xref: /openbmc/linux/drivers/net/ethernet/fealnx.c (revision 37c881cd18f428b08cf46c5a9d67cfd2db2c4a32)
1 /*
2 	Written 1998-2000 by Donald Becker.
3 
4 	This software may be used and distributed according to the terms of
5 	the GNU General Public License (GPL), incorporated herein by reference.
6 	Drivers based on or derived from this code fall under the GPL and must
7 	retain the authorship, copyright and license notice.  This file is not
8 	a complete program and may only be used when the entire operating
9 	system is licensed under the GPL.
10 
11 	The author may be reached as becker@scyld.com, or C/O
12 	Scyld Computing Corporation
13 	410 Severn Ave., Suite 210
14 	Annapolis MD 21403
15 
16 	Support information and updates available at
17 	http://www.scyld.com/network/pci-skeleton.html
18 
19 	Linux kernel updates:
20 
21 	Version 2.51, Nov 17, 2001 (jgarzik):
22 	- Add ethtool support
23 	- Replace some MII-related magic numbers with constants
24 
25 */
26 
27 #define DRV_NAME	"fealnx"
28 
29 static int debug;		/* 1-> print debug message */
30 static int max_interrupt_work = 20;
31 
32 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
33 static int multicast_filter_limit = 32;
34 
35 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
36 /* Setting to > 1518 effectively disables this feature.          */
37 static int rx_copybreak;
38 
39 /* Used to pass the media type, etc.                            */
40 /* Both 'options[]' and 'full_duplex[]' should exist for driver */
41 /* interoperability.                                            */
42 /* The media type is usually passed in 'options[]'.             */
43 #define MAX_UNITS 8		/* More are supported, limit only on options */
44 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
45 static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
46 
47 /* Operational parameters that are set at compile time.                 */
48 /* Keep the ring sizes a power of two for compile efficiency.           */
49 /* The compiler will convert <unsigned>'%'<2^N> into a bit mask.        */
50 /* Making the Tx ring too large decreases the effectiveness of channel  */
51 /* bonding and packet priority.                                         */
52 /* There are no ill effects from too-large receive rings.               */
53 // 88-12-9 modify,
54 // #define TX_RING_SIZE    16
55 // #define RX_RING_SIZE    32
56 #define TX_RING_SIZE    6
57 #define RX_RING_SIZE    12
58 #define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct fealnx_desc)
59 #define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct fealnx_desc)
60 
61 /* Operational parameters that usually are not changed. */
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT      (2*HZ)
64 
65 #define PKT_BUF_SZ      1536	/* Size of each temporary Rx buffer. */
66 
67 
68 /* Include files, designed to support most kernel versions 2.0.0 and later. */
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/string.h>
72 #include <linux/timer.h>
73 #include <linux/errno.h>
74 #include <linux/ioport.h>
75 #include <linux/interrupt.h>
76 #include <linux/pci.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/init.h>
81 #include <linux/mii.h>
82 #include <linux/ethtool.h>
83 #include <linux/crc32.h>
84 #include <linux/delay.h>
85 #include <linux/bitops.h>
86 
87 #include <asm/processor.h>	/* Processor type for cache alignment. */
88 #include <asm/io.h>
89 #include <linux/uaccess.h>
90 #include <asm/byteorder.h>
91 
92 /* This driver was written to use PCI memory space, however some x86 systems
93    work only with I/O space accesses. */
94 #ifndef __alpha__
95 #define USE_IO_OPS
96 #endif
97 
98 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
99 /* This is only in the support-all-kernels source code. */
100 
101 #define RUN_AT(x) (jiffies + (x))
102 
103 MODULE_AUTHOR("Myson or whoever");
104 MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
105 MODULE_LICENSE("GPL");
106 module_param(max_interrupt_work, int, 0);
107 module_param(debug, int, 0);
108 module_param(rx_copybreak, int, 0);
109 module_param(multicast_filter_limit, int, 0);
110 module_param_array(options, int, NULL, 0);
111 module_param_array(full_duplex, int, NULL, 0);
112 MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
113 MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
114 MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
115 MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
116 MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
117 MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
118 
119 enum {
120 	MIN_REGION_SIZE		= 136,
121 };
122 
123 /* A chip capabilities table, matching the entries in pci_tbl[] above. */
124 enum chip_capability_flags {
125 	HAS_MII_XCVR,
126 	HAS_CHIP_XCVR,
127 };
128 
129 /* 89/6/13 add, */
130 /* for different PHY */
131 enum phy_type_flags {
132 	MysonPHY = 1,
133 	AhdocPHY = 2,
134 	SeeqPHY = 3,
135 	MarvellPHY = 4,
136 	Myson981 = 5,
137 	LevelOnePHY = 6,
138 	OtherPHY = 10,
139 };
140 
141 struct chip_info {
142 	char *chip_name;
143 	int flags;
144 };
145 
146 static const struct chip_info skel_netdrv_tbl[] = {
147  	{ "100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
148 	{ "100/10M Ethernet PCI Adapter",	HAS_CHIP_XCVR },
149 	{ "1000/100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
150 };
151 
152 /* Offsets to the Command and Status Registers. */
153 enum fealnx_offsets {
154 	PAR0 = 0x0,		/* physical address 0-3 */
155 	PAR1 = 0x04,		/* physical address 4-5 */
156 	MAR0 = 0x08,		/* multicast address 0-3 */
157 	MAR1 = 0x0C,		/* multicast address 4-7 */
158 	FAR0 = 0x10,		/* flow-control address 0-3 */
159 	FAR1 = 0x14,		/* flow-control address 4-5 */
160 	TCRRCR = 0x18,		/* receive & transmit configuration */
161 	BCR = 0x1C,		/* bus command */
162 	TXPDR = 0x20,		/* transmit polling demand */
163 	RXPDR = 0x24,		/* receive polling demand */
164 	RXCWP = 0x28,		/* receive current word pointer */
165 	TXLBA = 0x2C,		/* transmit list base address */
166 	RXLBA = 0x30,		/* receive list base address */
167 	ISR = 0x34,		/* interrupt status */
168 	IMR = 0x38,		/* interrupt mask */
169 	FTH = 0x3C,		/* flow control high/low threshold */
170 	MANAGEMENT = 0x40,	/* bootrom/eeprom and mii management */
171 	TALLY = 0x44,		/* tally counters for crc and mpa */
172 	TSR = 0x48,		/* tally counter for transmit status */
173 	BMCRSR = 0x4c,		/* basic mode control and status */
174 	PHYIDENTIFIER = 0x50,	/* phy identifier */
175 	ANARANLPAR = 0x54,	/* auto-negotiation advertisement and link
176 				   partner ability */
177 	ANEROCR = 0x58,		/* auto-negotiation expansion and pci conf. */
178 	BPREMRPSR = 0x5c,	/* bypass & receive error mask and phy status */
179 };
180 
181 /* Bits in the interrupt status/enable registers. */
182 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
183 enum intr_status_bits {
184 	RFCON = 0x00020000,	/* receive flow control xon packet */
185 	RFCOFF = 0x00010000,	/* receive flow control xoff packet */
186 	LSCStatus = 0x00008000,	/* link status change */
187 	ANCStatus = 0x00004000,	/* autonegotiation completed */
188 	FBE = 0x00002000,	/* fatal bus error */
189 	FBEMask = 0x00001800,	/* mask bit12-11 */
190 	ParityErr = 0x00000000,	/* parity error */
191 	TargetErr = 0x00001000,	/* target abort */
192 	MasterErr = 0x00000800,	/* master error */
193 	TUNF = 0x00000400,	/* transmit underflow */
194 	ROVF = 0x00000200,	/* receive overflow */
195 	ETI = 0x00000100,	/* transmit early int */
196 	ERI = 0x00000080,	/* receive early int */
197 	CNTOVF = 0x00000040,	/* counter overflow */
198 	RBU = 0x00000020,	/* receive buffer unavailable */
199 	TBU = 0x00000010,	/* transmit buffer unavilable */
200 	TI = 0x00000008,	/* transmit interrupt */
201 	RI = 0x00000004,	/* receive interrupt */
202 	RxErr = 0x00000002,	/* receive error */
203 };
204 
205 /* Bits in the NetworkConfig register, W for writing, R for reading */
206 /* FIXME: some names are invented by me. Marked with (name?) */
207 /* If you have docs and know bit names, please fix 'em */
208 enum rx_mode_bits {
209 	CR_W_ENH	= 0x02000000,	/* enhanced mode (name?) */
210 	CR_W_FD		= 0x00100000,	/* full duplex */
211 	CR_W_PS10	= 0x00080000,	/* 10 mbit */
212 	CR_W_TXEN	= 0x00040000,	/* tx enable (name?) */
213 	CR_W_PS1000	= 0x00010000,	/* 1000 mbit */
214      /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
215 	CR_W_RXMODEMASK	= 0x000000e0,
216 	CR_W_PROM	= 0x00000080,	/* promiscuous mode */
217 	CR_W_AB		= 0x00000040,	/* accept broadcast */
218 	CR_W_AM		= 0x00000020,	/* accept mutlicast */
219 	CR_W_ARP	= 0x00000008,	/* receive runt pkt */
220 	CR_W_ALP	= 0x00000004,	/* receive long pkt */
221 	CR_W_SEP	= 0x00000002,	/* receive error pkt */
222 	CR_W_RXEN	= 0x00000001,	/* rx enable (unicast?) (name?) */
223 
224 	CR_R_TXSTOP	= 0x04000000,	/* tx stopped (name?) */
225 	CR_R_FD		= 0x00100000,	/* full duplex detected */
226 	CR_R_PS10	= 0x00080000,	/* 10 mbit detected */
227 	CR_R_RXSTOP	= 0x00008000,	/* rx stopped (name?) */
228 };
229 
230 /* The Tulip Rx and Tx buffer descriptors. */
231 struct fealnx_desc {
232 	s32 status;
233 	s32 control;
234 	u32 buffer;
235 	u32 next_desc;
236 	struct fealnx_desc *next_desc_logical;
237 	struct sk_buff *skbuff;
238 	u32 reserved1;
239 	u32 reserved2;
240 };
241 
242 /* Bits in network_desc.status */
243 enum rx_desc_status_bits {
244 	RXOWN = 0x80000000,	/* own bit */
245 	FLNGMASK = 0x0fff0000,	/* frame length */
246 	FLNGShift = 16,
247 	MARSTATUS = 0x00004000,	/* multicast address received */
248 	BARSTATUS = 0x00002000,	/* broadcast address received */
249 	PHYSTATUS = 0x00001000,	/* physical address received */
250 	RXFSD = 0x00000800,	/* first descriptor */
251 	RXLSD = 0x00000400,	/* last descriptor */
252 	ErrorSummary = 0x80,	/* error summary */
253 	RUNTPKT = 0x40,		/* runt packet received */
254 	LONGPKT = 0x20,		/* long packet received */
255 	FAE = 0x10,		/* frame align error */
256 	CRC = 0x08,		/* crc error */
257 	RXER = 0x04,		/* receive error */
258 };
259 
260 enum rx_desc_control_bits {
261 	RXIC = 0x00800000,	/* interrupt control */
262 	RBSShift = 0,
263 };
264 
265 enum tx_desc_status_bits {
266 	TXOWN = 0x80000000,	/* own bit */
267 	JABTO = 0x00004000,	/* jabber timeout */
268 	CSL = 0x00002000,	/* carrier sense lost */
269 	LC = 0x00001000,	/* late collision */
270 	EC = 0x00000800,	/* excessive collision */
271 	UDF = 0x00000400,	/* fifo underflow */
272 	DFR = 0x00000200,	/* deferred */
273 	HF = 0x00000100,	/* heartbeat fail */
274 	NCRMask = 0x000000ff,	/* collision retry count */
275 	NCRShift = 0,
276 };
277 
278 enum tx_desc_control_bits {
279 	TXIC = 0x80000000,	/* interrupt control */
280 	ETIControl = 0x40000000,	/* early transmit interrupt */
281 	TXLD = 0x20000000,	/* last descriptor */
282 	TXFD = 0x10000000,	/* first descriptor */
283 	CRCEnable = 0x08000000,	/* crc control */
284 	PADEnable = 0x04000000,	/* padding control */
285 	RetryTxLC = 0x02000000,	/* retry late collision */
286 	PKTSMask = 0x3ff800,	/* packet size bit21-11 */
287 	PKTSShift = 11,
288 	TBSMask = 0x000007ff,	/* transmit buffer bit 10-0 */
289 	TBSShift = 0,
290 };
291 
292 /* BootROM/EEPROM/MII Management Register */
293 #define MASK_MIIR_MII_READ       0x00000000
294 #define MASK_MIIR_MII_WRITE      0x00000008
295 #define MASK_MIIR_MII_MDO        0x00000004
296 #define MASK_MIIR_MII_MDI        0x00000002
297 #define MASK_MIIR_MII_MDC        0x00000001
298 
299 /* ST+OP+PHYAD+REGAD+TA */
300 #define OP_READ             0x6000	/* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
301 #define OP_WRITE            0x5002	/* ST:01+OP:01+PHYAD+REGAD+TA:10 */
302 
303 /* ------------------------------------------------------------------------- */
304 /*      Constants for Myson PHY                                              */
305 /* ------------------------------------------------------------------------- */
306 #define MysonPHYID      0xd0000302
307 /* 89-7-27 add, (begin) */
308 #define MysonPHYID0     0x0302
309 #define StatusRegister  18
310 #define SPEED100        0x0400	// bit10
311 #define FULLMODE        0x0800	// bit11
312 /* 89-7-27 add, (end) */
313 
314 /* ------------------------------------------------------------------------- */
315 /*      Constants for Seeq 80225 PHY                                         */
316 /* ------------------------------------------------------------------------- */
317 #define SeeqPHYID0      0x0016
318 
319 #define MIIRegister18   18
320 #define SPD_DET_100     0x80
321 #define DPLX_DET_FULL   0x40
322 
323 /* ------------------------------------------------------------------------- */
324 /*      Constants for Ahdoc 101 PHY                                          */
325 /* ------------------------------------------------------------------------- */
326 #define AhdocPHYID0     0x0022
327 
328 #define DiagnosticReg   18
329 #define DPLX_FULL       0x0800
330 #define Speed_100       0x0400
331 
332 /* 89/6/13 add, */
333 /* -------------------------------------------------------------------------- */
334 /*      Constants                                                             */
335 /* -------------------------------------------------------------------------- */
336 #define MarvellPHYID0           0x0141
337 #define LevelOnePHYID0		0x0013
338 
339 #define MII1000BaseTControlReg  9
340 #define MII1000BaseTStatusReg   10
341 #define SpecificReg		17
342 
343 /* for 1000BaseT Control Register */
344 #define PHYAbletoPerform1000FullDuplex  0x0200
345 #define PHYAbletoPerform1000HalfDuplex  0x0100
346 #define PHY1000AbilityMask              0x300
347 
348 // for phy specific status register, marvell phy.
349 #define SpeedMask       0x0c000
350 #define Speed_1000M     0x08000
351 #define Speed_100M      0x4000
352 #define Speed_10M       0
353 #define Full_Duplex     0x2000
354 
355 // 89/12/29 add, for phy specific status register, levelone phy, (begin)
356 #define LXT1000_100M    0x08000
357 #define LXT1000_1000M   0x0c000
358 #define LXT1000_Full    0x200
359 // 89/12/29 add, for phy specific status register, levelone phy, (end)
360 
361 /* for 3-in-1 case, BMCRSR register */
362 #define LinkIsUp2	0x00040000
363 
364 /* for PHY */
365 #define LinkIsUp        0x0004
366 
367 
368 struct netdev_private {
369 	/* Descriptor rings first for alignment. */
370 	struct fealnx_desc *rx_ring;
371 	struct fealnx_desc *tx_ring;
372 
373 	dma_addr_t rx_ring_dma;
374 	dma_addr_t tx_ring_dma;
375 
376 	spinlock_t lock;
377 
378 	/* Media monitoring timer. */
379 	struct timer_list timer;
380 
381 	/* Reset timer */
382 	struct timer_list reset_timer;
383 	int reset_timer_armed;
384 	unsigned long crvalue_sv;
385 	unsigned long imrvalue_sv;
386 
387 	/* Frequently used values: keep some adjacent for cache effect. */
388 	int flags;
389 	struct pci_dev *pci_dev;
390 	unsigned long crvalue;
391 	unsigned long bcrvalue;
392 	unsigned long imrvalue;
393 	struct fealnx_desc *cur_rx;
394 	struct fealnx_desc *lack_rxbuf;
395 	int really_rx_count;
396 	struct fealnx_desc *cur_tx;
397 	struct fealnx_desc *cur_tx_copy;
398 	int really_tx_count;
399 	int free_tx_count;
400 	unsigned int rx_buf_sz;	/* Based on MTU+slack. */
401 
402 	/* These values are keep track of the transceiver/media in use. */
403 	unsigned int linkok;
404 	unsigned int line_speed;
405 	unsigned int duplexmode;
406 	unsigned int default_port:4;	/* Last dev->if_port value. */
407 	unsigned int PHYType;
408 
409 	/* MII transceiver section. */
410 	int mii_cnt;		/* MII device addresses. */
411 	unsigned char phys[2];	/* MII device addresses. */
412 	struct mii_if_info mii;
413 	void __iomem *mem;
414 };
415 
416 
417 static int mdio_read(struct net_device *dev, int phy_id, int location);
418 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
419 static int netdev_open(struct net_device *dev);
420 static void getlinktype(struct net_device *dev);
421 static void getlinkstatus(struct net_device *dev);
422 static void netdev_timer(struct timer_list *t);
423 static void reset_timer(struct timer_list *t);
424 static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue);
425 static void init_ring(struct net_device *dev);
426 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
427 static irqreturn_t intr_handler(int irq, void *dev_instance);
428 static int netdev_rx(struct net_device *dev);
429 static void set_rx_mode(struct net_device *dev);
430 static void __set_rx_mode(struct net_device *dev);
431 static struct net_device_stats *get_stats(struct net_device *dev);
432 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
433 static const struct ethtool_ops netdev_ethtool_ops;
434 static int netdev_close(struct net_device *dev);
435 static void reset_rx_descriptors(struct net_device *dev);
436 static void reset_tx_descriptors(struct net_device *dev);
437 
438 static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
439 {
440 	int delay = 0x1000;
441 	iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
442 	while (--delay) {
443 		if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
444 			break;
445 	}
446 }
447 
448 
449 static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
450 {
451 	int delay = 0x1000;
452 	iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
453 	while (--delay) {
454 		if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
455 					    == (CR_R_RXSTOP+CR_R_TXSTOP) )
456 			break;
457 	}
458 }
459 
460 static const struct net_device_ops netdev_ops = {
461 	.ndo_open		= netdev_open,
462 	.ndo_stop		= netdev_close,
463 	.ndo_start_xmit		= start_tx,
464 	.ndo_get_stats 		= get_stats,
465 	.ndo_set_rx_mode	= set_rx_mode,
466 	.ndo_do_ioctl		= mii_ioctl,
467 	.ndo_tx_timeout		= fealnx_tx_timeout,
468 	.ndo_set_mac_address 	= eth_mac_addr,
469 	.ndo_validate_addr	= eth_validate_addr,
470 };
471 
472 static int fealnx_init_one(struct pci_dev *pdev,
473 			   const struct pci_device_id *ent)
474 {
475 	struct netdev_private *np;
476 	int i, option, err, irq;
477 	static int card_idx = -1;
478 	char boardname[12];
479 	void __iomem *ioaddr;
480 	unsigned long len;
481 	unsigned int chip_id = ent->driver_data;
482 	struct net_device *dev;
483 	void *ring_space;
484 	dma_addr_t ring_dma;
485 #ifdef USE_IO_OPS
486 	int bar = 0;
487 #else
488 	int bar = 1;
489 #endif
490 
491 	card_idx++;
492 	sprintf(boardname, "fealnx%d", card_idx);
493 
494 	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
495 
496 	i = pci_enable_device(pdev);
497 	if (i) return i;
498 	pci_set_master(pdev);
499 
500 	len = pci_resource_len(pdev, bar);
501 	if (len < MIN_REGION_SIZE) {
502 		dev_err(&pdev->dev,
503 			   "region size %ld too small, aborting\n", len);
504 		return -ENODEV;
505 	}
506 
507 	i = pci_request_regions(pdev, boardname);
508 	if (i)
509 		return i;
510 
511 	irq = pdev->irq;
512 
513 	ioaddr = pci_iomap(pdev, bar, len);
514 	if (!ioaddr) {
515 		err = -ENOMEM;
516 		goto err_out_res;
517 	}
518 
519 	dev = alloc_etherdev(sizeof(struct netdev_private));
520 	if (!dev) {
521 		err = -ENOMEM;
522 		goto err_out_unmap;
523 	}
524 	SET_NETDEV_DEV(dev, &pdev->dev);
525 
526 	/* read ethernet id */
527 	for (i = 0; i < 6; ++i)
528 		dev->dev_addr[i] = ioread8(ioaddr + PAR0 + i);
529 
530 	/* Reset the chip to erase previous misconfiguration. */
531 	iowrite32(0x00000001, ioaddr + BCR);
532 
533 	/* Make certain the descriptor lists are aligned. */
534 	np = netdev_priv(dev);
535 	np->mem = ioaddr;
536 	spin_lock_init(&np->lock);
537 	np->pci_dev = pdev;
538 	np->flags = skel_netdrv_tbl[chip_id].flags;
539 	pci_set_drvdata(pdev, dev);
540 	np->mii.dev = dev;
541 	np->mii.mdio_read = mdio_read;
542 	np->mii.mdio_write = mdio_write;
543 	np->mii.phy_id_mask = 0x1f;
544 	np->mii.reg_num_mask = 0x1f;
545 
546 	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
547 					GFP_KERNEL);
548 	if (!ring_space) {
549 		err = -ENOMEM;
550 		goto err_out_free_dev;
551 	}
552 	np->rx_ring = ring_space;
553 	np->rx_ring_dma = ring_dma;
554 
555 	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
556 					GFP_KERNEL);
557 	if (!ring_space) {
558 		err = -ENOMEM;
559 		goto err_out_free_rx;
560 	}
561 	np->tx_ring = ring_space;
562 	np->tx_ring_dma = ring_dma;
563 
564 	/* find the connected MII xcvrs */
565 	if (np->flags == HAS_MII_XCVR) {
566 		int phy, phy_idx = 0;
567 
568 		for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
569 			       phy++) {
570 			int mii_status = mdio_read(dev, phy, 1);
571 
572 			if (mii_status != 0xffff && mii_status != 0x0000) {
573 				np->phys[phy_idx++] = phy;
574 				dev_info(&pdev->dev,
575 				       "MII PHY found at address %d, status "
576 				       "0x%4.4x.\n", phy, mii_status);
577 				/* get phy type */
578 				{
579 					unsigned int data;
580 
581 					data = mdio_read(dev, np->phys[0], 2);
582 					if (data == SeeqPHYID0)
583 						np->PHYType = SeeqPHY;
584 					else if (data == AhdocPHYID0)
585 						np->PHYType = AhdocPHY;
586 					else if (data == MarvellPHYID0)
587 						np->PHYType = MarvellPHY;
588 					else if (data == MysonPHYID0)
589 						np->PHYType = Myson981;
590 					else if (data == LevelOnePHYID0)
591 						np->PHYType = LevelOnePHY;
592 					else
593 						np->PHYType = OtherPHY;
594 				}
595 			}
596 		}
597 
598 		np->mii_cnt = phy_idx;
599 		if (phy_idx == 0)
600 			dev_warn(&pdev->dev,
601 				"MII PHY not found -- this device may "
602 			       "not operate correctly.\n");
603 	} else {
604 		np->phys[0] = 32;
605 /* 89/6/23 add, (begin) */
606 		/* get phy type */
607 		if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
608 			np->PHYType = MysonPHY;
609 		else
610 			np->PHYType = OtherPHY;
611 	}
612 	np->mii.phy_id = np->phys[0];
613 
614 	if (dev->mem_start)
615 		option = dev->mem_start;
616 
617 	/* The lower four bits are the media type. */
618 	if (option > 0) {
619 		if (option & 0x200)
620 			np->mii.full_duplex = 1;
621 		np->default_port = option & 15;
622 	}
623 
624 	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
625 		np->mii.full_duplex = full_duplex[card_idx];
626 
627 	if (np->mii.full_duplex) {
628 		dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
629 /* 89/6/13 add, (begin) */
630 //      if (np->PHYType==MarvellPHY)
631 		if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
632 			unsigned int data;
633 
634 			data = mdio_read(dev, np->phys[0], 9);
635 			data = (data & 0xfcff) | 0x0200;
636 			mdio_write(dev, np->phys[0], 9, data);
637 		}
638 /* 89/6/13 add, (end) */
639 		if (np->flags == HAS_MII_XCVR)
640 			mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
641 		else
642 			iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
643 		np->mii.force_media = 1;
644 	}
645 
646 	dev->netdev_ops = &netdev_ops;
647 	dev->ethtool_ops = &netdev_ethtool_ops;
648 	dev->watchdog_timeo = TX_TIMEOUT;
649 
650 	err = register_netdev(dev);
651 	if (err)
652 		goto err_out_free_tx;
653 
654 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
655 	       dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
656 	       dev->dev_addr, irq);
657 
658 	return 0;
659 
660 err_out_free_tx:
661 	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
662 			  np->tx_ring_dma);
663 err_out_free_rx:
664 	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
665 			  np->rx_ring_dma);
666 err_out_free_dev:
667 	free_netdev(dev);
668 err_out_unmap:
669 	pci_iounmap(pdev, ioaddr);
670 err_out_res:
671 	pci_release_regions(pdev);
672 	return err;
673 }
674 
675 
676 static void fealnx_remove_one(struct pci_dev *pdev)
677 {
678 	struct net_device *dev = pci_get_drvdata(pdev);
679 
680 	if (dev) {
681 		struct netdev_private *np = netdev_priv(dev);
682 
683 		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
684 				  np->tx_ring_dma);
685 		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
686 				  np->rx_ring_dma);
687 		unregister_netdev(dev);
688 		pci_iounmap(pdev, np->mem);
689 		free_netdev(dev);
690 		pci_release_regions(pdev);
691 	} else
692 		printk(KERN_ERR "fealnx: remove for unknown device\n");
693 }
694 
695 
696 static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
697 {
698 	ulong miir;
699 	int i;
700 	unsigned int mask, data;
701 
702 	/* enable MII output */
703 	miir = (ulong) ioread32(miiport);
704 	miir &= 0xfffffff0;
705 
706 	miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
707 
708 	/* send 32 1's preamble */
709 	for (i = 0; i < 32; i++) {
710 		/* low MDC; MDO is already high (miir) */
711 		miir &= ~MASK_MIIR_MII_MDC;
712 		iowrite32(miir, miiport);
713 
714 		/* high MDC */
715 		miir |= MASK_MIIR_MII_MDC;
716 		iowrite32(miir, miiport);
717 	}
718 
719 	/* calculate ST+OP+PHYAD+REGAD+TA */
720 	data = opcode | (phyad << 7) | (regad << 2);
721 
722 	/* sent out */
723 	mask = 0x8000;
724 	while (mask) {
725 		/* low MDC, prepare MDO */
726 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
727 		if (mask & data)
728 			miir |= MASK_MIIR_MII_MDO;
729 
730 		iowrite32(miir, miiport);
731 		/* high MDC */
732 		miir |= MASK_MIIR_MII_MDC;
733 		iowrite32(miir, miiport);
734 		udelay(30);
735 
736 		/* next */
737 		mask >>= 1;
738 		if (mask == 0x2 && opcode == OP_READ)
739 			miir &= ~MASK_MIIR_MII_WRITE;
740 	}
741 	return miir;
742 }
743 
744 
745 static int mdio_read(struct net_device *dev, int phyad, int regad)
746 {
747 	struct netdev_private *np = netdev_priv(dev);
748 	void __iomem *miiport = np->mem + MANAGEMENT;
749 	ulong miir;
750 	unsigned int mask, data;
751 
752 	miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
753 
754 	/* read data */
755 	mask = 0x8000;
756 	data = 0;
757 	while (mask) {
758 		/* low MDC */
759 		miir &= ~MASK_MIIR_MII_MDC;
760 		iowrite32(miir, miiport);
761 
762 		/* read MDI */
763 		miir = ioread32(miiport);
764 		if (miir & MASK_MIIR_MII_MDI)
765 			data |= mask;
766 
767 		/* high MDC, and wait */
768 		miir |= MASK_MIIR_MII_MDC;
769 		iowrite32(miir, miiport);
770 		udelay(30);
771 
772 		/* next */
773 		mask >>= 1;
774 	}
775 
776 	/* low MDC */
777 	miir &= ~MASK_MIIR_MII_MDC;
778 	iowrite32(miir, miiport);
779 
780 	return data & 0xffff;
781 }
782 
783 
784 static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
785 {
786 	struct netdev_private *np = netdev_priv(dev);
787 	void __iomem *miiport = np->mem + MANAGEMENT;
788 	ulong miir;
789 	unsigned int mask;
790 
791 	miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
792 
793 	/* write data */
794 	mask = 0x8000;
795 	while (mask) {
796 		/* low MDC, prepare MDO */
797 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
798 		if (mask & data)
799 			miir |= MASK_MIIR_MII_MDO;
800 		iowrite32(miir, miiport);
801 
802 		/* high MDC */
803 		miir |= MASK_MIIR_MII_MDC;
804 		iowrite32(miir, miiport);
805 
806 		/* next */
807 		mask >>= 1;
808 	}
809 
810 	/* low MDC */
811 	miir &= ~MASK_MIIR_MII_MDC;
812 	iowrite32(miir, miiport);
813 }
814 
815 
816 static int netdev_open(struct net_device *dev)
817 {
818 	struct netdev_private *np = netdev_priv(dev);
819 	void __iomem *ioaddr = np->mem;
820 	const int irq = np->pci_dev->irq;
821 	int rc, i;
822 
823 	iowrite32(0x00000001, ioaddr + BCR);	/* Reset */
824 
825 	rc = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
826 	if (rc)
827 		return -EAGAIN;
828 
829 	for (i = 0; i < 3; i++)
830 		iowrite16(((unsigned short*)dev->dev_addr)[i],
831 				ioaddr + PAR0 + i*2);
832 
833 	init_ring(dev);
834 
835 	iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
836 	iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
837 
838 	/* Initialize other registers. */
839 	/* Configure the PCI bus bursts and FIFO thresholds.
840 	   486: Set 8 longword burst.
841 	   586: no burst limit.
842 	   Burst length 5:3
843 	   0 0 0   1
844 	   0 0 1   4
845 	   0 1 0   8
846 	   0 1 1   16
847 	   1 0 0   32
848 	   1 0 1   64
849 	   1 1 0   128
850 	   1 1 1   256
851 	   Wait the specified 50 PCI cycles after a reset by initializing
852 	   Tx and Rx queues and the address filter list.
853 	   FIXME (Ueimor): optimistic for alpha + posted writes ? */
854 
855 	np->bcrvalue = 0x10;	/* little-endian, 8 burst length */
856 #ifdef __BIG_ENDIAN
857 	np->bcrvalue |= 0x04;	/* big-endian */
858 #endif
859 
860 #if defined(__i386__) && !defined(MODULE)
861 	if (boot_cpu_data.x86 <= 4)
862 		np->crvalue = 0xa00;
863 	else
864 #endif
865 		np->crvalue = 0xe00;	/* rx 128 burst length */
866 
867 
868 // 89/12/29 add,
869 // 90/1/16 modify,
870 //   np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
871 	np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
872 	if (np->pci_dev->device == 0x891) {
873 		np->bcrvalue |= 0x200;	/* set PROG bit */
874 		np->crvalue |= CR_W_ENH;	/* set enhanced bit */
875 		np->imrvalue |= ETI;
876 	}
877 	iowrite32(np->bcrvalue, ioaddr + BCR);
878 
879 	if (dev->if_port == 0)
880 		dev->if_port = np->default_port;
881 
882 	iowrite32(0, ioaddr + RXPDR);
883 // 89/9/1 modify,
884 //   np->crvalue = 0x00e40001;    /* tx store and forward, tx/rx enable */
885 	np->crvalue |= 0x00e40001;	/* tx store and forward, tx/rx enable */
886 	np->mii.full_duplex = np->mii.force_media;
887 	getlinkstatus(dev);
888 	if (np->linkok)
889 		getlinktype(dev);
890 	__set_rx_mode(dev);
891 
892 	netif_start_queue(dev);
893 
894 	/* Clear and Enable interrupts by setting the interrupt mask. */
895 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
896 	iowrite32(np->imrvalue, ioaddr + IMR);
897 
898 	if (debug)
899 		printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
900 
901 	/* Set the timer to check for link beat. */
902 	timer_setup(&np->timer, netdev_timer, 0);
903 	np->timer.expires = RUN_AT(3 * HZ);
904 
905 	/* timer handler */
906 	add_timer(&np->timer);
907 
908 	timer_setup(&np->reset_timer, reset_timer, 0);
909 	np->reset_timer_armed = 0;
910 	return rc;
911 }
912 
913 
914 static void getlinkstatus(struct net_device *dev)
915 /* function: Routine will read MII Status Register to get link status.       */
916 /* input   : dev... pointer to the adapter block.                            */
917 /* output  : none.                                                           */
918 {
919 	struct netdev_private *np = netdev_priv(dev);
920 	unsigned int i, DelayTime = 0x1000;
921 
922 	np->linkok = 0;
923 
924 	if (np->PHYType == MysonPHY) {
925 		for (i = 0; i < DelayTime; ++i) {
926 			if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
927 				np->linkok = 1;
928 				return;
929 			}
930 			udelay(100);
931 		}
932 	} else {
933 		for (i = 0; i < DelayTime; ++i) {
934 			if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
935 				np->linkok = 1;
936 				return;
937 			}
938 			udelay(100);
939 		}
940 	}
941 }
942 
943 
944 static void getlinktype(struct net_device *dev)
945 {
946 	struct netdev_private *np = netdev_priv(dev);
947 
948 	if (np->PHYType == MysonPHY) {	/* 3-in-1 case */
949 		if (ioread32(np->mem + TCRRCR) & CR_R_FD)
950 			np->duplexmode = 2;	/* full duplex */
951 		else
952 			np->duplexmode = 1;	/* half duplex */
953 		if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
954 			np->line_speed = 1;	/* 10M */
955 		else
956 			np->line_speed = 2;	/* 100M */
957 	} else {
958 		if (np->PHYType == SeeqPHY) {	/* this PHY is SEEQ 80225 */
959 			unsigned int data;
960 
961 			data = mdio_read(dev, np->phys[0], MIIRegister18);
962 			if (data & SPD_DET_100)
963 				np->line_speed = 2;	/* 100M */
964 			else
965 				np->line_speed = 1;	/* 10M */
966 			if (data & DPLX_DET_FULL)
967 				np->duplexmode = 2;	/* full duplex mode */
968 			else
969 				np->duplexmode = 1;	/* half duplex mode */
970 		} else if (np->PHYType == AhdocPHY) {
971 			unsigned int data;
972 
973 			data = mdio_read(dev, np->phys[0], DiagnosticReg);
974 			if (data & Speed_100)
975 				np->line_speed = 2;	/* 100M */
976 			else
977 				np->line_speed = 1;	/* 10M */
978 			if (data & DPLX_FULL)
979 				np->duplexmode = 2;	/* full duplex mode */
980 			else
981 				np->duplexmode = 1;	/* half duplex mode */
982 		}
983 /* 89/6/13 add, (begin) */
984 		else if (np->PHYType == MarvellPHY) {
985 			unsigned int data;
986 
987 			data = mdio_read(dev, np->phys[0], SpecificReg);
988 			if (data & Full_Duplex)
989 				np->duplexmode = 2;	/* full duplex mode */
990 			else
991 				np->duplexmode = 1;	/* half duplex mode */
992 			data &= SpeedMask;
993 			if (data == Speed_1000M)
994 				np->line_speed = 3;	/* 1000M */
995 			else if (data == Speed_100M)
996 				np->line_speed = 2;	/* 100M */
997 			else
998 				np->line_speed = 1;	/* 10M */
999 		}
1000 /* 89/6/13 add, (end) */
1001 /* 89/7/27 add, (begin) */
1002 		else if (np->PHYType == Myson981) {
1003 			unsigned int data;
1004 
1005 			data = mdio_read(dev, np->phys[0], StatusRegister);
1006 
1007 			if (data & SPEED100)
1008 				np->line_speed = 2;
1009 			else
1010 				np->line_speed = 1;
1011 
1012 			if (data & FULLMODE)
1013 				np->duplexmode = 2;
1014 			else
1015 				np->duplexmode = 1;
1016 		}
1017 /* 89/7/27 add, (end) */
1018 /* 89/12/29 add */
1019 		else if (np->PHYType == LevelOnePHY) {
1020 			unsigned int data;
1021 
1022 			data = mdio_read(dev, np->phys[0], SpecificReg);
1023 			if (data & LXT1000_Full)
1024 				np->duplexmode = 2;	/* full duplex mode */
1025 			else
1026 				np->duplexmode = 1;	/* half duplex mode */
1027 			data &= SpeedMask;
1028 			if (data == LXT1000_1000M)
1029 				np->line_speed = 3;	/* 1000M */
1030 			else if (data == LXT1000_100M)
1031 				np->line_speed = 2;	/* 100M */
1032 			else
1033 				np->line_speed = 1;	/* 10M */
1034 		}
1035 		np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1036 		if (np->line_speed == 1)
1037 			np->crvalue |= CR_W_PS10;
1038 		else if (np->line_speed == 3)
1039 			np->crvalue |= CR_W_PS1000;
1040 		if (np->duplexmode == 2)
1041 			np->crvalue |= CR_W_FD;
1042 	}
1043 }
1044 
1045 
1046 /* Take lock before calling this */
1047 static void allocate_rx_buffers(struct net_device *dev)
1048 {
1049 	struct netdev_private *np = netdev_priv(dev);
1050 
1051 	/*  allocate skb for rx buffers */
1052 	while (np->really_rx_count != RX_RING_SIZE) {
1053 		struct sk_buff *skb;
1054 
1055 		skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1056 		if (skb == NULL)
1057 			break;	/* Better luck next round. */
1058 
1059 		while (np->lack_rxbuf->skbuff)
1060 			np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1061 
1062 		np->lack_rxbuf->skbuff = skb;
1063 		np->lack_rxbuf->buffer = dma_map_single(&np->pci_dev->dev,
1064 							skb->data,
1065 							np->rx_buf_sz,
1066 							DMA_FROM_DEVICE);
1067 		np->lack_rxbuf->status = RXOWN;
1068 		++np->really_rx_count;
1069 	}
1070 }
1071 
1072 
1073 static void netdev_timer(struct timer_list *t)
1074 {
1075 	struct netdev_private *np = from_timer(np, t, timer);
1076 	struct net_device *dev = np->mii.dev;
1077 	void __iomem *ioaddr = np->mem;
1078 	int old_crvalue = np->crvalue;
1079 	unsigned int old_linkok = np->linkok;
1080 	unsigned long flags;
1081 
1082 	if (debug)
1083 		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1084 		       "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1085 		       ioread32(ioaddr + TCRRCR));
1086 
1087 	spin_lock_irqsave(&np->lock, flags);
1088 
1089 	if (np->flags == HAS_MII_XCVR) {
1090 		getlinkstatus(dev);
1091 		if ((old_linkok == 0) && (np->linkok == 1)) {	/* we need to detect the media type again */
1092 			getlinktype(dev);
1093 			if (np->crvalue != old_crvalue) {
1094 				stop_nic_rxtx(ioaddr, np->crvalue);
1095 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1096 			}
1097 		}
1098 	}
1099 
1100 	allocate_rx_buffers(dev);
1101 
1102 	spin_unlock_irqrestore(&np->lock, flags);
1103 
1104 	np->timer.expires = RUN_AT(10 * HZ);
1105 	add_timer(&np->timer);
1106 }
1107 
1108 
1109 /* Take lock before calling */
1110 /* Reset chip and disable rx, tx and interrupts */
1111 static void reset_and_disable_rxtx(struct net_device *dev)
1112 {
1113 	struct netdev_private *np = netdev_priv(dev);
1114 	void __iomem *ioaddr = np->mem;
1115 	int delay=51;
1116 
1117 	/* Reset the chip's Tx and Rx processes. */
1118 	stop_nic_rxtx(ioaddr, 0);
1119 
1120 	/* Disable interrupts by clearing the interrupt mask. */
1121 	iowrite32(0, ioaddr + IMR);
1122 
1123 	/* Reset the chip to erase previous misconfiguration. */
1124 	iowrite32(0x00000001, ioaddr + BCR);
1125 
1126 	/* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1127 	   We surely wait too long (address+data phase). Who cares? */
1128 	while (--delay) {
1129 		ioread32(ioaddr + BCR);
1130 		rmb();
1131 	}
1132 }
1133 
1134 
1135 /* Take lock before calling */
1136 /* Restore chip after reset */
1137 static void enable_rxtx(struct net_device *dev)
1138 {
1139 	struct netdev_private *np = netdev_priv(dev);
1140 	void __iomem *ioaddr = np->mem;
1141 
1142 	reset_rx_descriptors(dev);
1143 
1144 	iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1145 		ioaddr + TXLBA);
1146 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1147 		ioaddr + RXLBA);
1148 
1149 	iowrite32(np->bcrvalue, ioaddr + BCR);
1150 
1151 	iowrite32(0, ioaddr + RXPDR);
1152 	__set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1153 
1154 	/* Clear and Enable interrupts by setting the interrupt mask. */
1155 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1156 	iowrite32(np->imrvalue, ioaddr + IMR);
1157 
1158 	iowrite32(0, ioaddr + TXPDR);
1159 }
1160 
1161 
1162 static void reset_timer(struct timer_list *t)
1163 {
1164 	struct netdev_private *np = from_timer(np, t, reset_timer);
1165 	struct net_device *dev = np->mii.dev;
1166 	unsigned long flags;
1167 
1168 	printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1169 
1170 	spin_lock_irqsave(&np->lock, flags);
1171 	np->crvalue = np->crvalue_sv;
1172 	np->imrvalue = np->imrvalue_sv;
1173 
1174 	reset_and_disable_rxtx(dev);
1175 	/* works for me without this:
1176 	reset_tx_descriptors(dev); */
1177 	enable_rxtx(dev);
1178 	netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1179 
1180 	np->reset_timer_armed = 0;
1181 
1182 	spin_unlock_irqrestore(&np->lock, flags);
1183 }
1184 
1185 
1186 static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue)
1187 {
1188 	struct netdev_private *np = netdev_priv(dev);
1189 	void __iomem *ioaddr = np->mem;
1190 	unsigned long flags;
1191 	int i;
1192 
1193 	printk(KERN_WARNING
1194 	       "%s: Transmit timed out, status %8.8x, resetting...\n",
1195 	       dev->name, ioread32(ioaddr + ISR));
1196 
1197 	{
1198 		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
1199 		for (i = 0; i < RX_RING_SIZE; i++)
1200 			printk(KERN_CONT " %8.8x",
1201 			       (unsigned int) np->rx_ring[i].status);
1202 		printk(KERN_CONT "\n");
1203 		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
1204 		for (i = 0; i < TX_RING_SIZE; i++)
1205 			printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1206 		printk(KERN_CONT "\n");
1207 	}
1208 
1209 	spin_lock_irqsave(&np->lock, flags);
1210 
1211 	reset_and_disable_rxtx(dev);
1212 	reset_tx_descriptors(dev);
1213 	enable_rxtx(dev);
1214 
1215 	spin_unlock_irqrestore(&np->lock, flags);
1216 
1217 	netif_trans_update(dev); /* prevent tx timeout */
1218 	dev->stats.tx_errors++;
1219 	netif_wake_queue(dev); /* or .._start_.. ?? */
1220 }
1221 
1222 
1223 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1224 static void init_ring(struct net_device *dev)
1225 {
1226 	struct netdev_private *np = netdev_priv(dev);
1227 	int i;
1228 
1229 	/* initialize rx variables */
1230 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1231 	np->cur_rx = &np->rx_ring[0];
1232 	np->lack_rxbuf = np->rx_ring;
1233 	np->really_rx_count = 0;
1234 
1235 	/* initial rx descriptors. */
1236 	for (i = 0; i < RX_RING_SIZE; i++) {
1237 		np->rx_ring[i].status = 0;
1238 		np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1239 		np->rx_ring[i].next_desc = np->rx_ring_dma +
1240 			(i + 1)*sizeof(struct fealnx_desc);
1241 		np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1242 		np->rx_ring[i].skbuff = NULL;
1243 	}
1244 
1245 	/* for the last rx descriptor */
1246 	np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1247 	np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1248 
1249 	/* allocate skb for rx buffers */
1250 	for (i = 0; i < RX_RING_SIZE; i++) {
1251 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1252 
1253 		if (skb == NULL) {
1254 			np->lack_rxbuf = &np->rx_ring[i];
1255 			break;
1256 		}
1257 
1258 		++np->really_rx_count;
1259 		np->rx_ring[i].skbuff = skb;
1260 		np->rx_ring[i].buffer = dma_map_single(&np->pci_dev->dev,
1261 						       skb->data,
1262 						       np->rx_buf_sz,
1263 						       DMA_FROM_DEVICE);
1264 		np->rx_ring[i].status = RXOWN;
1265 		np->rx_ring[i].control |= RXIC;
1266 	}
1267 
1268 	/* initialize tx variables */
1269 	np->cur_tx = &np->tx_ring[0];
1270 	np->cur_tx_copy = &np->tx_ring[0];
1271 	np->really_tx_count = 0;
1272 	np->free_tx_count = TX_RING_SIZE;
1273 
1274 	for (i = 0; i < TX_RING_SIZE; i++) {
1275 		np->tx_ring[i].status = 0;
1276 		/* do we need np->tx_ring[i].control = XXX; ?? */
1277 		np->tx_ring[i].next_desc = np->tx_ring_dma +
1278 			(i + 1)*sizeof(struct fealnx_desc);
1279 		np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1280 		np->tx_ring[i].skbuff = NULL;
1281 	}
1282 
1283 	/* for the last tx descriptor */
1284 	np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1285 	np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1286 }
1287 
1288 
1289 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1290 {
1291 	struct netdev_private *np = netdev_priv(dev);
1292 	unsigned long flags;
1293 
1294 	spin_lock_irqsave(&np->lock, flags);
1295 
1296 	np->cur_tx_copy->skbuff = skb;
1297 
1298 #define one_buffer
1299 #define BPT 1022
1300 #if defined(one_buffer)
1301 	np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev, skb->data,
1302 						 skb->len, DMA_TO_DEVICE);
1303 	np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1304 	np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1305 	np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1306 // 89/12/29 add,
1307 	if (np->pci_dev->device == 0x891)
1308 		np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1309 	np->cur_tx_copy->status = TXOWN;
1310 	np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1311 	--np->free_tx_count;
1312 #elif defined(two_buffer)
1313 	if (skb->len > BPT) {
1314 		struct fealnx_desc *next;
1315 
1316 		/* for the first descriptor */
1317 		np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev,
1318 							 skb->data, BPT,
1319 							 DMA_TO_DEVICE);
1320 		np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1321 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1322 		np->cur_tx_copy->control |= (BPT << TBSShift);	/* buffer size */
1323 
1324 		/* for the last descriptor */
1325 		next = np->cur_tx_copy->next_desc_logical;
1326 		next->skbuff = skb;
1327 		next->control = TXIC | TXLD | CRCEnable | PADEnable;
1328 		next->control |= (skb->len << PKTSShift);	/* pkt size */
1329 		next->control |= ((skb->len - BPT) << TBSShift);	/* buf size */
1330 // 89/12/29 add,
1331 		if (np->pci_dev->device == 0x891)
1332 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1333 		next->buffer = dma_map_single(&ep->pci_dev->dev,
1334 					      skb->data + BPT, skb->len - BPT,
1335 					      DMA_TO_DEVICE);
1336 
1337 		next->status = TXOWN;
1338 		np->cur_tx_copy->status = TXOWN;
1339 
1340 		np->cur_tx_copy = next->next_desc_logical;
1341 		np->free_tx_count -= 2;
1342 	} else {
1343 		np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev,
1344 							 skb->data, skb->len,
1345 							 DMA_TO_DEVICE);
1346 		np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1347 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1348 		np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1349 // 89/12/29 add,
1350 		if (np->pci_dev->device == 0x891)
1351 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1352 		np->cur_tx_copy->status = TXOWN;
1353 		np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1354 		--np->free_tx_count;
1355 	}
1356 #endif
1357 
1358 	if (np->free_tx_count < 2)
1359 		netif_stop_queue(dev);
1360 	++np->really_tx_count;
1361 	iowrite32(0, np->mem + TXPDR);
1362 
1363 	spin_unlock_irqrestore(&np->lock, flags);
1364 	return NETDEV_TX_OK;
1365 }
1366 
1367 
1368 /* Take lock before calling */
1369 /* Chip probably hosed tx ring. Clean up. */
1370 static void reset_tx_descriptors(struct net_device *dev)
1371 {
1372 	struct netdev_private *np = netdev_priv(dev);
1373 	struct fealnx_desc *cur;
1374 	int i;
1375 
1376 	/* initialize tx variables */
1377 	np->cur_tx = &np->tx_ring[0];
1378 	np->cur_tx_copy = &np->tx_ring[0];
1379 	np->really_tx_count = 0;
1380 	np->free_tx_count = TX_RING_SIZE;
1381 
1382 	for (i = 0; i < TX_RING_SIZE; i++) {
1383 		cur = &np->tx_ring[i];
1384 		if (cur->skbuff) {
1385 			dma_unmap_single(&np->pci_dev->dev, cur->buffer,
1386 					 cur->skbuff->len, DMA_TO_DEVICE);
1387 			dev_kfree_skb_any(cur->skbuff);
1388 			cur->skbuff = NULL;
1389 		}
1390 		cur->status = 0;
1391 		cur->control = 0;	/* needed? */
1392 		/* probably not needed. We do it for purely paranoid reasons */
1393 		cur->next_desc = np->tx_ring_dma +
1394 			(i + 1)*sizeof(struct fealnx_desc);
1395 		cur->next_desc_logical = &np->tx_ring[i + 1];
1396 	}
1397 	/* for the last tx descriptor */
1398 	np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1399 	np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1400 }
1401 
1402 
1403 /* Take lock and stop rx before calling this */
1404 static void reset_rx_descriptors(struct net_device *dev)
1405 {
1406 	struct netdev_private *np = netdev_priv(dev);
1407 	struct fealnx_desc *cur = np->cur_rx;
1408 	int i;
1409 
1410 	allocate_rx_buffers(dev);
1411 
1412 	for (i = 0; i < RX_RING_SIZE; i++) {
1413 		if (cur->skbuff)
1414 			cur->status = RXOWN;
1415 		cur = cur->next_desc_logical;
1416 	}
1417 
1418 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1419 		np->mem + RXLBA);
1420 }
1421 
1422 
1423 /* The interrupt handler does all of the Rx thread work and cleans up
1424    after the Tx thread. */
1425 static irqreturn_t intr_handler(int irq, void *dev_instance)
1426 {
1427 	struct net_device *dev = (struct net_device *) dev_instance;
1428 	struct netdev_private *np = netdev_priv(dev);
1429 	void __iomem *ioaddr = np->mem;
1430 	long boguscnt = max_interrupt_work;
1431 	unsigned int num_tx = 0;
1432 	int handled = 0;
1433 
1434 	spin_lock(&np->lock);
1435 
1436 	iowrite32(0, ioaddr + IMR);
1437 
1438 	do {
1439 		u32 intr_status = ioread32(ioaddr + ISR);
1440 
1441 		/* Acknowledge all of the current interrupt sources ASAP. */
1442 		iowrite32(intr_status, ioaddr + ISR);
1443 
1444 		if (debug)
1445 			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1446 			       intr_status);
1447 
1448 		if (!(intr_status & np->imrvalue))
1449 			break;
1450 
1451 		handled = 1;
1452 
1453 // 90/1/16 delete,
1454 //
1455 //      if (intr_status & FBE)
1456 //      {   /* fatal error */
1457 //          stop_nic_tx(ioaddr, 0);
1458 //          stop_nic_rx(ioaddr, 0);
1459 //          break;
1460 //      };
1461 
1462 		if (intr_status & TUNF)
1463 			iowrite32(0, ioaddr + TXPDR);
1464 
1465 		if (intr_status & CNTOVF) {
1466 			/* missed pkts */
1467 			dev->stats.rx_missed_errors +=
1468 				ioread32(ioaddr + TALLY) & 0x7fff;
1469 
1470 			/* crc error */
1471 			dev->stats.rx_crc_errors +=
1472 			    (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1473 		}
1474 
1475 		if (intr_status & (RI | RBU)) {
1476 			if (intr_status & RI)
1477 				netdev_rx(dev);
1478 			else {
1479 				stop_nic_rx(ioaddr, np->crvalue);
1480 				reset_rx_descriptors(dev);
1481 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1482 			}
1483 		}
1484 
1485 		while (np->really_tx_count) {
1486 			long tx_status = np->cur_tx->status;
1487 			long tx_control = np->cur_tx->control;
1488 
1489 			if (!(tx_control & TXLD)) {	/* this pkt is combined by two tx descriptors */
1490 				struct fealnx_desc *next;
1491 
1492 				next = np->cur_tx->next_desc_logical;
1493 				tx_status = next->status;
1494 				tx_control = next->control;
1495 			}
1496 
1497 			if (tx_status & TXOWN)
1498 				break;
1499 
1500 			if (!(np->crvalue & CR_W_ENH)) {
1501 				if (tx_status & (CSL | LC | EC | UDF | HF)) {
1502 					dev->stats.tx_errors++;
1503 					if (tx_status & EC)
1504 						dev->stats.tx_aborted_errors++;
1505 					if (tx_status & CSL)
1506 						dev->stats.tx_carrier_errors++;
1507 					if (tx_status & LC)
1508 						dev->stats.tx_window_errors++;
1509 					if (tx_status & UDF)
1510 						dev->stats.tx_fifo_errors++;
1511 					if ((tx_status & HF) && np->mii.full_duplex == 0)
1512 						dev->stats.tx_heartbeat_errors++;
1513 
1514 				} else {
1515 					dev->stats.tx_bytes +=
1516 					    ((tx_control & PKTSMask) >> PKTSShift);
1517 
1518 					dev->stats.collisions +=
1519 					    ((tx_status & NCRMask) >> NCRShift);
1520 					dev->stats.tx_packets++;
1521 				}
1522 			} else {
1523 				dev->stats.tx_bytes +=
1524 				    ((tx_control & PKTSMask) >> PKTSShift);
1525 				dev->stats.tx_packets++;
1526 			}
1527 
1528 			/* Free the original skb. */
1529 			dma_unmap_single(&np->pci_dev->dev,
1530 					 np->cur_tx->buffer,
1531 					 np->cur_tx->skbuff->len,
1532 					 DMA_TO_DEVICE);
1533 			dev_consume_skb_irq(np->cur_tx->skbuff);
1534 			np->cur_tx->skbuff = NULL;
1535 			--np->really_tx_count;
1536 			if (np->cur_tx->control & TXLD) {
1537 				np->cur_tx = np->cur_tx->next_desc_logical;
1538 				++np->free_tx_count;
1539 			} else {
1540 				np->cur_tx = np->cur_tx->next_desc_logical;
1541 				np->cur_tx = np->cur_tx->next_desc_logical;
1542 				np->free_tx_count += 2;
1543 			}
1544 			num_tx++;
1545 		}		/* end of for loop */
1546 
1547 		if (num_tx && np->free_tx_count >= 2)
1548 			netif_wake_queue(dev);
1549 
1550 		/* read transmit status for enhanced mode only */
1551 		if (np->crvalue & CR_W_ENH) {
1552 			long data;
1553 
1554 			data = ioread32(ioaddr + TSR);
1555 			dev->stats.tx_errors += (data & 0xff000000) >> 24;
1556 			dev->stats.tx_aborted_errors +=
1557 				(data & 0xff000000) >> 24;
1558 			dev->stats.tx_window_errors +=
1559 				(data & 0x00ff0000) >> 16;
1560 			dev->stats.collisions += (data & 0x0000ffff);
1561 		}
1562 
1563 		if (--boguscnt < 0) {
1564 			printk(KERN_WARNING "%s: Too much work at interrupt, "
1565 			       "status=0x%4.4x.\n", dev->name, intr_status);
1566 			if (!np->reset_timer_armed) {
1567 				np->reset_timer_armed = 1;
1568 				np->reset_timer.expires = RUN_AT(HZ/2);
1569 				add_timer(&np->reset_timer);
1570 				stop_nic_rxtx(ioaddr, 0);
1571 				netif_stop_queue(dev);
1572 				/* or netif_tx_disable(dev); ?? */
1573 				/* Prevent other paths from enabling tx,rx,intrs */
1574 				np->crvalue_sv = np->crvalue;
1575 				np->imrvalue_sv = np->imrvalue;
1576 				np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1577 				np->imrvalue = 0;
1578 			}
1579 
1580 			break;
1581 		}
1582 	} while (1);
1583 
1584 	/* read the tally counters */
1585 	/* missed pkts */
1586 	dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1587 
1588 	/* crc error */
1589 	dev->stats.rx_crc_errors +=
1590 		(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1591 
1592 	if (debug)
1593 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1594 		       dev->name, ioread32(ioaddr + ISR));
1595 
1596 	iowrite32(np->imrvalue, ioaddr + IMR);
1597 
1598 	spin_unlock(&np->lock);
1599 
1600 	return IRQ_RETVAL(handled);
1601 }
1602 
1603 
1604 /* This routine is logically part of the interrupt handler, but separated
1605    for clarity and better register allocation. */
1606 static int netdev_rx(struct net_device *dev)
1607 {
1608 	struct netdev_private *np = netdev_priv(dev);
1609 	void __iomem *ioaddr = np->mem;
1610 
1611 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1612 	while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1613 		s32 rx_status = np->cur_rx->status;
1614 
1615 		if (np->really_rx_count == 0)
1616 			break;
1617 
1618 		if (debug)
1619 			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n", rx_status);
1620 
1621 		if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1622 		    (rx_status & ErrorSummary)) {
1623 			if (rx_status & ErrorSummary) {	/* there was a fatal error */
1624 				if (debug)
1625 					printk(KERN_DEBUG
1626 					       "%s: Receive error, Rx status %8.8x.\n",
1627 					       dev->name, rx_status);
1628 
1629 				dev->stats.rx_errors++;	/* end of a packet. */
1630 				if (rx_status & (LONGPKT | RUNTPKT))
1631 					dev->stats.rx_length_errors++;
1632 				if (rx_status & RXER)
1633 					dev->stats.rx_frame_errors++;
1634 				if (rx_status & CRC)
1635 					dev->stats.rx_crc_errors++;
1636 			} else {
1637 				int need_to_reset = 0;
1638 				int desno = 0;
1639 
1640 				if (rx_status & RXFSD) {	/* this pkt is too long, over one rx buffer */
1641 					struct fealnx_desc *cur;
1642 
1643 					/* check this packet is received completely? */
1644 					cur = np->cur_rx;
1645 					while (desno <= np->really_rx_count) {
1646 						++desno;
1647 						if ((!(cur->status & RXOWN)) &&
1648 						    (cur->status & RXLSD))
1649 							break;
1650 						/* goto next rx descriptor */
1651 						cur = cur->next_desc_logical;
1652 					}
1653 					if (desno > np->really_rx_count)
1654 						need_to_reset = 1;
1655 				} else	/* RXLSD did not find, something error */
1656 					need_to_reset = 1;
1657 
1658 				if (need_to_reset == 0) {
1659 					int i;
1660 
1661 					dev->stats.rx_length_errors++;
1662 
1663 					/* free all rx descriptors related this long pkt */
1664 					for (i = 0; i < desno; ++i) {
1665 						if (!np->cur_rx->skbuff) {
1666 							printk(KERN_DEBUG
1667 								"%s: I'm scared\n", dev->name);
1668 							break;
1669 						}
1670 						np->cur_rx->status = RXOWN;
1671 						np->cur_rx = np->cur_rx->next_desc_logical;
1672 					}
1673 					continue;
1674 				} else {        /* rx error, need to reset this chip */
1675 					stop_nic_rx(ioaddr, np->crvalue);
1676 					reset_rx_descriptors(dev);
1677 					iowrite32(np->crvalue, ioaddr + TCRRCR);
1678 				}
1679 				break;	/* exit the while loop */
1680 			}
1681 		} else {	/* this received pkt is ok */
1682 
1683 			struct sk_buff *skb;
1684 			/* Omit the four octet CRC from the length. */
1685 			short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1686 
1687 #ifndef final_version
1688 			if (debug)
1689 				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
1690 				       " status %x.\n", pkt_len, rx_status);
1691 #endif
1692 
1693 			/* Check if the packet is long enough to accept without copying
1694 			   to a minimally-sized skbuff. */
1695 			if (pkt_len < rx_copybreak &&
1696 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1697 				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1698 				dma_sync_single_for_cpu(&np->pci_dev->dev,
1699 							np->cur_rx->buffer,
1700 							np->rx_buf_sz,
1701 							DMA_FROM_DEVICE);
1702 				/* Call copy + cksum if available. */
1703 
1704 #if ! defined(__alpha__)
1705 				skb_copy_to_linear_data(skb,
1706 					np->cur_rx->skbuff->data, pkt_len);
1707 				skb_put(skb, pkt_len);
1708 #else
1709 				skb_put_data(skb, np->cur_rx->skbuff->data,
1710 					     pkt_len);
1711 #endif
1712 				dma_sync_single_for_device(&np->pci_dev->dev,
1713 							   np->cur_rx->buffer,
1714 							   np->rx_buf_sz,
1715 							   DMA_FROM_DEVICE);
1716 			} else {
1717 				dma_unmap_single(&np->pci_dev->dev,
1718 						 np->cur_rx->buffer,
1719 						 np->rx_buf_sz,
1720 						 DMA_FROM_DEVICE);
1721 				skb_put(skb = np->cur_rx->skbuff, pkt_len);
1722 				np->cur_rx->skbuff = NULL;
1723 				--np->really_rx_count;
1724 			}
1725 			skb->protocol = eth_type_trans(skb, dev);
1726 			netif_rx(skb);
1727 			dev->stats.rx_packets++;
1728 			dev->stats.rx_bytes += pkt_len;
1729 		}
1730 
1731 		np->cur_rx = np->cur_rx->next_desc_logical;
1732 	}			/* end of while loop */
1733 
1734 	/*  allocate skb for rx buffers */
1735 	allocate_rx_buffers(dev);
1736 
1737 	return 0;
1738 }
1739 
1740 
1741 static struct net_device_stats *get_stats(struct net_device *dev)
1742 {
1743 	struct netdev_private *np = netdev_priv(dev);
1744 	void __iomem *ioaddr = np->mem;
1745 
1746 	/* The chip only need report frame silently dropped. */
1747 	if (netif_running(dev)) {
1748 		dev->stats.rx_missed_errors +=
1749 			ioread32(ioaddr + TALLY) & 0x7fff;
1750 		dev->stats.rx_crc_errors +=
1751 			(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1752 	}
1753 
1754 	return &dev->stats;
1755 }
1756 
1757 
1758 /* for dev->set_multicast_list */
1759 static void set_rx_mode(struct net_device *dev)
1760 {
1761 	spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1762 	unsigned long flags;
1763 	spin_lock_irqsave(lp, flags);
1764 	__set_rx_mode(dev);
1765 	spin_unlock_irqrestore(lp, flags);
1766 }
1767 
1768 
1769 /* Take lock before calling */
1770 static void __set_rx_mode(struct net_device *dev)
1771 {
1772 	struct netdev_private *np = netdev_priv(dev);
1773 	void __iomem *ioaddr = np->mem;
1774 	u32 mc_filter[2];	/* Multicast hash filter */
1775 	u32 rx_mode;
1776 
1777 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1778 		memset(mc_filter, 0xff, sizeof(mc_filter));
1779 		rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1780 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1781 		   (dev->flags & IFF_ALLMULTI)) {
1782 		/* Too many to match, or accept all multicasts. */
1783 		memset(mc_filter, 0xff, sizeof(mc_filter));
1784 		rx_mode = CR_W_AB | CR_W_AM;
1785 	} else {
1786 		struct netdev_hw_addr *ha;
1787 
1788 		memset(mc_filter, 0, sizeof(mc_filter));
1789 		netdev_for_each_mc_addr(ha, dev) {
1790 			unsigned int bit;
1791 			bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1792 			mc_filter[bit >> 5] |= (1 << bit);
1793 		}
1794 		rx_mode = CR_W_AB | CR_W_AM;
1795 	}
1796 
1797 	stop_nic_rxtx(ioaddr, np->crvalue);
1798 
1799 	iowrite32(mc_filter[0], ioaddr + MAR0);
1800 	iowrite32(mc_filter[1], ioaddr + MAR1);
1801 	np->crvalue &= ~CR_W_RXMODEMASK;
1802 	np->crvalue |= rx_mode;
1803 	iowrite32(np->crvalue, ioaddr + TCRRCR);
1804 }
1805 
1806 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1807 {
1808 	struct netdev_private *np = netdev_priv(dev);
1809 
1810 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1811 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1812 }
1813 
1814 static int netdev_get_link_ksettings(struct net_device *dev,
1815 				     struct ethtool_link_ksettings *cmd)
1816 {
1817 	struct netdev_private *np = netdev_priv(dev);
1818 
1819 	spin_lock_irq(&np->lock);
1820 	mii_ethtool_get_link_ksettings(&np->mii, cmd);
1821 	spin_unlock_irq(&np->lock);
1822 
1823 	return 0;
1824 }
1825 
1826 static int netdev_set_link_ksettings(struct net_device *dev,
1827 				     const struct ethtool_link_ksettings *cmd)
1828 {
1829 	struct netdev_private *np = netdev_priv(dev);
1830 	int rc;
1831 
1832 	spin_lock_irq(&np->lock);
1833 	rc = mii_ethtool_set_link_ksettings(&np->mii, cmd);
1834 	spin_unlock_irq(&np->lock);
1835 
1836 	return rc;
1837 }
1838 
1839 static int netdev_nway_reset(struct net_device *dev)
1840 {
1841 	struct netdev_private *np = netdev_priv(dev);
1842 	return mii_nway_restart(&np->mii);
1843 }
1844 
1845 static u32 netdev_get_link(struct net_device *dev)
1846 {
1847 	struct netdev_private *np = netdev_priv(dev);
1848 	return mii_link_ok(&np->mii);
1849 }
1850 
1851 static u32 netdev_get_msglevel(struct net_device *dev)
1852 {
1853 	return debug;
1854 }
1855 
1856 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1857 {
1858 	debug = value;
1859 }
1860 
1861 static const struct ethtool_ops netdev_ethtool_ops = {
1862 	.get_drvinfo		= netdev_get_drvinfo,
1863 	.nway_reset		= netdev_nway_reset,
1864 	.get_link		= netdev_get_link,
1865 	.get_msglevel		= netdev_get_msglevel,
1866 	.set_msglevel		= netdev_set_msglevel,
1867 	.get_link_ksettings	= netdev_get_link_ksettings,
1868 	.set_link_ksettings	= netdev_set_link_ksettings,
1869 };
1870 
1871 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1872 {
1873 	struct netdev_private *np = netdev_priv(dev);
1874 	int rc;
1875 
1876 	if (!netif_running(dev))
1877 		return -EINVAL;
1878 
1879 	spin_lock_irq(&np->lock);
1880 	rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1881 	spin_unlock_irq(&np->lock);
1882 
1883 	return rc;
1884 }
1885 
1886 
1887 static int netdev_close(struct net_device *dev)
1888 {
1889 	struct netdev_private *np = netdev_priv(dev);
1890 	void __iomem *ioaddr = np->mem;
1891 	int i;
1892 
1893 	netif_stop_queue(dev);
1894 
1895 	/* Disable interrupts by clearing the interrupt mask. */
1896 	iowrite32(0x0000, ioaddr + IMR);
1897 
1898 	/* Stop the chip's Tx and Rx processes. */
1899 	stop_nic_rxtx(ioaddr, 0);
1900 
1901 	del_timer_sync(&np->timer);
1902 	del_timer_sync(&np->reset_timer);
1903 
1904 	free_irq(np->pci_dev->irq, dev);
1905 
1906 	/* Free all the skbuffs in the Rx queue. */
1907 	for (i = 0; i < RX_RING_SIZE; i++) {
1908 		struct sk_buff *skb = np->rx_ring[i].skbuff;
1909 
1910 		np->rx_ring[i].status = 0;
1911 		if (skb) {
1912 			dma_unmap_single(&np->pci_dev->dev,
1913 					 np->rx_ring[i].buffer, np->rx_buf_sz,
1914 					 DMA_FROM_DEVICE);
1915 			dev_kfree_skb(skb);
1916 			np->rx_ring[i].skbuff = NULL;
1917 		}
1918 	}
1919 
1920 	for (i = 0; i < TX_RING_SIZE; i++) {
1921 		struct sk_buff *skb = np->tx_ring[i].skbuff;
1922 
1923 		if (skb) {
1924 			dma_unmap_single(&np->pci_dev->dev,
1925 					 np->tx_ring[i].buffer, skb->len,
1926 					 DMA_TO_DEVICE);
1927 			dev_kfree_skb(skb);
1928 			np->tx_ring[i].skbuff = NULL;
1929 		}
1930 	}
1931 
1932 	return 0;
1933 }
1934 
1935 static const struct pci_device_id fealnx_pci_tbl[] = {
1936 	{0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1937 	{0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1938 	{0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1939 	{} /* terminate list */
1940 };
1941 MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1942 
1943 
1944 static struct pci_driver fealnx_driver = {
1945 	.name		= "fealnx",
1946 	.id_table	= fealnx_pci_tbl,
1947 	.probe		= fealnx_init_one,
1948 	.remove		= fealnx_remove_one,
1949 };
1950 
1951 module_pci_driver(fealnx_driver);
1952