xref: /openbmc/linux/drivers/net/ethernet/freescale/gianfar.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #include <asm/reg.h>
92 #include <asm/mpc85xx.h>
93 #include <asm/irq.h>
94 #include <asm/uaccess.h>
95 #include <linux/module.h>
96 #include <linux/dma-mapping.h>
97 #include <linux/crc32.h>
98 #include <linux/mii.h>
99 #include <linux/phy.h>
100 #include <linux/phy_fixed.h>
101 #include <linux/of.h>
102 #include <linux/of_net.h>
103 
104 #include "gianfar.h"
105 
106 #define TX_TIMEOUT      (1*HZ)
107 
108 const char gfar_driver_version[] = "1.3";
109 
110 static int gfar_enet_open(struct net_device *dev);
111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112 static void gfar_reset_task(struct work_struct *work);
113 static void gfar_timeout(struct net_device *dev);
114 static int gfar_close(struct net_device *dev);
115 struct sk_buff *gfar_new_skb(struct net_device *dev);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117 			   struct sk_buff *skb);
118 static int gfar_set_mac_address(struct net_device *dev);
119 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120 static irqreturn_t gfar_error(int irq, void *dev_id);
121 static irqreturn_t gfar_transmit(int irq, void *dev_id);
122 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123 static void adjust_link(struct net_device *dev);
124 static noinline void gfar_update_link_state(struct gfar_private *priv);
125 static int init_phy(struct net_device *dev);
126 static int gfar_probe(struct platform_device *ofdev);
127 static int gfar_remove(struct platform_device *ofdev);
128 static void free_skb_resources(struct gfar_private *priv);
129 static void gfar_set_multi(struct net_device *dev);
130 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131 static void gfar_configure_serdes(struct net_device *dev);
132 static int gfar_poll_rx(struct napi_struct *napi, int budget);
133 static int gfar_poll_tx(struct napi_struct *napi, int budget);
134 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
135 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
136 #ifdef CONFIG_NET_POLL_CONTROLLER
137 static void gfar_netpoll(struct net_device *dev);
138 #endif
139 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
140 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
141 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
142 			       int amount_pull, struct napi_struct *napi);
143 static void gfar_halt_nodisable(struct gfar_private *priv);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
146 				  const u8 *addr);
147 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
148 
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
152 
153 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
154 			    dma_addr_t buf)
155 {
156 	u32 lstatus;
157 
158 	bdp->bufPtr = buf;
159 
160 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
161 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
162 		lstatus |= BD_LFLAG(RXBD_WRAP);
163 
164 	eieio();
165 
166 	bdp->lstatus = lstatus;
167 }
168 
169 static int gfar_init_bds(struct net_device *ndev)
170 {
171 	struct gfar_private *priv = netdev_priv(ndev);
172 	struct gfar_priv_tx_q *tx_queue = NULL;
173 	struct gfar_priv_rx_q *rx_queue = NULL;
174 	struct txbd8 *txbdp;
175 	struct rxbd8 *rxbdp;
176 	int i, j;
177 
178 	for (i = 0; i < priv->num_tx_queues; i++) {
179 		tx_queue = priv->tx_queue[i];
180 		/* Initialize some variables in our dev structure */
181 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
182 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
183 		tx_queue->cur_tx = tx_queue->tx_bd_base;
184 		tx_queue->skb_curtx = 0;
185 		tx_queue->skb_dirtytx = 0;
186 
187 		/* Initialize Transmit Descriptor Ring */
188 		txbdp = tx_queue->tx_bd_base;
189 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
190 			txbdp->lstatus = 0;
191 			txbdp->bufPtr = 0;
192 			txbdp++;
193 		}
194 
195 		/* Set the last descriptor in the ring to indicate wrap */
196 		txbdp--;
197 		txbdp->status |= TXBD_WRAP;
198 	}
199 
200 	for (i = 0; i < priv->num_rx_queues; i++) {
201 		rx_queue = priv->rx_queue[i];
202 		rx_queue->cur_rx = rx_queue->rx_bd_base;
203 		rx_queue->skb_currx = 0;
204 		rxbdp = rx_queue->rx_bd_base;
205 
206 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
207 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
208 
209 			if (skb) {
210 				gfar_init_rxbdp(rx_queue, rxbdp,
211 						rxbdp->bufPtr);
212 			} else {
213 				skb = gfar_new_skb(ndev);
214 				if (!skb) {
215 					netdev_err(ndev, "Can't allocate RX buffers\n");
216 					return -ENOMEM;
217 				}
218 				rx_queue->rx_skbuff[j] = skb;
219 
220 				gfar_new_rxbdp(rx_queue, rxbdp, skb);
221 			}
222 
223 			rxbdp++;
224 		}
225 
226 	}
227 
228 	return 0;
229 }
230 
231 static int gfar_alloc_skb_resources(struct net_device *ndev)
232 {
233 	void *vaddr;
234 	dma_addr_t addr;
235 	int i, j, k;
236 	struct gfar_private *priv = netdev_priv(ndev);
237 	struct device *dev = priv->dev;
238 	struct gfar_priv_tx_q *tx_queue = NULL;
239 	struct gfar_priv_rx_q *rx_queue = NULL;
240 
241 	priv->total_tx_ring_size = 0;
242 	for (i = 0; i < priv->num_tx_queues; i++)
243 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
244 
245 	priv->total_rx_ring_size = 0;
246 	for (i = 0; i < priv->num_rx_queues; i++)
247 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
248 
249 	/* Allocate memory for the buffer descriptors */
250 	vaddr = dma_alloc_coherent(dev,
251 				   (priv->total_tx_ring_size *
252 				    sizeof(struct txbd8)) +
253 				   (priv->total_rx_ring_size *
254 				    sizeof(struct rxbd8)),
255 				   &addr, GFP_KERNEL);
256 	if (!vaddr)
257 		return -ENOMEM;
258 
259 	for (i = 0; i < priv->num_tx_queues; i++) {
260 		tx_queue = priv->tx_queue[i];
261 		tx_queue->tx_bd_base = vaddr;
262 		tx_queue->tx_bd_dma_base = addr;
263 		tx_queue->dev = ndev;
264 		/* enet DMA only understands physical addresses */
265 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
266 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
267 	}
268 
269 	/* Start the rx descriptor ring where the tx ring leaves off */
270 	for (i = 0; i < priv->num_rx_queues; i++) {
271 		rx_queue = priv->rx_queue[i];
272 		rx_queue->rx_bd_base = vaddr;
273 		rx_queue->rx_bd_dma_base = addr;
274 		rx_queue->dev = ndev;
275 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
276 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
277 	}
278 
279 	/* Setup the skbuff rings */
280 	for (i = 0; i < priv->num_tx_queues; i++) {
281 		tx_queue = priv->tx_queue[i];
282 		tx_queue->tx_skbuff =
283 			kmalloc_array(tx_queue->tx_ring_size,
284 				      sizeof(*tx_queue->tx_skbuff),
285 				      GFP_KERNEL);
286 		if (!tx_queue->tx_skbuff)
287 			goto cleanup;
288 
289 		for (k = 0; k < tx_queue->tx_ring_size; k++)
290 			tx_queue->tx_skbuff[k] = NULL;
291 	}
292 
293 	for (i = 0; i < priv->num_rx_queues; i++) {
294 		rx_queue = priv->rx_queue[i];
295 		rx_queue->rx_skbuff =
296 			kmalloc_array(rx_queue->rx_ring_size,
297 				      sizeof(*rx_queue->rx_skbuff),
298 				      GFP_KERNEL);
299 		if (!rx_queue->rx_skbuff)
300 			goto cleanup;
301 
302 		for (j = 0; j < rx_queue->rx_ring_size; j++)
303 			rx_queue->rx_skbuff[j] = NULL;
304 	}
305 
306 	if (gfar_init_bds(ndev))
307 		goto cleanup;
308 
309 	return 0;
310 
311 cleanup:
312 	free_skb_resources(priv);
313 	return -ENOMEM;
314 }
315 
316 static void gfar_init_tx_rx_base(struct gfar_private *priv)
317 {
318 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
319 	u32 __iomem *baddr;
320 	int i;
321 
322 	baddr = &regs->tbase0;
323 	for (i = 0; i < priv->num_tx_queues; i++) {
324 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
325 		baddr += 2;
326 	}
327 
328 	baddr = &regs->rbase0;
329 	for (i = 0; i < priv->num_rx_queues; i++) {
330 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
331 		baddr += 2;
332 	}
333 }
334 
335 static void gfar_rx_buff_size_config(struct gfar_private *priv)
336 {
337 	int frame_size = priv->ndev->mtu + ETH_HLEN;
338 
339 	/* set this when rx hw offload (TOE) functions are being used */
340 	priv->uses_rxfcb = 0;
341 
342 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
343 		priv->uses_rxfcb = 1;
344 
345 	if (priv->hwts_rx_en)
346 		priv->uses_rxfcb = 1;
347 
348 	if (priv->uses_rxfcb)
349 		frame_size += GMAC_FCB_LEN;
350 
351 	frame_size += priv->padding;
352 
353 	frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
354 		     INCREMENTAL_BUFFER_SIZE;
355 
356 	priv->rx_buffer_size = frame_size;
357 }
358 
359 static void gfar_mac_rx_config(struct gfar_private *priv)
360 {
361 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
362 	u32 rctrl = 0;
363 
364 	if (priv->rx_filer_enable) {
365 		rctrl |= RCTRL_FILREN;
366 		/* Program the RIR0 reg with the required distribution */
367 		if (priv->poll_mode == GFAR_SQ_POLLING)
368 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
369 		else /* GFAR_MQ_POLLING */
370 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
371 	}
372 
373 	/* Restore PROMISC mode */
374 	if (priv->ndev->flags & IFF_PROMISC)
375 		rctrl |= RCTRL_PROM;
376 
377 	if (priv->ndev->features & NETIF_F_RXCSUM)
378 		rctrl |= RCTRL_CHECKSUMMING;
379 
380 	if (priv->extended_hash)
381 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
382 
383 	if (priv->padding) {
384 		rctrl &= ~RCTRL_PAL_MASK;
385 		rctrl |= RCTRL_PADDING(priv->padding);
386 	}
387 
388 	/* Enable HW time stamping if requested from user space */
389 	if (priv->hwts_rx_en)
390 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
391 
392 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
393 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
394 
395 	/* Init rctrl based on our settings */
396 	gfar_write(&regs->rctrl, rctrl);
397 }
398 
399 static void gfar_mac_tx_config(struct gfar_private *priv)
400 {
401 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
402 	u32 tctrl = 0;
403 
404 	if (priv->ndev->features & NETIF_F_IP_CSUM)
405 		tctrl |= TCTRL_INIT_CSUM;
406 
407 	if (priv->prio_sched_en)
408 		tctrl |= TCTRL_TXSCHED_PRIO;
409 	else {
410 		tctrl |= TCTRL_TXSCHED_WRRS;
411 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
412 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
413 	}
414 
415 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
416 		tctrl |= TCTRL_VLINS;
417 
418 	gfar_write(&regs->tctrl, tctrl);
419 }
420 
421 static void gfar_configure_coalescing(struct gfar_private *priv,
422 			       unsigned long tx_mask, unsigned long rx_mask)
423 {
424 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
425 	u32 __iomem *baddr;
426 
427 	if (priv->mode == MQ_MG_MODE) {
428 		int i = 0;
429 
430 		baddr = &regs->txic0;
431 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
432 			gfar_write(baddr + i, 0);
433 			if (likely(priv->tx_queue[i]->txcoalescing))
434 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
435 		}
436 
437 		baddr = &regs->rxic0;
438 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
439 			gfar_write(baddr + i, 0);
440 			if (likely(priv->rx_queue[i]->rxcoalescing))
441 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
442 		}
443 	} else {
444 		/* Backward compatible case -- even if we enable
445 		 * multiple queues, there's only single reg to program
446 		 */
447 		gfar_write(&regs->txic, 0);
448 		if (likely(priv->tx_queue[0]->txcoalescing))
449 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
450 
451 		gfar_write(&regs->rxic, 0);
452 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
453 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
454 	}
455 }
456 
457 void gfar_configure_coalescing_all(struct gfar_private *priv)
458 {
459 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
460 }
461 
462 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
463 {
464 	struct gfar_private *priv = netdev_priv(dev);
465 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
466 	unsigned long tx_packets = 0, tx_bytes = 0;
467 	int i;
468 
469 	for (i = 0; i < priv->num_rx_queues; i++) {
470 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
471 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
472 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
473 	}
474 
475 	dev->stats.rx_packets = rx_packets;
476 	dev->stats.rx_bytes   = rx_bytes;
477 	dev->stats.rx_dropped = rx_dropped;
478 
479 	for (i = 0; i < priv->num_tx_queues; i++) {
480 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
481 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
482 	}
483 
484 	dev->stats.tx_bytes   = tx_bytes;
485 	dev->stats.tx_packets = tx_packets;
486 
487 	return &dev->stats;
488 }
489 
490 static const struct net_device_ops gfar_netdev_ops = {
491 	.ndo_open = gfar_enet_open,
492 	.ndo_start_xmit = gfar_start_xmit,
493 	.ndo_stop = gfar_close,
494 	.ndo_change_mtu = gfar_change_mtu,
495 	.ndo_set_features = gfar_set_features,
496 	.ndo_set_rx_mode = gfar_set_multi,
497 	.ndo_tx_timeout = gfar_timeout,
498 	.ndo_do_ioctl = gfar_ioctl,
499 	.ndo_get_stats = gfar_get_stats,
500 	.ndo_set_mac_address = eth_mac_addr,
501 	.ndo_validate_addr = eth_validate_addr,
502 #ifdef CONFIG_NET_POLL_CONTROLLER
503 	.ndo_poll_controller = gfar_netpoll,
504 #endif
505 };
506 
507 static void gfar_ints_disable(struct gfar_private *priv)
508 {
509 	int i;
510 	for (i = 0; i < priv->num_grps; i++) {
511 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
512 		/* Clear IEVENT */
513 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
514 
515 		/* Initialize IMASK */
516 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
517 	}
518 }
519 
520 static void gfar_ints_enable(struct gfar_private *priv)
521 {
522 	int i;
523 	for (i = 0; i < priv->num_grps; i++) {
524 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
525 		/* Unmask the interrupts we look for */
526 		gfar_write(&regs->imask, IMASK_DEFAULT);
527 	}
528 }
529 
530 void lock_tx_qs(struct gfar_private *priv)
531 {
532 	int i;
533 
534 	for (i = 0; i < priv->num_tx_queues; i++)
535 		spin_lock(&priv->tx_queue[i]->txlock);
536 }
537 
538 void unlock_tx_qs(struct gfar_private *priv)
539 {
540 	int i;
541 
542 	for (i = 0; i < priv->num_tx_queues; i++)
543 		spin_unlock(&priv->tx_queue[i]->txlock);
544 }
545 
546 static int gfar_alloc_tx_queues(struct gfar_private *priv)
547 {
548 	int i;
549 
550 	for (i = 0; i < priv->num_tx_queues; i++) {
551 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
552 					    GFP_KERNEL);
553 		if (!priv->tx_queue[i])
554 			return -ENOMEM;
555 
556 		priv->tx_queue[i]->tx_skbuff = NULL;
557 		priv->tx_queue[i]->qindex = i;
558 		priv->tx_queue[i]->dev = priv->ndev;
559 		spin_lock_init(&(priv->tx_queue[i]->txlock));
560 	}
561 	return 0;
562 }
563 
564 static int gfar_alloc_rx_queues(struct gfar_private *priv)
565 {
566 	int i;
567 
568 	for (i = 0; i < priv->num_rx_queues; i++) {
569 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
570 					    GFP_KERNEL);
571 		if (!priv->rx_queue[i])
572 			return -ENOMEM;
573 
574 		priv->rx_queue[i]->rx_skbuff = NULL;
575 		priv->rx_queue[i]->qindex = i;
576 		priv->rx_queue[i]->dev = priv->ndev;
577 	}
578 	return 0;
579 }
580 
581 static void gfar_free_tx_queues(struct gfar_private *priv)
582 {
583 	int i;
584 
585 	for (i = 0; i < priv->num_tx_queues; i++)
586 		kfree(priv->tx_queue[i]);
587 }
588 
589 static void gfar_free_rx_queues(struct gfar_private *priv)
590 {
591 	int i;
592 
593 	for (i = 0; i < priv->num_rx_queues; i++)
594 		kfree(priv->rx_queue[i]);
595 }
596 
597 static void unmap_group_regs(struct gfar_private *priv)
598 {
599 	int i;
600 
601 	for (i = 0; i < MAXGROUPS; i++)
602 		if (priv->gfargrp[i].regs)
603 			iounmap(priv->gfargrp[i].regs);
604 }
605 
606 static void free_gfar_dev(struct gfar_private *priv)
607 {
608 	int i, j;
609 
610 	for (i = 0; i < priv->num_grps; i++)
611 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
612 			kfree(priv->gfargrp[i].irqinfo[j]);
613 			priv->gfargrp[i].irqinfo[j] = NULL;
614 		}
615 
616 	free_netdev(priv->ndev);
617 }
618 
619 static void disable_napi(struct gfar_private *priv)
620 {
621 	int i;
622 
623 	for (i = 0; i < priv->num_grps; i++) {
624 		napi_disable(&priv->gfargrp[i].napi_rx);
625 		napi_disable(&priv->gfargrp[i].napi_tx);
626 	}
627 }
628 
629 static void enable_napi(struct gfar_private *priv)
630 {
631 	int i;
632 
633 	for (i = 0; i < priv->num_grps; i++) {
634 		napi_enable(&priv->gfargrp[i].napi_rx);
635 		napi_enable(&priv->gfargrp[i].napi_tx);
636 	}
637 }
638 
639 static int gfar_parse_group(struct device_node *np,
640 			    struct gfar_private *priv, const char *model)
641 {
642 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
643 	int i;
644 
645 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
646 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
647 					  GFP_KERNEL);
648 		if (!grp->irqinfo[i])
649 			return -ENOMEM;
650 	}
651 
652 	grp->regs = of_iomap(np, 0);
653 	if (!grp->regs)
654 		return -ENOMEM;
655 
656 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
657 
658 	/* If we aren't the FEC we have multiple interrupts */
659 	if (model && strcasecmp(model, "FEC")) {
660 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
661 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
662 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
663 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
664 		    gfar_irq(grp, ER)->irq == NO_IRQ)
665 			return -EINVAL;
666 	}
667 
668 	grp->priv = priv;
669 	spin_lock_init(&grp->grplock);
670 	if (priv->mode == MQ_MG_MODE) {
671 		u32 *rxq_mask, *txq_mask;
672 		rxq_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
673 		txq_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
674 
675 		if (priv->poll_mode == GFAR_SQ_POLLING) {
676 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
677 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
678 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
679 		} else { /* GFAR_MQ_POLLING */
680 			grp->rx_bit_map = rxq_mask ?
681 			*rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
682 			grp->tx_bit_map = txq_mask ?
683 			*txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
684 		}
685 	} else {
686 		grp->rx_bit_map = 0xFF;
687 		grp->tx_bit_map = 0xFF;
688 	}
689 
690 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
691 	 * right to left, so we need to revert the 8 bits to get the q index
692 	 */
693 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
694 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
695 
696 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
697 	 * also assign queues to groups
698 	 */
699 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
700 		if (!grp->rx_queue)
701 			grp->rx_queue = priv->rx_queue[i];
702 		grp->num_rx_queues++;
703 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
704 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
705 		priv->rx_queue[i]->grp = grp;
706 	}
707 
708 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
709 		if (!grp->tx_queue)
710 			grp->tx_queue = priv->tx_queue[i];
711 		grp->num_tx_queues++;
712 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
713 		priv->tqueue |= (TQUEUE_EN0 >> i);
714 		priv->tx_queue[i]->grp = grp;
715 	}
716 
717 	priv->num_grps++;
718 
719 	return 0;
720 }
721 
722 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
723 {
724 	const char *model;
725 	const char *ctype;
726 	const void *mac_addr;
727 	int err = 0, i;
728 	struct net_device *dev = NULL;
729 	struct gfar_private *priv = NULL;
730 	struct device_node *np = ofdev->dev.of_node;
731 	struct device_node *child = NULL;
732 	const u32 *stash;
733 	const u32 *stash_len;
734 	const u32 *stash_idx;
735 	unsigned int num_tx_qs, num_rx_qs;
736 	u32 *tx_queues, *rx_queues;
737 	unsigned short mode, poll_mode;
738 
739 	if (!np || !of_device_is_available(np))
740 		return -ENODEV;
741 
742 	if (of_device_is_compatible(np, "fsl,etsec2")) {
743 		mode = MQ_MG_MODE;
744 		poll_mode = GFAR_SQ_POLLING;
745 	} else {
746 		mode = SQ_SG_MODE;
747 		poll_mode = GFAR_SQ_POLLING;
748 	}
749 
750 	/* parse the num of HW tx and rx queues */
751 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
752 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
753 
754 	if (mode == SQ_SG_MODE) {
755 		num_tx_qs = 1;
756 		num_rx_qs = 1;
757 	} else { /* MQ_MG_MODE */
758 		/* get the actual number of supported groups */
759 		unsigned int num_grps = of_get_available_child_count(np);
760 
761 		if (num_grps == 0 || num_grps > MAXGROUPS) {
762 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
763 				num_grps);
764 			pr_err("Cannot do alloc_etherdev, aborting\n");
765 			return -EINVAL;
766 		}
767 
768 		if (poll_mode == GFAR_SQ_POLLING) {
769 			num_tx_qs = num_grps; /* one txq per int group */
770 			num_rx_qs = num_grps; /* one rxq per int group */
771 		} else { /* GFAR_MQ_POLLING */
772 			num_tx_qs = tx_queues ? *tx_queues : 1;
773 			num_rx_qs = rx_queues ? *rx_queues : 1;
774 		}
775 	}
776 
777 	if (num_tx_qs > MAX_TX_QS) {
778 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
779 		       num_tx_qs, MAX_TX_QS);
780 		pr_err("Cannot do alloc_etherdev, aborting\n");
781 		return -EINVAL;
782 	}
783 
784 	if (num_rx_qs > MAX_RX_QS) {
785 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
786 		       num_rx_qs, MAX_RX_QS);
787 		pr_err("Cannot do alloc_etherdev, aborting\n");
788 		return -EINVAL;
789 	}
790 
791 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
792 	dev = *pdev;
793 	if (NULL == dev)
794 		return -ENOMEM;
795 
796 	priv = netdev_priv(dev);
797 	priv->ndev = dev;
798 
799 	priv->mode = mode;
800 	priv->poll_mode = poll_mode;
801 
802 	priv->num_tx_queues = num_tx_qs;
803 	netif_set_real_num_rx_queues(dev, num_rx_qs);
804 	priv->num_rx_queues = num_rx_qs;
805 
806 	err = gfar_alloc_tx_queues(priv);
807 	if (err)
808 		goto tx_alloc_failed;
809 
810 	err = gfar_alloc_rx_queues(priv);
811 	if (err)
812 		goto rx_alloc_failed;
813 
814 	/* Init Rx queue filer rule set linked list */
815 	INIT_LIST_HEAD(&priv->rx_list.list);
816 	priv->rx_list.count = 0;
817 	mutex_init(&priv->rx_queue_access);
818 
819 	model = of_get_property(np, "model", NULL);
820 
821 	for (i = 0; i < MAXGROUPS; i++)
822 		priv->gfargrp[i].regs = NULL;
823 
824 	/* Parse and initialize group specific information */
825 	if (priv->mode == MQ_MG_MODE) {
826 		for_each_child_of_node(np, child) {
827 			err = gfar_parse_group(child, priv, model);
828 			if (err)
829 				goto err_grp_init;
830 		}
831 	} else { /* SQ_SG_MODE */
832 		err = gfar_parse_group(np, priv, model);
833 		if (err)
834 			goto err_grp_init;
835 	}
836 
837 	stash = of_get_property(np, "bd-stash", NULL);
838 
839 	if (stash) {
840 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
841 		priv->bd_stash_en = 1;
842 	}
843 
844 	stash_len = of_get_property(np, "rx-stash-len", NULL);
845 
846 	if (stash_len)
847 		priv->rx_stash_size = *stash_len;
848 
849 	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
850 
851 	if (stash_idx)
852 		priv->rx_stash_index = *stash_idx;
853 
854 	if (stash_len || stash_idx)
855 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
856 
857 	mac_addr = of_get_mac_address(np);
858 
859 	if (mac_addr)
860 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
861 
862 	if (model && !strcasecmp(model, "TSEC"))
863 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
864 				     FSL_GIANFAR_DEV_HAS_COALESCE |
865 				     FSL_GIANFAR_DEV_HAS_RMON |
866 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
867 
868 	if (model && !strcasecmp(model, "eTSEC"))
869 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
870 				     FSL_GIANFAR_DEV_HAS_COALESCE |
871 				     FSL_GIANFAR_DEV_HAS_RMON |
872 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
873 				     FSL_GIANFAR_DEV_HAS_CSUM |
874 				     FSL_GIANFAR_DEV_HAS_VLAN |
875 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
876 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
877 				     FSL_GIANFAR_DEV_HAS_TIMER;
878 
879 	ctype = of_get_property(np, "phy-connection-type", NULL);
880 
881 	/* We only care about rgmii-id.  The rest are autodetected */
882 	if (ctype && !strcmp(ctype, "rgmii-id"))
883 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
884 	else
885 		priv->interface = PHY_INTERFACE_MODE_MII;
886 
887 	if (of_get_property(np, "fsl,magic-packet", NULL))
888 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
889 
890 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
891 
892 	/* In the case of a fixed PHY, the DT node associated
893 	 * to the PHY is the Ethernet MAC DT node.
894 	 */
895 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
896 		err = of_phy_register_fixed_link(np);
897 		if (err)
898 			goto err_grp_init;
899 
900 		priv->phy_node = of_node_get(np);
901 	}
902 
903 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
904 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
905 
906 	return 0;
907 
908 err_grp_init:
909 	unmap_group_regs(priv);
910 rx_alloc_failed:
911 	gfar_free_rx_queues(priv);
912 tx_alloc_failed:
913 	gfar_free_tx_queues(priv);
914 	free_gfar_dev(priv);
915 	return err;
916 }
917 
918 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
919 {
920 	struct hwtstamp_config config;
921 	struct gfar_private *priv = netdev_priv(netdev);
922 
923 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
924 		return -EFAULT;
925 
926 	/* reserved for future extensions */
927 	if (config.flags)
928 		return -EINVAL;
929 
930 	switch (config.tx_type) {
931 	case HWTSTAMP_TX_OFF:
932 		priv->hwts_tx_en = 0;
933 		break;
934 	case HWTSTAMP_TX_ON:
935 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
936 			return -ERANGE;
937 		priv->hwts_tx_en = 1;
938 		break;
939 	default:
940 		return -ERANGE;
941 	}
942 
943 	switch (config.rx_filter) {
944 	case HWTSTAMP_FILTER_NONE:
945 		if (priv->hwts_rx_en) {
946 			priv->hwts_rx_en = 0;
947 			reset_gfar(netdev);
948 		}
949 		break;
950 	default:
951 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
952 			return -ERANGE;
953 		if (!priv->hwts_rx_en) {
954 			priv->hwts_rx_en = 1;
955 			reset_gfar(netdev);
956 		}
957 		config.rx_filter = HWTSTAMP_FILTER_ALL;
958 		break;
959 	}
960 
961 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
962 		-EFAULT : 0;
963 }
964 
965 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
966 {
967 	struct hwtstamp_config config;
968 	struct gfar_private *priv = netdev_priv(netdev);
969 
970 	config.flags = 0;
971 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
972 	config.rx_filter = (priv->hwts_rx_en ?
973 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
974 
975 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
976 		-EFAULT : 0;
977 }
978 
979 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
980 {
981 	struct gfar_private *priv = netdev_priv(dev);
982 
983 	if (!netif_running(dev))
984 		return -EINVAL;
985 
986 	if (cmd == SIOCSHWTSTAMP)
987 		return gfar_hwtstamp_set(dev, rq);
988 	if (cmd == SIOCGHWTSTAMP)
989 		return gfar_hwtstamp_get(dev, rq);
990 
991 	if (!priv->phydev)
992 		return -ENODEV;
993 
994 	return phy_mii_ioctl(priv->phydev, rq, cmd);
995 }
996 
997 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
998 				   u32 class)
999 {
1000 	u32 rqfpr = FPR_FILER_MASK;
1001 	u32 rqfcr = 0x0;
1002 
1003 	rqfar--;
1004 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1005 	priv->ftp_rqfpr[rqfar] = rqfpr;
1006 	priv->ftp_rqfcr[rqfar] = rqfcr;
1007 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1008 
1009 	rqfar--;
1010 	rqfcr = RQFCR_CMP_NOMATCH;
1011 	priv->ftp_rqfpr[rqfar] = rqfpr;
1012 	priv->ftp_rqfcr[rqfar] = rqfcr;
1013 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1014 
1015 	rqfar--;
1016 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1017 	rqfpr = class;
1018 	priv->ftp_rqfcr[rqfar] = rqfcr;
1019 	priv->ftp_rqfpr[rqfar] = rqfpr;
1020 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1021 
1022 	rqfar--;
1023 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1024 	rqfpr = class;
1025 	priv->ftp_rqfcr[rqfar] = rqfcr;
1026 	priv->ftp_rqfpr[rqfar] = rqfpr;
1027 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1028 
1029 	return rqfar;
1030 }
1031 
1032 static void gfar_init_filer_table(struct gfar_private *priv)
1033 {
1034 	int i = 0x0;
1035 	u32 rqfar = MAX_FILER_IDX;
1036 	u32 rqfcr = 0x0;
1037 	u32 rqfpr = FPR_FILER_MASK;
1038 
1039 	/* Default rule */
1040 	rqfcr = RQFCR_CMP_MATCH;
1041 	priv->ftp_rqfcr[rqfar] = rqfcr;
1042 	priv->ftp_rqfpr[rqfar] = rqfpr;
1043 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1044 
1045 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1046 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1047 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1048 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1049 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1050 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1051 
1052 	/* cur_filer_idx indicated the first non-masked rule */
1053 	priv->cur_filer_idx = rqfar;
1054 
1055 	/* Rest are masked rules */
1056 	rqfcr = RQFCR_CMP_NOMATCH;
1057 	for (i = 0; i < rqfar; i++) {
1058 		priv->ftp_rqfcr[i] = rqfcr;
1059 		priv->ftp_rqfpr[i] = rqfpr;
1060 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1061 	}
1062 }
1063 
1064 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1065 {
1066 	unsigned int pvr = mfspr(SPRN_PVR);
1067 	unsigned int svr = mfspr(SPRN_SVR);
1068 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1069 	unsigned int rev = svr & 0xffff;
1070 
1071 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1072 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1073 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1074 		priv->errata |= GFAR_ERRATA_74;
1075 
1076 	/* MPC8313 and MPC837x all rev */
1077 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1078 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1079 		priv->errata |= GFAR_ERRATA_76;
1080 
1081 	/* MPC8313 Rev < 2.0 */
1082 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1083 		priv->errata |= GFAR_ERRATA_12;
1084 }
1085 
1086 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1087 {
1088 	unsigned int svr = mfspr(SPRN_SVR);
1089 
1090 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1091 		priv->errata |= GFAR_ERRATA_12;
1092 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1093 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1094 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1095 }
1096 
1097 static void gfar_detect_errata(struct gfar_private *priv)
1098 {
1099 	struct device *dev = &priv->ofdev->dev;
1100 
1101 	/* no plans to fix */
1102 	priv->errata |= GFAR_ERRATA_A002;
1103 
1104 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1105 		__gfar_detect_errata_85xx(priv);
1106 	else /* non-mpc85xx parts, i.e. e300 core based */
1107 		__gfar_detect_errata_83xx(priv);
1108 
1109 	if (priv->errata)
1110 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1111 			 priv->errata);
1112 }
1113 
1114 void gfar_mac_reset(struct gfar_private *priv)
1115 {
1116 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1117 	u32 tempval;
1118 
1119 	/* Reset MAC layer */
1120 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1121 
1122 	/* We need to delay at least 3 TX clocks */
1123 	udelay(3);
1124 
1125 	/* the soft reset bit is not self-resetting, so we need to
1126 	 * clear it before resuming normal operation
1127 	 */
1128 	gfar_write(&regs->maccfg1, 0);
1129 
1130 	udelay(3);
1131 
1132 	/* Compute rx_buff_size based on config flags */
1133 	gfar_rx_buff_size_config(priv);
1134 
1135 	/* Initialize the max receive frame/buffer lengths */
1136 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1137 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1138 
1139 	/* Initialize the Minimum Frame Length Register */
1140 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1141 
1142 	/* Initialize MACCFG2. */
1143 	tempval = MACCFG2_INIT_SETTINGS;
1144 
1145 	/* If the mtu is larger than the max size for standard
1146 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
1147 	 * to allow huge frames, and to check the length
1148 	 */
1149 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1150 	    gfar_has_errata(priv, GFAR_ERRATA_74))
1151 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1152 
1153 	gfar_write(&regs->maccfg2, tempval);
1154 
1155 	/* Clear mac addr hash registers */
1156 	gfar_write(&regs->igaddr0, 0);
1157 	gfar_write(&regs->igaddr1, 0);
1158 	gfar_write(&regs->igaddr2, 0);
1159 	gfar_write(&regs->igaddr3, 0);
1160 	gfar_write(&regs->igaddr4, 0);
1161 	gfar_write(&regs->igaddr5, 0);
1162 	gfar_write(&regs->igaddr6, 0);
1163 	gfar_write(&regs->igaddr7, 0);
1164 
1165 	gfar_write(&regs->gaddr0, 0);
1166 	gfar_write(&regs->gaddr1, 0);
1167 	gfar_write(&regs->gaddr2, 0);
1168 	gfar_write(&regs->gaddr3, 0);
1169 	gfar_write(&regs->gaddr4, 0);
1170 	gfar_write(&regs->gaddr5, 0);
1171 	gfar_write(&regs->gaddr6, 0);
1172 	gfar_write(&regs->gaddr7, 0);
1173 
1174 	if (priv->extended_hash)
1175 		gfar_clear_exact_match(priv->ndev);
1176 
1177 	gfar_mac_rx_config(priv);
1178 
1179 	gfar_mac_tx_config(priv);
1180 
1181 	gfar_set_mac_address(priv->ndev);
1182 
1183 	gfar_set_multi(priv->ndev);
1184 
1185 	/* clear ievent and imask before configuring coalescing */
1186 	gfar_ints_disable(priv);
1187 
1188 	/* Configure the coalescing support */
1189 	gfar_configure_coalescing_all(priv);
1190 }
1191 
1192 static void gfar_hw_init(struct gfar_private *priv)
1193 {
1194 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1195 	u32 attrs;
1196 
1197 	/* Stop the DMA engine now, in case it was running before
1198 	 * (The firmware could have used it, and left it running).
1199 	 */
1200 	gfar_halt(priv);
1201 
1202 	gfar_mac_reset(priv);
1203 
1204 	/* Zero out the rmon mib registers if it has them */
1205 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1206 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1207 
1208 		/* Mask off the CAM interrupts */
1209 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1210 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1211 	}
1212 
1213 	/* Initialize ECNTRL */
1214 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1215 
1216 	/* Set the extraction length and index */
1217 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1218 		ATTRELI_EI(priv->rx_stash_index);
1219 
1220 	gfar_write(&regs->attreli, attrs);
1221 
1222 	/* Start with defaults, and add stashing
1223 	 * depending on driver parameters
1224 	 */
1225 	attrs = ATTR_INIT_SETTINGS;
1226 
1227 	if (priv->bd_stash_en)
1228 		attrs |= ATTR_BDSTASH;
1229 
1230 	if (priv->rx_stash_size != 0)
1231 		attrs |= ATTR_BUFSTASH;
1232 
1233 	gfar_write(&regs->attr, attrs);
1234 
1235 	/* FIFO configs */
1236 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1237 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1238 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1239 
1240 	/* Program the interrupt steering regs, only for MG devices */
1241 	if (priv->num_grps > 1)
1242 		gfar_write_isrg(priv);
1243 }
1244 
1245 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1246 {
1247 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1248 
1249 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1250 		priv->extended_hash = 1;
1251 		priv->hash_width = 9;
1252 
1253 		priv->hash_regs[0] = &regs->igaddr0;
1254 		priv->hash_regs[1] = &regs->igaddr1;
1255 		priv->hash_regs[2] = &regs->igaddr2;
1256 		priv->hash_regs[3] = &regs->igaddr3;
1257 		priv->hash_regs[4] = &regs->igaddr4;
1258 		priv->hash_regs[5] = &regs->igaddr5;
1259 		priv->hash_regs[6] = &regs->igaddr6;
1260 		priv->hash_regs[7] = &regs->igaddr7;
1261 		priv->hash_regs[8] = &regs->gaddr0;
1262 		priv->hash_regs[9] = &regs->gaddr1;
1263 		priv->hash_regs[10] = &regs->gaddr2;
1264 		priv->hash_regs[11] = &regs->gaddr3;
1265 		priv->hash_regs[12] = &regs->gaddr4;
1266 		priv->hash_regs[13] = &regs->gaddr5;
1267 		priv->hash_regs[14] = &regs->gaddr6;
1268 		priv->hash_regs[15] = &regs->gaddr7;
1269 
1270 	} else {
1271 		priv->extended_hash = 0;
1272 		priv->hash_width = 8;
1273 
1274 		priv->hash_regs[0] = &regs->gaddr0;
1275 		priv->hash_regs[1] = &regs->gaddr1;
1276 		priv->hash_regs[2] = &regs->gaddr2;
1277 		priv->hash_regs[3] = &regs->gaddr3;
1278 		priv->hash_regs[4] = &regs->gaddr4;
1279 		priv->hash_regs[5] = &regs->gaddr5;
1280 		priv->hash_regs[6] = &regs->gaddr6;
1281 		priv->hash_regs[7] = &regs->gaddr7;
1282 	}
1283 }
1284 
1285 /* Set up the ethernet device structure, private data,
1286  * and anything else we need before we start
1287  */
1288 static int gfar_probe(struct platform_device *ofdev)
1289 {
1290 	struct net_device *dev = NULL;
1291 	struct gfar_private *priv = NULL;
1292 	int err = 0, i;
1293 
1294 	err = gfar_of_init(ofdev, &dev);
1295 
1296 	if (err)
1297 		return err;
1298 
1299 	priv = netdev_priv(dev);
1300 	priv->ndev = dev;
1301 	priv->ofdev = ofdev;
1302 	priv->dev = &ofdev->dev;
1303 	SET_NETDEV_DEV(dev, &ofdev->dev);
1304 
1305 	spin_lock_init(&priv->bflock);
1306 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1307 
1308 	platform_set_drvdata(ofdev, priv);
1309 
1310 	gfar_detect_errata(priv);
1311 
1312 	/* Set the dev->base_addr to the gfar reg region */
1313 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1314 
1315 	/* Fill in the dev structure */
1316 	dev->watchdog_timeo = TX_TIMEOUT;
1317 	dev->mtu = 1500;
1318 	dev->netdev_ops = &gfar_netdev_ops;
1319 	dev->ethtool_ops = &gfar_ethtool_ops;
1320 
1321 	/* Register for napi ...We are registering NAPI for each grp */
1322 	for (i = 0; i < priv->num_grps; i++) {
1323 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1324 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1325 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1326 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1327 				       gfar_poll_tx_sq, 2);
1328 		} else {
1329 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1330 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1331 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1332 				       gfar_poll_tx, 2);
1333 		}
1334 	}
1335 
1336 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1337 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1338 				   NETIF_F_RXCSUM;
1339 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1340 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1341 	}
1342 
1343 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1344 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1345 				    NETIF_F_HW_VLAN_CTAG_RX;
1346 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1347 	}
1348 
1349 	gfar_init_addr_hash_table(priv);
1350 
1351 	/* Insert receive time stamps into padding alignment bytes */
1352 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1353 		priv->padding = 8;
1354 
1355 	if (dev->features & NETIF_F_IP_CSUM ||
1356 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1357 		dev->needed_headroom = GMAC_FCB_LEN;
1358 
1359 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1360 
1361 	/* Initializing some of the rx/tx queue level parameters */
1362 	for (i = 0; i < priv->num_tx_queues; i++) {
1363 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1364 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1365 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1366 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1367 	}
1368 
1369 	for (i = 0; i < priv->num_rx_queues; i++) {
1370 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1371 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1372 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1373 	}
1374 
1375 	/* always enable rx filer */
1376 	priv->rx_filer_enable = 1;
1377 	/* Enable most messages by default */
1378 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1379 	/* use pritority h/w tx queue scheduling for single queue devices */
1380 	if (priv->num_tx_queues == 1)
1381 		priv->prio_sched_en = 1;
1382 
1383 	set_bit(GFAR_DOWN, &priv->state);
1384 
1385 	gfar_hw_init(priv);
1386 
1387 	/* Carrier starts down, phylib will bring it up */
1388 	netif_carrier_off(dev);
1389 
1390 	err = register_netdev(dev);
1391 
1392 	if (err) {
1393 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1394 		goto register_fail;
1395 	}
1396 
1397 	device_init_wakeup(&dev->dev,
1398 			   priv->device_flags &
1399 			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1400 
1401 	/* fill out IRQ number and name fields */
1402 	for (i = 0; i < priv->num_grps; i++) {
1403 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1404 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1405 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1406 				dev->name, "_g", '0' + i, "_tx");
1407 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1408 				dev->name, "_g", '0' + i, "_rx");
1409 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1410 				dev->name, "_g", '0' + i, "_er");
1411 		} else
1412 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1413 	}
1414 
1415 	/* Initialize the filer table */
1416 	gfar_init_filer_table(priv);
1417 
1418 	/* Print out the device info */
1419 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1420 
1421 	/* Even more device info helps when determining which kernel
1422 	 * provided which set of benchmarks.
1423 	 */
1424 	netdev_info(dev, "Running with NAPI enabled\n");
1425 	for (i = 0; i < priv->num_rx_queues; i++)
1426 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1427 			    i, priv->rx_queue[i]->rx_ring_size);
1428 	for (i = 0; i < priv->num_tx_queues; i++)
1429 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1430 			    i, priv->tx_queue[i]->tx_ring_size);
1431 
1432 	return 0;
1433 
1434 register_fail:
1435 	unmap_group_regs(priv);
1436 	gfar_free_rx_queues(priv);
1437 	gfar_free_tx_queues(priv);
1438 	of_node_put(priv->phy_node);
1439 	of_node_put(priv->tbi_node);
1440 	free_gfar_dev(priv);
1441 	return err;
1442 }
1443 
1444 static int gfar_remove(struct platform_device *ofdev)
1445 {
1446 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1447 
1448 	of_node_put(priv->phy_node);
1449 	of_node_put(priv->tbi_node);
1450 
1451 	unregister_netdev(priv->ndev);
1452 	unmap_group_regs(priv);
1453 	gfar_free_rx_queues(priv);
1454 	gfar_free_tx_queues(priv);
1455 	free_gfar_dev(priv);
1456 
1457 	return 0;
1458 }
1459 
1460 #ifdef CONFIG_PM
1461 
1462 static int gfar_suspend(struct device *dev)
1463 {
1464 	struct gfar_private *priv = dev_get_drvdata(dev);
1465 	struct net_device *ndev = priv->ndev;
1466 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1467 	unsigned long flags;
1468 	u32 tempval;
1469 
1470 	int magic_packet = priv->wol_en &&
1471 			   (priv->device_flags &
1472 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1473 
1474 	netif_device_detach(ndev);
1475 
1476 	if (netif_running(ndev)) {
1477 
1478 		local_irq_save(flags);
1479 		lock_tx_qs(priv);
1480 
1481 		gfar_halt_nodisable(priv);
1482 
1483 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1484 		tempval = gfar_read(&regs->maccfg1);
1485 
1486 		tempval &= ~MACCFG1_TX_EN;
1487 
1488 		if (!magic_packet)
1489 			tempval &= ~MACCFG1_RX_EN;
1490 
1491 		gfar_write(&regs->maccfg1, tempval);
1492 
1493 		unlock_tx_qs(priv);
1494 		local_irq_restore(flags);
1495 
1496 		disable_napi(priv);
1497 
1498 		if (magic_packet) {
1499 			/* Enable interrupt on Magic Packet */
1500 			gfar_write(&regs->imask, IMASK_MAG);
1501 
1502 			/* Enable Magic Packet mode */
1503 			tempval = gfar_read(&regs->maccfg2);
1504 			tempval |= MACCFG2_MPEN;
1505 			gfar_write(&regs->maccfg2, tempval);
1506 		} else {
1507 			phy_stop(priv->phydev);
1508 		}
1509 	}
1510 
1511 	return 0;
1512 }
1513 
1514 static int gfar_resume(struct device *dev)
1515 {
1516 	struct gfar_private *priv = dev_get_drvdata(dev);
1517 	struct net_device *ndev = priv->ndev;
1518 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1519 	unsigned long flags;
1520 	u32 tempval;
1521 	int magic_packet = priv->wol_en &&
1522 			   (priv->device_flags &
1523 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1524 
1525 	if (!netif_running(ndev)) {
1526 		netif_device_attach(ndev);
1527 		return 0;
1528 	}
1529 
1530 	if (!magic_packet && priv->phydev)
1531 		phy_start(priv->phydev);
1532 
1533 	/* Disable Magic Packet mode, in case something
1534 	 * else woke us up.
1535 	 */
1536 	local_irq_save(flags);
1537 	lock_tx_qs(priv);
1538 
1539 	tempval = gfar_read(&regs->maccfg2);
1540 	tempval &= ~MACCFG2_MPEN;
1541 	gfar_write(&regs->maccfg2, tempval);
1542 
1543 	gfar_start(priv);
1544 
1545 	unlock_tx_qs(priv);
1546 	local_irq_restore(flags);
1547 
1548 	netif_device_attach(ndev);
1549 
1550 	enable_napi(priv);
1551 
1552 	return 0;
1553 }
1554 
1555 static int gfar_restore(struct device *dev)
1556 {
1557 	struct gfar_private *priv = dev_get_drvdata(dev);
1558 	struct net_device *ndev = priv->ndev;
1559 
1560 	if (!netif_running(ndev)) {
1561 		netif_device_attach(ndev);
1562 
1563 		return 0;
1564 	}
1565 
1566 	if (gfar_init_bds(ndev)) {
1567 		free_skb_resources(priv);
1568 		return -ENOMEM;
1569 	}
1570 
1571 	gfar_mac_reset(priv);
1572 
1573 	gfar_init_tx_rx_base(priv);
1574 
1575 	gfar_start(priv);
1576 
1577 	priv->oldlink = 0;
1578 	priv->oldspeed = 0;
1579 	priv->oldduplex = -1;
1580 
1581 	if (priv->phydev)
1582 		phy_start(priv->phydev);
1583 
1584 	netif_device_attach(ndev);
1585 	enable_napi(priv);
1586 
1587 	return 0;
1588 }
1589 
1590 static struct dev_pm_ops gfar_pm_ops = {
1591 	.suspend = gfar_suspend,
1592 	.resume = gfar_resume,
1593 	.freeze = gfar_suspend,
1594 	.thaw = gfar_resume,
1595 	.restore = gfar_restore,
1596 };
1597 
1598 #define GFAR_PM_OPS (&gfar_pm_ops)
1599 
1600 #else
1601 
1602 #define GFAR_PM_OPS NULL
1603 
1604 #endif
1605 
1606 /* Reads the controller's registers to determine what interface
1607  * connects it to the PHY.
1608  */
1609 static phy_interface_t gfar_get_interface(struct net_device *dev)
1610 {
1611 	struct gfar_private *priv = netdev_priv(dev);
1612 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1613 	u32 ecntrl;
1614 
1615 	ecntrl = gfar_read(&regs->ecntrl);
1616 
1617 	if (ecntrl & ECNTRL_SGMII_MODE)
1618 		return PHY_INTERFACE_MODE_SGMII;
1619 
1620 	if (ecntrl & ECNTRL_TBI_MODE) {
1621 		if (ecntrl & ECNTRL_REDUCED_MODE)
1622 			return PHY_INTERFACE_MODE_RTBI;
1623 		else
1624 			return PHY_INTERFACE_MODE_TBI;
1625 	}
1626 
1627 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1628 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1629 			return PHY_INTERFACE_MODE_RMII;
1630 		}
1631 		else {
1632 			phy_interface_t interface = priv->interface;
1633 
1634 			/* This isn't autodetected right now, so it must
1635 			 * be set by the device tree or platform code.
1636 			 */
1637 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1638 				return PHY_INTERFACE_MODE_RGMII_ID;
1639 
1640 			return PHY_INTERFACE_MODE_RGMII;
1641 		}
1642 	}
1643 
1644 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1645 		return PHY_INTERFACE_MODE_GMII;
1646 
1647 	return PHY_INTERFACE_MODE_MII;
1648 }
1649 
1650 
1651 /* Initializes driver's PHY state, and attaches to the PHY.
1652  * Returns 0 on success.
1653  */
1654 static int init_phy(struct net_device *dev)
1655 {
1656 	struct gfar_private *priv = netdev_priv(dev);
1657 	uint gigabit_support =
1658 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1659 		GFAR_SUPPORTED_GBIT : 0;
1660 	phy_interface_t interface;
1661 
1662 	priv->oldlink = 0;
1663 	priv->oldspeed = 0;
1664 	priv->oldduplex = -1;
1665 
1666 	interface = gfar_get_interface(dev);
1667 
1668 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1669 				      interface);
1670 	if (!priv->phydev) {
1671 		dev_err(&dev->dev, "could not attach to PHY\n");
1672 		return -ENODEV;
1673 	}
1674 
1675 	if (interface == PHY_INTERFACE_MODE_SGMII)
1676 		gfar_configure_serdes(dev);
1677 
1678 	/* Remove any features not supported by the controller */
1679 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1680 	priv->phydev->advertising = priv->phydev->supported;
1681 
1682 	return 0;
1683 }
1684 
1685 /* Initialize TBI PHY interface for communicating with the
1686  * SERDES lynx PHY on the chip.  We communicate with this PHY
1687  * through the MDIO bus on each controller, treating it as a
1688  * "normal" PHY at the address found in the TBIPA register.  We assume
1689  * that the TBIPA register is valid.  Either the MDIO bus code will set
1690  * it to a value that doesn't conflict with other PHYs on the bus, or the
1691  * value doesn't matter, as there are no other PHYs on the bus.
1692  */
1693 static void gfar_configure_serdes(struct net_device *dev)
1694 {
1695 	struct gfar_private *priv = netdev_priv(dev);
1696 	struct phy_device *tbiphy;
1697 
1698 	if (!priv->tbi_node) {
1699 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1700 				    "device tree specify a tbi-handle\n");
1701 		return;
1702 	}
1703 
1704 	tbiphy = of_phy_find_device(priv->tbi_node);
1705 	if (!tbiphy) {
1706 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1707 		return;
1708 	}
1709 
1710 	/* If the link is already up, we must already be ok, and don't need to
1711 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1712 	 * everything for us?  Resetting it takes the link down and requires
1713 	 * several seconds for it to come back.
1714 	 */
1715 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1716 		return;
1717 
1718 	/* Single clk mode, mii mode off(for serdes communication) */
1719 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1720 
1721 	phy_write(tbiphy, MII_ADVERTISE,
1722 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1723 		  ADVERTISE_1000XPSE_ASYM);
1724 
1725 	phy_write(tbiphy, MII_BMCR,
1726 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1727 		  BMCR_SPEED1000);
1728 }
1729 
1730 static int __gfar_is_rx_idle(struct gfar_private *priv)
1731 {
1732 	u32 res;
1733 
1734 	/* Normaly TSEC should not hang on GRS commands, so we should
1735 	 * actually wait for IEVENT_GRSC flag.
1736 	 */
1737 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1738 		return 0;
1739 
1740 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1741 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1742 	 * and the Rx can be safely reset.
1743 	 */
1744 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1745 	res &= 0x7f807f80;
1746 	if ((res & 0xffff) == (res >> 16))
1747 		return 1;
1748 
1749 	return 0;
1750 }
1751 
1752 /* Halt the receive and transmit queues */
1753 static void gfar_halt_nodisable(struct gfar_private *priv)
1754 {
1755 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1756 	u32 tempval;
1757 
1758 	gfar_ints_disable(priv);
1759 
1760 	/* Stop the DMA, and wait for it to stop */
1761 	tempval = gfar_read(&regs->dmactrl);
1762 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1763 	    (DMACTRL_GRS | DMACTRL_GTS)) {
1764 		int ret;
1765 
1766 		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1767 		gfar_write(&regs->dmactrl, tempval);
1768 
1769 		do {
1770 			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1771 				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1772 				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1773 			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1774 				ret = __gfar_is_rx_idle(priv);
1775 		} while (!ret);
1776 	}
1777 }
1778 
1779 /* Halt the receive and transmit queues */
1780 void gfar_halt(struct gfar_private *priv)
1781 {
1782 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1783 	u32 tempval;
1784 
1785 	/* Dissable the Rx/Tx hw queues */
1786 	gfar_write(&regs->rqueue, 0);
1787 	gfar_write(&regs->tqueue, 0);
1788 
1789 	mdelay(10);
1790 
1791 	gfar_halt_nodisable(priv);
1792 
1793 	/* Disable Rx/Tx DMA */
1794 	tempval = gfar_read(&regs->maccfg1);
1795 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1796 	gfar_write(&regs->maccfg1, tempval);
1797 }
1798 
1799 void stop_gfar(struct net_device *dev)
1800 {
1801 	struct gfar_private *priv = netdev_priv(dev);
1802 
1803 	netif_tx_stop_all_queues(dev);
1804 
1805 	smp_mb__before_atomic();
1806 	set_bit(GFAR_DOWN, &priv->state);
1807 	smp_mb__after_atomic();
1808 
1809 	disable_napi(priv);
1810 
1811 	/* disable ints and gracefully shut down Rx/Tx DMA */
1812 	gfar_halt(priv);
1813 
1814 	phy_stop(priv->phydev);
1815 
1816 	free_skb_resources(priv);
1817 }
1818 
1819 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1820 {
1821 	struct txbd8 *txbdp;
1822 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1823 	int i, j;
1824 
1825 	txbdp = tx_queue->tx_bd_base;
1826 
1827 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1828 		if (!tx_queue->tx_skbuff[i])
1829 			continue;
1830 
1831 		dma_unmap_single(priv->dev, txbdp->bufPtr,
1832 				 txbdp->length, DMA_TO_DEVICE);
1833 		txbdp->lstatus = 0;
1834 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1835 		     j++) {
1836 			txbdp++;
1837 			dma_unmap_page(priv->dev, txbdp->bufPtr,
1838 				       txbdp->length, DMA_TO_DEVICE);
1839 		}
1840 		txbdp++;
1841 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1842 		tx_queue->tx_skbuff[i] = NULL;
1843 	}
1844 	kfree(tx_queue->tx_skbuff);
1845 	tx_queue->tx_skbuff = NULL;
1846 }
1847 
1848 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1849 {
1850 	struct rxbd8 *rxbdp;
1851 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1852 	int i;
1853 
1854 	rxbdp = rx_queue->rx_bd_base;
1855 
1856 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1857 		if (rx_queue->rx_skbuff[i]) {
1858 			dma_unmap_single(priv->dev, rxbdp->bufPtr,
1859 					 priv->rx_buffer_size,
1860 					 DMA_FROM_DEVICE);
1861 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1862 			rx_queue->rx_skbuff[i] = NULL;
1863 		}
1864 		rxbdp->lstatus = 0;
1865 		rxbdp->bufPtr = 0;
1866 		rxbdp++;
1867 	}
1868 	kfree(rx_queue->rx_skbuff);
1869 	rx_queue->rx_skbuff = NULL;
1870 }
1871 
1872 /* If there are any tx skbs or rx skbs still around, free them.
1873  * Then free tx_skbuff and rx_skbuff
1874  */
1875 static void free_skb_resources(struct gfar_private *priv)
1876 {
1877 	struct gfar_priv_tx_q *tx_queue = NULL;
1878 	struct gfar_priv_rx_q *rx_queue = NULL;
1879 	int i;
1880 
1881 	/* Go through all the buffer descriptors and free their data buffers */
1882 	for (i = 0; i < priv->num_tx_queues; i++) {
1883 		struct netdev_queue *txq;
1884 
1885 		tx_queue = priv->tx_queue[i];
1886 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1887 		if (tx_queue->tx_skbuff)
1888 			free_skb_tx_queue(tx_queue);
1889 		netdev_tx_reset_queue(txq);
1890 	}
1891 
1892 	for (i = 0; i < priv->num_rx_queues; i++) {
1893 		rx_queue = priv->rx_queue[i];
1894 		if (rx_queue->rx_skbuff)
1895 			free_skb_rx_queue(rx_queue);
1896 	}
1897 
1898 	dma_free_coherent(priv->dev,
1899 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1900 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1901 			  priv->tx_queue[0]->tx_bd_base,
1902 			  priv->tx_queue[0]->tx_bd_dma_base);
1903 }
1904 
1905 void gfar_start(struct gfar_private *priv)
1906 {
1907 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1908 	u32 tempval;
1909 	int i = 0;
1910 
1911 	/* Enable Rx/Tx hw queues */
1912 	gfar_write(&regs->rqueue, priv->rqueue);
1913 	gfar_write(&regs->tqueue, priv->tqueue);
1914 
1915 	/* Initialize DMACTRL to have WWR and WOP */
1916 	tempval = gfar_read(&regs->dmactrl);
1917 	tempval |= DMACTRL_INIT_SETTINGS;
1918 	gfar_write(&regs->dmactrl, tempval);
1919 
1920 	/* Make sure we aren't stopped */
1921 	tempval = gfar_read(&regs->dmactrl);
1922 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1923 	gfar_write(&regs->dmactrl, tempval);
1924 
1925 	for (i = 0; i < priv->num_grps; i++) {
1926 		regs = priv->gfargrp[i].regs;
1927 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1928 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1929 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1930 	}
1931 
1932 	/* Enable Rx/Tx DMA */
1933 	tempval = gfar_read(&regs->maccfg1);
1934 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1935 	gfar_write(&regs->maccfg1, tempval);
1936 
1937 	gfar_ints_enable(priv);
1938 
1939 	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1940 }
1941 
1942 static void free_grp_irqs(struct gfar_priv_grp *grp)
1943 {
1944 	free_irq(gfar_irq(grp, TX)->irq, grp);
1945 	free_irq(gfar_irq(grp, RX)->irq, grp);
1946 	free_irq(gfar_irq(grp, ER)->irq, grp);
1947 }
1948 
1949 static int register_grp_irqs(struct gfar_priv_grp *grp)
1950 {
1951 	struct gfar_private *priv = grp->priv;
1952 	struct net_device *dev = priv->ndev;
1953 	int err;
1954 
1955 	/* If the device has multiple interrupts, register for
1956 	 * them.  Otherwise, only register for the one
1957 	 */
1958 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1959 		/* Install our interrupt handlers for Error,
1960 		 * Transmit, and Receive
1961 		 */
1962 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1963 				  gfar_irq(grp, ER)->name, grp);
1964 		if (err < 0) {
1965 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1966 				  gfar_irq(grp, ER)->irq);
1967 
1968 			goto err_irq_fail;
1969 		}
1970 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1971 				  gfar_irq(grp, TX)->name, grp);
1972 		if (err < 0) {
1973 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1974 				  gfar_irq(grp, TX)->irq);
1975 			goto tx_irq_fail;
1976 		}
1977 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1978 				  gfar_irq(grp, RX)->name, grp);
1979 		if (err < 0) {
1980 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1981 				  gfar_irq(grp, RX)->irq);
1982 			goto rx_irq_fail;
1983 		}
1984 	} else {
1985 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1986 				  gfar_irq(grp, TX)->name, grp);
1987 		if (err < 0) {
1988 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1989 				  gfar_irq(grp, TX)->irq);
1990 			goto err_irq_fail;
1991 		}
1992 	}
1993 
1994 	return 0;
1995 
1996 rx_irq_fail:
1997 	free_irq(gfar_irq(grp, TX)->irq, grp);
1998 tx_irq_fail:
1999 	free_irq(gfar_irq(grp, ER)->irq, grp);
2000 err_irq_fail:
2001 	return err;
2002 
2003 }
2004 
2005 static void gfar_free_irq(struct gfar_private *priv)
2006 {
2007 	int i;
2008 
2009 	/* Free the IRQs */
2010 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2011 		for (i = 0; i < priv->num_grps; i++)
2012 			free_grp_irqs(&priv->gfargrp[i]);
2013 	} else {
2014 		for (i = 0; i < priv->num_grps; i++)
2015 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2016 				 &priv->gfargrp[i]);
2017 	}
2018 }
2019 
2020 static int gfar_request_irq(struct gfar_private *priv)
2021 {
2022 	int err, i, j;
2023 
2024 	for (i = 0; i < priv->num_grps; i++) {
2025 		err = register_grp_irqs(&priv->gfargrp[i]);
2026 		if (err) {
2027 			for (j = 0; j < i; j++)
2028 				free_grp_irqs(&priv->gfargrp[j]);
2029 			return err;
2030 		}
2031 	}
2032 
2033 	return 0;
2034 }
2035 
2036 /* Bring the controller up and running */
2037 int startup_gfar(struct net_device *ndev)
2038 {
2039 	struct gfar_private *priv = netdev_priv(ndev);
2040 	int err;
2041 
2042 	gfar_mac_reset(priv);
2043 
2044 	err = gfar_alloc_skb_resources(ndev);
2045 	if (err)
2046 		return err;
2047 
2048 	gfar_init_tx_rx_base(priv);
2049 
2050 	smp_mb__before_atomic();
2051 	clear_bit(GFAR_DOWN, &priv->state);
2052 	smp_mb__after_atomic();
2053 
2054 	/* Start Rx/Tx DMA and enable the interrupts */
2055 	gfar_start(priv);
2056 
2057 	phy_start(priv->phydev);
2058 
2059 	enable_napi(priv);
2060 
2061 	netif_tx_wake_all_queues(ndev);
2062 
2063 	return 0;
2064 }
2065 
2066 /* Called when something needs to use the ethernet device
2067  * Returns 0 for success.
2068  */
2069 static int gfar_enet_open(struct net_device *dev)
2070 {
2071 	struct gfar_private *priv = netdev_priv(dev);
2072 	int err;
2073 
2074 	err = init_phy(dev);
2075 	if (err)
2076 		return err;
2077 
2078 	err = gfar_request_irq(priv);
2079 	if (err)
2080 		return err;
2081 
2082 	err = startup_gfar(dev);
2083 	if (err)
2084 		return err;
2085 
2086 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
2087 
2088 	return err;
2089 }
2090 
2091 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2092 {
2093 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2094 
2095 	memset(fcb, 0, GMAC_FCB_LEN);
2096 
2097 	return fcb;
2098 }
2099 
2100 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2101 				    int fcb_length)
2102 {
2103 	/* If we're here, it's a IP packet with a TCP or UDP
2104 	 * payload.  We set it to checksum, using a pseudo-header
2105 	 * we provide
2106 	 */
2107 	u8 flags = TXFCB_DEFAULT;
2108 
2109 	/* Tell the controller what the protocol is
2110 	 * And provide the already calculated phcs
2111 	 */
2112 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2113 		flags |= TXFCB_UDP;
2114 		fcb->phcs = udp_hdr(skb)->check;
2115 	} else
2116 		fcb->phcs = tcp_hdr(skb)->check;
2117 
2118 	/* l3os is the distance between the start of the
2119 	 * frame (skb->data) and the start of the IP hdr.
2120 	 * l4os is the distance between the start of the
2121 	 * l3 hdr and the l4 hdr
2122 	 */
2123 	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2124 	fcb->l4os = skb_network_header_len(skb);
2125 
2126 	fcb->flags = flags;
2127 }
2128 
2129 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2130 {
2131 	fcb->flags |= TXFCB_VLN;
2132 	fcb->vlctl = vlan_tx_tag_get(skb);
2133 }
2134 
2135 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2136 				      struct txbd8 *base, int ring_size)
2137 {
2138 	struct txbd8 *new_bd = bdp + stride;
2139 
2140 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2141 }
2142 
2143 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2144 				      int ring_size)
2145 {
2146 	return skip_txbd(bdp, 1, base, ring_size);
2147 }
2148 
2149 /* eTSEC12: csum generation not supported for some fcb offsets */
2150 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2151 				       unsigned long fcb_addr)
2152 {
2153 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2154 	       (fcb_addr % 0x20) > 0x18);
2155 }
2156 
2157 /* eTSEC76: csum generation for frames larger than 2500 may
2158  * cause excess delays before start of transmission
2159  */
2160 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2161 				       unsigned int len)
2162 {
2163 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2164 	       (len > 2500));
2165 }
2166 
2167 /* This is called by the kernel when a frame is ready for transmission.
2168  * It is pointed to by the dev->hard_start_xmit function pointer
2169  */
2170 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2171 {
2172 	struct gfar_private *priv = netdev_priv(dev);
2173 	struct gfar_priv_tx_q *tx_queue = NULL;
2174 	struct netdev_queue *txq;
2175 	struct gfar __iomem *regs = NULL;
2176 	struct txfcb *fcb = NULL;
2177 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2178 	u32 lstatus;
2179 	int i, rq = 0;
2180 	int do_tstamp, do_csum, do_vlan;
2181 	u32 bufaddr;
2182 	unsigned long flags;
2183 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2184 
2185 	rq = skb->queue_mapping;
2186 	tx_queue = priv->tx_queue[rq];
2187 	txq = netdev_get_tx_queue(dev, rq);
2188 	base = tx_queue->tx_bd_base;
2189 	regs = tx_queue->grp->regs;
2190 
2191 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2192 	do_vlan = vlan_tx_tag_present(skb);
2193 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2194 		    priv->hwts_tx_en;
2195 
2196 	if (do_csum || do_vlan)
2197 		fcb_len = GMAC_FCB_LEN;
2198 
2199 	/* check if time stamp should be generated */
2200 	if (unlikely(do_tstamp))
2201 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2202 
2203 	/* make space for additional header when fcb is needed */
2204 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2205 		struct sk_buff *skb_new;
2206 
2207 		skb_new = skb_realloc_headroom(skb, fcb_len);
2208 		if (!skb_new) {
2209 			dev->stats.tx_errors++;
2210 			dev_kfree_skb_any(skb);
2211 			return NETDEV_TX_OK;
2212 		}
2213 
2214 		if (skb->sk)
2215 			skb_set_owner_w(skb_new, skb->sk);
2216 		dev_consume_skb_any(skb);
2217 		skb = skb_new;
2218 	}
2219 
2220 	/* total number of fragments in the SKB */
2221 	nr_frags = skb_shinfo(skb)->nr_frags;
2222 
2223 	/* calculate the required number of TxBDs for this skb */
2224 	if (unlikely(do_tstamp))
2225 		nr_txbds = nr_frags + 2;
2226 	else
2227 		nr_txbds = nr_frags + 1;
2228 
2229 	/* check if there is space to queue this packet */
2230 	if (nr_txbds > tx_queue->num_txbdfree) {
2231 		/* no space, stop the queue */
2232 		netif_tx_stop_queue(txq);
2233 		dev->stats.tx_fifo_errors++;
2234 		return NETDEV_TX_BUSY;
2235 	}
2236 
2237 	/* Update transmit stats */
2238 	bytes_sent = skb->len;
2239 	tx_queue->stats.tx_bytes += bytes_sent;
2240 	/* keep Tx bytes on wire for BQL accounting */
2241 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2242 	tx_queue->stats.tx_packets++;
2243 
2244 	txbdp = txbdp_start = tx_queue->cur_tx;
2245 	lstatus = txbdp->lstatus;
2246 
2247 	/* Time stamp insertion requires one additional TxBD */
2248 	if (unlikely(do_tstamp))
2249 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2250 						 tx_queue->tx_ring_size);
2251 
2252 	if (nr_frags == 0) {
2253 		if (unlikely(do_tstamp))
2254 			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2255 							  TXBD_INTERRUPT);
2256 		else
2257 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2258 	} else {
2259 		/* Place the fragment addresses and lengths into the TxBDs */
2260 		for (i = 0; i < nr_frags; i++) {
2261 			unsigned int frag_len;
2262 			/* Point at the next BD, wrapping as needed */
2263 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2264 
2265 			frag_len = skb_shinfo(skb)->frags[i].size;
2266 
2267 			lstatus = txbdp->lstatus | frag_len |
2268 				  BD_LFLAG(TXBD_READY);
2269 
2270 			/* Handle the last BD specially */
2271 			if (i == nr_frags - 1)
2272 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2273 
2274 			bufaddr = skb_frag_dma_map(priv->dev,
2275 						   &skb_shinfo(skb)->frags[i],
2276 						   0,
2277 						   frag_len,
2278 						   DMA_TO_DEVICE);
2279 
2280 			/* set the TxBD length and buffer pointer */
2281 			txbdp->bufPtr = bufaddr;
2282 			txbdp->lstatus = lstatus;
2283 		}
2284 
2285 		lstatus = txbdp_start->lstatus;
2286 	}
2287 
2288 	/* Add TxPAL between FCB and frame if required */
2289 	if (unlikely(do_tstamp)) {
2290 		skb_push(skb, GMAC_TXPAL_LEN);
2291 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2292 	}
2293 
2294 	/* Add TxFCB if required */
2295 	if (fcb_len) {
2296 		fcb = gfar_add_fcb(skb);
2297 		lstatus |= BD_LFLAG(TXBD_TOE);
2298 	}
2299 
2300 	/* Set up checksumming */
2301 	if (do_csum) {
2302 		gfar_tx_checksum(skb, fcb, fcb_len);
2303 
2304 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2305 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2306 			__skb_pull(skb, GMAC_FCB_LEN);
2307 			skb_checksum_help(skb);
2308 			if (do_vlan || do_tstamp) {
2309 				/* put back a new fcb for vlan/tstamp TOE */
2310 				fcb = gfar_add_fcb(skb);
2311 			} else {
2312 				/* Tx TOE not used */
2313 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2314 				fcb = NULL;
2315 			}
2316 		}
2317 	}
2318 
2319 	if (do_vlan)
2320 		gfar_tx_vlan(skb, fcb);
2321 
2322 	/* Setup tx hardware time stamping if requested */
2323 	if (unlikely(do_tstamp)) {
2324 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2325 		fcb->ptp = 1;
2326 	}
2327 
2328 	txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2329 					     skb_headlen(skb), DMA_TO_DEVICE);
2330 
2331 	/* If time stamping is requested one additional TxBD must be set up. The
2332 	 * first TxBD points to the FCB and must have a data length of
2333 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2334 	 * the full frame length.
2335 	 */
2336 	if (unlikely(do_tstamp)) {
2337 		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2338 		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2339 					 (skb_headlen(skb) - fcb_len);
2340 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2341 	} else {
2342 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2343 	}
2344 
2345 	netdev_tx_sent_queue(txq, bytes_sent);
2346 
2347 	/* We can work in parallel with gfar_clean_tx_ring(), except
2348 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2349 	 * when we were reading the num_txbdfree and checking for available
2350 	 * space, that's because outside of this function it can only grow,
2351 	 * and once we've got needed space, it cannot suddenly disappear.
2352 	 *
2353 	 * The lock also protects us from gfar_error(), which can modify
2354 	 * regs->tstat and thus retrigger the transfers, which is why we
2355 	 * also must grab the lock before setting ready bit for the first
2356 	 * to be transmitted BD.
2357 	 */
2358 	spin_lock_irqsave(&tx_queue->txlock, flags);
2359 
2360 	/* The powerpc-specific eieio() is used, as wmb() has too strong
2361 	 * semantics (it requires synchronization between cacheable and
2362 	 * uncacheable mappings, which eieio doesn't provide and which we
2363 	 * don't need), thus requiring a more expensive sync instruction.  At
2364 	 * some point, the set of architecture-independent barrier functions
2365 	 * should be expanded to include weaker barriers.
2366 	 */
2367 	eieio();
2368 
2369 	txbdp_start->lstatus = lstatus;
2370 
2371 	eieio(); /* force lstatus write before tx_skbuff */
2372 
2373 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2374 
2375 	/* Update the current skb pointer to the next entry we will use
2376 	 * (wrapping if necessary)
2377 	 */
2378 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2379 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2380 
2381 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2382 
2383 	/* reduce TxBD free count */
2384 	tx_queue->num_txbdfree -= (nr_txbds);
2385 
2386 	/* If the next BD still needs to be cleaned up, then the bds
2387 	 * are full.  We need to tell the kernel to stop sending us stuff.
2388 	 */
2389 	if (!tx_queue->num_txbdfree) {
2390 		netif_tx_stop_queue(txq);
2391 
2392 		dev->stats.tx_fifo_errors++;
2393 	}
2394 
2395 	/* Tell the DMA to go go go */
2396 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2397 
2398 	/* Unlock priv */
2399 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2400 
2401 	return NETDEV_TX_OK;
2402 }
2403 
2404 /* Stops the kernel queue, and halts the controller */
2405 static int gfar_close(struct net_device *dev)
2406 {
2407 	struct gfar_private *priv = netdev_priv(dev);
2408 
2409 	cancel_work_sync(&priv->reset_task);
2410 	stop_gfar(dev);
2411 
2412 	/* Disconnect from the PHY */
2413 	phy_disconnect(priv->phydev);
2414 	priv->phydev = NULL;
2415 
2416 	gfar_free_irq(priv);
2417 
2418 	return 0;
2419 }
2420 
2421 /* Changes the mac address if the controller is not running. */
2422 static int gfar_set_mac_address(struct net_device *dev)
2423 {
2424 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2425 
2426 	return 0;
2427 }
2428 
2429 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2430 {
2431 	struct gfar_private *priv = netdev_priv(dev);
2432 	int frame_size = new_mtu + ETH_HLEN;
2433 
2434 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2435 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2436 		return -EINVAL;
2437 	}
2438 
2439 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2440 		cpu_relax();
2441 
2442 	if (dev->flags & IFF_UP)
2443 		stop_gfar(dev);
2444 
2445 	dev->mtu = new_mtu;
2446 
2447 	if (dev->flags & IFF_UP)
2448 		startup_gfar(dev);
2449 
2450 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2451 
2452 	return 0;
2453 }
2454 
2455 void reset_gfar(struct net_device *ndev)
2456 {
2457 	struct gfar_private *priv = netdev_priv(ndev);
2458 
2459 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2460 		cpu_relax();
2461 
2462 	stop_gfar(ndev);
2463 	startup_gfar(ndev);
2464 
2465 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2466 }
2467 
2468 /* gfar_reset_task gets scheduled when a packet has not been
2469  * transmitted after a set amount of time.
2470  * For now, assume that clearing out all the structures, and
2471  * starting over will fix the problem.
2472  */
2473 static void gfar_reset_task(struct work_struct *work)
2474 {
2475 	struct gfar_private *priv = container_of(work, struct gfar_private,
2476 						 reset_task);
2477 	reset_gfar(priv->ndev);
2478 }
2479 
2480 static void gfar_timeout(struct net_device *dev)
2481 {
2482 	struct gfar_private *priv = netdev_priv(dev);
2483 
2484 	dev->stats.tx_errors++;
2485 	schedule_work(&priv->reset_task);
2486 }
2487 
2488 static void gfar_align_skb(struct sk_buff *skb)
2489 {
2490 	/* We need the data buffer to be aligned properly.  We will reserve
2491 	 * as many bytes as needed to align the data properly
2492 	 */
2493 	skb_reserve(skb, RXBUF_ALIGNMENT -
2494 		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2495 }
2496 
2497 /* Interrupt Handler for Transmit complete */
2498 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2499 {
2500 	struct net_device *dev = tx_queue->dev;
2501 	struct netdev_queue *txq;
2502 	struct gfar_private *priv = netdev_priv(dev);
2503 	struct txbd8 *bdp, *next = NULL;
2504 	struct txbd8 *lbdp = NULL;
2505 	struct txbd8 *base = tx_queue->tx_bd_base;
2506 	struct sk_buff *skb;
2507 	int skb_dirtytx;
2508 	int tx_ring_size = tx_queue->tx_ring_size;
2509 	int frags = 0, nr_txbds = 0;
2510 	int i;
2511 	int howmany = 0;
2512 	int tqi = tx_queue->qindex;
2513 	unsigned int bytes_sent = 0;
2514 	u32 lstatus;
2515 	size_t buflen;
2516 
2517 	txq = netdev_get_tx_queue(dev, tqi);
2518 	bdp = tx_queue->dirty_tx;
2519 	skb_dirtytx = tx_queue->skb_dirtytx;
2520 
2521 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2522 		unsigned long flags;
2523 
2524 		frags = skb_shinfo(skb)->nr_frags;
2525 
2526 		/* When time stamping, one additional TxBD must be freed.
2527 		 * Also, we need to dma_unmap_single() the TxPAL.
2528 		 */
2529 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2530 			nr_txbds = frags + 2;
2531 		else
2532 			nr_txbds = frags + 1;
2533 
2534 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2535 
2536 		lstatus = lbdp->lstatus;
2537 
2538 		/* Only clean completed frames */
2539 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2540 		    (lstatus & BD_LENGTH_MASK))
2541 			break;
2542 
2543 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2544 			next = next_txbd(bdp, base, tx_ring_size);
2545 			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2546 		} else
2547 			buflen = bdp->length;
2548 
2549 		dma_unmap_single(priv->dev, bdp->bufPtr,
2550 				 buflen, DMA_TO_DEVICE);
2551 
2552 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2553 			struct skb_shared_hwtstamps shhwtstamps;
2554 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2555 
2556 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2557 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2558 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2559 			skb_tstamp_tx(skb, &shhwtstamps);
2560 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2561 			bdp = next;
2562 		}
2563 
2564 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2565 		bdp = next_txbd(bdp, base, tx_ring_size);
2566 
2567 		for (i = 0; i < frags; i++) {
2568 			dma_unmap_page(priv->dev, bdp->bufPtr,
2569 				       bdp->length, DMA_TO_DEVICE);
2570 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2571 			bdp = next_txbd(bdp, base, tx_ring_size);
2572 		}
2573 
2574 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2575 
2576 		dev_kfree_skb_any(skb);
2577 
2578 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2579 
2580 		skb_dirtytx = (skb_dirtytx + 1) &
2581 			      TX_RING_MOD_MASK(tx_ring_size);
2582 
2583 		howmany++;
2584 		spin_lock_irqsave(&tx_queue->txlock, flags);
2585 		tx_queue->num_txbdfree += nr_txbds;
2586 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2587 	}
2588 
2589 	/* If we freed a buffer, we can restart transmission, if necessary */
2590 	if (tx_queue->num_txbdfree &&
2591 	    netif_tx_queue_stopped(txq) &&
2592 	    !(test_bit(GFAR_DOWN, &priv->state)))
2593 		netif_wake_subqueue(priv->ndev, tqi);
2594 
2595 	/* Update dirty indicators */
2596 	tx_queue->skb_dirtytx = skb_dirtytx;
2597 	tx_queue->dirty_tx = bdp;
2598 
2599 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2600 }
2601 
2602 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2603 			   struct sk_buff *skb)
2604 {
2605 	struct net_device *dev = rx_queue->dev;
2606 	struct gfar_private *priv = netdev_priv(dev);
2607 	dma_addr_t buf;
2608 
2609 	buf = dma_map_single(priv->dev, skb->data,
2610 			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2611 	gfar_init_rxbdp(rx_queue, bdp, buf);
2612 }
2613 
2614 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2615 {
2616 	struct gfar_private *priv = netdev_priv(dev);
2617 	struct sk_buff *skb;
2618 
2619 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2620 	if (!skb)
2621 		return NULL;
2622 
2623 	gfar_align_skb(skb);
2624 
2625 	return skb;
2626 }
2627 
2628 struct sk_buff *gfar_new_skb(struct net_device *dev)
2629 {
2630 	return gfar_alloc_skb(dev);
2631 }
2632 
2633 static inline void count_errors(unsigned short status, struct net_device *dev)
2634 {
2635 	struct gfar_private *priv = netdev_priv(dev);
2636 	struct net_device_stats *stats = &dev->stats;
2637 	struct gfar_extra_stats *estats = &priv->extra_stats;
2638 
2639 	/* If the packet was truncated, none of the other errors matter */
2640 	if (status & RXBD_TRUNCATED) {
2641 		stats->rx_length_errors++;
2642 
2643 		atomic64_inc(&estats->rx_trunc);
2644 
2645 		return;
2646 	}
2647 	/* Count the errors, if there were any */
2648 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2649 		stats->rx_length_errors++;
2650 
2651 		if (status & RXBD_LARGE)
2652 			atomic64_inc(&estats->rx_large);
2653 		else
2654 			atomic64_inc(&estats->rx_short);
2655 	}
2656 	if (status & RXBD_NONOCTET) {
2657 		stats->rx_frame_errors++;
2658 		atomic64_inc(&estats->rx_nonoctet);
2659 	}
2660 	if (status & RXBD_CRCERR) {
2661 		atomic64_inc(&estats->rx_crcerr);
2662 		stats->rx_crc_errors++;
2663 	}
2664 	if (status & RXBD_OVERRUN) {
2665 		atomic64_inc(&estats->rx_overrun);
2666 		stats->rx_crc_errors++;
2667 	}
2668 }
2669 
2670 irqreturn_t gfar_receive(int irq, void *grp_id)
2671 {
2672 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2673 	unsigned long flags;
2674 	u32 imask;
2675 
2676 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2677 		spin_lock_irqsave(&grp->grplock, flags);
2678 		imask = gfar_read(&grp->regs->imask);
2679 		imask &= IMASK_RX_DISABLED;
2680 		gfar_write(&grp->regs->imask, imask);
2681 		spin_unlock_irqrestore(&grp->grplock, flags);
2682 		__napi_schedule(&grp->napi_rx);
2683 	} else {
2684 		/* Clear IEVENT, so interrupts aren't called again
2685 		 * because of the packets that have already arrived.
2686 		 */
2687 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2688 	}
2689 
2690 	return IRQ_HANDLED;
2691 }
2692 
2693 /* Interrupt Handler for Transmit complete */
2694 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2695 {
2696 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2697 	unsigned long flags;
2698 	u32 imask;
2699 
2700 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2701 		spin_lock_irqsave(&grp->grplock, flags);
2702 		imask = gfar_read(&grp->regs->imask);
2703 		imask &= IMASK_TX_DISABLED;
2704 		gfar_write(&grp->regs->imask, imask);
2705 		spin_unlock_irqrestore(&grp->grplock, flags);
2706 		__napi_schedule(&grp->napi_tx);
2707 	} else {
2708 		/* Clear IEVENT, so interrupts aren't called again
2709 		 * because of the packets that have already arrived.
2710 		 */
2711 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2712 	}
2713 
2714 	return IRQ_HANDLED;
2715 }
2716 
2717 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2718 {
2719 	/* If valid headers were found, and valid sums
2720 	 * were verified, then we tell the kernel that no
2721 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2722 	 */
2723 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2724 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2725 	else
2726 		skb_checksum_none_assert(skb);
2727 }
2728 
2729 
2730 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2731 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2732 			       int amount_pull, struct napi_struct *napi)
2733 {
2734 	struct gfar_private *priv = netdev_priv(dev);
2735 	struct rxfcb *fcb = NULL;
2736 
2737 	/* fcb is at the beginning if exists */
2738 	fcb = (struct rxfcb *)skb->data;
2739 
2740 	/* Remove the FCB from the skb
2741 	 * Remove the padded bytes, if there are any
2742 	 */
2743 	if (amount_pull) {
2744 		skb_record_rx_queue(skb, fcb->rq);
2745 		skb_pull(skb, amount_pull);
2746 	}
2747 
2748 	/* Get receive timestamp from the skb */
2749 	if (priv->hwts_rx_en) {
2750 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2751 		u64 *ns = (u64 *) skb->data;
2752 
2753 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2754 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2755 	}
2756 
2757 	if (priv->padding)
2758 		skb_pull(skb, priv->padding);
2759 
2760 	if (dev->features & NETIF_F_RXCSUM)
2761 		gfar_rx_checksum(skb, fcb);
2762 
2763 	/* Tell the skb what kind of packet this is */
2764 	skb->protocol = eth_type_trans(skb, dev);
2765 
2766 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2767 	 * Even if vlan rx accel is disabled, on some chips
2768 	 * RXFCB_VLN is pseudo randomly set.
2769 	 */
2770 	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2771 	    fcb->flags & RXFCB_VLN)
2772 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2773 
2774 	/* Send the packet up the stack */
2775 	napi_gro_receive(napi, skb);
2776 
2777 }
2778 
2779 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2780  * until the budget/quota has been reached. Returns the number
2781  * of frames handled
2782  */
2783 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2784 {
2785 	struct net_device *dev = rx_queue->dev;
2786 	struct rxbd8 *bdp, *base;
2787 	struct sk_buff *skb;
2788 	int pkt_len;
2789 	int amount_pull;
2790 	int howmany = 0;
2791 	struct gfar_private *priv = netdev_priv(dev);
2792 
2793 	/* Get the first full descriptor */
2794 	bdp = rx_queue->cur_rx;
2795 	base = rx_queue->rx_bd_base;
2796 
2797 	amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2798 
2799 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2800 		struct sk_buff *newskb;
2801 
2802 		rmb();
2803 
2804 		/* Add another skb for the future */
2805 		newskb = gfar_new_skb(dev);
2806 
2807 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2808 
2809 		dma_unmap_single(priv->dev, bdp->bufPtr,
2810 				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2811 
2812 		if (unlikely(!(bdp->status & RXBD_ERR) &&
2813 			     bdp->length > priv->rx_buffer_size))
2814 			bdp->status = RXBD_LARGE;
2815 
2816 		/* We drop the frame if we failed to allocate a new buffer */
2817 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2818 			     bdp->status & RXBD_ERR)) {
2819 			count_errors(bdp->status, dev);
2820 
2821 			if (unlikely(!newskb))
2822 				newskb = skb;
2823 			else if (skb)
2824 				dev_kfree_skb(skb);
2825 		} else {
2826 			/* Increment the number of packets */
2827 			rx_queue->stats.rx_packets++;
2828 			howmany++;
2829 
2830 			if (likely(skb)) {
2831 				pkt_len = bdp->length - ETH_FCS_LEN;
2832 				/* Remove the FCS from the packet length */
2833 				skb_put(skb, pkt_len);
2834 				rx_queue->stats.rx_bytes += pkt_len;
2835 				skb_record_rx_queue(skb, rx_queue->qindex);
2836 				gfar_process_frame(dev, skb, amount_pull,
2837 						   &rx_queue->grp->napi_rx);
2838 
2839 			} else {
2840 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2841 				rx_queue->stats.rx_dropped++;
2842 				atomic64_inc(&priv->extra_stats.rx_skbmissing);
2843 			}
2844 
2845 		}
2846 
2847 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2848 
2849 		/* Setup the new bdp */
2850 		gfar_new_rxbdp(rx_queue, bdp, newskb);
2851 
2852 		/* Update to the next pointer */
2853 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2854 
2855 		/* update to point at the next skb */
2856 		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2857 				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2858 	}
2859 
2860 	/* Update the current rxbd pointer to be the next one */
2861 	rx_queue->cur_rx = bdp;
2862 
2863 	return howmany;
2864 }
2865 
2866 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2867 {
2868 	struct gfar_priv_grp *gfargrp =
2869 		container_of(napi, struct gfar_priv_grp, napi_rx);
2870 	struct gfar __iomem *regs = gfargrp->regs;
2871 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2872 	int work_done = 0;
2873 
2874 	/* Clear IEVENT, so interrupts aren't called again
2875 	 * because of the packets that have already arrived
2876 	 */
2877 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2878 
2879 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2880 
2881 	if (work_done < budget) {
2882 		u32 imask;
2883 		napi_complete(napi);
2884 		/* Clear the halt bit in RSTAT */
2885 		gfar_write(&regs->rstat, gfargrp->rstat);
2886 
2887 		spin_lock_irq(&gfargrp->grplock);
2888 		imask = gfar_read(&regs->imask);
2889 		imask |= IMASK_RX_DEFAULT;
2890 		gfar_write(&regs->imask, imask);
2891 		spin_unlock_irq(&gfargrp->grplock);
2892 	}
2893 
2894 	return work_done;
2895 }
2896 
2897 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2898 {
2899 	struct gfar_priv_grp *gfargrp =
2900 		container_of(napi, struct gfar_priv_grp, napi_tx);
2901 	struct gfar __iomem *regs = gfargrp->regs;
2902 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2903 	u32 imask;
2904 
2905 	/* Clear IEVENT, so interrupts aren't called again
2906 	 * because of the packets that have already arrived
2907 	 */
2908 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2909 
2910 	/* run Tx cleanup to completion */
2911 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2912 		gfar_clean_tx_ring(tx_queue);
2913 
2914 	napi_complete(napi);
2915 
2916 	spin_lock_irq(&gfargrp->grplock);
2917 	imask = gfar_read(&regs->imask);
2918 	imask |= IMASK_TX_DEFAULT;
2919 	gfar_write(&regs->imask, imask);
2920 	spin_unlock_irq(&gfargrp->grplock);
2921 
2922 	return 0;
2923 }
2924 
2925 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2926 {
2927 	struct gfar_priv_grp *gfargrp =
2928 		container_of(napi, struct gfar_priv_grp, napi_rx);
2929 	struct gfar_private *priv = gfargrp->priv;
2930 	struct gfar __iomem *regs = gfargrp->regs;
2931 	struct gfar_priv_rx_q *rx_queue = NULL;
2932 	int work_done = 0, work_done_per_q = 0;
2933 	int i, budget_per_q = 0;
2934 	unsigned long rstat_rxf;
2935 	int num_act_queues;
2936 
2937 	/* Clear IEVENT, so interrupts aren't called again
2938 	 * because of the packets that have already arrived
2939 	 */
2940 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2941 
2942 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2943 
2944 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2945 	if (num_act_queues)
2946 		budget_per_q = budget/num_act_queues;
2947 
2948 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2949 		/* skip queue if not active */
2950 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2951 			continue;
2952 
2953 		rx_queue = priv->rx_queue[i];
2954 		work_done_per_q =
2955 			gfar_clean_rx_ring(rx_queue, budget_per_q);
2956 		work_done += work_done_per_q;
2957 
2958 		/* finished processing this queue */
2959 		if (work_done_per_q < budget_per_q) {
2960 			/* clear active queue hw indication */
2961 			gfar_write(&regs->rstat,
2962 				   RSTAT_CLEAR_RXF0 >> i);
2963 			num_act_queues--;
2964 
2965 			if (!num_act_queues)
2966 				break;
2967 		}
2968 	}
2969 
2970 	if (!num_act_queues) {
2971 		u32 imask;
2972 		napi_complete(napi);
2973 
2974 		/* Clear the halt bit in RSTAT */
2975 		gfar_write(&regs->rstat, gfargrp->rstat);
2976 
2977 		spin_lock_irq(&gfargrp->grplock);
2978 		imask = gfar_read(&regs->imask);
2979 		imask |= IMASK_RX_DEFAULT;
2980 		gfar_write(&regs->imask, imask);
2981 		spin_unlock_irq(&gfargrp->grplock);
2982 	}
2983 
2984 	return work_done;
2985 }
2986 
2987 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2988 {
2989 	struct gfar_priv_grp *gfargrp =
2990 		container_of(napi, struct gfar_priv_grp, napi_tx);
2991 	struct gfar_private *priv = gfargrp->priv;
2992 	struct gfar __iomem *regs = gfargrp->regs;
2993 	struct gfar_priv_tx_q *tx_queue = NULL;
2994 	int has_tx_work = 0;
2995 	int i;
2996 
2997 	/* Clear IEVENT, so interrupts aren't called again
2998 	 * because of the packets that have already arrived
2999 	 */
3000 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3001 
3002 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3003 		tx_queue = priv->tx_queue[i];
3004 		/* run Tx cleanup to completion */
3005 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3006 			gfar_clean_tx_ring(tx_queue);
3007 			has_tx_work = 1;
3008 		}
3009 	}
3010 
3011 	if (!has_tx_work) {
3012 		u32 imask;
3013 		napi_complete(napi);
3014 
3015 		spin_lock_irq(&gfargrp->grplock);
3016 		imask = gfar_read(&regs->imask);
3017 		imask |= IMASK_TX_DEFAULT;
3018 		gfar_write(&regs->imask, imask);
3019 		spin_unlock_irq(&gfargrp->grplock);
3020 	}
3021 
3022 	return 0;
3023 }
3024 
3025 
3026 #ifdef CONFIG_NET_POLL_CONTROLLER
3027 /* Polling 'interrupt' - used by things like netconsole to send skbs
3028  * without having to re-enable interrupts. It's not called while
3029  * the interrupt routine is executing.
3030  */
3031 static void gfar_netpoll(struct net_device *dev)
3032 {
3033 	struct gfar_private *priv = netdev_priv(dev);
3034 	int i;
3035 
3036 	/* If the device has multiple interrupts, run tx/rx */
3037 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3038 		for (i = 0; i < priv->num_grps; i++) {
3039 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3040 
3041 			disable_irq(gfar_irq(grp, TX)->irq);
3042 			disable_irq(gfar_irq(grp, RX)->irq);
3043 			disable_irq(gfar_irq(grp, ER)->irq);
3044 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3045 			enable_irq(gfar_irq(grp, ER)->irq);
3046 			enable_irq(gfar_irq(grp, RX)->irq);
3047 			enable_irq(gfar_irq(grp, TX)->irq);
3048 		}
3049 	} else {
3050 		for (i = 0; i < priv->num_grps; i++) {
3051 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3052 
3053 			disable_irq(gfar_irq(grp, TX)->irq);
3054 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3055 			enable_irq(gfar_irq(grp, TX)->irq);
3056 		}
3057 	}
3058 }
3059 #endif
3060 
3061 /* The interrupt handler for devices with one interrupt */
3062 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3063 {
3064 	struct gfar_priv_grp *gfargrp = grp_id;
3065 
3066 	/* Save ievent for future reference */
3067 	u32 events = gfar_read(&gfargrp->regs->ievent);
3068 
3069 	/* Check for reception */
3070 	if (events & IEVENT_RX_MASK)
3071 		gfar_receive(irq, grp_id);
3072 
3073 	/* Check for transmit completion */
3074 	if (events & IEVENT_TX_MASK)
3075 		gfar_transmit(irq, grp_id);
3076 
3077 	/* Check for errors */
3078 	if (events & IEVENT_ERR_MASK)
3079 		gfar_error(irq, grp_id);
3080 
3081 	return IRQ_HANDLED;
3082 }
3083 
3084 /* Called every time the controller might need to be made
3085  * aware of new link state.  The PHY code conveys this
3086  * information through variables in the phydev structure, and this
3087  * function converts those variables into the appropriate
3088  * register values, and can bring down the device if needed.
3089  */
3090 static void adjust_link(struct net_device *dev)
3091 {
3092 	struct gfar_private *priv = netdev_priv(dev);
3093 	struct phy_device *phydev = priv->phydev;
3094 
3095 	if (unlikely(phydev->link != priv->oldlink ||
3096 		     phydev->duplex != priv->oldduplex ||
3097 		     phydev->speed != priv->oldspeed))
3098 		gfar_update_link_state(priv);
3099 }
3100 
3101 /* Update the hash table based on the current list of multicast
3102  * addresses we subscribe to.  Also, change the promiscuity of
3103  * the device based on the flags (this function is called
3104  * whenever dev->flags is changed
3105  */
3106 static void gfar_set_multi(struct net_device *dev)
3107 {
3108 	struct netdev_hw_addr *ha;
3109 	struct gfar_private *priv = netdev_priv(dev);
3110 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3111 	u32 tempval;
3112 
3113 	if (dev->flags & IFF_PROMISC) {
3114 		/* Set RCTRL to PROM */
3115 		tempval = gfar_read(&regs->rctrl);
3116 		tempval |= RCTRL_PROM;
3117 		gfar_write(&regs->rctrl, tempval);
3118 	} else {
3119 		/* Set RCTRL to not PROM */
3120 		tempval = gfar_read(&regs->rctrl);
3121 		tempval &= ~(RCTRL_PROM);
3122 		gfar_write(&regs->rctrl, tempval);
3123 	}
3124 
3125 	if (dev->flags & IFF_ALLMULTI) {
3126 		/* Set the hash to rx all multicast frames */
3127 		gfar_write(&regs->igaddr0, 0xffffffff);
3128 		gfar_write(&regs->igaddr1, 0xffffffff);
3129 		gfar_write(&regs->igaddr2, 0xffffffff);
3130 		gfar_write(&regs->igaddr3, 0xffffffff);
3131 		gfar_write(&regs->igaddr4, 0xffffffff);
3132 		gfar_write(&regs->igaddr5, 0xffffffff);
3133 		gfar_write(&regs->igaddr6, 0xffffffff);
3134 		gfar_write(&regs->igaddr7, 0xffffffff);
3135 		gfar_write(&regs->gaddr0, 0xffffffff);
3136 		gfar_write(&regs->gaddr1, 0xffffffff);
3137 		gfar_write(&regs->gaddr2, 0xffffffff);
3138 		gfar_write(&regs->gaddr3, 0xffffffff);
3139 		gfar_write(&regs->gaddr4, 0xffffffff);
3140 		gfar_write(&regs->gaddr5, 0xffffffff);
3141 		gfar_write(&regs->gaddr6, 0xffffffff);
3142 		gfar_write(&regs->gaddr7, 0xffffffff);
3143 	} else {
3144 		int em_num;
3145 		int idx;
3146 
3147 		/* zero out the hash */
3148 		gfar_write(&regs->igaddr0, 0x0);
3149 		gfar_write(&regs->igaddr1, 0x0);
3150 		gfar_write(&regs->igaddr2, 0x0);
3151 		gfar_write(&regs->igaddr3, 0x0);
3152 		gfar_write(&regs->igaddr4, 0x0);
3153 		gfar_write(&regs->igaddr5, 0x0);
3154 		gfar_write(&regs->igaddr6, 0x0);
3155 		gfar_write(&regs->igaddr7, 0x0);
3156 		gfar_write(&regs->gaddr0, 0x0);
3157 		gfar_write(&regs->gaddr1, 0x0);
3158 		gfar_write(&regs->gaddr2, 0x0);
3159 		gfar_write(&regs->gaddr3, 0x0);
3160 		gfar_write(&regs->gaddr4, 0x0);
3161 		gfar_write(&regs->gaddr5, 0x0);
3162 		gfar_write(&regs->gaddr6, 0x0);
3163 		gfar_write(&regs->gaddr7, 0x0);
3164 
3165 		/* If we have extended hash tables, we need to
3166 		 * clear the exact match registers to prepare for
3167 		 * setting them
3168 		 */
3169 		if (priv->extended_hash) {
3170 			em_num = GFAR_EM_NUM + 1;
3171 			gfar_clear_exact_match(dev);
3172 			idx = 1;
3173 		} else {
3174 			idx = 0;
3175 			em_num = 0;
3176 		}
3177 
3178 		if (netdev_mc_empty(dev))
3179 			return;
3180 
3181 		/* Parse the list, and set the appropriate bits */
3182 		netdev_for_each_mc_addr(ha, dev) {
3183 			if (idx < em_num) {
3184 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3185 				idx++;
3186 			} else
3187 				gfar_set_hash_for_addr(dev, ha->addr);
3188 		}
3189 	}
3190 }
3191 
3192 
3193 /* Clears each of the exact match registers to zero, so they
3194  * don't interfere with normal reception
3195  */
3196 static void gfar_clear_exact_match(struct net_device *dev)
3197 {
3198 	int idx;
3199 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3200 
3201 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3202 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3203 }
3204 
3205 /* Set the appropriate hash bit for the given addr */
3206 /* The algorithm works like so:
3207  * 1) Take the Destination Address (ie the multicast address), and
3208  * do a CRC on it (little endian), and reverse the bits of the
3209  * result.
3210  * 2) Use the 8 most significant bits as a hash into a 256-entry
3211  * table.  The table is controlled through 8 32-bit registers:
3212  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3213  * gaddr7.  This means that the 3 most significant bits in the
3214  * hash index which gaddr register to use, and the 5 other bits
3215  * indicate which bit (assuming an IBM numbering scheme, which
3216  * for PowerPC (tm) is usually the case) in the register holds
3217  * the entry.
3218  */
3219 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3220 {
3221 	u32 tempval;
3222 	struct gfar_private *priv = netdev_priv(dev);
3223 	u32 result = ether_crc(ETH_ALEN, addr);
3224 	int width = priv->hash_width;
3225 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3226 	u8 whichreg = result >> (32 - width + 5);
3227 	u32 value = (1 << (31-whichbit));
3228 
3229 	tempval = gfar_read(priv->hash_regs[whichreg]);
3230 	tempval |= value;
3231 	gfar_write(priv->hash_regs[whichreg], tempval);
3232 }
3233 
3234 
3235 /* There are multiple MAC Address register pairs on some controllers
3236  * This function sets the numth pair to a given address
3237  */
3238 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3239 				  const u8 *addr)
3240 {
3241 	struct gfar_private *priv = netdev_priv(dev);
3242 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3243 	int idx;
3244 	char tmpbuf[ETH_ALEN];
3245 	u32 tempval;
3246 	u32 __iomem *macptr = &regs->macstnaddr1;
3247 
3248 	macptr += num*2;
3249 
3250 	/* Now copy it into the mac registers backwards, cuz
3251 	 * little endian is silly
3252 	 */
3253 	for (idx = 0; idx < ETH_ALEN; idx++)
3254 		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3255 
3256 	gfar_write(macptr, *((u32 *) (tmpbuf)));
3257 
3258 	tempval = *((u32 *) (tmpbuf + 4));
3259 
3260 	gfar_write(macptr+1, tempval);
3261 }
3262 
3263 /* GFAR error interrupt handler */
3264 static irqreturn_t gfar_error(int irq, void *grp_id)
3265 {
3266 	struct gfar_priv_grp *gfargrp = grp_id;
3267 	struct gfar __iomem *regs = gfargrp->regs;
3268 	struct gfar_private *priv= gfargrp->priv;
3269 	struct net_device *dev = priv->ndev;
3270 
3271 	/* Save ievent for future reference */
3272 	u32 events = gfar_read(&regs->ievent);
3273 
3274 	/* Clear IEVENT */
3275 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3276 
3277 	/* Magic Packet is not an error. */
3278 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3279 	    (events & IEVENT_MAG))
3280 		events &= ~IEVENT_MAG;
3281 
3282 	/* Hmm... */
3283 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3284 		netdev_dbg(dev,
3285 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3286 			   events, gfar_read(&regs->imask));
3287 
3288 	/* Update the error counters */
3289 	if (events & IEVENT_TXE) {
3290 		dev->stats.tx_errors++;
3291 
3292 		if (events & IEVENT_LC)
3293 			dev->stats.tx_window_errors++;
3294 		if (events & IEVENT_CRL)
3295 			dev->stats.tx_aborted_errors++;
3296 		if (events & IEVENT_XFUN) {
3297 			unsigned long flags;
3298 
3299 			netif_dbg(priv, tx_err, dev,
3300 				  "TX FIFO underrun, packet dropped\n");
3301 			dev->stats.tx_dropped++;
3302 			atomic64_inc(&priv->extra_stats.tx_underrun);
3303 
3304 			local_irq_save(flags);
3305 			lock_tx_qs(priv);
3306 
3307 			/* Reactivate the Tx Queues */
3308 			gfar_write(&regs->tstat, gfargrp->tstat);
3309 
3310 			unlock_tx_qs(priv);
3311 			local_irq_restore(flags);
3312 		}
3313 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3314 	}
3315 	if (events & IEVENT_BSY) {
3316 		dev->stats.rx_errors++;
3317 		atomic64_inc(&priv->extra_stats.rx_bsy);
3318 
3319 		gfar_receive(irq, grp_id);
3320 
3321 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3322 			  gfar_read(&regs->rstat));
3323 	}
3324 	if (events & IEVENT_BABR) {
3325 		dev->stats.rx_errors++;
3326 		atomic64_inc(&priv->extra_stats.rx_babr);
3327 
3328 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3329 	}
3330 	if (events & IEVENT_EBERR) {
3331 		atomic64_inc(&priv->extra_stats.eberr);
3332 		netif_dbg(priv, rx_err, dev, "bus error\n");
3333 	}
3334 	if (events & IEVENT_RXC)
3335 		netif_dbg(priv, rx_status, dev, "control frame\n");
3336 
3337 	if (events & IEVENT_BABT) {
3338 		atomic64_inc(&priv->extra_stats.tx_babt);
3339 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3340 	}
3341 	return IRQ_HANDLED;
3342 }
3343 
3344 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3345 {
3346 	struct phy_device *phydev = priv->phydev;
3347 	u32 val = 0;
3348 
3349 	if (!phydev->duplex)
3350 		return val;
3351 
3352 	if (!priv->pause_aneg_en) {
3353 		if (priv->tx_pause_en)
3354 			val |= MACCFG1_TX_FLOW;
3355 		if (priv->rx_pause_en)
3356 			val |= MACCFG1_RX_FLOW;
3357 	} else {
3358 		u16 lcl_adv, rmt_adv;
3359 		u8 flowctrl;
3360 		/* get link partner capabilities */
3361 		rmt_adv = 0;
3362 		if (phydev->pause)
3363 			rmt_adv = LPA_PAUSE_CAP;
3364 		if (phydev->asym_pause)
3365 			rmt_adv |= LPA_PAUSE_ASYM;
3366 
3367 		lcl_adv = mii_advertise_flowctrl(phydev->advertising);
3368 
3369 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3370 		if (flowctrl & FLOW_CTRL_TX)
3371 			val |= MACCFG1_TX_FLOW;
3372 		if (flowctrl & FLOW_CTRL_RX)
3373 			val |= MACCFG1_RX_FLOW;
3374 	}
3375 
3376 	return val;
3377 }
3378 
3379 static noinline void gfar_update_link_state(struct gfar_private *priv)
3380 {
3381 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3382 	struct phy_device *phydev = priv->phydev;
3383 
3384 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3385 		return;
3386 
3387 	if (phydev->link) {
3388 		u32 tempval1 = gfar_read(&regs->maccfg1);
3389 		u32 tempval = gfar_read(&regs->maccfg2);
3390 		u32 ecntrl = gfar_read(&regs->ecntrl);
3391 
3392 		if (phydev->duplex != priv->oldduplex) {
3393 			if (!(phydev->duplex))
3394 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3395 			else
3396 				tempval |= MACCFG2_FULL_DUPLEX;
3397 
3398 			priv->oldduplex = phydev->duplex;
3399 		}
3400 
3401 		if (phydev->speed != priv->oldspeed) {
3402 			switch (phydev->speed) {
3403 			case 1000:
3404 				tempval =
3405 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3406 
3407 				ecntrl &= ~(ECNTRL_R100);
3408 				break;
3409 			case 100:
3410 			case 10:
3411 				tempval =
3412 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3413 
3414 				/* Reduced mode distinguishes
3415 				 * between 10 and 100
3416 				 */
3417 				if (phydev->speed == SPEED_100)
3418 					ecntrl |= ECNTRL_R100;
3419 				else
3420 					ecntrl &= ~(ECNTRL_R100);
3421 				break;
3422 			default:
3423 				netif_warn(priv, link, priv->ndev,
3424 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3425 					   phydev->speed);
3426 				break;
3427 			}
3428 
3429 			priv->oldspeed = phydev->speed;
3430 		}
3431 
3432 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3433 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3434 
3435 		gfar_write(&regs->maccfg1, tempval1);
3436 		gfar_write(&regs->maccfg2, tempval);
3437 		gfar_write(&regs->ecntrl, ecntrl);
3438 
3439 		if (!priv->oldlink)
3440 			priv->oldlink = 1;
3441 
3442 	} else if (priv->oldlink) {
3443 		priv->oldlink = 0;
3444 		priv->oldspeed = 0;
3445 		priv->oldduplex = -1;
3446 	}
3447 
3448 	if (netif_msg_link(priv))
3449 		phy_print_status(phydev);
3450 }
3451 
3452 static struct of_device_id gfar_match[] =
3453 {
3454 	{
3455 		.type = "network",
3456 		.compatible = "gianfar",
3457 	},
3458 	{
3459 		.compatible = "fsl,etsec2",
3460 	},
3461 	{},
3462 };
3463 MODULE_DEVICE_TABLE(of, gfar_match);
3464 
3465 /* Structure for a device driver */
3466 static struct platform_driver gfar_driver = {
3467 	.driver = {
3468 		.name = "fsl-gianfar",
3469 		.owner = THIS_MODULE,
3470 		.pm = GFAR_PM_OPS,
3471 		.of_match_table = gfar_match,
3472 	},
3473 	.probe = gfar_probe,
3474 	.remove = gfar_remove,
3475 };
3476 
3477 module_platform_driver(gfar_driver);
3478