1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* drivers/net/ethernet/freescale/gianfar.c 3 * 4 * Gianfar Ethernet Driver 5 * This driver is designed for the non-CPM ethernet controllers 6 * on the 85xx and 83xx family of integrated processors 7 * Based on 8260_io/fcc_enet.c 8 * 9 * Author: Andy Fleming 10 * Maintainer: Kumar Gala 11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 12 * 13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 14 * Copyright 2007 MontaVista Software, Inc. 15 * 16 * Gianfar: AKA Lambda Draconis, "Dragon" 17 * RA 11 31 24.2 18 * Dec +69 19 52 19 * V 3.84 20 * B-V +1.62 21 * 22 * Theory of operation 23 * 24 * The driver is initialized through of_device. Configuration information 25 * is therefore conveyed through an OF-style device tree. 26 * 27 * The Gianfar Ethernet Controller uses a ring of buffer 28 * descriptors. The beginning is indicated by a register 29 * pointing to the physical address of the start of the ring. 30 * The end is determined by a "wrap" bit being set in the 31 * last descriptor of the ring. 32 * 33 * When a packet is received, the RXF bit in the 34 * IEVENT register is set, triggering an interrupt when the 35 * corresponding bit in the IMASK register is also set (if 36 * interrupt coalescing is active, then the interrupt may not 37 * happen immediately, but will wait until either a set number 38 * of frames or amount of time have passed). In NAPI, the 39 * interrupt handler will signal there is work to be done, and 40 * exit. This method will start at the last known empty 41 * descriptor, and process every subsequent descriptor until there 42 * are none left with data (NAPI will stop after a set number of 43 * packets to give time to other tasks, but will eventually 44 * process all the packets). The data arrives inside a 45 * pre-allocated skb, and so after the skb is passed up to the 46 * stack, a new skb must be allocated, and the address field in 47 * the buffer descriptor must be updated to indicate this new 48 * skb. 49 * 50 * When the kernel requests that a packet be transmitted, the 51 * driver starts where it left off last time, and points the 52 * descriptor at the buffer which was passed in. The driver 53 * then informs the DMA engine that there are packets ready to 54 * be transmitted. Once the controller is finished transmitting 55 * the packet, an interrupt may be triggered (under the same 56 * conditions as for reception, but depending on the TXF bit). 57 * The driver then cleans up the buffer. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/kernel.h> 63 #include <linux/string.h> 64 #include <linux/errno.h> 65 #include <linux/unistd.h> 66 #include <linux/slab.h> 67 #include <linux/interrupt.h> 68 #include <linux/delay.h> 69 #include <linux/netdevice.h> 70 #include <linux/etherdevice.h> 71 #include <linux/skbuff.h> 72 #include <linux/if_vlan.h> 73 #include <linux/spinlock.h> 74 #include <linux/mm.h> 75 #include <linux/of_address.h> 76 #include <linux/of_irq.h> 77 #include <linux/of_mdio.h> 78 #include <linux/of_platform.h> 79 #include <linux/ip.h> 80 #include <linux/tcp.h> 81 #include <linux/udp.h> 82 #include <linux/in.h> 83 #include <linux/net_tstamp.h> 84 85 #include <asm/io.h> 86 #ifdef CONFIG_PPC 87 #include <asm/reg.h> 88 #include <asm/mpc85xx.h> 89 #endif 90 #include <asm/irq.h> 91 #include <linux/uaccess.h> 92 #include <linux/module.h> 93 #include <linux/dma-mapping.h> 94 #include <linux/crc32.h> 95 #include <linux/mii.h> 96 #include <linux/phy.h> 97 #include <linux/phy_fixed.h> 98 #include <linux/of.h> 99 #include <linux/of_net.h> 100 101 #include "gianfar.h" 102 103 #define TX_TIMEOUT (5*HZ) 104 105 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 106 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 107 MODULE_LICENSE("GPL"); 108 109 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 110 dma_addr_t buf) 111 { 112 u32 lstatus; 113 114 bdp->bufPtr = cpu_to_be32(buf); 115 116 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 117 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 118 lstatus |= BD_LFLAG(RXBD_WRAP); 119 120 gfar_wmb(); 121 122 bdp->lstatus = cpu_to_be32(lstatus); 123 } 124 125 static void gfar_init_tx_rx_base(struct gfar_private *priv) 126 { 127 struct gfar __iomem *regs = priv->gfargrp[0].regs; 128 u32 __iomem *baddr; 129 int i; 130 131 baddr = ®s->tbase0; 132 for (i = 0; i < priv->num_tx_queues; i++) { 133 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 134 baddr += 2; 135 } 136 137 baddr = ®s->rbase0; 138 for (i = 0; i < priv->num_rx_queues; i++) { 139 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 140 baddr += 2; 141 } 142 } 143 144 static void gfar_init_rqprm(struct gfar_private *priv) 145 { 146 struct gfar __iomem *regs = priv->gfargrp[0].regs; 147 u32 __iomem *baddr; 148 int i; 149 150 baddr = ®s->rqprm0; 151 for (i = 0; i < priv->num_rx_queues; i++) { 152 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | 153 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); 154 baddr++; 155 } 156 } 157 158 static void gfar_rx_offload_en(struct gfar_private *priv) 159 { 160 /* set this when rx hw offload (TOE) functions are being used */ 161 priv->uses_rxfcb = 0; 162 163 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 164 priv->uses_rxfcb = 1; 165 166 if (priv->hwts_rx_en || priv->rx_filer_enable) 167 priv->uses_rxfcb = 1; 168 } 169 170 static void gfar_mac_rx_config(struct gfar_private *priv) 171 { 172 struct gfar __iomem *regs = priv->gfargrp[0].regs; 173 u32 rctrl = 0; 174 175 if (priv->rx_filer_enable) { 176 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 177 /* Program the RIR0 reg with the required distribution */ 178 if (priv->poll_mode == GFAR_SQ_POLLING) 179 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 180 else /* GFAR_MQ_POLLING */ 181 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0); 182 } 183 184 /* Restore PROMISC mode */ 185 if (priv->ndev->flags & IFF_PROMISC) 186 rctrl |= RCTRL_PROM; 187 188 if (priv->ndev->features & NETIF_F_RXCSUM) 189 rctrl |= RCTRL_CHECKSUMMING; 190 191 if (priv->extended_hash) 192 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 193 194 if (priv->padding) { 195 rctrl &= ~RCTRL_PAL_MASK; 196 rctrl |= RCTRL_PADDING(priv->padding); 197 } 198 199 /* Enable HW time stamping if requested from user space */ 200 if (priv->hwts_rx_en) 201 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 202 203 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 204 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 205 206 /* Clear the LFC bit */ 207 gfar_write(®s->rctrl, rctrl); 208 /* Init flow control threshold values */ 209 gfar_init_rqprm(priv); 210 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); 211 rctrl |= RCTRL_LFC; 212 213 /* Init rctrl based on our settings */ 214 gfar_write(®s->rctrl, rctrl); 215 } 216 217 static void gfar_mac_tx_config(struct gfar_private *priv) 218 { 219 struct gfar __iomem *regs = priv->gfargrp[0].regs; 220 u32 tctrl = 0; 221 222 if (priv->ndev->features & NETIF_F_IP_CSUM) 223 tctrl |= TCTRL_INIT_CSUM; 224 225 if (priv->prio_sched_en) 226 tctrl |= TCTRL_TXSCHED_PRIO; 227 else { 228 tctrl |= TCTRL_TXSCHED_WRRS; 229 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 230 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 231 } 232 233 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 234 tctrl |= TCTRL_VLINS; 235 236 gfar_write(®s->tctrl, tctrl); 237 } 238 239 static void gfar_configure_coalescing(struct gfar_private *priv, 240 unsigned long tx_mask, unsigned long rx_mask) 241 { 242 struct gfar __iomem *regs = priv->gfargrp[0].regs; 243 u32 __iomem *baddr; 244 245 if (priv->mode == MQ_MG_MODE) { 246 int i = 0; 247 248 baddr = ®s->txic0; 249 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 250 gfar_write(baddr + i, 0); 251 if (likely(priv->tx_queue[i]->txcoalescing)) 252 gfar_write(baddr + i, priv->tx_queue[i]->txic); 253 } 254 255 baddr = ®s->rxic0; 256 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 257 gfar_write(baddr + i, 0); 258 if (likely(priv->rx_queue[i]->rxcoalescing)) 259 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 260 } 261 } else { 262 /* Backward compatible case -- even if we enable 263 * multiple queues, there's only single reg to program 264 */ 265 gfar_write(®s->txic, 0); 266 if (likely(priv->tx_queue[0]->txcoalescing)) 267 gfar_write(®s->txic, priv->tx_queue[0]->txic); 268 269 gfar_write(®s->rxic, 0); 270 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 271 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 272 } 273 } 274 275 static void gfar_configure_coalescing_all(struct gfar_private *priv) 276 { 277 gfar_configure_coalescing(priv, 0xFF, 0xFF); 278 } 279 280 static struct net_device_stats *gfar_get_stats(struct net_device *dev) 281 { 282 struct gfar_private *priv = netdev_priv(dev); 283 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 284 unsigned long tx_packets = 0, tx_bytes = 0; 285 int i; 286 287 for (i = 0; i < priv->num_rx_queues; i++) { 288 rx_packets += priv->rx_queue[i]->stats.rx_packets; 289 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 290 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 291 } 292 293 dev->stats.rx_packets = rx_packets; 294 dev->stats.rx_bytes = rx_bytes; 295 dev->stats.rx_dropped = rx_dropped; 296 297 for (i = 0; i < priv->num_tx_queues; i++) { 298 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 299 tx_packets += priv->tx_queue[i]->stats.tx_packets; 300 } 301 302 dev->stats.tx_bytes = tx_bytes; 303 dev->stats.tx_packets = tx_packets; 304 305 return &dev->stats; 306 } 307 308 /* Set the appropriate hash bit for the given addr */ 309 /* The algorithm works like so: 310 * 1) Take the Destination Address (ie the multicast address), and 311 * do a CRC on it (little endian), and reverse the bits of the 312 * result. 313 * 2) Use the 8 most significant bits as a hash into a 256-entry 314 * table. The table is controlled through 8 32-bit registers: 315 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 316 * gaddr7. This means that the 3 most significant bits in the 317 * hash index which gaddr register to use, and the 5 other bits 318 * indicate which bit (assuming an IBM numbering scheme, which 319 * for PowerPC (tm) is usually the case) in the register holds 320 * the entry. 321 */ 322 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 323 { 324 u32 tempval; 325 struct gfar_private *priv = netdev_priv(dev); 326 u32 result = ether_crc(ETH_ALEN, addr); 327 int width = priv->hash_width; 328 u8 whichbit = (result >> (32 - width)) & 0x1f; 329 u8 whichreg = result >> (32 - width + 5); 330 u32 value = (1 << (31-whichbit)); 331 332 tempval = gfar_read(priv->hash_regs[whichreg]); 333 tempval |= value; 334 gfar_write(priv->hash_regs[whichreg], tempval); 335 } 336 337 /* There are multiple MAC Address register pairs on some controllers 338 * This function sets the numth pair to a given address 339 */ 340 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 341 const u8 *addr) 342 { 343 struct gfar_private *priv = netdev_priv(dev); 344 struct gfar __iomem *regs = priv->gfargrp[0].regs; 345 u32 tempval; 346 u32 __iomem *macptr = ®s->macstnaddr1; 347 348 macptr += num*2; 349 350 /* For a station address of 0x12345678ABCD in transmission 351 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 352 * MACnADDR2 is set to 0x34120000. 353 */ 354 tempval = (addr[5] << 24) | (addr[4] << 16) | 355 (addr[3] << 8) | addr[2]; 356 357 gfar_write(macptr, tempval); 358 359 tempval = (addr[1] << 24) | (addr[0] << 16); 360 361 gfar_write(macptr+1, tempval); 362 } 363 364 static int gfar_set_mac_addr(struct net_device *dev, void *p) 365 { 366 eth_mac_addr(dev, p); 367 368 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 369 370 return 0; 371 } 372 373 static void gfar_ints_disable(struct gfar_private *priv) 374 { 375 int i; 376 for (i = 0; i < priv->num_grps; i++) { 377 struct gfar __iomem *regs = priv->gfargrp[i].regs; 378 /* Clear IEVENT */ 379 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 380 381 /* Initialize IMASK */ 382 gfar_write(®s->imask, IMASK_INIT_CLEAR); 383 } 384 } 385 386 static void gfar_ints_enable(struct gfar_private *priv) 387 { 388 int i; 389 for (i = 0; i < priv->num_grps; i++) { 390 struct gfar __iomem *regs = priv->gfargrp[i].regs; 391 /* Unmask the interrupts we look for */ 392 gfar_write(®s->imask, IMASK_DEFAULT); 393 } 394 } 395 396 static int gfar_alloc_tx_queues(struct gfar_private *priv) 397 { 398 int i; 399 400 for (i = 0; i < priv->num_tx_queues; i++) { 401 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 402 GFP_KERNEL); 403 if (!priv->tx_queue[i]) 404 return -ENOMEM; 405 406 priv->tx_queue[i]->tx_skbuff = NULL; 407 priv->tx_queue[i]->qindex = i; 408 priv->tx_queue[i]->dev = priv->ndev; 409 spin_lock_init(&(priv->tx_queue[i]->txlock)); 410 } 411 return 0; 412 } 413 414 static int gfar_alloc_rx_queues(struct gfar_private *priv) 415 { 416 int i; 417 418 for (i = 0; i < priv->num_rx_queues; i++) { 419 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 420 GFP_KERNEL); 421 if (!priv->rx_queue[i]) 422 return -ENOMEM; 423 424 priv->rx_queue[i]->qindex = i; 425 priv->rx_queue[i]->ndev = priv->ndev; 426 } 427 return 0; 428 } 429 430 static void gfar_free_tx_queues(struct gfar_private *priv) 431 { 432 int i; 433 434 for (i = 0; i < priv->num_tx_queues; i++) 435 kfree(priv->tx_queue[i]); 436 } 437 438 static void gfar_free_rx_queues(struct gfar_private *priv) 439 { 440 int i; 441 442 for (i = 0; i < priv->num_rx_queues; i++) 443 kfree(priv->rx_queue[i]); 444 } 445 446 static void unmap_group_regs(struct gfar_private *priv) 447 { 448 int i; 449 450 for (i = 0; i < MAXGROUPS; i++) 451 if (priv->gfargrp[i].regs) 452 iounmap(priv->gfargrp[i].regs); 453 } 454 455 static void free_gfar_dev(struct gfar_private *priv) 456 { 457 int i, j; 458 459 for (i = 0; i < priv->num_grps; i++) 460 for (j = 0; j < GFAR_NUM_IRQS; j++) { 461 kfree(priv->gfargrp[i].irqinfo[j]); 462 priv->gfargrp[i].irqinfo[j] = NULL; 463 } 464 465 free_netdev(priv->ndev); 466 } 467 468 static void disable_napi(struct gfar_private *priv) 469 { 470 int i; 471 472 for (i = 0; i < priv->num_grps; i++) { 473 napi_disable(&priv->gfargrp[i].napi_rx); 474 napi_disable(&priv->gfargrp[i].napi_tx); 475 } 476 } 477 478 static void enable_napi(struct gfar_private *priv) 479 { 480 int i; 481 482 for (i = 0; i < priv->num_grps; i++) { 483 napi_enable(&priv->gfargrp[i].napi_rx); 484 napi_enable(&priv->gfargrp[i].napi_tx); 485 } 486 } 487 488 static int gfar_parse_group(struct device_node *np, 489 struct gfar_private *priv, const char *model) 490 { 491 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 492 int i; 493 494 for (i = 0; i < GFAR_NUM_IRQS; i++) { 495 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 496 GFP_KERNEL); 497 if (!grp->irqinfo[i]) 498 return -ENOMEM; 499 } 500 501 grp->regs = of_iomap(np, 0); 502 if (!grp->regs) 503 return -ENOMEM; 504 505 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 506 507 /* If we aren't the FEC we have multiple interrupts */ 508 if (model && strcasecmp(model, "FEC")) { 509 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 510 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 511 if (!gfar_irq(grp, TX)->irq || 512 !gfar_irq(grp, RX)->irq || 513 !gfar_irq(grp, ER)->irq) 514 return -EINVAL; 515 } 516 517 grp->priv = priv; 518 spin_lock_init(&grp->grplock); 519 if (priv->mode == MQ_MG_MODE) { 520 u32 rxq_mask, txq_mask; 521 int ret; 522 523 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 524 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 525 526 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask); 527 if (!ret) { 528 grp->rx_bit_map = rxq_mask ? 529 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps); 530 } 531 532 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask); 533 if (!ret) { 534 grp->tx_bit_map = txq_mask ? 535 txq_mask : (DEFAULT_MAPPING >> priv->num_grps); 536 } 537 538 if (priv->poll_mode == GFAR_SQ_POLLING) { 539 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 540 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 541 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 542 } 543 } else { 544 grp->rx_bit_map = 0xFF; 545 grp->tx_bit_map = 0xFF; 546 } 547 548 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 549 * right to left, so we need to revert the 8 bits to get the q index 550 */ 551 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 552 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 553 554 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 555 * also assign queues to groups 556 */ 557 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 558 if (!grp->rx_queue) 559 grp->rx_queue = priv->rx_queue[i]; 560 grp->num_rx_queues++; 561 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 562 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 563 priv->rx_queue[i]->grp = grp; 564 } 565 566 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 567 if (!grp->tx_queue) 568 grp->tx_queue = priv->tx_queue[i]; 569 grp->num_tx_queues++; 570 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 571 priv->tqueue |= (TQUEUE_EN0 >> i); 572 priv->tx_queue[i]->grp = grp; 573 } 574 575 priv->num_grps++; 576 577 return 0; 578 } 579 580 static int gfar_of_group_count(struct device_node *np) 581 { 582 struct device_node *child; 583 int num = 0; 584 585 for_each_available_child_of_node(np, child) 586 if (of_node_name_eq(child, "queue-group")) 587 num++; 588 589 return num; 590 } 591 592 /* Reads the controller's registers to determine what interface 593 * connects it to the PHY. 594 */ 595 static phy_interface_t gfar_get_interface(struct net_device *dev) 596 { 597 struct gfar_private *priv = netdev_priv(dev); 598 struct gfar __iomem *regs = priv->gfargrp[0].regs; 599 u32 ecntrl; 600 601 ecntrl = gfar_read(®s->ecntrl); 602 603 if (ecntrl & ECNTRL_SGMII_MODE) 604 return PHY_INTERFACE_MODE_SGMII; 605 606 if (ecntrl & ECNTRL_TBI_MODE) { 607 if (ecntrl & ECNTRL_REDUCED_MODE) 608 return PHY_INTERFACE_MODE_RTBI; 609 else 610 return PHY_INTERFACE_MODE_TBI; 611 } 612 613 if (ecntrl & ECNTRL_REDUCED_MODE) { 614 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 615 return PHY_INTERFACE_MODE_RMII; 616 } 617 else { 618 phy_interface_t interface = priv->interface; 619 620 /* This isn't autodetected right now, so it must 621 * be set by the device tree or platform code. 622 */ 623 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 624 return PHY_INTERFACE_MODE_RGMII_ID; 625 626 return PHY_INTERFACE_MODE_RGMII; 627 } 628 } 629 630 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 631 return PHY_INTERFACE_MODE_GMII; 632 633 return PHY_INTERFACE_MODE_MII; 634 } 635 636 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 637 { 638 const char *model; 639 const void *mac_addr; 640 int err = 0, i; 641 phy_interface_t interface; 642 struct net_device *dev = NULL; 643 struct gfar_private *priv = NULL; 644 struct device_node *np = ofdev->dev.of_node; 645 struct device_node *child = NULL; 646 u32 stash_len = 0; 647 u32 stash_idx = 0; 648 unsigned int num_tx_qs, num_rx_qs; 649 unsigned short mode, poll_mode; 650 651 if (!np) 652 return -ENODEV; 653 654 if (of_device_is_compatible(np, "fsl,etsec2")) { 655 mode = MQ_MG_MODE; 656 poll_mode = GFAR_SQ_POLLING; 657 } else { 658 mode = SQ_SG_MODE; 659 poll_mode = GFAR_SQ_POLLING; 660 } 661 662 if (mode == SQ_SG_MODE) { 663 num_tx_qs = 1; 664 num_rx_qs = 1; 665 } else { /* MQ_MG_MODE */ 666 /* get the actual number of supported groups */ 667 unsigned int num_grps = gfar_of_group_count(np); 668 669 if (num_grps == 0 || num_grps > MAXGROUPS) { 670 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 671 num_grps); 672 pr_err("Cannot do alloc_etherdev, aborting\n"); 673 return -EINVAL; 674 } 675 676 if (poll_mode == GFAR_SQ_POLLING) { 677 num_tx_qs = num_grps; /* one txq per int group */ 678 num_rx_qs = num_grps; /* one rxq per int group */ 679 } else { /* GFAR_MQ_POLLING */ 680 u32 tx_queues, rx_queues; 681 int ret; 682 683 /* parse the num of HW tx and rx queues */ 684 ret = of_property_read_u32(np, "fsl,num_tx_queues", 685 &tx_queues); 686 num_tx_qs = ret ? 1 : tx_queues; 687 688 ret = of_property_read_u32(np, "fsl,num_rx_queues", 689 &rx_queues); 690 num_rx_qs = ret ? 1 : rx_queues; 691 } 692 } 693 694 if (num_tx_qs > MAX_TX_QS) { 695 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 696 num_tx_qs, MAX_TX_QS); 697 pr_err("Cannot do alloc_etherdev, aborting\n"); 698 return -EINVAL; 699 } 700 701 if (num_rx_qs > MAX_RX_QS) { 702 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 703 num_rx_qs, MAX_RX_QS); 704 pr_err("Cannot do alloc_etherdev, aborting\n"); 705 return -EINVAL; 706 } 707 708 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 709 dev = *pdev; 710 if (NULL == dev) 711 return -ENOMEM; 712 713 priv = netdev_priv(dev); 714 priv->ndev = dev; 715 716 priv->mode = mode; 717 priv->poll_mode = poll_mode; 718 719 priv->num_tx_queues = num_tx_qs; 720 netif_set_real_num_rx_queues(dev, num_rx_qs); 721 priv->num_rx_queues = num_rx_qs; 722 723 err = gfar_alloc_tx_queues(priv); 724 if (err) 725 goto tx_alloc_failed; 726 727 err = gfar_alloc_rx_queues(priv); 728 if (err) 729 goto rx_alloc_failed; 730 731 err = of_property_read_string(np, "model", &model); 732 if (err) { 733 pr_err("Device model property missing, aborting\n"); 734 goto rx_alloc_failed; 735 } 736 737 /* Init Rx queue filer rule set linked list */ 738 INIT_LIST_HEAD(&priv->rx_list.list); 739 priv->rx_list.count = 0; 740 mutex_init(&priv->rx_queue_access); 741 742 for (i = 0; i < MAXGROUPS; i++) 743 priv->gfargrp[i].regs = NULL; 744 745 /* Parse and initialize group specific information */ 746 if (priv->mode == MQ_MG_MODE) { 747 for_each_available_child_of_node(np, child) { 748 if (!of_node_name_eq(child, "queue-group")) 749 continue; 750 751 err = gfar_parse_group(child, priv, model); 752 if (err) { 753 of_node_put(child); 754 goto err_grp_init; 755 } 756 } 757 } else { /* SQ_SG_MODE */ 758 err = gfar_parse_group(np, priv, model); 759 if (err) 760 goto err_grp_init; 761 } 762 763 if (of_property_read_bool(np, "bd-stash")) { 764 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 765 priv->bd_stash_en = 1; 766 } 767 768 err = of_property_read_u32(np, "rx-stash-len", &stash_len); 769 770 if (err == 0) 771 priv->rx_stash_size = stash_len; 772 773 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); 774 775 if (err == 0) 776 priv->rx_stash_index = stash_idx; 777 778 if (stash_len || stash_idx) 779 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 780 781 mac_addr = of_get_mac_address(np); 782 783 if (!IS_ERR(mac_addr)) { 784 ether_addr_copy(dev->dev_addr, mac_addr); 785 } else { 786 eth_hw_addr_random(dev); 787 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr); 788 } 789 790 if (model && !strcasecmp(model, "TSEC")) 791 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 792 FSL_GIANFAR_DEV_HAS_COALESCE | 793 FSL_GIANFAR_DEV_HAS_RMON | 794 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 795 796 if (model && !strcasecmp(model, "eTSEC")) 797 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 798 FSL_GIANFAR_DEV_HAS_COALESCE | 799 FSL_GIANFAR_DEV_HAS_RMON | 800 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 801 FSL_GIANFAR_DEV_HAS_CSUM | 802 FSL_GIANFAR_DEV_HAS_VLAN | 803 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 804 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 805 FSL_GIANFAR_DEV_HAS_TIMER | 806 FSL_GIANFAR_DEV_HAS_RX_FILER; 807 808 /* Use PHY connection type from the DT node if one is specified there. 809 * rgmii-id really needs to be specified. Other types can be 810 * detected by hardware 811 */ 812 err = of_get_phy_mode(np, &interface); 813 if (!err) 814 priv->interface = interface; 815 else 816 priv->interface = gfar_get_interface(dev); 817 818 if (of_find_property(np, "fsl,magic-packet", NULL)) 819 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 820 821 if (of_get_property(np, "fsl,wake-on-filer", NULL)) 822 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; 823 824 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 825 826 /* In the case of a fixed PHY, the DT node associated 827 * to the PHY is the Ethernet MAC DT node. 828 */ 829 if (!priv->phy_node && of_phy_is_fixed_link(np)) { 830 err = of_phy_register_fixed_link(np); 831 if (err) 832 goto err_grp_init; 833 834 priv->phy_node = of_node_get(np); 835 } 836 837 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 838 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 839 840 return 0; 841 842 err_grp_init: 843 unmap_group_regs(priv); 844 rx_alloc_failed: 845 gfar_free_rx_queues(priv); 846 tx_alloc_failed: 847 gfar_free_tx_queues(priv); 848 free_gfar_dev(priv); 849 return err; 850 } 851 852 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 853 u32 class) 854 { 855 u32 rqfpr = FPR_FILER_MASK; 856 u32 rqfcr = 0x0; 857 858 rqfar--; 859 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 860 priv->ftp_rqfpr[rqfar] = rqfpr; 861 priv->ftp_rqfcr[rqfar] = rqfcr; 862 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 863 864 rqfar--; 865 rqfcr = RQFCR_CMP_NOMATCH; 866 priv->ftp_rqfpr[rqfar] = rqfpr; 867 priv->ftp_rqfcr[rqfar] = rqfcr; 868 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 869 870 rqfar--; 871 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 872 rqfpr = class; 873 priv->ftp_rqfcr[rqfar] = rqfcr; 874 priv->ftp_rqfpr[rqfar] = rqfpr; 875 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 876 877 rqfar--; 878 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 879 rqfpr = class; 880 priv->ftp_rqfcr[rqfar] = rqfcr; 881 priv->ftp_rqfpr[rqfar] = rqfpr; 882 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 883 884 return rqfar; 885 } 886 887 static void gfar_init_filer_table(struct gfar_private *priv) 888 { 889 int i = 0x0; 890 u32 rqfar = MAX_FILER_IDX; 891 u32 rqfcr = 0x0; 892 u32 rqfpr = FPR_FILER_MASK; 893 894 /* Default rule */ 895 rqfcr = RQFCR_CMP_MATCH; 896 priv->ftp_rqfcr[rqfar] = rqfcr; 897 priv->ftp_rqfpr[rqfar] = rqfpr; 898 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 899 900 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 901 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 902 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 903 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 904 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 905 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 906 907 /* cur_filer_idx indicated the first non-masked rule */ 908 priv->cur_filer_idx = rqfar; 909 910 /* Rest are masked rules */ 911 rqfcr = RQFCR_CMP_NOMATCH; 912 for (i = 0; i < rqfar; i++) { 913 priv->ftp_rqfcr[i] = rqfcr; 914 priv->ftp_rqfpr[i] = rqfpr; 915 gfar_write_filer(priv, i, rqfcr, rqfpr); 916 } 917 } 918 919 #ifdef CONFIG_PPC 920 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 921 { 922 unsigned int pvr = mfspr(SPRN_PVR); 923 unsigned int svr = mfspr(SPRN_SVR); 924 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 925 unsigned int rev = svr & 0xffff; 926 927 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 928 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 929 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 930 priv->errata |= GFAR_ERRATA_74; 931 932 /* MPC8313 and MPC837x all rev */ 933 if ((pvr == 0x80850010 && mod == 0x80b0) || 934 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 935 priv->errata |= GFAR_ERRATA_76; 936 937 /* MPC8313 Rev < 2.0 */ 938 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 939 priv->errata |= GFAR_ERRATA_12; 940 } 941 942 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 943 { 944 unsigned int svr = mfspr(SPRN_SVR); 945 946 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 947 priv->errata |= GFAR_ERRATA_12; 948 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */ 949 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 950 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) || 951 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31))) 952 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 953 } 954 #endif 955 956 static void gfar_detect_errata(struct gfar_private *priv) 957 { 958 struct device *dev = &priv->ofdev->dev; 959 960 /* no plans to fix */ 961 priv->errata |= GFAR_ERRATA_A002; 962 963 #ifdef CONFIG_PPC 964 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 965 __gfar_detect_errata_85xx(priv); 966 else /* non-mpc85xx parts, i.e. e300 core based */ 967 __gfar_detect_errata_83xx(priv); 968 #endif 969 970 if (priv->errata) 971 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 972 priv->errata); 973 } 974 975 static void gfar_init_addr_hash_table(struct gfar_private *priv) 976 { 977 struct gfar __iomem *regs = priv->gfargrp[0].regs; 978 979 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 980 priv->extended_hash = 1; 981 priv->hash_width = 9; 982 983 priv->hash_regs[0] = ®s->igaddr0; 984 priv->hash_regs[1] = ®s->igaddr1; 985 priv->hash_regs[2] = ®s->igaddr2; 986 priv->hash_regs[3] = ®s->igaddr3; 987 priv->hash_regs[4] = ®s->igaddr4; 988 priv->hash_regs[5] = ®s->igaddr5; 989 priv->hash_regs[6] = ®s->igaddr6; 990 priv->hash_regs[7] = ®s->igaddr7; 991 priv->hash_regs[8] = ®s->gaddr0; 992 priv->hash_regs[9] = ®s->gaddr1; 993 priv->hash_regs[10] = ®s->gaddr2; 994 priv->hash_regs[11] = ®s->gaddr3; 995 priv->hash_regs[12] = ®s->gaddr4; 996 priv->hash_regs[13] = ®s->gaddr5; 997 priv->hash_regs[14] = ®s->gaddr6; 998 priv->hash_regs[15] = ®s->gaddr7; 999 1000 } else { 1001 priv->extended_hash = 0; 1002 priv->hash_width = 8; 1003 1004 priv->hash_regs[0] = ®s->gaddr0; 1005 priv->hash_regs[1] = ®s->gaddr1; 1006 priv->hash_regs[2] = ®s->gaddr2; 1007 priv->hash_regs[3] = ®s->gaddr3; 1008 priv->hash_regs[4] = ®s->gaddr4; 1009 priv->hash_regs[5] = ®s->gaddr5; 1010 priv->hash_regs[6] = ®s->gaddr6; 1011 priv->hash_regs[7] = ®s->gaddr7; 1012 } 1013 } 1014 1015 static int __gfar_is_rx_idle(struct gfar_private *priv) 1016 { 1017 u32 res; 1018 1019 /* Normaly TSEC should not hang on GRS commands, so we should 1020 * actually wait for IEVENT_GRSC flag. 1021 */ 1022 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 1023 return 0; 1024 1025 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 1026 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 1027 * and the Rx can be safely reset. 1028 */ 1029 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1030 res &= 0x7f807f80; 1031 if ((res & 0xffff) == (res >> 16)) 1032 return 1; 1033 1034 return 0; 1035 } 1036 1037 /* Halt the receive and transmit queues */ 1038 static void gfar_halt_nodisable(struct gfar_private *priv) 1039 { 1040 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1041 u32 tempval; 1042 unsigned int timeout; 1043 int stopped; 1044 1045 gfar_ints_disable(priv); 1046 1047 if (gfar_is_dma_stopped(priv)) 1048 return; 1049 1050 /* Stop the DMA, and wait for it to stop */ 1051 tempval = gfar_read(®s->dmactrl); 1052 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1053 gfar_write(®s->dmactrl, tempval); 1054 1055 retry: 1056 timeout = 1000; 1057 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { 1058 cpu_relax(); 1059 timeout--; 1060 } 1061 1062 if (!timeout) 1063 stopped = gfar_is_dma_stopped(priv); 1064 1065 if (!stopped && !gfar_is_rx_dma_stopped(priv) && 1066 !__gfar_is_rx_idle(priv)) 1067 goto retry; 1068 } 1069 1070 /* Halt the receive and transmit queues */ 1071 static void gfar_halt(struct gfar_private *priv) 1072 { 1073 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1074 u32 tempval; 1075 1076 /* Dissable the Rx/Tx hw queues */ 1077 gfar_write(®s->rqueue, 0); 1078 gfar_write(®s->tqueue, 0); 1079 1080 mdelay(10); 1081 1082 gfar_halt_nodisable(priv); 1083 1084 /* Disable Rx/Tx DMA */ 1085 tempval = gfar_read(®s->maccfg1); 1086 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1087 gfar_write(®s->maccfg1, tempval); 1088 } 1089 1090 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1091 { 1092 struct txbd8 *txbdp; 1093 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1094 int i, j; 1095 1096 txbdp = tx_queue->tx_bd_base; 1097 1098 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1099 if (!tx_queue->tx_skbuff[i]) 1100 continue; 1101 1102 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), 1103 be16_to_cpu(txbdp->length), DMA_TO_DEVICE); 1104 txbdp->lstatus = 0; 1105 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1106 j++) { 1107 txbdp++; 1108 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), 1109 be16_to_cpu(txbdp->length), 1110 DMA_TO_DEVICE); 1111 } 1112 txbdp++; 1113 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1114 tx_queue->tx_skbuff[i] = NULL; 1115 } 1116 kfree(tx_queue->tx_skbuff); 1117 tx_queue->tx_skbuff = NULL; 1118 } 1119 1120 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1121 { 1122 int i; 1123 1124 struct rxbd8 *rxbdp = rx_queue->rx_bd_base; 1125 1126 dev_kfree_skb(rx_queue->skb); 1127 1128 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1129 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; 1130 1131 rxbdp->lstatus = 0; 1132 rxbdp->bufPtr = 0; 1133 rxbdp++; 1134 1135 if (!rxb->page) 1136 continue; 1137 1138 dma_unmap_page(rx_queue->dev, rxb->dma, 1139 PAGE_SIZE, DMA_FROM_DEVICE); 1140 __free_page(rxb->page); 1141 1142 rxb->page = NULL; 1143 } 1144 1145 kfree(rx_queue->rx_buff); 1146 rx_queue->rx_buff = NULL; 1147 } 1148 1149 /* If there are any tx skbs or rx skbs still around, free them. 1150 * Then free tx_skbuff and rx_skbuff 1151 */ 1152 static void free_skb_resources(struct gfar_private *priv) 1153 { 1154 struct gfar_priv_tx_q *tx_queue = NULL; 1155 struct gfar_priv_rx_q *rx_queue = NULL; 1156 int i; 1157 1158 /* Go through all the buffer descriptors and free their data buffers */ 1159 for (i = 0; i < priv->num_tx_queues; i++) { 1160 struct netdev_queue *txq; 1161 1162 tx_queue = priv->tx_queue[i]; 1163 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1164 if (tx_queue->tx_skbuff) 1165 free_skb_tx_queue(tx_queue); 1166 netdev_tx_reset_queue(txq); 1167 } 1168 1169 for (i = 0; i < priv->num_rx_queues; i++) { 1170 rx_queue = priv->rx_queue[i]; 1171 if (rx_queue->rx_buff) 1172 free_skb_rx_queue(rx_queue); 1173 } 1174 1175 dma_free_coherent(priv->dev, 1176 sizeof(struct txbd8) * priv->total_tx_ring_size + 1177 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1178 priv->tx_queue[0]->tx_bd_base, 1179 priv->tx_queue[0]->tx_bd_dma_base); 1180 } 1181 1182 void stop_gfar(struct net_device *dev) 1183 { 1184 struct gfar_private *priv = netdev_priv(dev); 1185 1186 netif_tx_stop_all_queues(dev); 1187 1188 smp_mb__before_atomic(); 1189 set_bit(GFAR_DOWN, &priv->state); 1190 smp_mb__after_atomic(); 1191 1192 disable_napi(priv); 1193 1194 /* disable ints and gracefully shut down Rx/Tx DMA */ 1195 gfar_halt(priv); 1196 1197 phy_stop(dev->phydev); 1198 1199 free_skb_resources(priv); 1200 } 1201 1202 static void gfar_start(struct gfar_private *priv) 1203 { 1204 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1205 u32 tempval; 1206 int i = 0; 1207 1208 /* Enable Rx/Tx hw queues */ 1209 gfar_write(®s->rqueue, priv->rqueue); 1210 gfar_write(®s->tqueue, priv->tqueue); 1211 1212 /* Initialize DMACTRL to have WWR and WOP */ 1213 tempval = gfar_read(®s->dmactrl); 1214 tempval |= DMACTRL_INIT_SETTINGS; 1215 gfar_write(®s->dmactrl, tempval); 1216 1217 /* Make sure we aren't stopped */ 1218 tempval = gfar_read(®s->dmactrl); 1219 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1220 gfar_write(®s->dmactrl, tempval); 1221 1222 for (i = 0; i < priv->num_grps; i++) { 1223 regs = priv->gfargrp[i].regs; 1224 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1225 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1226 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1227 } 1228 1229 /* Enable Rx/Tx DMA */ 1230 tempval = gfar_read(®s->maccfg1); 1231 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1232 gfar_write(®s->maccfg1, tempval); 1233 1234 gfar_ints_enable(priv); 1235 1236 netif_trans_update(priv->ndev); /* prevent tx timeout */ 1237 } 1238 1239 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) 1240 { 1241 struct page *page; 1242 dma_addr_t addr; 1243 1244 page = dev_alloc_page(); 1245 if (unlikely(!page)) 1246 return false; 1247 1248 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 1249 if (unlikely(dma_mapping_error(rxq->dev, addr))) { 1250 __free_page(page); 1251 1252 return false; 1253 } 1254 1255 rxb->dma = addr; 1256 rxb->page = page; 1257 rxb->page_offset = 0; 1258 1259 return true; 1260 } 1261 1262 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) 1263 { 1264 struct gfar_private *priv = netdev_priv(rx_queue->ndev); 1265 struct gfar_extra_stats *estats = &priv->extra_stats; 1266 1267 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); 1268 atomic64_inc(&estats->rx_alloc_err); 1269 } 1270 1271 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, 1272 int alloc_cnt) 1273 { 1274 struct rxbd8 *bdp; 1275 struct gfar_rx_buff *rxb; 1276 int i; 1277 1278 i = rx_queue->next_to_use; 1279 bdp = &rx_queue->rx_bd_base[i]; 1280 rxb = &rx_queue->rx_buff[i]; 1281 1282 while (alloc_cnt--) { 1283 /* try reuse page */ 1284 if (unlikely(!rxb->page)) { 1285 if (unlikely(!gfar_new_page(rx_queue, rxb))) { 1286 gfar_rx_alloc_err(rx_queue); 1287 break; 1288 } 1289 } 1290 1291 /* Setup the new RxBD */ 1292 gfar_init_rxbdp(rx_queue, bdp, 1293 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); 1294 1295 /* Update to the next pointer */ 1296 bdp++; 1297 rxb++; 1298 1299 if (unlikely(++i == rx_queue->rx_ring_size)) { 1300 i = 0; 1301 bdp = rx_queue->rx_bd_base; 1302 rxb = rx_queue->rx_buff; 1303 } 1304 } 1305 1306 rx_queue->next_to_use = i; 1307 rx_queue->next_to_alloc = i; 1308 } 1309 1310 static void gfar_init_bds(struct net_device *ndev) 1311 { 1312 struct gfar_private *priv = netdev_priv(ndev); 1313 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1314 struct gfar_priv_tx_q *tx_queue = NULL; 1315 struct gfar_priv_rx_q *rx_queue = NULL; 1316 struct txbd8 *txbdp; 1317 u32 __iomem *rfbptr; 1318 int i, j; 1319 1320 for (i = 0; i < priv->num_tx_queues; i++) { 1321 tx_queue = priv->tx_queue[i]; 1322 /* Initialize some variables in our dev structure */ 1323 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 1324 tx_queue->dirty_tx = tx_queue->tx_bd_base; 1325 tx_queue->cur_tx = tx_queue->tx_bd_base; 1326 tx_queue->skb_curtx = 0; 1327 tx_queue->skb_dirtytx = 0; 1328 1329 /* Initialize Transmit Descriptor Ring */ 1330 txbdp = tx_queue->tx_bd_base; 1331 for (j = 0; j < tx_queue->tx_ring_size; j++) { 1332 txbdp->lstatus = 0; 1333 txbdp->bufPtr = 0; 1334 txbdp++; 1335 } 1336 1337 /* Set the last descriptor in the ring to indicate wrap */ 1338 txbdp--; 1339 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | 1340 TXBD_WRAP); 1341 } 1342 1343 rfbptr = ®s->rfbptr0; 1344 for (i = 0; i < priv->num_rx_queues; i++) { 1345 rx_queue = priv->rx_queue[i]; 1346 1347 rx_queue->next_to_clean = 0; 1348 rx_queue->next_to_use = 0; 1349 rx_queue->next_to_alloc = 0; 1350 1351 /* make sure next_to_clean != next_to_use after this 1352 * by leaving at least 1 unused descriptor 1353 */ 1354 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); 1355 1356 rx_queue->rfbptr = rfbptr; 1357 rfbptr += 2; 1358 } 1359 } 1360 1361 static int gfar_alloc_skb_resources(struct net_device *ndev) 1362 { 1363 void *vaddr; 1364 dma_addr_t addr; 1365 int i, j; 1366 struct gfar_private *priv = netdev_priv(ndev); 1367 struct device *dev = priv->dev; 1368 struct gfar_priv_tx_q *tx_queue = NULL; 1369 struct gfar_priv_rx_q *rx_queue = NULL; 1370 1371 priv->total_tx_ring_size = 0; 1372 for (i = 0; i < priv->num_tx_queues; i++) 1373 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 1374 1375 priv->total_rx_ring_size = 0; 1376 for (i = 0; i < priv->num_rx_queues; i++) 1377 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 1378 1379 /* Allocate memory for the buffer descriptors */ 1380 vaddr = dma_alloc_coherent(dev, 1381 (priv->total_tx_ring_size * 1382 sizeof(struct txbd8)) + 1383 (priv->total_rx_ring_size * 1384 sizeof(struct rxbd8)), 1385 &addr, GFP_KERNEL); 1386 if (!vaddr) 1387 return -ENOMEM; 1388 1389 for (i = 0; i < priv->num_tx_queues; i++) { 1390 tx_queue = priv->tx_queue[i]; 1391 tx_queue->tx_bd_base = vaddr; 1392 tx_queue->tx_bd_dma_base = addr; 1393 tx_queue->dev = ndev; 1394 /* enet DMA only understands physical addresses */ 1395 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1396 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1397 } 1398 1399 /* Start the rx descriptor ring where the tx ring leaves off */ 1400 for (i = 0; i < priv->num_rx_queues; i++) { 1401 rx_queue = priv->rx_queue[i]; 1402 rx_queue->rx_bd_base = vaddr; 1403 rx_queue->rx_bd_dma_base = addr; 1404 rx_queue->ndev = ndev; 1405 rx_queue->dev = dev; 1406 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1407 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1408 } 1409 1410 /* Setup the skbuff rings */ 1411 for (i = 0; i < priv->num_tx_queues; i++) { 1412 tx_queue = priv->tx_queue[i]; 1413 tx_queue->tx_skbuff = 1414 kmalloc_array(tx_queue->tx_ring_size, 1415 sizeof(*tx_queue->tx_skbuff), 1416 GFP_KERNEL); 1417 if (!tx_queue->tx_skbuff) 1418 goto cleanup; 1419 1420 for (j = 0; j < tx_queue->tx_ring_size; j++) 1421 tx_queue->tx_skbuff[j] = NULL; 1422 } 1423 1424 for (i = 0; i < priv->num_rx_queues; i++) { 1425 rx_queue = priv->rx_queue[i]; 1426 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, 1427 sizeof(*rx_queue->rx_buff), 1428 GFP_KERNEL); 1429 if (!rx_queue->rx_buff) 1430 goto cleanup; 1431 } 1432 1433 gfar_init_bds(ndev); 1434 1435 return 0; 1436 1437 cleanup: 1438 free_skb_resources(priv); 1439 return -ENOMEM; 1440 } 1441 1442 /* Bring the controller up and running */ 1443 int startup_gfar(struct net_device *ndev) 1444 { 1445 struct gfar_private *priv = netdev_priv(ndev); 1446 int err; 1447 1448 gfar_mac_reset(priv); 1449 1450 err = gfar_alloc_skb_resources(ndev); 1451 if (err) 1452 return err; 1453 1454 gfar_init_tx_rx_base(priv); 1455 1456 smp_mb__before_atomic(); 1457 clear_bit(GFAR_DOWN, &priv->state); 1458 smp_mb__after_atomic(); 1459 1460 /* Start Rx/Tx DMA and enable the interrupts */ 1461 gfar_start(priv); 1462 1463 /* force link state update after mac reset */ 1464 priv->oldlink = 0; 1465 priv->oldspeed = 0; 1466 priv->oldduplex = -1; 1467 1468 phy_start(ndev->phydev); 1469 1470 enable_napi(priv); 1471 1472 netif_tx_wake_all_queues(ndev); 1473 1474 return 0; 1475 } 1476 1477 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 1478 { 1479 struct net_device *ndev = priv->ndev; 1480 struct phy_device *phydev = ndev->phydev; 1481 u32 val = 0; 1482 1483 if (!phydev->duplex) 1484 return val; 1485 1486 if (!priv->pause_aneg_en) { 1487 if (priv->tx_pause_en) 1488 val |= MACCFG1_TX_FLOW; 1489 if (priv->rx_pause_en) 1490 val |= MACCFG1_RX_FLOW; 1491 } else { 1492 u16 lcl_adv, rmt_adv; 1493 u8 flowctrl; 1494 /* get link partner capabilities */ 1495 rmt_adv = 0; 1496 if (phydev->pause) 1497 rmt_adv = LPA_PAUSE_CAP; 1498 if (phydev->asym_pause) 1499 rmt_adv |= LPA_PAUSE_ASYM; 1500 1501 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising); 1502 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 1503 if (flowctrl & FLOW_CTRL_TX) 1504 val |= MACCFG1_TX_FLOW; 1505 if (flowctrl & FLOW_CTRL_RX) 1506 val |= MACCFG1_RX_FLOW; 1507 } 1508 1509 return val; 1510 } 1511 1512 static noinline void gfar_update_link_state(struct gfar_private *priv) 1513 { 1514 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1515 struct net_device *ndev = priv->ndev; 1516 struct phy_device *phydev = ndev->phydev; 1517 struct gfar_priv_rx_q *rx_queue = NULL; 1518 int i; 1519 1520 if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) 1521 return; 1522 1523 if (phydev->link) { 1524 u32 tempval1 = gfar_read(®s->maccfg1); 1525 u32 tempval = gfar_read(®s->maccfg2); 1526 u32 ecntrl = gfar_read(®s->ecntrl); 1527 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW); 1528 1529 if (phydev->duplex != priv->oldduplex) { 1530 if (!(phydev->duplex)) 1531 tempval &= ~(MACCFG2_FULL_DUPLEX); 1532 else 1533 tempval |= MACCFG2_FULL_DUPLEX; 1534 1535 priv->oldduplex = phydev->duplex; 1536 } 1537 1538 if (phydev->speed != priv->oldspeed) { 1539 switch (phydev->speed) { 1540 case 1000: 1541 tempval = 1542 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 1543 1544 ecntrl &= ~(ECNTRL_R100); 1545 break; 1546 case 100: 1547 case 10: 1548 tempval = 1549 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 1550 1551 /* Reduced mode distinguishes 1552 * between 10 and 100 1553 */ 1554 if (phydev->speed == SPEED_100) 1555 ecntrl |= ECNTRL_R100; 1556 else 1557 ecntrl &= ~(ECNTRL_R100); 1558 break; 1559 default: 1560 netif_warn(priv, link, priv->ndev, 1561 "Ack! Speed (%d) is not 10/100/1000!\n", 1562 phydev->speed); 1563 break; 1564 } 1565 1566 priv->oldspeed = phydev->speed; 1567 } 1568 1569 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 1570 tempval1 |= gfar_get_flowctrl_cfg(priv); 1571 1572 /* Turn last free buffer recording on */ 1573 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { 1574 for (i = 0; i < priv->num_rx_queues; i++) { 1575 u32 bdp_dma; 1576 1577 rx_queue = priv->rx_queue[i]; 1578 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 1579 gfar_write(rx_queue->rfbptr, bdp_dma); 1580 } 1581 1582 priv->tx_actual_en = 1; 1583 } 1584 1585 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) 1586 priv->tx_actual_en = 0; 1587 1588 gfar_write(®s->maccfg1, tempval1); 1589 gfar_write(®s->maccfg2, tempval); 1590 gfar_write(®s->ecntrl, ecntrl); 1591 1592 if (!priv->oldlink) 1593 priv->oldlink = 1; 1594 1595 } else if (priv->oldlink) { 1596 priv->oldlink = 0; 1597 priv->oldspeed = 0; 1598 priv->oldduplex = -1; 1599 } 1600 1601 if (netif_msg_link(priv)) 1602 phy_print_status(phydev); 1603 } 1604 1605 /* Called every time the controller might need to be made 1606 * aware of new link state. The PHY code conveys this 1607 * information through variables in the phydev structure, and this 1608 * function converts those variables into the appropriate 1609 * register values, and can bring down the device if needed. 1610 */ 1611 static void adjust_link(struct net_device *dev) 1612 { 1613 struct gfar_private *priv = netdev_priv(dev); 1614 struct phy_device *phydev = dev->phydev; 1615 1616 if (unlikely(phydev->link != priv->oldlink || 1617 (phydev->link && (phydev->duplex != priv->oldduplex || 1618 phydev->speed != priv->oldspeed)))) 1619 gfar_update_link_state(priv); 1620 } 1621 1622 /* Initialize TBI PHY interface for communicating with the 1623 * SERDES lynx PHY on the chip. We communicate with this PHY 1624 * through the MDIO bus on each controller, treating it as a 1625 * "normal" PHY at the address found in the TBIPA register. We assume 1626 * that the TBIPA register is valid. Either the MDIO bus code will set 1627 * it to a value that doesn't conflict with other PHYs on the bus, or the 1628 * value doesn't matter, as there are no other PHYs on the bus. 1629 */ 1630 static void gfar_configure_serdes(struct net_device *dev) 1631 { 1632 struct gfar_private *priv = netdev_priv(dev); 1633 struct phy_device *tbiphy; 1634 1635 if (!priv->tbi_node) { 1636 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1637 "device tree specify a tbi-handle\n"); 1638 return; 1639 } 1640 1641 tbiphy = of_phy_find_device(priv->tbi_node); 1642 if (!tbiphy) { 1643 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1644 return; 1645 } 1646 1647 /* If the link is already up, we must already be ok, and don't need to 1648 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1649 * everything for us? Resetting it takes the link down and requires 1650 * several seconds for it to come back. 1651 */ 1652 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { 1653 put_device(&tbiphy->mdio.dev); 1654 return; 1655 } 1656 1657 /* Single clk mode, mii mode off(for serdes communication) */ 1658 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1659 1660 phy_write(tbiphy, MII_ADVERTISE, 1661 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1662 ADVERTISE_1000XPSE_ASYM); 1663 1664 phy_write(tbiphy, MII_BMCR, 1665 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1666 BMCR_SPEED1000); 1667 1668 put_device(&tbiphy->mdio.dev); 1669 } 1670 1671 /* Initializes driver's PHY state, and attaches to the PHY. 1672 * Returns 0 on success. 1673 */ 1674 static int init_phy(struct net_device *dev) 1675 { 1676 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 1677 struct gfar_private *priv = netdev_priv(dev); 1678 phy_interface_t interface = priv->interface; 1679 struct phy_device *phydev; 1680 struct ethtool_eee edata; 1681 1682 linkmode_set_bit_array(phy_10_100_features_array, 1683 ARRAY_SIZE(phy_10_100_features_array), 1684 mask); 1685 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask); 1686 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask); 1687 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1688 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask); 1689 1690 priv->oldlink = 0; 1691 priv->oldspeed = 0; 1692 priv->oldduplex = -1; 1693 1694 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1695 interface); 1696 if (!phydev) { 1697 dev_err(&dev->dev, "could not attach to PHY\n"); 1698 return -ENODEV; 1699 } 1700 1701 if (interface == PHY_INTERFACE_MODE_SGMII) 1702 gfar_configure_serdes(dev); 1703 1704 /* Remove any features not supported by the controller */ 1705 linkmode_and(phydev->supported, phydev->supported, mask); 1706 linkmode_copy(phydev->advertising, phydev->supported); 1707 1708 /* Add support for flow control */ 1709 phy_support_asym_pause(phydev); 1710 1711 /* disable EEE autoneg, EEE not supported by eTSEC */ 1712 memset(&edata, 0, sizeof(struct ethtool_eee)); 1713 phy_ethtool_set_eee(phydev, &edata); 1714 1715 return 0; 1716 } 1717 1718 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 1719 { 1720 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN); 1721 1722 memset(fcb, 0, GMAC_FCB_LEN); 1723 1724 return fcb; 1725 } 1726 1727 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 1728 int fcb_length) 1729 { 1730 /* If we're here, it's a IP packet with a TCP or UDP 1731 * payload. We set it to checksum, using a pseudo-header 1732 * we provide 1733 */ 1734 u8 flags = TXFCB_DEFAULT; 1735 1736 /* Tell the controller what the protocol is 1737 * And provide the already calculated phcs 1738 */ 1739 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 1740 flags |= TXFCB_UDP; 1741 fcb->phcs = (__force __be16)(udp_hdr(skb)->check); 1742 } else 1743 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); 1744 1745 /* l3os is the distance between the start of the 1746 * frame (skb->data) and the start of the IP hdr. 1747 * l4os is the distance between the start of the 1748 * l3 hdr and the l4 hdr 1749 */ 1750 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); 1751 fcb->l4os = skb_network_header_len(skb); 1752 1753 fcb->flags = flags; 1754 } 1755 1756 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 1757 { 1758 fcb->flags |= TXFCB_VLN; 1759 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); 1760 } 1761 1762 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 1763 struct txbd8 *base, int ring_size) 1764 { 1765 struct txbd8 *new_bd = bdp + stride; 1766 1767 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 1768 } 1769 1770 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 1771 int ring_size) 1772 { 1773 return skip_txbd(bdp, 1, base, ring_size); 1774 } 1775 1776 /* eTSEC12: csum generation not supported for some fcb offsets */ 1777 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 1778 unsigned long fcb_addr) 1779 { 1780 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 1781 (fcb_addr % 0x20) > 0x18); 1782 } 1783 1784 /* eTSEC76: csum generation for frames larger than 2500 may 1785 * cause excess delays before start of transmission 1786 */ 1787 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 1788 unsigned int len) 1789 { 1790 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 1791 (len > 2500)); 1792 } 1793 1794 /* This is called by the kernel when a frame is ready for transmission. 1795 * It is pointed to by the dev->hard_start_xmit function pointer 1796 */ 1797 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 1798 { 1799 struct gfar_private *priv = netdev_priv(dev); 1800 struct gfar_priv_tx_q *tx_queue = NULL; 1801 struct netdev_queue *txq; 1802 struct gfar __iomem *regs = NULL; 1803 struct txfcb *fcb = NULL; 1804 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 1805 u32 lstatus; 1806 skb_frag_t *frag; 1807 int i, rq = 0; 1808 int do_tstamp, do_csum, do_vlan; 1809 u32 bufaddr; 1810 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 1811 1812 rq = skb->queue_mapping; 1813 tx_queue = priv->tx_queue[rq]; 1814 txq = netdev_get_tx_queue(dev, rq); 1815 base = tx_queue->tx_bd_base; 1816 regs = tx_queue->grp->regs; 1817 1818 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 1819 do_vlan = skb_vlan_tag_present(skb); 1820 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1821 priv->hwts_tx_en; 1822 1823 if (do_csum || do_vlan) 1824 fcb_len = GMAC_FCB_LEN; 1825 1826 /* check if time stamp should be generated */ 1827 if (unlikely(do_tstamp)) 1828 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 1829 1830 /* make space for additional header when fcb is needed */ 1831 if (fcb_len) { 1832 if (unlikely(skb_cow_head(skb, fcb_len))) { 1833 dev->stats.tx_errors++; 1834 dev_kfree_skb_any(skb); 1835 return NETDEV_TX_OK; 1836 } 1837 } 1838 1839 /* total number of fragments in the SKB */ 1840 nr_frags = skb_shinfo(skb)->nr_frags; 1841 1842 /* calculate the required number of TxBDs for this skb */ 1843 if (unlikely(do_tstamp)) 1844 nr_txbds = nr_frags + 2; 1845 else 1846 nr_txbds = nr_frags + 1; 1847 1848 /* check if there is space to queue this packet */ 1849 if (nr_txbds > tx_queue->num_txbdfree) { 1850 /* no space, stop the queue */ 1851 netif_tx_stop_queue(txq); 1852 dev->stats.tx_fifo_errors++; 1853 return NETDEV_TX_BUSY; 1854 } 1855 1856 /* Update transmit stats */ 1857 bytes_sent = skb->len; 1858 tx_queue->stats.tx_bytes += bytes_sent; 1859 /* keep Tx bytes on wire for BQL accounting */ 1860 GFAR_CB(skb)->bytes_sent = bytes_sent; 1861 tx_queue->stats.tx_packets++; 1862 1863 txbdp = txbdp_start = tx_queue->cur_tx; 1864 lstatus = be32_to_cpu(txbdp->lstatus); 1865 1866 /* Add TxPAL between FCB and frame if required */ 1867 if (unlikely(do_tstamp)) { 1868 skb_push(skb, GMAC_TXPAL_LEN); 1869 memset(skb->data, 0, GMAC_TXPAL_LEN); 1870 } 1871 1872 /* Add TxFCB if required */ 1873 if (fcb_len) { 1874 fcb = gfar_add_fcb(skb); 1875 lstatus |= BD_LFLAG(TXBD_TOE); 1876 } 1877 1878 /* Set up checksumming */ 1879 if (do_csum) { 1880 gfar_tx_checksum(skb, fcb, fcb_len); 1881 1882 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 1883 unlikely(gfar_csum_errata_76(priv, skb->len))) { 1884 __skb_pull(skb, GMAC_FCB_LEN); 1885 skb_checksum_help(skb); 1886 if (do_vlan || do_tstamp) { 1887 /* put back a new fcb for vlan/tstamp TOE */ 1888 fcb = gfar_add_fcb(skb); 1889 } else { 1890 /* Tx TOE not used */ 1891 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 1892 fcb = NULL; 1893 } 1894 } 1895 } 1896 1897 if (do_vlan) 1898 gfar_tx_vlan(skb, fcb); 1899 1900 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), 1901 DMA_TO_DEVICE); 1902 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1903 goto dma_map_err; 1904 1905 txbdp_start->bufPtr = cpu_to_be32(bufaddr); 1906 1907 /* Time stamp insertion requires one additional TxBD */ 1908 if (unlikely(do_tstamp)) 1909 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 1910 tx_queue->tx_ring_size); 1911 1912 if (likely(!nr_frags)) { 1913 if (likely(!do_tstamp)) 1914 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1915 } else { 1916 u32 lstatus_start = lstatus; 1917 1918 /* Place the fragment addresses and lengths into the TxBDs */ 1919 frag = &skb_shinfo(skb)->frags[0]; 1920 for (i = 0; i < nr_frags; i++, frag++) { 1921 unsigned int size; 1922 1923 /* Point at the next BD, wrapping as needed */ 1924 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1925 1926 size = skb_frag_size(frag); 1927 1928 lstatus = be32_to_cpu(txbdp->lstatus) | size | 1929 BD_LFLAG(TXBD_READY); 1930 1931 /* Handle the last BD specially */ 1932 if (i == nr_frags - 1) 1933 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1934 1935 bufaddr = skb_frag_dma_map(priv->dev, frag, 0, 1936 size, DMA_TO_DEVICE); 1937 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1938 goto dma_map_err; 1939 1940 /* set the TxBD length and buffer pointer */ 1941 txbdp->bufPtr = cpu_to_be32(bufaddr); 1942 txbdp->lstatus = cpu_to_be32(lstatus); 1943 } 1944 1945 lstatus = lstatus_start; 1946 } 1947 1948 /* If time stamping is requested one additional TxBD must be set up. The 1949 * first TxBD points to the FCB and must have a data length of 1950 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 1951 * the full frame length. 1952 */ 1953 if (unlikely(do_tstamp)) { 1954 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); 1955 1956 bufaddr = be32_to_cpu(txbdp_start->bufPtr); 1957 bufaddr += fcb_len; 1958 1959 lstatus_ts |= BD_LFLAG(TXBD_READY) | 1960 (skb_headlen(skb) - fcb_len); 1961 if (!nr_frags) 1962 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1963 1964 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); 1965 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); 1966 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 1967 1968 /* Setup tx hardware time stamping */ 1969 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1970 fcb->ptp = 1; 1971 } else { 1972 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 1973 } 1974 1975 netdev_tx_sent_queue(txq, bytes_sent); 1976 1977 gfar_wmb(); 1978 1979 txbdp_start->lstatus = cpu_to_be32(lstatus); 1980 1981 gfar_wmb(); /* force lstatus write before tx_skbuff */ 1982 1983 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 1984 1985 /* Update the current skb pointer to the next entry we will use 1986 * (wrapping if necessary) 1987 */ 1988 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 1989 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 1990 1991 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1992 1993 /* We can work in parallel with gfar_clean_tx_ring(), except 1994 * when modifying num_txbdfree. Note that we didn't grab the lock 1995 * when we were reading the num_txbdfree and checking for available 1996 * space, that's because outside of this function it can only grow. 1997 */ 1998 spin_lock_bh(&tx_queue->txlock); 1999 /* reduce TxBD free count */ 2000 tx_queue->num_txbdfree -= (nr_txbds); 2001 spin_unlock_bh(&tx_queue->txlock); 2002 2003 /* If the next BD still needs to be cleaned up, then the bds 2004 * are full. We need to tell the kernel to stop sending us stuff. 2005 */ 2006 if (!tx_queue->num_txbdfree) { 2007 netif_tx_stop_queue(txq); 2008 2009 dev->stats.tx_fifo_errors++; 2010 } 2011 2012 /* Tell the DMA to go go go */ 2013 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2014 2015 return NETDEV_TX_OK; 2016 2017 dma_map_err: 2018 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); 2019 if (do_tstamp) 2020 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2021 for (i = 0; i < nr_frags; i++) { 2022 lstatus = be32_to_cpu(txbdp->lstatus); 2023 if (!(lstatus & BD_LFLAG(TXBD_READY))) 2024 break; 2025 2026 lstatus &= ~BD_LFLAG(TXBD_READY); 2027 txbdp->lstatus = cpu_to_be32(lstatus); 2028 bufaddr = be32_to_cpu(txbdp->bufPtr); 2029 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), 2030 DMA_TO_DEVICE); 2031 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2032 } 2033 gfar_wmb(); 2034 dev_kfree_skb_any(skb); 2035 return NETDEV_TX_OK; 2036 } 2037 2038 /* Changes the mac address if the controller is not running. */ 2039 static int gfar_set_mac_address(struct net_device *dev) 2040 { 2041 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2042 2043 return 0; 2044 } 2045 2046 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2047 { 2048 struct gfar_private *priv = netdev_priv(dev); 2049 2050 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2051 cpu_relax(); 2052 2053 if (dev->flags & IFF_UP) 2054 stop_gfar(dev); 2055 2056 dev->mtu = new_mtu; 2057 2058 if (dev->flags & IFF_UP) 2059 startup_gfar(dev); 2060 2061 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2062 2063 return 0; 2064 } 2065 2066 static void reset_gfar(struct net_device *ndev) 2067 { 2068 struct gfar_private *priv = netdev_priv(ndev); 2069 2070 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2071 cpu_relax(); 2072 2073 stop_gfar(ndev); 2074 startup_gfar(ndev); 2075 2076 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2077 } 2078 2079 /* gfar_reset_task gets scheduled when a packet has not been 2080 * transmitted after a set amount of time. 2081 * For now, assume that clearing out all the structures, and 2082 * starting over will fix the problem. 2083 */ 2084 static void gfar_reset_task(struct work_struct *work) 2085 { 2086 struct gfar_private *priv = container_of(work, struct gfar_private, 2087 reset_task); 2088 reset_gfar(priv->ndev); 2089 } 2090 2091 static void gfar_timeout(struct net_device *dev, unsigned int txqueue) 2092 { 2093 struct gfar_private *priv = netdev_priv(dev); 2094 2095 dev->stats.tx_errors++; 2096 schedule_work(&priv->reset_task); 2097 } 2098 2099 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 2100 { 2101 struct hwtstamp_config config; 2102 struct gfar_private *priv = netdev_priv(netdev); 2103 2104 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2105 return -EFAULT; 2106 2107 /* reserved for future extensions */ 2108 if (config.flags) 2109 return -EINVAL; 2110 2111 switch (config.tx_type) { 2112 case HWTSTAMP_TX_OFF: 2113 priv->hwts_tx_en = 0; 2114 break; 2115 case HWTSTAMP_TX_ON: 2116 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2117 return -ERANGE; 2118 priv->hwts_tx_en = 1; 2119 break; 2120 default: 2121 return -ERANGE; 2122 } 2123 2124 switch (config.rx_filter) { 2125 case HWTSTAMP_FILTER_NONE: 2126 if (priv->hwts_rx_en) { 2127 priv->hwts_rx_en = 0; 2128 reset_gfar(netdev); 2129 } 2130 break; 2131 default: 2132 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2133 return -ERANGE; 2134 if (!priv->hwts_rx_en) { 2135 priv->hwts_rx_en = 1; 2136 reset_gfar(netdev); 2137 } 2138 config.rx_filter = HWTSTAMP_FILTER_ALL; 2139 break; 2140 } 2141 2142 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2143 -EFAULT : 0; 2144 } 2145 2146 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 2147 { 2148 struct hwtstamp_config config; 2149 struct gfar_private *priv = netdev_priv(netdev); 2150 2151 config.flags = 0; 2152 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2153 config.rx_filter = (priv->hwts_rx_en ? 2154 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 2155 2156 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2157 -EFAULT : 0; 2158 } 2159 2160 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2161 { 2162 struct phy_device *phydev = dev->phydev; 2163 2164 if (!netif_running(dev)) 2165 return -EINVAL; 2166 2167 if (cmd == SIOCSHWTSTAMP) 2168 return gfar_hwtstamp_set(dev, rq); 2169 if (cmd == SIOCGHWTSTAMP) 2170 return gfar_hwtstamp_get(dev, rq); 2171 2172 if (!phydev) 2173 return -ENODEV; 2174 2175 return phy_mii_ioctl(phydev, rq, cmd); 2176 } 2177 2178 /* Interrupt Handler for Transmit complete */ 2179 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2180 { 2181 struct net_device *dev = tx_queue->dev; 2182 struct netdev_queue *txq; 2183 struct gfar_private *priv = netdev_priv(dev); 2184 struct txbd8 *bdp, *next = NULL; 2185 struct txbd8 *lbdp = NULL; 2186 struct txbd8 *base = tx_queue->tx_bd_base; 2187 struct sk_buff *skb; 2188 int skb_dirtytx; 2189 int tx_ring_size = tx_queue->tx_ring_size; 2190 int frags = 0, nr_txbds = 0; 2191 int i; 2192 int howmany = 0; 2193 int tqi = tx_queue->qindex; 2194 unsigned int bytes_sent = 0; 2195 u32 lstatus; 2196 size_t buflen; 2197 2198 txq = netdev_get_tx_queue(dev, tqi); 2199 bdp = tx_queue->dirty_tx; 2200 skb_dirtytx = tx_queue->skb_dirtytx; 2201 2202 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2203 bool do_tstamp; 2204 2205 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2206 priv->hwts_tx_en; 2207 2208 frags = skb_shinfo(skb)->nr_frags; 2209 2210 /* When time stamping, one additional TxBD must be freed. 2211 * Also, we need to dma_unmap_single() the TxPAL. 2212 */ 2213 if (unlikely(do_tstamp)) 2214 nr_txbds = frags + 2; 2215 else 2216 nr_txbds = frags + 1; 2217 2218 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2219 2220 lstatus = be32_to_cpu(lbdp->lstatus); 2221 2222 /* Only clean completed frames */ 2223 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2224 (lstatus & BD_LENGTH_MASK)) 2225 break; 2226 2227 if (unlikely(do_tstamp)) { 2228 next = next_txbd(bdp, base, tx_ring_size); 2229 buflen = be16_to_cpu(next->length) + 2230 GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2231 } else 2232 buflen = be16_to_cpu(bdp->length); 2233 2234 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), 2235 buflen, DMA_TO_DEVICE); 2236 2237 if (unlikely(do_tstamp)) { 2238 struct skb_shared_hwtstamps shhwtstamps; 2239 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) & 2240 ~0x7UL); 2241 2242 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2243 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2244 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2245 skb_tstamp_tx(skb, &shhwtstamps); 2246 gfar_clear_txbd_status(bdp); 2247 bdp = next; 2248 } 2249 2250 gfar_clear_txbd_status(bdp); 2251 bdp = next_txbd(bdp, base, tx_ring_size); 2252 2253 for (i = 0; i < frags; i++) { 2254 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), 2255 be16_to_cpu(bdp->length), 2256 DMA_TO_DEVICE); 2257 gfar_clear_txbd_status(bdp); 2258 bdp = next_txbd(bdp, base, tx_ring_size); 2259 } 2260 2261 bytes_sent += GFAR_CB(skb)->bytes_sent; 2262 2263 dev_kfree_skb_any(skb); 2264 2265 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2266 2267 skb_dirtytx = (skb_dirtytx + 1) & 2268 TX_RING_MOD_MASK(tx_ring_size); 2269 2270 howmany++; 2271 spin_lock(&tx_queue->txlock); 2272 tx_queue->num_txbdfree += nr_txbds; 2273 spin_unlock(&tx_queue->txlock); 2274 } 2275 2276 /* If we freed a buffer, we can restart transmission, if necessary */ 2277 if (tx_queue->num_txbdfree && 2278 netif_tx_queue_stopped(txq) && 2279 !(test_bit(GFAR_DOWN, &priv->state))) 2280 netif_wake_subqueue(priv->ndev, tqi); 2281 2282 /* Update dirty indicators */ 2283 tx_queue->skb_dirtytx = skb_dirtytx; 2284 tx_queue->dirty_tx = bdp; 2285 2286 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2287 } 2288 2289 static void count_errors(u32 lstatus, struct net_device *ndev) 2290 { 2291 struct gfar_private *priv = netdev_priv(ndev); 2292 struct net_device_stats *stats = &ndev->stats; 2293 struct gfar_extra_stats *estats = &priv->extra_stats; 2294 2295 /* If the packet was truncated, none of the other errors matter */ 2296 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { 2297 stats->rx_length_errors++; 2298 2299 atomic64_inc(&estats->rx_trunc); 2300 2301 return; 2302 } 2303 /* Count the errors, if there were any */ 2304 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { 2305 stats->rx_length_errors++; 2306 2307 if (lstatus & BD_LFLAG(RXBD_LARGE)) 2308 atomic64_inc(&estats->rx_large); 2309 else 2310 atomic64_inc(&estats->rx_short); 2311 } 2312 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { 2313 stats->rx_frame_errors++; 2314 atomic64_inc(&estats->rx_nonoctet); 2315 } 2316 if (lstatus & BD_LFLAG(RXBD_CRCERR)) { 2317 atomic64_inc(&estats->rx_crcerr); 2318 stats->rx_crc_errors++; 2319 } 2320 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { 2321 atomic64_inc(&estats->rx_overrun); 2322 stats->rx_over_errors++; 2323 } 2324 } 2325 2326 static irqreturn_t gfar_receive(int irq, void *grp_id) 2327 { 2328 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2329 unsigned long flags; 2330 u32 imask, ievent; 2331 2332 ievent = gfar_read(&grp->regs->ievent); 2333 2334 if (unlikely(ievent & IEVENT_FGPI)) { 2335 gfar_write(&grp->regs->ievent, IEVENT_FGPI); 2336 return IRQ_HANDLED; 2337 } 2338 2339 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2340 spin_lock_irqsave(&grp->grplock, flags); 2341 imask = gfar_read(&grp->regs->imask); 2342 imask &= IMASK_RX_DISABLED; 2343 gfar_write(&grp->regs->imask, imask); 2344 spin_unlock_irqrestore(&grp->grplock, flags); 2345 __napi_schedule(&grp->napi_rx); 2346 } else { 2347 /* Clear IEVENT, so interrupts aren't called again 2348 * because of the packets that have already arrived. 2349 */ 2350 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2351 } 2352 2353 return IRQ_HANDLED; 2354 } 2355 2356 /* Interrupt Handler for Transmit complete */ 2357 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2358 { 2359 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2360 unsigned long flags; 2361 u32 imask; 2362 2363 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2364 spin_lock_irqsave(&grp->grplock, flags); 2365 imask = gfar_read(&grp->regs->imask); 2366 imask &= IMASK_TX_DISABLED; 2367 gfar_write(&grp->regs->imask, imask); 2368 spin_unlock_irqrestore(&grp->grplock, flags); 2369 __napi_schedule(&grp->napi_tx); 2370 } else { 2371 /* Clear IEVENT, so interrupts aren't called again 2372 * because of the packets that have already arrived. 2373 */ 2374 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2375 } 2376 2377 return IRQ_HANDLED; 2378 } 2379 2380 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, 2381 struct sk_buff *skb, bool first) 2382 { 2383 int size = lstatus & BD_LENGTH_MASK; 2384 struct page *page = rxb->page; 2385 2386 if (likely(first)) { 2387 skb_put(skb, size); 2388 } else { 2389 /* the last fragments' length contains the full frame length */ 2390 if (lstatus & BD_LFLAG(RXBD_LAST)) 2391 size -= skb->len; 2392 2393 WARN(size < 0, "gianfar: rx fragment size underflow"); 2394 if (size < 0) 2395 return false; 2396 2397 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 2398 rxb->page_offset + RXBUF_ALIGNMENT, 2399 size, GFAR_RXB_TRUESIZE); 2400 } 2401 2402 /* try reuse page */ 2403 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page))) 2404 return false; 2405 2406 /* change offset to the other half */ 2407 rxb->page_offset ^= GFAR_RXB_TRUESIZE; 2408 2409 page_ref_inc(page); 2410 2411 return true; 2412 } 2413 2414 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, 2415 struct gfar_rx_buff *old_rxb) 2416 { 2417 struct gfar_rx_buff *new_rxb; 2418 u16 nta = rxq->next_to_alloc; 2419 2420 new_rxb = &rxq->rx_buff[nta]; 2421 2422 /* find next buf that can reuse a page */ 2423 nta++; 2424 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; 2425 2426 /* copy page reference */ 2427 *new_rxb = *old_rxb; 2428 2429 /* sync for use by the device */ 2430 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, 2431 old_rxb->page_offset, 2432 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2433 } 2434 2435 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, 2436 u32 lstatus, struct sk_buff *skb) 2437 { 2438 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; 2439 struct page *page = rxb->page; 2440 bool first = false; 2441 2442 if (likely(!skb)) { 2443 void *buff_addr = page_address(page) + rxb->page_offset; 2444 2445 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); 2446 if (unlikely(!skb)) { 2447 gfar_rx_alloc_err(rx_queue); 2448 return NULL; 2449 } 2450 skb_reserve(skb, RXBUF_ALIGNMENT); 2451 first = true; 2452 } 2453 2454 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, 2455 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2456 2457 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { 2458 /* reuse the free half of the page */ 2459 gfar_reuse_rx_page(rx_queue, rxb); 2460 } else { 2461 /* page cannot be reused, unmap it */ 2462 dma_unmap_page(rx_queue->dev, rxb->dma, 2463 PAGE_SIZE, DMA_FROM_DEVICE); 2464 } 2465 2466 /* clear rxb content */ 2467 rxb->page = NULL; 2468 2469 return skb; 2470 } 2471 2472 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2473 { 2474 /* If valid headers were found, and valid sums 2475 * were verified, then we tell the kernel that no 2476 * checksumming is necessary. Otherwise, it is [FIXME] 2477 */ 2478 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == 2479 (RXFCB_CIP | RXFCB_CTU)) 2480 skb->ip_summed = CHECKSUM_UNNECESSARY; 2481 else 2482 skb_checksum_none_assert(skb); 2483 } 2484 2485 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2486 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) 2487 { 2488 struct gfar_private *priv = netdev_priv(ndev); 2489 struct rxfcb *fcb = NULL; 2490 2491 /* fcb is at the beginning if exists */ 2492 fcb = (struct rxfcb *)skb->data; 2493 2494 /* Remove the FCB from the skb 2495 * Remove the padded bytes, if there are any 2496 */ 2497 if (priv->uses_rxfcb) 2498 skb_pull(skb, GMAC_FCB_LEN); 2499 2500 /* Get receive timestamp from the skb */ 2501 if (priv->hwts_rx_en) { 2502 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2503 u64 *ns = (u64 *) skb->data; 2504 2505 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2506 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2507 } 2508 2509 if (priv->padding) 2510 skb_pull(skb, priv->padding); 2511 2512 /* Trim off the FCS */ 2513 pskb_trim(skb, skb->len - ETH_FCS_LEN); 2514 2515 if (ndev->features & NETIF_F_RXCSUM) 2516 gfar_rx_checksum(skb, fcb); 2517 2518 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2519 * Even if vlan rx accel is disabled, on some chips 2520 * RXFCB_VLN is pseudo randomly set. 2521 */ 2522 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && 2523 be16_to_cpu(fcb->flags) & RXFCB_VLN) 2524 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2525 be16_to_cpu(fcb->vlctl)); 2526 } 2527 2528 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2529 * until the budget/quota has been reached. Returns the number 2530 * of frames handled 2531 */ 2532 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, 2533 int rx_work_limit) 2534 { 2535 struct net_device *ndev = rx_queue->ndev; 2536 struct gfar_private *priv = netdev_priv(ndev); 2537 struct rxbd8 *bdp; 2538 int i, howmany = 0; 2539 struct sk_buff *skb = rx_queue->skb; 2540 int cleaned_cnt = gfar_rxbd_unused(rx_queue); 2541 unsigned int total_bytes = 0, total_pkts = 0; 2542 2543 /* Get the first full descriptor */ 2544 i = rx_queue->next_to_clean; 2545 2546 while (rx_work_limit--) { 2547 u32 lstatus; 2548 2549 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { 2550 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2551 cleaned_cnt = 0; 2552 } 2553 2554 bdp = &rx_queue->rx_bd_base[i]; 2555 lstatus = be32_to_cpu(bdp->lstatus); 2556 if (lstatus & BD_LFLAG(RXBD_EMPTY)) 2557 break; 2558 2559 /* lost RXBD_LAST descriptor due to overrun */ 2560 if (skb && 2561 (lstatus & BD_LFLAG(RXBD_FIRST))) { 2562 /* discard faulty buffer */ 2563 dev_kfree_skb(skb); 2564 skb = NULL; 2565 rx_queue->stats.rx_dropped++; 2566 2567 /* can continue normally */ 2568 } 2569 2570 /* order rx buffer descriptor reads */ 2571 rmb(); 2572 2573 /* fetch next to clean buffer from the ring */ 2574 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); 2575 if (unlikely(!skb)) 2576 break; 2577 2578 cleaned_cnt++; 2579 howmany++; 2580 2581 if (unlikely(++i == rx_queue->rx_ring_size)) 2582 i = 0; 2583 2584 rx_queue->next_to_clean = i; 2585 2586 /* fetch next buffer if not the last in frame */ 2587 if (!(lstatus & BD_LFLAG(RXBD_LAST))) 2588 continue; 2589 2590 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { 2591 count_errors(lstatus, ndev); 2592 2593 /* discard faulty buffer */ 2594 dev_kfree_skb(skb); 2595 skb = NULL; 2596 rx_queue->stats.rx_dropped++; 2597 continue; 2598 } 2599 2600 gfar_process_frame(ndev, skb); 2601 2602 /* Increment the number of packets */ 2603 total_pkts++; 2604 total_bytes += skb->len; 2605 2606 skb_record_rx_queue(skb, rx_queue->qindex); 2607 2608 skb->protocol = eth_type_trans(skb, ndev); 2609 2610 /* Send the packet up the stack */ 2611 napi_gro_receive(&rx_queue->grp->napi_rx, skb); 2612 2613 skb = NULL; 2614 } 2615 2616 /* Store incomplete frames for completion */ 2617 rx_queue->skb = skb; 2618 2619 rx_queue->stats.rx_packets += total_pkts; 2620 rx_queue->stats.rx_bytes += total_bytes; 2621 2622 if (cleaned_cnt) 2623 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2624 2625 /* Update Last Free RxBD pointer for LFC */ 2626 if (unlikely(priv->tx_actual_en)) { 2627 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 2628 2629 gfar_write(rx_queue->rfbptr, bdp_dma); 2630 } 2631 2632 return howmany; 2633 } 2634 2635 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2636 { 2637 struct gfar_priv_grp *gfargrp = 2638 container_of(napi, struct gfar_priv_grp, napi_rx); 2639 struct gfar __iomem *regs = gfargrp->regs; 2640 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2641 int work_done = 0; 2642 2643 /* Clear IEVENT, so interrupts aren't called again 2644 * because of the packets that have already arrived 2645 */ 2646 gfar_write(®s->ievent, IEVENT_RX_MASK); 2647 2648 work_done = gfar_clean_rx_ring(rx_queue, budget); 2649 2650 if (work_done < budget) { 2651 u32 imask; 2652 napi_complete_done(napi, work_done); 2653 /* Clear the halt bit in RSTAT */ 2654 gfar_write(®s->rstat, gfargrp->rstat); 2655 2656 spin_lock_irq(&gfargrp->grplock); 2657 imask = gfar_read(®s->imask); 2658 imask |= IMASK_RX_DEFAULT; 2659 gfar_write(®s->imask, imask); 2660 spin_unlock_irq(&gfargrp->grplock); 2661 } 2662 2663 return work_done; 2664 } 2665 2666 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 2667 { 2668 struct gfar_priv_grp *gfargrp = 2669 container_of(napi, struct gfar_priv_grp, napi_tx); 2670 struct gfar __iomem *regs = gfargrp->regs; 2671 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 2672 u32 imask; 2673 2674 /* Clear IEVENT, so interrupts aren't called again 2675 * because of the packets that have already arrived 2676 */ 2677 gfar_write(®s->ievent, IEVENT_TX_MASK); 2678 2679 /* run Tx cleanup to completion */ 2680 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 2681 gfar_clean_tx_ring(tx_queue); 2682 2683 napi_complete(napi); 2684 2685 spin_lock_irq(&gfargrp->grplock); 2686 imask = gfar_read(®s->imask); 2687 imask |= IMASK_TX_DEFAULT; 2688 gfar_write(®s->imask, imask); 2689 spin_unlock_irq(&gfargrp->grplock); 2690 2691 return 0; 2692 } 2693 2694 static int gfar_poll_rx(struct napi_struct *napi, int budget) 2695 { 2696 struct gfar_priv_grp *gfargrp = 2697 container_of(napi, struct gfar_priv_grp, napi_rx); 2698 struct gfar_private *priv = gfargrp->priv; 2699 struct gfar __iomem *regs = gfargrp->regs; 2700 struct gfar_priv_rx_q *rx_queue = NULL; 2701 int work_done = 0, work_done_per_q = 0; 2702 int i, budget_per_q = 0; 2703 unsigned long rstat_rxf; 2704 int num_act_queues; 2705 2706 /* Clear IEVENT, so interrupts aren't called again 2707 * because of the packets that have already arrived 2708 */ 2709 gfar_write(®s->ievent, IEVENT_RX_MASK); 2710 2711 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK; 2712 2713 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS); 2714 if (num_act_queues) 2715 budget_per_q = budget/num_act_queues; 2716 2717 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 2718 /* skip queue if not active */ 2719 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i))) 2720 continue; 2721 2722 rx_queue = priv->rx_queue[i]; 2723 work_done_per_q = 2724 gfar_clean_rx_ring(rx_queue, budget_per_q); 2725 work_done += work_done_per_q; 2726 2727 /* finished processing this queue */ 2728 if (work_done_per_q < budget_per_q) { 2729 /* clear active queue hw indication */ 2730 gfar_write(®s->rstat, 2731 RSTAT_CLEAR_RXF0 >> i); 2732 num_act_queues--; 2733 2734 if (!num_act_queues) 2735 break; 2736 } 2737 } 2738 2739 if (!num_act_queues) { 2740 u32 imask; 2741 napi_complete_done(napi, work_done); 2742 2743 /* Clear the halt bit in RSTAT */ 2744 gfar_write(®s->rstat, gfargrp->rstat); 2745 2746 spin_lock_irq(&gfargrp->grplock); 2747 imask = gfar_read(®s->imask); 2748 imask |= IMASK_RX_DEFAULT; 2749 gfar_write(®s->imask, imask); 2750 spin_unlock_irq(&gfargrp->grplock); 2751 } 2752 2753 return work_done; 2754 } 2755 2756 static int gfar_poll_tx(struct napi_struct *napi, int budget) 2757 { 2758 struct gfar_priv_grp *gfargrp = 2759 container_of(napi, struct gfar_priv_grp, napi_tx); 2760 struct gfar_private *priv = gfargrp->priv; 2761 struct gfar __iomem *regs = gfargrp->regs; 2762 struct gfar_priv_tx_q *tx_queue = NULL; 2763 int has_tx_work = 0; 2764 int i; 2765 2766 /* Clear IEVENT, so interrupts aren't called again 2767 * because of the packets that have already arrived 2768 */ 2769 gfar_write(®s->ievent, IEVENT_TX_MASK); 2770 2771 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) { 2772 tx_queue = priv->tx_queue[i]; 2773 /* run Tx cleanup to completion */ 2774 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) { 2775 gfar_clean_tx_ring(tx_queue); 2776 has_tx_work = 1; 2777 } 2778 } 2779 2780 if (!has_tx_work) { 2781 u32 imask; 2782 napi_complete(napi); 2783 2784 spin_lock_irq(&gfargrp->grplock); 2785 imask = gfar_read(®s->imask); 2786 imask |= IMASK_TX_DEFAULT; 2787 gfar_write(®s->imask, imask); 2788 spin_unlock_irq(&gfargrp->grplock); 2789 } 2790 2791 return 0; 2792 } 2793 2794 /* GFAR error interrupt handler */ 2795 static irqreturn_t gfar_error(int irq, void *grp_id) 2796 { 2797 struct gfar_priv_grp *gfargrp = grp_id; 2798 struct gfar __iomem *regs = gfargrp->regs; 2799 struct gfar_private *priv= gfargrp->priv; 2800 struct net_device *dev = priv->ndev; 2801 2802 /* Save ievent for future reference */ 2803 u32 events = gfar_read(®s->ievent); 2804 2805 /* Clear IEVENT */ 2806 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 2807 2808 /* Magic Packet is not an error. */ 2809 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 2810 (events & IEVENT_MAG)) 2811 events &= ~IEVENT_MAG; 2812 2813 /* Hmm... */ 2814 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 2815 netdev_dbg(dev, 2816 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 2817 events, gfar_read(®s->imask)); 2818 2819 /* Update the error counters */ 2820 if (events & IEVENT_TXE) { 2821 dev->stats.tx_errors++; 2822 2823 if (events & IEVENT_LC) 2824 dev->stats.tx_window_errors++; 2825 if (events & IEVENT_CRL) 2826 dev->stats.tx_aborted_errors++; 2827 if (events & IEVENT_XFUN) { 2828 netif_dbg(priv, tx_err, dev, 2829 "TX FIFO underrun, packet dropped\n"); 2830 dev->stats.tx_dropped++; 2831 atomic64_inc(&priv->extra_stats.tx_underrun); 2832 2833 schedule_work(&priv->reset_task); 2834 } 2835 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 2836 } 2837 if (events & IEVENT_BSY) { 2838 dev->stats.rx_over_errors++; 2839 atomic64_inc(&priv->extra_stats.rx_bsy); 2840 2841 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 2842 gfar_read(®s->rstat)); 2843 } 2844 if (events & IEVENT_BABR) { 2845 dev->stats.rx_errors++; 2846 atomic64_inc(&priv->extra_stats.rx_babr); 2847 2848 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 2849 } 2850 if (events & IEVENT_EBERR) { 2851 atomic64_inc(&priv->extra_stats.eberr); 2852 netif_dbg(priv, rx_err, dev, "bus error\n"); 2853 } 2854 if (events & IEVENT_RXC) 2855 netif_dbg(priv, rx_status, dev, "control frame\n"); 2856 2857 if (events & IEVENT_BABT) { 2858 atomic64_inc(&priv->extra_stats.tx_babt); 2859 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 2860 } 2861 return IRQ_HANDLED; 2862 } 2863 2864 /* The interrupt handler for devices with one interrupt */ 2865 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 2866 { 2867 struct gfar_priv_grp *gfargrp = grp_id; 2868 2869 /* Save ievent for future reference */ 2870 u32 events = gfar_read(&gfargrp->regs->ievent); 2871 2872 /* Check for reception */ 2873 if (events & IEVENT_RX_MASK) 2874 gfar_receive(irq, grp_id); 2875 2876 /* Check for transmit completion */ 2877 if (events & IEVENT_TX_MASK) 2878 gfar_transmit(irq, grp_id); 2879 2880 /* Check for errors */ 2881 if (events & IEVENT_ERR_MASK) 2882 gfar_error(irq, grp_id); 2883 2884 return IRQ_HANDLED; 2885 } 2886 2887 #ifdef CONFIG_NET_POLL_CONTROLLER 2888 /* Polling 'interrupt' - used by things like netconsole to send skbs 2889 * without having to re-enable interrupts. It's not called while 2890 * the interrupt routine is executing. 2891 */ 2892 static void gfar_netpoll(struct net_device *dev) 2893 { 2894 struct gfar_private *priv = netdev_priv(dev); 2895 int i; 2896 2897 /* If the device has multiple interrupts, run tx/rx */ 2898 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2899 for (i = 0; i < priv->num_grps; i++) { 2900 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2901 2902 disable_irq(gfar_irq(grp, TX)->irq); 2903 disable_irq(gfar_irq(grp, RX)->irq); 2904 disable_irq(gfar_irq(grp, ER)->irq); 2905 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2906 enable_irq(gfar_irq(grp, ER)->irq); 2907 enable_irq(gfar_irq(grp, RX)->irq); 2908 enable_irq(gfar_irq(grp, TX)->irq); 2909 } 2910 } else { 2911 for (i = 0; i < priv->num_grps; i++) { 2912 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2913 2914 disable_irq(gfar_irq(grp, TX)->irq); 2915 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2916 enable_irq(gfar_irq(grp, TX)->irq); 2917 } 2918 } 2919 } 2920 #endif 2921 2922 static void free_grp_irqs(struct gfar_priv_grp *grp) 2923 { 2924 free_irq(gfar_irq(grp, TX)->irq, grp); 2925 free_irq(gfar_irq(grp, RX)->irq, grp); 2926 free_irq(gfar_irq(grp, ER)->irq, grp); 2927 } 2928 2929 static int register_grp_irqs(struct gfar_priv_grp *grp) 2930 { 2931 struct gfar_private *priv = grp->priv; 2932 struct net_device *dev = priv->ndev; 2933 int err; 2934 2935 /* If the device has multiple interrupts, register for 2936 * them. Otherwise, only register for the one 2937 */ 2938 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2939 /* Install our interrupt handlers for Error, 2940 * Transmit, and Receive 2941 */ 2942 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 2943 gfar_irq(grp, ER)->name, grp); 2944 if (err < 0) { 2945 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2946 gfar_irq(grp, ER)->irq); 2947 2948 goto err_irq_fail; 2949 } 2950 enable_irq_wake(gfar_irq(grp, ER)->irq); 2951 2952 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 2953 gfar_irq(grp, TX)->name, grp); 2954 if (err < 0) { 2955 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2956 gfar_irq(grp, TX)->irq); 2957 goto tx_irq_fail; 2958 } 2959 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 2960 gfar_irq(grp, RX)->name, grp); 2961 if (err < 0) { 2962 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2963 gfar_irq(grp, RX)->irq); 2964 goto rx_irq_fail; 2965 } 2966 enable_irq_wake(gfar_irq(grp, RX)->irq); 2967 2968 } else { 2969 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 2970 gfar_irq(grp, TX)->name, grp); 2971 if (err < 0) { 2972 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2973 gfar_irq(grp, TX)->irq); 2974 goto err_irq_fail; 2975 } 2976 enable_irq_wake(gfar_irq(grp, TX)->irq); 2977 } 2978 2979 return 0; 2980 2981 rx_irq_fail: 2982 free_irq(gfar_irq(grp, TX)->irq, grp); 2983 tx_irq_fail: 2984 free_irq(gfar_irq(grp, ER)->irq, grp); 2985 err_irq_fail: 2986 return err; 2987 2988 } 2989 2990 static void gfar_free_irq(struct gfar_private *priv) 2991 { 2992 int i; 2993 2994 /* Free the IRQs */ 2995 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2996 for (i = 0; i < priv->num_grps; i++) 2997 free_grp_irqs(&priv->gfargrp[i]); 2998 } else { 2999 for (i = 0; i < priv->num_grps; i++) 3000 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 3001 &priv->gfargrp[i]); 3002 } 3003 } 3004 3005 static int gfar_request_irq(struct gfar_private *priv) 3006 { 3007 int err, i, j; 3008 3009 for (i = 0; i < priv->num_grps; i++) { 3010 err = register_grp_irqs(&priv->gfargrp[i]); 3011 if (err) { 3012 for (j = 0; j < i; j++) 3013 free_grp_irqs(&priv->gfargrp[j]); 3014 return err; 3015 } 3016 } 3017 3018 return 0; 3019 } 3020 3021 /* Called when something needs to use the ethernet device 3022 * Returns 0 for success. 3023 */ 3024 static int gfar_enet_open(struct net_device *dev) 3025 { 3026 struct gfar_private *priv = netdev_priv(dev); 3027 int err; 3028 3029 err = init_phy(dev); 3030 if (err) 3031 return err; 3032 3033 err = gfar_request_irq(priv); 3034 if (err) 3035 return err; 3036 3037 err = startup_gfar(dev); 3038 if (err) 3039 return err; 3040 3041 return err; 3042 } 3043 3044 /* Stops the kernel queue, and halts the controller */ 3045 static int gfar_close(struct net_device *dev) 3046 { 3047 struct gfar_private *priv = netdev_priv(dev); 3048 3049 cancel_work_sync(&priv->reset_task); 3050 stop_gfar(dev); 3051 3052 /* Disconnect from the PHY */ 3053 phy_disconnect(dev->phydev); 3054 3055 gfar_free_irq(priv); 3056 3057 return 0; 3058 } 3059 3060 /* Clears each of the exact match registers to zero, so they 3061 * don't interfere with normal reception 3062 */ 3063 static void gfar_clear_exact_match(struct net_device *dev) 3064 { 3065 int idx; 3066 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 3067 3068 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 3069 gfar_set_mac_for_addr(dev, idx, zero_arr); 3070 } 3071 3072 /* Update the hash table based on the current list of multicast 3073 * addresses we subscribe to. Also, change the promiscuity of 3074 * the device based on the flags (this function is called 3075 * whenever dev->flags is changed 3076 */ 3077 static void gfar_set_multi(struct net_device *dev) 3078 { 3079 struct netdev_hw_addr *ha; 3080 struct gfar_private *priv = netdev_priv(dev); 3081 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3082 u32 tempval; 3083 3084 if (dev->flags & IFF_PROMISC) { 3085 /* Set RCTRL to PROM */ 3086 tempval = gfar_read(®s->rctrl); 3087 tempval |= RCTRL_PROM; 3088 gfar_write(®s->rctrl, tempval); 3089 } else { 3090 /* Set RCTRL to not PROM */ 3091 tempval = gfar_read(®s->rctrl); 3092 tempval &= ~(RCTRL_PROM); 3093 gfar_write(®s->rctrl, tempval); 3094 } 3095 3096 if (dev->flags & IFF_ALLMULTI) { 3097 /* Set the hash to rx all multicast frames */ 3098 gfar_write(®s->igaddr0, 0xffffffff); 3099 gfar_write(®s->igaddr1, 0xffffffff); 3100 gfar_write(®s->igaddr2, 0xffffffff); 3101 gfar_write(®s->igaddr3, 0xffffffff); 3102 gfar_write(®s->igaddr4, 0xffffffff); 3103 gfar_write(®s->igaddr5, 0xffffffff); 3104 gfar_write(®s->igaddr6, 0xffffffff); 3105 gfar_write(®s->igaddr7, 0xffffffff); 3106 gfar_write(®s->gaddr0, 0xffffffff); 3107 gfar_write(®s->gaddr1, 0xffffffff); 3108 gfar_write(®s->gaddr2, 0xffffffff); 3109 gfar_write(®s->gaddr3, 0xffffffff); 3110 gfar_write(®s->gaddr4, 0xffffffff); 3111 gfar_write(®s->gaddr5, 0xffffffff); 3112 gfar_write(®s->gaddr6, 0xffffffff); 3113 gfar_write(®s->gaddr7, 0xffffffff); 3114 } else { 3115 int em_num; 3116 int idx; 3117 3118 /* zero out the hash */ 3119 gfar_write(®s->igaddr0, 0x0); 3120 gfar_write(®s->igaddr1, 0x0); 3121 gfar_write(®s->igaddr2, 0x0); 3122 gfar_write(®s->igaddr3, 0x0); 3123 gfar_write(®s->igaddr4, 0x0); 3124 gfar_write(®s->igaddr5, 0x0); 3125 gfar_write(®s->igaddr6, 0x0); 3126 gfar_write(®s->igaddr7, 0x0); 3127 gfar_write(®s->gaddr0, 0x0); 3128 gfar_write(®s->gaddr1, 0x0); 3129 gfar_write(®s->gaddr2, 0x0); 3130 gfar_write(®s->gaddr3, 0x0); 3131 gfar_write(®s->gaddr4, 0x0); 3132 gfar_write(®s->gaddr5, 0x0); 3133 gfar_write(®s->gaddr6, 0x0); 3134 gfar_write(®s->gaddr7, 0x0); 3135 3136 /* If we have extended hash tables, we need to 3137 * clear the exact match registers to prepare for 3138 * setting them 3139 */ 3140 if (priv->extended_hash) { 3141 em_num = GFAR_EM_NUM + 1; 3142 gfar_clear_exact_match(dev); 3143 idx = 1; 3144 } else { 3145 idx = 0; 3146 em_num = 0; 3147 } 3148 3149 if (netdev_mc_empty(dev)) 3150 return; 3151 3152 /* Parse the list, and set the appropriate bits */ 3153 netdev_for_each_mc_addr(ha, dev) { 3154 if (idx < em_num) { 3155 gfar_set_mac_for_addr(dev, idx, ha->addr); 3156 idx++; 3157 } else 3158 gfar_set_hash_for_addr(dev, ha->addr); 3159 } 3160 } 3161 } 3162 3163 void gfar_mac_reset(struct gfar_private *priv) 3164 { 3165 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3166 u32 tempval; 3167 3168 /* Reset MAC layer */ 3169 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 3170 3171 /* We need to delay at least 3 TX clocks */ 3172 udelay(3); 3173 3174 /* the soft reset bit is not self-resetting, so we need to 3175 * clear it before resuming normal operation 3176 */ 3177 gfar_write(®s->maccfg1, 0); 3178 3179 udelay(3); 3180 3181 gfar_rx_offload_en(priv); 3182 3183 /* Initialize the max receive frame/buffer lengths */ 3184 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); 3185 gfar_write(®s->mrblr, GFAR_RXB_SIZE); 3186 3187 /* Initialize the Minimum Frame Length Register */ 3188 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 3189 3190 /* Initialize MACCFG2. */ 3191 tempval = MACCFG2_INIT_SETTINGS; 3192 3193 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 3194 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1, 3195 * and by checking RxBD[LG] and discarding larger than MAXFRM. 3196 */ 3197 if (gfar_has_errata(priv, GFAR_ERRATA_74)) 3198 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 3199 3200 gfar_write(®s->maccfg2, tempval); 3201 3202 /* Clear mac addr hash registers */ 3203 gfar_write(®s->igaddr0, 0); 3204 gfar_write(®s->igaddr1, 0); 3205 gfar_write(®s->igaddr2, 0); 3206 gfar_write(®s->igaddr3, 0); 3207 gfar_write(®s->igaddr4, 0); 3208 gfar_write(®s->igaddr5, 0); 3209 gfar_write(®s->igaddr6, 0); 3210 gfar_write(®s->igaddr7, 0); 3211 3212 gfar_write(®s->gaddr0, 0); 3213 gfar_write(®s->gaddr1, 0); 3214 gfar_write(®s->gaddr2, 0); 3215 gfar_write(®s->gaddr3, 0); 3216 gfar_write(®s->gaddr4, 0); 3217 gfar_write(®s->gaddr5, 0); 3218 gfar_write(®s->gaddr6, 0); 3219 gfar_write(®s->gaddr7, 0); 3220 3221 if (priv->extended_hash) 3222 gfar_clear_exact_match(priv->ndev); 3223 3224 gfar_mac_rx_config(priv); 3225 3226 gfar_mac_tx_config(priv); 3227 3228 gfar_set_mac_address(priv->ndev); 3229 3230 gfar_set_multi(priv->ndev); 3231 3232 /* clear ievent and imask before configuring coalescing */ 3233 gfar_ints_disable(priv); 3234 3235 /* Configure the coalescing support */ 3236 gfar_configure_coalescing_all(priv); 3237 } 3238 3239 static void gfar_hw_init(struct gfar_private *priv) 3240 { 3241 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3242 u32 attrs; 3243 3244 /* Stop the DMA engine now, in case it was running before 3245 * (The firmware could have used it, and left it running). 3246 */ 3247 gfar_halt(priv); 3248 3249 gfar_mac_reset(priv); 3250 3251 /* Zero out the rmon mib registers if it has them */ 3252 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 3253 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); 3254 3255 /* Mask off the CAM interrupts */ 3256 gfar_write(®s->rmon.cam1, 0xffffffff); 3257 gfar_write(®s->rmon.cam2, 0xffffffff); 3258 } 3259 3260 /* Initialize ECNTRL */ 3261 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 3262 3263 /* Set the extraction length and index */ 3264 attrs = ATTRELI_EL(priv->rx_stash_size) | 3265 ATTRELI_EI(priv->rx_stash_index); 3266 3267 gfar_write(®s->attreli, attrs); 3268 3269 /* Start with defaults, and add stashing 3270 * depending on driver parameters 3271 */ 3272 attrs = ATTR_INIT_SETTINGS; 3273 3274 if (priv->bd_stash_en) 3275 attrs |= ATTR_BDSTASH; 3276 3277 if (priv->rx_stash_size != 0) 3278 attrs |= ATTR_BUFSTASH; 3279 3280 gfar_write(®s->attr, attrs); 3281 3282 /* FIFO configs */ 3283 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 3284 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 3285 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 3286 3287 /* Program the interrupt steering regs, only for MG devices */ 3288 if (priv->num_grps > 1) 3289 gfar_write_isrg(priv); 3290 } 3291 3292 static const struct net_device_ops gfar_netdev_ops = { 3293 .ndo_open = gfar_enet_open, 3294 .ndo_start_xmit = gfar_start_xmit, 3295 .ndo_stop = gfar_close, 3296 .ndo_change_mtu = gfar_change_mtu, 3297 .ndo_set_features = gfar_set_features, 3298 .ndo_set_rx_mode = gfar_set_multi, 3299 .ndo_tx_timeout = gfar_timeout, 3300 .ndo_do_ioctl = gfar_ioctl, 3301 .ndo_get_stats = gfar_get_stats, 3302 .ndo_change_carrier = fixed_phy_change_carrier, 3303 .ndo_set_mac_address = gfar_set_mac_addr, 3304 .ndo_validate_addr = eth_validate_addr, 3305 #ifdef CONFIG_NET_POLL_CONTROLLER 3306 .ndo_poll_controller = gfar_netpoll, 3307 #endif 3308 }; 3309 3310 /* Set up the ethernet device structure, private data, 3311 * and anything else we need before we start 3312 */ 3313 static int gfar_probe(struct platform_device *ofdev) 3314 { 3315 struct device_node *np = ofdev->dev.of_node; 3316 struct net_device *dev = NULL; 3317 struct gfar_private *priv = NULL; 3318 int err = 0, i; 3319 3320 err = gfar_of_init(ofdev, &dev); 3321 3322 if (err) 3323 return err; 3324 3325 priv = netdev_priv(dev); 3326 priv->ndev = dev; 3327 priv->ofdev = ofdev; 3328 priv->dev = &ofdev->dev; 3329 SET_NETDEV_DEV(dev, &ofdev->dev); 3330 3331 INIT_WORK(&priv->reset_task, gfar_reset_task); 3332 3333 platform_set_drvdata(ofdev, priv); 3334 3335 gfar_detect_errata(priv); 3336 3337 /* Set the dev->base_addr to the gfar reg region */ 3338 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 3339 3340 /* Fill in the dev structure */ 3341 dev->watchdog_timeo = TX_TIMEOUT; 3342 /* MTU range: 50 - 9586 */ 3343 dev->mtu = 1500; 3344 dev->min_mtu = 50; 3345 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN; 3346 dev->netdev_ops = &gfar_netdev_ops; 3347 dev->ethtool_ops = &gfar_ethtool_ops; 3348 3349 /* Register for napi ...We are registering NAPI for each grp */ 3350 for (i = 0; i < priv->num_grps; i++) { 3351 if (priv->poll_mode == GFAR_SQ_POLLING) { 3352 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3353 gfar_poll_rx_sq, GFAR_DEV_WEIGHT); 3354 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3355 gfar_poll_tx_sq, 2); 3356 } else { 3357 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3358 gfar_poll_rx, GFAR_DEV_WEIGHT); 3359 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3360 gfar_poll_tx, 2); 3361 } 3362 } 3363 3364 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 3365 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3366 NETIF_F_RXCSUM; 3367 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 3368 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 3369 } 3370 3371 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 3372 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 3373 NETIF_F_HW_VLAN_CTAG_RX; 3374 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3375 } 3376 3377 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3378 3379 gfar_init_addr_hash_table(priv); 3380 3381 /* Insert receive time stamps into padding alignment bytes, and 3382 * plus 2 bytes padding to ensure the cpu alignment. 3383 */ 3384 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3385 priv->padding = 8 + DEFAULT_PADDING; 3386 3387 if (dev->features & NETIF_F_IP_CSUM || 3388 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3389 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 3390 3391 /* Initializing some of the rx/tx queue level parameters */ 3392 for (i = 0; i < priv->num_tx_queues; i++) { 3393 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 3394 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 3395 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 3396 priv->tx_queue[i]->txic = DEFAULT_TXIC; 3397 } 3398 3399 for (i = 0; i < priv->num_rx_queues; i++) { 3400 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 3401 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 3402 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 3403 } 3404 3405 /* Always enable rx filer if available */ 3406 priv->rx_filer_enable = 3407 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0; 3408 /* Enable most messages by default */ 3409 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 3410 /* use pritority h/w tx queue scheduling for single queue devices */ 3411 if (priv->num_tx_queues == 1) 3412 priv->prio_sched_en = 1; 3413 3414 set_bit(GFAR_DOWN, &priv->state); 3415 3416 gfar_hw_init(priv); 3417 3418 /* Carrier starts down, phylib will bring it up */ 3419 netif_carrier_off(dev); 3420 3421 err = register_netdev(dev); 3422 3423 if (err) { 3424 pr_err("%s: Cannot register net device, aborting\n", dev->name); 3425 goto register_fail; 3426 } 3427 3428 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) 3429 priv->wol_supported |= GFAR_WOL_MAGIC; 3430 3431 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && 3432 priv->rx_filer_enable) 3433 priv->wol_supported |= GFAR_WOL_FILER_UCAST; 3434 3435 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); 3436 3437 /* fill out IRQ number and name fields */ 3438 for (i = 0; i < priv->num_grps; i++) { 3439 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3440 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3441 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 3442 dev->name, "_g", '0' + i, "_tx"); 3443 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 3444 dev->name, "_g", '0' + i, "_rx"); 3445 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 3446 dev->name, "_g", '0' + i, "_er"); 3447 } else 3448 strcpy(gfar_irq(grp, TX)->name, dev->name); 3449 } 3450 3451 /* Initialize the filer table */ 3452 gfar_init_filer_table(priv); 3453 3454 /* Print out the device info */ 3455 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 3456 3457 /* Even more device info helps when determining which kernel 3458 * provided which set of benchmarks. 3459 */ 3460 netdev_info(dev, "Running with NAPI enabled\n"); 3461 for (i = 0; i < priv->num_rx_queues; i++) 3462 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 3463 i, priv->rx_queue[i]->rx_ring_size); 3464 for (i = 0; i < priv->num_tx_queues; i++) 3465 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 3466 i, priv->tx_queue[i]->tx_ring_size); 3467 3468 return 0; 3469 3470 register_fail: 3471 if (of_phy_is_fixed_link(np)) 3472 of_phy_deregister_fixed_link(np); 3473 unmap_group_regs(priv); 3474 gfar_free_rx_queues(priv); 3475 gfar_free_tx_queues(priv); 3476 of_node_put(priv->phy_node); 3477 of_node_put(priv->tbi_node); 3478 free_gfar_dev(priv); 3479 return err; 3480 } 3481 3482 static int gfar_remove(struct platform_device *ofdev) 3483 { 3484 struct gfar_private *priv = platform_get_drvdata(ofdev); 3485 struct device_node *np = ofdev->dev.of_node; 3486 3487 of_node_put(priv->phy_node); 3488 of_node_put(priv->tbi_node); 3489 3490 unregister_netdev(priv->ndev); 3491 3492 if (of_phy_is_fixed_link(np)) 3493 of_phy_deregister_fixed_link(np); 3494 3495 unmap_group_regs(priv); 3496 gfar_free_rx_queues(priv); 3497 gfar_free_tx_queues(priv); 3498 free_gfar_dev(priv); 3499 3500 return 0; 3501 } 3502 3503 #ifdef CONFIG_PM 3504 3505 static void __gfar_filer_disable(struct gfar_private *priv) 3506 { 3507 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3508 u32 temp; 3509 3510 temp = gfar_read(®s->rctrl); 3511 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); 3512 gfar_write(®s->rctrl, temp); 3513 } 3514 3515 static void __gfar_filer_enable(struct gfar_private *priv) 3516 { 3517 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3518 u32 temp; 3519 3520 temp = gfar_read(®s->rctrl); 3521 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 3522 gfar_write(®s->rctrl, temp); 3523 } 3524 3525 /* Filer rules implementing wol capabilities */ 3526 static void gfar_filer_config_wol(struct gfar_private *priv) 3527 { 3528 unsigned int i; 3529 u32 rqfcr; 3530 3531 __gfar_filer_disable(priv); 3532 3533 /* clear the filer table, reject any packet by default */ 3534 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; 3535 for (i = 0; i <= MAX_FILER_IDX; i++) 3536 gfar_write_filer(priv, i, rqfcr, 0); 3537 3538 i = 0; 3539 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { 3540 /* unicast packet, accept it */ 3541 struct net_device *ndev = priv->ndev; 3542 /* get the default rx queue index */ 3543 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; 3544 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | 3545 (ndev->dev_addr[1] << 8) | 3546 ndev->dev_addr[2]; 3547 3548 rqfcr = (qindex << 10) | RQFCR_AND | 3549 RQFCR_CMP_EXACT | RQFCR_PID_DAH; 3550 3551 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3552 3553 dest_mac_addr = (ndev->dev_addr[3] << 16) | 3554 (ndev->dev_addr[4] << 8) | 3555 ndev->dev_addr[5]; 3556 rqfcr = (qindex << 10) | RQFCR_GPI | 3557 RQFCR_CMP_EXACT | RQFCR_PID_DAL; 3558 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3559 } 3560 3561 __gfar_filer_enable(priv); 3562 } 3563 3564 static void gfar_filer_restore_table(struct gfar_private *priv) 3565 { 3566 u32 rqfcr, rqfpr; 3567 unsigned int i; 3568 3569 __gfar_filer_disable(priv); 3570 3571 for (i = 0; i <= MAX_FILER_IDX; i++) { 3572 rqfcr = priv->ftp_rqfcr[i]; 3573 rqfpr = priv->ftp_rqfpr[i]; 3574 gfar_write_filer(priv, i, rqfcr, rqfpr); 3575 } 3576 3577 __gfar_filer_enable(priv); 3578 } 3579 3580 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ 3581 static void gfar_start_wol_filer(struct gfar_private *priv) 3582 { 3583 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3584 u32 tempval; 3585 int i = 0; 3586 3587 /* Enable Rx hw queues */ 3588 gfar_write(®s->rqueue, priv->rqueue); 3589 3590 /* Initialize DMACTRL to have WWR and WOP */ 3591 tempval = gfar_read(®s->dmactrl); 3592 tempval |= DMACTRL_INIT_SETTINGS; 3593 gfar_write(®s->dmactrl, tempval); 3594 3595 /* Make sure we aren't stopped */ 3596 tempval = gfar_read(®s->dmactrl); 3597 tempval &= ~DMACTRL_GRS; 3598 gfar_write(®s->dmactrl, tempval); 3599 3600 for (i = 0; i < priv->num_grps; i++) { 3601 regs = priv->gfargrp[i].regs; 3602 /* Clear RHLT, so that the DMA starts polling now */ 3603 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 3604 /* enable the Filer General Purpose Interrupt */ 3605 gfar_write(®s->imask, IMASK_FGPI); 3606 } 3607 3608 /* Enable Rx DMA */ 3609 tempval = gfar_read(®s->maccfg1); 3610 tempval |= MACCFG1_RX_EN; 3611 gfar_write(®s->maccfg1, tempval); 3612 } 3613 3614 static int gfar_suspend(struct device *dev) 3615 { 3616 struct gfar_private *priv = dev_get_drvdata(dev); 3617 struct net_device *ndev = priv->ndev; 3618 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3619 u32 tempval; 3620 u16 wol = priv->wol_opts; 3621 3622 if (!netif_running(ndev)) 3623 return 0; 3624 3625 disable_napi(priv); 3626 netif_tx_lock(ndev); 3627 netif_device_detach(ndev); 3628 netif_tx_unlock(ndev); 3629 3630 gfar_halt(priv); 3631 3632 if (wol & GFAR_WOL_MAGIC) { 3633 /* Enable interrupt on Magic Packet */ 3634 gfar_write(®s->imask, IMASK_MAG); 3635 3636 /* Enable Magic Packet mode */ 3637 tempval = gfar_read(®s->maccfg2); 3638 tempval |= MACCFG2_MPEN; 3639 gfar_write(®s->maccfg2, tempval); 3640 3641 /* re-enable the Rx block */ 3642 tempval = gfar_read(®s->maccfg1); 3643 tempval |= MACCFG1_RX_EN; 3644 gfar_write(®s->maccfg1, tempval); 3645 3646 } else if (wol & GFAR_WOL_FILER_UCAST) { 3647 gfar_filer_config_wol(priv); 3648 gfar_start_wol_filer(priv); 3649 3650 } else { 3651 phy_stop(ndev->phydev); 3652 } 3653 3654 return 0; 3655 } 3656 3657 static int gfar_resume(struct device *dev) 3658 { 3659 struct gfar_private *priv = dev_get_drvdata(dev); 3660 struct net_device *ndev = priv->ndev; 3661 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3662 u32 tempval; 3663 u16 wol = priv->wol_opts; 3664 3665 if (!netif_running(ndev)) 3666 return 0; 3667 3668 if (wol & GFAR_WOL_MAGIC) { 3669 /* Disable Magic Packet mode */ 3670 tempval = gfar_read(®s->maccfg2); 3671 tempval &= ~MACCFG2_MPEN; 3672 gfar_write(®s->maccfg2, tempval); 3673 3674 } else if (wol & GFAR_WOL_FILER_UCAST) { 3675 /* need to stop rx only, tx is already down */ 3676 gfar_halt(priv); 3677 gfar_filer_restore_table(priv); 3678 3679 } else { 3680 phy_start(ndev->phydev); 3681 } 3682 3683 gfar_start(priv); 3684 3685 netif_device_attach(ndev); 3686 enable_napi(priv); 3687 3688 return 0; 3689 } 3690 3691 static int gfar_restore(struct device *dev) 3692 { 3693 struct gfar_private *priv = dev_get_drvdata(dev); 3694 struct net_device *ndev = priv->ndev; 3695 3696 if (!netif_running(ndev)) { 3697 netif_device_attach(ndev); 3698 3699 return 0; 3700 } 3701 3702 gfar_init_bds(ndev); 3703 3704 gfar_mac_reset(priv); 3705 3706 gfar_init_tx_rx_base(priv); 3707 3708 gfar_start(priv); 3709 3710 priv->oldlink = 0; 3711 priv->oldspeed = 0; 3712 priv->oldduplex = -1; 3713 3714 if (ndev->phydev) 3715 phy_start(ndev->phydev); 3716 3717 netif_device_attach(ndev); 3718 enable_napi(priv); 3719 3720 return 0; 3721 } 3722 3723 static const struct dev_pm_ops gfar_pm_ops = { 3724 .suspend = gfar_suspend, 3725 .resume = gfar_resume, 3726 .freeze = gfar_suspend, 3727 .thaw = gfar_resume, 3728 .restore = gfar_restore, 3729 }; 3730 3731 #define GFAR_PM_OPS (&gfar_pm_ops) 3732 3733 #else 3734 3735 #define GFAR_PM_OPS NULL 3736 3737 #endif 3738 3739 static const struct of_device_id gfar_match[] = 3740 { 3741 { 3742 .type = "network", 3743 .compatible = "gianfar", 3744 }, 3745 { 3746 .compatible = "fsl,etsec2", 3747 }, 3748 {}, 3749 }; 3750 MODULE_DEVICE_TABLE(of, gfar_match); 3751 3752 /* Structure for a device driver */ 3753 static struct platform_driver gfar_driver = { 3754 .driver = { 3755 .name = "fsl-gianfar", 3756 .pm = GFAR_PM_OPS, 3757 .of_match_table = gfar_match, 3758 }, 3759 .probe = gfar_probe, 3760 .remove = gfar_remove, 3761 }; 3762 3763 module_platform_driver(gfar_driver); 3764