IMASK_RX_DEFAULT; 2957 gfar_write(®s->imask, imask); 2958 spin_unlock_irq(&gfargrp->grplock); 2959 } 2960 2961 return work_done; 2962 } 2963 2964 static int gfar_poll_tx(struct napi_struct *napi, int budget) 2965 { 2966 struct gfar_priv_grp *gfargrp = 2967 container_of(napi, struct gfar_priv_grp, napi_tx); 2968 struct gfar_private *priv = gfargrp->priv; 2969 struct gfar __iomem *regs = gfargrp->regs; 2970 struct gfar_priv_tx_q *tx_queue = NULL; 2971 int has_tx_work = 0; 2972 int i; 2973 2974 /* Clear IEVENT, so interrupts aren't called again 2975 * because of the packets that have already arrived 2976 */ 2977 gfar_write(®s->ievent, IEVENT_TX_MASK); 2978 2979 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { 2980 tx_queue = priv->tx_queue[i]; 2981 /* run Tx cleanup to completion */ 2982 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { 2983 gfar_clean_tx_ring(tx_queue); 2984 has_tx_work = 1; 2985 } 2986 } 2987 2988 if (!has_tx_work) { 2989 u32 imask; 2990 napi_complete(napi); 2991 2992 spin_lock_irq(&gfargrp->grplock); 2993 imask = gfar_read(®s->imask); 2994 imask |= IMASK_TX_DEFAULT; 2995 gfar_write(®s->imask, imask); 2996 spin_unlock_irq(&gfargrp->grplock); 2997 } 2998 2999 return 0; 3000 } 3001 3002 3003 #ifdef CONFIG_NET_POLL_CONTROLLER 3004 /* Polling 'interrupt' - used by things like netconsole to send skbs 3005 * without having to re-enable interrupts. It's not called while 3006 * the interrupt routine is executing. 3007 */ 3008 static void gfar_netpoll(struct net_device *dev) 3009 { 3010 struct gfar_private *priv = netdev_priv(dev); 3011 int i; 3012 3013 /* If the device has multiple interrupts, run tx/rx */ 3014 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3015 for (i = 0; i < priv->num_grps; i++) { 3016 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3017 3018 disable_irq(gfar_irq(grp, TX)->irq); 3019 disable_irq(gfar_irq(grp, RX)->irq); 3020 disable_irq(gfar_irq(grp, ER)->irq); 3021 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 3022 enable_irq(gfar_irq(grp, ER)->irq); 3023 enable_irq(gfar_irq(grp, RX)->irq); 3024 enable_irq(gfar_irq(grp, TX)->irq); 3025 } 3026 } else { 3027 for (i = 0; i < priv->num_grps; i++) { 3028 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3029 3030 disable_irq(gfar_irq(grp, TX)->irq); 3031 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 3032 enable_irq(gfar_irq(grp, TX)->irq); 3033 } 3034 } 3035 } 3036 #endif 3037 3038 /* The interrupt handler for devices with one interrupt */ 3039 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 3040 { 3041 struct gfar_priv_grp *gfargrp = grp_id; 3042 3043 /* Save ievent for future reference */ 3044 u32 events = gfar_read(&gfargrp->regs->ievent); 3045 3046 /* Check for reception */ 3047 if (events & IEVENT_RX_MASK) 3048 gfar_receive(irq, grp_id); 3049 3050 /* Check for transmit completion */ 3051 if (events & IEVENT_TX_MASK) 3052 gfar_transmit(irq, grp_id); 3053 3054 /* Check for errors */ 3055 if (events & IEVENT_ERR_MASK) 3056 gfar_error(irq, grp_id); 3057 3058 return IRQ_HANDLED; 3059 } 3060 3061 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 3062 { 3063 struct phy_device *phydev = priv->phydev; 3064 u32 val = 0; 3065 3066 if (!phydev->duplex) 3067 return val; 3068 3069 if (!priv->pause_aneg_en) { 3070 if (priv->tx_pause_en) 3071 val |= MACCFG1_TX_FLOW; 3072 if (priv->rx_pause_en) 3073 val |= MACCFG1_RX_FLOW; 3074 } else { 3075 u16 lcl_adv, rmt_adv; 3076 u8 flowctrl; 3077 /* get link partner capabilities */ 3078 rmt_adv = 0; 3079 if (phydev->pause) 3080 rmt_adv = LPA_PAUSE_CAP; 3081 if (phydev->asym_pause) 3082 rmt_adv |= LPA_PAUSE_ASYM; 3083 3084 lcl_adv = mii_advertise_flowctrl(phydev->advertising); 3085 3086 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 3087 if (flowctrl & FLOW_CTRL_TX) 3088 val |= MACCFG1_TX_FLOW; 3089 if (flowctrl & FLOW_CTRL_RX) 3090 val |= MACCFG1_RX_FLOW; 3091 } 3092 3093 return val; 3094 } 3095 3096 /* Called every time the controller might need to be made 3097 * aware of new link state. The PHY code conveys this 3098 * information through variables in the phydev structure, and this 3099 * function converts those variables into the appropriate 3100 * register values, and can bring down the device if needed. 3101 */ 3102 static void adjust_link(struct net_device *dev) 3103 { 3104 struct gfar_private *priv = netdev_priv(dev); 3105 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3106 struct phy_device *phydev = priv->phydev; 3107 int new_state = 0; 3108 3109 if (test_bit(GFAR_RESETTING, &priv->state)) 3110 return; 3111 3112 if (phydev->link) { 3113 u32 tempval1 = gfar_read(®s->maccfg1); 3114 u32 tempval = gfar_read(®s->maccfg2); 3115 u32 ecntrl = gfar_read(®s->ecntrl); 3116 3117 /* Now we make sure that we can be in full duplex mode. 3118 * If not, we operate in half-duplex mode. 3119 */ 3120 if (phydev->duplex != priv->oldduplex) { 3121 new_state = 1; 3122 if (!(phydev->duplex)) 3123 tempval &= ~(MACCFG2_FULL_DUPLEX); 3124 else 3125 tempval |= MACCFG2_FULL_DUPLEX; 3126 3127 priv->oldduplex = phydev->duplex; 3128 } 3129 3130 if (phydev->speed != priv->oldspeed) { 3131 new_state = 1; 3132 switch (phydev->speed) { 3133 case 1000: 3134 tempval = 3135 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 3136 3137 ecntrl &= ~(ECNTRL_R100); 3138 break; 3139 case 100: 3140 case 10: 3141 tempval = 3142 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 3143 3144 /* Reduced mode distinguishes 3145 * between 10 and 100 3146 */ 3147 if (phydev->speed == SPEED_100) 3148 ecntrl |= ECNTRL_R100; 3149 else 3150 ecntrl &= ~(ECNTRL_R100); 3151 break; 3152 default: 3153 netif_warn(priv, link, dev, 3154 "Ack! Speed (%d) is not 10/100/1000!\n", 3155 phydev->speed); 3156 break; 3157 } 3158 3159 priv->oldspeed = phydev->speed; 3160 } 3161 3162 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 3163 tempval1 |= gfar_get_flowctrl_cfg(priv); 3164 3165 gfar_write(®s->maccfg1, tempval1); 3166 gfar_write(®s->maccfg2, tempval); 3167 gfar_write(®s->ecntrl, ecntrl); 3168 3169 if (!priv->oldlink) { 3170 new_state = 1; 3171 priv->oldlink = 1; 3172 } 3173 } else if (priv->oldlink) { 3174 new_state = 1; 3175 priv->oldlink = 0; 3176 priv->oldspeed = 0; 3177 priv->oldduplex = -1; 3178 } 3179 3180 if (new_state && netif_msg_link(priv)) 3181 phy_print_status(phydev); 3182 } 3183 3184 /* Update the hash table based on the current list of multicast 3185 * addresses we subscribe to. Also, change the promiscuity of 3186 * the device based on the flags (this function is called 3187 * whenever dev->flags is changed 3188 */ 3189 static void gfar_set_multi(struct net_device *dev) 3190 { 3191 struct netdev_hw_addr *ha; 3192 struct gfar_private *priv = netdev_priv(dev); 3193 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3194 u32 tempval; 3195 3196 if (dev->flags & IFF_PROMISC) { 3197 /* Set RCTRL to PROM */ 3198 tempval = gfar_read(®s->rctrl); 3199 tempval |= RCTRL_PROM; 3200 gfar_write(®s->rctrl, tempval); 3201 } else { 3202 /* Set RCTRL to not PROM */ 3203 tempval = gfar_read(®s->rctrl); 3204 tempval &= ~(RCTRL_PROM); 3205 gfar_write(®s->rctrl, tempval); 3206 } 3207 3208 if (dev->flags & IFF_ALLMULTI) { 3209 /* Set the hash to rx all multicast frames */ 3210 gfar_write(®s->igaddr0, 0xffffffff); 3211 gfar_write(®s->igaddr1, 0xffffffff); 3212 gfar_write(®s->igaddr2, 0xffffffff); 3213 gfar_write(®s->igaddr3, 0xffffffff); 3214 gfar_write(®s->igaddr4, 0xffffffff); 3215 gfar_write(®s->igaddr5, 0xffffffff); 3216 gfar_write(®s->igaddr6, 0xffffffff); 3217 gfar_write(®s->igaddr7, 0xffffffff); 3218 gfar_write(®s->gaddr0, 0xffffffff); 3219 gfar_write(®s->gaddr1, 0xffffffff); 3220 gfar_write(®s->gaddr2, 0xffffffff); 3221 gfar_write(®s->gaddr3, 0xffffffff); 3222 gfar_write(®s->gaddr4, 0xffffffff); 3223 gfar_write(®s->gaddr5, 0xffffffff); 3224 gfar_write(®s->gaddr6, 0xffffffff); 3225 gfar_write(®s->gaddr7, 0xffffffff); 3226 } else { 3227 int em_num; 3228 int idx; 3229 3230 /* zero out the hash */ 3231 gfar_write(®s->igaddr0, 0x0); 3232 gfar_write(®s->igaddr1, 0x0); 3233 gfar_write(®s->igaddr2, 0x0); 3234 gfar_write(®s->igaddr3, 0x0); 3235 gfar_write(®s->igaddr4, 0x0); 3236 gfar_write(®s->igaddr5, 0x0); 3237 gfar_write(®s->igaddr6, 0x0); 3238 gfar_write(®s->igaddr7, 0x0); 3239 gfar_write(®s->gaddr0, 0x0); 3240 gfar_write(®s->gaddr1, 0x0); 3241 gfar_write(®s->gaddr2, 0x0); 3242 gfar_write(®s->gaddr3, 0x0); 3243 gfar_write(®s->gaddr4, 0x0); 3244 gfar_write(®s->gaddr5, 0x0); 3245 gfar_write(®s->gaddr6, 0x0); 3246 gfar_write(®s->gaddr7, 0x0); 3247 3248 /* If we have extended hash tables, we need to 3249 * clear the exact match registers to prepare for 3250 * setting them 3251 */ 3252 if (priv->extended_hash) { 3253 em_num = GFAR_EM_NUM + 1; 3254 gfar_clear_exact_match(dev); 3255 idx = 1; 3256 } else { 3257 idx = 0; 3258 em_num = 0; 3259 } 3260 3261 if (netdev_mc_empty(dev)) 3262 return; 3263 3264 /* Parse the list, and set the appropriate bits */ 3265 netdev_for_each_mc_addr(ha, dev) { 3266 if (idx < em_num) { 3267 gfar_set_mac_for_addr(dev, idx, ha->addr); 3268 idx++; 3269 } else 3270 gfar_set_hash_for_addr(dev, ha->addr); 3271 } 3272 } 3273 } 3274 3275 3276 /* Clears each of the exact match registers to zero, so they 3277 * don't interfere with normal reception 3278 */ 3279 static void gfar_clear_exact_match(struct net_device *dev) 3280 { 3281 int idx; 3282 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 3283 3284 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 3285 gfar_set_mac_for_addr(dev, idx, zero_arr); 3286 } 3287 3288 /* Set the appropriate hash bit for the given addr */ 3289 /* The algorithm works like so: 3290 * 1) Take the Destination Address (ie the multicast address), and 3291 * do a CRC on it (little endian), and reverse the bits of the 3292 * result. 3293 * 2) Use the 8 most significant bits as a hash into a 256-entry 3294 * table. The table is controlled through 8 32-bit registers: 3295 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 3296 * gaddr7. This means that the 3 most significant bits in the 3297 * hash index which gaddr register to use, and the 5 other bits 3298 * indicate which bit (assuming an IBM numbering scheme, which 3299 * for PowerPC (tm) is usually the case) in the register holds 3300 * the entry. 3301 */ 3302 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 3303 { 3304 u32 tempval; 3305 struct gfar_private *priv = netdev_priv(dev); 3306 u32 result = ether_crc(ETH_ALEN, addr); 3307 int width = priv->hash_width; 3308 u8 whichbit = (result >> (32 - width)) & 0x1f; 3309 u8 whichreg = result >> (32 - width + 5); 3310 u32 value = (1 << (31-whichbit)); 3311 3312 tempval = gfar_read(priv->hash_regs[whichreg]); 3313 tempval |= value; 3314 gfar_write(priv->hash_regs[whichreg], tempval); 3315 } 3316 3317 3318 /* There are multiple MAC Address register pairs on some controllers 3319 * This function sets the numth pair to a given address 3320 */ 3321 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 3322 const u8 *addr) 3323 { 3324 struct gfar_private *priv = netdev_priv(dev); 3325 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3326 int idx; 3327 char tmpbuf[ETH_ALEN]; 3328 u32 tempval; 3329 u32 __iomem *macptr = ®s->macstnaddr1; 3330 3331 macptr += num*2; 3332 3333 /* Now copy it into the mac registers backwards, cuz 3334 * little endian is silly 3335 */ 3336 for (idx = 0; idx < ETH_ALEN; idx++) 3337 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx]; 3338 3339 gfar_write(macptr, *((u32 *) (tmpbuf))); 3340 3341 tempval = *((u32 *) (tmpbuf + 4)); 3342 3343 gfar_write(macptr+1, tempval); 3344 } 3345 3346 /* GFAR error interrupt handler */ 3347 static irqreturn_t gfar_error(int irq, void *grp_id) 3348 { 3349 struct gfar_priv_grp *gfargrp = grp_id; 3350 struct gfar __iomem *regs = gfargrp->regs; 3351 struct gfar_private *priv= gfargrp->priv; 3352 struct net_device *dev = priv->ndev; 3353 3354 /* Save ievent for future reference */ 3355 u32 events = gfar_read(®s->ievent); 3356 3357 /* Clear IEVENT */ 3358 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 3359 3360 /* Magic Packet is not an error. */ 3361 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 3362 (events & IEVENT_MAG)) 3363 events &= ~IEVENT_MAG; 3364 3365 /* Hmm... */ 3366 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 3367 netdev_dbg(dev, 3368 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 3369 events, gfar_read(®s->imask)); 3370 3371 /* Update the error counters */ 3372 if (events & IEVENT_TXE) { 3373 dev->stats.tx_errors++; 3374 3375 if (events & IEVENT_LC) 3376 dev->stats.tx_window_errors++; 3377 if (events & IEVENT_CRL) 3378 dev->stats.tx_aborted_errors++; 3379 if (events & IEVENT_XFUN) { 3380 unsigned long flags; 3381 3382 netif_dbg(priv, tx_err, dev, 3383 "TX FIFO underrun, packet dropped\n"); 3384 dev->stats.tx_dropped++; 3385 atomic64_inc(&priv->extra_stats.tx_underrun); 3386 3387 local_irq_save(flags); 3388 lock_tx_qs(priv); 3389 3390 /* Reactivate the Tx Queues */ 3391 gfar_write(®s->tstat, gfargrp->tstat); 3392 3393 unlock_tx_qs(priv); 3394 local_irq_restore(flags); 3395 } 3396 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 3397 } 3398 if (events & IEVENT_BSY) { 3399 dev->stats.rx_errors++; 3400 atomic64_inc(&priv->extra_stats.rx_bsy); 3401 3402 gfar_receive(irq, grp_id); 3403 3404 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 3405 gfar_read(®s->rstat)); 3406 } 3407 if (events & IEVENT_BABR) { 3408 dev->stats.rx_errors++; 3409 atomic64_inc(&priv->extra_stats.rx_babr); 3410 3411 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 3412 } 3413 if (events & IEVENT_EBERR) { 3414 atomic64_inc(&priv->extra_stats.eberr); 3415 netif_dbg(priv, rx_err, dev, "bus error\n"); 3416 } 3417 if (events & IEVENT_RXC) 3418 netif_dbg(priv, rx_status, dev, "control frame\n"); 3419 3420 if (events & IEVENT_BABT) { 3421 atomic64_inc(&priv->extra_stats.tx_babt); 3422 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 3423 } 3424 return IRQ_HANDLED; 3425 } 3426 3427 static struct of_device_id gfar_match[] = 3428 { 3429 { 3430 .type = "network", 3431 .compatible = "gianfar", 3432 }, 3433 { 3434 .compatible = "fsl,etsec2", 3435 }, 3436 {}, 3437 }; 3438 MODULE_DEVICE_TABLE(of, gfar_match); 3439 3440 /* Structure for a device driver */ 3441 static struct platform_driver gfar_driver = { 3442 .driver = { 3443 .name = "fsl-gianfar", 3444 .owner = THIS_MODULE, 3445 .pm = GFAR_PM_OPS, 3446 .of_match_table = gfar_match, 3447 }, 3448 .probe = gfar_probe, 3449 .remove = gfar_remove, 3450 }; 3451 3452 module_platform_driver(gfar_driver); 3453