1 /* 2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet 3 * driver for Linux. 4 * 5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/skbuff.h> 37 #include <linux/netdevice.h> 38 #include <linux/etherdevice.h> 39 #include <linux/if_vlan.h> 40 #include <linux/ip.h> 41 #include <net/ipv6.h> 42 #include <net/tcp.h> 43 #include <linux/dma-mapping.h> 44 #include <linux/prefetch.h> 45 46 #include "t4vf_common.h" 47 #include "t4vf_defs.h" 48 49 #include "../cxgb4/t4_regs.h" 50 #include "../cxgb4/t4fw_api.h" 51 #include "../cxgb4/t4_msg.h" 52 53 /* 54 * Constants ... 55 */ 56 enum { 57 /* 58 * Egress Queue sizes, producer and consumer indices are all in units 59 * of Egress Context Units bytes. Note that as far as the hardware is 60 * concerned, the free list is an Egress Queue (the host produces free 61 * buffers which the hardware consumes) and free list entries are 62 * 64-bit PCI DMA addresses. 63 */ 64 EQ_UNIT = SGE_EQ_IDXSIZE, 65 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 66 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 67 68 /* 69 * Max number of TX descriptors we clean up at a time. Should be 70 * modest as freeing skbs isn't cheap and it happens while holding 71 * locks. We just need to free packets faster than they arrive, we 72 * eventually catch up and keep the amortized cost reasonable. 73 */ 74 MAX_TX_RECLAIM = 16, 75 76 /* 77 * Max number of Rx buffers we replenish at a time. Again keep this 78 * modest, allocating buffers isn't cheap either. 79 */ 80 MAX_RX_REFILL = 16, 81 82 /* 83 * Period of the Rx queue check timer. This timer is infrequent as it 84 * has something to do only when the system experiences severe memory 85 * shortage. 86 */ 87 RX_QCHECK_PERIOD = (HZ / 2), 88 89 /* 90 * Period of the TX queue check timer and the maximum number of TX 91 * descriptors to be reclaimed by the TX timer. 92 */ 93 TX_QCHECK_PERIOD = (HZ / 2), 94 MAX_TIMER_TX_RECLAIM = 100, 95 96 /* 97 * Suspend an Ethernet TX queue with fewer available descriptors than 98 * this. We always want to have room for a maximum sized packet: 99 * inline immediate data + MAX_SKB_FRAGS. This is the same as 100 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS 101 * (see that function and its helpers for a description of the 102 * calculation). 103 */ 104 ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1, 105 ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 + 106 ((ETHTXQ_MAX_FRAGS-1) & 1) + 107 2), 108 ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 109 sizeof(struct cpl_tx_pkt_lso_core) + 110 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 111 ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR, 112 113 ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT), 114 115 /* 116 * Max TX descriptor space we allow for an Ethernet packet to be 117 * inlined into a WR. This is limited by the maximum value which 118 * we can specify for immediate data in the firmware Ethernet TX 119 * Work Request. 120 */ 121 MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_MASK, 122 123 /* 124 * Max size of a WR sent through a control TX queue. 125 */ 126 MAX_CTRL_WR_LEN = 256, 127 128 /* 129 * Maximum amount of data which we'll ever need to inline into a 130 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN). 131 */ 132 MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN 133 ? MAX_IMM_TX_PKT_LEN 134 : MAX_CTRL_WR_LEN), 135 136 /* 137 * For incoming packets less than RX_COPY_THRES, we copy the data into 138 * an skb rather than referencing the data. We allocate enough 139 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes 140 * of the data (header). 141 */ 142 RX_COPY_THRES = 256, 143 RX_PULL_LEN = 128, 144 145 /* 146 * Main body length for sk_buffs used for RX Ethernet packets with 147 * fragments. Should be >= RX_PULL_LEN but possibly bigger to give 148 * pskb_may_pull() some room. 149 */ 150 RX_SKB_LEN = 512, 151 }; 152 153 /* 154 * Software state per TX descriptor. 155 */ 156 struct tx_sw_desc { 157 struct sk_buff *skb; /* socket buffer of TX data source */ 158 struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */ 159 }; 160 161 /* 162 * Software state per RX Free List descriptor. We keep track of the allocated 163 * FL page, its size, and its PCI DMA address (if the page is mapped). The FL 164 * page size and its PCI DMA mapped state are stored in the low bits of the 165 * PCI DMA address as per below. 166 */ 167 struct rx_sw_desc { 168 struct page *page; /* Free List page buffer */ 169 dma_addr_t dma_addr; /* PCI DMA address (if mapped) */ 170 /* and flags (see below) */ 171 }; 172 173 /* 174 * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the 175 * SGE also uses the low 4 bits to determine the size of the buffer. It uses 176 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array. 177 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4 178 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving 179 * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is 180 * maintained in an inverse sense so the hardware never sees that bit high. 181 */ 182 enum { 183 RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */ 184 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */ 185 }; 186 187 /** 188 * get_buf_addr - return DMA buffer address of software descriptor 189 * @sdesc: pointer to the software buffer descriptor 190 * 191 * Return the DMA buffer address of a software descriptor (stripping out 192 * our low-order flag bits). 193 */ 194 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc) 195 { 196 return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF); 197 } 198 199 /** 200 * is_buf_mapped - is buffer mapped for DMA? 201 * @sdesc: pointer to the software buffer descriptor 202 * 203 * Determine whether the buffer associated with a software descriptor in 204 * mapped for DMA or not. 205 */ 206 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc) 207 { 208 return !(sdesc->dma_addr & RX_UNMAPPED_BUF); 209 } 210 211 /** 212 * need_skb_unmap - does the platform need unmapping of sk_buffs? 213 * 214 * Returns true if the platform needs sk_buff unmapping. The compiler 215 * optimizes away unnecessary code if this returns true. 216 */ 217 static inline int need_skb_unmap(void) 218 { 219 #ifdef CONFIG_NEED_DMA_MAP_STATE 220 return 1; 221 #else 222 return 0; 223 #endif 224 } 225 226 /** 227 * txq_avail - return the number of available slots in a TX queue 228 * @tq: the TX queue 229 * 230 * Returns the number of available descriptors in a TX queue. 231 */ 232 static inline unsigned int txq_avail(const struct sge_txq *tq) 233 { 234 return tq->size - 1 - tq->in_use; 235 } 236 237 /** 238 * fl_cap - return the capacity of a Free List 239 * @fl: the Free List 240 * 241 * Returns the capacity of a Free List. The capacity is less than the 242 * size because an Egress Queue Index Unit worth of descriptors needs to 243 * be left unpopulated, otherwise the Producer and Consumer indices PIDX 244 * and CIDX will match and the hardware will think the FL is empty. 245 */ 246 static inline unsigned int fl_cap(const struct sge_fl *fl) 247 { 248 return fl->size - FL_PER_EQ_UNIT; 249 } 250 251 /** 252 * fl_starving - return whether a Free List is starving. 253 * @adapter: pointer to the adapter 254 * @fl: the Free List 255 * 256 * Tests specified Free List to see whether the number of buffers 257 * available to the hardware has falled below our "starvation" 258 * threshold. 259 */ 260 static inline bool fl_starving(const struct adapter *adapter, 261 const struct sge_fl *fl) 262 { 263 const struct sge *s = &adapter->sge; 264 265 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 266 } 267 268 /** 269 * map_skb - map an skb for DMA to the device 270 * @dev: the egress net device 271 * @skb: the packet to map 272 * @addr: a pointer to the base of the DMA mapping array 273 * 274 * Map an skb for DMA to the device and return an array of DMA addresses. 275 */ 276 static int map_skb(struct device *dev, const struct sk_buff *skb, 277 dma_addr_t *addr) 278 { 279 const skb_frag_t *fp, *end; 280 const struct skb_shared_info *si; 281 282 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 283 if (dma_mapping_error(dev, *addr)) 284 goto out_err; 285 286 si = skb_shinfo(skb); 287 end = &si->frags[si->nr_frags]; 288 for (fp = si->frags; fp < end; fp++) { 289 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 290 DMA_TO_DEVICE); 291 if (dma_mapping_error(dev, *addr)) 292 goto unwind; 293 } 294 return 0; 295 296 unwind: 297 while (fp-- > si->frags) 298 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 299 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 300 301 out_err: 302 return -ENOMEM; 303 } 304 305 static void unmap_sgl(struct device *dev, const struct sk_buff *skb, 306 const struct ulptx_sgl *sgl, const struct sge_txq *tq) 307 { 308 const struct ulptx_sge_pair *p; 309 unsigned int nfrags = skb_shinfo(skb)->nr_frags; 310 311 if (likely(skb_headlen(skb))) 312 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), 313 be32_to_cpu(sgl->len0), DMA_TO_DEVICE); 314 else { 315 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), 316 be32_to_cpu(sgl->len0), DMA_TO_DEVICE); 317 nfrags--; 318 } 319 320 /* 321 * the complexity below is because of the possibility of a wrap-around 322 * in the middle of an SGL 323 */ 324 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { 325 if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) { 326 unmap: 327 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 328 be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 329 dma_unmap_page(dev, be64_to_cpu(p->addr[1]), 330 be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 331 p++; 332 } else if ((u8 *)p == (u8 *)tq->stat) { 333 p = (const struct ulptx_sge_pair *)tq->desc; 334 goto unmap; 335 } else if ((u8 *)p + 8 == (u8 *)tq->stat) { 336 const __be64 *addr = (const __be64 *)tq->desc; 337 338 dma_unmap_page(dev, be64_to_cpu(addr[0]), 339 be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 340 dma_unmap_page(dev, be64_to_cpu(addr[1]), 341 be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 342 p = (const struct ulptx_sge_pair *)&addr[2]; 343 } else { 344 const __be64 *addr = (const __be64 *)tq->desc; 345 346 dma_unmap_page(dev, be64_to_cpu(p->addr[0]), 347 be32_to_cpu(p->len[0]), DMA_TO_DEVICE); 348 dma_unmap_page(dev, be64_to_cpu(addr[0]), 349 be32_to_cpu(p->len[1]), DMA_TO_DEVICE); 350 p = (const struct ulptx_sge_pair *)&addr[1]; 351 } 352 } 353 if (nfrags) { 354 __be64 addr; 355 356 if ((u8 *)p == (u8 *)tq->stat) 357 p = (const struct ulptx_sge_pair *)tq->desc; 358 addr = ((u8 *)p + 16 <= (u8 *)tq->stat 359 ? p->addr[0] 360 : *(const __be64 *)tq->desc); 361 dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]), 362 DMA_TO_DEVICE); 363 } 364 } 365 366 /** 367 * free_tx_desc - reclaims TX descriptors and their buffers 368 * @adapter: the adapter 369 * @tq: the TX queue to reclaim descriptors from 370 * @n: the number of descriptors to reclaim 371 * @unmap: whether the buffers should be unmapped for DMA 372 * 373 * Reclaims TX descriptors from an SGE TX queue and frees the associated 374 * TX buffers. Called with the TX queue lock held. 375 */ 376 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq, 377 unsigned int n, bool unmap) 378 { 379 struct tx_sw_desc *sdesc; 380 unsigned int cidx = tq->cidx; 381 struct device *dev = adapter->pdev_dev; 382 383 const int need_unmap = need_skb_unmap() && unmap; 384 385 sdesc = &tq->sdesc[cidx]; 386 while (n--) { 387 /* 388 * If we kept a reference to the original TX skb, we need to 389 * unmap it from PCI DMA space (if required) and free it. 390 */ 391 if (sdesc->skb) { 392 if (need_unmap) 393 unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq); 394 dev_consume_skb_any(sdesc->skb); 395 sdesc->skb = NULL; 396 } 397 398 sdesc++; 399 if (++cidx == tq->size) { 400 cidx = 0; 401 sdesc = tq->sdesc; 402 } 403 } 404 tq->cidx = cidx; 405 } 406 407 /* 408 * Return the number of reclaimable descriptors in a TX queue. 409 */ 410 static inline int reclaimable(const struct sge_txq *tq) 411 { 412 int hw_cidx = be16_to_cpu(tq->stat->cidx); 413 int reclaimable = hw_cidx - tq->cidx; 414 if (reclaimable < 0) 415 reclaimable += tq->size; 416 return reclaimable; 417 } 418 419 /** 420 * reclaim_completed_tx - reclaims completed TX descriptors 421 * @adapter: the adapter 422 * @tq: the TX queue to reclaim completed descriptors from 423 * @unmap: whether the buffers should be unmapped for DMA 424 * 425 * Reclaims TX descriptors that the SGE has indicated it has processed, 426 * and frees the associated buffers if possible. Called with the TX 427 * queue locked. 428 */ 429 static inline void reclaim_completed_tx(struct adapter *adapter, 430 struct sge_txq *tq, 431 bool unmap) 432 { 433 int avail = reclaimable(tq); 434 435 if (avail) { 436 /* 437 * Limit the amount of clean up work we do at a time to keep 438 * the TX lock hold time O(1). 439 */ 440 if (avail > MAX_TX_RECLAIM) 441 avail = MAX_TX_RECLAIM; 442 443 free_tx_desc(adapter, tq, avail, unmap); 444 tq->in_use -= avail; 445 } 446 } 447 448 /** 449 * get_buf_size - return the size of an RX Free List buffer. 450 * @adapter: pointer to the associated adapter 451 * @sdesc: pointer to the software buffer descriptor 452 */ 453 static inline int get_buf_size(const struct adapter *adapter, 454 const struct rx_sw_desc *sdesc) 455 { 456 const struct sge *s = &adapter->sge; 457 458 return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF) 459 ? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE); 460 } 461 462 /** 463 * free_rx_bufs - free RX buffers on an SGE Free List 464 * @adapter: the adapter 465 * @fl: the SGE Free List to free buffers from 466 * @n: how many buffers to free 467 * 468 * Release the next @n buffers on an SGE Free List RX queue. The 469 * buffers must be made inaccessible to hardware before calling this 470 * function. 471 */ 472 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n) 473 { 474 while (n--) { 475 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx]; 476 477 if (is_buf_mapped(sdesc)) 478 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc), 479 get_buf_size(adapter, sdesc), 480 PCI_DMA_FROMDEVICE); 481 put_page(sdesc->page); 482 sdesc->page = NULL; 483 if (++fl->cidx == fl->size) 484 fl->cidx = 0; 485 fl->avail--; 486 } 487 } 488 489 /** 490 * unmap_rx_buf - unmap the current RX buffer on an SGE Free List 491 * @adapter: the adapter 492 * @fl: the SGE Free List 493 * 494 * Unmap the current buffer on an SGE Free List RX queue. The 495 * buffer must be made inaccessible to HW before calling this function. 496 * 497 * This is similar to @free_rx_bufs above but does not free the buffer. 498 * Do note that the FL still loses any further access to the buffer. 499 * This is used predominantly to "transfer ownership" of an FL buffer 500 * to another entity (typically an skb's fragment list). 501 */ 502 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl) 503 { 504 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx]; 505 506 if (is_buf_mapped(sdesc)) 507 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc), 508 get_buf_size(adapter, sdesc), 509 PCI_DMA_FROMDEVICE); 510 sdesc->page = NULL; 511 if (++fl->cidx == fl->size) 512 fl->cidx = 0; 513 fl->avail--; 514 } 515 516 /** 517 * ring_fl_db - righ doorbell on free list 518 * @adapter: the adapter 519 * @fl: the Free List whose doorbell should be rung ... 520 * 521 * Tell the Scatter Gather Engine that there are new free list entries 522 * available. 523 */ 524 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl) 525 { 526 u32 val; 527 528 /* 529 * The SGE keeps track of its Producer and Consumer Indices in terms 530 * of Egress Queue Units so we can only tell it about integral numbers 531 * of multiples of Free List Entries per Egress Queue Units ... 532 */ 533 if (fl->pend_cred >= FL_PER_EQ_UNIT) { 534 val = PIDX(fl->pend_cred / FL_PER_EQ_UNIT); 535 if (!is_t4(adapter->params.chip)) 536 val |= DBTYPE(1); 537 wmb(); 538 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL, 539 DBPRIO(1) | 540 QID(fl->cntxt_id) | val); 541 fl->pend_cred %= FL_PER_EQ_UNIT; 542 } 543 } 544 545 /** 546 * set_rx_sw_desc - initialize software RX buffer descriptor 547 * @sdesc: pointer to the softwore RX buffer descriptor 548 * @page: pointer to the page data structure backing the RX buffer 549 * @dma_addr: PCI DMA address (possibly with low-bit flags) 550 */ 551 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page, 552 dma_addr_t dma_addr) 553 { 554 sdesc->page = page; 555 sdesc->dma_addr = dma_addr; 556 } 557 558 /* 559 * Support for poisoning RX buffers ... 560 */ 561 #define POISON_BUF_VAL -1 562 563 static inline void poison_buf(struct page *page, size_t sz) 564 { 565 #if POISON_BUF_VAL >= 0 566 memset(page_address(page), POISON_BUF_VAL, sz); 567 #endif 568 } 569 570 /** 571 * refill_fl - refill an SGE RX buffer ring 572 * @adapter: the adapter 573 * @fl: the Free List ring to refill 574 * @n: the number of new buffers to allocate 575 * @gfp: the gfp flags for the allocations 576 * 577 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 578 * allocated with the supplied gfp flags. The caller must assure that 579 * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN 580 * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number 581 * of buffers allocated. If afterwards the queue is found critically low, 582 * mark it as starving in the bitmap of starving FLs. 583 */ 584 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl, 585 int n, gfp_t gfp) 586 { 587 struct sge *s = &adapter->sge; 588 struct page *page; 589 dma_addr_t dma_addr; 590 unsigned int cred = fl->avail; 591 __be64 *d = &fl->desc[fl->pidx]; 592 struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx]; 593 594 /* 595 * Sanity: ensure that the result of adding n Free List buffers 596 * won't result in wrapping the SGE's Producer Index around to 597 * it's Consumer Index thereby indicating an empty Free List ... 598 */ 599 BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT); 600 601 /* 602 * If we support large pages, prefer large buffers and fail over to 603 * small pages if we can't allocate large pages to satisfy the refill. 604 * If we don't support large pages, drop directly into the small page 605 * allocation code. 606 */ 607 if (s->fl_pg_order == 0) 608 goto alloc_small_pages; 609 610 while (n) { 611 page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN, 612 s->fl_pg_order); 613 if (unlikely(!page)) { 614 /* 615 * We've failed inour attempt to allocate a "large 616 * page". Fail over to the "small page" allocation 617 * below. 618 */ 619 fl->large_alloc_failed++; 620 break; 621 } 622 poison_buf(page, PAGE_SIZE << s->fl_pg_order); 623 624 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, 625 PAGE_SIZE << s->fl_pg_order, 626 PCI_DMA_FROMDEVICE); 627 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) { 628 /* 629 * We've run out of DMA mapping space. Free up the 630 * buffer and return with what we've managed to put 631 * into the free list. We don't want to fail over to 632 * the small page allocation below in this case 633 * because DMA mapping resources are typically 634 * critical resources once they become scarse. 635 */ 636 __free_pages(page, s->fl_pg_order); 637 goto out; 638 } 639 dma_addr |= RX_LARGE_BUF; 640 *d++ = cpu_to_be64(dma_addr); 641 642 set_rx_sw_desc(sdesc, page, dma_addr); 643 sdesc++; 644 645 fl->avail++; 646 if (++fl->pidx == fl->size) { 647 fl->pidx = 0; 648 sdesc = fl->sdesc; 649 d = fl->desc; 650 } 651 n--; 652 } 653 654 alloc_small_pages: 655 while (n--) { 656 page = __skb_alloc_page(gfp | __GFP_NOWARN, NULL); 657 if (unlikely(!page)) { 658 fl->alloc_failed++; 659 break; 660 } 661 poison_buf(page, PAGE_SIZE); 662 663 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE, 664 PCI_DMA_FROMDEVICE); 665 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) { 666 put_page(page); 667 break; 668 } 669 *d++ = cpu_to_be64(dma_addr); 670 671 set_rx_sw_desc(sdesc, page, dma_addr); 672 sdesc++; 673 674 fl->avail++; 675 if (++fl->pidx == fl->size) { 676 fl->pidx = 0; 677 sdesc = fl->sdesc; 678 d = fl->desc; 679 } 680 } 681 682 out: 683 /* 684 * Update our accounting state to incorporate the new Free List 685 * buffers, tell the hardware about them and return the number of 686 * buffers which we were able to allocate. 687 */ 688 cred = fl->avail - cred; 689 fl->pend_cred += cred; 690 ring_fl_db(adapter, fl); 691 692 if (unlikely(fl_starving(adapter, fl))) { 693 smp_wmb(); 694 set_bit(fl->cntxt_id, adapter->sge.starving_fl); 695 } 696 697 return cred; 698 } 699 700 /* 701 * Refill a Free List to its capacity or the Maximum Refill Increment, 702 * whichever is smaller ... 703 */ 704 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl) 705 { 706 refill_fl(adapter, fl, 707 min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail), 708 GFP_ATOMIC); 709 } 710 711 /** 712 * alloc_ring - allocate resources for an SGE descriptor ring 713 * @dev: the PCI device's core device 714 * @nelem: the number of descriptors 715 * @hwsize: the size of each hardware descriptor 716 * @swsize: the size of each software descriptor 717 * @busaddrp: the physical PCI bus address of the allocated ring 718 * @swringp: return address pointer for software ring 719 * @stat_size: extra space in hardware ring for status information 720 * 721 * Allocates resources for an SGE descriptor ring, such as TX queues, 722 * free buffer lists, response queues, etc. Each SGE ring requires 723 * space for its hardware descriptors plus, optionally, space for software 724 * state associated with each hardware entry (the metadata). The function 725 * returns three values: the virtual address for the hardware ring (the 726 * return value of the function), the PCI bus address of the hardware 727 * ring (in *busaddrp), and the address of the software ring (in swringp). 728 * Both the hardware and software rings are returned zeroed out. 729 */ 730 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize, 731 size_t swsize, dma_addr_t *busaddrp, void *swringp, 732 size_t stat_size) 733 { 734 /* 735 * Allocate the hardware ring and PCI DMA bus address space for said. 736 */ 737 size_t hwlen = nelem * hwsize + stat_size; 738 void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL); 739 740 if (!hwring) 741 return NULL; 742 743 /* 744 * If the caller wants a software ring, allocate it and return a 745 * pointer to it in *swringp. 746 */ 747 BUG_ON((swsize != 0) != (swringp != NULL)); 748 if (swsize) { 749 void *swring = kcalloc(nelem, swsize, GFP_KERNEL); 750 751 if (!swring) { 752 dma_free_coherent(dev, hwlen, hwring, *busaddrp); 753 return NULL; 754 } 755 *(void **)swringp = swring; 756 } 757 758 /* 759 * Zero out the hardware ring and return its address as our function 760 * value. 761 */ 762 memset(hwring, 0, hwlen); 763 return hwring; 764 } 765 766 /** 767 * sgl_len - calculates the size of an SGL of the given capacity 768 * @n: the number of SGL entries 769 * 770 * Calculates the number of flits (8-byte units) needed for a Direct 771 * Scatter/Gather List that can hold the given number of entries. 772 */ 773 static inline unsigned int sgl_len(unsigned int n) 774 { 775 /* 776 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 777 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 778 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 779 * repeated sequences of { Length[i], Length[i+1], Address[i], 780 * Address[i+1] } (this ensures that all addresses are on 64-bit 781 * boundaries). If N is even, then Length[N+1] should be set to 0 and 782 * Address[N+1] is omitted. 783 * 784 * The following calculation incorporates all of the above. It's 785 * somewhat hard to follow but, briefly: the "+2" accounts for the 786 * first two flits which include the DSGL header, Length0 and 787 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 788 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 789 * finally the "+((n-1)&1)" adds the one remaining flit needed if 790 * (n-1) is odd ... 791 */ 792 n--; 793 return (3 * n) / 2 + (n & 1) + 2; 794 } 795 796 /** 797 * flits_to_desc - returns the num of TX descriptors for the given flits 798 * @flits: the number of flits 799 * 800 * Returns the number of TX descriptors needed for the supplied number 801 * of flits. 802 */ 803 static inline unsigned int flits_to_desc(unsigned int flits) 804 { 805 BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64)); 806 return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT); 807 } 808 809 /** 810 * is_eth_imm - can an Ethernet packet be sent as immediate data? 811 * @skb: the packet 812 * 813 * Returns whether an Ethernet packet is small enough to fit completely as 814 * immediate data. 815 */ 816 static inline int is_eth_imm(const struct sk_buff *skb) 817 { 818 /* 819 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 820 * which does not accommodate immediate data. We could dike out all 821 * of the support code for immediate data but that would tie our hands 822 * too much if we ever want to enhace the firmware. It would also 823 * create more differences between the PF and VF Drivers. 824 */ 825 return false; 826 } 827 828 /** 829 * calc_tx_flits - calculate the number of flits for a packet TX WR 830 * @skb: the packet 831 * 832 * Returns the number of flits needed for a TX Work Request for the 833 * given Ethernet packet, including the needed WR and CPL headers. 834 */ 835 static inline unsigned int calc_tx_flits(const struct sk_buff *skb) 836 { 837 unsigned int flits; 838 839 /* 840 * If the skb is small enough, we can pump it out as a work request 841 * with only immediate data. In that case we just have to have the 842 * TX Packet header plus the skb data in the Work Request. 843 */ 844 if (is_eth_imm(skb)) 845 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 846 sizeof(__be64)); 847 848 /* 849 * Otherwise, we're going to have to construct a Scatter gather list 850 * of the skb body and fragments. We also include the flits necessary 851 * for the TX Packet Work Request and CPL. We always have a firmware 852 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 853 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 854 * message or, if we're doing a Large Send Offload, an LSO CPL message 855 * with an embeded TX Packet Write CPL message. 856 */ 857 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 858 if (skb_shinfo(skb)->gso_size) 859 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 860 sizeof(struct cpl_tx_pkt_lso_core) + 861 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 862 else 863 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 864 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 865 return flits; 866 } 867 868 /** 869 * write_sgl - populate a Scatter/Gather List for a packet 870 * @skb: the packet 871 * @tq: the TX queue we are writing into 872 * @sgl: starting location for writing the SGL 873 * @end: points right after the end of the SGL 874 * @start: start offset into skb main-body data to include in the SGL 875 * @addr: the list of DMA bus addresses for the SGL elements 876 * 877 * Generates a Scatter/Gather List for the buffers that make up a packet. 878 * The caller must provide adequate space for the SGL that will be written. 879 * The SGL includes all of the packet's page fragments and the data in its 880 * main body except for the first @start bytes. @pos must be 16-byte 881 * aligned and within a TX descriptor with available space. @end points 882 * write after the end of the SGL but does not account for any potential 883 * wrap around, i.e., @end > @tq->stat. 884 */ 885 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq, 886 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 887 const dma_addr_t *addr) 888 { 889 unsigned int i, len; 890 struct ulptx_sge_pair *to; 891 const struct skb_shared_info *si = skb_shinfo(skb); 892 unsigned int nfrags = si->nr_frags; 893 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 894 895 len = skb_headlen(skb) - start; 896 if (likely(len)) { 897 sgl->len0 = htonl(len); 898 sgl->addr0 = cpu_to_be64(addr[0] + start); 899 nfrags++; 900 } else { 901 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 902 sgl->addr0 = cpu_to_be64(addr[1]); 903 } 904 905 sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | 906 ULPTX_NSGE(nfrags)); 907 if (likely(--nfrags == 0)) 908 return; 909 /* 910 * Most of the complexity below deals with the possibility we hit the 911 * end of the queue in the middle of writing the SGL. For this case 912 * only we create the SGL in a temporary buffer and then copy it. 913 */ 914 to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge; 915 916 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 917 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 918 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 919 to->addr[0] = cpu_to_be64(addr[i]); 920 to->addr[1] = cpu_to_be64(addr[++i]); 921 } 922 if (nfrags) { 923 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 924 to->len[1] = cpu_to_be32(0); 925 to->addr[0] = cpu_to_be64(addr[i + 1]); 926 } 927 if (unlikely((u8 *)end > (u8 *)tq->stat)) { 928 unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1; 929 930 if (likely(part0)) 931 memcpy(sgl->sge, buf, part0); 932 part1 = (u8 *)end - (u8 *)tq->stat; 933 memcpy(tq->desc, (u8 *)buf + part0, part1); 934 end = (void *)tq->desc + part1; 935 } 936 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 937 *end = 0; 938 } 939 940 /** 941 * check_ring_tx_db - check and potentially ring a TX queue's doorbell 942 * @adapter: the adapter 943 * @tq: the TX queue 944 * @n: number of new descriptors to give to HW 945 * 946 * Ring the doorbel for a TX queue. 947 */ 948 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq, 949 int n) 950 { 951 /* 952 * Warn if we write doorbells with the wrong priority and write 953 * descriptors before telling HW. 954 */ 955 WARN_ON((QID(tq->cntxt_id) | PIDX(n)) & DBPRIO(1)); 956 wmb(); 957 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL, 958 QID(tq->cntxt_id) | PIDX(n)); 959 } 960 961 /** 962 * inline_tx_skb - inline a packet's data into TX descriptors 963 * @skb: the packet 964 * @tq: the TX queue where the packet will be inlined 965 * @pos: starting position in the TX queue to inline the packet 966 * 967 * Inline a packet's contents directly into TX descriptors, starting at 968 * the given position within the TX DMA ring. 969 * Most of the complexity of this operation is dealing with wrap arounds 970 * in the middle of the packet we want to inline. 971 */ 972 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq, 973 void *pos) 974 { 975 u64 *p; 976 int left = (void *)tq->stat - pos; 977 978 if (likely(skb->len <= left)) { 979 if (likely(!skb->data_len)) 980 skb_copy_from_linear_data(skb, pos, skb->len); 981 else 982 skb_copy_bits(skb, 0, pos, skb->len); 983 pos += skb->len; 984 } else { 985 skb_copy_bits(skb, 0, pos, left); 986 skb_copy_bits(skb, left, tq->desc, skb->len - left); 987 pos = (void *)tq->desc + (skb->len - left); 988 } 989 990 /* 0-pad to multiple of 16 */ 991 p = PTR_ALIGN(pos, 8); 992 if ((uintptr_t)p & 8) 993 *p = 0; 994 } 995 996 /* 997 * Figure out what HW csum a packet wants and return the appropriate control 998 * bits. 999 */ 1000 static u64 hwcsum(const struct sk_buff *skb) 1001 { 1002 int csum_type; 1003 const struct iphdr *iph = ip_hdr(skb); 1004 1005 if (iph->version == 4) { 1006 if (iph->protocol == IPPROTO_TCP) 1007 csum_type = TX_CSUM_TCPIP; 1008 else if (iph->protocol == IPPROTO_UDP) 1009 csum_type = TX_CSUM_UDPIP; 1010 else { 1011 nocsum: 1012 /* 1013 * unknown protocol, disable HW csum 1014 * and hope a bad packet is detected 1015 */ 1016 return TXPKT_L4CSUM_DIS; 1017 } 1018 } else { 1019 /* 1020 * this doesn't work with extension headers 1021 */ 1022 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; 1023 1024 if (ip6h->nexthdr == IPPROTO_TCP) 1025 csum_type = TX_CSUM_TCPIP6; 1026 else if (ip6h->nexthdr == IPPROTO_UDP) 1027 csum_type = TX_CSUM_UDPIP6; 1028 else 1029 goto nocsum; 1030 } 1031 1032 if (likely(csum_type >= TX_CSUM_TCPIP)) 1033 return TXPKT_CSUM_TYPE(csum_type) | 1034 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) | 1035 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN); 1036 else { 1037 int start = skb_transport_offset(skb); 1038 1039 return TXPKT_CSUM_TYPE(csum_type) | 1040 TXPKT_CSUM_START(start) | 1041 TXPKT_CSUM_LOC(start + skb->csum_offset); 1042 } 1043 } 1044 1045 /* 1046 * Stop an Ethernet TX queue and record that state change. 1047 */ 1048 static void txq_stop(struct sge_eth_txq *txq) 1049 { 1050 netif_tx_stop_queue(txq->txq); 1051 txq->q.stops++; 1052 } 1053 1054 /* 1055 * Advance our software state for a TX queue by adding n in use descriptors. 1056 */ 1057 static inline void txq_advance(struct sge_txq *tq, unsigned int n) 1058 { 1059 tq->in_use += n; 1060 tq->pidx += n; 1061 if (tq->pidx >= tq->size) 1062 tq->pidx -= tq->size; 1063 } 1064 1065 /** 1066 * t4vf_eth_xmit - add a packet to an Ethernet TX queue 1067 * @skb: the packet 1068 * @dev: the egress net device 1069 * 1070 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1071 */ 1072 int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1073 { 1074 u32 wr_mid; 1075 u64 cntrl, *end; 1076 int qidx, credits; 1077 unsigned int flits, ndesc; 1078 struct adapter *adapter; 1079 struct sge_eth_txq *txq; 1080 const struct port_info *pi; 1081 struct fw_eth_tx_pkt_vm_wr *wr; 1082 struct cpl_tx_pkt_core *cpl; 1083 const struct skb_shared_info *ssi; 1084 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 1085 const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) + 1086 sizeof(wr->ethmacsrc) + 1087 sizeof(wr->ethtype) + 1088 sizeof(wr->vlantci)); 1089 1090 /* 1091 * The chip minimum packet length is 10 octets but the firmware 1092 * command that we are using requires that we copy the Ethernet header 1093 * (including the VLAN tag) into the header so we reject anything 1094 * smaller than that ... 1095 */ 1096 if (unlikely(skb->len < fw_hdr_copy_len)) 1097 goto out_free; 1098 1099 /* 1100 * Figure out which TX Queue we're going to use. 1101 */ 1102 pi = netdev_priv(dev); 1103 adapter = pi->adapter; 1104 qidx = skb_get_queue_mapping(skb); 1105 BUG_ON(qidx >= pi->nqsets); 1106 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1107 1108 /* 1109 * Take this opportunity to reclaim any TX Descriptors whose DMA 1110 * transfers have completed. 1111 */ 1112 reclaim_completed_tx(adapter, &txq->q, true); 1113 1114 /* 1115 * Calculate the number of flits and TX Descriptors we're going to 1116 * need along with how many TX Descriptors will be left over after 1117 * we inject our Work Request. 1118 */ 1119 flits = calc_tx_flits(skb); 1120 ndesc = flits_to_desc(flits); 1121 credits = txq_avail(&txq->q) - ndesc; 1122 1123 if (unlikely(credits < 0)) { 1124 /* 1125 * Not enough room for this packet's Work Request. Stop the 1126 * TX Queue and return a "busy" condition. The queue will get 1127 * started later on when the firmware informs us that space 1128 * has opened up. 1129 */ 1130 txq_stop(txq); 1131 dev_err(adapter->pdev_dev, 1132 "%s: TX ring %u full while queue awake!\n", 1133 dev->name, qidx); 1134 return NETDEV_TX_BUSY; 1135 } 1136 1137 if (!is_eth_imm(skb) && 1138 unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) { 1139 /* 1140 * We need to map the skb into PCI DMA space (because it can't 1141 * be in-lined directly into the Work Request) and the mapping 1142 * operation failed. Record the error and drop the packet. 1143 */ 1144 txq->mapping_err++; 1145 goto out_free; 1146 } 1147 1148 wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2)); 1149 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1150 /* 1151 * After we're done injecting the Work Request for this 1152 * packet, we'll be below our "stop threshold" so stop the TX 1153 * Queue now and schedule a request for an SGE Egress Queue 1154 * Update message. The queue will get started later on when 1155 * the firmware processes this Work Request and sends us an 1156 * Egress Queue Status Update message indicating that space 1157 * has opened up. 1158 */ 1159 txq_stop(txq); 1160 wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ; 1161 } 1162 1163 /* 1164 * Start filling in our Work Request. Note that we do _not_ handle 1165 * the WR Header wrapping around the TX Descriptor Ring. If our 1166 * maximum header size ever exceeds one TX Descriptor, we'll need to 1167 * do something else here. 1168 */ 1169 BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1170 wr = (void *)&txq->q.desc[txq->q.pidx]; 1171 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1172 wr->r3[0] = cpu_to_be64(0); 1173 wr->r3[1] = cpu_to_be64(0); 1174 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len); 1175 end = (u64 *)wr + flits; 1176 1177 /* 1178 * If this is a Large Send Offload packet we'll put in an LSO CPL 1179 * message with an encapsulated TX Packet CPL message. Otherwise we 1180 * just use a TX Packet CPL message. 1181 */ 1182 ssi = skb_shinfo(skb); 1183 if (ssi->gso_size) { 1184 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1185 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1186 int l3hdr_len = skb_network_header_len(skb); 1187 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1188 1189 wr->op_immdlen = 1190 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) | 1191 FW_WR_IMMDLEN(sizeof(*lso) + 1192 sizeof(*cpl))); 1193 /* 1194 * Fill in the LSO CPL message. 1195 */ 1196 lso->lso_ctrl = 1197 cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) | 1198 LSO_FIRST_SLICE | 1199 LSO_LAST_SLICE | 1200 LSO_IPV6(v6) | 1201 LSO_ETHHDR_LEN(eth_xtra_len/4) | 1202 LSO_IPHDR_LEN(l3hdr_len/4) | 1203 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff)); 1204 lso->ipid_ofst = cpu_to_be16(0); 1205 lso->mss = cpu_to_be16(ssi->gso_size); 1206 lso->seqno_offset = cpu_to_be32(0); 1207 if (is_t4(adapter->params.chip)) 1208 lso->len = cpu_to_be32(skb->len); 1209 else 1210 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE(skb->len)); 1211 1212 /* 1213 * Set up TX Packet CPL pointer, control word and perform 1214 * accounting. 1215 */ 1216 cpl = (void *)(lso + 1); 1217 cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1218 TXPKT_IPHDR_LEN(l3hdr_len) | 1219 TXPKT_ETHHDR_LEN(eth_xtra_len)); 1220 txq->tso++; 1221 txq->tx_cso += ssi->gso_segs; 1222 } else { 1223 int len; 1224 1225 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl); 1226 wr->op_immdlen = 1227 cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) | 1228 FW_WR_IMMDLEN(len)); 1229 1230 /* 1231 * Set up TX Packet CPL pointer, control word and perform 1232 * accounting. 1233 */ 1234 cpl = (void *)(wr + 1); 1235 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1236 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS; 1237 txq->tx_cso++; 1238 } else 1239 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS; 1240 } 1241 1242 /* 1243 * If there's a VLAN tag present, add that to the list of things to 1244 * do in this Work Request. 1245 */ 1246 if (vlan_tx_tag_present(skb)) { 1247 txq->vlan_ins++; 1248 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb)); 1249 } 1250 1251 /* 1252 * Fill in the TX Packet CPL message header. 1253 */ 1254 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) | 1255 TXPKT_INTF(pi->port_id) | 1256 TXPKT_PF(0)); 1257 cpl->pack = cpu_to_be16(0); 1258 cpl->len = cpu_to_be16(skb->len); 1259 cpl->ctrl1 = cpu_to_be64(cntrl); 1260 1261 #ifdef T4_TRACE 1262 T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7], 1263 "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u", 1264 ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags); 1265 #endif 1266 1267 /* 1268 * Fill in the body of the TX Packet CPL message with either in-lined 1269 * data or a Scatter/Gather List. 1270 */ 1271 if (is_eth_imm(skb)) { 1272 /* 1273 * In-line the packet's data and free the skb since we don't 1274 * need it any longer. 1275 */ 1276 inline_tx_skb(skb, &txq->q, cpl + 1); 1277 dev_consume_skb_any(skb); 1278 } else { 1279 /* 1280 * Write the skb's Scatter/Gather list into the TX Packet CPL 1281 * message and retain a pointer to the skb so we can free it 1282 * later when its DMA completes. (We store the skb pointer 1283 * in the Software Descriptor corresponding to the last TX 1284 * Descriptor used by the Work Request.) 1285 * 1286 * The retained skb will be freed when the corresponding TX 1287 * Descriptors are reclaimed after their DMAs complete. 1288 * However, this could take quite a while since, in general, 1289 * the hardware is set up to be lazy about sending DMA 1290 * completion notifications to us and we mostly perform TX 1291 * reclaims in the transmit routine. 1292 * 1293 * This is good for performamce but means that we rely on new 1294 * TX packets arriving to run the destructors of completed 1295 * packets, which open up space in their sockets' send queues. 1296 * Sometimes we do not get such new packets causing TX to 1297 * stall. A single UDP transmitter is a good example of this 1298 * situation. We have a clean up timer that periodically 1299 * reclaims completed packets but it doesn't run often enough 1300 * (nor do we want it to) to prevent lengthy stalls. A 1301 * solution to this problem is to run the destructor early, 1302 * after the packet is queued but before it's DMAd. A con is 1303 * that we lie to socket memory accounting, but the amount of 1304 * extra memory is reasonable (limited by the number of TX 1305 * descriptors), the packets do actually get freed quickly by 1306 * new packets almost always, and for protocols like TCP that 1307 * wait for acks to really free up the data the extra memory 1308 * is even less. On the positive side we run the destructors 1309 * on the sending CPU rather than on a potentially different 1310 * completing CPU, usually a good thing. 1311 * 1312 * Run the destructor before telling the DMA engine about the 1313 * packet to make sure it doesn't complete and get freed 1314 * prematurely. 1315 */ 1316 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 1317 struct sge_txq *tq = &txq->q; 1318 int last_desc; 1319 1320 /* 1321 * If the Work Request header was an exact multiple of our TX 1322 * Descriptor length, then it's possible that the starting SGL 1323 * pointer lines up exactly with the end of our TX Descriptor 1324 * ring. If that's the case, wrap around to the beginning 1325 * here ... 1326 */ 1327 if (unlikely((void *)sgl == (void *)tq->stat)) { 1328 sgl = (void *)tq->desc; 1329 end = ((void *)tq->desc + ((void *)end - (void *)tq->stat)); 1330 } 1331 1332 write_sgl(skb, tq, sgl, end, 0, addr); 1333 skb_orphan(skb); 1334 1335 last_desc = tq->pidx + ndesc - 1; 1336 if (last_desc >= tq->size) 1337 last_desc -= tq->size; 1338 tq->sdesc[last_desc].skb = skb; 1339 tq->sdesc[last_desc].sgl = sgl; 1340 } 1341 1342 /* 1343 * Advance our internal TX Queue state, tell the hardware about 1344 * the new TX descriptors and return success. 1345 */ 1346 txq_advance(&txq->q, ndesc); 1347 dev->trans_start = jiffies; 1348 ring_tx_db(adapter, &txq->q, ndesc); 1349 return NETDEV_TX_OK; 1350 1351 out_free: 1352 /* 1353 * An error of some sort happened. Free the TX skb and tell the 1354 * OS that we've "dealt" with the packet ... 1355 */ 1356 dev_kfree_skb_any(skb); 1357 return NETDEV_TX_OK; 1358 } 1359 1360 /** 1361 * copy_frags - copy fragments from gather list into skb_shared_info 1362 * @skb: destination skb 1363 * @gl: source internal packet gather list 1364 * @offset: packet start offset in first page 1365 * 1366 * Copy an internal packet gather list into a Linux skb_shared_info 1367 * structure. 1368 */ 1369 static inline void copy_frags(struct sk_buff *skb, 1370 const struct pkt_gl *gl, 1371 unsigned int offset) 1372 { 1373 int i; 1374 1375 /* usually there's just one frag */ 1376 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 1377 gl->frags[0].offset + offset, 1378 gl->frags[0].size - offset); 1379 skb_shinfo(skb)->nr_frags = gl->nfrags; 1380 for (i = 1; i < gl->nfrags; i++) 1381 __skb_fill_page_desc(skb, i, gl->frags[i].page, 1382 gl->frags[i].offset, 1383 gl->frags[i].size); 1384 1385 /* get a reference to the last page, we don't own it */ 1386 get_page(gl->frags[gl->nfrags - 1].page); 1387 } 1388 1389 /** 1390 * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list 1391 * @gl: the gather list 1392 * @skb_len: size of sk_buff main body if it carries fragments 1393 * @pull_len: amount of data to move to the sk_buff's main body 1394 * 1395 * Builds an sk_buff from the given packet gather list. Returns the 1396 * sk_buff or %NULL if sk_buff allocation failed. 1397 */ 1398 static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl, 1399 unsigned int skb_len, 1400 unsigned int pull_len) 1401 { 1402 struct sk_buff *skb; 1403 1404 /* 1405 * If the ingress packet is small enough, allocate an skb large enough 1406 * for all of the data and copy it inline. Otherwise, allocate an skb 1407 * with enough room to pull in the header and reference the rest of 1408 * the data via the skb fragment list. 1409 * 1410 * Below we rely on RX_COPY_THRES being less than the smallest Rx 1411 * buff! size, which is expected since buffers are at least 1412 * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one 1413 * fragment. 1414 */ 1415 if (gl->tot_len <= RX_COPY_THRES) { 1416 /* small packets have only one fragment */ 1417 skb = alloc_skb(gl->tot_len, GFP_ATOMIC); 1418 if (unlikely(!skb)) 1419 goto out; 1420 __skb_put(skb, gl->tot_len); 1421 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 1422 } else { 1423 skb = alloc_skb(skb_len, GFP_ATOMIC); 1424 if (unlikely(!skb)) 1425 goto out; 1426 __skb_put(skb, pull_len); 1427 skb_copy_to_linear_data(skb, gl->va, pull_len); 1428 1429 copy_frags(skb, gl, pull_len); 1430 skb->len = gl->tot_len; 1431 skb->data_len = skb->len - pull_len; 1432 skb->truesize += skb->data_len; 1433 } 1434 1435 out: 1436 return skb; 1437 } 1438 1439 /** 1440 * t4vf_pktgl_free - free a packet gather list 1441 * @gl: the gather list 1442 * 1443 * Releases the pages of a packet gather list. We do not own the last 1444 * page on the list and do not free it. 1445 */ 1446 static void t4vf_pktgl_free(const struct pkt_gl *gl) 1447 { 1448 int frag; 1449 1450 frag = gl->nfrags - 1; 1451 while (frag--) 1452 put_page(gl->frags[frag].page); 1453 } 1454 1455 /** 1456 * do_gro - perform Generic Receive Offload ingress packet processing 1457 * @rxq: ingress RX Ethernet Queue 1458 * @gl: gather list for ingress packet 1459 * @pkt: CPL header for last packet fragment 1460 * 1461 * Perform Generic Receive Offload (GRO) ingress packet processing. 1462 * We use the standard Linux GRO interfaces for this. 1463 */ 1464 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 1465 const struct cpl_rx_pkt *pkt) 1466 { 1467 struct adapter *adapter = rxq->rspq.adapter; 1468 struct sge *s = &adapter->sge; 1469 int ret; 1470 struct sk_buff *skb; 1471 1472 skb = napi_get_frags(&rxq->rspq.napi); 1473 if (unlikely(!skb)) { 1474 t4vf_pktgl_free(gl); 1475 rxq->stats.rx_drops++; 1476 return; 1477 } 1478 1479 copy_frags(skb, gl, s->pktshift); 1480 skb->len = gl->tot_len - s->pktshift; 1481 skb->data_len = skb->len; 1482 skb->truesize += skb->data_len; 1483 skb->ip_summed = CHECKSUM_UNNECESSARY; 1484 skb_record_rx_queue(skb, rxq->rspq.idx); 1485 1486 if (pkt->vlan_ex) { 1487 __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q), 1488 be16_to_cpu(pkt->vlan)); 1489 rxq->stats.vlan_ex++; 1490 } 1491 ret = napi_gro_frags(&rxq->rspq.napi); 1492 1493 if (ret == GRO_HELD) 1494 rxq->stats.lro_pkts++; 1495 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 1496 rxq->stats.lro_merged++; 1497 rxq->stats.pkts++; 1498 rxq->stats.rx_cso++; 1499 } 1500 1501 /** 1502 * t4vf_ethrx_handler - process an ingress ethernet packet 1503 * @rspq: the response queue that received the packet 1504 * @rsp: the response queue descriptor holding the RX_PKT message 1505 * @gl: the gather list of packet fragments 1506 * 1507 * Process an ingress ethernet packet and deliver it to the stack. 1508 */ 1509 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp, 1510 const struct pkt_gl *gl) 1511 { 1512 struct sk_buff *skb; 1513 const struct cpl_rx_pkt *pkt = (void *)rsp; 1514 bool csum_ok = pkt->csum_calc && !pkt->err_vec && 1515 (rspq->netdev->features & NETIF_F_RXCSUM); 1516 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq); 1517 struct adapter *adapter = rspq->adapter; 1518 struct sge *s = &adapter->sge; 1519 1520 /* 1521 * If this is a good TCP packet and we have Generic Receive Offload 1522 * enabled, handle the packet in the GRO path. 1523 */ 1524 if ((pkt->l2info & cpu_to_be32(RXF_TCP)) && 1525 (rspq->netdev->features & NETIF_F_GRO) && csum_ok && 1526 !pkt->ip_frag) { 1527 do_gro(rxq, gl, pkt); 1528 return 0; 1529 } 1530 1531 /* 1532 * Convert the Packet Gather List into an skb. 1533 */ 1534 skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN); 1535 if (unlikely(!skb)) { 1536 t4vf_pktgl_free(gl); 1537 rxq->stats.rx_drops++; 1538 return 0; 1539 } 1540 __skb_pull(skb, s->pktshift); 1541 skb->protocol = eth_type_trans(skb, rspq->netdev); 1542 skb_record_rx_queue(skb, rspq->idx); 1543 rxq->stats.pkts++; 1544 1545 if (csum_ok && !pkt->err_vec && 1546 (be32_to_cpu(pkt->l2info) & (RXF_UDP|RXF_TCP))) { 1547 if (!pkt->ip_frag) 1548 skb->ip_summed = CHECKSUM_UNNECESSARY; 1549 else { 1550 __sum16 c = (__force __sum16)pkt->csum; 1551 skb->csum = csum_unfold(c); 1552 skb->ip_summed = CHECKSUM_COMPLETE; 1553 } 1554 rxq->stats.rx_cso++; 1555 } else 1556 skb_checksum_none_assert(skb); 1557 1558 if (pkt->vlan_ex) { 1559 rxq->stats.vlan_ex++; 1560 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(pkt->vlan)); 1561 } 1562 1563 netif_receive_skb(skb); 1564 1565 return 0; 1566 } 1567 1568 /** 1569 * is_new_response - check if a response is newly written 1570 * @rc: the response control descriptor 1571 * @rspq: the response queue 1572 * 1573 * Returns true if a response descriptor contains a yet unprocessed 1574 * response. 1575 */ 1576 static inline bool is_new_response(const struct rsp_ctrl *rc, 1577 const struct sge_rspq *rspq) 1578 { 1579 return RSPD_GEN(rc->type_gen) == rspq->gen; 1580 } 1581 1582 /** 1583 * restore_rx_bufs - put back a packet's RX buffers 1584 * @gl: the packet gather list 1585 * @fl: the SGE Free List 1586 * @nfrags: how many fragments in @si 1587 * 1588 * Called when we find out that the current packet, @si, can't be 1589 * processed right away for some reason. This is a very rare event and 1590 * there's no effort to make this suspension/resumption process 1591 * particularly efficient. 1592 * 1593 * We implement the suspension by putting all of the RX buffers associated 1594 * with the current packet back on the original Free List. The buffers 1595 * have already been unmapped and are left unmapped, we mark them as 1596 * unmapped in order to prevent further unmapping attempts. (Effectively 1597 * this function undoes the series of @unmap_rx_buf calls which were done 1598 * to create the current packet's gather list.) This leaves us ready to 1599 * restart processing of the packet the next time we start processing the 1600 * RX Queue ... 1601 */ 1602 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl, 1603 int frags) 1604 { 1605 struct rx_sw_desc *sdesc; 1606 1607 while (frags--) { 1608 if (fl->cidx == 0) 1609 fl->cidx = fl->size - 1; 1610 else 1611 fl->cidx--; 1612 sdesc = &fl->sdesc[fl->cidx]; 1613 sdesc->page = gl->frags[frags].page; 1614 sdesc->dma_addr |= RX_UNMAPPED_BUF; 1615 fl->avail++; 1616 } 1617 } 1618 1619 /** 1620 * rspq_next - advance to the next entry in a response queue 1621 * @rspq: the queue 1622 * 1623 * Updates the state of a response queue to advance it to the next entry. 1624 */ 1625 static inline void rspq_next(struct sge_rspq *rspq) 1626 { 1627 rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len; 1628 if (unlikely(++rspq->cidx == rspq->size)) { 1629 rspq->cidx = 0; 1630 rspq->gen ^= 1; 1631 rspq->cur_desc = rspq->desc; 1632 } 1633 } 1634 1635 /** 1636 * process_responses - process responses from an SGE response queue 1637 * @rspq: the ingress response queue to process 1638 * @budget: how many responses can be processed in this round 1639 * 1640 * Process responses from a Scatter Gather Engine response queue up to 1641 * the supplied budget. Responses include received packets as well as 1642 * control messages from firmware or hardware. 1643 * 1644 * Additionally choose the interrupt holdoff time for the next interrupt 1645 * on this queue. If the system is under memory shortage use a fairly 1646 * long delay to help recovery. 1647 */ 1648 static int process_responses(struct sge_rspq *rspq, int budget) 1649 { 1650 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq); 1651 struct adapter *adapter = rspq->adapter; 1652 struct sge *s = &adapter->sge; 1653 int budget_left = budget; 1654 1655 while (likely(budget_left)) { 1656 int ret, rsp_type; 1657 const struct rsp_ctrl *rc; 1658 1659 rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc)); 1660 if (!is_new_response(rc, rspq)) 1661 break; 1662 1663 /* 1664 * Figure out what kind of response we've received from the 1665 * SGE. 1666 */ 1667 rmb(); 1668 rsp_type = RSPD_TYPE(rc->type_gen); 1669 if (likely(rsp_type == RSP_TYPE_FLBUF)) { 1670 struct page_frag *fp; 1671 struct pkt_gl gl; 1672 const struct rx_sw_desc *sdesc; 1673 u32 bufsz, frag; 1674 u32 len = be32_to_cpu(rc->pldbuflen_qid); 1675 1676 /* 1677 * If we get a "new buffer" message from the SGE we 1678 * need to move on to the next Free List buffer. 1679 */ 1680 if (len & RSPD_NEWBUF) { 1681 /* 1682 * We get one "new buffer" message when we 1683 * first start up a queue so we need to ignore 1684 * it when our offset into the buffer is 0. 1685 */ 1686 if (likely(rspq->offset > 0)) { 1687 free_rx_bufs(rspq->adapter, &rxq->fl, 1688 1); 1689 rspq->offset = 0; 1690 } 1691 len = RSPD_LEN(len); 1692 } 1693 gl.tot_len = len; 1694 1695 /* 1696 * Gather packet fragments. 1697 */ 1698 for (frag = 0, fp = gl.frags; /**/; frag++, fp++) { 1699 BUG_ON(frag >= MAX_SKB_FRAGS); 1700 BUG_ON(rxq->fl.avail == 0); 1701 sdesc = &rxq->fl.sdesc[rxq->fl.cidx]; 1702 bufsz = get_buf_size(adapter, sdesc); 1703 fp->page = sdesc->page; 1704 fp->offset = rspq->offset; 1705 fp->size = min(bufsz, len); 1706 len -= fp->size; 1707 if (!len) 1708 break; 1709 unmap_rx_buf(rspq->adapter, &rxq->fl); 1710 } 1711 gl.nfrags = frag+1; 1712 1713 /* 1714 * Last buffer remains mapped so explicitly make it 1715 * coherent for CPU access and start preloading first 1716 * cache line ... 1717 */ 1718 dma_sync_single_for_cpu(rspq->adapter->pdev_dev, 1719 get_buf_addr(sdesc), 1720 fp->size, DMA_FROM_DEVICE); 1721 gl.va = (page_address(gl.frags[0].page) + 1722 gl.frags[0].offset); 1723 prefetch(gl.va); 1724 1725 /* 1726 * Hand the new ingress packet to the handler for 1727 * this Response Queue. 1728 */ 1729 ret = rspq->handler(rspq, rspq->cur_desc, &gl); 1730 if (likely(ret == 0)) 1731 rspq->offset += ALIGN(fp->size, s->fl_align); 1732 else 1733 restore_rx_bufs(&gl, &rxq->fl, frag); 1734 } else if (likely(rsp_type == RSP_TYPE_CPL)) { 1735 ret = rspq->handler(rspq, rspq->cur_desc, NULL); 1736 } else { 1737 WARN_ON(rsp_type > RSP_TYPE_CPL); 1738 ret = 0; 1739 } 1740 1741 if (unlikely(ret)) { 1742 /* 1743 * Couldn't process descriptor, back off for recovery. 1744 * We use the SGE's last timer which has the longest 1745 * interrupt coalescing value ... 1746 */ 1747 const int NOMEM_TIMER_IDX = SGE_NTIMERS-1; 1748 rspq->next_intr_params = 1749 QINTR_TIMER_IDX(NOMEM_TIMER_IDX); 1750 break; 1751 } 1752 1753 rspq_next(rspq); 1754 budget_left--; 1755 } 1756 1757 /* 1758 * If this is a Response Queue with an associated Free List and 1759 * at least two Egress Queue units available in the Free List 1760 * for new buffer pointers, refill the Free List. 1761 */ 1762 if (rspq->offset >= 0 && 1763 rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT) 1764 __refill_fl(rspq->adapter, &rxq->fl); 1765 return budget - budget_left; 1766 } 1767 1768 /** 1769 * napi_rx_handler - the NAPI handler for RX processing 1770 * @napi: the napi instance 1771 * @budget: how many packets we can process in this round 1772 * 1773 * Handler for new data events when using NAPI. This does not need any 1774 * locking or protection from interrupts as data interrupts are off at 1775 * this point and other adapter interrupts do not interfere (the latter 1776 * in not a concern at all with MSI-X as non-data interrupts then have 1777 * a separate handler). 1778 */ 1779 static int napi_rx_handler(struct napi_struct *napi, int budget) 1780 { 1781 unsigned int intr_params; 1782 struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi); 1783 int work_done = process_responses(rspq, budget); 1784 1785 if (likely(work_done < budget)) { 1786 napi_complete(napi); 1787 intr_params = rspq->next_intr_params; 1788 rspq->next_intr_params = rspq->intr_params; 1789 } else 1790 intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX); 1791 1792 if (unlikely(work_done == 0)) 1793 rspq->unhandled_irqs++; 1794 1795 t4_write_reg(rspq->adapter, 1796 T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 1797 CIDXINC(work_done) | 1798 INGRESSQID((u32)rspq->cntxt_id) | 1799 SEINTARM(intr_params)); 1800 return work_done; 1801 } 1802 1803 /* 1804 * The MSI-X interrupt handler for an SGE response queue for the NAPI case 1805 * (i.e., response queue serviced by NAPI polling). 1806 */ 1807 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie) 1808 { 1809 struct sge_rspq *rspq = cookie; 1810 1811 napi_schedule(&rspq->napi); 1812 return IRQ_HANDLED; 1813 } 1814 1815 /* 1816 * Process the indirect interrupt entries in the interrupt queue and kick off 1817 * NAPI for each queue that has generated an entry. 1818 */ 1819 static unsigned int process_intrq(struct adapter *adapter) 1820 { 1821 struct sge *s = &adapter->sge; 1822 struct sge_rspq *intrq = &s->intrq; 1823 unsigned int work_done; 1824 1825 spin_lock(&adapter->sge.intrq_lock); 1826 for (work_done = 0; ; work_done++) { 1827 const struct rsp_ctrl *rc; 1828 unsigned int qid, iq_idx; 1829 struct sge_rspq *rspq; 1830 1831 /* 1832 * Grab the next response from the interrupt queue and bail 1833 * out if it's not a new response. 1834 */ 1835 rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc)); 1836 if (!is_new_response(rc, intrq)) 1837 break; 1838 1839 /* 1840 * If the response isn't a forwarded interrupt message issue a 1841 * error and go on to the next response message. This should 1842 * never happen ... 1843 */ 1844 rmb(); 1845 if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) { 1846 dev_err(adapter->pdev_dev, 1847 "Unexpected INTRQ response type %d\n", 1848 RSPD_TYPE(rc->type_gen)); 1849 continue; 1850 } 1851 1852 /* 1853 * Extract the Queue ID from the interrupt message and perform 1854 * sanity checking to make sure it really refers to one of our 1855 * Ingress Queues which is active and matches the queue's ID. 1856 * None of these error conditions should ever happen so we may 1857 * want to either make them fatal and/or conditionalized under 1858 * DEBUG. 1859 */ 1860 qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid)); 1861 iq_idx = IQ_IDX(s, qid); 1862 if (unlikely(iq_idx >= MAX_INGQ)) { 1863 dev_err(adapter->pdev_dev, 1864 "Ingress QID %d out of range\n", qid); 1865 continue; 1866 } 1867 rspq = s->ingr_map[iq_idx]; 1868 if (unlikely(rspq == NULL)) { 1869 dev_err(adapter->pdev_dev, 1870 "Ingress QID %d RSPQ=NULL\n", qid); 1871 continue; 1872 } 1873 if (unlikely(rspq->abs_id != qid)) { 1874 dev_err(adapter->pdev_dev, 1875 "Ingress QID %d refers to RSPQ %d\n", 1876 qid, rspq->abs_id); 1877 continue; 1878 } 1879 1880 /* 1881 * Schedule NAPI processing on the indicated Response Queue 1882 * and move on to the next entry in the Forwarded Interrupt 1883 * Queue. 1884 */ 1885 napi_schedule(&rspq->napi); 1886 rspq_next(intrq); 1887 } 1888 1889 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS, 1890 CIDXINC(work_done) | 1891 INGRESSQID(intrq->cntxt_id) | 1892 SEINTARM(intrq->intr_params)); 1893 1894 spin_unlock(&adapter->sge.intrq_lock); 1895 1896 return work_done; 1897 } 1898 1899 /* 1900 * The MSI interrupt handler handles data events from SGE response queues as 1901 * well as error and other async events as they all use the same MSI vector. 1902 */ 1903 static irqreturn_t t4vf_intr_msi(int irq, void *cookie) 1904 { 1905 struct adapter *adapter = cookie; 1906 1907 process_intrq(adapter); 1908 return IRQ_HANDLED; 1909 } 1910 1911 /** 1912 * t4vf_intr_handler - select the top-level interrupt handler 1913 * @adapter: the adapter 1914 * 1915 * Selects the top-level interrupt handler based on the type of interrupts 1916 * (MSI-X or MSI). 1917 */ 1918 irq_handler_t t4vf_intr_handler(struct adapter *adapter) 1919 { 1920 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0); 1921 if (adapter->flags & USING_MSIX) 1922 return t4vf_sge_intr_msix; 1923 else 1924 return t4vf_intr_msi; 1925 } 1926 1927 /** 1928 * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues 1929 * @data: the adapter 1930 * 1931 * Runs periodically from a timer to perform maintenance of SGE RX queues. 1932 * 1933 * a) Replenishes RX queues that have run out due to memory shortage. 1934 * Normally new RX buffers are added when existing ones are consumed but 1935 * when out of memory a queue can become empty. We schedule NAPI to do 1936 * the actual refill. 1937 */ 1938 static void sge_rx_timer_cb(unsigned long data) 1939 { 1940 struct adapter *adapter = (struct adapter *)data; 1941 struct sge *s = &adapter->sge; 1942 unsigned int i; 1943 1944 /* 1945 * Scan the "Starving Free Lists" flag array looking for any Free 1946 * Lists in need of more free buffers. If we find one and it's not 1947 * being actively polled, then bump its "starving" counter and attempt 1948 * to refill it. If we're successful in adding enough buffers to push 1949 * the Free List over the starving threshold, then we can clear its 1950 * "starving" status. 1951 */ 1952 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) { 1953 unsigned long m; 1954 1955 for (m = s->starving_fl[i]; m; m &= m - 1) { 1956 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 1957 struct sge_fl *fl = s->egr_map[id]; 1958 1959 clear_bit(id, s->starving_fl); 1960 smp_mb__after_atomic(); 1961 1962 /* 1963 * Since we are accessing fl without a lock there's a 1964 * small probability of a false positive where we 1965 * schedule napi but the FL is no longer starving. 1966 * No biggie. 1967 */ 1968 if (fl_starving(adapter, fl)) { 1969 struct sge_eth_rxq *rxq; 1970 1971 rxq = container_of(fl, struct sge_eth_rxq, fl); 1972 if (napi_reschedule(&rxq->rspq.napi)) 1973 fl->starving++; 1974 else 1975 set_bit(id, s->starving_fl); 1976 } 1977 } 1978 } 1979 1980 /* 1981 * Reschedule the next scan for starving Free Lists ... 1982 */ 1983 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 1984 } 1985 1986 /** 1987 * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues 1988 * @data: the adapter 1989 * 1990 * Runs periodically from a timer to perform maintenance of SGE TX queues. 1991 * 1992 * b) Reclaims completed Tx packets for the Ethernet queues. Normally 1993 * packets are cleaned up by new Tx packets, this timer cleans up packets 1994 * when no new packets are being submitted. This is essential for pktgen, 1995 * at least. 1996 */ 1997 static void sge_tx_timer_cb(unsigned long data) 1998 { 1999 struct adapter *adapter = (struct adapter *)data; 2000 struct sge *s = &adapter->sge; 2001 unsigned int i, budget; 2002 2003 budget = MAX_TIMER_TX_RECLAIM; 2004 i = s->ethtxq_rover; 2005 do { 2006 struct sge_eth_txq *txq = &s->ethtxq[i]; 2007 2008 if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) { 2009 int avail = reclaimable(&txq->q); 2010 2011 if (avail > budget) 2012 avail = budget; 2013 2014 free_tx_desc(adapter, &txq->q, avail, true); 2015 txq->q.in_use -= avail; 2016 __netif_tx_unlock(txq->txq); 2017 2018 budget -= avail; 2019 if (!budget) 2020 break; 2021 } 2022 2023 i++; 2024 if (i >= s->ethqsets) 2025 i = 0; 2026 } while (i != s->ethtxq_rover); 2027 s->ethtxq_rover = i; 2028 2029 /* 2030 * If we found too many reclaimable packets schedule a timer in the 2031 * near future to continue where we left off. Otherwise the next timer 2032 * will be at its normal interval. 2033 */ 2034 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); 2035 } 2036 2037 /** 2038 * t4vf_sge_alloc_rxq - allocate an SGE RX Queue 2039 * @adapter: the adapter 2040 * @rspq: pointer to to the new rxq's Response Queue to be filled in 2041 * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue 2042 * @dev: the network device associated with the new rspq 2043 * @intr_dest: MSI-X vector index (overriden in MSI mode) 2044 * @fl: pointer to the new rxq's Free List to be filled in 2045 * @hnd: the interrupt handler to invoke for the rspq 2046 */ 2047 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq, 2048 bool iqasynch, struct net_device *dev, 2049 int intr_dest, 2050 struct sge_fl *fl, rspq_handler_t hnd) 2051 { 2052 struct sge *s = &adapter->sge; 2053 struct port_info *pi = netdev_priv(dev); 2054 struct fw_iq_cmd cmd, rpl; 2055 int ret, iqandst, flsz = 0; 2056 2057 /* 2058 * If we're using MSI interrupts and we're not initializing the 2059 * Forwarded Interrupt Queue itself, then set up this queue for 2060 * indirect interrupts to the Forwarded Interrupt Queue. Obviously 2061 * the Forwarded Interrupt Queue must be set up before any other 2062 * ingress queue ... 2063 */ 2064 if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) { 2065 iqandst = SGE_INTRDST_IQ; 2066 intr_dest = adapter->sge.intrq.abs_id; 2067 } else 2068 iqandst = SGE_INTRDST_PCI; 2069 2070 /* 2071 * Allocate the hardware ring for the Response Queue. The size needs 2072 * to be a multiple of 16 which includes the mandatory status entry 2073 * (regardless of whether the Status Page capabilities are enabled or 2074 * not). 2075 */ 2076 rspq->size = roundup(rspq->size, 16); 2077 rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len, 2078 0, &rspq->phys_addr, NULL, 0); 2079 if (!rspq->desc) 2080 return -ENOMEM; 2081 2082 /* 2083 * Fill in the Ingress Queue Command. Note: Ideally this code would 2084 * be in t4vf_hw.c but there are so many parameters and dependencies 2085 * on our Linux SGE state that we would end up having to pass tons of 2086 * parameters. We'll have to think about how this might be migrated 2087 * into OS-independent common code ... 2088 */ 2089 memset(&cmd, 0, sizeof(cmd)); 2090 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) | 2091 FW_CMD_REQUEST | 2092 FW_CMD_WRITE | 2093 FW_CMD_EXEC); 2094 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC | 2095 FW_IQ_CMD_IQSTART(1) | 2096 FW_LEN16(cmd)); 2097 cmd.type_to_iqandstindex = 2098 cpu_to_be32(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | 2099 FW_IQ_CMD_IQASYNCH(iqasynch) | 2100 FW_IQ_CMD_VIID(pi->viid) | 2101 FW_IQ_CMD_IQANDST(iqandst) | 2102 FW_IQ_CMD_IQANUS(1) | 2103 FW_IQ_CMD_IQANUD(SGE_UPDATEDEL_INTR) | 2104 FW_IQ_CMD_IQANDSTINDEX(intr_dest)); 2105 cmd.iqdroprss_to_iqesize = 2106 cpu_to_be16(FW_IQ_CMD_IQPCIECH(pi->port_id) | 2107 FW_IQ_CMD_IQGTSMODE | 2108 FW_IQ_CMD_IQINTCNTTHRESH(rspq->pktcnt_idx) | 2109 FW_IQ_CMD_IQESIZE(ilog2(rspq->iqe_len) - 4)); 2110 cmd.iqsize = cpu_to_be16(rspq->size); 2111 cmd.iqaddr = cpu_to_be64(rspq->phys_addr); 2112 2113 if (fl) { 2114 /* 2115 * Allocate the ring for the hardware free list (with space 2116 * for its status page) along with the associated software 2117 * descriptor ring. The free list size needs to be a multiple 2118 * of the Egress Queue Unit. 2119 */ 2120 fl->size = roundup(fl->size, FL_PER_EQ_UNIT); 2121 fl->desc = alloc_ring(adapter->pdev_dev, fl->size, 2122 sizeof(__be64), sizeof(struct rx_sw_desc), 2123 &fl->addr, &fl->sdesc, s->stat_len); 2124 if (!fl->desc) { 2125 ret = -ENOMEM; 2126 goto err; 2127 } 2128 2129 /* 2130 * Calculate the size of the hardware free list ring plus 2131 * Status Page (which the SGE will place after the end of the 2132 * free list ring) in Egress Queue Units. 2133 */ 2134 flsz = (fl->size / FL_PER_EQ_UNIT + 2135 s->stat_len / EQ_UNIT); 2136 2137 /* 2138 * Fill in all the relevant firmware Ingress Queue Command 2139 * fields for the free list. 2140 */ 2141 cmd.iqns_to_fl0congen = 2142 cpu_to_be32( 2143 FW_IQ_CMD_FL0HOSTFCMODE(SGE_HOSTFCMODE_NONE) | 2144 FW_IQ_CMD_FL0PACKEN(1) | 2145 FW_IQ_CMD_FL0PADEN(1)); 2146 cmd.fl0dcaen_to_fl0cidxfthresh = 2147 cpu_to_be16( 2148 FW_IQ_CMD_FL0FBMIN(SGE_FETCHBURSTMIN_64B) | 2149 FW_IQ_CMD_FL0FBMAX(SGE_FETCHBURSTMAX_512B)); 2150 cmd.fl0size = cpu_to_be16(flsz); 2151 cmd.fl0addr = cpu_to_be64(fl->addr); 2152 } 2153 2154 /* 2155 * Issue the firmware Ingress Queue Command and extract the results if 2156 * it completes successfully. 2157 */ 2158 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 2159 if (ret) 2160 goto err; 2161 2162 netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64); 2163 rspq->cur_desc = rspq->desc; 2164 rspq->cidx = 0; 2165 rspq->gen = 1; 2166 rspq->next_intr_params = rspq->intr_params; 2167 rspq->cntxt_id = be16_to_cpu(rpl.iqid); 2168 rspq->abs_id = be16_to_cpu(rpl.physiqid); 2169 rspq->size--; /* subtract status entry */ 2170 rspq->adapter = adapter; 2171 rspq->netdev = dev; 2172 rspq->handler = hnd; 2173 2174 /* set offset to -1 to distinguish ingress queues without FL */ 2175 rspq->offset = fl ? 0 : -1; 2176 2177 if (fl) { 2178 fl->cntxt_id = be16_to_cpu(rpl.fl0id); 2179 fl->avail = 0; 2180 fl->pend_cred = 0; 2181 fl->pidx = 0; 2182 fl->cidx = 0; 2183 fl->alloc_failed = 0; 2184 fl->large_alloc_failed = 0; 2185 fl->starving = 0; 2186 refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL); 2187 } 2188 2189 return 0; 2190 2191 err: 2192 /* 2193 * An error occurred. Clean up our partial allocation state and 2194 * return the error. 2195 */ 2196 if (rspq->desc) { 2197 dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len, 2198 rspq->desc, rspq->phys_addr); 2199 rspq->desc = NULL; 2200 } 2201 if (fl && fl->desc) { 2202 kfree(fl->sdesc); 2203 fl->sdesc = NULL; 2204 dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT, 2205 fl->desc, fl->addr); 2206 fl->desc = NULL; 2207 } 2208 return ret; 2209 } 2210 2211 /** 2212 * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue 2213 * @adapter: the adapter 2214 * @txq: pointer to the new txq to be filled in 2215 * @devq: the network TX queue associated with the new txq 2216 * @iqid: the relative ingress queue ID to which events relating to 2217 * the new txq should be directed 2218 */ 2219 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq, 2220 struct net_device *dev, struct netdev_queue *devq, 2221 unsigned int iqid) 2222 { 2223 struct sge *s = &adapter->sge; 2224 int ret, nentries; 2225 struct fw_eq_eth_cmd cmd, rpl; 2226 struct port_info *pi = netdev_priv(dev); 2227 2228 /* 2229 * Calculate the size of the hardware TX Queue (including the Status 2230 * Page on the end of the TX Queue) in units of TX Descriptors. 2231 */ 2232 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 2233 2234 /* 2235 * Allocate the hardware ring for the TX ring (with space for its 2236 * status page) along with the associated software descriptor ring. 2237 */ 2238 txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size, 2239 sizeof(struct tx_desc), 2240 sizeof(struct tx_sw_desc), 2241 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len); 2242 if (!txq->q.desc) 2243 return -ENOMEM; 2244 2245 /* 2246 * Fill in the Egress Queue Command. Note: As with the direct use of 2247 * the firmware Ingress Queue COmmand above in our RXQ allocation 2248 * routine, ideally, this code would be in t4vf_hw.c. Again, we'll 2249 * have to see if there's some reasonable way to parameterize it 2250 * into the common code ... 2251 */ 2252 memset(&cmd, 0, sizeof(cmd)); 2253 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) | 2254 FW_CMD_REQUEST | 2255 FW_CMD_WRITE | 2256 FW_CMD_EXEC); 2257 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC | 2258 FW_EQ_ETH_CMD_EQSTART | 2259 FW_LEN16(cmd)); 2260 cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE | 2261 FW_EQ_ETH_CMD_VIID(pi->viid)); 2262 cmd.fetchszm_to_iqid = 2263 cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE(SGE_HOSTFCMODE_STPG) | 2264 FW_EQ_ETH_CMD_PCIECHN(pi->port_id) | 2265 FW_EQ_ETH_CMD_IQID(iqid)); 2266 cmd.dcaen_to_eqsize = 2267 cpu_to_be32(FW_EQ_ETH_CMD_FBMIN(SGE_FETCHBURSTMIN_64B) | 2268 FW_EQ_ETH_CMD_FBMAX(SGE_FETCHBURSTMAX_512B) | 2269 FW_EQ_ETH_CMD_CIDXFTHRESH(SGE_CIDXFLUSHTHRESH_32) | 2270 FW_EQ_ETH_CMD_EQSIZE(nentries)); 2271 cmd.eqaddr = cpu_to_be64(txq->q.phys_addr); 2272 2273 /* 2274 * Issue the firmware Egress Queue Command and extract the results if 2275 * it completes successfully. 2276 */ 2277 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); 2278 if (ret) { 2279 /* 2280 * The girmware Ingress Queue Command failed for some reason. 2281 * Free up our partial allocation state and return the error. 2282 */ 2283 kfree(txq->q.sdesc); 2284 txq->q.sdesc = NULL; 2285 dma_free_coherent(adapter->pdev_dev, 2286 nentries * sizeof(struct tx_desc), 2287 txq->q.desc, txq->q.phys_addr); 2288 txq->q.desc = NULL; 2289 return ret; 2290 } 2291 2292 txq->q.in_use = 0; 2293 txq->q.cidx = 0; 2294 txq->q.pidx = 0; 2295 txq->q.stat = (void *)&txq->q.desc[txq->q.size]; 2296 txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_GET(be32_to_cpu(rpl.eqid_pkd)); 2297 txq->q.abs_id = 2298 FW_EQ_ETH_CMD_PHYSEQID_GET(be32_to_cpu(rpl.physeqid_pkd)); 2299 txq->txq = devq; 2300 txq->tso = 0; 2301 txq->tx_cso = 0; 2302 txq->vlan_ins = 0; 2303 txq->q.stops = 0; 2304 txq->q.restarts = 0; 2305 txq->mapping_err = 0; 2306 return 0; 2307 } 2308 2309 /* 2310 * Free the DMA map resources associated with a TX queue. 2311 */ 2312 static void free_txq(struct adapter *adapter, struct sge_txq *tq) 2313 { 2314 struct sge *s = &adapter->sge; 2315 2316 dma_free_coherent(adapter->pdev_dev, 2317 tq->size * sizeof(*tq->desc) + s->stat_len, 2318 tq->desc, tq->phys_addr); 2319 tq->cntxt_id = 0; 2320 tq->sdesc = NULL; 2321 tq->desc = NULL; 2322 } 2323 2324 /* 2325 * Free the resources associated with a response queue (possibly including a 2326 * free list). 2327 */ 2328 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq, 2329 struct sge_fl *fl) 2330 { 2331 struct sge *s = &adapter->sge; 2332 unsigned int flid = fl ? fl->cntxt_id : 0xffff; 2333 2334 t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP, 2335 rspq->cntxt_id, flid, 0xffff); 2336 dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len, 2337 rspq->desc, rspq->phys_addr); 2338 netif_napi_del(&rspq->napi); 2339 rspq->netdev = NULL; 2340 rspq->cntxt_id = 0; 2341 rspq->abs_id = 0; 2342 rspq->desc = NULL; 2343 2344 if (fl) { 2345 free_rx_bufs(adapter, fl, fl->avail); 2346 dma_free_coherent(adapter->pdev_dev, 2347 fl->size * sizeof(*fl->desc) + s->stat_len, 2348 fl->desc, fl->addr); 2349 kfree(fl->sdesc); 2350 fl->sdesc = NULL; 2351 fl->cntxt_id = 0; 2352 fl->desc = NULL; 2353 } 2354 } 2355 2356 /** 2357 * t4vf_free_sge_resources - free SGE resources 2358 * @adapter: the adapter 2359 * 2360 * Frees resources used by the SGE queue sets. 2361 */ 2362 void t4vf_free_sge_resources(struct adapter *adapter) 2363 { 2364 struct sge *s = &adapter->sge; 2365 struct sge_eth_rxq *rxq = s->ethrxq; 2366 struct sge_eth_txq *txq = s->ethtxq; 2367 struct sge_rspq *evtq = &s->fw_evtq; 2368 struct sge_rspq *intrq = &s->intrq; 2369 int qs; 2370 2371 for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) { 2372 if (rxq->rspq.desc) 2373 free_rspq_fl(adapter, &rxq->rspq, &rxq->fl); 2374 if (txq->q.desc) { 2375 t4vf_eth_eq_free(adapter, txq->q.cntxt_id); 2376 free_tx_desc(adapter, &txq->q, txq->q.in_use, true); 2377 kfree(txq->q.sdesc); 2378 free_txq(adapter, &txq->q); 2379 } 2380 } 2381 if (evtq->desc) 2382 free_rspq_fl(adapter, evtq, NULL); 2383 if (intrq->desc) 2384 free_rspq_fl(adapter, intrq, NULL); 2385 } 2386 2387 /** 2388 * t4vf_sge_start - enable SGE operation 2389 * @adapter: the adapter 2390 * 2391 * Start tasklets and timers associated with the DMA engine. 2392 */ 2393 void t4vf_sge_start(struct adapter *adapter) 2394 { 2395 adapter->sge.ethtxq_rover = 0; 2396 mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 2397 mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 2398 } 2399 2400 /** 2401 * t4vf_sge_stop - disable SGE operation 2402 * @adapter: the adapter 2403 * 2404 * Stop tasklets and timers associated with the DMA engine. Note that 2405 * this is effective only if measures have been taken to disable any HW 2406 * events that may restart them. 2407 */ 2408 void t4vf_sge_stop(struct adapter *adapter) 2409 { 2410 struct sge *s = &adapter->sge; 2411 2412 if (s->rx_timer.function) 2413 del_timer_sync(&s->rx_timer); 2414 if (s->tx_timer.function) 2415 del_timer_sync(&s->tx_timer); 2416 } 2417 2418 /** 2419 * t4vf_sge_init - initialize SGE 2420 * @adapter: the adapter 2421 * 2422 * Performs SGE initialization needed every time after a chip reset. 2423 * We do not initialize any of the queue sets here, instead the driver 2424 * top-level must request those individually. We also do not enable DMA 2425 * here, that should be done after the queues have been set up. 2426 */ 2427 int t4vf_sge_init(struct adapter *adapter) 2428 { 2429 struct sge_params *sge_params = &adapter->params.sge; 2430 u32 fl0 = sge_params->sge_fl_buffer_size[0]; 2431 u32 fl1 = sge_params->sge_fl_buffer_size[1]; 2432 struct sge *s = &adapter->sge; 2433 unsigned int ingpadboundary, ingpackboundary; 2434 2435 /* 2436 * Start by vetting the basic SGE parameters which have been set up by 2437 * the Physical Function Driver. Ideally we should be able to deal 2438 * with _any_ configuration. Practice is different ... 2439 */ 2440 if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) { 2441 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n", 2442 fl0, fl1); 2443 return -EINVAL; 2444 } 2445 if ((sge_params->sge_control & RXPKTCPLMODE_MASK) == 0) { 2446 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n"); 2447 return -EINVAL; 2448 } 2449 2450 /* 2451 * Now translate the adapter parameters into our internal forms. 2452 */ 2453 if (fl1) 2454 s->fl_pg_order = ilog2(fl1) - PAGE_SHIFT; 2455 s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_MASK) 2456 ? 128 : 64); 2457 s->pktshift = PKTSHIFT_GET(sge_params->sge_control); 2458 2459 /* T4 uses a single control field to specify both the PCIe Padding and 2460 * Packing Boundary. T5 introduced the ability to specify these 2461 * separately. The actual Ingress Packet Data alignment boundary 2462 * within Packed Buffer Mode is the maximum of these two 2463 * specifications. (Note that it makes no real practical sense to 2464 * have the Pading Boudary be larger than the Packing Boundary but you 2465 * could set the chip up that way and, in fact, legacy T4 code would 2466 * end doing this because it would initialize the Padding Boundary and 2467 * leave the Packing Boundary initialized to 0 (16 bytes).) 2468 */ 2469 ingpadboundary = 1 << (INGPADBOUNDARY_GET(sge_params->sge_control) + 2470 X_INGPADBOUNDARY_SHIFT); 2471 if (is_t4(adapter->params.chip)) { 2472 s->fl_align = ingpadboundary; 2473 } else { 2474 /* T5 has a different interpretation of one of the PCIe Packing 2475 * Boundary values. 2476 */ 2477 ingpackboundary = INGPACKBOUNDARY_G(sge_params->sge_control2); 2478 if (ingpackboundary == INGPACKBOUNDARY_16B_X) 2479 ingpackboundary = 16; 2480 else 2481 ingpackboundary = 1 << (ingpackboundary + 2482 INGPACKBOUNDARY_SHIFT_X); 2483 2484 s->fl_align = max(ingpadboundary, ingpackboundary); 2485 } 2486 2487 /* A FL with <= fl_starve_thres buffers is starving and a periodic 2488 * timer will attempt to refill it. This needs to be larger than the 2489 * SGE's Egress Congestion Threshold. If it isn't, then we can get 2490 * stuck waiting for new packets while the SGE is waiting for us to 2491 * give it more Free List entries. (Note that the SGE's Egress 2492 * Congestion Threshold is in units of 2 Free List pointers.) 2493 */ 2494 s->fl_starve_thres 2495 = EGRTHRESHOLD_GET(sge_params->sge_congestion_control)*2 + 1; 2496 2497 /* 2498 * Set up tasklet timers. 2499 */ 2500 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter); 2501 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter); 2502 2503 /* 2504 * Initialize Forwarded Interrupt Queue lock. 2505 */ 2506 spin_lock_init(&s->intrq_lock); 2507 2508 return 0; 2509 } 2510