1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/selftests.h> 42 #include <net/tso.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/icmp.h> 46 #include <linux/spinlock.h> 47 #include <linux/workqueue.h> 48 #include <linux/bitops.h> 49 #include <linux/io.h> 50 #include <linux/irq.h> 51 #include <linux/clk.h> 52 #include <linux/crc32.h> 53 #include <linux/platform_device.h> 54 #include <linux/mdio.h> 55 #include <linux/phy.h> 56 #include <linux/fec.h> 57 #include <linux/of.h> 58 #include <linux/of_device.h> 59 #include <linux/of_gpio.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/prefetch.h> 66 #include <linux/mfd/syscon.h> 67 #include <linux/regmap.h> 68 #include <soc/imx/cpuidle.h> 69 70 #include <asm/cacheflush.h> 71 72 #include "fec.h" 73 74 static void set_multicast_list(struct net_device *ndev); 75 static void fec_enet_itr_coal_init(struct net_device *ndev); 76 77 #define DRIVER_NAME "fec" 78 79 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 80 81 /* Pause frame feild and FIFO threshold */ 82 #define FEC_ENET_FCE (1 << 5) 83 #define FEC_ENET_RSEM_V 0x84 84 #define FEC_ENET_RSFL_V 16 85 #define FEC_ENET_RAEM_V 0x8 86 #define FEC_ENET_RAFL_V 0x8 87 #define FEC_ENET_OPD_V 0xFFF0 88 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 89 90 struct fec_devinfo { 91 u32 quirks; 92 }; 93 94 static const struct fec_devinfo fec_imx25_info = { 95 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 96 FEC_QUIRK_HAS_FRREG, 97 }; 98 99 static const struct fec_devinfo fec_imx27_info = { 100 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 101 }; 102 103 static const struct fec_devinfo fec_imx28_info = { 104 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 105 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 106 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 107 FEC_QUIRK_NO_HARD_RESET, 108 }; 109 110 static const struct fec_devinfo fec_imx6q_info = { 111 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 112 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 113 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 114 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII, 115 }; 116 117 static const struct fec_devinfo fec_mvf600_info = { 118 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 119 }; 120 121 static const struct fec_devinfo fec_imx6x_info = { 122 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 125 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 126 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 127 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES, 128 }; 129 130 static const struct fec_devinfo fec_imx6ul_info = { 131 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 132 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 133 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 134 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 135 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII, 136 }; 137 138 static struct platform_device_id fec_devtype[] = { 139 { 140 /* keep it for coldfire */ 141 .name = DRIVER_NAME, 142 .driver_data = 0, 143 }, { 144 .name = "imx25-fec", 145 .driver_data = (kernel_ulong_t)&fec_imx25_info, 146 }, { 147 .name = "imx27-fec", 148 .driver_data = (kernel_ulong_t)&fec_imx27_info, 149 }, { 150 .name = "imx28-fec", 151 .driver_data = (kernel_ulong_t)&fec_imx28_info, 152 }, { 153 .name = "imx6q-fec", 154 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 155 }, { 156 .name = "mvf600-fec", 157 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 158 }, { 159 .name = "imx6sx-fec", 160 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 161 }, { 162 .name = "imx6ul-fec", 163 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 164 }, { 165 /* sentinel */ 166 } 167 }; 168 MODULE_DEVICE_TABLE(platform, fec_devtype); 169 170 enum imx_fec_type { 171 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 172 IMX27_FEC, /* runs on i.mx27/35/51 */ 173 IMX28_FEC, 174 IMX6Q_FEC, 175 MVF600_FEC, 176 IMX6SX_FEC, 177 IMX6UL_FEC, 178 }; 179 180 static const struct of_device_id fec_dt_ids[] = { 181 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 182 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 183 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 184 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 185 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 186 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 187 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 188 { /* sentinel */ } 189 }; 190 MODULE_DEVICE_TABLE(of, fec_dt_ids); 191 192 static unsigned char macaddr[ETH_ALEN]; 193 module_param_array(macaddr, byte, NULL, 0); 194 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 195 196 #if defined(CONFIG_M5272) 197 /* 198 * Some hardware gets it MAC address out of local flash memory. 199 * if this is non-zero then assume it is the address to get MAC from. 200 */ 201 #if defined(CONFIG_NETtel) 202 #define FEC_FLASHMAC 0xf0006006 203 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 204 #define FEC_FLASHMAC 0xf0006000 205 #elif defined(CONFIG_CANCam) 206 #define FEC_FLASHMAC 0xf0020000 207 #elif defined (CONFIG_M5272C3) 208 #define FEC_FLASHMAC (0xffe04000 + 4) 209 #elif defined(CONFIG_MOD5272) 210 #define FEC_FLASHMAC 0xffc0406b 211 #else 212 #define FEC_FLASHMAC 0 213 #endif 214 #endif /* CONFIG_M5272 */ 215 216 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 217 * 218 * 2048 byte skbufs are allocated. However, alignment requirements 219 * varies between FEC variants. Worst case is 64, so round down by 64. 220 */ 221 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 222 #define PKT_MINBUF_SIZE 64 223 224 /* FEC receive acceleration */ 225 #define FEC_RACC_IPDIS (1 << 1) 226 #define FEC_RACC_PRODIS (1 << 2) 227 #define FEC_RACC_SHIFT16 BIT(7) 228 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 229 230 /* MIB Control Register */ 231 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 232 233 /* 234 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 235 * size bits. Other FEC hardware does not, so we need to take that into 236 * account when setting it. 237 */ 238 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 239 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 240 defined(CONFIG_ARM64) 241 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 242 #else 243 #define OPT_FRAME_SIZE 0 244 #endif 245 246 /* FEC MII MMFR bits definition */ 247 #define FEC_MMFR_ST (1 << 30) 248 #define FEC_MMFR_ST_C45 (0) 249 #define FEC_MMFR_OP_READ (2 << 28) 250 #define FEC_MMFR_OP_READ_C45 (3 << 28) 251 #define FEC_MMFR_OP_WRITE (1 << 28) 252 #define FEC_MMFR_OP_ADDR_WRITE (0) 253 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 254 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 255 #define FEC_MMFR_TA (2 << 16) 256 #define FEC_MMFR_DATA(v) (v & 0xffff) 257 /* FEC ECR bits definition */ 258 #define FEC_ECR_MAGICEN (1 << 2) 259 #define FEC_ECR_SLEEP (1 << 3) 260 261 #define FEC_MII_TIMEOUT 30000 /* us */ 262 263 /* Transmitter timeout */ 264 #define TX_TIMEOUT (2 * HZ) 265 266 #define FEC_PAUSE_FLAG_AUTONEG 0x1 267 #define FEC_PAUSE_FLAG_ENABLE 0x2 268 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 269 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 270 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 271 272 #define COPYBREAK_DEFAULT 256 273 274 /* Max number of allowed TCP segments for software TSO */ 275 #define FEC_MAX_TSO_SEGS 100 276 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 277 278 #define IS_TSO_HEADER(txq, addr) \ 279 ((addr >= txq->tso_hdrs_dma) && \ 280 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 281 282 static int mii_cnt; 283 284 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 285 struct bufdesc_prop *bd) 286 { 287 return (bdp >= bd->last) ? bd->base 288 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 289 } 290 291 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 292 struct bufdesc_prop *bd) 293 { 294 return (bdp <= bd->base) ? bd->last 295 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 296 } 297 298 static int fec_enet_get_bd_index(struct bufdesc *bdp, 299 struct bufdesc_prop *bd) 300 { 301 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 302 } 303 304 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 305 { 306 int entries; 307 308 entries = (((const char *)txq->dirty_tx - 309 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 310 311 return entries >= 0 ? entries : entries + txq->bd.ring_size; 312 } 313 314 static void swap_buffer(void *bufaddr, int len) 315 { 316 int i; 317 unsigned int *buf = bufaddr; 318 319 for (i = 0; i < len; i += 4, buf++) 320 swab32s(buf); 321 } 322 323 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 324 { 325 int i; 326 unsigned int *src = src_buf; 327 unsigned int *dst = dst_buf; 328 329 for (i = 0; i < len; i += 4, src++, dst++) 330 *dst = swab32p(src); 331 } 332 333 static void fec_dump(struct net_device *ndev) 334 { 335 struct fec_enet_private *fep = netdev_priv(ndev); 336 struct bufdesc *bdp; 337 struct fec_enet_priv_tx_q *txq; 338 int index = 0; 339 340 netdev_info(ndev, "TX ring dump\n"); 341 pr_info("Nr SC addr len SKB\n"); 342 343 txq = fep->tx_queue[0]; 344 bdp = txq->bd.base; 345 346 do { 347 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 348 index, 349 bdp == txq->bd.cur ? 'S' : ' ', 350 bdp == txq->dirty_tx ? 'H' : ' ', 351 fec16_to_cpu(bdp->cbd_sc), 352 fec32_to_cpu(bdp->cbd_bufaddr), 353 fec16_to_cpu(bdp->cbd_datlen), 354 txq->tx_skbuff[index]); 355 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 356 index++; 357 } while (bdp != txq->bd.base); 358 } 359 360 static inline bool is_ipv4_pkt(struct sk_buff *skb) 361 { 362 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 363 } 364 365 static int 366 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 367 { 368 /* Only run for packets requiring a checksum. */ 369 if (skb->ip_summed != CHECKSUM_PARTIAL) 370 return 0; 371 372 if (unlikely(skb_cow_head(skb, 0))) 373 return -1; 374 375 if (is_ipv4_pkt(skb)) 376 ip_hdr(skb)->check = 0; 377 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 378 379 return 0; 380 } 381 382 static struct bufdesc * 383 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 384 struct sk_buff *skb, 385 struct net_device *ndev) 386 { 387 struct fec_enet_private *fep = netdev_priv(ndev); 388 struct bufdesc *bdp = txq->bd.cur; 389 struct bufdesc_ex *ebdp; 390 int nr_frags = skb_shinfo(skb)->nr_frags; 391 int frag, frag_len; 392 unsigned short status; 393 unsigned int estatus = 0; 394 skb_frag_t *this_frag; 395 unsigned int index; 396 void *bufaddr; 397 dma_addr_t addr; 398 int i; 399 400 for (frag = 0; frag < nr_frags; frag++) { 401 this_frag = &skb_shinfo(skb)->frags[frag]; 402 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 403 ebdp = (struct bufdesc_ex *)bdp; 404 405 status = fec16_to_cpu(bdp->cbd_sc); 406 status &= ~BD_ENET_TX_STATS; 407 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 408 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 409 410 /* Handle the last BD specially */ 411 if (frag == nr_frags - 1) { 412 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 413 if (fep->bufdesc_ex) { 414 estatus |= BD_ENET_TX_INT; 415 if (unlikely(skb_shinfo(skb)->tx_flags & 416 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 417 estatus |= BD_ENET_TX_TS; 418 } 419 } 420 421 if (fep->bufdesc_ex) { 422 if (fep->quirks & FEC_QUIRK_HAS_AVB) 423 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 424 if (skb->ip_summed == CHECKSUM_PARTIAL) 425 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 426 427 ebdp->cbd_bdu = 0; 428 ebdp->cbd_esc = cpu_to_fec32(estatus); 429 } 430 431 bufaddr = skb_frag_address(this_frag); 432 433 index = fec_enet_get_bd_index(bdp, &txq->bd); 434 if (((unsigned long) bufaddr) & fep->tx_align || 435 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 436 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 437 bufaddr = txq->tx_bounce[index]; 438 439 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 440 swap_buffer(bufaddr, frag_len); 441 } 442 443 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 444 DMA_TO_DEVICE); 445 if (dma_mapping_error(&fep->pdev->dev, addr)) { 446 if (net_ratelimit()) 447 netdev_err(ndev, "Tx DMA memory map failed\n"); 448 goto dma_mapping_error; 449 } 450 451 bdp->cbd_bufaddr = cpu_to_fec32(addr); 452 bdp->cbd_datlen = cpu_to_fec16(frag_len); 453 /* Make sure the updates to rest of the descriptor are 454 * performed before transferring ownership. 455 */ 456 wmb(); 457 bdp->cbd_sc = cpu_to_fec16(status); 458 } 459 460 return bdp; 461 dma_mapping_error: 462 bdp = txq->bd.cur; 463 for (i = 0; i < frag; i++) { 464 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 465 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 466 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 467 } 468 return ERR_PTR(-ENOMEM); 469 } 470 471 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 472 struct sk_buff *skb, struct net_device *ndev) 473 { 474 struct fec_enet_private *fep = netdev_priv(ndev); 475 int nr_frags = skb_shinfo(skb)->nr_frags; 476 struct bufdesc *bdp, *last_bdp; 477 void *bufaddr; 478 dma_addr_t addr; 479 unsigned short status; 480 unsigned short buflen; 481 unsigned int estatus = 0; 482 unsigned int index; 483 int entries_free; 484 485 entries_free = fec_enet_get_free_txdesc_num(txq); 486 if (entries_free < MAX_SKB_FRAGS + 1) { 487 dev_kfree_skb_any(skb); 488 if (net_ratelimit()) 489 netdev_err(ndev, "NOT enough BD for SG!\n"); 490 return NETDEV_TX_OK; 491 } 492 493 /* Protocol checksum off-load for TCP and UDP. */ 494 if (fec_enet_clear_csum(skb, ndev)) { 495 dev_kfree_skb_any(skb); 496 return NETDEV_TX_OK; 497 } 498 499 /* Fill in a Tx ring entry */ 500 bdp = txq->bd.cur; 501 last_bdp = bdp; 502 status = fec16_to_cpu(bdp->cbd_sc); 503 status &= ~BD_ENET_TX_STATS; 504 505 /* Set buffer length and buffer pointer */ 506 bufaddr = skb->data; 507 buflen = skb_headlen(skb); 508 509 index = fec_enet_get_bd_index(bdp, &txq->bd); 510 if (((unsigned long) bufaddr) & fep->tx_align || 511 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 512 memcpy(txq->tx_bounce[index], skb->data, buflen); 513 bufaddr = txq->tx_bounce[index]; 514 515 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 516 swap_buffer(bufaddr, buflen); 517 } 518 519 /* Push the data cache so the CPM does not get stale memory data. */ 520 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 521 if (dma_mapping_error(&fep->pdev->dev, addr)) { 522 dev_kfree_skb_any(skb); 523 if (net_ratelimit()) 524 netdev_err(ndev, "Tx DMA memory map failed\n"); 525 return NETDEV_TX_OK; 526 } 527 528 if (nr_frags) { 529 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 530 if (IS_ERR(last_bdp)) { 531 dma_unmap_single(&fep->pdev->dev, addr, 532 buflen, DMA_TO_DEVICE); 533 dev_kfree_skb_any(skb); 534 return NETDEV_TX_OK; 535 } 536 } else { 537 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 538 if (fep->bufdesc_ex) { 539 estatus = BD_ENET_TX_INT; 540 if (unlikely(skb_shinfo(skb)->tx_flags & 541 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 542 estatus |= BD_ENET_TX_TS; 543 } 544 } 545 bdp->cbd_bufaddr = cpu_to_fec32(addr); 546 bdp->cbd_datlen = cpu_to_fec16(buflen); 547 548 if (fep->bufdesc_ex) { 549 550 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 551 552 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 553 fep->hwts_tx_en)) 554 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 555 556 if (fep->quirks & FEC_QUIRK_HAS_AVB) 557 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 558 559 if (skb->ip_summed == CHECKSUM_PARTIAL) 560 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 561 562 ebdp->cbd_bdu = 0; 563 ebdp->cbd_esc = cpu_to_fec32(estatus); 564 } 565 566 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 567 /* Save skb pointer */ 568 txq->tx_skbuff[index] = skb; 569 570 /* Make sure the updates to rest of the descriptor are performed before 571 * transferring ownership. 572 */ 573 wmb(); 574 575 /* Send it on its way. Tell FEC it's ready, interrupt when done, 576 * it's the last BD of the frame, and to put the CRC on the end. 577 */ 578 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 579 bdp->cbd_sc = cpu_to_fec16(status); 580 581 /* If this was the last BD in the ring, start at the beginning again. */ 582 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 583 584 skb_tx_timestamp(skb); 585 586 /* Make sure the update to bdp and tx_skbuff are performed before 587 * txq->bd.cur. 588 */ 589 wmb(); 590 txq->bd.cur = bdp; 591 592 /* Trigger transmission start */ 593 writel(0, txq->bd.reg_desc_active); 594 595 return 0; 596 } 597 598 static int 599 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 600 struct net_device *ndev, 601 struct bufdesc *bdp, int index, char *data, 602 int size, bool last_tcp, bool is_last) 603 { 604 struct fec_enet_private *fep = netdev_priv(ndev); 605 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 606 unsigned short status; 607 unsigned int estatus = 0; 608 dma_addr_t addr; 609 610 status = fec16_to_cpu(bdp->cbd_sc); 611 status &= ~BD_ENET_TX_STATS; 612 613 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 614 615 if (((unsigned long) data) & fep->tx_align || 616 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 617 memcpy(txq->tx_bounce[index], data, size); 618 data = txq->tx_bounce[index]; 619 620 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 621 swap_buffer(data, size); 622 } 623 624 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 625 if (dma_mapping_error(&fep->pdev->dev, addr)) { 626 dev_kfree_skb_any(skb); 627 if (net_ratelimit()) 628 netdev_err(ndev, "Tx DMA memory map failed\n"); 629 return NETDEV_TX_BUSY; 630 } 631 632 bdp->cbd_datlen = cpu_to_fec16(size); 633 bdp->cbd_bufaddr = cpu_to_fec32(addr); 634 635 if (fep->bufdesc_ex) { 636 if (fep->quirks & FEC_QUIRK_HAS_AVB) 637 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 638 if (skb->ip_summed == CHECKSUM_PARTIAL) 639 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 640 ebdp->cbd_bdu = 0; 641 ebdp->cbd_esc = cpu_to_fec32(estatus); 642 } 643 644 /* Handle the last BD specially */ 645 if (last_tcp) 646 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 647 if (is_last) { 648 status |= BD_ENET_TX_INTR; 649 if (fep->bufdesc_ex) 650 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 651 } 652 653 bdp->cbd_sc = cpu_to_fec16(status); 654 655 return 0; 656 } 657 658 static int 659 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 660 struct sk_buff *skb, struct net_device *ndev, 661 struct bufdesc *bdp, int index) 662 { 663 struct fec_enet_private *fep = netdev_priv(ndev); 664 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 665 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 666 void *bufaddr; 667 unsigned long dmabuf; 668 unsigned short status; 669 unsigned int estatus = 0; 670 671 status = fec16_to_cpu(bdp->cbd_sc); 672 status &= ~BD_ENET_TX_STATS; 673 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 674 675 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 676 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 677 if (((unsigned long)bufaddr) & fep->tx_align || 678 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 679 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 680 bufaddr = txq->tx_bounce[index]; 681 682 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 683 swap_buffer(bufaddr, hdr_len); 684 685 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 686 hdr_len, DMA_TO_DEVICE); 687 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 688 dev_kfree_skb_any(skb); 689 if (net_ratelimit()) 690 netdev_err(ndev, "Tx DMA memory map failed\n"); 691 return NETDEV_TX_BUSY; 692 } 693 } 694 695 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 696 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 697 698 if (fep->bufdesc_ex) { 699 if (fep->quirks & FEC_QUIRK_HAS_AVB) 700 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 701 if (skb->ip_summed == CHECKSUM_PARTIAL) 702 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 703 ebdp->cbd_bdu = 0; 704 ebdp->cbd_esc = cpu_to_fec32(estatus); 705 } 706 707 bdp->cbd_sc = cpu_to_fec16(status); 708 709 return 0; 710 } 711 712 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 713 struct sk_buff *skb, 714 struct net_device *ndev) 715 { 716 struct fec_enet_private *fep = netdev_priv(ndev); 717 int hdr_len, total_len, data_left; 718 struct bufdesc *bdp = txq->bd.cur; 719 struct tso_t tso; 720 unsigned int index = 0; 721 int ret; 722 723 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 724 dev_kfree_skb_any(skb); 725 if (net_ratelimit()) 726 netdev_err(ndev, "NOT enough BD for TSO!\n"); 727 return NETDEV_TX_OK; 728 } 729 730 /* Protocol checksum off-load for TCP and UDP. */ 731 if (fec_enet_clear_csum(skb, ndev)) { 732 dev_kfree_skb_any(skb); 733 return NETDEV_TX_OK; 734 } 735 736 /* Initialize the TSO handler, and prepare the first payload */ 737 hdr_len = tso_start(skb, &tso); 738 739 total_len = skb->len - hdr_len; 740 while (total_len > 0) { 741 char *hdr; 742 743 index = fec_enet_get_bd_index(bdp, &txq->bd); 744 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 745 total_len -= data_left; 746 747 /* prepare packet headers: MAC + IP + TCP */ 748 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 749 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 750 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 751 if (ret) 752 goto err_release; 753 754 while (data_left > 0) { 755 int size; 756 757 size = min_t(int, tso.size, data_left); 758 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 759 index = fec_enet_get_bd_index(bdp, &txq->bd); 760 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 761 bdp, index, 762 tso.data, size, 763 size == data_left, 764 total_len == 0); 765 if (ret) 766 goto err_release; 767 768 data_left -= size; 769 tso_build_data(skb, &tso, size); 770 } 771 772 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 773 } 774 775 /* Save skb pointer */ 776 txq->tx_skbuff[index] = skb; 777 778 skb_tx_timestamp(skb); 779 txq->bd.cur = bdp; 780 781 /* Trigger transmission start */ 782 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 783 !readl(txq->bd.reg_desc_active) || 784 !readl(txq->bd.reg_desc_active) || 785 !readl(txq->bd.reg_desc_active) || 786 !readl(txq->bd.reg_desc_active)) 787 writel(0, txq->bd.reg_desc_active); 788 789 return 0; 790 791 err_release: 792 /* TODO: Release all used data descriptors for TSO */ 793 return ret; 794 } 795 796 static netdev_tx_t 797 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 798 { 799 struct fec_enet_private *fep = netdev_priv(ndev); 800 int entries_free; 801 unsigned short queue; 802 struct fec_enet_priv_tx_q *txq; 803 struct netdev_queue *nq; 804 int ret; 805 806 queue = skb_get_queue_mapping(skb); 807 txq = fep->tx_queue[queue]; 808 nq = netdev_get_tx_queue(ndev, queue); 809 810 if (skb_is_gso(skb)) 811 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 812 else 813 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 814 if (ret) 815 return ret; 816 817 entries_free = fec_enet_get_free_txdesc_num(txq); 818 if (entries_free <= txq->tx_stop_threshold) 819 netif_tx_stop_queue(nq); 820 821 return NETDEV_TX_OK; 822 } 823 824 /* Init RX & TX buffer descriptors 825 */ 826 static void fec_enet_bd_init(struct net_device *dev) 827 { 828 struct fec_enet_private *fep = netdev_priv(dev); 829 struct fec_enet_priv_tx_q *txq; 830 struct fec_enet_priv_rx_q *rxq; 831 struct bufdesc *bdp; 832 unsigned int i; 833 unsigned int q; 834 835 for (q = 0; q < fep->num_rx_queues; q++) { 836 /* Initialize the receive buffer descriptors. */ 837 rxq = fep->rx_queue[q]; 838 bdp = rxq->bd.base; 839 840 for (i = 0; i < rxq->bd.ring_size; i++) { 841 842 /* Initialize the BD for every fragment in the page. */ 843 if (bdp->cbd_bufaddr) 844 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 845 else 846 bdp->cbd_sc = cpu_to_fec16(0); 847 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 848 } 849 850 /* Set the last buffer to wrap */ 851 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 852 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 853 854 rxq->bd.cur = rxq->bd.base; 855 } 856 857 for (q = 0; q < fep->num_tx_queues; q++) { 858 /* ...and the same for transmit */ 859 txq = fep->tx_queue[q]; 860 bdp = txq->bd.base; 861 txq->bd.cur = bdp; 862 863 for (i = 0; i < txq->bd.ring_size; i++) { 864 /* Initialize the BD for every fragment in the page. */ 865 bdp->cbd_sc = cpu_to_fec16(0); 866 if (bdp->cbd_bufaddr && 867 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 868 dma_unmap_single(&fep->pdev->dev, 869 fec32_to_cpu(bdp->cbd_bufaddr), 870 fec16_to_cpu(bdp->cbd_datlen), 871 DMA_TO_DEVICE); 872 if (txq->tx_skbuff[i]) { 873 dev_kfree_skb_any(txq->tx_skbuff[i]); 874 txq->tx_skbuff[i] = NULL; 875 } 876 bdp->cbd_bufaddr = cpu_to_fec32(0); 877 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 878 } 879 880 /* Set the last buffer to wrap */ 881 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 882 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 883 txq->dirty_tx = bdp; 884 } 885 } 886 887 static void fec_enet_active_rxring(struct net_device *ndev) 888 { 889 struct fec_enet_private *fep = netdev_priv(ndev); 890 int i; 891 892 for (i = 0; i < fep->num_rx_queues; i++) 893 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 894 } 895 896 static void fec_enet_enable_ring(struct net_device *ndev) 897 { 898 struct fec_enet_private *fep = netdev_priv(ndev); 899 struct fec_enet_priv_tx_q *txq; 900 struct fec_enet_priv_rx_q *rxq; 901 int i; 902 903 for (i = 0; i < fep->num_rx_queues; i++) { 904 rxq = fep->rx_queue[i]; 905 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 906 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 907 908 /* enable DMA1/2 */ 909 if (i) 910 writel(RCMR_MATCHEN | RCMR_CMP(i), 911 fep->hwp + FEC_RCMR(i)); 912 } 913 914 for (i = 0; i < fep->num_tx_queues; i++) { 915 txq = fep->tx_queue[i]; 916 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 917 918 /* enable DMA1/2 */ 919 if (i) 920 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 921 fep->hwp + FEC_DMA_CFG(i)); 922 } 923 } 924 925 static void fec_enet_reset_skb(struct net_device *ndev) 926 { 927 struct fec_enet_private *fep = netdev_priv(ndev); 928 struct fec_enet_priv_tx_q *txq; 929 int i, j; 930 931 for (i = 0; i < fep->num_tx_queues; i++) { 932 txq = fep->tx_queue[i]; 933 934 for (j = 0; j < txq->bd.ring_size; j++) { 935 if (txq->tx_skbuff[j]) { 936 dev_kfree_skb_any(txq->tx_skbuff[j]); 937 txq->tx_skbuff[j] = NULL; 938 } 939 } 940 } 941 } 942 943 /* 944 * This function is called to start or restart the FEC during a link 945 * change, transmit timeout, or to reconfigure the FEC. The network 946 * packet processing for this device must be stopped before this call. 947 */ 948 static void 949 fec_restart(struct net_device *ndev) 950 { 951 struct fec_enet_private *fep = netdev_priv(ndev); 952 u32 temp_mac[2]; 953 u32 rcntl = OPT_FRAME_SIZE | 0x04; 954 u32 ecntl = 0x2; /* ETHEREN */ 955 956 /* Whack a reset. We should wait for this. 957 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 958 * instead of reset MAC itself. 959 */ 960 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 961 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 962 writel(0, fep->hwp + FEC_ECNTRL); 963 } else { 964 writel(1, fep->hwp + FEC_ECNTRL); 965 udelay(10); 966 } 967 968 /* 969 * enet-mac reset will reset mac address registers too, 970 * so need to reconfigure it. 971 */ 972 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 973 writel((__force u32)cpu_to_be32(temp_mac[0]), 974 fep->hwp + FEC_ADDR_LOW); 975 writel((__force u32)cpu_to_be32(temp_mac[1]), 976 fep->hwp + FEC_ADDR_HIGH); 977 978 /* Clear any outstanding interrupt, except MDIO. */ 979 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 980 981 fec_enet_bd_init(ndev); 982 983 fec_enet_enable_ring(ndev); 984 985 /* Reset tx SKB buffers. */ 986 fec_enet_reset_skb(ndev); 987 988 /* Enable MII mode */ 989 if (fep->full_duplex == DUPLEX_FULL) { 990 /* FD enable */ 991 writel(0x04, fep->hwp + FEC_X_CNTRL); 992 } else { 993 /* No Rcv on Xmit */ 994 rcntl |= 0x02; 995 writel(0x0, fep->hwp + FEC_X_CNTRL); 996 } 997 998 /* Set MII speed */ 999 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1000 1001 #if !defined(CONFIG_M5272) 1002 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1003 u32 val = readl(fep->hwp + FEC_RACC); 1004 1005 /* align IP header */ 1006 val |= FEC_RACC_SHIFT16; 1007 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1008 /* set RX checksum */ 1009 val |= FEC_RACC_OPTIONS; 1010 else 1011 val &= ~FEC_RACC_OPTIONS; 1012 writel(val, fep->hwp + FEC_RACC); 1013 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1014 } 1015 #endif 1016 1017 /* 1018 * The phy interface and speed need to get configured 1019 * differently on enet-mac. 1020 */ 1021 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1022 /* Enable flow control and length check */ 1023 rcntl |= 0x40000000 | 0x00000020; 1024 1025 /* RGMII, RMII or MII */ 1026 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1027 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1028 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1029 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1030 rcntl |= (1 << 6); 1031 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1032 rcntl |= (1 << 8); 1033 else 1034 rcntl &= ~(1 << 8); 1035 1036 /* 1G, 100M or 10M */ 1037 if (ndev->phydev) { 1038 if (ndev->phydev->speed == SPEED_1000) 1039 ecntl |= (1 << 5); 1040 else if (ndev->phydev->speed == SPEED_100) 1041 rcntl &= ~(1 << 9); 1042 else 1043 rcntl |= (1 << 9); 1044 } 1045 } else { 1046 #ifdef FEC_MIIGSK_ENR 1047 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1048 u32 cfgr; 1049 /* disable the gasket and wait */ 1050 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1051 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1052 udelay(1); 1053 1054 /* 1055 * configure the gasket: 1056 * RMII, 50 MHz, no loopback, no echo 1057 * MII, 25 MHz, no loopback, no echo 1058 */ 1059 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1060 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1061 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1062 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1063 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1064 1065 /* re-enable the gasket */ 1066 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1067 } 1068 #endif 1069 } 1070 1071 #if !defined(CONFIG_M5272) 1072 /* enable pause frame*/ 1073 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1074 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1075 ndev->phydev && ndev->phydev->pause)) { 1076 rcntl |= FEC_ENET_FCE; 1077 1078 /* set FIFO threshold parameter to reduce overrun */ 1079 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1080 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1081 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1082 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1083 1084 /* OPD */ 1085 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1086 } else { 1087 rcntl &= ~FEC_ENET_FCE; 1088 } 1089 #endif /* !defined(CONFIG_M5272) */ 1090 1091 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1092 1093 /* Setup multicast filter. */ 1094 set_multicast_list(ndev); 1095 #ifndef CONFIG_M5272 1096 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1097 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1098 #endif 1099 1100 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1101 /* enable ENET endian swap */ 1102 ecntl |= (1 << 8); 1103 /* enable ENET store and forward mode */ 1104 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1105 } 1106 1107 if (fep->bufdesc_ex) 1108 ecntl |= (1 << 4); 1109 1110 #ifndef CONFIG_M5272 1111 /* Enable the MIB statistic event counters */ 1112 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1113 #endif 1114 1115 /* And last, enable the transmit and receive processing */ 1116 writel(ecntl, fep->hwp + FEC_ECNTRL); 1117 fec_enet_active_rxring(ndev); 1118 1119 if (fep->bufdesc_ex) 1120 fec_ptp_start_cyclecounter(ndev); 1121 1122 /* Enable interrupts we wish to service */ 1123 if (fep->link) 1124 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1125 else 1126 writel(0, fep->hwp + FEC_IMASK); 1127 1128 /* Init the interrupt coalescing */ 1129 fec_enet_itr_coal_init(ndev); 1130 1131 } 1132 1133 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1134 { 1135 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1136 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1137 1138 if (stop_gpr->gpr) { 1139 if (enabled) 1140 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1141 BIT(stop_gpr->bit), 1142 BIT(stop_gpr->bit)); 1143 else 1144 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1145 BIT(stop_gpr->bit), 0); 1146 } else if (pdata && pdata->sleep_mode_enable) { 1147 pdata->sleep_mode_enable(enabled); 1148 } 1149 } 1150 1151 static void 1152 fec_stop(struct net_device *ndev) 1153 { 1154 struct fec_enet_private *fep = netdev_priv(ndev); 1155 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1156 u32 val; 1157 1158 /* We cannot expect a graceful transmit stop without link !!! */ 1159 if (fep->link) { 1160 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1161 udelay(10); 1162 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1163 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1164 } 1165 1166 /* Whack a reset. We should wait for this. 1167 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1168 * instead of reset MAC itself. 1169 */ 1170 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1171 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1172 writel(0, fep->hwp + FEC_ECNTRL); 1173 } else { 1174 writel(1, fep->hwp + FEC_ECNTRL); 1175 udelay(10); 1176 } 1177 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1178 } else { 1179 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1180 val = readl(fep->hwp + FEC_ECNTRL); 1181 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1182 writel(val, fep->hwp + FEC_ECNTRL); 1183 fec_enet_stop_mode(fep, true); 1184 } 1185 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1186 1187 /* We have to keep ENET enabled to have MII interrupt stay working */ 1188 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1189 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1190 writel(2, fep->hwp + FEC_ECNTRL); 1191 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1192 } 1193 } 1194 1195 1196 static void 1197 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1198 { 1199 struct fec_enet_private *fep = netdev_priv(ndev); 1200 1201 fec_dump(ndev); 1202 1203 ndev->stats.tx_errors++; 1204 1205 schedule_work(&fep->tx_timeout_work); 1206 } 1207 1208 static void fec_enet_timeout_work(struct work_struct *work) 1209 { 1210 struct fec_enet_private *fep = 1211 container_of(work, struct fec_enet_private, tx_timeout_work); 1212 struct net_device *ndev = fep->netdev; 1213 1214 rtnl_lock(); 1215 if (netif_device_present(ndev) || netif_running(ndev)) { 1216 napi_disable(&fep->napi); 1217 netif_tx_lock_bh(ndev); 1218 fec_restart(ndev); 1219 netif_tx_wake_all_queues(ndev); 1220 netif_tx_unlock_bh(ndev); 1221 napi_enable(&fep->napi); 1222 } 1223 rtnl_unlock(); 1224 } 1225 1226 static void 1227 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1228 struct skb_shared_hwtstamps *hwtstamps) 1229 { 1230 unsigned long flags; 1231 u64 ns; 1232 1233 spin_lock_irqsave(&fep->tmreg_lock, flags); 1234 ns = timecounter_cyc2time(&fep->tc, ts); 1235 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1236 1237 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1238 hwtstamps->hwtstamp = ns_to_ktime(ns); 1239 } 1240 1241 static void 1242 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1243 { 1244 struct fec_enet_private *fep; 1245 struct bufdesc *bdp; 1246 unsigned short status; 1247 struct sk_buff *skb; 1248 struct fec_enet_priv_tx_q *txq; 1249 struct netdev_queue *nq; 1250 int index = 0; 1251 int entries_free; 1252 1253 fep = netdev_priv(ndev); 1254 1255 txq = fep->tx_queue[queue_id]; 1256 /* get next bdp of dirty_tx */ 1257 nq = netdev_get_tx_queue(ndev, queue_id); 1258 bdp = txq->dirty_tx; 1259 1260 /* get next bdp of dirty_tx */ 1261 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1262 1263 while (bdp != READ_ONCE(txq->bd.cur)) { 1264 /* Order the load of bd.cur and cbd_sc */ 1265 rmb(); 1266 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1267 if (status & BD_ENET_TX_READY) 1268 break; 1269 1270 index = fec_enet_get_bd_index(bdp, &txq->bd); 1271 1272 skb = txq->tx_skbuff[index]; 1273 txq->tx_skbuff[index] = NULL; 1274 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1275 dma_unmap_single(&fep->pdev->dev, 1276 fec32_to_cpu(bdp->cbd_bufaddr), 1277 fec16_to_cpu(bdp->cbd_datlen), 1278 DMA_TO_DEVICE); 1279 bdp->cbd_bufaddr = cpu_to_fec32(0); 1280 if (!skb) 1281 goto skb_done; 1282 1283 /* Check for errors. */ 1284 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1285 BD_ENET_TX_RL | BD_ENET_TX_UN | 1286 BD_ENET_TX_CSL)) { 1287 ndev->stats.tx_errors++; 1288 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1289 ndev->stats.tx_heartbeat_errors++; 1290 if (status & BD_ENET_TX_LC) /* Late collision */ 1291 ndev->stats.tx_window_errors++; 1292 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1293 ndev->stats.tx_aborted_errors++; 1294 if (status & BD_ENET_TX_UN) /* Underrun */ 1295 ndev->stats.tx_fifo_errors++; 1296 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1297 ndev->stats.tx_carrier_errors++; 1298 } else { 1299 ndev->stats.tx_packets++; 1300 ndev->stats.tx_bytes += skb->len; 1301 } 1302 1303 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1304 * are to time stamp the packet, so we still need to check time 1305 * stamping enabled flag. 1306 */ 1307 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1308 fep->hwts_tx_en) && 1309 fep->bufdesc_ex) { 1310 struct skb_shared_hwtstamps shhwtstamps; 1311 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1312 1313 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1314 skb_tstamp_tx(skb, &shhwtstamps); 1315 } 1316 1317 /* Deferred means some collisions occurred during transmit, 1318 * but we eventually sent the packet OK. 1319 */ 1320 if (status & BD_ENET_TX_DEF) 1321 ndev->stats.collisions++; 1322 1323 /* Free the sk buffer associated with this last transmit */ 1324 dev_kfree_skb_any(skb); 1325 skb_done: 1326 /* Make sure the update to bdp and tx_skbuff are performed 1327 * before dirty_tx 1328 */ 1329 wmb(); 1330 txq->dirty_tx = bdp; 1331 1332 /* Update pointer to next buffer descriptor to be transmitted */ 1333 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1334 1335 /* Since we have freed up a buffer, the ring is no longer full 1336 */ 1337 if (netif_tx_queue_stopped(nq)) { 1338 entries_free = fec_enet_get_free_txdesc_num(txq); 1339 if (entries_free >= txq->tx_wake_threshold) 1340 netif_tx_wake_queue(nq); 1341 } 1342 } 1343 1344 /* ERR006358: Keep the transmitter going */ 1345 if (bdp != txq->bd.cur && 1346 readl(txq->bd.reg_desc_active) == 0) 1347 writel(0, txq->bd.reg_desc_active); 1348 } 1349 1350 static void fec_enet_tx(struct net_device *ndev) 1351 { 1352 struct fec_enet_private *fep = netdev_priv(ndev); 1353 int i; 1354 1355 /* Make sure that AVB queues are processed first. */ 1356 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1357 fec_enet_tx_queue(ndev, i); 1358 } 1359 1360 static int 1361 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1362 { 1363 struct fec_enet_private *fep = netdev_priv(ndev); 1364 int off; 1365 1366 off = ((unsigned long)skb->data) & fep->rx_align; 1367 if (off) 1368 skb_reserve(skb, fep->rx_align + 1 - off); 1369 1370 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); 1371 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { 1372 if (net_ratelimit()) 1373 netdev_err(ndev, "Rx DMA memory map failed\n"); 1374 return -ENOMEM; 1375 } 1376 1377 return 0; 1378 } 1379 1380 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1381 struct bufdesc *bdp, u32 length, bool swap) 1382 { 1383 struct fec_enet_private *fep = netdev_priv(ndev); 1384 struct sk_buff *new_skb; 1385 1386 if (length > fep->rx_copybreak) 1387 return false; 1388 1389 new_skb = netdev_alloc_skb(ndev, length); 1390 if (!new_skb) 1391 return false; 1392 1393 dma_sync_single_for_cpu(&fep->pdev->dev, 1394 fec32_to_cpu(bdp->cbd_bufaddr), 1395 FEC_ENET_RX_FRSIZE - fep->rx_align, 1396 DMA_FROM_DEVICE); 1397 if (!swap) 1398 memcpy(new_skb->data, (*skb)->data, length); 1399 else 1400 swap_buffer2(new_skb->data, (*skb)->data, length); 1401 *skb = new_skb; 1402 1403 return true; 1404 } 1405 1406 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1407 * When we update through the ring, if the next incoming buffer has 1408 * not been given to the system, we just set the empty indicator, 1409 * effectively tossing the packet. 1410 */ 1411 static int 1412 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1413 { 1414 struct fec_enet_private *fep = netdev_priv(ndev); 1415 struct fec_enet_priv_rx_q *rxq; 1416 struct bufdesc *bdp; 1417 unsigned short status; 1418 struct sk_buff *skb_new = NULL; 1419 struct sk_buff *skb; 1420 ushort pkt_len; 1421 __u8 *data; 1422 int pkt_received = 0; 1423 struct bufdesc_ex *ebdp = NULL; 1424 bool vlan_packet_rcvd = false; 1425 u16 vlan_tag; 1426 int index = 0; 1427 bool is_copybreak; 1428 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1429 1430 #ifdef CONFIG_M532x 1431 flush_cache_all(); 1432 #endif 1433 rxq = fep->rx_queue[queue_id]; 1434 1435 /* First, grab all of the stats for the incoming packet. 1436 * These get messed up if we get called due to a busy condition. 1437 */ 1438 bdp = rxq->bd.cur; 1439 1440 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1441 1442 if (pkt_received >= budget) 1443 break; 1444 pkt_received++; 1445 1446 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT); 1447 1448 /* Check for errors. */ 1449 status ^= BD_ENET_RX_LAST; 1450 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1451 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1452 BD_ENET_RX_CL)) { 1453 ndev->stats.rx_errors++; 1454 if (status & BD_ENET_RX_OV) { 1455 /* FIFO overrun */ 1456 ndev->stats.rx_fifo_errors++; 1457 goto rx_processing_done; 1458 } 1459 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1460 | BD_ENET_RX_LAST)) { 1461 /* Frame too long or too short. */ 1462 ndev->stats.rx_length_errors++; 1463 if (status & BD_ENET_RX_LAST) 1464 netdev_err(ndev, "rcv is not +last\n"); 1465 } 1466 if (status & BD_ENET_RX_CR) /* CRC Error */ 1467 ndev->stats.rx_crc_errors++; 1468 /* Report late collisions as a frame error. */ 1469 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1470 ndev->stats.rx_frame_errors++; 1471 goto rx_processing_done; 1472 } 1473 1474 /* Process the incoming frame. */ 1475 ndev->stats.rx_packets++; 1476 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1477 ndev->stats.rx_bytes += pkt_len; 1478 1479 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1480 skb = rxq->rx_skbuff[index]; 1481 1482 /* The packet length includes FCS, but we don't want to 1483 * include that when passing upstream as it messes up 1484 * bridging applications. 1485 */ 1486 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1487 need_swap); 1488 if (!is_copybreak) { 1489 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1490 if (unlikely(!skb_new)) { 1491 ndev->stats.rx_dropped++; 1492 goto rx_processing_done; 1493 } 1494 dma_unmap_single(&fep->pdev->dev, 1495 fec32_to_cpu(bdp->cbd_bufaddr), 1496 FEC_ENET_RX_FRSIZE - fep->rx_align, 1497 DMA_FROM_DEVICE); 1498 } 1499 1500 prefetch(skb->data - NET_IP_ALIGN); 1501 skb_put(skb, pkt_len - 4); 1502 data = skb->data; 1503 1504 if (!is_copybreak && need_swap) 1505 swap_buffer(data, pkt_len); 1506 1507 #if !defined(CONFIG_M5272) 1508 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1509 data = skb_pull_inline(skb, 2); 1510 #endif 1511 1512 /* Extract the enhanced buffer descriptor */ 1513 ebdp = NULL; 1514 if (fep->bufdesc_ex) 1515 ebdp = (struct bufdesc_ex *)bdp; 1516 1517 /* If this is a VLAN packet remove the VLAN Tag */ 1518 vlan_packet_rcvd = false; 1519 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1520 fep->bufdesc_ex && 1521 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1522 /* Push and remove the vlan tag */ 1523 struct vlan_hdr *vlan_header = 1524 (struct vlan_hdr *) (data + ETH_HLEN); 1525 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1526 1527 vlan_packet_rcvd = true; 1528 1529 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1530 skb_pull(skb, VLAN_HLEN); 1531 } 1532 1533 skb->protocol = eth_type_trans(skb, ndev); 1534 1535 /* Get receive timestamp from the skb */ 1536 if (fep->hwts_rx_en && fep->bufdesc_ex) 1537 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1538 skb_hwtstamps(skb)); 1539 1540 if (fep->bufdesc_ex && 1541 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1542 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1543 /* don't check it */ 1544 skb->ip_summed = CHECKSUM_UNNECESSARY; 1545 } else { 1546 skb_checksum_none_assert(skb); 1547 } 1548 } 1549 1550 /* Handle received VLAN packets */ 1551 if (vlan_packet_rcvd) 1552 __vlan_hwaccel_put_tag(skb, 1553 htons(ETH_P_8021Q), 1554 vlan_tag); 1555 1556 skb_record_rx_queue(skb, queue_id); 1557 napi_gro_receive(&fep->napi, skb); 1558 1559 if (is_copybreak) { 1560 dma_sync_single_for_device(&fep->pdev->dev, 1561 fec32_to_cpu(bdp->cbd_bufaddr), 1562 FEC_ENET_RX_FRSIZE - fep->rx_align, 1563 DMA_FROM_DEVICE); 1564 } else { 1565 rxq->rx_skbuff[index] = skb_new; 1566 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1567 } 1568 1569 rx_processing_done: 1570 /* Clear the status flags for this buffer */ 1571 status &= ~BD_ENET_RX_STATS; 1572 1573 /* Mark the buffer empty */ 1574 status |= BD_ENET_RX_EMPTY; 1575 1576 if (fep->bufdesc_ex) { 1577 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1578 1579 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1580 ebdp->cbd_prot = 0; 1581 ebdp->cbd_bdu = 0; 1582 } 1583 /* Make sure the updates to rest of the descriptor are 1584 * performed before transferring ownership. 1585 */ 1586 wmb(); 1587 bdp->cbd_sc = cpu_to_fec16(status); 1588 1589 /* Update BD pointer to next entry */ 1590 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1591 1592 /* Doing this here will keep the FEC running while we process 1593 * incoming frames. On a heavily loaded network, we should be 1594 * able to keep up at the expense of system resources. 1595 */ 1596 writel(0, rxq->bd.reg_desc_active); 1597 } 1598 rxq->bd.cur = bdp; 1599 return pkt_received; 1600 } 1601 1602 static int fec_enet_rx(struct net_device *ndev, int budget) 1603 { 1604 struct fec_enet_private *fep = netdev_priv(ndev); 1605 int i, done = 0; 1606 1607 /* Make sure that AVB queues are processed first. */ 1608 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1609 done += fec_enet_rx_queue(ndev, budget - done, i); 1610 1611 return done; 1612 } 1613 1614 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1615 { 1616 uint int_events; 1617 1618 int_events = readl(fep->hwp + FEC_IEVENT); 1619 1620 /* Don't clear MDIO events, we poll for those */ 1621 int_events &= ~FEC_ENET_MII; 1622 1623 writel(int_events, fep->hwp + FEC_IEVENT); 1624 1625 return int_events != 0; 1626 } 1627 1628 static irqreturn_t 1629 fec_enet_interrupt(int irq, void *dev_id) 1630 { 1631 struct net_device *ndev = dev_id; 1632 struct fec_enet_private *fep = netdev_priv(ndev); 1633 irqreturn_t ret = IRQ_NONE; 1634 1635 if (fec_enet_collect_events(fep) && fep->link) { 1636 ret = IRQ_HANDLED; 1637 1638 if (napi_schedule_prep(&fep->napi)) { 1639 /* Disable interrupts */ 1640 writel(0, fep->hwp + FEC_IMASK); 1641 __napi_schedule(&fep->napi); 1642 } 1643 } 1644 1645 return ret; 1646 } 1647 1648 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1649 { 1650 struct net_device *ndev = napi->dev; 1651 struct fec_enet_private *fep = netdev_priv(ndev); 1652 int done = 0; 1653 1654 do { 1655 done += fec_enet_rx(ndev, budget - done); 1656 fec_enet_tx(ndev); 1657 } while ((done < budget) && fec_enet_collect_events(fep)); 1658 1659 if (done < budget) { 1660 napi_complete_done(napi, done); 1661 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1662 } 1663 1664 return done; 1665 } 1666 1667 /* ------------------------------------------------------------------------- */ 1668 static int fec_get_mac(struct net_device *ndev) 1669 { 1670 struct fec_enet_private *fep = netdev_priv(ndev); 1671 unsigned char *iap, tmpaddr[ETH_ALEN]; 1672 int ret; 1673 1674 /* 1675 * try to get mac address in following order: 1676 * 1677 * 1) module parameter via kernel command line in form 1678 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1679 */ 1680 iap = macaddr; 1681 1682 /* 1683 * 2) from device tree data 1684 */ 1685 if (!is_valid_ether_addr(iap)) { 1686 struct device_node *np = fep->pdev->dev.of_node; 1687 if (np) { 1688 ret = of_get_mac_address(np, tmpaddr); 1689 if (!ret) 1690 iap = tmpaddr; 1691 else if (ret == -EPROBE_DEFER) 1692 return ret; 1693 } 1694 } 1695 1696 /* 1697 * 3) from flash or fuse (via platform data) 1698 */ 1699 if (!is_valid_ether_addr(iap)) { 1700 #ifdef CONFIG_M5272 1701 if (FEC_FLASHMAC) 1702 iap = (unsigned char *)FEC_FLASHMAC; 1703 #else 1704 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1705 1706 if (pdata) 1707 iap = (unsigned char *)&pdata->mac; 1708 #endif 1709 } 1710 1711 /* 1712 * 4) FEC mac registers set by bootloader 1713 */ 1714 if (!is_valid_ether_addr(iap)) { 1715 *((__be32 *) &tmpaddr[0]) = 1716 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1717 *((__be16 *) &tmpaddr[4]) = 1718 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1719 iap = &tmpaddr[0]; 1720 } 1721 1722 /* 1723 * 5) random mac address 1724 */ 1725 if (!is_valid_ether_addr(iap)) { 1726 /* Report it and use a random ethernet address instead */ 1727 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1728 eth_hw_addr_random(ndev); 1729 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1730 ndev->dev_addr); 1731 return 0; 1732 } 1733 1734 memcpy(ndev->dev_addr, iap, ETH_ALEN); 1735 1736 /* Adjust MAC if using macaddr */ 1737 if (iap == macaddr) 1738 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; 1739 1740 return 0; 1741 } 1742 1743 /* ------------------------------------------------------------------------- */ 1744 1745 /* 1746 * Phy section 1747 */ 1748 static void fec_enet_adjust_link(struct net_device *ndev) 1749 { 1750 struct fec_enet_private *fep = netdev_priv(ndev); 1751 struct phy_device *phy_dev = ndev->phydev; 1752 int status_change = 0; 1753 1754 /* 1755 * If the netdev is down, or is going down, we're not interested 1756 * in link state events, so just mark our idea of the link as down 1757 * and ignore the event. 1758 */ 1759 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1760 fep->link = 0; 1761 } else if (phy_dev->link) { 1762 if (!fep->link) { 1763 fep->link = phy_dev->link; 1764 status_change = 1; 1765 } 1766 1767 if (fep->full_duplex != phy_dev->duplex) { 1768 fep->full_duplex = phy_dev->duplex; 1769 status_change = 1; 1770 } 1771 1772 if (phy_dev->speed != fep->speed) { 1773 fep->speed = phy_dev->speed; 1774 status_change = 1; 1775 } 1776 1777 /* if any of the above changed restart the FEC */ 1778 if (status_change) { 1779 napi_disable(&fep->napi); 1780 netif_tx_lock_bh(ndev); 1781 fec_restart(ndev); 1782 netif_tx_wake_all_queues(ndev); 1783 netif_tx_unlock_bh(ndev); 1784 napi_enable(&fep->napi); 1785 } 1786 } else { 1787 if (fep->link) { 1788 napi_disable(&fep->napi); 1789 netif_tx_lock_bh(ndev); 1790 fec_stop(ndev); 1791 netif_tx_unlock_bh(ndev); 1792 napi_enable(&fep->napi); 1793 fep->link = phy_dev->link; 1794 status_change = 1; 1795 } 1796 } 1797 1798 if (status_change) 1799 phy_print_status(phy_dev); 1800 } 1801 1802 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1803 { 1804 uint ievent; 1805 int ret; 1806 1807 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1808 ievent & FEC_ENET_MII, 2, 30000); 1809 1810 if (!ret) 1811 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1812 1813 return ret; 1814 } 1815 1816 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1817 { 1818 struct fec_enet_private *fep = bus->priv; 1819 struct device *dev = &fep->pdev->dev; 1820 int ret = 0, frame_start, frame_addr, frame_op; 1821 bool is_c45 = !!(regnum & MII_ADDR_C45); 1822 1823 ret = pm_runtime_resume_and_get(dev); 1824 if (ret < 0) 1825 return ret; 1826 1827 if (is_c45) { 1828 frame_start = FEC_MMFR_ST_C45; 1829 1830 /* write address */ 1831 frame_addr = (regnum >> 16); 1832 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1833 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1834 FEC_MMFR_TA | (regnum & 0xFFFF), 1835 fep->hwp + FEC_MII_DATA); 1836 1837 /* wait for end of transfer */ 1838 ret = fec_enet_mdio_wait(fep); 1839 if (ret) { 1840 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1841 goto out; 1842 } 1843 1844 frame_op = FEC_MMFR_OP_READ_C45; 1845 1846 } else { 1847 /* C22 read */ 1848 frame_op = FEC_MMFR_OP_READ; 1849 frame_start = FEC_MMFR_ST; 1850 frame_addr = regnum; 1851 } 1852 1853 /* start a read op */ 1854 writel(frame_start | frame_op | 1855 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1856 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1857 1858 /* wait for end of transfer */ 1859 ret = fec_enet_mdio_wait(fep); 1860 if (ret) { 1861 netdev_err(fep->netdev, "MDIO read timeout\n"); 1862 goto out; 1863 } 1864 1865 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1866 1867 out: 1868 pm_runtime_mark_last_busy(dev); 1869 pm_runtime_put_autosuspend(dev); 1870 1871 return ret; 1872 } 1873 1874 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1875 u16 value) 1876 { 1877 struct fec_enet_private *fep = bus->priv; 1878 struct device *dev = &fep->pdev->dev; 1879 int ret, frame_start, frame_addr; 1880 bool is_c45 = !!(regnum & MII_ADDR_C45); 1881 1882 ret = pm_runtime_resume_and_get(dev); 1883 if (ret < 0) 1884 return ret; 1885 1886 if (is_c45) { 1887 frame_start = FEC_MMFR_ST_C45; 1888 1889 /* write address */ 1890 frame_addr = (regnum >> 16); 1891 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1892 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1893 FEC_MMFR_TA | (regnum & 0xFFFF), 1894 fep->hwp + FEC_MII_DATA); 1895 1896 /* wait for end of transfer */ 1897 ret = fec_enet_mdio_wait(fep); 1898 if (ret) { 1899 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1900 goto out; 1901 } 1902 } else { 1903 /* C22 write */ 1904 frame_start = FEC_MMFR_ST; 1905 frame_addr = regnum; 1906 } 1907 1908 /* start a write op */ 1909 writel(frame_start | FEC_MMFR_OP_WRITE | 1910 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1911 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1912 fep->hwp + FEC_MII_DATA); 1913 1914 /* wait for end of transfer */ 1915 ret = fec_enet_mdio_wait(fep); 1916 if (ret) 1917 netdev_err(fep->netdev, "MDIO write timeout\n"); 1918 1919 out: 1920 pm_runtime_mark_last_busy(dev); 1921 pm_runtime_put_autosuspend(dev); 1922 1923 return ret; 1924 } 1925 1926 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 1927 { 1928 struct fec_enet_private *fep = netdev_priv(ndev); 1929 struct phy_device *phy_dev = ndev->phydev; 1930 1931 if (phy_dev) { 1932 phy_reset_after_clk_enable(phy_dev); 1933 } else if (fep->phy_node) { 1934 /* 1935 * If the PHY still is not bound to the MAC, but there is 1936 * OF PHY node and a matching PHY device instance already, 1937 * use the OF PHY node to obtain the PHY device instance, 1938 * and then use that PHY device instance when triggering 1939 * the PHY reset. 1940 */ 1941 phy_dev = of_phy_find_device(fep->phy_node); 1942 phy_reset_after_clk_enable(phy_dev); 1943 put_device(&phy_dev->mdio.dev); 1944 } 1945 } 1946 1947 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 1948 { 1949 struct fec_enet_private *fep = netdev_priv(ndev); 1950 int ret; 1951 1952 if (enable) { 1953 ret = clk_prepare_enable(fep->clk_enet_out); 1954 if (ret) 1955 return ret; 1956 1957 if (fep->clk_ptp) { 1958 mutex_lock(&fep->ptp_clk_mutex); 1959 ret = clk_prepare_enable(fep->clk_ptp); 1960 if (ret) { 1961 mutex_unlock(&fep->ptp_clk_mutex); 1962 goto failed_clk_ptp; 1963 } else { 1964 fep->ptp_clk_on = true; 1965 } 1966 mutex_unlock(&fep->ptp_clk_mutex); 1967 } 1968 1969 ret = clk_prepare_enable(fep->clk_ref); 1970 if (ret) 1971 goto failed_clk_ref; 1972 1973 fec_enet_phy_reset_after_clk_enable(ndev); 1974 } else { 1975 clk_disable_unprepare(fep->clk_enet_out); 1976 if (fep->clk_ptp) { 1977 mutex_lock(&fep->ptp_clk_mutex); 1978 clk_disable_unprepare(fep->clk_ptp); 1979 fep->ptp_clk_on = false; 1980 mutex_unlock(&fep->ptp_clk_mutex); 1981 } 1982 clk_disable_unprepare(fep->clk_ref); 1983 } 1984 1985 return 0; 1986 1987 failed_clk_ref: 1988 if (fep->clk_ptp) { 1989 mutex_lock(&fep->ptp_clk_mutex); 1990 clk_disable_unprepare(fep->clk_ptp); 1991 fep->ptp_clk_on = false; 1992 mutex_unlock(&fep->ptp_clk_mutex); 1993 } 1994 failed_clk_ptp: 1995 clk_disable_unprepare(fep->clk_enet_out); 1996 1997 return ret; 1998 } 1999 2000 static int fec_enet_mii_probe(struct net_device *ndev) 2001 { 2002 struct fec_enet_private *fep = netdev_priv(ndev); 2003 struct phy_device *phy_dev = NULL; 2004 char mdio_bus_id[MII_BUS_ID_SIZE]; 2005 char phy_name[MII_BUS_ID_SIZE + 3]; 2006 int phy_id; 2007 int dev_id = fep->dev_id; 2008 2009 if (fep->phy_node) { 2010 phy_dev = of_phy_connect(ndev, fep->phy_node, 2011 &fec_enet_adjust_link, 0, 2012 fep->phy_interface); 2013 if (!phy_dev) { 2014 netdev_err(ndev, "Unable to connect to phy\n"); 2015 return -ENODEV; 2016 } 2017 } else { 2018 /* check for attached phy */ 2019 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2020 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2021 continue; 2022 if (dev_id--) 2023 continue; 2024 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2025 break; 2026 } 2027 2028 if (phy_id >= PHY_MAX_ADDR) { 2029 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2030 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2031 phy_id = 0; 2032 } 2033 2034 snprintf(phy_name, sizeof(phy_name), 2035 PHY_ID_FMT, mdio_bus_id, phy_id); 2036 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2037 fep->phy_interface); 2038 } 2039 2040 if (IS_ERR(phy_dev)) { 2041 netdev_err(ndev, "could not attach to PHY\n"); 2042 return PTR_ERR(phy_dev); 2043 } 2044 2045 /* mask with MAC supported features */ 2046 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2047 phy_set_max_speed(phy_dev, 1000); 2048 phy_remove_link_mode(phy_dev, 2049 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2050 #if !defined(CONFIG_M5272) 2051 phy_support_sym_pause(phy_dev); 2052 #endif 2053 } 2054 else 2055 phy_set_max_speed(phy_dev, 100); 2056 2057 fep->link = 0; 2058 fep->full_duplex = 0; 2059 2060 phy_dev->mac_managed_pm = 1; 2061 2062 phy_attached_info(phy_dev); 2063 2064 return 0; 2065 } 2066 2067 static int fec_enet_mii_init(struct platform_device *pdev) 2068 { 2069 static struct mii_bus *fec0_mii_bus; 2070 struct net_device *ndev = platform_get_drvdata(pdev); 2071 struct fec_enet_private *fep = netdev_priv(ndev); 2072 bool suppress_preamble = false; 2073 struct device_node *node; 2074 int err = -ENXIO; 2075 u32 mii_speed, holdtime; 2076 u32 bus_freq; 2077 2078 /* 2079 * The i.MX28 dual fec interfaces are not equal. 2080 * Here are the differences: 2081 * 2082 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2083 * - fec0 acts as the 1588 time master while fec1 is slave 2084 * - external phys can only be configured by fec0 2085 * 2086 * That is to say fec1 can not work independently. It only works 2087 * when fec0 is working. The reason behind this design is that the 2088 * second interface is added primarily for Switch mode. 2089 * 2090 * Because of the last point above, both phys are attached on fec0 2091 * mdio interface in board design, and need to be configured by 2092 * fec0 mii_bus. 2093 */ 2094 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2095 /* fec1 uses fec0 mii_bus */ 2096 if (mii_cnt && fec0_mii_bus) { 2097 fep->mii_bus = fec0_mii_bus; 2098 mii_cnt++; 2099 return 0; 2100 } 2101 return -ENOENT; 2102 } 2103 2104 bus_freq = 2500000; /* 2.5MHz by default */ 2105 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2106 if (node) { 2107 of_property_read_u32(node, "clock-frequency", &bus_freq); 2108 suppress_preamble = of_property_read_bool(node, 2109 "suppress-preamble"); 2110 } 2111 2112 /* 2113 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2114 * 2115 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2116 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2117 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2118 * document. 2119 */ 2120 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2121 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2122 mii_speed--; 2123 if (mii_speed > 63) { 2124 dev_err(&pdev->dev, 2125 "fec clock (%lu) too fast to get right mii speed\n", 2126 clk_get_rate(fep->clk_ipg)); 2127 err = -EINVAL; 2128 goto err_out; 2129 } 2130 2131 /* 2132 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2133 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2134 * versions are RAZ there, so just ignore the difference and write the 2135 * register always. 2136 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2137 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2138 * output. 2139 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2140 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2141 * holdtime cannot result in a value greater than 3. 2142 */ 2143 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2144 2145 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2146 2147 if (suppress_preamble) 2148 fep->phy_speed |= BIT(7); 2149 2150 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2151 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2152 * MII event generation condition: 2153 * - writing MSCR: 2154 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2155 * mscr_reg_data_in[7:0] != 0 2156 * - writing MMFR: 2157 * - mscr[7:0]_not_zero 2158 */ 2159 writel(0, fep->hwp + FEC_MII_DATA); 2160 } 2161 2162 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2163 2164 /* Clear any pending transaction complete indication */ 2165 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2166 2167 fep->mii_bus = mdiobus_alloc(); 2168 if (fep->mii_bus == NULL) { 2169 err = -ENOMEM; 2170 goto err_out; 2171 } 2172 2173 fep->mii_bus->name = "fec_enet_mii_bus"; 2174 fep->mii_bus->read = fec_enet_mdio_read; 2175 fep->mii_bus->write = fec_enet_mdio_write; 2176 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2177 pdev->name, fep->dev_id + 1); 2178 fep->mii_bus->priv = fep; 2179 fep->mii_bus->parent = &pdev->dev; 2180 2181 err = of_mdiobus_register(fep->mii_bus, node); 2182 if (err) 2183 goto err_out_free_mdiobus; 2184 of_node_put(node); 2185 2186 mii_cnt++; 2187 2188 /* save fec0 mii_bus */ 2189 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2190 fec0_mii_bus = fep->mii_bus; 2191 2192 return 0; 2193 2194 err_out_free_mdiobus: 2195 mdiobus_free(fep->mii_bus); 2196 err_out: 2197 of_node_put(node); 2198 return err; 2199 } 2200 2201 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2202 { 2203 if (--mii_cnt == 0) { 2204 mdiobus_unregister(fep->mii_bus); 2205 mdiobus_free(fep->mii_bus); 2206 } 2207 } 2208 2209 static void fec_enet_get_drvinfo(struct net_device *ndev, 2210 struct ethtool_drvinfo *info) 2211 { 2212 struct fec_enet_private *fep = netdev_priv(ndev); 2213 2214 strlcpy(info->driver, fep->pdev->dev.driver->name, 2215 sizeof(info->driver)); 2216 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2217 } 2218 2219 static int fec_enet_get_regs_len(struct net_device *ndev) 2220 { 2221 struct fec_enet_private *fep = netdev_priv(ndev); 2222 struct resource *r; 2223 int s = 0; 2224 2225 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2226 if (r) 2227 s = resource_size(r); 2228 2229 return s; 2230 } 2231 2232 /* List of registers that can be safety be read to dump them with ethtool */ 2233 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2234 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2235 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2236 static __u32 fec_enet_register_version = 2; 2237 static u32 fec_enet_register_offset[] = { 2238 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2239 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2240 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2241 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2242 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2243 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2244 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2245 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2246 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2247 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2248 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2249 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2250 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2251 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2252 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2253 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2254 RMON_T_P_GTE2048, RMON_T_OCTETS, 2255 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2256 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2257 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2258 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2259 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2260 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2261 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2262 RMON_R_P_GTE2048, RMON_R_OCTETS, 2263 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2264 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2265 }; 2266 #else 2267 static __u32 fec_enet_register_version = 1; 2268 static u32 fec_enet_register_offset[] = { 2269 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2270 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2271 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2272 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2273 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2274 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2275 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2276 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2277 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2278 }; 2279 #endif 2280 2281 static void fec_enet_get_regs(struct net_device *ndev, 2282 struct ethtool_regs *regs, void *regbuf) 2283 { 2284 struct fec_enet_private *fep = netdev_priv(ndev); 2285 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2286 struct device *dev = &fep->pdev->dev; 2287 u32 *buf = (u32 *)regbuf; 2288 u32 i, off; 2289 int ret; 2290 2291 ret = pm_runtime_resume_and_get(dev); 2292 if (ret < 0) 2293 return; 2294 2295 regs->version = fec_enet_register_version; 2296 2297 memset(buf, 0, regs->len); 2298 2299 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2300 off = fec_enet_register_offset[i]; 2301 2302 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2303 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2304 continue; 2305 2306 off >>= 2; 2307 buf[off] = readl(&theregs[off]); 2308 } 2309 2310 pm_runtime_mark_last_busy(dev); 2311 pm_runtime_put_autosuspend(dev); 2312 } 2313 2314 static int fec_enet_get_ts_info(struct net_device *ndev, 2315 struct ethtool_ts_info *info) 2316 { 2317 struct fec_enet_private *fep = netdev_priv(ndev); 2318 2319 if (fep->bufdesc_ex) { 2320 2321 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2322 SOF_TIMESTAMPING_RX_SOFTWARE | 2323 SOF_TIMESTAMPING_SOFTWARE | 2324 SOF_TIMESTAMPING_TX_HARDWARE | 2325 SOF_TIMESTAMPING_RX_HARDWARE | 2326 SOF_TIMESTAMPING_RAW_HARDWARE; 2327 if (fep->ptp_clock) 2328 info->phc_index = ptp_clock_index(fep->ptp_clock); 2329 else 2330 info->phc_index = -1; 2331 2332 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2333 (1 << HWTSTAMP_TX_ON); 2334 2335 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2336 (1 << HWTSTAMP_FILTER_ALL); 2337 return 0; 2338 } else { 2339 return ethtool_op_get_ts_info(ndev, info); 2340 } 2341 } 2342 2343 #if !defined(CONFIG_M5272) 2344 2345 static void fec_enet_get_pauseparam(struct net_device *ndev, 2346 struct ethtool_pauseparam *pause) 2347 { 2348 struct fec_enet_private *fep = netdev_priv(ndev); 2349 2350 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2351 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2352 pause->rx_pause = pause->tx_pause; 2353 } 2354 2355 static int fec_enet_set_pauseparam(struct net_device *ndev, 2356 struct ethtool_pauseparam *pause) 2357 { 2358 struct fec_enet_private *fep = netdev_priv(ndev); 2359 2360 if (!ndev->phydev) 2361 return -ENODEV; 2362 2363 if (pause->tx_pause != pause->rx_pause) { 2364 netdev_info(ndev, 2365 "hardware only support enable/disable both tx and rx"); 2366 return -EINVAL; 2367 } 2368 2369 fep->pause_flag = 0; 2370 2371 /* tx pause must be same as rx pause */ 2372 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2373 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2374 2375 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2376 pause->autoneg); 2377 2378 if (pause->autoneg) { 2379 if (netif_running(ndev)) 2380 fec_stop(ndev); 2381 phy_start_aneg(ndev->phydev); 2382 } 2383 if (netif_running(ndev)) { 2384 napi_disable(&fep->napi); 2385 netif_tx_lock_bh(ndev); 2386 fec_restart(ndev); 2387 netif_tx_wake_all_queues(ndev); 2388 netif_tx_unlock_bh(ndev); 2389 napi_enable(&fep->napi); 2390 } 2391 2392 return 0; 2393 } 2394 2395 static const struct fec_stat { 2396 char name[ETH_GSTRING_LEN]; 2397 u16 offset; 2398 } fec_stats[] = { 2399 /* RMON TX */ 2400 { "tx_dropped", RMON_T_DROP }, 2401 { "tx_packets", RMON_T_PACKETS }, 2402 { "tx_broadcast", RMON_T_BC_PKT }, 2403 { "tx_multicast", RMON_T_MC_PKT }, 2404 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2405 { "tx_undersize", RMON_T_UNDERSIZE }, 2406 { "tx_oversize", RMON_T_OVERSIZE }, 2407 { "tx_fragment", RMON_T_FRAG }, 2408 { "tx_jabber", RMON_T_JAB }, 2409 { "tx_collision", RMON_T_COL }, 2410 { "tx_64byte", RMON_T_P64 }, 2411 { "tx_65to127byte", RMON_T_P65TO127 }, 2412 { "tx_128to255byte", RMON_T_P128TO255 }, 2413 { "tx_256to511byte", RMON_T_P256TO511 }, 2414 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2415 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2416 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2417 { "tx_octets", RMON_T_OCTETS }, 2418 2419 /* IEEE TX */ 2420 { "IEEE_tx_drop", IEEE_T_DROP }, 2421 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2422 { "IEEE_tx_1col", IEEE_T_1COL }, 2423 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2424 { "IEEE_tx_def", IEEE_T_DEF }, 2425 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2426 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2427 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2428 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2429 { "IEEE_tx_sqe", IEEE_T_SQE }, 2430 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2431 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2432 2433 /* RMON RX */ 2434 { "rx_packets", RMON_R_PACKETS }, 2435 { "rx_broadcast", RMON_R_BC_PKT }, 2436 { "rx_multicast", RMON_R_MC_PKT }, 2437 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2438 { "rx_undersize", RMON_R_UNDERSIZE }, 2439 { "rx_oversize", RMON_R_OVERSIZE }, 2440 { "rx_fragment", RMON_R_FRAG }, 2441 { "rx_jabber", RMON_R_JAB }, 2442 { "rx_64byte", RMON_R_P64 }, 2443 { "rx_65to127byte", RMON_R_P65TO127 }, 2444 { "rx_128to255byte", RMON_R_P128TO255 }, 2445 { "rx_256to511byte", RMON_R_P256TO511 }, 2446 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2447 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2448 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2449 { "rx_octets", RMON_R_OCTETS }, 2450 2451 /* IEEE RX */ 2452 { "IEEE_rx_drop", IEEE_R_DROP }, 2453 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2454 { "IEEE_rx_crc", IEEE_R_CRC }, 2455 { "IEEE_rx_align", IEEE_R_ALIGN }, 2456 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2457 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2458 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2459 }; 2460 2461 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2462 2463 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2464 { 2465 struct fec_enet_private *fep = netdev_priv(dev); 2466 int i; 2467 2468 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2469 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2470 } 2471 2472 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2473 struct ethtool_stats *stats, u64 *data) 2474 { 2475 struct fec_enet_private *fep = netdev_priv(dev); 2476 2477 if (netif_running(dev)) 2478 fec_enet_update_ethtool_stats(dev); 2479 2480 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2481 } 2482 2483 static void fec_enet_get_strings(struct net_device *netdev, 2484 u32 stringset, u8 *data) 2485 { 2486 int i; 2487 switch (stringset) { 2488 case ETH_SS_STATS: 2489 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2490 memcpy(data + i * ETH_GSTRING_LEN, 2491 fec_stats[i].name, ETH_GSTRING_LEN); 2492 break; 2493 case ETH_SS_TEST: 2494 net_selftest_get_strings(data); 2495 break; 2496 } 2497 } 2498 2499 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2500 { 2501 switch (sset) { 2502 case ETH_SS_STATS: 2503 return ARRAY_SIZE(fec_stats); 2504 case ETH_SS_TEST: 2505 return net_selftest_get_count(); 2506 default: 2507 return -EOPNOTSUPP; 2508 } 2509 } 2510 2511 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2512 { 2513 struct fec_enet_private *fep = netdev_priv(dev); 2514 int i; 2515 2516 /* Disable MIB statistics counters */ 2517 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2518 2519 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2520 writel(0, fep->hwp + fec_stats[i].offset); 2521 2522 /* Don't disable MIB statistics counters */ 2523 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2524 } 2525 2526 #else /* !defined(CONFIG_M5272) */ 2527 #define FEC_STATS_SIZE 0 2528 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2529 { 2530 } 2531 2532 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2533 { 2534 } 2535 #endif /* !defined(CONFIG_M5272) */ 2536 2537 /* ITR clock source is enet system clock (clk_ahb). 2538 * TCTT unit is cycle_ns * 64 cycle 2539 * So, the ICTT value = X us / (cycle_ns * 64) 2540 */ 2541 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2542 { 2543 struct fec_enet_private *fep = netdev_priv(ndev); 2544 2545 return us * (fep->itr_clk_rate / 64000) / 1000; 2546 } 2547 2548 /* Set threshold for interrupt coalescing */ 2549 static void fec_enet_itr_coal_set(struct net_device *ndev) 2550 { 2551 struct fec_enet_private *fep = netdev_priv(ndev); 2552 int rx_itr, tx_itr; 2553 2554 /* Must be greater than zero to avoid unpredictable behavior */ 2555 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2556 !fep->tx_time_itr || !fep->tx_pkts_itr) 2557 return; 2558 2559 /* Select enet system clock as Interrupt Coalescing 2560 * timer Clock Source 2561 */ 2562 rx_itr = FEC_ITR_CLK_SEL; 2563 tx_itr = FEC_ITR_CLK_SEL; 2564 2565 /* set ICFT and ICTT */ 2566 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2567 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2568 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2569 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2570 2571 rx_itr |= FEC_ITR_EN; 2572 tx_itr |= FEC_ITR_EN; 2573 2574 writel(tx_itr, fep->hwp + FEC_TXIC0); 2575 writel(rx_itr, fep->hwp + FEC_RXIC0); 2576 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 2577 writel(tx_itr, fep->hwp + FEC_TXIC1); 2578 writel(rx_itr, fep->hwp + FEC_RXIC1); 2579 writel(tx_itr, fep->hwp + FEC_TXIC2); 2580 writel(rx_itr, fep->hwp + FEC_RXIC2); 2581 } 2582 } 2583 2584 static int 2585 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2586 { 2587 struct fec_enet_private *fep = netdev_priv(ndev); 2588 2589 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2590 return -EOPNOTSUPP; 2591 2592 ec->rx_coalesce_usecs = fep->rx_time_itr; 2593 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2594 2595 ec->tx_coalesce_usecs = fep->tx_time_itr; 2596 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2597 2598 return 0; 2599 } 2600 2601 static int 2602 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2603 { 2604 struct fec_enet_private *fep = netdev_priv(ndev); 2605 struct device *dev = &fep->pdev->dev; 2606 unsigned int cycle; 2607 2608 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2609 return -EOPNOTSUPP; 2610 2611 if (ec->rx_max_coalesced_frames > 255) { 2612 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2613 return -EINVAL; 2614 } 2615 2616 if (ec->tx_max_coalesced_frames > 255) { 2617 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2618 return -EINVAL; 2619 } 2620 2621 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2622 if (cycle > 0xFFFF) { 2623 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2624 return -EINVAL; 2625 } 2626 2627 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2628 if (cycle > 0xFFFF) { 2629 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2630 return -EINVAL; 2631 } 2632 2633 fep->rx_time_itr = ec->rx_coalesce_usecs; 2634 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2635 2636 fep->tx_time_itr = ec->tx_coalesce_usecs; 2637 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2638 2639 fec_enet_itr_coal_set(ndev); 2640 2641 return 0; 2642 } 2643 2644 static void fec_enet_itr_coal_init(struct net_device *ndev) 2645 { 2646 struct ethtool_coalesce ec; 2647 2648 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2649 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2650 2651 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2652 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2653 2654 fec_enet_set_coalesce(ndev, &ec); 2655 } 2656 2657 static int fec_enet_get_tunable(struct net_device *netdev, 2658 const struct ethtool_tunable *tuna, 2659 void *data) 2660 { 2661 struct fec_enet_private *fep = netdev_priv(netdev); 2662 int ret = 0; 2663 2664 switch (tuna->id) { 2665 case ETHTOOL_RX_COPYBREAK: 2666 *(u32 *)data = fep->rx_copybreak; 2667 break; 2668 default: 2669 ret = -EINVAL; 2670 break; 2671 } 2672 2673 return ret; 2674 } 2675 2676 static int fec_enet_set_tunable(struct net_device *netdev, 2677 const struct ethtool_tunable *tuna, 2678 const void *data) 2679 { 2680 struct fec_enet_private *fep = netdev_priv(netdev); 2681 int ret = 0; 2682 2683 switch (tuna->id) { 2684 case ETHTOOL_RX_COPYBREAK: 2685 fep->rx_copybreak = *(u32 *)data; 2686 break; 2687 default: 2688 ret = -EINVAL; 2689 break; 2690 } 2691 2692 return ret; 2693 } 2694 2695 static void 2696 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2697 { 2698 struct fec_enet_private *fep = netdev_priv(ndev); 2699 2700 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2701 wol->supported = WAKE_MAGIC; 2702 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2703 } else { 2704 wol->supported = wol->wolopts = 0; 2705 } 2706 } 2707 2708 static int 2709 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2710 { 2711 struct fec_enet_private *fep = netdev_priv(ndev); 2712 2713 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2714 return -EINVAL; 2715 2716 if (wol->wolopts & ~WAKE_MAGIC) 2717 return -EINVAL; 2718 2719 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2720 if (device_may_wakeup(&ndev->dev)) { 2721 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2722 if (fep->irq[0] > 0) 2723 enable_irq_wake(fep->irq[0]); 2724 } else { 2725 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2726 if (fep->irq[0] > 0) 2727 disable_irq_wake(fep->irq[0]); 2728 } 2729 2730 return 0; 2731 } 2732 2733 static const struct ethtool_ops fec_enet_ethtool_ops = { 2734 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 2735 ETHTOOL_COALESCE_MAX_FRAMES, 2736 .get_drvinfo = fec_enet_get_drvinfo, 2737 .get_regs_len = fec_enet_get_regs_len, 2738 .get_regs = fec_enet_get_regs, 2739 .nway_reset = phy_ethtool_nway_reset, 2740 .get_link = ethtool_op_get_link, 2741 .get_coalesce = fec_enet_get_coalesce, 2742 .set_coalesce = fec_enet_set_coalesce, 2743 #ifndef CONFIG_M5272 2744 .get_pauseparam = fec_enet_get_pauseparam, 2745 .set_pauseparam = fec_enet_set_pauseparam, 2746 .get_strings = fec_enet_get_strings, 2747 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2748 .get_sset_count = fec_enet_get_sset_count, 2749 #endif 2750 .get_ts_info = fec_enet_get_ts_info, 2751 .get_tunable = fec_enet_get_tunable, 2752 .set_tunable = fec_enet_set_tunable, 2753 .get_wol = fec_enet_get_wol, 2754 .set_wol = fec_enet_set_wol, 2755 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2756 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2757 .self_test = net_selftest, 2758 }; 2759 2760 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2761 { 2762 struct fec_enet_private *fep = netdev_priv(ndev); 2763 struct phy_device *phydev = ndev->phydev; 2764 2765 if (!netif_running(ndev)) 2766 return -EINVAL; 2767 2768 if (!phydev) 2769 return -ENODEV; 2770 2771 if (fep->bufdesc_ex) { 2772 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 2773 2774 if (cmd == SIOCSHWTSTAMP) { 2775 if (use_fec_hwts) 2776 return fec_ptp_set(ndev, rq); 2777 fec_ptp_disable_hwts(ndev); 2778 } else if (cmd == SIOCGHWTSTAMP) { 2779 if (use_fec_hwts) 2780 return fec_ptp_get(ndev, rq); 2781 } 2782 } 2783 2784 return phy_mii_ioctl(phydev, rq, cmd); 2785 } 2786 2787 static void fec_enet_free_buffers(struct net_device *ndev) 2788 { 2789 struct fec_enet_private *fep = netdev_priv(ndev); 2790 unsigned int i; 2791 struct sk_buff *skb; 2792 struct bufdesc *bdp; 2793 struct fec_enet_priv_tx_q *txq; 2794 struct fec_enet_priv_rx_q *rxq; 2795 unsigned int q; 2796 2797 for (q = 0; q < fep->num_rx_queues; q++) { 2798 rxq = fep->rx_queue[q]; 2799 bdp = rxq->bd.base; 2800 for (i = 0; i < rxq->bd.ring_size; i++) { 2801 skb = rxq->rx_skbuff[i]; 2802 rxq->rx_skbuff[i] = NULL; 2803 if (skb) { 2804 dma_unmap_single(&fep->pdev->dev, 2805 fec32_to_cpu(bdp->cbd_bufaddr), 2806 FEC_ENET_RX_FRSIZE - fep->rx_align, 2807 DMA_FROM_DEVICE); 2808 dev_kfree_skb(skb); 2809 } 2810 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2811 } 2812 } 2813 2814 for (q = 0; q < fep->num_tx_queues; q++) { 2815 txq = fep->tx_queue[q]; 2816 for (i = 0; i < txq->bd.ring_size; i++) { 2817 kfree(txq->tx_bounce[i]); 2818 txq->tx_bounce[i] = NULL; 2819 skb = txq->tx_skbuff[i]; 2820 txq->tx_skbuff[i] = NULL; 2821 dev_kfree_skb(skb); 2822 } 2823 } 2824 } 2825 2826 static void fec_enet_free_queue(struct net_device *ndev) 2827 { 2828 struct fec_enet_private *fep = netdev_priv(ndev); 2829 int i; 2830 struct fec_enet_priv_tx_q *txq; 2831 2832 for (i = 0; i < fep->num_tx_queues; i++) 2833 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 2834 txq = fep->tx_queue[i]; 2835 dma_free_coherent(&fep->pdev->dev, 2836 txq->bd.ring_size * TSO_HEADER_SIZE, 2837 txq->tso_hdrs, 2838 txq->tso_hdrs_dma); 2839 } 2840 2841 for (i = 0; i < fep->num_rx_queues; i++) 2842 kfree(fep->rx_queue[i]); 2843 for (i = 0; i < fep->num_tx_queues; i++) 2844 kfree(fep->tx_queue[i]); 2845 } 2846 2847 static int fec_enet_alloc_queue(struct net_device *ndev) 2848 { 2849 struct fec_enet_private *fep = netdev_priv(ndev); 2850 int i; 2851 int ret = 0; 2852 struct fec_enet_priv_tx_q *txq; 2853 2854 for (i = 0; i < fep->num_tx_queues; i++) { 2855 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 2856 if (!txq) { 2857 ret = -ENOMEM; 2858 goto alloc_failed; 2859 } 2860 2861 fep->tx_queue[i] = txq; 2862 txq->bd.ring_size = TX_RING_SIZE; 2863 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 2864 2865 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 2866 txq->tx_wake_threshold = 2867 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 2868 2869 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 2870 txq->bd.ring_size * TSO_HEADER_SIZE, 2871 &txq->tso_hdrs_dma, 2872 GFP_KERNEL); 2873 if (!txq->tso_hdrs) { 2874 ret = -ENOMEM; 2875 goto alloc_failed; 2876 } 2877 } 2878 2879 for (i = 0; i < fep->num_rx_queues; i++) { 2880 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 2881 GFP_KERNEL); 2882 if (!fep->rx_queue[i]) { 2883 ret = -ENOMEM; 2884 goto alloc_failed; 2885 } 2886 2887 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 2888 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 2889 } 2890 return ret; 2891 2892 alloc_failed: 2893 fec_enet_free_queue(ndev); 2894 return ret; 2895 } 2896 2897 static int 2898 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 2899 { 2900 struct fec_enet_private *fep = netdev_priv(ndev); 2901 unsigned int i; 2902 struct sk_buff *skb; 2903 struct bufdesc *bdp; 2904 struct fec_enet_priv_rx_q *rxq; 2905 2906 rxq = fep->rx_queue[queue]; 2907 bdp = rxq->bd.base; 2908 for (i = 0; i < rxq->bd.ring_size; i++) { 2909 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 2910 if (!skb) 2911 goto err_alloc; 2912 2913 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 2914 dev_kfree_skb(skb); 2915 goto err_alloc; 2916 } 2917 2918 rxq->rx_skbuff[i] = skb; 2919 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 2920 2921 if (fep->bufdesc_ex) { 2922 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2923 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2924 } 2925 2926 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2927 } 2928 2929 /* Set the last buffer to wrap. */ 2930 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 2931 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2932 return 0; 2933 2934 err_alloc: 2935 fec_enet_free_buffers(ndev); 2936 return -ENOMEM; 2937 } 2938 2939 static int 2940 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 2941 { 2942 struct fec_enet_private *fep = netdev_priv(ndev); 2943 unsigned int i; 2944 struct bufdesc *bdp; 2945 struct fec_enet_priv_tx_q *txq; 2946 2947 txq = fep->tx_queue[queue]; 2948 bdp = txq->bd.base; 2949 for (i = 0; i < txq->bd.ring_size; i++) { 2950 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 2951 if (!txq->tx_bounce[i]) 2952 goto err_alloc; 2953 2954 bdp->cbd_sc = cpu_to_fec16(0); 2955 bdp->cbd_bufaddr = cpu_to_fec32(0); 2956 2957 if (fep->bufdesc_ex) { 2958 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2959 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 2960 } 2961 2962 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 2963 } 2964 2965 /* Set the last buffer to wrap. */ 2966 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 2967 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2968 2969 return 0; 2970 2971 err_alloc: 2972 fec_enet_free_buffers(ndev); 2973 return -ENOMEM; 2974 } 2975 2976 static int fec_enet_alloc_buffers(struct net_device *ndev) 2977 { 2978 struct fec_enet_private *fep = netdev_priv(ndev); 2979 unsigned int i; 2980 2981 for (i = 0; i < fep->num_rx_queues; i++) 2982 if (fec_enet_alloc_rxq_buffers(ndev, i)) 2983 return -ENOMEM; 2984 2985 for (i = 0; i < fep->num_tx_queues; i++) 2986 if (fec_enet_alloc_txq_buffers(ndev, i)) 2987 return -ENOMEM; 2988 return 0; 2989 } 2990 2991 static int 2992 fec_enet_open(struct net_device *ndev) 2993 { 2994 struct fec_enet_private *fep = netdev_priv(ndev); 2995 int ret; 2996 bool reset_again; 2997 2998 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 2999 if (ret < 0) 3000 return ret; 3001 3002 pinctrl_pm_select_default_state(&fep->pdev->dev); 3003 ret = fec_enet_clk_enable(ndev, true); 3004 if (ret) 3005 goto clk_enable; 3006 3007 /* During the first fec_enet_open call the PHY isn't probed at this 3008 * point. Therefore the phy_reset_after_clk_enable() call within 3009 * fec_enet_clk_enable() fails. As we need this reset in order to be 3010 * sure the PHY is working correctly we check if we need to reset again 3011 * later when the PHY is probed 3012 */ 3013 if (ndev->phydev && ndev->phydev->drv) 3014 reset_again = false; 3015 else 3016 reset_again = true; 3017 3018 /* I should reset the ring buffers here, but I don't yet know 3019 * a simple way to do that. 3020 */ 3021 3022 ret = fec_enet_alloc_buffers(ndev); 3023 if (ret) 3024 goto err_enet_alloc; 3025 3026 /* Init MAC prior to mii bus probe */ 3027 fec_restart(ndev); 3028 3029 /* Call phy_reset_after_clk_enable() again if it failed during 3030 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3031 */ 3032 if (reset_again) 3033 fec_enet_phy_reset_after_clk_enable(ndev); 3034 3035 /* Probe and connect to PHY when open the interface */ 3036 ret = fec_enet_mii_probe(ndev); 3037 if (ret) 3038 goto err_enet_mii_probe; 3039 3040 if (fep->quirks & FEC_QUIRK_ERR006687) 3041 imx6q_cpuidle_fec_irqs_used(); 3042 3043 napi_enable(&fep->napi); 3044 phy_start(ndev->phydev); 3045 netif_tx_start_all_queues(ndev); 3046 3047 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3048 FEC_WOL_FLAG_ENABLE); 3049 3050 return 0; 3051 3052 err_enet_mii_probe: 3053 fec_enet_free_buffers(ndev); 3054 err_enet_alloc: 3055 fec_enet_clk_enable(ndev, false); 3056 clk_enable: 3057 pm_runtime_mark_last_busy(&fep->pdev->dev); 3058 pm_runtime_put_autosuspend(&fep->pdev->dev); 3059 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3060 return ret; 3061 } 3062 3063 static int 3064 fec_enet_close(struct net_device *ndev) 3065 { 3066 struct fec_enet_private *fep = netdev_priv(ndev); 3067 3068 phy_stop(ndev->phydev); 3069 3070 if (netif_device_present(ndev)) { 3071 napi_disable(&fep->napi); 3072 netif_tx_disable(ndev); 3073 fec_stop(ndev); 3074 } 3075 3076 phy_disconnect(ndev->phydev); 3077 3078 if (fep->quirks & FEC_QUIRK_ERR006687) 3079 imx6q_cpuidle_fec_irqs_unused(); 3080 3081 fec_enet_update_ethtool_stats(ndev); 3082 3083 fec_enet_clk_enable(ndev, false); 3084 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3085 pm_runtime_mark_last_busy(&fep->pdev->dev); 3086 pm_runtime_put_autosuspend(&fep->pdev->dev); 3087 3088 fec_enet_free_buffers(ndev); 3089 3090 return 0; 3091 } 3092 3093 /* Set or clear the multicast filter for this adaptor. 3094 * Skeleton taken from sunlance driver. 3095 * The CPM Ethernet implementation allows Multicast as well as individual 3096 * MAC address filtering. Some of the drivers check to make sure it is 3097 * a group multicast address, and discard those that are not. I guess I 3098 * will do the same for now, but just remove the test if you want 3099 * individual filtering as well (do the upper net layers want or support 3100 * this kind of feature?). 3101 */ 3102 3103 #define FEC_HASH_BITS 6 /* #bits in hash */ 3104 3105 static void set_multicast_list(struct net_device *ndev) 3106 { 3107 struct fec_enet_private *fep = netdev_priv(ndev); 3108 struct netdev_hw_addr *ha; 3109 unsigned int crc, tmp; 3110 unsigned char hash; 3111 unsigned int hash_high = 0, hash_low = 0; 3112 3113 if (ndev->flags & IFF_PROMISC) { 3114 tmp = readl(fep->hwp + FEC_R_CNTRL); 3115 tmp |= 0x8; 3116 writel(tmp, fep->hwp + FEC_R_CNTRL); 3117 return; 3118 } 3119 3120 tmp = readl(fep->hwp + FEC_R_CNTRL); 3121 tmp &= ~0x8; 3122 writel(tmp, fep->hwp + FEC_R_CNTRL); 3123 3124 if (ndev->flags & IFF_ALLMULTI) { 3125 /* Catch all multicast addresses, so set the 3126 * filter to all 1's 3127 */ 3128 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3129 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3130 3131 return; 3132 } 3133 3134 /* Add the addresses in hash register */ 3135 netdev_for_each_mc_addr(ha, ndev) { 3136 /* calculate crc32 value of mac address */ 3137 crc = ether_crc_le(ndev->addr_len, ha->addr); 3138 3139 /* only upper 6 bits (FEC_HASH_BITS) are used 3140 * which point to specific bit in the hash registers 3141 */ 3142 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3143 3144 if (hash > 31) 3145 hash_high |= 1 << (hash - 32); 3146 else 3147 hash_low |= 1 << hash; 3148 } 3149 3150 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3151 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3152 } 3153 3154 /* Set a MAC change in hardware. */ 3155 static int 3156 fec_set_mac_address(struct net_device *ndev, void *p) 3157 { 3158 struct fec_enet_private *fep = netdev_priv(ndev); 3159 struct sockaddr *addr = p; 3160 3161 if (addr) { 3162 if (!is_valid_ether_addr(addr->sa_data)) 3163 return -EADDRNOTAVAIL; 3164 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 3165 } 3166 3167 /* Add netif status check here to avoid system hang in below case: 3168 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3169 * After ethx down, fec all clocks are gated off and then register 3170 * access causes system hang. 3171 */ 3172 if (!netif_running(ndev)) 3173 return 0; 3174 3175 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3176 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3177 fep->hwp + FEC_ADDR_LOW); 3178 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3179 fep->hwp + FEC_ADDR_HIGH); 3180 return 0; 3181 } 3182 3183 #ifdef CONFIG_NET_POLL_CONTROLLER 3184 /** 3185 * fec_poll_controller - FEC Poll controller function 3186 * @dev: The FEC network adapter 3187 * 3188 * Polled functionality used by netconsole and others in non interrupt mode 3189 * 3190 */ 3191 static void fec_poll_controller(struct net_device *dev) 3192 { 3193 int i; 3194 struct fec_enet_private *fep = netdev_priv(dev); 3195 3196 for (i = 0; i < FEC_IRQ_NUM; i++) { 3197 if (fep->irq[i] > 0) { 3198 disable_irq(fep->irq[i]); 3199 fec_enet_interrupt(fep->irq[i], dev); 3200 enable_irq(fep->irq[i]); 3201 } 3202 } 3203 } 3204 #endif 3205 3206 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3207 netdev_features_t features) 3208 { 3209 struct fec_enet_private *fep = netdev_priv(netdev); 3210 netdev_features_t changed = features ^ netdev->features; 3211 3212 netdev->features = features; 3213 3214 /* Receive checksum has been changed */ 3215 if (changed & NETIF_F_RXCSUM) { 3216 if (features & NETIF_F_RXCSUM) 3217 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3218 else 3219 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3220 } 3221 } 3222 3223 static int fec_set_features(struct net_device *netdev, 3224 netdev_features_t features) 3225 { 3226 struct fec_enet_private *fep = netdev_priv(netdev); 3227 netdev_features_t changed = features ^ netdev->features; 3228 3229 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3230 napi_disable(&fep->napi); 3231 netif_tx_lock_bh(netdev); 3232 fec_stop(netdev); 3233 fec_enet_set_netdev_features(netdev, features); 3234 fec_restart(netdev); 3235 netif_tx_wake_all_queues(netdev); 3236 netif_tx_unlock_bh(netdev); 3237 napi_enable(&fep->napi); 3238 } else { 3239 fec_enet_set_netdev_features(netdev, features); 3240 } 3241 3242 return 0; 3243 } 3244 3245 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb) 3246 { 3247 struct vlan_ethhdr *vhdr; 3248 unsigned short vlan_TCI = 0; 3249 3250 if (skb->protocol == htons(ETH_P_ALL)) { 3251 vhdr = (struct vlan_ethhdr *)(skb->data); 3252 vlan_TCI = ntohs(vhdr->h_vlan_TCI); 3253 } 3254 3255 return vlan_TCI; 3256 } 3257 3258 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3259 struct net_device *sb_dev) 3260 { 3261 struct fec_enet_private *fep = netdev_priv(ndev); 3262 u16 vlan_tag; 3263 3264 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3265 return netdev_pick_tx(ndev, skb, NULL); 3266 3267 vlan_tag = fec_enet_get_raw_vlan_tci(skb); 3268 if (!vlan_tag) 3269 return vlan_tag; 3270 3271 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3272 } 3273 3274 static const struct net_device_ops fec_netdev_ops = { 3275 .ndo_open = fec_enet_open, 3276 .ndo_stop = fec_enet_close, 3277 .ndo_start_xmit = fec_enet_start_xmit, 3278 .ndo_select_queue = fec_enet_select_queue, 3279 .ndo_set_rx_mode = set_multicast_list, 3280 .ndo_validate_addr = eth_validate_addr, 3281 .ndo_tx_timeout = fec_timeout, 3282 .ndo_set_mac_address = fec_set_mac_address, 3283 .ndo_do_ioctl = fec_enet_ioctl, 3284 #ifdef CONFIG_NET_POLL_CONTROLLER 3285 .ndo_poll_controller = fec_poll_controller, 3286 #endif 3287 .ndo_set_features = fec_set_features, 3288 }; 3289 3290 static const unsigned short offset_des_active_rxq[] = { 3291 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3292 }; 3293 3294 static const unsigned short offset_des_active_txq[] = { 3295 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3296 }; 3297 3298 /* 3299 * XXX: We need to clean up on failure exits here. 3300 * 3301 */ 3302 static int fec_enet_init(struct net_device *ndev) 3303 { 3304 struct fec_enet_private *fep = netdev_priv(ndev); 3305 struct bufdesc *cbd_base; 3306 dma_addr_t bd_dma; 3307 int bd_size; 3308 unsigned int i; 3309 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3310 sizeof(struct bufdesc); 3311 unsigned dsize_log2 = __fls(dsize); 3312 int ret; 3313 3314 WARN_ON(dsize != (1 << dsize_log2)); 3315 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3316 fep->rx_align = 0xf; 3317 fep->tx_align = 0xf; 3318 #else 3319 fep->rx_align = 0x3; 3320 fep->tx_align = 0x3; 3321 #endif 3322 3323 /* Check mask of the streaming and coherent API */ 3324 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3325 if (ret < 0) { 3326 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3327 return ret; 3328 } 3329 3330 ret = fec_enet_alloc_queue(ndev); 3331 if (ret) 3332 return ret; 3333 3334 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3335 3336 /* Allocate memory for buffer descriptors. */ 3337 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3338 GFP_KERNEL); 3339 if (!cbd_base) { 3340 ret = -ENOMEM; 3341 goto free_queue_mem; 3342 } 3343 3344 /* Get the Ethernet address */ 3345 ret = fec_get_mac(ndev); 3346 if (ret) 3347 goto free_queue_mem; 3348 3349 /* make sure MAC we just acquired is programmed into the hw */ 3350 fec_set_mac_address(ndev, NULL); 3351 3352 /* Set receive and transmit descriptor base. */ 3353 for (i = 0; i < fep->num_rx_queues; i++) { 3354 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3355 unsigned size = dsize * rxq->bd.ring_size; 3356 3357 rxq->bd.qid = i; 3358 rxq->bd.base = cbd_base; 3359 rxq->bd.cur = cbd_base; 3360 rxq->bd.dma = bd_dma; 3361 rxq->bd.dsize = dsize; 3362 rxq->bd.dsize_log2 = dsize_log2; 3363 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3364 bd_dma += size; 3365 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3366 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3367 } 3368 3369 for (i = 0; i < fep->num_tx_queues; i++) { 3370 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3371 unsigned size = dsize * txq->bd.ring_size; 3372 3373 txq->bd.qid = i; 3374 txq->bd.base = cbd_base; 3375 txq->bd.cur = cbd_base; 3376 txq->bd.dma = bd_dma; 3377 txq->bd.dsize = dsize; 3378 txq->bd.dsize_log2 = dsize_log2; 3379 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3380 bd_dma += size; 3381 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3382 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3383 } 3384 3385 3386 /* The FEC Ethernet specific entries in the device structure */ 3387 ndev->watchdog_timeo = TX_TIMEOUT; 3388 ndev->netdev_ops = &fec_netdev_ops; 3389 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3390 3391 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3392 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3393 3394 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3395 /* enable hw VLAN support */ 3396 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3397 3398 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3399 ndev->gso_max_segs = FEC_MAX_TSO_SEGS; 3400 3401 /* enable hw accelerator */ 3402 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3403 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3404 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3405 } 3406 3407 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3408 fep->tx_align = 0; 3409 fep->rx_align = 0x3f; 3410 } 3411 3412 ndev->hw_features = ndev->features; 3413 3414 fec_restart(ndev); 3415 3416 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3417 fec_enet_clear_ethtool_stats(ndev); 3418 else 3419 fec_enet_update_ethtool_stats(ndev); 3420 3421 return 0; 3422 3423 free_queue_mem: 3424 fec_enet_free_queue(ndev); 3425 return ret; 3426 } 3427 3428 #ifdef CONFIG_OF 3429 static int fec_reset_phy(struct platform_device *pdev) 3430 { 3431 int err, phy_reset; 3432 bool active_high = false; 3433 int msec = 1, phy_post_delay = 0; 3434 struct device_node *np = pdev->dev.of_node; 3435 3436 if (!np) 3437 return 0; 3438 3439 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3440 /* A sane reset duration should not be longer than 1s */ 3441 if (!err && msec > 1000) 3442 msec = 1; 3443 3444 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3445 if (phy_reset == -EPROBE_DEFER) 3446 return phy_reset; 3447 else if (!gpio_is_valid(phy_reset)) 3448 return 0; 3449 3450 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3451 /* valid reset duration should be less than 1s */ 3452 if (!err && phy_post_delay > 1000) 3453 return -EINVAL; 3454 3455 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3456 3457 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3458 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3459 "phy-reset"); 3460 if (err) { 3461 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3462 return err; 3463 } 3464 3465 if (msec > 20) 3466 msleep(msec); 3467 else 3468 usleep_range(msec * 1000, msec * 1000 + 1000); 3469 3470 gpio_set_value_cansleep(phy_reset, !active_high); 3471 3472 if (!phy_post_delay) 3473 return 0; 3474 3475 if (phy_post_delay > 20) 3476 msleep(phy_post_delay); 3477 else 3478 usleep_range(phy_post_delay * 1000, 3479 phy_post_delay * 1000 + 1000); 3480 3481 return 0; 3482 } 3483 #else /* CONFIG_OF */ 3484 static int fec_reset_phy(struct platform_device *pdev) 3485 { 3486 /* 3487 * In case of platform probe, the reset has been done 3488 * by machine code. 3489 */ 3490 return 0; 3491 } 3492 #endif /* CONFIG_OF */ 3493 3494 static void 3495 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3496 { 3497 struct device_node *np = pdev->dev.of_node; 3498 3499 *num_tx = *num_rx = 1; 3500 3501 if (!np || !of_device_is_available(np)) 3502 return; 3503 3504 /* parse the num of tx and rx queues */ 3505 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3506 3507 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3508 3509 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3510 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3511 *num_tx); 3512 *num_tx = 1; 3513 return; 3514 } 3515 3516 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3517 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3518 *num_rx); 3519 *num_rx = 1; 3520 return; 3521 } 3522 3523 } 3524 3525 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3526 { 3527 int irq_cnt = platform_irq_count(pdev); 3528 3529 if (irq_cnt > FEC_IRQ_NUM) 3530 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 3531 else if (irq_cnt == 2) 3532 irq_cnt = 1; /* last for pps */ 3533 else if (irq_cnt <= 0) 3534 irq_cnt = 1; /* At least 1 irq is needed */ 3535 return irq_cnt; 3536 } 3537 3538 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 3539 struct device_node *np) 3540 { 3541 struct device_node *gpr_np; 3542 u32 out_val[3]; 3543 int ret = 0; 3544 3545 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 3546 if (!gpr_np) 3547 return 0; 3548 3549 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 3550 ARRAY_SIZE(out_val)); 3551 if (ret) { 3552 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 3553 return ret; 3554 } 3555 3556 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 3557 if (IS_ERR(fep->stop_gpr.gpr)) { 3558 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 3559 ret = PTR_ERR(fep->stop_gpr.gpr); 3560 fep->stop_gpr.gpr = NULL; 3561 goto out; 3562 } 3563 3564 fep->stop_gpr.reg = out_val[1]; 3565 fep->stop_gpr.bit = out_val[2]; 3566 3567 out: 3568 of_node_put(gpr_np); 3569 3570 return ret; 3571 } 3572 3573 static int 3574 fec_probe(struct platform_device *pdev) 3575 { 3576 struct fec_enet_private *fep; 3577 struct fec_platform_data *pdata; 3578 phy_interface_t interface; 3579 struct net_device *ndev; 3580 int i, irq, ret = 0; 3581 const struct of_device_id *of_id; 3582 static int dev_id; 3583 struct device_node *np = pdev->dev.of_node, *phy_node; 3584 int num_tx_qs; 3585 int num_rx_qs; 3586 char irq_name[8]; 3587 int irq_cnt; 3588 struct fec_devinfo *dev_info; 3589 3590 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3591 3592 /* Init network device */ 3593 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3594 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3595 if (!ndev) 3596 return -ENOMEM; 3597 3598 SET_NETDEV_DEV(ndev, &pdev->dev); 3599 3600 /* setup board info structure */ 3601 fep = netdev_priv(ndev); 3602 3603 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3604 if (of_id) 3605 pdev->id_entry = of_id->data; 3606 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 3607 if (dev_info) 3608 fep->quirks = dev_info->quirks; 3609 3610 fep->netdev = ndev; 3611 fep->num_rx_queues = num_rx_qs; 3612 fep->num_tx_queues = num_tx_qs; 3613 3614 #if !defined(CONFIG_M5272) 3615 /* default enable pause frame auto negotiation */ 3616 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3617 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3618 #endif 3619 3620 /* Select default pin state */ 3621 pinctrl_pm_select_default_state(&pdev->dev); 3622 3623 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 3624 if (IS_ERR(fep->hwp)) { 3625 ret = PTR_ERR(fep->hwp); 3626 goto failed_ioremap; 3627 } 3628 3629 fep->pdev = pdev; 3630 fep->dev_id = dev_id++; 3631 3632 platform_set_drvdata(pdev, ndev); 3633 3634 if ((of_machine_is_compatible("fsl,imx6q") || 3635 of_machine_is_compatible("fsl,imx6dl")) && 3636 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3637 fep->quirks |= FEC_QUIRK_ERR006687; 3638 3639 if (of_get_property(np, "fsl,magic-packet", NULL)) 3640 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3641 3642 ret = fec_enet_init_stop_mode(fep, np); 3643 if (ret) 3644 goto failed_stop_mode; 3645 3646 phy_node = of_parse_phandle(np, "phy-handle", 0); 3647 if (!phy_node && of_phy_is_fixed_link(np)) { 3648 ret = of_phy_register_fixed_link(np); 3649 if (ret < 0) { 3650 dev_err(&pdev->dev, 3651 "broken fixed-link specification\n"); 3652 goto failed_phy; 3653 } 3654 phy_node = of_node_get(np); 3655 } 3656 fep->phy_node = phy_node; 3657 3658 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 3659 if (ret) { 3660 pdata = dev_get_platdata(&pdev->dev); 3661 if (pdata) 3662 fep->phy_interface = pdata->phy; 3663 else 3664 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3665 } else { 3666 fep->phy_interface = interface; 3667 } 3668 3669 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3670 if (IS_ERR(fep->clk_ipg)) { 3671 ret = PTR_ERR(fep->clk_ipg); 3672 goto failed_clk; 3673 } 3674 3675 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3676 if (IS_ERR(fep->clk_ahb)) { 3677 ret = PTR_ERR(fep->clk_ahb); 3678 goto failed_clk; 3679 } 3680 3681 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3682 3683 /* enet_out is optional, depends on board */ 3684 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); 3685 if (IS_ERR(fep->clk_enet_out)) 3686 fep->clk_enet_out = NULL; 3687 3688 fep->ptp_clk_on = false; 3689 mutex_init(&fep->ptp_clk_mutex); 3690 3691 /* clk_ref is optional, depends on board */ 3692 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); 3693 if (IS_ERR(fep->clk_ref)) 3694 fep->clk_ref = NULL; 3695 3696 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3697 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3698 if (IS_ERR(fep->clk_ptp)) { 3699 fep->clk_ptp = NULL; 3700 fep->bufdesc_ex = false; 3701 } 3702 3703 ret = fec_enet_clk_enable(ndev, true); 3704 if (ret) 3705 goto failed_clk; 3706 3707 ret = clk_prepare_enable(fep->clk_ipg); 3708 if (ret) 3709 goto failed_clk_ipg; 3710 ret = clk_prepare_enable(fep->clk_ahb); 3711 if (ret) 3712 goto failed_clk_ahb; 3713 3714 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 3715 if (!IS_ERR(fep->reg_phy)) { 3716 ret = regulator_enable(fep->reg_phy); 3717 if (ret) { 3718 dev_err(&pdev->dev, 3719 "Failed to enable phy regulator: %d\n", ret); 3720 goto failed_regulator; 3721 } 3722 } else { 3723 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 3724 ret = -EPROBE_DEFER; 3725 goto failed_regulator; 3726 } 3727 fep->reg_phy = NULL; 3728 } 3729 3730 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3731 pm_runtime_use_autosuspend(&pdev->dev); 3732 pm_runtime_get_noresume(&pdev->dev); 3733 pm_runtime_set_active(&pdev->dev); 3734 pm_runtime_enable(&pdev->dev); 3735 3736 ret = fec_reset_phy(pdev); 3737 if (ret) 3738 goto failed_reset; 3739 3740 irq_cnt = fec_enet_get_irq_cnt(pdev); 3741 if (fep->bufdesc_ex) 3742 fec_ptp_init(pdev, irq_cnt); 3743 3744 ret = fec_enet_init(ndev); 3745 if (ret) 3746 goto failed_init; 3747 3748 for (i = 0; i < irq_cnt; i++) { 3749 snprintf(irq_name, sizeof(irq_name), "int%d", i); 3750 irq = platform_get_irq_byname_optional(pdev, irq_name); 3751 if (irq < 0) 3752 irq = platform_get_irq(pdev, i); 3753 if (irq < 0) { 3754 ret = irq; 3755 goto failed_irq; 3756 } 3757 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3758 0, pdev->name, ndev); 3759 if (ret) 3760 goto failed_irq; 3761 3762 fep->irq[i] = irq; 3763 } 3764 3765 ret = fec_enet_mii_init(pdev); 3766 if (ret) 3767 goto failed_mii_init; 3768 3769 /* Carrier starts down, phylib will bring it up */ 3770 netif_carrier_off(ndev); 3771 fec_enet_clk_enable(ndev, false); 3772 pinctrl_pm_select_sleep_state(&pdev->dev); 3773 3774 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 3775 3776 ret = register_netdev(ndev); 3777 if (ret) 3778 goto failed_register; 3779 3780 device_init_wakeup(&ndev->dev, fep->wol_flag & 3781 FEC_WOL_HAS_MAGIC_PACKET); 3782 3783 if (fep->bufdesc_ex && fep->ptp_clock) 3784 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 3785 3786 fep->rx_copybreak = COPYBREAK_DEFAULT; 3787 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 3788 3789 pm_runtime_mark_last_busy(&pdev->dev); 3790 pm_runtime_put_autosuspend(&pdev->dev); 3791 3792 return 0; 3793 3794 failed_register: 3795 fec_enet_mii_remove(fep); 3796 failed_mii_init: 3797 failed_irq: 3798 failed_init: 3799 fec_ptp_stop(pdev); 3800 failed_reset: 3801 pm_runtime_put_noidle(&pdev->dev); 3802 pm_runtime_disable(&pdev->dev); 3803 if (fep->reg_phy) 3804 regulator_disable(fep->reg_phy); 3805 failed_regulator: 3806 clk_disable_unprepare(fep->clk_ahb); 3807 failed_clk_ahb: 3808 clk_disable_unprepare(fep->clk_ipg); 3809 failed_clk_ipg: 3810 fec_enet_clk_enable(ndev, false); 3811 failed_clk: 3812 if (of_phy_is_fixed_link(np)) 3813 of_phy_deregister_fixed_link(np); 3814 of_node_put(phy_node); 3815 failed_stop_mode: 3816 failed_phy: 3817 dev_id--; 3818 failed_ioremap: 3819 free_netdev(ndev); 3820 3821 return ret; 3822 } 3823 3824 static int 3825 fec_drv_remove(struct platform_device *pdev) 3826 { 3827 struct net_device *ndev = platform_get_drvdata(pdev); 3828 struct fec_enet_private *fep = netdev_priv(ndev); 3829 struct device_node *np = pdev->dev.of_node; 3830 int ret; 3831 3832 ret = pm_runtime_resume_and_get(&pdev->dev); 3833 if (ret < 0) 3834 return ret; 3835 3836 cancel_work_sync(&fep->tx_timeout_work); 3837 fec_ptp_stop(pdev); 3838 unregister_netdev(ndev); 3839 fec_enet_mii_remove(fep); 3840 if (fep->reg_phy) 3841 regulator_disable(fep->reg_phy); 3842 3843 if (of_phy_is_fixed_link(np)) 3844 of_phy_deregister_fixed_link(np); 3845 of_node_put(fep->phy_node); 3846 free_netdev(ndev); 3847 3848 clk_disable_unprepare(fep->clk_ahb); 3849 clk_disable_unprepare(fep->clk_ipg); 3850 pm_runtime_put_noidle(&pdev->dev); 3851 pm_runtime_disable(&pdev->dev); 3852 3853 return 0; 3854 } 3855 3856 static int __maybe_unused fec_suspend(struct device *dev) 3857 { 3858 struct net_device *ndev = dev_get_drvdata(dev); 3859 struct fec_enet_private *fep = netdev_priv(ndev); 3860 3861 rtnl_lock(); 3862 if (netif_running(ndev)) { 3863 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 3864 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 3865 phy_stop(ndev->phydev); 3866 napi_disable(&fep->napi); 3867 netif_tx_lock_bh(ndev); 3868 netif_device_detach(ndev); 3869 netif_tx_unlock_bh(ndev); 3870 fec_stop(ndev); 3871 fec_enet_clk_enable(ndev, false); 3872 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3873 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3874 } 3875 rtnl_unlock(); 3876 3877 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3878 regulator_disable(fep->reg_phy); 3879 3880 /* SOC supply clock to phy, when clock is disabled, phy link down 3881 * SOC control phy regulator, when regulator is disabled, phy link down 3882 */ 3883 if (fep->clk_enet_out || fep->reg_phy) 3884 fep->link = 0; 3885 3886 return 0; 3887 } 3888 3889 static int __maybe_unused fec_resume(struct device *dev) 3890 { 3891 struct net_device *ndev = dev_get_drvdata(dev); 3892 struct fec_enet_private *fep = netdev_priv(ndev); 3893 int ret; 3894 int val; 3895 3896 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 3897 ret = regulator_enable(fep->reg_phy); 3898 if (ret) 3899 return ret; 3900 } 3901 3902 rtnl_lock(); 3903 if (netif_running(ndev)) { 3904 ret = fec_enet_clk_enable(ndev, true); 3905 if (ret) { 3906 rtnl_unlock(); 3907 goto failed_clk; 3908 } 3909 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 3910 fec_enet_stop_mode(fep, false); 3911 3912 val = readl(fep->hwp + FEC_ECNTRL); 3913 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 3914 writel(val, fep->hwp + FEC_ECNTRL); 3915 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 3916 } else { 3917 pinctrl_pm_select_default_state(&fep->pdev->dev); 3918 } 3919 fec_restart(ndev); 3920 netif_tx_lock_bh(ndev); 3921 netif_device_attach(ndev); 3922 netif_tx_unlock_bh(ndev); 3923 napi_enable(&fep->napi); 3924 phy_init_hw(ndev->phydev); 3925 phy_start(ndev->phydev); 3926 } 3927 rtnl_unlock(); 3928 3929 return 0; 3930 3931 failed_clk: 3932 if (fep->reg_phy) 3933 regulator_disable(fep->reg_phy); 3934 return ret; 3935 } 3936 3937 static int __maybe_unused fec_runtime_suspend(struct device *dev) 3938 { 3939 struct net_device *ndev = dev_get_drvdata(dev); 3940 struct fec_enet_private *fep = netdev_priv(ndev); 3941 3942 clk_disable_unprepare(fep->clk_ahb); 3943 clk_disable_unprepare(fep->clk_ipg); 3944 3945 return 0; 3946 } 3947 3948 static int __maybe_unused fec_runtime_resume(struct device *dev) 3949 { 3950 struct net_device *ndev = dev_get_drvdata(dev); 3951 struct fec_enet_private *fep = netdev_priv(ndev); 3952 int ret; 3953 3954 ret = clk_prepare_enable(fep->clk_ahb); 3955 if (ret) 3956 return ret; 3957 ret = clk_prepare_enable(fep->clk_ipg); 3958 if (ret) 3959 goto failed_clk_ipg; 3960 3961 return 0; 3962 3963 failed_clk_ipg: 3964 clk_disable_unprepare(fep->clk_ahb); 3965 return ret; 3966 } 3967 3968 static const struct dev_pm_ops fec_pm_ops = { 3969 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 3970 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 3971 }; 3972 3973 static struct platform_driver fec_driver = { 3974 .driver = { 3975 .name = DRIVER_NAME, 3976 .pm = &fec_pm_ops, 3977 .of_match_table = fec_dt_ids, 3978 .suppress_bind_attrs = true, 3979 }, 3980 .id_table = fec_devtype, 3981 .probe = fec_probe, 3982 .remove = fec_drv_remove, 3983 }; 3984 3985 module_platform_driver(fec_driver); 3986 3987 MODULE_ALIAS("platform:"DRIVER_NAME); 3988 MODULE_LICENSE("GPL"); 3989