xref: /openbmc/linux/drivers/net/ethernet/chelsio/cxgb4/t4_hw.c (revision 8d59a64cbec8cebf2e1ec9977de4f67fc7341dc6)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F) {
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 		adap->flags &= ~CXGB4_FW_OK;
202 	}
203 }
204 
205 /*
206  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
207  */
208 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
209 			 u32 mbox_addr)
210 {
211 	for ( ; nflit; nflit--, mbox_addr += 8)
212 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
213 }
214 
215 /*
216  * Handle a FW assertion reported in a mailbox.
217  */
218 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
219 {
220 	struct fw_debug_cmd asrt;
221 
222 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
223 	dev_alert(adap->pdev_dev,
224 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
225 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
226 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
227 }
228 
229 /**
230  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
231  *	@adapter: the adapter
232  *	@cmd: the Firmware Mailbox Command or Reply
233  *	@size: command length in bytes
234  *	@access: the time (ms) needed to access the Firmware Mailbox
235  *	@execute: the time (ms) the command spent being executed
236  */
237 static void t4_record_mbox(struct adapter *adapter,
238 			   const __be64 *cmd, unsigned int size,
239 			   int access, int execute)
240 {
241 	struct mbox_cmd_log *log = adapter->mbox_log;
242 	struct mbox_cmd *entry;
243 	int i;
244 
245 	entry = mbox_cmd_log_entry(log, log->cursor++);
246 	if (log->cursor == log->size)
247 		log->cursor = 0;
248 
249 	for (i = 0; i < size / 8; i++)
250 		entry->cmd[i] = be64_to_cpu(cmd[i]);
251 	while (i < MBOX_LEN / 8)
252 		entry->cmd[i++] = 0;
253 	entry->timestamp = jiffies;
254 	entry->seqno = log->seqno++;
255 	entry->access = access;
256 	entry->execute = execute;
257 }
258 
259 /**
260  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
261  *	@adap: the adapter
262  *	@mbox: index of the mailbox to use
263  *	@cmd: the command to write
264  *	@size: command length in bytes
265  *	@rpl: where to optionally store the reply
266  *	@sleep_ok: if true we may sleep while awaiting command completion
267  *	@timeout: time to wait for command to finish before timing out
268  *
269  *	Sends the given command to FW through the selected mailbox and waits
270  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
271  *	store the FW's reply to the command.  The command and its optional
272  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
273  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
274  *	the response.  If sleeping is allowed we use progressive backoff
275  *	otherwise we spin.
276  *
277  *	The return value is 0 on success or a negative errno on failure.  A
278  *	failure can happen either because we are not able to execute the
279  *	command or FW executes it but signals an error.  In the latter case
280  *	the return value is the error code indicated by FW (negated).
281  */
282 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
283 			    int size, void *rpl, bool sleep_ok, int timeout)
284 {
285 	static const int delay[] = {
286 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
287 	};
288 
289 	struct mbox_list entry;
290 	u16 access = 0;
291 	u16 execute = 0;
292 	u32 v;
293 	u64 res;
294 	int i, ms, delay_idx, ret;
295 	const __be64 *p = cmd;
296 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
297 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
298 	__be64 cmd_rpl[MBOX_LEN / 8];
299 	u32 pcie_fw;
300 
301 	if ((size & 15) || size > MBOX_LEN)
302 		return -EINVAL;
303 
304 	/*
305 	 * If the device is off-line, as in EEH, commands will time out.
306 	 * Fail them early so we don't waste time waiting.
307 	 */
308 	if (adap->pdev->error_state != pci_channel_io_normal)
309 		return -EIO;
310 
311 	/* If we have a negative timeout, that implies that we can't sleep. */
312 	if (timeout < 0) {
313 		sleep_ok = false;
314 		timeout = -timeout;
315 	}
316 
317 	/* Queue ourselves onto the mailbox access list.  When our entry is at
318 	 * the front of the list, we have rights to access the mailbox.  So we
319 	 * wait [for a while] till we're at the front [or bail out with an
320 	 * EBUSY] ...
321 	 */
322 	spin_lock_bh(&adap->mbox_lock);
323 	list_add_tail(&entry.list, &adap->mlist.list);
324 	spin_unlock_bh(&adap->mbox_lock);
325 
326 	delay_idx = 0;
327 	ms = delay[0];
328 
329 	for (i = 0; ; i += ms) {
330 		/* If we've waited too long, return a busy indication.  This
331 		 * really ought to be based on our initial position in the
332 		 * mailbox access list but this is a start.  We very rarely
333 		 * contend on access to the mailbox ...
334 		 */
335 		pcie_fw = t4_read_reg(adap, PCIE_FW_A);
336 		if (i > FW_CMD_MAX_TIMEOUT || (pcie_fw & PCIE_FW_ERR_F)) {
337 			spin_lock_bh(&adap->mbox_lock);
338 			list_del(&entry.list);
339 			spin_unlock_bh(&adap->mbox_lock);
340 			ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -EBUSY;
341 			t4_record_mbox(adap, cmd, size, access, ret);
342 			return ret;
343 		}
344 
345 		/* If we're at the head, break out and start the mailbox
346 		 * protocol.
347 		 */
348 		if (list_first_entry(&adap->mlist.list, struct mbox_list,
349 				     list) == &entry)
350 			break;
351 
352 		/* Delay for a bit before checking again ... */
353 		if (sleep_ok) {
354 			ms = delay[delay_idx];  /* last element may repeat */
355 			if (delay_idx < ARRAY_SIZE(delay) - 1)
356 				delay_idx++;
357 			msleep(ms);
358 		} else {
359 			mdelay(ms);
360 		}
361 	}
362 
363 	/* Loop trying to get ownership of the mailbox.  Return an error
364 	 * if we can't gain ownership.
365 	 */
366 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
367 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
368 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
369 	if (v != MBOX_OWNER_DRV) {
370 		spin_lock_bh(&adap->mbox_lock);
371 		list_del(&entry.list);
372 		spin_unlock_bh(&adap->mbox_lock);
373 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
374 		t4_record_mbox(adap, cmd, size, access, ret);
375 		return ret;
376 	}
377 
378 	/* Copy in the new mailbox command and send it on its way ... */
379 	t4_record_mbox(adap, cmd, size, access, 0);
380 	for (i = 0; i < size; i += 8)
381 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
382 
383 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
384 	t4_read_reg(adap, ctl_reg);          /* flush write */
385 
386 	delay_idx = 0;
387 	ms = delay[0];
388 
389 	for (i = 0;
390 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
391 	     i < timeout;
392 	     i += ms) {
393 		if (sleep_ok) {
394 			ms = delay[delay_idx];  /* last element may repeat */
395 			if (delay_idx < ARRAY_SIZE(delay) - 1)
396 				delay_idx++;
397 			msleep(ms);
398 		} else
399 			mdelay(ms);
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
403 			if (!(v & MBMSGVALID_F)) {
404 				t4_write_reg(adap, ctl_reg, 0);
405 				continue;
406 			}
407 
408 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
409 			res = be64_to_cpu(cmd_rpl[0]);
410 
411 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
412 				fw_asrt(adap, data_reg);
413 				res = FW_CMD_RETVAL_V(EIO);
414 			} else if (rpl) {
415 				memcpy(rpl, cmd_rpl, size);
416 			}
417 
418 			t4_write_reg(adap, ctl_reg, 0);
419 
420 			execute = i + ms;
421 			t4_record_mbox(adap, cmd_rpl,
422 				       MBOX_LEN, access, execute);
423 			spin_lock_bh(&adap->mbox_lock);
424 			list_del(&entry.list);
425 			spin_unlock_bh(&adap->mbox_lock);
426 			return -FW_CMD_RETVAL_G((int)res);
427 		}
428 	}
429 
430 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
431 	t4_record_mbox(adap, cmd, size, access, ret);
432 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
433 		*(const u8 *)cmd, mbox);
434 	t4_report_fw_error(adap);
435 	spin_lock_bh(&adap->mbox_lock);
436 	list_del(&entry.list);
437 	spin_unlock_bh(&adap->mbox_lock);
438 	t4_fatal_err(adap);
439 	return ret;
440 }
441 
442 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
443 		    void *rpl, bool sleep_ok)
444 {
445 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
446 				       FW_CMD_MAX_TIMEOUT);
447 }
448 
449 static int t4_edc_err_read(struct adapter *adap, int idx)
450 {
451 	u32 edc_ecc_err_addr_reg;
452 	u32 rdata_reg;
453 
454 	if (is_t4(adap->params.chip)) {
455 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
456 		return 0;
457 	}
458 	if (idx != 0 && idx != 1) {
459 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
460 		return 0;
461 	}
462 
463 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
464 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
465 
466 	CH_WARN(adap,
467 		"edc%d err addr 0x%x: 0x%x.\n",
468 		idx, edc_ecc_err_addr_reg,
469 		t4_read_reg(adap, edc_ecc_err_addr_reg));
470 	CH_WARN(adap,
471 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
472 		rdata_reg,
473 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
474 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
475 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
476 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
477 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
478 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
479 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
480 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
481 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
482 
483 	return 0;
484 }
485 
486 /**
487  * t4_memory_rw_init - Get memory window relative offset, base, and size.
488  * @adap: the adapter
489  * @win: PCI-E Memory Window to use
490  * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_HMA or MEM_MC
491  * @mem_off: memory relative offset with respect to @mtype.
492  * @mem_base: configured memory base address.
493  * @mem_aperture: configured memory window aperture.
494  *
495  * Get the configured memory window's relative offset, base, and size.
496  */
497 int t4_memory_rw_init(struct adapter *adap, int win, int mtype, u32 *mem_off,
498 		      u32 *mem_base, u32 *mem_aperture)
499 {
500 	u32 edc_size, mc_size, mem_reg;
501 
502 	/* Offset into the region of memory which is being accessed
503 	 * MEM_EDC0 = 0
504 	 * MEM_EDC1 = 1
505 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
506 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
507 	 * MEM_HMA  = 4
508 	 */
509 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
510 	if (mtype == MEM_HMA) {
511 		*mem_off = 2 * (edc_size * 1024 * 1024);
512 	} else if (mtype != MEM_MC1) {
513 		*mem_off = (mtype * (edc_size * 1024 * 1024));
514 	} else {
515 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
516 						      MA_EXT_MEMORY0_BAR_A));
517 		*mem_off = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
518 	}
519 
520 	/* Each PCI-E Memory Window is programmed with a window size -- or
521 	 * "aperture" -- which controls the granularity of its mapping onto
522 	 * adapter memory.  We need to grab that aperture in order to know
523 	 * how to use the specified window.  The window is also programmed
524 	 * with the base address of the Memory Window in BAR0's address
525 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
526 	 * the address is relative to BAR0.
527 	 */
528 	mem_reg = t4_read_reg(adap,
529 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
530 						  win));
531 	/* a dead adapter will return 0xffffffff for PIO reads */
532 	if (mem_reg == 0xffffffff)
533 		return -ENXIO;
534 
535 	*mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
536 	*mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
537 	if (is_t4(adap->params.chip))
538 		*mem_base -= adap->t4_bar0;
539 
540 	return 0;
541 }
542 
543 /**
544  * t4_memory_update_win - Move memory window to specified address.
545  * @adap: the adapter
546  * @win: PCI-E Memory Window to use
547  * @addr: location to move.
548  *
549  * Move memory window to specified address.
550  */
551 void t4_memory_update_win(struct adapter *adap, int win, u32 addr)
552 {
553 	t4_write_reg(adap,
554 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
555 		     addr);
556 	/* Read it back to ensure that changes propagate before we
557 	 * attempt to use the new value.
558 	 */
559 	t4_read_reg(adap,
560 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
561 }
562 
563 /**
564  * t4_memory_rw_residual - Read/Write residual data.
565  * @adap: the adapter
566  * @off: relative offset within residual to start read/write.
567  * @addr: address within indicated memory type.
568  * @buf: host memory buffer
569  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
570  *
571  * Read/Write residual data less than 32-bits.
572  */
573 void t4_memory_rw_residual(struct adapter *adap, u32 off, u32 addr, u8 *buf,
574 			   int dir)
575 {
576 	union {
577 		u32 word;
578 		char byte[4];
579 	} last;
580 	unsigned char *bp;
581 	int i;
582 
583 	if (dir == T4_MEMORY_READ) {
584 		last.word = le32_to_cpu((__force __le32)
585 					t4_read_reg(adap, addr));
586 		for (bp = (unsigned char *)buf, i = off; i < 4; i++)
587 			bp[i] = last.byte[i];
588 	} else {
589 		last.word = *buf;
590 		for (i = off; i < 4; i++)
591 			last.byte[i] = 0;
592 		t4_write_reg(adap, addr,
593 			     (__force u32)cpu_to_le32(last.word));
594 	}
595 }
596 
597 /**
598  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
599  *	@adap: the adapter
600  *	@win: PCI-E Memory Window to use
601  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
602  *	@addr: address within indicated memory type
603  *	@len: amount of memory to transfer
604  *	@hbuf: host memory buffer
605  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
606  *
607  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
608  *	firmware memory address and host buffer must be aligned on 32-bit
609  *	boundaries; the length may be arbitrary.  The memory is transferred as
610  *	a raw byte sequence from/to the firmware's memory.  If this memory
611  *	contains data structures which contain multi-byte integers, it's the
612  *	caller's responsibility to perform appropriate byte order conversions.
613  */
614 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
615 		 u32 len, void *hbuf, int dir)
616 {
617 	u32 pos, offset, resid, memoffset;
618 	u32 win_pf, mem_aperture, mem_base;
619 	u32 *buf;
620 	int ret;
621 
622 	/* Argument sanity checks ...
623 	 */
624 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
625 		return -EINVAL;
626 	buf = (u32 *)hbuf;
627 
628 	/* It's convenient to be able to handle lengths which aren't a
629 	 * multiple of 32-bits because we often end up transferring files to
630 	 * the firmware.  So we'll handle that by normalizing the length here
631 	 * and then handling any residual transfer at the end.
632 	 */
633 	resid = len & 0x3;
634 	len -= resid;
635 
636 	ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base,
637 				&mem_aperture);
638 	if (ret)
639 		return ret;
640 
641 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
642 	addr = addr + memoffset;
643 
644 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
645 
646 	/* Calculate our initial PCI-E Memory Window Position and Offset into
647 	 * that Window.
648 	 */
649 	pos = addr & ~(mem_aperture - 1);
650 	offset = addr - pos;
651 
652 	/* Set up initial PCI-E Memory Window to cover the start of our
653 	 * transfer.
654 	 */
655 	t4_memory_update_win(adap, win, pos | win_pf);
656 
657 	/* Transfer data to/from the adapter as long as there's an integral
658 	 * number of 32-bit transfers to complete.
659 	 *
660 	 * A note on Endianness issues:
661 	 *
662 	 * The "register" reads and writes below from/to the PCI-E Memory
663 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
664 	 * Little-Endian "swizzel."  As a result, if we have the following
665 	 * data in adapter memory:
666 	 *
667 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
668 	 *     Address:      i+0  i+1  i+2  i+3
669 	 *
670 	 * Then a read of the adapter memory via the PCI-E Memory Window
671 	 * will yield:
672 	 *
673 	 *     x = readl(i)
674 	 *         31                  0
675 	 *         [ b3 | b2 | b1 | b0 ]
676 	 *
677 	 * If this value is stored into local memory on a Little-Endian system
678 	 * it will show up correctly in local memory as:
679 	 *
680 	 *     ( ..., b0, b1, b2, b3, ... )
681 	 *
682 	 * But on a Big-Endian system, the store will show up in memory
683 	 * incorrectly swizzled as:
684 	 *
685 	 *     ( ..., b3, b2, b1, b0, ... )
686 	 *
687 	 * So we need to account for this in the reads and writes to the
688 	 * PCI-E Memory Window below by undoing the register read/write
689 	 * swizzels.
690 	 */
691 	while (len > 0) {
692 		if (dir == T4_MEMORY_READ)
693 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
694 						mem_base + offset));
695 		else
696 			t4_write_reg(adap, mem_base + offset,
697 				     (__force u32)cpu_to_le32(*buf++));
698 		offset += sizeof(__be32);
699 		len -= sizeof(__be32);
700 
701 		/* If we've reached the end of our current window aperture,
702 		 * move the PCI-E Memory Window on to the next.  Note that
703 		 * doing this here after "len" may be 0 allows us to set up
704 		 * the PCI-E Memory Window for a possible final residual
705 		 * transfer below ...
706 		 */
707 		if (offset == mem_aperture) {
708 			pos += mem_aperture;
709 			offset = 0;
710 			t4_memory_update_win(adap, win, pos | win_pf);
711 		}
712 	}
713 
714 	/* If the original transfer had a length which wasn't a multiple of
715 	 * 32-bits, now's where we need to finish off the transfer of the
716 	 * residual amount.  The PCI-E Memory Window has already been moved
717 	 * above (if necessary) to cover this final transfer.
718 	 */
719 	if (resid)
720 		t4_memory_rw_residual(adap, resid, mem_base + offset,
721 				      (u8 *)buf, dir);
722 
723 	return 0;
724 }
725 
726 /* Return the specified PCI-E Configuration Space register from our Physical
727  * Function.  We try first via a Firmware LDST Command since we prefer to let
728  * the firmware own all of these registers, but if that fails we go for it
729  * directly ourselves.
730  */
731 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
732 {
733 	u32 val, ldst_addrspace;
734 
735 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
736 	 * retrieve the specified PCI-E Configuration Space register.
737 	 */
738 	struct fw_ldst_cmd ldst_cmd;
739 	int ret;
740 
741 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
742 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
743 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
744 					       FW_CMD_REQUEST_F |
745 					       FW_CMD_READ_F |
746 					       ldst_addrspace);
747 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
748 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
749 	ldst_cmd.u.pcie.ctrl_to_fn =
750 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
751 	ldst_cmd.u.pcie.r = reg;
752 
753 	/* If the LDST Command succeeds, return the result, otherwise
754 	 * fall through to reading it directly ourselves ...
755 	 */
756 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
757 			 &ldst_cmd);
758 	if (ret == 0)
759 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
760 	else
761 		/* Read the desired Configuration Space register via the PCI-E
762 		 * Backdoor mechanism.
763 		 */
764 		t4_hw_pci_read_cfg4(adap, reg, &val);
765 	return val;
766 }
767 
768 /* Get the window based on base passed to it.
769  * Window aperture is currently unhandled, but there is no use case for it
770  * right now
771  */
772 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
773 			 u32 memwin_base)
774 {
775 	u32 ret;
776 
777 	if (is_t4(adap->params.chip)) {
778 		u32 bar0;
779 
780 		/* Truncation intentional: we only read the bottom 32-bits of
781 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
782 		 * mechanism to read BAR0 instead of using
783 		 * pci_resource_start() because we could be operating from
784 		 * within a Virtual Machine which is trapping our accesses to
785 		 * our Configuration Space and we need to set up the PCI-E
786 		 * Memory Window decoders with the actual addresses which will
787 		 * be coming across the PCI-E link.
788 		 */
789 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
790 		bar0 &= pci_mask;
791 		adap->t4_bar0 = bar0;
792 
793 		ret = bar0 + memwin_base;
794 	} else {
795 		/* For T5, only relative offset inside the PCIe BAR is passed */
796 		ret = memwin_base;
797 	}
798 	return ret;
799 }
800 
801 /* Get the default utility window (win0) used by everyone */
802 u32 t4_get_util_window(struct adapter *adap)
803 {
804 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
805 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
806 }
807 
808 /* Set up memory window for accessing adapter memory ranges.  (Read
809  * back MA register to ensure that changes propagate before we attempt
810  * to use the new values.)
811  */
812 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
813 {
814 	t4_write_reg(adap,
815 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
816 		     memwin_base | BIR_V(0) |
817 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
818 	t4_read_reg(adap,
819 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
820 }
821 
822 /**
823  *	t4_get_regs_len - return the size of the chips register set
824  *	@adapter: the adapter
825  *
826  *	Returns the size of the chip's BAR0 register space.
827  */
828 unsigned int t4_get_regs_len(struct adapter *adapter)
829 {
830 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
831 
832 	switch (chip_version) {
833 	case CHELSIO_T4:
834 		return T4_REGMAP_SIZE;
835 
836 	case CHELSIO_T5:
837 	case CHELSIO_T6:
838 		return T5_REGMAP_SIZE;
839 	}
840 
841 	dev_err(adapter->pdev_dev,
842 		"Unsupported chip version %d\n", chip_version);
843 	return 0;
844 }
845 
846 /**
847  *	t4_get_regs - read chip registers into provided buffer
848  *	@adap: the adapter
849  *	@buf: register buffer
850  *	@buf_size: size (in bytes) of register buffer
851  *
852  *	If the provided register buffer isn't large enough for the chip's
853  *	full register range, the register dump will be truncated to the
854  *	register buffer's size.
855  */
856 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
857 {
858 	static const unsigned int t4_reg_ranges[] = {
859 		0x1008, 0x1108,
860 		0x1180, 0x1184,
861 		0x1190, 0x1194,
862 		0x11a0, 0x11a4,
863 		0x11b0, 0x11b4,
864 		0x11fc, 0x123c,
865 		0x1300, 0x173c,
866 		0x1800, 0x18fc,
867 		0x3000, 0x30d8,
868 		0x30e0, 0x30e4,
869 		0x30ec, 0x5910,
870 		0x5920, 0x5924,
871 		0x5960, 0x5960,
872 		0x5968, 0x5968,
873 		0x5970, 0x5970,
874 		0x5978, 0x5978,
875 		0x5980, 0x5980,
876 		0x5988, 0x5988,
877 		0x5990, 0x5990,
878 		0x5998, 0x5998,
879 		0x59a0, 0x59d4,
880 		0x5a00, 0x5ae0,
881 		0x5ae8, 0x5ae8,
882 		0x5af0, 0x5af0,
883 		0x5af8, 0x5af8,
884 		0x6000, 0x6098,
885 		0x6100, 0x6150,
886 		0x6200, 0x6208,
887 		0x6240, 0x6248,
888 		0x6280, 0x62b0,
889 		0x62c0, 0x6338,
890 		0x6370, 0x638c,
891 		0x6400, 0x643c,
892 		0x6500, 0x6524,
893 		0x6a00, 0x6a04,
894 		0x6a14, 0x6a38,
895 		0x6a60, 0x6a70,
896 		0x6a78, 0x6a78,
897 		0x6b00, 0x6b0c,
898 		0x6b1c, 0x6b84,
899 		0x6bf0, 0x6bf8,
900 		0x6c00, 0x6c0c,
901 		0x6c1c, 0x6c84,
902 		0x6cf0, 0x6cf8,
903 		0x6d00, 0x6d0c,
904 		0x6d1c, 0x6d84,
905 		0x6df0, 0x6df8,
906 		0x6e00, 0x6e0c,
907 		0x6e1c, 0x6e84,
908 		0x6ef0, 0x6ef8,
909 		0x6f00, 0x6f0c,
910 		0x6f1c, 0x6f84,
911 		0x6ff0, 0x6ff8,
912 		0x7000, 0x700c,
913 		0x701c, 0x7084,
914 		0x70f0, 0x70f8,
915 		0x7100, 0x710c,
916 		0x711c, 0x7184,
917 		0x71f0, 0x71f8,
918 		0x7200, 0x720c,
919 		0x721c, 0x7284,
920 		0x72f0, 0x72f8,
921 		0x7300, 0x730c,
922 		0x731c, 0x7384,
923 		0x73f0, 0x73f8,
924 		0x7400, 0x7450,
925 		0x7500, 0x7530,
926 		0x7600, 0x760c,
927 		0x7614, 0x761c,
928 		0x7680, 0x76cc,
929 		0x7700, 0x7798,
930 		0x77c0, 0x77fc,
931 		0x7900, 0x79fc,
932 		0x7b00, 0x7b58,
933 		0x7b60, 0x7b84,
934 		0x7b8c, 0x7c38,
935 		0x7d00, 0x7d38,
936 		0x7d40, 0x7d80,
937 		0x7d8c, 0x7ddc,
938 		0x7de4, 0x7e04,
939 		0x7e10, 0x7e1c,
940 		0x7e24, 0x7e38,
941 		0x7e40, 0x7e44,
942 		0x7e4c, 0x7e78,
943 		0x7e80, 0x7ea4,
944 		0x7eac, 0x7edc,
945 		0x7ee8, 0x7efc,
946 		0x8dc0, 0x8e04,
947 		0x8e10, 0x8e1c,
948 		0x8e30, 0x8e78,
949 		0x8ea0, 0x8eb8,
950 		0x8ec0, 0x8f6c,
951 		0x8fc0, 0x9008,
952 		0x9010, 0x9058,
953 		0x9060, 0x9060,
954 		0x9068, 0x9074,
955 		0x90fc, 0x90fc,
956 		0x9400, 0x9408,
957 		0x9410, 0x9458,
958 		0x9600, 0x9600,
959 		0x9608, 0x9638,
960 		0x9640, 0x96bc,
961 		0x9800, 0x9808,
962 		0x9820, 0x983c,
963 		0x9850, 0x9864,
964 		0x9c00, 0x9c6c,
965 		0x9c80, 0x9cec,
966 		0x9d00, 0x9d6c,
967 		0x9d80, 0x9dec,
968 		0x9e00, 0x9e6c,
969 		0x9e80, 0x9eec,
970 		0x9f00, 0x9f6c,
971 		0x9f80, 0x9fec,
972 		0xd004, 0xd004,
973 		0xd010, 0xd03c,
974 		0xdfc0, 0xdfe0,
975 		0xe000, 0xea7c,
976 		0xf000, 0x11110,
977 		0x11118, 0x11190,
978 		0x19040, 0x1906c,
979 		0x19078, 0x19080,
980 		0x1908c, 0x190e4,
981 		0x190f0, 0x190f8,
982 		0x19100, 0x19110,
983 		0x19120, 0x19124,
984 		0x19150, 0x19194,
985 		0x1919c, 0x191b0,
986 		0x191d0, 0x191e8,
987 		0x19238, 0x1924c,
988 		0x193f8, 0x1943c,
989 		0x1944c, 0x19474,
990 		0x19490, 0x194e0,
991 		0x194f0, 0x194f8,
992 		0x19800, 0x19c08,
993 		0x19c10, 0x19c90,
994 		0x19ca0, 0x19ce4,
995 		0x19cf0, 0x19d40,
996 		0x19d50, 0x19d94,
997 		0x19da0, 0x19de8,
998 		0x19df0, 0x19e40,
999 		0x19e50, 0x19e90,
1000 		0x19ea0, 0x19f4c,
1001 		0x1a000, 0x1a004,
1002 		0x1a010, 0x1a06c,
1003 		0x1a0b0, 0x1a0e4,
1004 		0x1a0ec, 0x1a0f4,
1005 		0x1a100, 0x1a108,
1006 		0x1a114, 0x1a120,
1007 		0x1a128, 0x1a130,
1008 		0x1a138, 0x1a138,
1009 		0x1a190, 0x1a1c4,
1010 		0x1a1fc, 0x1a1fc,
1011 		0x1e040, 0x1e04c,
1012 		0x1e284, 0x1e28c,
1013 		0x1e2c0, 0x1e2c0,
1014 		0x1e2e0, 0x1e2e0,
1015 		0x1e300, 0x1e384,
1016 		0x1e3c0, 0x1e3c8,
1017 		0x1e440, 0x1e44c,
1018 		0x1e684, 0x1e68c,
1019 		0x1e6c0, 0x1e6c0,
1020 		0x1e6e0, 0x1e6e0,
1021 		0x1e700, 0x1e784,
1022 		0x1e7c0, 0x1e7c8,
1023 		0x1e840, 0x1e84c,
1024 		0x1ea84, 0x1ea8c,
1025 		0x1eac0, 0x1eac0,
1026 		0x1eae0, 0x1eae0,
1027 		0x1eb00, 0x1eb84,
1028 		0x1ebc0, 0x1ebc8,
1029 		0x1ec40, 0x1ec4c,
1030 		0x1ee84, 0x1ee8c,
1031 		0x1eec0, 0x1eec0,
1032 		0x1eee0, 0x1eee0,
1033 		0x1ef00, 0x1ef84,
1034 		0x1efc0, 0x1efc8,
1035 		0x1f040, 0x1f04c,
1036 		0x1f284, 0x1f28c,
1037 		0x1f2c0, 0x1f2c0,
1038 		0x1f2e0, 0x1f2e0,
1039 		0x1f300, 0x1f384,
1040 		0x1f3c0, 0x1f3c8,
1041 		0x1f440, 0x1f44c,
1042 		0x1f684, 0x1f68c,
1043 		0x1f6c0, 0x1f6c0,
1044 		0x1f6e0, 0x1f6e0,
1045 		0x1f700, 0x1f784,
1046 		0x1f7c0, 0x1f7c8,
1047 		0x1f840, 0x1f84c,
1048 		0x1fa84, 0x1fa8c,
1049 		0x1fac0, 0x1fac0,
1050 		0x1fae0, 0x1fae0,
1051 		0x1fb00, 0x1fb84,
1052 		0x1fbc0, 0x1fbc8,
1053 		0x1fc40, 0x1fc4c,
1054 		0x1fe84, 0x1fe8c,
1055 		0x1fec0, 0x1fec0,
1056 		0x1fee0, 0x1fee0,
1057 		0x1ff00, 0x1ff84,
1058 		0x1ffc0, 0x1ffc8,
1059 		0x20000, 0x2002c,
1060 		0x20100, 0x2013c,
1061 		0x20190, 0x201a0,
1062 		0x201a8, 0x201b8,
1063 		0x201c4, 0x201c8,
1064 		0x20200, 0x20318,
1065 		0x20400, 0x204b4,
1066 		0x204c0, 0x20528,
1067 		0x20540, 0x20614,
1068 		0x21000, 0x21040,
1069 		0x2104c, 0x21060,
1070 		0x210c0, 0x210ec,
1071 		0x21200, 0x21268,
1072 		0x21270, 0x21284,
1073 		0x212fc, 0x21388,
1074 		0x21400, 0x21404,
1075 		0x21500, 0x21500,
1076 		0x21510, 0x21518,
1077 		0x2152c, 0x21530,
1078 		0x2153c, 0x2153c,
1079 		0x21550, 0x21554,
1080 		0x21600, 0x21600,
1081 		0x21608, 0x2161c,
1082 		0x21624, 0x21628,
1083 		0x21630, 0x21634,
1084 		0x2163c, 0x2163c,
1085 		0x21700, 0x2171c,
1086 		0x21780, 0x2178c,
1087 		0x21800, 0x21818,
1088 		0x21820, 0x21828,
1089 		0x21830, 0x21848,
1090 		0x21850, 0x21854,
1091 		0x21860, 0x21868,
1092 		0x21870, 0x21870,
1093 		0x21878, 0x21898,
1094 		0x218a0, 0x218a8,
1095 		0x218b0, 0x218c8,
1096 		0x218d0, 0x218d4,
1097 		0x218e0, 0x218e8,
1098 		0x218f0, 0x218f0,
1099 		0x218f8, 0x21a18,
1100 		0x21a20, 0x21a28,
1101 		0x21a30, 0x21a48,
1102 		0x21a50, 0x21a54,
1103 		0x21a60, 0x21a68,
1104 		0x21a70, 0x21a70,
1105 		0x21a78, 0x21a98,
1106 		0x21aa0, 0x21aa8,
1107 		0x21ab0, 0x21ac8,
1108 		0x21ad0, 0x21ad4,
1109 		0x21ae0, 0x21ae8,
1110 		0x21af0, 0x21af0,
1111 		0x21af8, 0x21c18,
1112 		0x21c20, 0x21c20,
1113 		0x21c28, 0x21c30,
1114 		0x21c38, 0x21c38,
1115 		0x21c80, 0x21c98,
1116 		0x21ca0, 0x21ca8,
1117 		0x21cb0, 0x21cc8,
1118 		0x21cd0, 0x21cd4,
1119 		0x21ce0, 0x21ce8,
1120 		0x21cf0, 0x21cf0,
1121 		0x21cf8, 0x21d7c,
1122 		0x21e00, 0x21e04,
1123 		0x22000, 0x2202c,
1124 		0x22100, 0x2213c,
1125 		0x22190, 0x221a0,
1126 		0x221a8, 0x221b8,
1127 		0x221c4, 0x221c8,
1128 		0x22200, 0x22318,
1129 		0x22400, 0x224b4,
1130 		0x224c0, 0x22528,
1131 		0x22540, 0x22614,
1132 		0x23000, 0x23040,
1133 		0x2304c, 0x23060,
1134 		0x230c0, 0x230ec,
1135 		0x23200, 0x23268,
1136 		0x23270, 0x23284,
1137 		0x232fc, 0x23388,
1138 		0x23400, 0x23404,
1139 		0x23500, 0x23500,
1140 		0x23510, 0x23518,
1141 		0x2352c, 0x23530,
1142 		0x2353c, 0x2353c,
1143 		0x23550, 0x23554,
1144 		0x23600, 0x23600,
1145 		0x23608, 0x2361c,
1146 		0x23624, 0x23628,
1147 		0x23630, 0x23634,
1148 		0x2363c, 0x2363c,
1149 		0x23700, 0x2371c,
1150 		0x23780, 0x2378c,
1151 		0x23800, 0x23818,
1152 		0x23820, 0x23828,
1153 		0x23830, 0x23848,
1154 		0x23850, 0x23854,
1155 		0x23860, 0x23868,
1156 		0x23870, 0x23870,
1157 		0x23878, 0x23898,
1158 		0x238a0, 0x238a8,
1159 		0x238b0, 0x238c8,
1160 		0x238d0, 0x238d4,
1161 		0x238e0, 0x238e8,
1162 		0x238f0, 0x238f0,
1163 		0x238f8, 0x23a18,
1164 		0x23a20, 0x23a28,
1165 		0x23a30, 0x23a48,
1166 		0x23a50, 0x23a54,
1167 		0x23a60, 0x23a68,
1168 		0x23a70, 0x23a70,
1169 		0x23a78, 0x23a98,
1170 		0x23aa0, 0x23aa8,
1171 		0x23ab0, 0x23ac8,
1172 		0x23ad0, 0x23ad4,
1173 		0x23ae0, 0x23ae8,
1174 		0x23af0, 0x23af0,
1175 		0x23af8, 0x23c18,
1176 		0x23c20, 0x23c20,
1177 		0x23c28, 0x23c30,
1178 		0x23c38, 0x23c38,
1179 		0x23c80, 0x23c98,
1180 		0x23ca0, 0x23ca8,
1181 		0x23cb0, 0x23cc8,
1182 		0x23cd0, 0x23cd4,
1183 		0x23ce0, 0x23ce8,
1184 		0x23cf0, 0x23cf0,
1185 		0x23cf8, 0x23d7c,
1186 		0x23e00, 0x23e04,
1187 		0x24000, 0x2402c,
1188 		0x24100, 0x2413c,
1189 		0x24190, 0x241a0,
1190 		0x241a8, 0x241b8,
1191 		0x241c4, 0x241c8,
1192 		0x24200, 0x24318,
1193 		0x24400, 0x244b4,
1194 		0x244c0, 0x24528,
1195 		0x24540, 0x24614,
1196 		0x25000, 0x25040,
1197 		0x2504c, 0x25060,
1198 		0x250c0, 0x250ec,
1199 		0x25200, 0x25268,
1200 		0x25270, 0x25284,
1201 		0x252fc, 0x25388,
1202 		0x25400, 0x25404,
1203 		0x25500, 0x25500,
1204 		0x25510, 0x25518,
1205 		0x2552c, 0x25530,
1206 		0x2553c, 0x2553c,
1207 		0x25550, 0x25554,
1208 		0x25600, 0x25600,
1209 		0x25608, 0x2561c,
1210 		0x25624, 0x25628,
1211 		0x25630, 0x25634,
1212 		0x2563c, 0x2563c,
1213 		0x25700, 0x2571c,
1214 		0x25780, 0x2578c,
1215 		0x25800, 0x25818,
1216 		0x25820, 0x25828,
1217 		0x25830, 0x25848,
1218 		0x25850, 0x25854,
1219 		0x25860, 0x25868,
1220 		0x25870, 0x25870,
1221 		0x25878, 0x25898,
1222 		0x258a0, 0x258a8,
1223 		0x258b0, 0x258c8,
1224 		0x258d0, 0x258d4,
1225 		0x258e0, 0x258e8,
1226 		0x258f0, 0x258f0,
1227 		0x258f8, 0x25a18,
1228 		0x25a20, 0x25a28,
1229 		0x25a30, 0x25a48,
1230 		0x25a50, 0x25a54,
1231 		0x25a60, 0x25a68,
1232 		0x25a70, 0x25a70,
1233 		0x25a78, 0x25a98,
1234 		0x25aa0, 0x25aa8,
1235 		0x25ab0, 0x25ac8,
1236 		0x25ad0, 0x25ad4,
1237 		0x25ae0, 0x25ae8,
1238 		0x25af0, 0x25af0,
1239 		0x25af8, 0x25c18,
1240 		0x25c20, 0x25c20,
1241 		0x25c28, 0x25c30,
1242 		0x25c38, 0x25c38,
1243 		0x25c80, 0x25c98,
1244 		0x25ca0, 0x25ca8,
1245 		0x25cb0, 0x25cc8,
1246 		0x25cd0, 0x25cd4,
1247 		0x25ce0, 0x25ce8,
1248 		0x25cf0, 0x25cf0,
1249 		0x25cf8, 0x25d7c,
1250 		0x25e00, 0x25e04,
1251 		0x26000, 0x2602c,
1252 		0x26100, 0x2613c,
1253 		0x26190, 0x261a0,
1254 		0x261a8, 0x261b8,
1255 		0x261c4, 0x261c8,
1256 		0x26200, 0x26318,
1257 		0x26400, 0x264b4,
1258 		0x264c0, 0x26528,
1259 		0x26540, 0x26614,
1260 		0x27000, 0x27040,
1261 		0x2704c, 0x27060,
1262 		0x270c0, 0x270ec,
1263 		0x27200, 0x27268,
1264 		0x27270, 0x27284,
1265 		0x272fc, 0x27388,
1266 		0x27400, 0x27404,
1267 		0x27500, 0x27500,
1268 		0x27510, 0x27518,
1269 		0x2752c, 0x27530,
1270 		0x2753c, 0x2753c,
1271 		0x27550, 0x27554,
1272 		0x27600, 0x27600,
1273 		0x27608, 0x2761c,
1274 		0x27624, 0x27628,
1275 		0x27630, 0x27634,
1276 		0x2763c, 0x2763c,
1277 		0x27700, 0x2771c,
1278 		0x27780, 0x2778c,
1279 		0x27800, 0x27818,
1280 		0x27820, 0x27828,
1281 		0x27830, 0x27848,
1282 		0x27850, 0x27854,
1283 		0x27860, 0x27868,
1284 		0x27870, 0x27870,
1285 		0x27878, 0x27898,
1286 		0x278a0, 0x278a8,
1287 		0x278b0, 0x278c8,
1288 		0x278d0, 0x278d4,
1289 		0x278e0, 0x278e8,
1290 		0x278f0, 0x278f0,
1291 		0x278f8, 0x27a18,
1292 		0x27a20, 0x27a28,
1293 		0x27a30, 0x27a48,
1294 		0x27a50, 0x27a54,
1295 		0x27a60, 0x27a68,
1296 		0x27a70, 0x27a70,
1297 		0x27a78, 0x27a98,
1298 		0x27aa0, 0x27aa8,
1299 		0x27ab0, 0x27ac8,
1300 		0x27ad0, 0x27ad4,
1301 		0x27ae0, 0x27ae8,
1302 		0x27af0, 0x27af0,
1303 		0x27af8, 0x27c18,
1304 		0x27c20, 0x27c20,
1305 		0x27c28, 0x27c30,
1306 		0x27c38, 0x27c38,
1307 		0x27c80, 0x27c98,
1308 		0x27ca0, 0x27ca8,
1309 		0x27cb0, 0x27cc8,
1310 		0x27cd0, 0x27cd4,
1311 		0x27ce0, 0x27ce8,
1312 		0x27cf0, 0x27cf0,
1313 		0x27cf8, 0x27d7c,
1314 		0x27e00, 0x27e04,
1315 	};
1316 
1317 	static const unsigned int t5_reg_ranges[] = {
1318 		0x1008, 0x10c0,
1319 		0x10cc, 0x10f8,
1320 		0x1100, 0x1100,
1321 		0x110c, 0x1148,
1322 		0x1180, 0x1184,
1323 		0x1190, 0x1194,
1324 		0x11a0, 0x11a4,
1325 		0x11b0, 0x11b4,
1326 		0x11fc, 0x123c,
1327 		0x1280, 0x173c,
1328 		0x1800, 0x18fc,
1329 		0x3000, 0x3028,
1330 		0x3060, 0x30b0,
1331 		0x30b8, 0x30d8,
1332 		0x30e0, 0x30fc,
1333 		0x3140, 0x357c,
1334 		0x35a8, 0x35cc,
1335 		0x35ec, 0x35ec,
1336 		0x3600, 0x5624,
1337 		0x56cc, 0x56ec,
1338 		0x56f4, 0x5720,
1339 		0x5728, 0x575c,
1340 		0x580c, 0x5814,
1341 		0x5890, 0x589c,
1342 		0x58a4, 0x58ac,
1343 		0x58b8, 0x58bc,
1344 		0x5940, 0x59c8,
1345 		0x59d0, 0x59dc,
1346 		0x59fc, 0x5a18,
1347 		0x5a60, 0x5a70,
1348 		0x5a80, 0x5a9c,
1349 		0x5b94, 0x5bfc,
1350 		0x6000, 0x6020,
1351 		0x6028, 0x6040,
1352 		0x6058, 0x609c,
1353 		0x60a8, 0x614c,
1354 		0x7700, 0x7798,
1355 		0x77c0, 0x78fc,
1356 		0x7b00, 0x7b58,
1357 		0x7b60, 0x7b84,
1358 		0x7b8c, 0x7c54,
1359 		0x7d00, 0x7d38,
1360 		0x7d40, 0x7d80,
1361 		0x7d8c, 0x7ddc,
1362 		0x7de4, 0x7e04,
1363 		0x7e10, 0x7e1c,
1364 		0x7e24, 0x7e38,
1365 		0x7e40, 0x7e44,
1366 		0x7e4c, 0x7e78,
1367 		0x7e80, 0x7edc,
1368 		0x7ee8, 0x7efc,
1369 		0x8dc0, 0x8de0,
1370 		0x8df8, 0x8e04,
1371 		0x8e10, 0x8e84,
1372 		0x8ea0, 0x8f84,
1373 		0x8fc0, 0x9058,
1374 		0x9060, 0x9060,
1375 		0x9068, 0x90f8,
1376 		0x9400, 0x9408,
1377 		0x9410, 0x9470,
1378 		0x9600, 0x9600,
1379 		0x9608, 0x9638,
1380 		0x9640, 0x96f4,
1381 		0x9800, 0x9808,
1382 		0x9810, 0x9864,
1383 		0x9c00, 0x9c6c,
1384 		0x9c80, 0x9cec,
1385 		0x9d00, 0x9d6c,
1386 		0x9d80, 0x9dec,
1387 		0x9e00, 0x9e6c,
1388 		0x9e80, 0x9eec,
1389 		0x9f00, 0x9f6c,
1390 		0x9f80, 0xa020,
1391 		0xd000, 0xd004,
1392 		0xd010, 0xd03c,
1393 		0xdfc0, 0xdfe0,
1394 		0xe000, 0x1106c,
1395 		0x11074, 0x11088,
1396 		0x1109c, 0x1117c,
1397 		0x11190, 0x11204,
1398 		0x19040, 0x1906c,
1399 		0x19078, 0x19080,
1400 		0x1908c, 0x190e8,
1401 		0x190f0, 0x190f8,
1402 		0x19100, 0x19110,
1403 		0x19120, 0x19124,
1404 		0x19150, 0x19194,
1405 		0x1919c, 0x191b0,
1406 		0x191d0, 0x191e8,
1407 		0x19238, 0x19290,
1408 		0x193f8, 0x19428,
1409 		0x19430, 0x19444,
1410 		0x1944c, 0x1946c,
1411 		0x19474, 0x19474,
1412 		0x19490, 0x194cc,
1413 		0x194f0, 0x194f8,
1414 		0x19c00, 0x19c08,
1415 		0x19c10, 0x19c60,
1416 		0x19c94, 0x19ce4,
1417 		0x19cf0, 0x19d40,
1418 		0x19d50, 0x19d94,
1419 		0x19da0, 0x19de8,
1420 		0x19df0, 0x19e10,
1421 		0x19e50, 0x19e90,
1422 		0x19ea0, 0x19f24,
1423 		0x19f34, 0x19f34,
1424 		0x19f40, 0x19f50,
1425 		0x19f90, 0x19fb4,
1426 		0x19fc4, 0x19fe4,
1427 		0x1a000, 0x1a004,
1428 		0x1a010, 0x1a06c,
1429 		0x1a0b0, 0x1a0e4,
1430 		0x1a0ec, 0x1a0f8,
1431 		0x1a100, 0x1a108,
1432 		0x1a114, 0x1a130,
1433 		0x1a138, 0x1a1c4,
1434 		0x1a1fc, 0x1a1fc,
1435 		0x1e008, 0x1e00c,
1436 		0x1e040, 0x1e044,
1437 		0x1e04c, 0x1e04c,
1438 		0x1e284, 0x1e290,
1439 		0x1e2c0, 0x1e2c0,
1440 		0x1e2e0, 0x1e2e0,
1441 		0x1e300, 0x1e384,
1442 		0x1e3c0, 0x1e3c8,
1443 		0x1e408, 0x1e40c,
1444 		0x1e440, 0x1e444,
1445 		0x1e44c, 0x1e44c,
1446 		0x1e684, 0x1e690,
1447 		0x1e6c0, 0x1e6c0,
1448 		0x1e6e0, 0x1e6e0,
1449 		0x1e700, 0x1e784,
1450 		0x1e7c0, 0x1e7c8,
1451 		0x1e808, 0x1e80c,
1452 		0x1e840, 0x1e844,
1453 		0x1e84c, 0x1e84c,
1454 		0x1ea84, 0x1ea90,
1455 		0x1eac0, 0x1eac0,
1456 		0x1eae0, 0x1eae0,
1457 		0x1eb00, 0x1eb84,
1458 		0x1ebc0, 0x1ebc8,
1459 		0x1ec08, 0x1ec0c,
1460 		0x1ec40, 0x1ec44,
1461 		0x1ec4c, 0x1ec4c,
1462 		0x1ee84, 0x1ee90,
1463 		0x1eec0, 0x1eec0,
1464 		0x1eee0, 0x1eee0,
1465 		0x1ef00, 0x1ef84,
1466 		0x1efc0, 0x1efc8,
1467 		0x1f008, 0x1f00c,
1468 		0x1f040, 0x1f044,
1469 		0x1f04c, 0x1f04c,
1470 		0x1f284, 0x1f290,
1471 		0x1f2c0, 0x1f2c0,
1472 		0x1f2e0, 0x1f2e0,
1473 		0x1f300, 0x1f384,
1474 		0x1f3c0, 0x1f3c8,
1475 		0x1f408, 0x1f40c,
1476 		0x1f440, 0x1f444,
1477 		0x1f44c, 0x1f44c,
1478 		0x1f684, 0x1f690,
1479 		0x1f6c0, 0x1f6c0,
1480 		0x1f6e0, 0x1f6e0,
1481 		0x1f700, 0x1f784,
1482 		0x1f7c0, 0x1f7c8,
1483 		0x1f808, 0x1f80c,
1484 		0x1f840, 0x1f844,
1485 		0x1f84c, 0x1f84c,
1486 		0x1fa84, 0x1fa90,
1487 		0x1fac0, 0x1fac0,
1488 		0x1fae0, 0x1fae0,
1489 		0x1fb00, 0x1fb84,
1490 		0x1fbc0, 0x1fbc8,
1491 		0x1fc08, 0x1fc0c,
1492 		0x1fc40, 0x1fc44,
1493 		0x1fc4c, 0x1fc4c,
1494 		0x1fe84, 0x1fe90,
1495 		0x1fec0, 0x1fec0,
1496 		0x1fee0, 0x1fee0,
1497 		0x1ff00, 0x1ff84,
1498 		0x1ffc0, 0x1ffc8,
1499 		0x30000, 0x30030,
1500 		0x30100, 0x30144,
1501 		0x30190, 0x301a0,
1502 		0x301a8, 0x301b8,
1503 		0x301c4, 0x301c8,
1504 		0x301d0, 0x301d0,
1505 		0x30200, 0x30318,
1506 		0x30400, 0x304b4,
1507 		0x304c0, 0x3052c,
1508 		0x30540, 0x3061c,
1509 		0x30800, 0x30828,
1510 		0x30834, 0x30834,
1511 		0x308c0, 0x30908,
1512 		0x30910, 0x309ac,
1513 		0x30a00, 0x30a14,
1514 		0x30a1c, 0x30a2c,
1515 		0x30a44, 0x30a50,
1516 		0x30a74, 0x30a74,
1517 		0x30a7c, 0x30afc,
1518 		0x30b08, 0x30c24,
1519 		0x30d00, 0x30d00,
1520 		0x30d08, 0x30d14,
1521 		0x30d1c, 0x30d20,
1522 		0x30d3c, 0x30d3c,
1523 		0x30d48, 0x30d50,
1524 		0x31200, 0x3120c,
1525 		0x31220, 0x31220,
1526 		0x31240, 0x31240,
1527 		0x31600, 0x3160c,
1528 		0x31a00, 0x31a1c,
1529 		0x31e00, 0x31e20,
1530 		0x31e38, 0x31e3c,
1531 		0x31e80, 0x31e80,
1532 		0x31e88, 0x31ea8,
1533 		0x31eb0, 0x31eb4,
1534 		0x31ec8, 0x31ed4,
1535 		0x31fb8, 0x32004,
1536 		0x32200, 0x32200,
1537 		0x32208, 0x32240,
1538 		0x32248, 0x32280,
1539 		0x32288, 0x322c0,
1540 		0x322c8, 0x322fc,
1541 		0x32600, 0x32630,
1542 		0x32a00, 0x32abc,
1543 		0x32b00, 0x32b10,
1544 		0x32b20, 0x32b30,
1545 		0x32b40, 0x32b50,
1546 		0x32b60, 0x32b70,
1547 		0x33000, 0x33028,
1548 		0x33030, 0x33048,
1549 		0x33060, 0x33068,
1550 		0x33070, 0x3309c,
1551 		0x330f0, 0x33128,
1552 		0x33130, 0x33148,
1553 		0x33160, 0x33168,
1554 		0x33170, 0x3319c,
1555 		0x331f0, 0x33238,
1556 		0x33240, 0x33240,
1557 		0x33248, 0x33250,
1558 		0x3325c, 0x33264,
1559 		0x33270, 0x332b8,
1560 		0x332c0, 0x332e4,
1561 		0x332f8, 0x33338,
1562 		0x33340, 0x33340,
1563 		0x33348, 0x33350,
1564 		0x3335c, 0x33364,
1565 		0x33370, 0x333b8,
1566 		0x333c0, 0x333e4,
1567 		0x333f8, 0x33428,
1568 		0x33430, 0x33448,
1569 		0x33460, 0x33468,
1570 		0x33470, 0x3349c,
1571 		0x334f0, 0x33528,
1572 		0x33530, 0x33548,
1573 		0x33560, 0x33568,
1574 		0x33570, 0x3359c,
1575 		0x335f0, 0x33638,
1576 		0x33640, 0x33640,
1577 		0x33648, 0x33650,
1578 		0x3365c, 0x33664,
1579 		0x33670, 0x336b8,
1580 		0x336c0, 0x336e4,
1581 		0x336f8, 0x33738,
1582 		0x33740, 0x33740,
1583 		0x33748, 0x33750,
1584 		0x3375c, 0x33764,
1585 		0x33770, 0x337b8,
1586 		0x337c0, 0x337e4,
1587 		0x337f8, 0x337fc,
1588 		0x33814, 0x33814,
1589 		0x3382c, 0x3382c,
1590 		0x33880, 0x3388c,
1591 		0x338e8, 0x338ec,
1592 		0x33900, 0x33928,
1593 		0x33930, 0x33948,
1594 		0x33960, 0x33968,
1595 		0x33970, 0x3399c,
1596 		0x339f0, 0x33a38,
1597 		0x33a40, 0x33a40,
1598 		0x33a48, 0x33a50,
1599 		0x33a5c, 0x33a64,
1600 		0x33a70, 0x33ab8,
1601 		0x33ac0, 0x33ae4,
1602 		0x33af8, 0x33b10,
1603 		0x33b28, 0x33b28,
1604 		0x33b3c, 0x33b50,
1605 		0x33bf0, 0x33c10,
1606 		0x33c28, 0x33c28,
1607 		0x33c3c, 0x33c50,
1608 		0x33cf0, 0x33cfc,
1609 		0x34000, 0x34030,
1610 		0x34100, 0x34144,
1611 		0x34190, 0x341a0,
1612 		0x341a8, 0x341b8,
1613 		0x341c4, 0x341c8,
1614 		0x341d0, 0x341d0,
1615 		0x34200, 0x34318,
1616 		0x34400, 0x344b4,
1617 		0x344c0, 0x3452c,
1618 		0x34540, 0x3461c,
1619 		0x34800, 0x34828,
1620 		0x34834, 0x34834,
1621 		0x348c0, 0x34908,
1622 		0x34910, 0x349ac,
1623 		0x34a00, 0x34a14,
1624 		0x34a1c, 0x34a2c,
1625 		0x34a44, 0x34a50,
1626 		0x34a74, 0x34a74,
1627 		0x34a7c, 0x34afc,
1628 		0x34b08, 0x34c24,
1629 		0x34d00, 0x34d00,
1630 		0x34d08, 0x34d14,
1631 		0x34d1c, 0x34d20,
1632 		0x34d3c, 0x34d3c,
1633 		0x34d48, 0x34d50,
1634 		0x35200, 0x3520c,
1635 		0x35220, 0x35220,
1636 		0x35240, 0x35240,
1637 		0x35600, 0x3560c,
1638 		0x35a00, 0x35a1c,
1639 		0x35e00, 0x35e20,
1640 		0x35e38, 0x35e3c,
1641 		0x35e80, 0x35e80,
1642 		0x35e88, 0x35ea8,
1643 		0x35eb0, 0x35eb4,
1644 		0x35ec8, 0x35ed4,
1645 		0x35fb8, 0x36004,
1646 		0x36200, 0x36200,
1647 		0x36208, 0x36240,
1648 		0x36248, 0x36280,
1649 		0x36288, 0x362c0,
1650 		0x362c8, 0x362fc,
1651 		0x36600, 0x36630,
1652 		0x36a00, 0x36abc,
1653 		0x36b00, 0x36b10,
1654 		0x36b20, 0x36b30,
1655 		0x36b40, 0x36b50,
1656 		0x36b60, 0x36b70,
1657 		0x37000, 0x37028,
1658 		0x37030, 0x37048,
1659 		0x37060, 0x37068,
1660 		0x37070, 0x3709c,
1661 		0x370f0, 0x37128,
1662 		0x37130, 0x37148,
1663 		0x37160, 0x37168,
1664 		0x37170, 0x3719c,
1665 		0x371f0, 0x37238,
1666 		0x37240, 0x37240,
1667 		0x37248, 0x37250,
1668 		0x3725c, 0x37264,
1669 		0x37270, 0x372b8,
1670 		0x372c0, 0x372e4,
1671 		0x372f8, 0x37338,
1672 		0x37340, 0x37340,
1673 		0x37348, 0x37350,
1674 		0x3735c, 0x37364,
1675 		0x37370, 0x373b8,
1676 		0x373c0, 0x373e4,
1677 		0x373f8, 0x37428,
1678 		0x37430, 0x37448,
1679 		0x37460, 0x37468,
1680 		0x37470, 0x3749c,
1681 		0x374f0, 0x37528,
1682 		0x37530, 0x37548,
1683 		0x37560, 0x37568,
1684 		0x37570, 0x3759c,
1685 		0x375f0, 0x37638,
1686 		0x37640, 0x37640,
1687 		0x37648, 0x37650,
1688 		0x3765c, 0x37664,
1689 		0x37670, 0x376b8,
1690 		0x376c0, 0x376e4,
1691 		0x376f8, 0x37738,
1692 		0x37740, 0x37740,
1693 		0x37748, 0x37750,
1694 		0x3775c, 0x37764,
1695 		0x37770, 0x377b8,
1696 		0x377c0, 0x377e4,
1697 		0x377f8, 0x377fc,
1698 		0x37814, 0x37814,
1699 		0x3782c, 0x3782c,
1700 		0x37880, 0x3788c,
1701 		0x378e8, 0x378ec,
1702 		0x37900, 0x37928,
1703 		0x37930, 0x37948,
1704 		0x37960, 0x37968,
1705 		0x37970, 0x3799c,
1706 		0x379f0, 0x37a38,
1707 		0x37a40, 0x37a40,
1708 		0x37a48, 0x37a50,
1709 		0x37a5c, 0x37a64,
1710 		0x37a70, 0x37ab8,
1711 		0x37ac0, 0x37ae4,
1712 		0x37af8, 0x37b10,
1713 		0x37b28, 0x37b28,
1714 		0x37b3c, 0x37b50,
1715 		0x37bf0, 0x37c10,
1716 		0x37c28, 0x37c28,
1717 		0x37c3c, 0x37c50,
1718 		0x37cf0, 0x37cfc,
1719 		0x38000, 0x38030,
1720 		0x38100, 0x38144,
1721 		0x38190, 0x381a0,
1722 		0x381a8, 0x381b8,
1723 		0x381c4, 0x381c8,
1724 		0x381d0, 0x381d0,
1725 		0x38200, 0x38318,
1726 		0x38400, 0x384b4,
1727 		0x384c0, 0x3852c,
1728 		0x38540, 0x3861c,
1729 		0x38800, 0x38828,
1730 		0x38834, 0x38834,
1731 		0x388c0, 0x38908,
1732 		0x38910, 0x389ac,
1733 		0x38a00, 0x38a14,
1734 		0x38a1c, 0x38a2c,
1735 		0x38a44, 0x38a50,
1736 		0x38a74, 0x38a74,
1737 		0x38a7c, 0x38afc,
1738 		0x38b08, 0x38c24,
1739 		0x38d00, 0x38d00,
1740 		0x38d08, 0x38d14,
1741 		0x38d1c, 0x38d20,
1742 		0x38d3c, 0x38d3c,
1743 		0x38d48, 0x38d50,
1744 		0x39200, 0x3920c,
1745 		0x39220, 0x39220,
1746 		0x39240, 0x39240,
1747 		0x39600, 0x3960c,
1748 		0x39a00, 0x39a1c,
1749 		0x39e00, 0x39e20,
1750 		0x39e38, 0x39e3c,
1751 		0x39e80, 0x39e80,
1752 		0x39e88, 0x39ea8,
1753 		0x39eb0, 0x39eb4,
1754 		0x39ec8, 0x39ed4,
1755 		0x39fb8, 0x3a004,
1756 		0x3a200, 0x3a200,
1757 		0x3a208, 0x3a240,
1758 		0x3a248, 0x3a280,
1759 		0x3a288, 0x3a2c0,
1760 		0x3a2c8, 0x3a2fc,
1761 		0x3a600, 0x3a630,
1762 		0x3aa00, 0x3aabc,
1763 		0x3ab00, 0x3ab10,
1764 		0x3ab20, 0x3ab30,
1765 		0x3ab40, 0x3ab50,
1766 		0x3ab60, 0x3ab70,
1767 		0x3b000, 0x3b028,
1768 		0x3b030, 0x3b048,
1769 		0x3b060, 0x3b068,
1770 		0x3b070, 0x3b09c,
1771 		0x3b0f0, 0x3b128,
1772 		0x3b130, 0x3b148,
1773 		0x3b160, 0x3b168,
1774 		0x3b170, 0x3b19c,
1775 		0x3b1f0, 0x3b238,
1776 		0x3b240, 0x3b240,
1777 		0x3b248, 0x3b250,
1778 		0x3b25c, 0x3b264,
1779 		0x3b270, 0x3b2b8,
1780 		0x3b2c0, 0x3b2e4,
1781 		0x3b2f8, 0x3b338,
1782 		0x3b340, 0x3b340,
1783 		0x3b348, 0x3b350,
1784 		0x3b35c, 0x3b364,
1785 		0x3b370, 0x3b3b8,
1786 		0x3b3c0, 0x3b3e4,
1787 		0x3b3f8, 0x3b428,
1788 		0x3b430, 0x3b448,
1789 		0x3b460, 0x3b468,
1790 		0x3b470, 0x3b49c,
1791 		0x3b4f0, 0x3b528,
1792 		0x3b530, 0x3b548,
1793 		0x3b560, 0x3b568,
1794 		0x3b570, 0x3b59c,
1795 		0x3b5f0, 0x3b638,
1796 		0x3b640, 0x3b640,
1797 		0x3b648, 0x3b650,
1798 		0x3b65c, 0x3b664,
1799 		0x3b670, 0x3b6b8,
1800 		0x3b6c0, 0x3b6e4,
1801 		0x3b6f8, 0x3b738,
1802 		0x3b740, 0x3b740,
1803 		0x3b748, 0x3b750,
1804 		0x3b75c, 0x3b764,
1805 		0x3b770, 0x3b7b8,
1806 		0x3b7c0, 0x3b7e4,
1807 		0x3b7f8, 0x3b7fc,
1808 		0x3b814, 0x3b814,
1809 		0x3b82c, 0x3b82c,
1810 		0x3b880, 0x3b88c,
1811 		0x3b8e8, 0x3b8ec,
1812 		0x3b900, 0x3b928,
1813 		0x3b930, 0x3b948,
1814 		0x3b960, 0x3b968,
1815 		0x3b970, 0x3b99c,
1816 		0x3b9f0, 0x3ba38,
1817 		0x3ba40, 0x3ba40,
1818 		0x3ba48, 0x3ba50,
1819 		0x3ba5c, 0x3ba64,
1820 		0x3ba70, 0x3bab8,
1821 		0x3bac0, 0x3bae4,
1822 		0x3baf8, 0x3bb10,
1823 		0x3bb28, 0x3bb28,
1824 		0x3bb3c, 0x3bb50,
1825 		0x3bbf0, 0x3bc10,
1826 		0x3bc28, 0x3bc28,
1827 		0x3bc3c, 0x3bc50,
1828 		0x3bcf0, 0x3bcfc,
1829 		0x3c000, 0x3c030,
1830 		0x3c100, 0x3c144,
1831 		0x3c190, 0x3c1a0,
1832 		0x3c1a8, 0x3c1b8,
1833 		0x3c1c4, 0x3c1c8,
1834 		0x3c1d0, 0x3c1d0,
1835 		0x3c200, 0x3c318,
1836 		0x3c400, 0x3c4b4,
1837 		0x3c4c0, 0x3c52c,
1838 		0x3c540, 0x3c61c,
1839 		0x3c800, 0x3c828,
1840 		0x3c834, 0x3c834,
1841 		0x3c8c0, 0x3c908,
1842 		0x3c910, 0x3c9ac,
1843 		0x3ca00, 0x3ca14,
1844 		0x3ca1c, 0x3ca2c,
1845 		0x3ca44, 0x3ca50,
1846 		0x3ca74, 0x3ca74,
1847 		0x3ca7c, 0x3cafc,
1848 		0x3cb08, 0x3cc24,
1849 		0x3cd00, 0x3cd00,
1850 		0x3cd08, 0x3cd14,
1851 		0x3cd1c, 0x3cd20,
1852 		0x3cd3c, 0x3cd3c,
1853 		0x3cd48, 0x3cd50,
1854 		0x3d200, 0x3d20c,
1855 		0x3d220, 0x3d220,
1856 		0x3d240, 0x3d240,
1857 		0x3d600, 0x3d60c,
1858 		0x3da00, 0x3da1c,
1859 		0x3de00, 0x3de20,
1860 		0x3de38, 0x3de3c,
1861 		0x3de80, 0x3de80,
1862 		0x3de88, 0x3dea8,
1863 		0x3deb0, 0x3deb4,
1864 		0x3dec8, 0x3ded4,
1865 		0x3dfb8, 0x3e004,
1866 		0x3e200, 0x3e200,
1867 		0x3e208, 0x3e240,
1868 		0x3e248, 0x3e280,
1869 		0x3e288, 0x3e2c0,
1870 		0x3e2c8, 0x3e2fc,
1871 		0x3e600, 0x3e630,
1872 		0x3ea00, 0x3eabc,
1873 		0x3eb00, 0x3eb10,
1874 		0x3eb20, 0x3eb30,
1875 		0x3eb40, 0x3eb50,
1876 		0x3eb60, 0x3eb70,
1877 		0x3f000, 0x3f028,
1878 		0x3f030, 0x3f048,
1879 		0x3f060, 0x3f068,
1880 		0x3f070, 0x3f09c,
1881 		0x3f0f0, 0x3f128,
1882 		0x3f130, 0x3f148,
1883 		0x3f160, 0x3f168,
1884 		0x3f170, 0x3f19c,
1885 		0x3f1f0, 0x3f238,
1886 		0x3f240, 0x3f240,
1887 		0x3f248, 0x3f250,
1888 		0x3f25c, 0x3f264,
1889 		0x3f270, 0x3f2b8,
1890 		0x3f2c0, 0x3f2e4,
1891 		0x3f2f8, 0x3f338,
1892 		0x3f340, 0x3f340,
1893 		0x3f348, 0x3f350,
1894 		0x3f35c, 0x3f364,
1895 		0x3f370, 0x3f3b8,
1896 		0x3f3c0, 0x3f3e4,
1897 		0x3f3f8, 0x3f428,
1898 		0x3f430, 0x3f448,
1899 		0x3f460, 0x3f468,
1900 		0x3f470, 0x3f49c,
1901 		0x3f4f0, 0x3f528,
1902 		0x3f530, 0x3f548,
1903 		0x3f560, 0x3f568,
1904 		0x3f570, 0x3f59c,
1905 		0x3f5f0, 0x3f638,
1906 		0x3f640, 0x3f640,
1907 		0x3f648, 0x3f650,
1908 		0x3f65c, 0x3f664,
1909 		0x3f670, 0x3f6b8,
1910 		0x3f6c0, 0x3f6e4,
1911 		0x3f6f8, 0x3f738,
1912 		0x3f740, 0x3f740,
1913 		0x3f748, 0x3f750,
1914 		0x3f75c, 0x3f764,
1915 		0x3f770, 0x3f7b8,
1916 		0x3f7c0, 0x3f7e4,
1917 		0x3f7f8, 0x3f7fc,
1918 		0x3f814, 0x3f814,
1919 		0x3f82c, 0x3f82c,
1920 		0x3f880, 0x3f88c,
1921 		0x3f8e8, 0x3f8ec,
1922 		0x3f900, 0x3f928,
1923 		0x3f930, 0x3f948,
1924 		0x3f960, 0x3f968,
1925 		0x3f970, 0x3f99c,
1926 		0x3f9f0, 0x3fa38,
1927 		0x3fa40, 0x3fa40,
1928 		0x3fa48, 0x3fa50,
1929 		0x3fa5c, 0x3fa64,
1930 		0x3fa70, 0x3fab8,
1931 		0x3fac0, 0x3fae4,
1932 		0x3faf8, 0x3fb10,
1933 		0x3fb28, 0x3fb28,
1934 		0x3fb3c, 0x3fb50,
1935 		0x3fbf0, 0x3fc10,
1936 		0x3fc28, 0x3fc28,
1937 		0x3fc3c, 0x3fc50,
1938 		0x3fcf0, 0x3fcfc,
1939 		0x40000, 0x4000c,
1940 		0x40040, 0x40050,
1941 		0x40060, 0x40068,
1942 		0x4007c, 0x4008c,
1943 		0x40094, 0x400b0,
1944 		0x400c0, 0x40144,
1945 		0x40180, 0x4018c,
1946 		0x40200, 0x40254,
1947 		0x40260, 0x40264,
1948 		0x40270, 0x40288,
1949 		0x40290, 0x40298,
1950 		0x402ac, 0x402c8,
1951 		0x402d0, 0x402e0,
1952 		0x402f0, 0x402f0,
1953 		0x40300, 0x4033c,
1954 		0x403f8, 0x403fc,
1955 		0x41304, 0x413c4,
1956 		0x41400, 0x4140c,
1957 		0x41414, 0x4141c,
1958 		0x41480, 0x414d0,
1959 		0x44000, 0x44054,
1960 		0x4405c, 0x44078,
1961 		0x440c0, 0x44174,
1962 		0x44180, 0x441ac,
1963 		0x441b4, 0x441b8,
1964 		0x441c0, 0x44254,
1965 		0x4425c, 0x44278,
1966 		0x442c0, 0x44374,
1967 		0x44380, 0x443ac,
1968 		0x443b4, 0x443b8,
1969 		0x443c0, 0x44454,
1970 		0x4445c, 0x44478,
1971 		0x444c0, 0x44574,
1972 		0x44580, 0x445ac,
1973 		0x445b4, 0x445b8,
1974 		0x445c0, 0x44654,
1975 		0x4465c, 0x44678,
1976 		0x446c0, 0x44774,
1977 		0x44780, 0x447ac,
1978 		0x447b4, 0x447b8,
1979 		0x447c0, 0x44854,
1980 		0x4485c, 0x44878,
1981 		0x448c0, 0x44974,
1982 		0x44980, 0x449ac,
1983 		0x449b4, 0x449b8,
1984 		0x449c0, 0x449fc,
1985 		0x45000, 0x45004,
1986 		0x45010, 0x45030,
1987 		0x45040, 0x45060,
1988 		0x45068, 0x45068,
1989 		0x45080, 0x45084,
1990 		0x450a0, 0x450b0,
1991 		0x45200, 0x45204,
1992 		0x45210, 0x45230,
1993 		0x45240, 0x45260,
1994 		0x45268, 0x45268,
1995 		0x45280, 0x45284,
1996 		0x452a0, 0x452b0,
1997 		0x460c0, 0x460e4,
1998 		0x47000, 0x4703c,
1999 		0x47044, 0x4708c,
2000 		0x47200, 0x47250,
2001 		0x47400, 0x47408,
2002 		0x47414, 0x47420,
2003 		0x47600, 0x47618,
2004 		0x47800, 0x47814,
2005 		0x48000, 0x4800c,
2006 		0x48040, 0x48050,
2007 		0x48060, 0x48068,
2008 		0x4807c, 0x4808c,
2009 		0x48094, 0x480b0,
2010 		0x480c0, 0x48144,
2011 		0x48180, 0x4818c,
2012 		0x48200, 0x48254,
2013 		0x48260, 0x48264,
2014 		0x48270, 0x48288,
2015 		0x48290, 0x48298,
2016 		0x482ac, 0x482c8,
2017 		0x482d0, 0x482e0,
2018 		0x482f0, 0x482f0,
2019 		0x48300, 0x4833c,
2020 		0x483f8, 0x483fc,
2021 		0x49304, 0x493c4,
2022 		0x49400, 0x4940c,
2023 		0x49414, 0x4941c,
2024 		0x49480, 0x494d0,
2025 		0x4c000, 0x4c054,
2026 		0x4c05c, 0x4c078,
2027 		0x4c0c0, 0x4c174,
2028 		0x4c180, 0x4c1ac,
2029 		0x4c1b4, 0x4c1b8,
2030 		0x4c1c0, 0x4c254,
2031 		0x4c25c, 0x4c278,
2032 		0x4c2c0, 0x4c374,
2033 		0x4c380, 0x4c3ac,
2034 		0x4c3b4, 0x4c3b8,
2035 		0x4c3c0, 0x4c454,
2036 		0x4c45c, 0x4c478,
2037 		0x4c4c0, 0x4c574,
2038 		0x4c580, 0x4c5ac,
2039 		0x4c5b4, 0x4c5b8,
2040 		0x4c5c0, 0x4c654,
2041 		0x4c65c, 0x4c678,
2042 		0x4c6c0, 0x4c774,
2043 		0x4c780, 0x4c7ac,
2044 		0x4c7b4, 0x4c7b8,
2045 		0x4c7c0, 0x4c854,
2046 		0x4c85c, 0x4c878,
2047 		0x4c8c0, 0x4c974,
2048 		0x4c980, 0x4c9ac,
2049 		0x4c9b4, 0x4c9b8,
2050 		0x4c9c0, 0x4c9fc,
2051 		0x4d000, 0x4d004,
2052 		0x4d010, 0x4d030,
2053 		0x4d040, 0x4d060,
2054 		0x4d068, 0x4d068,
2055 		0x4d080, 0x4d084,
2056 		0x4d0a0, 0x4d0b0,
2057 		0x4d200, 0x4d204,
2058 		0x4d210, 0x4d230,
2059 		0x4d240, 0x4d260,
2060 		0x4d268, 0x4d268,
2061 		0x4d280, 0x4d284,
2062 		0x4d2a0, 0x4d2b0,
2063 		0x4e0c0, 0x4e0e4,
2064 		0x4f000, 0x4f03c,
2065 		0x4f044, 0x4f08c,
2066 		0x4f200, 0x4f250,
2067 		0x4f400, 0x4f408,
2068 		0x4f414, 0x4f420,
2069 		0x4f600, 0x4f618,
2070 		0x4f800, 0x4f814,
2071 		0x50000, 0x50084,
2072 		0x50090, 0x500cc,
2073 		0x50400, 0x50400,
2074 		0x50800, 0x50884,
2075 		0x50890, 0x508cc,
2076 		0x50c00, 0x50c00,
2077 		0x51000, 0x5101c,
2078 		0x51300, 0x51308,
2079 	};
2080 
2081 	static const unsigned int t6_reg_ranges[] = {
2082 		0x1008, 0x101c,
2083 		0x1024, 0x10a8,
2084 		0x10b4, 0x10f8,
2085 		0x1100, 0x1114,
2086 		0x111c, 0x112c,
2087 		0x1138, 0x113c,
2088 		0x1144, 0x114c,
2089 		0x1180, 0x1184,
2090 		0x1190, 0x1194,
2091 		0x11a0, 0x11a4,
2092 		0x11b0, 0x11b4,
2093 		0x11fc, 0x123c,
2094 		0x1254, 0x1274,
2095 		0x1280, 0x133c,
2096 		0x1800, 0x18fc,
2097 		0x3000, 0x302c,
2098 		0x3060, 0x30b0,
2099 		0x30b8, 0x30d8,
2100 		0x30e0, 0x30fc,
2101 		0x3140, 0x357c,
2102 		0x35a8, 0x35cc,
2103 		0x35ec, 0x35ec,
2104 		0x3600, 0x5624,
2105 		0x56cc, 0x56ec,
2106 		0x56f4, 0x5720,
2107 		0x5728, 0x575c,
2108 		0x580c, 0x5814,
2109 		0x5890, 0x589c,
2110 		0x58a4, 0x58ac,
2111 		0x58b8, 0x58bc,
2112 		0x5940, 0x595c,
2113 		0x5980, 0x598c,
2114 		0x59b0, 0x59c8,
2115 		0x59d0, 0x59dc,
2116 		0x59fc, 0x5a18,
2117 		0x5a60, 0x5a6c,
2118 		0x5a80, 0x5a8c,
2119 		0x5a94, 0x5a9c,
2120 		0x5b94, 0x5bfc,
2121 		0x5c10, 0x5e48,
2122 		0x5e50, 0x5e94,
2123 		0x5ea0, 0x5eb0,
2124 		0x5ec0, 0x5ec0,
2125 		0x5ec8, 0x5ed0,
2126 		0x5ee0, 0x5ee0,
2127 		0x5ef0, 0x5ef0,
2128 		0x5f00, 0x5f00,
2129 		0x6000, 0x6020,
2130 		0x6028, 0x6040,
2131 		0x6058, 0x609c,
2132 		0x60a8, 0x619c,
2133 		0x7700, 0x7798,
2134 		0x77c0, 0x7880,
2135 		0x78cc, 0x78fc,
2136 		0x7b00, 0x7b58,
2137 		0x7b60, 0x7b84,
2138 		0x7b8c, 0x7c54,
2139 		0x7d00, 0x7d38,
2140 		0x7d40, 0x7d84,
2141 		0x7d8c, 0x7ddc,
2142 		0x7de4, 0x7e04,
2143 		0x7e10, 0x7e1c,
2144 		0x7e24, 0x7e38,
2145 		0x7e40, 0x7e44,
2146 		0x7e4c, 0x7e78,
2147 		0x7e80, 0x7edc,
2148 		0x7ee8, 0x7efc,
2149 		0x8dc0, 0x8de4,
2150 		0x8df8, 0x8e04,
2151 		0x8e10, 0x8e84,
2152 		0x8ea0, 0x8f88,
2153 		0x8fb8, 0x9058,
2154 		0x9060, 0x9060,
2155 		0x9068, 0x90f8,
2156 		0x9100, 0x9124,
2157 		0x9400, 0x9470,
2158 		0x9600, 0x9600,
2159 		0x9608, 0x9638,
2160 		0x9640, 0x9704,
2161 		0x9710, 0x971c,
2162 		0x9800, 0x9808,
2163 		0x9810, 0x9864,
2164 		0x9c00, 0x9c6c,
2165 		0x9c80, 0x9cec,
2166 		0x9d00, 0x9d6c,
2167 		0x9d80, 0x9dec,
2168 		0x9e00, 0x9e6c,
2169 		0x9e80, 0x9eec,
2170 		0x9f00, 0x9f6c,
2171 		0x9f80, 0xa020,
2172 		0xd000, 0xd03c,
2173 		0xd100, 0xd118,
2174 		0xd200, 0xd214,
2175 		0xd220, 0xd234,
2176 		0xd240, 0xd254,
2177 		0xd260, 0xd274,
2178 		0xd280, 0xd294,
2179 		0xd2a0, 0xd2b4,
2180 		0xd2c0, 0xd2d4,
2181 		0xd2e0, 0xd2f4,
2182 		0xd300, 0xd31c,
2183 		0xdfc0, 0xdfe0,
2184 		0xe000, 0xf008,
2185 		0xf010, 0xf018,
2186 		0xf020, 0xf028,
2187 		0x11000, 0x11014,
2188 		0x11048, 0x1106c,
2189 		0x11074, 0x11088,
2190 		0x11098, 0x11120,
2191 		0x1112c, 0x1117c,
2192 		0x11190, 0x112e0,
2193 		0x11300, 0x1130c,
2194 		0x12000, 0x1206c,
2195 		0x19040, 0x1906c,
2196 		0x19078, 0x19080,
2197 		0x1908c, 0x190e8,
2198 		0x190f0, 0x190f8,
2199 		0x19100, 0x19110,
2200 		0x19120, 0x19124,
2201 		0x19150, 0x19194,
2202 		0x1919c, 0x191b0,
2203 		0x191d0, 0x191e8,
2204 		0x19238, 0x19290,
2205 		0x192a4, 0x192b0,
2206 		0x192bc, 0x192bc,
2207 		0x19348, 0x1934c,
2208 		0x193f8, 0x19418,
2209 		0x19420, 0x19428,
2210 		0x19430, 0x19444,
2211 		0x1944c, 0x1946c,
2212 		0x19474, 0x19474,
2213 		0x19490, 0x194cc,
2214 		0x194f0, 0x194f8,
2215 		0x19c00, 0x19c48,
2216 		0x19c50, 0x19c80,
2217 		0x19c94, 0x19c98,
2218 		0x19ca0, 0x19cbc,
2219 		0x19ce4, 0x19ce4,
2220 		0x19cf0, 0x19cf8,
2221 		0x19d00, 0x19d28,
2222 		0x19d50, 0x19d78,
2223 		0x19d94, 0x19d98,
2224 		0x19da0, 0x19dc8,
2225 		0x19df0, 0x19e10,
2226 		0x19e50, 0x19e6c,
2227 		0x19ea0, 0x19ebc,
2228 		0x19ec4, 0x19ef4,
2229 		0x19f04, 0x19f2c,
2230 		0x19f34, 0x19f34,
2231 		0x19f40, 0x19f50,
2232 		0x19f90, 0x19fac,
2233 		0x19fc4, 0x19fc8,
2234 		0x19fd0, 0x19fe4,
2235 		0x1a000, 0x1a004,
2236 		0x1a010, 0x1a06c,
2237 		0x1a0b0, 0x1a0e4,
2238 		0x1a0ec, 0x1a0f8,
2239 		0x1a100, 0x1a108,
2240 		0x1a114, 0x1a130,
2241 		0x1a138, 0x1a1c4,
2242 		0x1a1fc, 0x1a1fc,
2243 		0x1e008, 0x1e00c,
2244 		0x1e040, 0x1e044,
2245 		0x1e04c, 0x1e04c,
2246 		0x1e284, 0x1e290,
2247 		0x1e2c0, 0x1e2c0,
2248 		0x1e2e0, 0x1e2e0,
2249 		0x1e300, 0x1e384,
2250 		0x1e3c0, 0x1e3c8,
2251 		0x1e408, 0x1e40c,
2252 		0x1e440, 0x1e444,
2253 		0x1e44c, 0x1e44c,
2254 		0x1e684, 0x1e690,
2255 		0x1e6c0, 0x1e6c0,
2256 		0x1e6e0, 0x1e6e0,
2257 		0x1e700, 0x1e784,
2258 		0x1e7c0, 0x1e7c8,
2259 		0x1e808, 0x1e80c,
2260 		0x1e840, 0x1e844,
2261 		0x1e84c, 0x1e84c,
2262 		0x1ea84, 0x1ea90,
2263 		0x1eac0, 0x1eac0,
2264 		0x1eae0, 0x1eae0,
2265 		0x1eb00, 0x1eb84,
2266 		0x1ebc0, 0x1ebc8,
2267 		0x1ec08, 0x1ec0c,
2268 		0x1ec40, 0x1ec44,
2269 		0x1ec4c, 0x1ec4c,
2270 		0x1ee84, 0x1ee90,
2271 		0x1eec0, 0x1eec0,
2272 		0x1eee0, 0x1eee0,
2273 		0x1ef00, 0x1ef84,
2274 		0x1efc0, 0x1efc8,
2275 		0x1f008, 0x1f00c,
2276 		0x1f040, 0x1f044,
2277 		0x1f04c, 0x1f04c,
2278 		0x1f284, 0x1f290,
2279 		0x1f2c0, 0x1f2c0,
2280 		0x1f2e0, 0x1f2e0,
2281 		0x1f300, 0x1f384,
2282 		0x1f3c0, 0x1f3c8,
2283 		0x1f408, 0x1f40c,
2284 		0x1f440, 0x1f444,
2285 		0x1f44c, 0x1f44c,
2286 		0x1f684, 0x1f690,
2287 		0x1f6c0, 0x1f6c0,
2288 		0x1f6e0, 0x1f6e0,
2289 		0x1f700, 0x1f784,
2290 		0x1f7c0, 0x1f7c8,
2291 		0x1f808, 0x1f80c,
2292 		0x1f840, 0x1f844,
2293 		0x1f84c, 0x1f84c,
2294 		0x1fa84, 0x1fa90,
2295 		0x1fac0, 0x1fac0,
2296 		0x1fae0, 0x1fae0,
2297 		0x1fb00, 0x1fb84,
2298 		0x1fbc0, 0x1fbc8,
2299 		0x1fc08, 0x1fc0c,
2300 		0x1fc40, 0x1fc44,
2301 		0x1fc4c, 0x1fc4c,
2302 		0x1fe84, 0x1fe90,
2303 		0x1fec0, 0x1fec0,
2304 		0x1fee0, 0x1fee0,
2305 		0x1ff00, 0x1ff84,
2306 		0x1ffc0, 0x1ffc8,
2307 		0x30000, 0x30030,
2308 		0x30100, 0x30168,
2309 		0x30190, 0x301a0,
2310 		0x301a8, 0x301b8,
2311 		0x301c4, 0x301c8,
2312 		0x301d0, 0x301d0,
2313 		0x30200, 0x30320,
2314 		0x30400, 0x304b4,
2315 		0x304c0, 0x3052c,
2316 		0x30540, 0x3061c,
2317 		0x30800, 0x308a0,
2318 		0x308c0, 0x30908,
2319 		0x30910, 0x309b8,
2320 		0x30a00, 0x30a04,
2321 		0x30a0c, 0x30a14,
2322 		0x30a1c, 0x30a2c,
2323 		0x30a44, 0x30a50,
2324 		0x30a74, 0x30a74,
2325 		0x30a7c, 0x30afc,
2326 		0x30b08, 0x30c24,
2327 		0x30d00, 0x30d14,
2328 		0x30d1c, 0x30d3c,
2329 		0x30d44, 0x30d4c,
2330 		0x30d54, 0x30d74,
2331 		0x30d7c, 0x30d7c,
2332 		0x30de0, 0x30de0,
2333 		0x30e00, 0x30ed4,
2334 		0x30f00, 0x30fa4,
2335 		0x30fc0, 0x30fc4,
2336 		0x31000, 0x31004,
2337 		0x31080, 0x310fc,
2338 		0x31208, 0x31220,
2339 		0x3123c, 0x31254,
2340 		0x31300, 0x31300,
2341 		0x31308, 0x3131c,
2342 		0x31338, 0x3133c,
2343 		0x31380, 0x31380,
2344 		0x31388, 0x313a8,
2345 		0x313b4, 0x313b4,
2346 		0x31400, 0x31420,
2347 		0x31438, 0x3143c,
2348 		0x31480, 0x31480,
2349 		0x314a8, 0x314a8,
2350 		0x314b0, 0x314b4,
2351 		0x314c8, 0x314d4,
2352 		0x31a40, 0x31a4c,
2353 		0x31af0, 0x31b20,
2354 		0x31b38, 0x31b3c,
2355 		0x31b80, 0x31b80,
2356 		0x31ba8, 0x31ba8,
2357 		0x31bb0, 0x31bb4,
2358 		0x31bc8, 0x31bd4,
2359 		0x32140, 0x3218c,
2360 		0x321f0, 0x321f4,
2361 		0x32200, 0x32200,
2362 		0x32218, 0x32218,
2363 		0x32400, 0x32400,
2364 		0x32408, 0x3241c,
2365 		0x32618, 0x32620,
2366 		0x32664, 0x32664,
2367 		0x326a8, 0x326a8,
2368 		0x326ec, 0x326ec,
2369 		0x32a00, 0x32abc,
2370 		0x32b00, 0x32b18,
2371 		0x32b20, 0x32b38,
2372 		0x32b40, 0x32b58,
2373 		0x32b60, 0x32b78,
2374 		0x32c00, 0x32c00,
2375 		0x32c08, 0x32c3c,
2376 		0x33000, 0x3302c,
2377 		0x33034, 0x33050,
2378 		0x33058, 0x33058,
2379 		0x33060, 0x3308c,
2380 		0x3309c, 0x330ac,
2381 		0x330c0, 0x330c0,
2382 		0x330c8, 0x330d0,
2383 		0x330d8, 0x330e0,
2384 		0x330ec, 0x3312c,
2385 		0x33134, 0x33150,
2386 		0x33158, 0x33158,
2387 		0x33160, 0x3318c,
2388 		0x3319c, 0x331ac,
2389 		0x331c0, 0x331c0,
2390 		0x331c8, 0x331d0,
2391 		0x331d8, 0x331e0,
2392 		0x331ec, 0x33290,
2393 		0x33298, 0x332c4,
2394 		0x332e4, 0x33390,
2395 		0x33398, 0x333c4,
2396 		0x333e4, 0x3342c,
2397 		0x33434, 0x33450,
2398 		0x33458, 0x33458,
2399 		0x33460, 0x3348c,
2400 		0x3349c, 0x334ac,
2401 		0x334c0, 0x334c0,
2402 		0x334c8, 0x334d0,
2403 		0x334d8, 0x334e0,
2404 		0x334ec, 0x3352c,
2405 		0x33534, 0x33550,
2406 		0x33558, 0x33558,
2407 		0x33560, 0x3358c,
2408 		0x3359c, 0x335ac,
2409 		0x335c0, 0x335c0,
2410 		0x335c8, 0x335d0,
2411 		0x335d8, 0x335e0,
2412 		0x335ec, 0x33690,
2413 		0x33698, 0x336c4,
2414 		0x336e4, 0x33790,
2415 		0x33798, 0x337c4,
2416 		0x337e4, 0x337fc,
2417 		0x33814, 0x33814,
2418 		0x33854, 0x33868,
2419 		0x33880, 0x3388c,
2420 		0x338c0, 0x338d0,
2421 		0x338e8, 0x338ec,
2422 		0x33900, 0x3392c,
2423 		0x33934, 0x33950,
2424 		0x33958, 0x33958,
2425 		0x33960, 0x3398c,
2426 		0x3399c, 0x339ac,
2427 		0x339c0, 0x339c0,
2428 		0x339c8, 0x339d0,
2429 		0x339d8, 0x339e0,
2430 		0x339ec, 0x33a90,
2431 		0x33a98, 0x33ac4,
2432 		0x33ae4, 0x33b10,
2433 		0x33b24, 0x33b28,
2434 		0x33b38, 0x33b50,
2435 		0x33bf0, 0x33c10,
2436 		0x33c24, 0x33c28,
2437 		0x33c38, 0x33c50,
2438 		0x33cf0, 0x33cfc,
2439 		0x34000, 0x34030,
2440 		0x34100, 0x34168,
2441 		0x34190, 0x341a0,
2442 		0x341a8, 0x341b8,
2443 		0x341c4, 0x341c8,
2444 		0x341d0, 0x341d0,
2445 		0x34200, 0x34320,
2446 		0x34400, 0x344b4,
2447 		0x344c0, 0x3452c,
2448 		0x34540, 0x3461c,
2449 		0x34800, 0x348a0,
2450 		0x348c0, 0x34908,
2451 		0x34910, 0x349b8,
2452 		0x34a00, 0x34a04,
2453 		0x34a0c, 0x34a14,
2454 		0x34a1c, 0x34a2c,
2455 		0x34a44, 0x34a50,
2456 		0x34a74, 0x34a74,
2457 		0x34a7c, 0x34afc,
2458 		0x34b08, 0x34c24,
2459 		0x34d00, 0x34d14,
2460 		0x34d1c, 0x34d3c,
2461 		0x34d44, 0x34d4c,
2462 		0x34d54, 0x34d74,
2463 		0x34d7c, 0x34d7c,
2464 		0x34de0, 0x34de0,
2465 		0x34e00, 0x34ed4,
2466 		0x34f00, 0x34fa4,
2467 		0x34fc0, 0x34fc4,
2468 		0x35000, 0x35004,
2469 		0x35080, 0x350fc,
2470 		0x35208, 0x35220,
2471 		0x3523c, 0x35254,
2472 		0x35300, 0x35300,
2473 		0x35308, 0x3531c,
2474 		0x35338, 0x3533c,
2475 		0x35380, 0x35380,
2476 		0x35388, 0x353a8,
2477 		0x353b4, 0x353b4,
2478 		0x35400, 0x35420,
2479 		0x35438, 0x3543c,
2480 		0x35480, 0x35480,
2481 		0x354a8, 0x354a8,
2482 		0x354b0, 0x354b4,
2483 		0x354c8, 0x354d4,
2484 		0x35a40, 0x35a4c,
2485 		0x35af0, 0x35b20,
2486 		0x35b38, 0x35b3c,
2487 		0x35b80, 0x35b80,
2488 		0x35ba8, 0x35ba8,
2489 		0x35bb0, 0x35bb4,
2490 		0x35bc8, 0x35bd4,
2491 		0x36140, 0x3618c,
2492 		0x361f0, 0x361f4,
2493 		0x36200, 0x36200,
2494 		0x36218, 0x36218,
2495 		0x36400, 0x36400,
2496 		0x36408, 0x3641c,
2497 		0x36618, 0x36620,
2498 		0x36664, 0x36664,
2499 		0x366a8, 0x366a8,
2500 		0x366ec, 0x366ec,
2501 		0x36a00, 0x36abc,
2502 		0x36b00, 0x36b18,
2503 		0x36b20, 0x36b38,
2504 		0x36b40, 0x36b58,
2505 		0x36b60, 0x36b78,
2506 		0x36c00, 0x36c00,
2507 		0x36c08, 0x36c3c,
2508 		0x37000, 0x3702c,
2509 		0x37034, 0x37050,
2510 		0x37058, 0x37058,
2511 		0x37060, 0x3708c,
2512 		0x3709c, 0x370ac,
2513 		0x370c0, 0x370c0,
2514 		0x370c8, 0x370d0,
2515 		0x370d8, 0x370e0,
2516 		0x370ec, 0x3712c,
2517 		0x37134, 0x37150,
2518 		0x37158, 0x37158,
2519 		0x37160, 0x3718c,
2520 		0x3719c, 0x371ac,
2521 		0x371c0, 0x371c0,
2522 		0x371c8, 0x371d0,
2523 		0x371d8, 0x371e0,
2524 		0x371ec, 0x37290,
2525 		0x37298, 0x372c4,
2526 		0x372e4, 0x37390,
2527 		0x37398, 0x373c4,
2528 		0x373e4, 0x3742c,
2529 		0x37434, 0x37450,
2530 		0x37458, 0x37458,
2531 		0x37460, 0x3748c,
2532 		0x3749c, 0x374ac,
2533 		0x374c0, 0x374c0,
2534 		0x374c8, 0x374d0,
2535 		0x374d8, 0x374e0,
2536 		0x374ec, 0x3752c,
2537 		0x37534, 0x37550,
2538 		0x37558, 0x37558,
2539 		0x37560, 0x3758c,
2540 		0x3759c, 0x375ac,
2541 		0x375c0, 0x375c0,
2542 		0x375c8, 0x375d0,
2543 		0x375d8, 0x375e0,
2544 		0x375ec, 0x37690,
2545 		0x37698, 0x376c4,
2546 		0x376e4, 0x37790,
2547 		0x37798, 0x377c4,
2548 		0x377e4, 0x377fc,
2549 		0x37814, 0x37814,
2550 		0x37854, 0x37868,
2551 		0x37880, 0x3788c,
2552 		0x378c0, 0x378d0,
2553 		0x378e8, 0x378ec,
2554 		0x37900, 0x3792c,
2555 		0x37934, 0x37950,
2556 		0x37958, 0x37958,
2557 		0x37960, 0x3798c,
2558 		0x3799c, 0x379ac,
2559 		0x379c0, 0x379c0,
2560 		0x379c8, 0x379d0,
2561 		0x379d8, 0x379e0,
2562 		0x379ec, 0x37a90,
2563 		0x37a98, 0x37ac4,
2564 		0x37ae4, 0x37b10,
2565 		0x37b24, 0x37b28,
2566 		0x37b38, 0x37b50,
2567 		0x37bf0, 0x37c10,
2568 		0x37c24, 0x37c28,
2569 		0x37c38, 0x37c50,
2570 		0x37cf0, 0x37cfc,
2571 		0x40040, 0x40040,
2572 		0x40080, 0x40084,
2573 		0x40100, 0x40100,
2574 		0x40140, 0x401bc,
2575 		0x40200, 0x40214,
2576 		0x40228, 0x40228,
2577 		0x40240, 0x40258,
2578 		0x40280, 0x40280,
2579 		0x40304, 0x40304,
2580 		0x40330, 0x4033c,
2581 		0x41304, 0x413c8,
2582 		0x413d0, 0x413dc,
2583 		0x413f0, 0x413f0,
2584 		0x41400, 0x4140c,
2585 		0x41414, 0x4141c,
2586 		0x41480, 0x414d0,
2587 		0x44000, 0x4407c,
2588 		0x440c0, 0x441ac,
2589 		0x441b4, 0x4427c,
2590 		0x442c0, 0x443ac,
2591 		0x443b4, 0x4447c,
2592 		0x444c0, 0x445ac,
2593 		0x445b4, 0x4467c,
2594 		0x446c0, 0x447ac,
2595 		0x447b4, 0x4487c,
2596 		0x448c0, 0x449ac,
2597 		0x449b4, 0x44a7c,
2598 		0x44ac0, 0x44bac,
2599 		0x44bb4, 0x44c7c,
2600 		0x44cc0, 0x44dac,
2601 		0x44db4, 0x44e7c,
2602 		0x44ec0, 0x44fac,
2603 		0x44fb4, 0x4507c,
2604 		0x450c0, 0x451ac,
2605 		0x451b4, 0x451fc,
2606 		0x45800, 0x45804,
2607 		0x45810, 0x45830,
2608 		0x45840, 0x45860,
2609 		0x45868, 0x45868,
2610 		0x45880, 0x45884,
2611 		0x458a0, 0x458b0,
2612 		0x45a00, 0x45a04,
2613 		0x45a10, 0x45a30,
2614 		0x45a40, 0x45a60,
2615 		0x45a68, 0x45a68,
2616 		0x45a80, 0x45a84,
2617 		0x45aa0, 0x45ab0,
2618 		0x460c0, 0x460e4,
2619 		0x47000, 0x4703c,
2620 		0x47044, 0x4708c,
2621 		0x47200, 0x47250,
2622 		0x47400, 0x47408,
2623 		0x47414, 0x47420,
2624 		0x47600, 0x47618,
2625 		0x47800, 0x47814,
2626 		0x47820, 0x4782c,
2627 		0x50000, 0x50084,
2628 		0x50090, 0x500cc,
2629 		0x50300, 0x50384,
2630 		0x50400, 0x50400,
2631 		0x50800, 0x50884,
2632 		0x50890, 0x508cc,
2633 		0x50b00, 0x50b84,
2634 		0x50c00, 0x50c00,
2635 		0x51000, 0x51020,
2636 		0x51028, 0x510b0,
2637 		0x51300, 0x51324,
2638 	};
2639 
2640 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2641 	const unsigned int *reg_ranges;
2642 	int reg_ranges_size, range;
2643 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2644 
2645 	/* Select the right set of register ranges to dump depending on the
2646 	 * adapter chip type.
2647 	 */
2648 	switch (chip_version) {
2649 	case CHELSIO_T4:
2650 		reg_ranges = t4_reg_ranges;
2651 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2652 		break;
2653 
2654 	case CHELSIO_T5:
2655 		reg_ranges = t5_reg_ranges;
2656 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2657 		break;
2658 
2659 	case CHELSIO_T6:
2660 		reg_ranges = t6_reg_ranges;
2661 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2662 		break;
2663 
2664 	default:
2665 		dev_err(adap->pdev_dev,
2666 			"Unsupported chip version %d\n", chip_version);
2667 		return;
2668 	}
2669 
2670 	/* Clear the register buffer and insert the appropriate register
2671 	 * values selected by the above register ranges.
2672 	 */
2673 	memset(buf, 0, buf_size);
2674 	for (range = 0; range < reg_ranges_size; range += 2) {
2675 		unsigned int reg = reg_ranges[range];
2676 		unsigned int last_reg = reg_ranges[range + 1];
2677 		u32 *bufp = (u32 *)((char *)buf + reg);
2678 
2679 		/* Iterate across the register range filling in the register
2680 		 * buffer but don't write past the end of the register buffer.
2681 		 */
2682 		while (reg <= last_reg && bufp < buf_end) {
2683 			*bufp++ = t4_read_reg(adap, reg);
2684 			reg += sizeof(u32);
2685 		}
2686 	}
2687 }
2688 
2689 #define EEPROM_STAT_ADDR   0x7bfc
2690 #define VPD_BASE           0x400
2691 #define VPD_BASE_OLD       0
2692 #define VPD_LEN            1024
2693 
2694 /**
2695  * t4_eeprom_ptov - translate a physical EEPROM address to virtual
2696  * @phys_addr: the physical EEPROM address
2697  * @fn: the PCI function number
2698  * @sz: size of function-specific area
2699  *
2700  * Translate a physical EEPROM address to virtual.  The first 1K is
2701  * accessed through virtual addresses starting at 31K, the rest is
2702  * accessed through virtual addresses starting at 0.
2703  *
2704  * The mapping is as follows:
2705  * [0..1K) -> [31K..32K)
2706  * [1K..1K+A) -> [31K-A..31K)
2707  * [1K+A..ES) -> [0..ES-A-1K)
2708  *
2709  * where A = @fn * @sz, and ES = EEPROM size.
2710  */
2711 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2712 {
2713 	fn *= sz;
2714 	if (phys_addr < 1024)
2715 		return phys_addr + (31 << 10);
2716 	if (phys_addr < 1024 + fn)
2717 		return 31744 - fn + phys_addr - 1024;
2718 	if (phys_addr < EEPROMSIZE)
2719 		return phys_addr - 1024 - fn;
2720 	return -EINVAL;
2721 }
2722 
2723 /**
2724  *	t4_seeprom_wp - enable/disable EEPROM write protection
2725  *	@adapter: the adapter
2726  *	@enable: whether to enable or disable write protection
2727  *
2728  *	Enables or disables write protection on the serial EEPROM.
2729  */
2730 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2731 {
2732 	unsigned int v = enable ? 0xc : 0;
2733 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2734 	return ret < 0 ? ret : 0;
2735 }
2736 
2737 /**
2738  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2739  *	@adapter: adapter to read
2740  *	@p: where to store the parameters
2741  *
2742  *	Reads card parameters stored in VPD EEPROM.
2743  */
2744 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2745 {
2746 	unsigned int id_len, pn_len, sn_len, na_len;
2747 	int id, sn, pn, na, addr, ret = 0;
2748 	u8 *vpd, base_val = 0;
2749 
2750 	vpd = vmalloc(VPD_LEN);
2751 	if (!vpd)
2752 		return -ENOMEM;
2753 
2754 	/* Card information normally starts at VPD_BASE but early cards had
2755 	 * it at 0.
2756 	 */
2757 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, 1, &base_val);
2758 	if (ret < 0)
2759 		goto out;
2760 
2761 	addr = base_val == PCI_VPD_LRDT_ID_STRING ? VPD_BASE : VPD_BASE_OLD;
2762 
2763 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2764 	if (ret < 0)
2765 		goto out;
2766 
2767 	ret = pci_vpd_find_id_string(vpd, VPD_LEN, &id_len);
2768 	if (ret < 0)
2769 		goto out;
2770 	id = ret;
2771 
2772 	ret = pci_vpd_check_csum(vpd, VPD_LEN);
2773 	if (ret) {
2774 		dev_err(adapter->pdev_dev, "VPD checksum incorrect or missing\n");
2775 		ret = -EINVAL;
2776 		goto out;
2777 	}
2778 
2779 	ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN,
2780 					   PCI_VPD_RO_KEYWORD_SERIALNO, &sn_len);
2781 	if (ret < 0)
2782 		goto out;
2783 	sn = ret;
2784 
2785 	ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN,
2786 					   PCI_VPD_RO_KEYWORD_PARTNO, &pn_len);
2787 	if (ret < 0)
2788 		goto out;
2789 	pn = ret;
2790 
2791 	ret = pci_vpd_find_ro_info_keyword(vpd, VPD_LEN, "NA", &na_len);
2792 	if (ret < 0)
2793 		goto out;
2794 	na = ret;
2795 
2796 	memcpy(p->id, vpd + id, min_t(unsigned int, id_len, ID_LEN));
2797 	strim(p->id);
2798 	memcpy(p->sn, vpd + sn, min_t(unsigned int, sn_len, SERNUM_LEN));
2799 	strim(p->sn);
2800 	memcpy(p->pn, vpd + pn, min_t(unsigned int, pn_len, PN_LEN));
2801 	strim(p->pn);
2802 	memcpy(p->na, vpd + na, min_t(unsigned int, na_len, MACADDR_LEN));
2803 	strim(p->na);
2804 
2805 out:
2806 	vfree(vpd);
2807 	if (ret < 0) {
2808 		dev_err(adapter->pdev_dev, "error reading VPD\n");
2809 		return ret;
2810 	}
2811 
2812 	return 0;
2813 }
2814 
2815 /**
2816  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2817  *	@adapter: adapter to read
2818  *	@p: where to store the parameters
2819  *
2820  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2821  *	Clock.  This can only be called after a connection to the firmware
2822  *	is established.
2823  */
2824 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2825 {
2826 	u32 cclk_param, cclk_val;
2827 	int ret;
2828 
2829 	/* Grab the raw VPD parameters.
2830 	 */
2831 	ret = t4_get_raw_vpd_params(adapter, p);
2832 	if (ret)
2833 		return ret;
2834 
2835 	/* Ask firmware for the Core Clock since it knows how to translate the
2836 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2837 	 */
2838 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2839 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2840 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2841 			      1, &cclk_param, &cclk_val);
2842 
2843 	if (ret)
2844 		return ret;
2845 	p->cclk = cclk_val;
2846 
2847 	return 0;
2848 }
2849 
2850 /**
2851  *	t4_get_pfres - retrieve VF resource limits
2852  *	@adapter: the adapter
2853  *
2854  *	Retrieves configured resource limits and capabilities for a physical
2855  *	function.  The results are stored in @adapter->pfres.
2856  */
2857 int t4_get_pfres(struct adapter *adapter)
2858 {
2859 	struct pf_resources *pfres = &adapter->params.pfres;
2860 	struct fw_pfvf_cmd cmd, rpl;
2861 	int v;
2862 	u32 word;
2863 
2864 	/* Execute PFVF Read command to get VF resource limits; bail out early
2865 	 * with error on command failure.
2866 	 */
2867 	memset(&cmd, 0, sizeof(cmd));
2868 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
2869 				    FW_CMD_REQUEST_F |
2870 				    FW_CMD_READ_F |
2871 				    FW_PFVF_CMD_PFN_V(adapter->pf) |
2872 				    FW_PFVF_CMD_VFN_V(0));
2873 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2874 	v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2875 	if (v != FW_SUCCESS)
2876 		return v;
2877 
2878 	/* Extract PF resource limits and return success.
2879 	 */
2880 	word = be32_to_cpu(rpl.niqflint_niq);
2881 	pfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
2882 	pfres->niq = FW_PFVF_CMD_NIQ_G(word);
2883 
2884 	word = be32_to_cpu(rpl.type_to_neq);
2885 	pfres->neq = FW_PFVF_CMD_NEQ_G(word);
2886 	pfres->pmask = FW_PFVF_CMD_PMASK_G(word);
2887 
2888 	word = be32_to_cpu(rpl.tc_to_nexactf);
2889 	pfres->tc = FW_PFVF_CMD_TC_G(word);
2890 	pfres->nvi = FW_PFVF_CMD_NVI_G(word);
2891 	pfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
2892 
2893 	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
2894 	pfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
2895 	pfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
2896 	pfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
2897 
2898 	return 0;
2899 }
2900 
2901 /* serial flash and firmware constants */
2902 enum {
2903 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2904 
2905 	/* flash command opcodes */
2906 	SF_PROG_PAGE    = 2,          /* program page */
2907 	SF_WR_DISABLE   = 4,          /* disable writes */
2908 	SF_RD_STATUS    = 5,          /* read status register */
2909 	SF_WR_ENABLE    = 6,          /* enable writes */
2910 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2911 	SF_RD_ID        = 0x9f,       /* read ID */
2912 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2913 };
2914 
2915 /**
2916  *	sf1_read - read data from the serial flash
2917  *	@adapter: the adapter
2918  *	@byte_cnt: number of bytes to read
2919  *	@cont: whether another operation will be chained
2920  *	@lock: whether to lock SF for PL access only
2921  *	@valp: where to store the read data
2922  *
2923  *	Reads up to 4 bytes of data from the serial flash.  The location of
2924  *	the read needs to be specified prior to calling this by issuing the
2925  *	appropriate commands to the serial flash.
2926  */
2927 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2928 		    int lock, u32 *valp)
2929 {
2930 	int ret;
2931 
2932 	if (!byte_cnt || byte_cnt > 4)
2933 		return -EINVAL;
2934 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2935 		return -EBUSY;
2936 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2937 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2938 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2939 	if (!ret)
2940 		*valp = t4_read_reg(adapter, SF_DATA_A);
2941 	return ret;
2942 }
2943 
2944 /**
2945  *	sf1_write - write data to the serial flash
2946  *	@adapter: the adapter
2947  *	@byte_cnt: number of bytes to write
2948  *	@cont: whether another operation will be chained
2949  *	@lock: whether to lock SF for PL access only
2950  *	@val: value to write
2951  *
2952  *	Writes up to 4 bytes of data to the serial flash.  The location of
2953  *	the write needs to be specified prior to calling this by issuing the
2954  *	appropriate commands to the serial flash.
2955  */
2956 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2957 		     int lock, u32 val)
2958 {
2959 	if (!byte_cnt || byte_cnt > 4)
2960 		return -EINVAL;
2961 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2962 		return -EBUSY;
2963 	t4_write_reg(adapter, SF_DATA_A, val);
2964 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2965 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2966 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2967 }
2968 
2969 /**
2970  *	flash_wait_op - wait for a flash operation to complete
2971  *	@adapter: the adapter
2972  *	@attempts: max number of polls of the status register
2973  *	@delay: delay between polls in ms
2974  *
2975  *	Wait for a flash operation to complete by polling the status register.
2976  */
2977 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2978 {
2979 	int ret;
2980 	u32 status;
2981 
2982 	while (1) {
2983 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2984 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2985 			return ret;
2986 		if (!(status & 1))
2987 			return 0;
2988 		if (--attempts == 0)
2989 			return -EAGAIN;
2990 		if (delay)
2991 			msleep(delay);
2992 	}
2993 }
2994 
2995 /**
2996  *	t4_read_flash - read words from serial flash
2997  *	@adapter: the adapter
2998  *	@addr: the start address for the read
2999  *	@nwords: how many 32-bit words to read
3000  *	@data: where to store the read data
3001  *	@byte_oriented: whether to store data as bytes or as words
3002  *
3003  *	Read the specified number of 32-bit words from the serial flash.
3004  *	If @byte_oriented is set the read data is stored as a byte array
3005  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3006  *	natural endianness.
3007  */
3008 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3009 		  unsigned int nwords, u32 *data, int byte_oriented)
3010 {
3011 	int ret;
3012 
3013 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3014 		return -EINVAL;
3015 
3016 	addr = swab32(addr) | SF_RD_DATA_FAST;
3017 
3018 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3019 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3020 		return ret;
3021 
3022 	for ( ; nwords; nwords--, data++) {
3023 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3024 		if (nwords == 1)
3025 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3026 		if (ret)
3027 			return ret;
3028 		if (byte_oriented)
3029 			*data = (__force __u32)(cpu_to_be32(*data));
3030 	}
3031 	return 0;
3032 }
3033 
3034 /**
3035  *	t4_write_flash - write up to a page of data to the serial flash
3036  *	@adapter: the adapter
3037  *	@addr: the start address to write
3038  *	@n: length of data to write in bytes
3039  *	@data: the data to write
3040  *	@byte_oriented: whether to store data as bytes or as words
3041  *
3042  *	Writes up to a page of data (256 bytes) to the serial flash starting
3043  *	at the given address.  All the data must be written to the same page.
3044  *	If @byte_oriented is set the write data is stored as byte stream
3045  *	(i.e. matches what on disk), otherwise in big-endian.
3046  */
3047 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
3048 			  unsigned int n, const u8 *data, bool byte_oriented)
3049 {
3050 	unsigned int i, c, left, val, offset = addr & 0xff;
3051 	u32 buf[64];
3052 	int ret;
3053 
3054 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3055 		return -EINVAL;
3056 
3057 	val = swab32(addr) | SF_PROG_PAGE;
3058 
3059 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3060 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3061 		goto unlock;
3062 
3063 	for (left = n; left; left -= c, data += c) {
3064 		c = min(left, 4U);
3065 		for (val = 0, i = 0; i < c; ++i) {
3066 			if (byte_oriented)
3067 				val = (val << 8) + data[i];
3068 			else
3069 				val = (val << 8) + data[c - i - 1];
3070 		}
3071 
3072 		ret = sf1_write(adapter, c, c != left, 1, val);
3073 		if (ret)
3074 			goto unlock;
3075 	}
3076 	ret = flash_wait_op(adapter, 8, 1);
3077 	if (ret)
3078 		goto unlock;
3079 
3080 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3081 
3082 	/* Read the page to verify the write succeeded */
3083 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3084 			    byte_oriented);
3085 	if (ret)
3086 		return ret;
3087 
3088 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3089 		dev_err(adapter->pdev_dev,
3090 			"failed to correctly write the flash page at %#x\n",
3091 			addr);
3092 		return -EIO;
3093 	}
3094 	return 0;
3095 
3096 unlock:
3097 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3098 	return ret;
3099 }
3100 
3101 /**
3102  *	t4_get_fw_version - read the firmware version
3103  *	@adapter: the adapter
3104  *	@vers: where to place the version
3105  *
3106  *	Reads the FW version from flash.
3107  */
3108 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3109 {
3110 	return t4_read_flash(adapter, FLASH_FW_START +
3111 			     offsetof(struct fw_hdr, fw_ver), 1,
3112 			     vers, 0);
3113 }
3114 
3115 /**
3116  *	t4_get_bs_version - read the firmware bootstrap version
3117  *	@adapter: the adapter
3118  *	@vers: where to place the version
3119  *
3120  *	Reads the FW Bootstrap version from flash.
3121  */
3122 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3123 {
3124 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3125 			     offsetof(struct fw_hdr, fw_ver), 1,
3126 			     vers, 0);
3127 }
3128 
3129 /**
3130  *	t4_get_tp_version - read the TP microcode version
3131  *	@adapter: the adapter
3132  *	@vers: where to place the version
3133  *
3134  *	Reads the TP microcode version from flash.
3135  */
3136 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3137 {
3138 	return t4_read_flash(adapter, FLASH_FW_START +
3139 			     offsetof(struct fw_hdr, tp_microcode_ver),
3140 			     1, vers, 0);
3141 }
3142 
3143 /**
3144  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3145  *	@adap: the adapter
3146  *	@vers: where to place the version
3147  *
3148  *	Reads the Expansion ROM header from FLASH and returns the version
3149  *	number (if present) through the @vers return value pointer.  We return
3150  *	this in the Firmware Version Format since it's convenient.  Return
3151  *	0 on success, -ENOENT if no Expansion ROM is present.
3152  */
3153 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3154 {
3155 	struct exprom_header {
3156 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3157 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3158 	} *hdr;
3159 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3160 					   sizeof(u32))];
3161 	int ret;
3162 
3163 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3164 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3165 			    0);
3166 	if (ret)
3167 		return ret;
3168 
3169 	hdr = (struct exprom_header *)exprom_header_buf;
3170 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3171 		return -ENOENT;
3172 
3173 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3174 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3175 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3176 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3177 	return 0;
3178 }
3179 
3180 /**
3181  *      t4_get_vpd_version - return the VPD version
3182  *      @adapter: the adapter
3183  *      @vers: where to place the version
3184  *
3185  *      Reads the VPD via the Firmware interface (thus this can only be called
3186  *      once we're ready to issue Firmware commands).  The format of the
3187  *      VPD version is adapter specific.  Returns 0 on success, an error on
3188  *      failure.
3189  *
3190  *      Note that early versions of the Firmware didn't include the ability
3191  *      to retrieve the VPD version, so we zero-out the return-value parameter
3192  *      in that case to avoid leaving it with garbage in it.
3193  *
3194  *      Also note that the Firmware will return its cached copy of the VPD
3195  *      Revision ID, not the actual Revision ID as written in the Serial
3196  *      EEPROM.  This is only an issue if a new VPD has been written and the
3197  *      Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3198  *      to defer calling this routine till after a FW_RESET_CMD has been issued
3199  *      if the Host Driver will be performing a full adapter initialization.
3200  */
3201 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3202 {
3203 	u32 vpdrev_param;
3204 	int ret;
3205 
3206 	vpdrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3207 			FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_VPDREV));
3208 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3209 			      1, &vpdrev_param, vers);
3210 	if (ret)
3211 		*vers = 0;
3212 	return ret;
3213 }
3214 
3215 /**
3216  *      t4_get_scfg_version - return the Serial Configuration version
3217  *      @adapter: the adapter
3218  *      @vers: where to place the version
3219  *
3220  *      Reads the Serial Configuration Version via the Firmware interface
3221  *      (thus this can only be called once we're ready to issue Firmware
3222  *      commands).  The format of the Serial Configuration version is
3223  *      adapter specific.  Returns 0 on success, an error on failure.
3224  *
3225  *      Note that early versions of the Firmware didn't include the ability
3226  *      to retrieve the Serial Configuration version, so we zero-out the
3227  *      return-value parameter in that case to avoid leaving it with
3228  *      garbage in it.
3229  *
3230  *      Also note that the Firmware will return its cached copy of the Serial
3231  *      Initialization Revision ID, not the actual Revision ID as written in
3232  *      the Serial EEPROM.  This is only an issue if a new VPD has been written
3233  *      and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3234  *      it's best to defer calling this routine till after a FW_RESET_CMD has
3235  *      been issued if the Host Driver will be performing a full adapter
3236  *      initialization.
3237  */
3238 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3239 {
3240 	u32 scfgrev_param;
3241 	int ret;
3242 
3243 	scfgrev_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3244 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_SCFGREV));
3245 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3246 			      1, &scfgrev_param, vers);
3247 	if (ret)
3248 		*vers = 0;
3249 	return ret;
3250 }
3251 
3252 /**
3253  *      t4_get_version_info - extract various chip/firmware version information
3254  *      @adapter: the adapter
3255  *
3256  *      Reads various chip/firmware version numbers and stores them into the
3257  *      adapter Adapter Parameters structure.  If any of the efforts fails
3258  *      the first failure will be returned, but all of the version numbers
3259  *      will be read.
3260  */
3261 int t4_get_version_info(struct adapter *adapter)
3262 {
3263 	int ret = 0;
3264 
3265 	#define FIRST_RET(__getvinfo) \
3266 	do { \
3267 		int __ret = __getvinfo; \
3268 		if (__ret && !ret) \
3269 			ret = __ret; \
3270 	} while (0)
3271 
3272 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3273 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3274 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3275 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3276 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3277 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3278 
3279 	#undef FIRST_RET
3280 	return ret;
3281 }
3282 
3283 /**
3284  *      t4_dump_version_info - dump all of the adapter configuration IDs
3285  *      @adapter: the adapter
3286  *
3287  *      Dumps all of the various bits of adapter configuration version/revision
3288  *      IDs information.  This is typically called at some point after
3289  *      t4_get_version_info() has been called.
3290  */
3291 void t4_dump_version_info(struct adapter *adapter)
3292 {
3293 	/* Device information */
3294 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
3295 		 adapter->params.vpd.id,
3296 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
3297 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
3298 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
3299 
3300 	/* Firmware Version */
3301 	if (!adapter->params.fw_vers)
3302 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
3303 	else
3304 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
3305 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
3306 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
3307 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
3308 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
3309 
3310 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
3311 	 * Firmware, so dev_info() is more appropriate here.)
3312 	 */
3313 	if (!adapter->params.bs_vers)
3314 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
3315 	else
3316 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
3317 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
3318 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
3319 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
3320 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
3321 
3322 	/* TP Microcode Version */
3323 	if (!adapter->params.tp_vers)
3324 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
3325 	else
3326 		dev_info(adapter->pdev_dev,
3327 			 "TP Microcode version: %u.%u.%u.%u\n",
3328 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
3329 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
3330 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
3331 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
3332 
3333 	/* Expansion ROM version */
3334 	if (!adapter->params.er_vers)
3335 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
3336 	else
3337 		dev_info(adapter->pdev_dev,
3338 			 "Expansion ROM version: %u.%u.%u.%u\n",
3339 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
3340 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
3341 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
3342 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
3343 
3344 	/* Serial Configuration version */
3345 	dev_info(adapter->pdev_dev, "Serial Configuration version: %#x\n",
3346 		 adapter->params.scfg_vers);
3347 
3348 	/* VPD Version */
3349 	dev_info(adapter->pdev_dev, "VPD version: %#x\n",
3350 		 adapter->params.vpd_vers);
3351 }
3352 
3353 /**
3354  *	t4_check_fw_version - check if the FW is supported with this driver
3355  *	@adap: the adapter
3356  *
3357  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3358  *	if there's exact match, a negative error if the version could not be
3359  *	read or there's a major version mismatch
3360  */
3361 int t4_check_fw_version(struct adapter *adap)
3362 {
3363 	int i, ret, major, minor, micro;
3364 	int exp_major, exp_minor, exp_micro;
3365 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3366 
3367 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3368 	/* Try multiple times before returning error */
3369 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3370 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3371 
3372 	if (ret)
3373 		return ret;
3374 
3375 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3376 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3377 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3378 
3379 	switch (chip_version) {
3380 	case CHELSIO_T4:
3381 		exp_major = T4FW_MIN_VERSION_MAJOR;
3382 		exp_minor = T4FW_MIN_VERSION_MINOR;
3383 		exp_micro = T4FW_MIN_VERSION_MICRO;
3384 		break;
3385 	case CHELSIO_T5:
3386 		exp_major = T5FW_MIN_VERSION_MAJOR;
3387 		exp_minor = T5FW_MIN_VERSION_MINOR;
3388 		exp_micro = T5FW_MIN_VERSION_MICRO;
3389 		break;
3390 	case CHELSIO_T6:
3391 		exp_major = T6FW_MIN_VERSION_MAJOR;
3392 		exp_minor = T6FW_MIN_VERSION_MINOR;
3393 		exp_micro = T6FW_MIN_VERSION_MICRO;
3394 		break;
3395 	default:
3396 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3397 			adap->chip);
3398 		return -EINVAL;
3399 	}
3400 
3401 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3402 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3403 		dev_err(adap->pdev_dev,
3404 			"Card has firmware version %u.%u.%u, minimum "
3405 			"supported firmware is %u.%u.%u.\n", major, minor,
3406 			micro, exp_major, exp_minor, exp_micro);
3407 		return -EFAULT;
3408 	}
3409 	return 0;
3410 }
3411 
3412 /* Is the given firmware API compatible with the one the driver was compiled
3413  * with?
3414  */
3415 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3416 {
3417 
3418 	/* short circuit if it's the exact same firmware version */
3419 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3420 		return 1;
3421 
3422 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3423 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3424 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3425 		return 1;
3426 #undef SAME_INTF
3427 
3428 	return 0;
3429 }
3430 
3431 /* The firmware in the filesystem is usable, but should it be installed?
3432  * This routine explains itself in detail if it indicates the filesystem
3433  * firmware should be installed.
3434  */
3435 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3436 				int k, int c)
3437 {
3438 	const char *reason;
3439 
3440 	if (!card_fw_usable) {
3441 		reason = "incompatible or unusable";
3442 		goto install;
3443 	}
3444 
3445 	if (k > c) {
3446 		reason = "older than the version supported with this driver";
3447 		goto install;
3448 	}
3449 
3450 	return 0;
3451 
3452 install:
3453 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3454 		"installing firmware %u.%u.%u.%u on card.\n",
3455 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3456 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3457 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3458 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3459 
3460 	return 1;
3461 }
3462 
3463 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3464 	       const u8 *fw_data, unsigned int fw_size,
3465 	       struct fw_hdr *card_fw, enum dev_state state,
3466 	       int *reset)
3467 {
3468 	int ret, card_fw_usable, fs_fw_usable;
3469 	const struct fw_hdr *fs_fw;
3470 	const struct fw_hdr *drv_fw;
3471 
3472 	drv_fw = &fw_info->fw_hdr;
3473 
3474 	/* Read the header of the firmware on the card */
3475 	ret = t4_read_flash(adap, FLASH_FW_START,
3476 			    sizeof(*card_fw) / sizeof(uint32_t),
3477 			    (uint32_t *)card_fw, 1);
3478 	if (ret == 0) {
3479 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3480 	} else {
3481 		dev_err(adap->pdev_dev,
3482 			"Unable to read card's firmware header: %d\n", ret);
3483 		card_fw_usable = 0;
3484 	}
3485 
3486 	if (fw_data != NULL) {
3487 		fs_fw = (const void *)fw_data;
3488 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3489 	} else {
3490 		fs_fw = NULL;
3491 		fs_fw_usable = 0;
3492 	}
3493 
3494 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3495 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3496 		/* Common case: the firmware on the card is an exact match and
3497 		 * the filesystem one is an exact match too, or the filesystem
3498 		 * one is absent/incompatible.
3499 		 */
3500 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3501 		   should_install_fs_fw(adap, card_fw_usable,
3502 					be32_to_cpu(fs_fw->fw_ver),
3503 					be32_to_cpu(card_fw->fw_ver))) {
3504 		ret = t4_fw_upgrade(adap, adap->mbox, fw_data,
3505 				    fw_size, 0);
3506 		if (ret != 0) {
3507 			dev_err(adap->pdev_dev,
3508 				"failed to install firmware: %d\n", ret);
3509 			goto bye;
3510 		}
3511 
3512 		/* Installed successfully, update the cached header too. */
3513 		*card_fw = *fs_fw;
3514 		card_fw_usable = 1;
3515 		*reset = 0;	/* already reset as part of load_fw */
3516 	}
3517 
3518 	if (!card_fw_usable) {
3519 		uint32_t d, c, k;
3520 
3521 		d = be32_to_cpu(drv_fw->fw_ver);
3522 		c = be32_to_cpu(card_fw->fw_ver);
3523 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3524 
3525 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3526 			"chip state %d, "
3527 			"driver compiled with %d.%d.%d.%d, "
3528 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3529 			state,
3530 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3531 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3532 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3533 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3534 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3535 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3536 		ret = -EINVAL;
3537 		goto bye;
3538 	}
3539 
3540 	/* We're using whatever's on the card and it's known to be good. */
3541 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3542 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3543 
3544 bye:
3545 	return ret;
3546 }
3547 
3548 /**
3549  *	t4_flash_erase_sectors - erase a range of flash sectors
3550  *	@adapter: the adapter
3551  *	@start: the first sector to erase
3552  *	@end: the last sector to erase
3553  *
3554  *	Erases the sectors in the given inclusive range.
3555  */
3556 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3557 {
3558 	int ret = 0;
3559 
3560 	if (end >= adapter->params.sf_nsec)
3561 		return -EINVAL;
3562 
3563 	while (start <= end) {
3564 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3565 		    (ret = sf1_write(adapter, 4, 0, 1,
3566 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3567 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3568 			dev_err(adapter->pdev_dev,
3569 				"erase of flash sector %d failed, error %d\n",
3570 				start, ret);
3571 			break;
3572 		}
3573 		start++;
3574 	}
3575 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3576 	return ret;
3577 }
3578 
3579 /**
3580  *	t4_flash_cfg_addr - return the address of the flash configuration file
3581  *	@adapter: the adapter
3582  *
3583  *	Return the address within the flash where the Firmware Configuration
3584  *	File is stored.
3585  */
3586 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3587 {
3588 	if (adapter->params.sf_size == 0x100000)
3589 		return FLASH_FPGA_CFG_START;
3590 	else
3591 		return FLASH_CFG_START;
3592 }
3593 
3594 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3595  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3596  * and emit an error message for mismatched firmware to save our caller the
3597  * effort ...
3598  */
3599 static bool t4_fw_matches_chip(const struct adapter *adap,
3600 			       const struct fw_hdr *hdr)
3601 {
3602 	/* The expression below will return FALSE for any unsupported adapter
3603 	 * which will keep us "honest" in the future ...
3604 	 */
3605 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3606 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3607 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3608 		return true;
3609 
3610 	dev_err(adap->pdev_dev,
3611 		"FW image (%d) is not suitable for this adapter (%d)\n",
3612 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3613 	return false;
3614 }
3615 
3616 /**
3617  *	t4_load_fw - download firmware
3618  *	@adap: the adapter
3619  *	@fw_data: the firmware image to write
3620  *	@size: image size
3621  *
3622  *	Write the supplied firmware image to the card's serial flash.
3623  */
3624 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3625 {
3626 	u32 csum;
3627 	int ret, addr;
3628 	unsigned int i;
3629 	u8 first_page[SF_PAGE_SIZE];
3630 	const __be32 *p = (const __be32 *)fw_data;
3631 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3632 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3633 	unsigned int fw_start_sec = FLASH_FW_START_SEC;
3634 	unsigned int fw_size = FLASH_FW_MAX_SIZE;
3635 	unsigned int fw_start = FLASH_FW_START;
3636 
3637 	if (!size) {
3638 		dev_err(adap->pdev_dev, "FW image has no data\n");
3639 		return -EINVAL;
3640 	}
3641 	if (size & 511) {
3642 		dev_err(adap->pdev_dev,
3643 			"FW image size not multiple of 512 bytes\n");
3644 		return -EINVAL;
3645 	}
3646 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3647 		dev_err(adap->pdev_dev,
3648 			"FW image size differs from size in FW header\n");
3649 		return -EINVAL;
3650 	}
3651 	if (size > fw_size) {
3652 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3653 			fw_size);
3654 		return -EFBIG;
3655 	}
3656 	if (!t4_fw_matches_chip(adap, hdr))
3657 		return -EINVAL;
3658 
3659 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3660 		csum += be32_to_cpu(p[i]);
3661 
3662 	if (csum != 0xffffffff) {
3663 		dev_err(adap->pdev_dev,
3664 			"corrupted firmware image, checksum %#x\n", csum);
3665 		return -EINVAL;
3666 	}
3667 
3668 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3669 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3670 	if (ret)
3671 		goto out;
3672 
3673 	/*
3674 	 * We write the correct version at the end so the driver can see a bad
3675 	 * version if the FW write fails.  Start by writing a copy of the
3676 	 * first page with a bad version.
3677 	 */
3678 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3679 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3680 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, true);
3681 	if (ret)
3682 		goto out;
3683 
3684 	addr = fw_start;
3685 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3686 		addr += SF_PAGE_SIZE;
3687 		fw_data += SF_PAGE_SIZE;
3688 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, true);
3689 		if (ret)
3690 			goto out;
3691 	}
3692 
3693 	ret = t4_write_flash(adap, fw_start + offsetof(struct fw_hdr, fw_ver),
3694 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver,
3695 			     true);
3696 out:
3697 	if (ret)
3698 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3699 			ret);
3700 	else
3701 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3702 	return ret;
3703 }
3704 
3705 /**
3706  *	t4_phy_fw_ver - return current PHY firmware version
3707  *	@adap: the adapter
3708  *	@phy_fw_ver: return value buffer for PHY firmware version
3709  *
3710  *	Returns the current version of external PHY firmware on the
3711  *	adapter.
3712  */
3713 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3714 {
3715 	u32 param, val;
3716 	int ret;
3717 
3718 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3719 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3720 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3721 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3722 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3723 			      &param, &val);
3724 	if (ret)
3725 		return ret;
3726 	*phy_fw_ver = val;
3727 	return 0;
3728 }
3729 
3730 /**
3731  *	t4_load_phy_fw - download port PHY firmware
3732  *	@adap: the adapter
3733  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3734  *	@phy_fw_version: function to check PHY firmware versions
3735  *	@phy_fw_data: the PHY firmware image to write
3736  *	@phy_fw_size: image size
3737  *
3738  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3739  *	@phy_fw_version is supplied, then it will be used to determine if
3740  *	it's necessary to perform the transfer by comparing the version
3741  *	of any existing adapter PHY firmware with that of the passed in
3742  *	PHY firmware image.
3743  *
3744  *	A negative error number will be returned if an error occurs.  If
3745  *	version number support is available and there's no need to upgrade
3746  *	the firmware, 0 will be returned.  If firmware is successfully
3747  *	transferred to the adapter, 1 will be returned.
3748  *
3749  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3750  *	a result, a RESET of the adapter would cause that RAM to lose its
3751  *	contents.  Thus, loading PHY firmware on such adapters must happen
3752  *	after any FW_RESET_CMDs ...
3753  */
3754 int t4_load_phy_fw(struct adapter *adap, int win,
3755 		   int (*phy_fw_version)(const u8 *, size_t),
3756 		   const u8 *phy_fw_data, size_t phy_fw_size)
3757 {
3758 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3759 	unsigned long mtype = 0, maddr = 0;
3760 	u32 param, val;
3761 	int ret;
3762 
3763 	/* If we have version number support, then check to see if the adapter
3764 	 * already has up-to-date PHY firmware loaded.
3765 	 */
3766 	if (phy_fw_version) {
3767 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3768 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3769 		if (ret < 0)
3770 			return ret;
3771 
3772 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3773 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3774 				"version %#x\n", cur_phy_fw_ver);
3775 			return 0;
3776 		}
3777 	}
3778 
3779 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3780 	 * The size of the file requires a special version of the READ command
3781 	 * which will pass the file size via the values field in PARAMS_CMD and
3782 	 * retrieve the return value from firmware and place it in the same
3783 	 * buffer values
3784 	 */
3785 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3786 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3787 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3788 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3789 	val = phy_fw_size;
3790 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3791 				 &param, &val, 1, true);
3792 	if (ret < 0)
3793 		return ret;
3794 	mtype = val >> 8;
3795 	maddr = (val & 0xff) << 16;
3796 
3797 	/* Copy the supplied PHY Firmware image to the adapter memory location
3798 	 * allocated by the adapter firmware.
3799 	 */
3800 	spin_lock_bh(&adap->win0_lock);
3801 	ret = t4_memory_rw(adap, win, mtype, maddr,
3802 			   phy_fw_size, (__be32 *)phy_fw_data,
3803 			   T4_MEMORY_WRITE);
3804 	spin_unlock_bh(&adap->win0_lock);
3805 	if (ret)
3806 		return ret;
3807 
3808 	/* Tell the firmware that the PHY firmware image has been written to
3809 	 * RAM and it can now start copying it over to the PHYs.  The chip
3810 	 * firmware will RESET the affected PHYs as part of this operation
3811 	 * leaving them running the new PHY firmware image.
3812 	 */
3813 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3814 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3815 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3816 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3817 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3818 				    &param, &val, 30000);
3819 	if (ret)
3820 		return ret;
3821 
3822 	/* If we have version number support, then check to see that the new
3823 	 * firmware got loaded properly.
3824 	 */
3825 	if (phy_fw_version) {
3826 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3827 		if (ret < 0)
3828 			return ret;
3829 
3830 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3831 			CH_WARN(adap, "PHY Firmware did not update: "
3832 				"version on adapter %#x, "
3833 				"version flashed %#x\n",
3834 				cur_phy_fw_ver, new_phy_fw_vers);
3835 			return -ENXIO;
3836 		}
3837 	}
3838 
3839 	return 1;
3840 }
3841 
3842 /**
3843  *	t4_fwcache - firmware cache operation
3844  *	@adap: the adapter
3845  *	@op  : the operation (flush or flush and invalidate)
3846  */
3847 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3848 {
3849 	struct fw_params_cmd c;
3850 
3851 	memset(&c, 0, sizeof(c));
3852 	c.op_to_vfn =
3853 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3854 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3855 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3856 			    FW_PARAMS_CMD_VFN_V(0));
3857 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3858 	c.param[0].mnem =
3859 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3860 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3861 	c.param[0].val = cpu_to_be32(op);
3862 
3863 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3864 }
3865 
3866 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3867 			unsigned int *pif_req_wrptr,
3868 			unsigned int *pif_rsp_wrptr)
3869 {
3870 	int i, j;
3871 	u32 cfg, val, req, rsp;
3872 
3873 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3874 	if (cfg & LADBGEN_F)
3875 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3876 
3877 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3878 	req = POLADBGWRPTR_G(val);
3879 	rsp = PILADBGWRPTR_G(val);
3880 	if (pif_req_wrptr)
3881 		*pif_req_wrptr = req;
3882 	if (pif_rsp_wrptr)
3883 		*pif_rsp_wrptr = rsp;
3884 
3885 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3886 		for (j = 0; j < 6; j++) {
3887 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3888 				     PILADBGRDPTR_V(rsp));
3889 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3890 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3891 			req++;
3892 			rsp++;
3893 		}
3894 		req = (req + 2) & POLADBGRDPTR_M;
3895 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3896 	}
3897 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3898 }
3899 
3900 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3901 {
3902 	u32 cfg;
3903 	int i, j, idx;
3904 
3905 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3906 	if (cfg & LADBGEN_F)
3907 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3908 
3909 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3910 		for (j = 0; j < 5; j++) {
3911 			idx = 8 * i + j;
3912 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3913 				     PILADBGRDPTR_V(idx));
3914 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3915 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3916 		}
3917 	}
3918 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3919 }
3920 
3921 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3922 {
3923 	unsigned int i, j;
3924 
3925 	for (i = 0; i < 8; i++) {
3926 		u32 *p = la_buf + i;
3927 
3928 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3929 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3930 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3931 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3932 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3933 	}
3934 }
3935 
3936 /* The ADVERT_MASK is used to mask out all of the Advertised Firmware Port
3937  * Capabilities which we control with separate controls -- see, for instance,
3938  * Pause Frames and Forward Error Correction.  In order to determine what the
3939  * full set of Advertised Port Capabilities are, the base Advertised Port
3940  * Capabilities (masked by ADVERT_MASK) must be combined with the Advertised
3941  * Port Capabilities associated with those other controls.  See
3942  * t4_link_acaps() for how this is done.
3943  */
3944 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
3945 		     FW_PORT_CAP32_ANEG)
3946 
3947 /**
3948  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3949  *	@caps16: a 16-bit Port Capabilities value
3950  *
3951  *	Returns the equivalent 32-bit Port Capabilities value.
3952  */
3953 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
3954 {
3955 	fw_port_cap32_t caps32 = 0;
3956 
3957 	#define CAP16_TO_CAP32(__cap) \
3958 		do { \
3959 			if (caps16 & FW_PORT_CAP_##__cap) \
3960 				caps32 |= FW_PORT_CAP32_##__cap; \
3961 		} while (0)
3962 
3963 	CAP16_TO_CAP32(SPEED_100M);
3964 	CAP16_TO_CAP32(SPEED_1G);
3965 	CAP16_TO_CAP32(SPEED_25G);
3966 	CAP16_TO_CAP32(SPEED_10G);
3967 	CAP16_TO_CAP32(SPEED_40G);
3968 	CAP16_TO_CAP32(SPEED_100G);
3969 	CAP16_TO_CAP32(FC_RX);
3970 	CAP16_TO_CAP32(FC_TX);
3971 	CAP16_TO_CAP32(ANEG);
3972 	CAP16_TO_CAP32(FORCE_PAUSE);
3973 	CAP16_TO_CAP32(MDIAUTO);
3974 	CAP16_TO_CAP32(MDISTRAIGHT);
3975 	CAP16_TO_CAP32(FEC_RS);
3976 	CAP16_TO_CAP32(FEC_BASER_RS);
3977 	CAP16_TO_CAP32(802_3_PAUSE);
3978 	CAP16_TO_CAP32(802_3_ASM_DIR);
3979 
3980 	#undef CAP16_TO_CAP32
3981 
3982 	return caps32;
3983 }
3984 
3985 /**
3986  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3987  *	@caps32: a 32-bit Port Capabilities value
3988  *
3989  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3990  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3991  *	Port Capabilities and some fields/values may not make it.
3992  */
3993 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
3994 {
3995 	fw_port_cap16_t caps16 = 0;
3996 
3997 	#define CAP32_TO_CAP16(__cap) \
3998 		do { \
3999 			if (caps32 & FW_PORT_CAP32_##__cap) \
4000 				caps16 |= FW_PORT_CAP_##__cap; \
4001 		} while (0)
4002 
4003 	CAP32_TO_CAP16(SPEED_100M);
4004 	CAP32_TO_CAP16(SPEED_1G);
4005 	CAP32_TO_CAP16(SPEED_10G);
4006 	CAP32_TO_CAP16(SPEED_25G);
4007 	CAP32_TO_CAP16(SPEED_40G);
4008 	CAP32_TO_CAP16(SPEED_100G);
4009 	CAP32_TO_CAP16(FC_RX);
4010 	CAP32_TO_CAP16(FC_TX);
4011 	CAP32_TO_CAP16(802_3_PAUSE);
4012 	CAP32_TO_CAP16(802_3_ASM_DIR);
4013 	CAP32_TO_CAP16(ANEG);
4014 	CAP32_TO_CAP16(FORCE_PAUSE);
4015 	CAP32_TO_CAP16(MDIAUTO);
4016 	CAP32_TO_CAP16(MDISTRAIGHT);
4017 	CAP32_TO_CAP16(FEC_RS);
4018 	CAP32_TO_CAP16(FEC_BASER_RS);
4019 
4020 	#undef CAP32_TO_CAP16
4021 
4022 	return caps16;
4023 }
4024 
4025 /* Translate Firmware Port Capabilities Pause specification to Common Code */
4026 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
4027 {
4028 	enum cc_pause cc_pause = 0;
4029 
4030 	if (fw_pause & FW_PORT_CAP32_FC_RX)
4031 		cc_pause |= PAUSE_RX;
4032 	if (fw_pause & FW_PORT_CAP32_FC_TX)
4033 		cc_pause |= PAUSE_TX;
4034 
4035 	return cc_pause;
4036 }
4037 
4038 /* Translate Common Code Pause specification into Firmware Port Capabilities */
4039 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
4040 {
4041 	/* Translate orthogonal RX/TX Pause Controls for L1 Configure
4042 	 * commands, etc.
4043 	 */
4044 	fw_port_cap32_t fw_pause = 0;
4045 
4046 	if (cc_pause & PAUSE_RX)
4047 		fw_pause |= FW_PORT_CAP32_FC_RX;
4048 	if (cc_pause & PAUSE_TX)
4049 		fw_pause |= FW_PORT_CAP32_FC_TX;
4050 	if (!(cc_pause & PAUSE_AUTONEG))
4051 		fw_pause |= FW_PORT_CAP32_FORCE_PAUSE;
4052 
4053 	/* Translate orthogonal Pause controls into IEEE 802.3 Pause,
4054 	 * Asymmetrical Pause for use in reporting to upper layer OS code, etc.
4055 	 * Note that these bits are ignored in L1 Configure commands.
4056 	 */
4057 	if (cc_pause & PAUSE_RX) {
4058 		if (cc_pause & PAUSE_TX)
4059 			fw_pause |= FW_PORT_CAP32_802_3_PAUSE;
4060 		else
4061 			fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR |
4062 				    FW_PORT_CAP32_802_3_PAUSE;
4063 	} else if (cc_pause & PAUSE_TX) {
4064 		fw_pause |= FW_PORT_CAP32_802_3_ASM_DIR;
4065 	}
4066 
4067 	return fw_pause;
4068 }
4069 
4070 /* Translate Firmware Forward Error Correction specification to Common Code */
4071 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
4072 {
4073 	enum cc_fec cc_fec = 0;
4074 
4075 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
4076 		cc_fec |= FEC_RS;
4077 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
4078 		cc_fec |= FEC_BASER_RS;
4079 
4080 	return cc_fec;
4081 }
4082 
4083 /* Translate Common Code Forward Error Correction specification to Firmware */
4084 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
4085 {
4086 	fw_port_cap32_t fw_fec = 0;
4087 
4088 	if (cc_fec & FEC_RS)
4089 		fw_fec |= FW_PORT_CAP32_FEC_RS;
4090 	if (cc_fec & FEC_BASER_RS)
4091 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
4092 
4093 	return fw_fec;
4094 }
4095 
4096 /**
4097  *	t4_link_acaps - compute Link Advertised Port Capabilities
4098  *	@adapter: the adapter
4099  *	@port: the Port ID
4100  *	@lc: the Port's Link Configuration
4101  *
4102  *	Synthesize the Advertised Port Capabilities we'll be using based on
4103  *	the base Advertised Port Capabilities (which have been filtered by
4104  *	ADVERT_MASK) plus the individual controls for things like Pause
4105  *	Frames, Forward Error Correction, MDI, etc.
4106  */
4107 fw_port_cap32_t t4_link_acaps(struct adapter *adapter, unsigned int port,
4108 			      struct link_config *lc)
4109 {
4110 	fw_port_cap32_t fw_fc, fw_fec, acaps;
4111 	unsigned int fw_mdi;
4112 	char cc_fec;
4113 
4114 	fw_mdi = (FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO) & lc->pcaps);
4115 
4116 	/* Convert driver coding of Pause Frame Flow Control settings into the
4117 	 * Firmware's API.
4118 	 */
4119 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
4120 
4121 	/* Convert Common Code Forward Error Control settings into the
4122 	 * Firmware's API.  If the current Requested FEC has "Automatic"
4123 	 * (IEEE 802.3) specified, then we use whatever the Firmware
4124 	 * sent us as part of its IEEE 802.3-based interpretation of
4125 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
4126 	 * use whatever is in the current Requested FEC settings.
4127 	 */
4128 	if (lc->requested_fec & FEC_AUTO)
4129 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
4130 	else
4131 		cc_fec = lc->requested_fec;
4132 	fw_fec = cc_to_fwcap_fec(cc_fec);
4133 
4134 	/* Figure out what our Requested Port Capabilities are going to be.
4135 	 * Note parallel structure in t4_handle_get_port_info() and
4136 	 * init_link_config().
4137 	 */
4138 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
4139 		acaps = lc->acaps | fw_fc | fw_fec;
4140 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4141 		lc->fec = cc_fec;
4142 	} else if (lc->autoneg == AUTONEG_DISABLE) {
4143 		acaps = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
4144 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
4145 		lc->fec = cc_fec;
4146 	} else {
4147 		acaps = lc->acaps | fw_fc | fw_fec | fw_mdi;
4148 	}
4149 
4150 	/* Some Requested Port Capabilities are trivially wrong if they exceed
4151 	 * the Physical Port Capabilities.  We can check that here and provide
4152 	 * moderately useful feedback in the system log.
4153 	 *
4154 	 * Note that older Firmware doesn't have FW_PORT_CAP32_FORCE_PAUSE, so
4155 	 * we need to exclude this from this check in order to maintain
4156 	 * compatibility ...
4157 	 */
4158 	if ((acaps & ~lc->pcaps) & ~FW_PORT_CAP32_FORCE_PAUSE) {
4159 		dev_err(adapter->pdev_dev, "Requested Port Capabilities %#x exceed Physical Port Capabilities %#x\n",
4160 			acaps, lc->pcaps);
4161 		return -EINVAL;
4162 	}
4163 
4164 	return acaps;
4165 }
4166 
4167 /**
4168  *	t4_link_l1cfg_core - apply link configuration to MAC/PHY
4169  *	@adapter: the adapter
4170  *	@mbox: the Firmware Mailbox to use
4171  *	@port: the Port ID
4172  *	@lc: the Port's Link Configuration
4173  *	@sleep_ok: if true we may sleep while awaiting command completion
4174  *	@timeout: time to wait for command to finish before timing out
4175  *		(negative implies @sleep_ok=false)
4176  *
4177  *	Set up a port's MAC and PHY according to a desired link configuration.
4178  *	- If the PHY can auto-negotiate first decide what to advertise, then
4179  *	  enable/disable auto-negotiation as desired, and reset.
4180  *	- If the PHY does not auto-negotiate just reset it.
4181  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
4182  *	  otherwise do it later based on the outcome of auto-negotiation.
4183  */
4184 int t4_link_l1cfg_core(struct adapter *adapter, unsigned int mbox,
4185 		       unsigned int port, struct link_config *lc,
4186 		       u8 sleep_ok, int timeout)
4187 {
4188 	unsigned int fw_caps = adapter->params.fw_caps_support;
4189 	struct fw_port_cmd cmd;
4190 	fw_port_cap32_t rcap;
4191 	int ret;
4192 
4193 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG) &&
4194 	    lc->autoneg == AUTONEG_ENABLE) {
4195 		return -EINVAL;
4196 	}
4197 
4198 	/* Compute our Requested Port Capabilities and send that on to the
4199 	 * Firmware.
4200 	 */
4201 	rcap = t4_link_acaps(adapter, port, lc);
4202 	memset(&cmd, 0, sizeof(cmd));
4203 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4204 				       FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4205 				       FW_PORT_CMD_PORTID_V(port));
4206 	cmd.action_to_len16 =
4207 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4208 						 ? FW_PORT_ACTION_L1_CFG
4209 						 : FW_PORT_ACTION_L1_CFG32) |
4210 						 FW_LEN16(cmd));
4211 	if (fw_caps == FW_CAPS16)
4212 		cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4213 	else
4214 		cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4215 
4216 	ret = t4_wr_mbox_meat_timeout(adapter, mbox, &cmd, sizeof(cmd), NULL,
4217 				      sleep_ok, timeout);
4218 
4219 	/* Unfortunately, even if the Requested Port Capabilities "fit" within
4220 	 * the Physical Port Capabilities, some combinations of features may
4221 	 * still not be legal.  For example, 40Gb/s and Reed-Solomon Forward
4222 	 * Error Correction.  So if the Firmware rejects the L1 Configure
4223 	 * request, flag that here.
4224 	 */
4225 	if (ret) {
4226 		dev_err(adapter->pdev_dev,
4227 			"Requested Port Capabilities %#x rejected, error %d\n",
4228 			rcap, -ret);
4229 		return ret;
4230 	}
4231 	return 0;
4232 }
4233 
4234 /**
4235  *	t4_restart_aneg - restart autonegotiation
4236  *	@adap: the adapter
4237  *	@mbox: mbox to use for the FW command
4238  *	@port: the port id
4239  *
4240  *	Restarts autonegotiation for the selected port.
4241  */
4242 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4243 {
4244 	unsigned int fw_caps = adap->params.fw_caps_support;
4245 	struct fw_port_cmd c;
4246 
4247 	memset(&c, 0, sizeof(c));
4248 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
4249 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
4250 				     FW_PORT_CMD_PORTID_V(port));
4251 	c.action_to_len16 =
4252 		cpu_to_be32(FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
4253 						 ? FW_PORT_ACTION_L1_CFG
4254 						 : FW_PORT_ACTION_L1_CFG32) |
4255 			    FW_LEN16(c));
4256 	if (fw_caps == FW_CAPS16)
4257 		c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4258 	else
4259 		c.u.l1cfg32.rcap32 = cpu_to_be32(FW_PORT_CAP32_ANEG);
4260 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4261 }
4262 
4263 typedef void (*int_handler_t)(struct adapter *adap);
4264 
4265 struct intr_info {
4266 	unsigned int mask;       /* bits to check in interrupt status */
4267 	const char *msg;         /* message to print or NULL */
4268 	short stat_idx;          /* stat counter to increment or -1 */
4269 	unsigned short fatal;    /* whether the condition reported is fatal */
4270 	int_handler_t int_handler; /* platform-specific int handler */
4271 };
4272 
4273 /**
4274  *	t4_handle_intr_status - table driven interrupt handler
4275  *	@adapter: the adapter that generated the interrupt
4276  *	@reg: the interrupt status register to process
4277  *	@acts: table of interrupt actions
4278  *
4279  *	A table driven interrupt handler that applies a set of masks to an
4280  *	interrupt status word and performs the corresponding actions if the
4281  *	interrupts described by the mask have occurred.  The actions include
4282  *	optionally emitting a warning or alert message.  The table is terminated
4283  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
4284  *	conditions.
4285  */
4286 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
4287 				 const struct intr_info *acts)
4288 {
4289 	int fatal = 0;
4290 	unsigned int mask = 0;
4291 	unsigned int status = t4_read_reg(adapter, reg);
4292 
4293 	for ( ; acts->mask; ++acts) {
4294 		if (!(status & acts->mask))
4295 			continue;
4296 		if (acts->fatal) {
4297 			fatal++;
4298 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4299 				  status & acts->mask);
4300 		} else if (acts->msg && printk_ratelimit())
4301 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
4302 				 status & acts->mask);
4303 		if (acts->int_handler)
4304 			acts->int_handler(adapter);
4305 		mask |= acts->mask;
4306 	}
4307 	status &= mask;
4308 	if (status)                           /* clear processed interrupts */
4309 		t4_write_reg(adapter, reg, status);
4310 	return fatal;
4311 }
4312 
4313 /*
4314  * Interrupt handler for the PCIE module.
4315  */
4316 static void pcie_intr_handler(struct adapter *adapter)
4317 {
4318 	static const struct intr_info sysbus_intr_info[] = {
4319 		{ RNPP_F, "RXNP array parity error", -1, 1 },
4320 		{ RPCP_F, "RXPC array parity error", -1, 1 },
4321 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
4322 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
4323 		{ RFTP_F, "RXFT array parity error", -1, 1 },
4324 		{ 0 }
4325 	};
4326 	static const struct intr_info pcie_port_intr_info[] = {
4327 		{ TPCP_F, "TXPC array parity error", -1, 1 },
4328 		{ TNPP_F, "TXNP array parity error", -1, 1 },
4329 		{ TFTP_F, "TXFT array parity error", -1, 1 },
4330 		{ TCAP_F, "TXCA array parity error", -1, 1 },
4331 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
4332 		{ RCAP_F, "RXCA array parity error", -1, 1 },
4333 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
4334 		{ RDPE_F, "Rx data parity error", -1, 1 },
4335 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
4336 		{ 0 }
4337 	};
4338 	static const struct intr_info pcie_intr_info[] = {
4339 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
4340 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
4341 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
4342 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4343 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4344 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4345 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4346 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
4347 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
4348 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4349 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
4350 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4351 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4352 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
4353 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4354 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4355 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
4356 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4357 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4358 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4359 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4360 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
4361 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
4362 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4363 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
4364 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
4365 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
4366 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
4367 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
4368 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
4369 		  -1, 0 },
4370 		{ 0 }
4371 	};
4372 
4373 	static struct intr_info t5_pcie_intr_info[] = {
4374 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
4375 		  -1, 1 },
4376 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
4377 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
4378 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
4379 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
4380 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
4381 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
4382 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
4383 		  -1, 1 },
4384 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
4385 		  -1, 1 },
4386 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
4387 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
4388 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
4389 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
4390 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
4391 		  -1, 1 },
4392 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
4393 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
4394 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
4395 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
4396 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
4397 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
4398 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
4399 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
4400 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
4401 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
4402 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
4403 		  -1, 1 },
4404 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
4405 		  -1, 1 },
4406 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
4407 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
4408 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4409 		{ READRSPERR_F, "Outbound read error", -1, 0 },
4410 		{ 0 }
4411 	};
4412 
4413 	int fat;
4414 
4415 	if (is_t4(adapter->params.chip))
4416 		fat = t4_handle_intr_status(adapter,
4417 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
4418 				sysbus_intr_info) +
4419 			t4_handle_intr_status(adapter,
4420 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
4421 					pcie_port_intr_info) +
4422 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4423 					      pcie_intr_info);
4424 	else
4425 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
4426 					    t5_pcie_intr_info);
4427 
4428 	if (fat)
4429 		t4_fatal_err(adapter);
4430 }
4431 
4432 /*
4433  * TP interrupt handler.
4434  */
4435 static void tp_intr_handler(struct adapter *adapter)
4436 {
4437 	static const struct intr_info tp_intr_info[] = {
4438 		{ 0x3fffffff, "TP parity error", -1, 1 },
4439 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
4440 		{ 0 }
4441 	};
4442 
4443 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
4444 		t4_fatal_err(adapter);
4445 }
4446 
4447 /*
4448  * SGE interrupt handler.
4449  */
4450 static void sge_intr_handler(struct adapter *adapter)
4451 {
4452 	u32 v = 0, perr;
4453 	u32 err;
4454 
4455 	static const struct intr_info sge_intr_info[] = {
4456 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
4457 		  "SGE received CPL exceeding IQE size", -1, 1 },
4458 		{ ERR_INVALID_CIDX_INC_F,
4459 		  "SGE GTS CIDX increment too large", -1, 0 },
4460 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
4461 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
4462 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
4463 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4464 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
4465 		  0 },
4466 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
4467 		  0 },
4468 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
4469 		  0 },
4470 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
4471 		  0 },
4472 		{ ERR_ING_CTXT_PRIO_F,
4473 		  "SGE too many priority ingress contexts", -1, 0 },
4474 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
4475 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
4476 		{ 0 }
4477 	};
4478 
4479 	static struct intr_info t4t5_sge_intr_info[] = {
4480 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
4481 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
4482 		{ ERR_EGR_CTXT_PRIO_F,
4483 		  "SGE too many priority egress contexts", -1, 0 },
4484 		{ 0 }
4485 	};
4486 
4487 	perr = t4_read_reg(adapter, SGE_INT_CAUSE1_A);
4488 	if (perr) {
4489 		v |= perr;
4490 		dev_alert(adapter->pdev_dev, "SGE Cause1 Parity Error %#x\n",
4491 			  perr);
4492 	}
4493 
4494 	perr = t4_read_reg(adapter, SGE_INT_CAUSE2_A);
4495 	if (perr) {
4496 		v |= perr;
4497 		dev_alert(adapter->pdev_dev, "SGE Cause2 Parity Error %#x\n",
4498 			  perr);
4499 	}
4500 
4501 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) >= CHELSIO_T5) {
4502 		perr = t4_read_reg(adapter, SGE_INT_CAUSE5_A);
4503 		/* Parity error (CRC) for err_T_RxCRC is trivial, ignore it */
4504 		perr &= ~ERR_T_RXCRC_F;
4505 		if (perr) {
4506 			v |= perr;
4507 			dev_alert(adapter->pdev_dev,
4508 				  "SGE Cause5 Parity Error %#x\n", perr);
4509 		}
4510 	}
4511 
4512 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
4513 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4514 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
4515 					   t4t5_sge_intr_info);
4516 
4517 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
4518 	if (err & ERROR_QID_VALID_F) {
4519 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
4520 			ERROR_QID_G(err));
4521 		if (err & UNCAPTURED_ERROR_F)
4522 			dev_err(adapter->pdev_dev,
4523 				"SGE UNCAPTURED_ERROR set (clearing)\n");
4524 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
4525 			     UNCAPTURED_ERROR_F);
4526 	}
4527 
4528 	if (v != 0)
4529 		t4_fatal_err(adapter);
4530 }
4531 
4532 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
4533 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
4534 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
4535 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
4536 
4537 /*
4538  * CIM interrupt handler.
4539  */
4540 static void cim_intr_handler(struct adapter *adapter)
4541 {
4542 	static const struct intr_info cim_intr_info[] = {
4543 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
4544 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4545 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4546 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
4547 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
4548 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
4549 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
4550 		{ TIMER0INT_F, "CIM TIMER0 interrupt", -1, 1 },
4551 		{ 0 }
4552 	};
4553 	static const struct intr_info cim_upintr_info[] = {
4554 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
4555 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
4556 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
4557 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
4558 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
4559 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
4560 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
4561 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
4562 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
4563 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
4564 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
4565 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
4566 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
4567 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
4568 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
4569 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
4570 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
4571 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
4572 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
4573 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
4574 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
4575 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
4576 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
4577 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
4578 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
4579 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
4580 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
4581 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
4582 		{ 0 }
4583 	};
4584 
4585 	u32 val, fw_err;
4586 	int fat;
4587 
4588 	fw_err = t4_read_reg(adapter, PCIE_FW_A);
4589 	if (fw_err & PCIE_FW_ERR_F)
4590 		t4_report_fw_error(adapter);
4591 
4592 	/* When the Firmware detects an internal error which normally
4593 	 * wouldn't raise a Host Interrupt, it forces a CIM Timer0 interrupt
4594 	 * in order to make sure the Host sees the Firmware Crash.  So
4595 	 * if we have a Timer0 interrupt and don't see a Firmware Crash,
4596 	 * ignore the Timer0 interrupt.
4597 	 */
4598 
4599 	val = t4_read_reg(adapter, CIM_HOST_INT_CAUSE_A);
4600 	if (val & TIMER0INT_F)
4601 		if (!(fw_err & PCIE_FW_ERR_F) ||
4602 		    (PCIE_FW_EVAL_G(fw_err) != PCIE_FW_EVAL_CRASH))
4603 			t4_write_reg(adapter, CIM_HOST_INT_CAUSE_A,
4604 				     TIMER0INT_F);
4605 
4606 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4607 				    cim_intr_info) +
4608 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4609 				    cim_upintr_info);
4610 	if (fat)
4611 		t4_fatal_err(adapter);
4612 }
4613 
4614 /*
4615  * ULP RX interrupt handler.
4616  */
4617 static void ulprx_intr_handler(struct adapter *adapter)
4618 {
4619 	static const struct intr_info ulprx_intr_info[] = {
4620 		{ 0x1800000, "ULPRX context error", -1, 1 },
4621 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4622 		{ 0 }
4623 	};
4624 
4625 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4626 		t4_fatal_err(adapter);
4627 }
4628 
4629 /*
4630  * ULP TX interrupt handler.
4631  */
4632 static void ulptx_intr_handler(struct adapter *adapter)
4633 {
4634 	static const struct intr_info ulptx_intr_info[] = {
4635 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4636 		  0 },
4637 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4638 		  0 },
4639 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4640 		  0 },
4641 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4642 		  0 },
4643 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4644 		{ 0 }
4645 	};
4646 
4647 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4648 		t4_fatal_err(adapter);
4649 }
4650 
4651 /*
4652  * PM TX interrupt handler.
4653  */
4654 static void pmtx_intr_handler(struct adapter *adapter)
4655 {
4656 	static const struct intr_info pmtx_intr_info[] = {
4657 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4658 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4659 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4660 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4661 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4662 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4663 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4664 		  -1, 1 },
4665 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4666 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4667 		{ 0 }
4668 	};
4669 
4670 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4671 		t4_fatal_err(adapter);
4672 }
4673 
4674 /*
4675  * PM RX interrupt handler.
4676  */
4677 static void pmrx_intr_handler(struct adapter *adapter)
4678 {
4679 	static const struct intr_info pmrx_intr_info[] = {
4680 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4681 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4682 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4683 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4684 		  -1, 1 },
4685 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4686 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4687 		{ 0 }
4688 	};
4689 
4690 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4691 		t4_fatal_err(adapter);
4692 }
4693 
4694 /*
4695  * CPL switch interrupt handler.
4696  */
4697 static void cplsw_intr_handler(struct adapter *adapter)
4698 {
4699 	static const struct intr_info cplsw_intr_info[] = {
4700 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4701 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4702 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4703 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4704 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4705 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4706 		{ 0 }
4707 	};
4708 
4709 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4710 		t4_fatal_err(adapter);
4711 }
4712 
4713 /*
4714  * LE interrupt handler.
4715  */
4716 static void le_intr_handler(struct adapter *adap)
4717 {
4718 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4719 	static const struct intr_info le_intr_info[] = {
4720 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4721 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4722 		{ PARITYERR_F, "LE parity error", -1, 1 },
4723 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4724 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4725 		{ 0 }
4726 	};
4727 
4728 	static struct intr_info t6_le_intr_info[] = {
4729 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4730 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4731 		{ CMDTIDERR_F, "LE cmd tid error", -1, 1 },
4732 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4733 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4734 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4735 		{ HASHTBLMEMCRCERR_F, "LE hash table mem crc error", -1, 0 },
4736 		{ 0 }
4737 	};
4738 
4739 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4740 				  (chip <= CHELSIO_T5) ?
4741 				  le_intr_info : t6_le_intr_info))
4742 		t4_fatal_err(adap);
4743 }
4744 
4745 /*
4746  * MPS interrupt handler.
4747  */
4748 static void mps_intr_handler(struct adapter *adapter)
4749 {
4750 	static const struct intr_info mps_rx_intr_info[] = {
4751 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4752 		{ 0 }
4753 	};
4754 	static const struct intr_info mps_tx_intr_info[] = {
4755 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4756 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4757 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4758 		  -1, 1 },
4759 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4760 		  -1, 1 },
4761 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4762 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4763 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4764 		{ 0 }
4765 	};
4766 	static const struct intr_info t6_mps_tx_intr_info[] = {
4767 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4768 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4769 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4770 		  -1, 1 },
4771 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4772 		  -1, 1 },
4773 		/* MPS Tx Bubble is normal for T6 */
4774 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4775 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4776 		{ 0 }
4777 	};
4778 	static const struct intr_info mps_trc_intr_info[] = {
4779 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4780 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4781 		  -1, 1 },
4782 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4783 		{ 0 }
4784 	};
4785 	static const struct intr_info mps_stat_sram_intr_info[] = {
4786 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4787 		{ 0 }
4788 	};
4789 	static const struct intr_info mps_stat_tx_intr_info[] = {
4790 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4791 		{ 0 }
4792 	};
4793 	static const struct intr_info mps_stat_rx_intr_info[] = {
4794 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4795 		{ 0 }
4796 	};
4797 	static const struct intr_info mps_cls_intr_info[] = {
4798 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4799 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4800 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4801 		{ 0 }
4802 	};
4803 
4804 	int fat;
4805 
4806 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4807 				    mps_rx_intr_info) +
4808 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4809 				    is_t6(adapter->params.chip)
4810 				    ? t6_mps_tx_intr_info
4811 				    : mps_tx_intr_info) +
4812 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4813 				    mps_trc_intr_info) +
4814 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4815 				    mps_stat_sram_intr_info) +
4816 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4817 				    mps_stat_tx_intr_info) +
4818 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4819 				    mps_stat_rx_intr_info) +
4820 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4821 				    mps_cls_intr_info);
4822 
4823 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4824 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4825 	if (fat)
4826 		t4_fatal_err(adapter);
4827 }
4828 
4829 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4830 		      ECC_UE_INT_CAUSE_F)
4831 
4832 /*
4833  * EDC/MC interrupt handler.
4834  */
4835 static void mem_intr_handler(struct adapter *adapter, int idx)
4836 {
4837 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4838 
4839 	unsigned int addr, cnt_addr, v;
4840 
4841 	if (idx <= MEM_EDC1) {
4842 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4843 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4844 	} else if (idx == MEM_MC) {
4845 		if (is_t4(adapter->params.chip)) {
4846 			addr = MC_INT_CAUSE_A;
4847 			cnt_addr = MC_ECC_STATUS_A;
4848 		} else {
4849 			addr = MC_P_INT_CAUSE_A;
4850 			cnt_addr = MC_P_ECC_STATUS_A;
4851 		}
4852 	} else {
4853 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4854 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4855 	}
4856 
4857 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4858 	if (v & PERR_INT_CAUSE_F)
4859 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4860 			  name[idx]);
4861 	if (v & ECC_CE_INT_CAUSE_F) {
4862 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4863 
4864 		t4_edc_err_read(adapter, idx);
4865 
4866 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4867 		if (printk_ratelimit())
4868 			dev_warn(adapter->pdev_dev,
4869 				 "%u %s correctable ECC data error%s\n",
4870 				 cnt, name[idx], cnt > 1 ? "s" : "");
4871 	}
4872 	if (v & ECC_UE_INT_CAUSE_F)
4873 		dev_alert(adapter->pdev_dev,
4874 			  "%s uncorrectable ECC data error\n", name[idx]);
4875 
4876 	t4_write_reg(adapter, addr, v);
4877 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4878 		t4_fatal_err(adapter);
4879 }
4880 
4881 /*
4882  * MA interrupt handler.
4883  */
4884 static void ma_intr_handler(struct adapter *adap)
4885 {
4886 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4887 
4888 	if (status & MEM_PERR_INT_CAUSE_F) {
4889 		dev_alert(adap->pdev_dev,
4890 			  "MA parity error, parity status %#x\n",
4891 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4892 		if (is_t5(adap->params.chip))
4893 			dev_alert(adap->pdev_dev,
4894 				  "MA parity error, parity status %#x\n",
4895 				  t4_read_reg(adap,
4896 					      MA_PARITY_ERROR_STATUS2_A));
4897 	}
4898 	if (status & MEM_WRAP_INT_CAUSE_F) {
4899 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4900 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4901 			  "client %u to address %#x\n",
4902 			  MEM_WRAP_CLIENT_NUM_G(v),
4903 			  MEM_WRAP_ADDRESS_G(v) << 4);
4904 	}
4905 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4906 	t4_fatal_err(adap);
4907 }
4908 
4909 /*
4910  * SMB interrupt handler.
4911  */
4912 static void smb_intr_handler(struct adapter *adap)
4913 {
4914 	static const struct intr_info smb_intr_info[] = {
4915 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4916 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4917 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4918 		{ 0 }
4919 	};
4920 
4921 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4922 		t4_fatal_err(adap);
4923 }
4924 
4925 /*
4926  * NC-SI interrupt handler.
4927  */
4928 static void ncsi_intr_handler(struct adapter *adap)
4929 {
4930 	static const struct intr_info ncsi_intr_info[] = {
4931 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4932 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4933 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4934 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4935 		{ 0 }
4936 	};
4937 
4938 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4939 		t4_fatal_err(adap);
4940 }
4941 
4942 /*
4943  * XGMAC interrupt handler.
4944  */
4945 static void xgmac_intr_handler(struct adapter *adap, int port)
4946 {
4947 	u32 v, int_cause_reg;
4948 
4949 	if (is_t4(adap->params.chip))
4950 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4951 	else
4952 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4953 
4954 	v = t4_read_reg(adap, int_cause_reg);
4955 
4956 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4957 	if (!v)
4958 		return;
4959 
4960 	if (v & TXFIFO_PRTY_ERR_F)
4961 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4962 			  port);
4963 	if (v & RXFIFO_PRTY_ERR_F)
4964 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4965 			  port);
4966 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4967 	t4_fatal_err(adap);
4968 }
4969 
4970 /*
4971  * PL interrupt handler.
4972  */
4973 static void pl_intr_handler(struct adapter *adap)
4974 {
4975 	static const struct intr_info pl_intr_info[] = {
4976 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4977 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4978 		{ 0 }
4979 	};
4980 
4981 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4982 		t4_fatal_err(adap);
4983 }
4984 
4985 #define PF_INTR_MASK (PFSW_F)
4986 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4987 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4988 		CPL_SWITCH_F | SGE_F | ULP_TX_F | SF_F)
4989 
4990 /**
4991  *	t4_slow_intr_handler - control path interrupt handler
4992  *	@adapter: the adapter
4993  *
4994  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4995  *	The designation 'slow' is because it involves register reads, while
4996  *	data interrupts typically don't involve any MMIOs.
4997  */
4998 int t4_slow_intr_handler(struct adapter *adapter)
4999 {
5000 	/* There are rare cases where a PL_INT_CAUSE bit may end up getting
5001 	 * set when the corresponding PL_INT_ENABLE bit isn't set.  It's
5002 	 * easiest just to mask that case here.
5003 	 */
5004 	u32 raw_cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
5005 	u32 enable = t4_read_reg(adapter, PL_INT_ENABLE_A);
5006 	u32 cause = raw_cause & enable;
5007 
5008 	if (!(cause & GLBL_INTR_MASK))
5009 		return 0;
5010 	if (cause & CIM_F)
5011 		cim_intr_handler(adapter);
5012 	if (cause & MPS_F)
5013 		mps_intr_handler(adapter);
5014 	if (cause & NCSI_F)
5015 		ncsi_intr_handler(adapter);
5016 	if (cause & PL_F)
5017 		pl_intr_handler(adapter);
5018 	if (cause & SMB_F)
5019 		smb_intr_handler(adapter);
5020 	if (cause & XGMAC0_F)
5021 		xgmac_intr_handler(adapter, 0);
5022 	if (cause & XGMAC1_F)
5023 		xgmac_intr_handler(adapter, 1);
5024 	if (cause & XGMAC_KR0_F)
5025 		xgmac_intr_handler(adapter, 2);
5026 	if (cause & XGMAC_KR1_F)
5027 		xgmac_intr_handler(adapter, 3);
5028 	if (cause & PCIE_F)
5029 		pcie_intr_handler(adapter);
5030 	if (cause & MC_F)
5031 		mem_intr_handler(adapter, MEM_MC);
5032 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
5033 		mem_intr_handler(adapter, MEM_MC1);
5034 	if (cause & EDC0_F)
5035 		mem_intr_handler(adapter, MEM_EDC0);
5036 	if (cause & EDC1_F)
5037 		mem_intr_handler(adapter, MEM_EDC1);
5038 	if (cause & LE_F)
5039 		le_intr_handler(adapter);
5040 	if (cause & TP_F)
5041 		tp_intr_handler(adapter);
5042 	if (cause & MA_F)
5043 		ma_intr_handler(adapter);
5044 	if (cause & PM_TX_F)
5045 		pmtx_intr_handler(adapter);
5046 	if (cause & PM_RX_F)
5047 		pmrx_intr_handler(adapter);
5048 	if (cause & ULP_RX_F)
5049 		ulprx_intr_handler(adapter);
5050 	if (cause & CPL_SWITCH_F)
5051 		cplsw_intr_handler(adapter);
5052 	if (cause & SGE_F)
5053 		sge_intr_handler(adapter);
5054 	if (cause & ULP_TX_F)
5055 		ulptx_intr_handler(adapter);
5056 
5057 	/* Clear the interrupts just processed for which we are the master. */
5058 	t4_write_reg(adapter, PL_INT_CAUSE_A, raw_cause & GLBL_INTR_MASK);
5059 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
5060 	return 1;
5061 }
5062 
5063 /**
5064  *	t4_intr_enable - enable interrupts
5065  *	@adapter: the adapter whose interrupts should be enabled
5066  *
5067  *	Enable PF-specific interrupts for the calling function and the top-level
5068  *	interrupt concentrator for global interrupts.  Interrupts are already
5069  *	enabled at each module,	here we just enable the roots of the interrupt
5070  *	hierarchies.
5071  *
5072  *	Note: this function should be called only when the driver manages
5073  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5074  *	function at a time should be doing this.
5075  */
5076 void t4_intr_enable(struct adapter *adapter)
5077 {
5078 	u32 val = 0;
5079 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5080 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5081 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5082 
5083 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
5084 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
5085 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
5086 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
5087 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
5088 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
5089 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
5090 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
5091 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
5092 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
5093 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
5094 }
5095 
5096 /**
5097  *	t4_intr_disable - disable interrupts
5098  *	@adapter: the adapter whose interrupts should be disabled
5099  *
5100  *	Disable interrupts.  We only disable the top-level interrupt
5101  *	concentrators.  The caller must be a PCI function managing global
5102  *	interrupts.
5103  */
5104 void t4_intr_disable(struct adapter *adapter)
5105 {
5106 	u32 whoami, pf;
5107 
5108 	if (pci_channel_offline(adapter->pdev))
5109 		return;
5110 
5111 	whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5112 	pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
5113 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5114 
5115 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
5116 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
5117 }
5118 
5119 unsigned int t4_chip_rss_size(struct adapter *adap)
5120 {
5121 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
5122 		return RSS_NENTRIES;
5123 	else
5124 		return T6_RSS_NENTRIES;
5125 }
5126 
5127 /**
5128  *	t4_config_rss_range - configure a portion of the RSS mapping table
5129  *	@adapter: the adapter
5130  *	@mbox: mbox to use for the FW command
5131  *	@viid: virtual interface whose RSS subtable is to be written
5132  *	@start: start entry in the table to write
5133  *	@n: how many table entries to write
5134  *	@rspq: values for the response queue lookup table
5135  *	@nrspq: number of values in @rspq
5136  *
5137  *	Programs the selected part of the VI's RSS mapping table with the
5138  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5139  *	until the full table range is populated.
5140  *
5141  *	The caller must ensure the values in @rspq are in the range allowed for
5142  *	@viid.
5143  */
5144 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5145 			int start, int n, const u16 *rspq, unsigned int nrspq)
5146 {
5147 	int ret;
5148 	const u16 *rsp = rspq;
5149 	const u16 *rsp_end = rspq + nrspq;
5150 	struct fw_rss_ind_tbl_cmd cmd;
5151 
5152 	memset(&cmd, 0, sizeof(cmd));
5153 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
5154 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5155 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
5156 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5157 
5158 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
5159 	while (n > 0) {
5160 		int nq = min(n, 32);
5161 		__be32 *qp = &cmd.iq0_to_iq2;
5162 
5163 		cmd.niqid = cpu_to_be16(nq);
5164 		cmd.startidx = cpu_to_be16(start);
5165 
5166 		start += nq;
5167 		n -= nq;
5168 
5169 		while (nq > 0) {
5170 			unsigned int v;
5171 
5172 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
5173 			if (++rsp >= rsp_end)
5174 				rsp = rspq;
5175 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
5176 			if (++rsp >= rsp_end)
5177 				rsp = rspq;
5178 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
5179 			if (++rsp >= rsp_end)
5180 				rsp = rspq;
5181 
5182 			*qp++ = cpu_to_be32(v);
5183 			nq -= 3;
5184 		}
5185 
5186 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5187 		if (ret)
5188 			return ret;
5189 	}
5190 	return 0;
5191 }
5192 
5193 /**
5194  *	t4_config_glbl_rss - configure the global RSS mode
5195  *	@adapter: the adapter
5196  *	@mbox: mbox to use for the FW command
5197  *	@mode: global RSS mode
5198  *	@flags: mode-specific flags
5199  *
5200  *	Sets the global RSS mode.
5201  */
5202 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5203 		       unsigned int flags)
5204 {
5205 	struct fw_rss_glb_config_cmd c;
5206 
5207 	memset(&c, 0, sizeof(c));
5208 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
5209 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
5210 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5211 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5212 		c.u.manual.mode_pkd =
5213 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5214 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5215 		c.u.basicvirtual.mode_pkd =
5216 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
5217 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5218 	} else
5219 		return -EINVAL;
5220 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5221 }
5222 
5223 /**
5224  *	t4_config_vi_rss - configure per VI RSS settings
5225  *	@adapter: the adapter
5226  *	@mbox: mbox to use for the FW command
5227  *	@viid: the VI id
5228  *	@flags: RSS flags
5229  *	@defq: id of the default RSS queue for the VI.
5230  *
5231  *	Configures VI-specific RSS properties.
5232  */
5233 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5234 		     unsigned int flags, unsigned int defq)
5235 {
5236 	struct fw_rss_vi_config_cmd c;
5237 
5238 	memset(&c, 0, sizeof(c));
5239 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
5240 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5241 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
5242 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5243 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5244 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
5245 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5246 }
5247 
5248 /* Read an RSS table row */
5249 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5250 {
5251 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
5252 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
5253 				   5, 0, val);
5254 }
5255 
5256 /**
5257  *	t4_read_rss - read the contents of the RSS mapping table
5258  *	@adapter: the adapter
5259  *	@map: holds the contents of the RSS mapping table
5260  *
5261  *	Reads the contents of the RSS hash->queue mapping table.
5262  */
5263 int t4_read_rss(struct adapter *adapter, u16 *map)
5264 {
5265 	int i, ret, nentries;
5266 	u32 val;
5267 
5268 	nentries = t4_chip_rss_size(adapter);
5269 	for (i = 0; i < nentries / 2; ++i) {
5270 		ret = rd_rss_row(adapter, i, &val);
5271 		if (ret)
5272 			return ret;
5273 		*map++ = LKPTBLQUEUE0_G(val);
5274 		*map++ = LKPTBLQUEUE1_G(val);
5275 	}
5276 	return 0;
5277 }
5278 
5279 static unsigned int t4_use_ldst(struct adapter *adap)
5280 {
5281 	return (adap->flags & CXGB4_FW_OK) && !adap->use_bd;
5282 }
5283 
5284 /**
5285  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5286  * @adap: the adapter
5287  * @cmd: TP fw ldst address space type
5288  * @vals: where the indirect register values are stored/written
5289  * @nregs: how many indirect registers to read/write
5290  * @start_index: index of first indirect register to read/write
5291  * @rw: Read (1) or Write (0)
5292  * @sleep_ok: if true we may sleep while awaiting command completion
5293  *
5294  * Access TP indirect registers through LDST
5295  */
5296 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5297 			    unsigned int nregs, unsigned int start_index,
5298 			    unsigned int rw, bool sleep_ok)
5299 {
5300 	int ret = 0;
5301 	unsigned int i;
5302 	struct fw_ldst_cmd c;
5303 
5304 	for (i = 0; i < nregs; i++) {
5305 		memset(&c, 0, sizeof(c));
5306 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5307 						FW_CMD_REQUEST_F |
5308 						(rw ? FW_CMD_READ_F :
5309 						      FW_CMD_WRITE_F) |
5310 						FW_LDST_CMD_ADDRSPACE_V(cmd));
5311 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5312 
5313 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5314 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5315 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5316 				      sleep_ok);
5317 		if (ret)
5318 			return ret;
5319 
5320 		if (rw)
5321 			vals[i] = be32_to_cpu(c.u.addrval.val);
5322 	}
5323 	return 0;
5324 }
5325 
5326 /**
5327  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5328  * @adap: the adapter
5329  * @reg_addr: Address Register
5330  * @reg_data: Data register
5331  * @buff: where the indirect register values are stored/written
5332  * @nregs: how many indirect registers to read/write
5333  * @start_index: index of first indirect register to read/write
5334  * @rw: READ(1) or WRITE(0)
5335  * @sleep_ok: if true we may sleep while awaiting command completion
5336  *
5337  * Read/Write TP indirect registers through LDST if possible.
5338  * Else, use backdoor access
5339  **/
5340 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5341 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5342 			      bool sleep_ok)
5343 {
5344 	int rc = -EINVAL;
5345 	int cmd;
5346 
5347 	switch (reg_addr) {
5348 	case TP_PIO_ADDR_A:
5349 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5350 		break;
5351 	case TP_TM_PIO_ADDR_A:
5352 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5353 		break;
5354 	case TP_MIB_INDEX_A:
5355 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5356 		break;
5357 	default:
5358 		goto indirect_access;
5359 	}
5360 
5361 	if (t4_use_ldst(adap))
5362 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5363 				      sleep_ok);
5364 
5365 indirect_access:
5366 
5367 	if (rc) {
5368 		if (rw)
5369 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5370 					 start_index);
5371 		else
5372 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5373 					  start_index);
5374 	}
5375 }
5376 
5377 /**
5378  * t4_tp_pio_read - Read TP PIO registers
5379  * @adap: the adapter
5380  * @buff: where the indirect register values are written
5381  * @nregs: how many indirect registers to read
5382  * @start_index: index of first indirect register to read
5383  * @sleep_ok: if true we may sleep while awaiting command completion
5384  *
5385  * Read TP PIO Registers
5386  **/
5387 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5388 		    u32 start_index, bool sleep_ok)
5389 {
5390 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5391 			  start_index, 1, sleep_ok);
5392 }
5393 
5394 /**
5395  * t4_tp_pio_write - Write TP PIO registers
5396  * @adap: the adapter
5397  * @buff: where the indirect register values are stored
5398  * @nregs: how many indirect registers to write
5399  * @start_index: index of first indirect register to write
5400  * @sleep_ok: if true we may sleep while awaiting command completion
5401  *
5402  * Write TP PIO Registers
5403  **/
5404 static void t4_tp_pio_write(struct adapter *adap, u32 *buff, u32 nregs,
5405 			    u32 start_index, bool sleep_ok)
5406 {
5407 	t4_tp_indirect_rw(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, buff, nregs,
5408 			  start_index, 0, sleep_ok);
5409 }
5410 
5411 /**
5412  * t4_tp_tm_pio_read - Read TP TM PIO registers
5413  * @adap: the adapter
5414  * @buff: where the indirect register values are written
5415  * @nregs: how many indirect registers to read
5416  * @start_index: index of first indirect register to read
5417  * @sleep_ok: if true we may sleep while awaiting command completion
5418  *
5419  * Read TP TM PIO Registers
5420  **/
5421 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5422 		       u32 start_index, bool sleep_ok)
5423 {
5424 	t4_tp_indirect_rw(adap, TP_TM_PIO_ADDR_A, TP_TM_PIO_DATA_A, buff,
5425 			  nregs, start_index, 1, sleep_ok);
5426 }
5427 
5428 /**
5429  * t4_tp_mib_read - Read TP MIB registers
5430  * @adap: the adapter
5431  * @buff: where the indirect register values are written
5432  * @nregs: how many indirect registers to read
5433  * @start_index: index of first indirect register to read
5434  * @sleep_ok: if true we may sleep while awaiting command completion
5435  *
5436  * Read TP MIB Registers
5437  **/
5438 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5439 		    bool sleep_ok)
5440 {
5441 	t4_tp_indirect_rw(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, buff, nregs,
5442 			  start_index, 1, sleep_ok);
5443 }
5444 
5445 /**
5446  *	t4_read_rss_key - read the global RSS key
5447  *	@adap: the adapter
5448  *	@key: 10-entry array holding the 320-bit RSS key
5449  *      @sleep_ok: if true we may sleep while awaiting command completion
5450  *
5451  *	Reads the global 320-bit RSS key.
5452  */
5453 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5454 {
5455 	t4_tp_pio_read(adap, key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5456 }
5457 
5458 /**
5459  *	t4_write_rss_key - program one of the RSS keys
5460  *	@adap: the adapter
5461  *	@key: 10-entry array holding the 320-bit RSS key
5462  *	@idx: which RSS key to write
5463  *      @sleep_ok: if true we may sleep while awaiting command completion
5464  *
5465  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5466  *	0..15 the corresponding entry in the RSS key table is written,
5467  *	otherwise the global RSS key is written.
5468  */
5469 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5470 		      bool sleep_ok)
5471 {
5472 	u8 rss_key_addr_cnt = 16;
5473 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
5474 
5475 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5476 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5477 	 * as index[5:4](upper 2) into key table
5478 	 */
5479 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
5480 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
5481 		rss_key_addr_cnt = 32;
5482 
5483 	t4_tp_pio_write(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, sleep_ok);
5484 
5485 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5486 		if (rss_key_addr_cnt > 16)
5487 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5488 				     KEYWRADDRX_V(idx >> 4) |
5489 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
5490 		else
5491 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
5492 				     KEYWRADDR_V(idx) | KEYWREN_F);
5493 	}
5494 }
5495 
5496 /**
5497  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5498  *	@adapter: the adapter
5499  *	@index: the entry in the PF RSS table to read
5500  *	@valp: where to store the returned value
5501  *      @sleep_ok: if true we may sleep while awaiting command completion
5502  *
5503  *	Reads the PF RSS Configuration Table at the specified index and returns
5504  *	the value found there.
5505  */
5506 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5507 			   u32 *valp, bool sleep_ok)
5508 {
5509 	t4_tp_pio_read(adapter, valp, 1, TP_RSS_PF0_CONFIG_A + index, sleep_ok);
5510 }
5511 
5512 /**
5513  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5514  *	@adapter: the adapter
5515  *	@index: the entry in the VF RSS table to read
5516  *	@vfl: where to store the returned VFL
5517  *	@vfh: where to store the returned VFH
5518  *      @sleep_ok: if true we may sleep while awaiting command completion
5519  *
5520  *	Reads the VF RSS Configuration Table at the specified index and returns
5521  *	the (VFL, VFH) values found there.
5522  */
5523 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5524 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5525 {
5526 	u32 vrt, mask, data;
5527 
5528 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
5529 		mask = VFWRADDR_V(VFWRADDR_M);
5530 		data = VFWRADDR_V(index);
5531 	} else {
5532 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
5533 		 data = T6_VFWRADDR_V(index);
5534 	}
5535 
5536 	/* Request that the index'th VF Table values be read into VFL/VFH.
5537 	 */
5538 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
5539 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
5540 	vrt |= data | VFRDEN_F;
5541 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
5542 
5543 	/* Grab the VFL/VFH values ...
5544 	 */
5545 	t4_tp_pio_read(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, sleep_ok);
5546 	t4_tp_pio_read(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, sleep_ok);
5547 }
5548 
5549 /**
5550  *	t4_read_rss_pf_map - read PF RSS Map
5551  *	@adapter: the adapter
5552  *      @sleep_ok: if true we may sleep while awaiting command completion
5553  *
5554  *	Reads the PF RSS Map register and returns its value.
5555  */
5556 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5557 {
5558 	u32 pfmap;
5559 
5560 	t4_tp_pio_read(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, sleep_ok);
5561 	return pfmap;
5562 }
5563 
5564 /**
5565  *	t4_read_rss_pf_mask - read PF RSS Mask
5566  *	@adapter: the adapter
5567  *      @sleep_ok: if true we may sleep while awaiting command completion
5568  *
5569  *	Reads the PF RSS Mask register and returns its value.
5570  */
5571 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5572 {
5573 	u32 pfmask;
5574 
5575 	t4_tp_pio_read(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, sleep_ok);
5576 	return pfmask;
5577 }
5578 
5579 /**
5580  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5581  *	@adap: the adapter
5582  *	@v4: holds the TCP/IP counter values
5583  *	@v6: holds the TCP/IPv6 counter values
5584  *      @sleep_ok: if true we may sleep while awaiting command completion
5585  *
5586  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5587  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5588  */
5589 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5590 			 struct tp_tcp_stats *v6, bool sleep_ok)
5591 {
5592 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
5593 
5594 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
5595 #define STAT(x)     val[STAT_IDX(x)]
5596 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5597 
5598 	if (v4) {
5599 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5600 			       TP_MIB_TCP_OUT_RST_A, sleep_ok);
5601 		v4->tcp_out_rsts = STAT(OUT_RST);
5602 		v4->tcp_in_segs  = STAT64(IN_SEG);
5603 		v4->tcp_out_segs = STAT64(OUT_SEG);
5604 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5605 	}
5606 	if (v6) {
5607 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5608 			       TP_MIB_TCP_V6OUT_RST_A, sleep_ok);
5609 		v6->tcp_out_rsts = STAT(OUT_RST);
5610 		v6->tcp_in_segs  = STAT64(IN_SEG);
5611 		v6->tcp_out_segs = STAT64(OUT_SEG);
5612 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5613 	}
5614 #undef STAT64
5615 #undef STAT
5616 #undef STAT_IDX
5617 }
5618 
5619 /**
5620  *	t4_tp_get_err_stats - read TP's error MIB counters
5621  *	@adap: the adapter
5622  *	@st: holds the counter values
5623  *      @sleep_ok: if true we may sleep while awaiting command completion
5624  *
5625  *	Returns the values of TP's error counters.
5626  */
5627 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5628 			 bool sleep_ok)
5629 {
5630 	int nchan = adap->params.arch.nchan;
5631 
5632 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A,
5633 		       sleep_ok);
5634 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A,
5635 		       sleep_ok);
5636 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A,
5637 		       sleep_ok);
5638 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5639 		       TP_MIB_TNL_CNG_DROP_0_A, sleep_ok);
5640 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5641 		       TP_MIB_OFD_CHN_DROP_0_A, sleep_ok);
5642 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A,
5643 		       sleep_ok);
5644 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5645 		       TP_MIB_OFD_VLN_DROP_0_A, sleep_ok);
5646 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5647 		       TP_MIB_TCP_V6IN_ERR_0_A, sleep_ok);
5648 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A,
5649 		       sleep_ok);
5650 }
5651 
5652 /**
5653  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5654  *	@adap: the adapter
5655  *	@st: holds the counter values
5656  *      @sleep_ok: if true we may sleep while awaiting command completion
5657  *
5658  *	Returns the values of TP's CPL counters.
5659  */
5660 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5661 			 bool sleep_ok)
5662 {
5663 	int nchan = adap->params.arch.nchan;
5664 
5665 	t4_tp_mib_read(adap, st->req, nchan, TP_MIB_CPL_IN_REQ_0_A, sleep_ok);
5666 
5667 	t4_tp_mib_read(adap, st->rsp, nchan, TP_MIB_CPL_OUT_RSP_0_A, sleep_ok);
5668 }
5669 
5670 /**
5671  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5672  *	@adap: the adapter
5673  *	@st: holds the counter values
5674  *      @sleep_ok: if true we may sleep while awaiting command completion
5675  *
5676  *	Returns the values of TP's RDMA counters.
5677  */
5678 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5679 			  bool sleep_ok)
5680 {
5681 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, TP_MIB_RQE_DFR_PKT_A,
5682 		       sleep_ok);
5683 }
5684 
5685 /**
5686  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5687  *	@adap: the adapter
5688  *	@idx: the port index
5689  *	@st: holds the counter values
5690  *      @sleep_ok: if true we may sleep while awaiting command completion
5691  *
5692  *	Returns the values of TP's FCoE counters for the selected port.
5693  */
5694 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5695 		       struct tp_fcoe_stats *st, bool sleep_ok)
5696 {
5697 	u32 val[2];
5698 
5699 	t4_tp_mib_read(adap, &st->frames_ddp, 1, TP_MIB_FCOE_DDP_0_A + idx,
5700 		       sleep_ok);
5701 
5702 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5703 		       TP_MIB_FCOE_DROP_0_A + idx, sleep_ok);
5704 
5705 	t4_tp_mib_read(adap, val, 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx,
5706 		       sleep_ok);
5707 
5708 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5709 }
5710 
5711 /**
5712  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5713  *	@adap: the adapter
5714  *	@st: holds the counter values
5715  *      @sleep_ok: if true we may sleep while awaiting command completion
5716  *
5717  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5718  */
5719 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5720 		      bool sleep_ok)
5721 {
5722 	u32 val[4];
5723 
5724 	t4_tp_mib_read(adap, val, 4, TP_MIB_USM_PKTS_A, sleep_ok);
5725 	st->frames = val[0];
5726 	st->drops = val[1];
5727 	st->octets = ((u64)val[2] << 32) | val[3];
5728 }
5729 
5730 /**
5731  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5732  *	@adap: the adapter
5733  *	@mtus: where to store the MTU values
5734  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5735  *
5736  *	Reads the HW path MTU table.
5737  */
5738 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5739 {
5740 	u32 v;
5741 	int i;
5742 
5743 	for (i = 0; i < NMTUS; ++i) {
5744 		t4_write_reg(adap, TP_MTU_TABLE_A,
5745 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
5746 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
5747 		mtus[i] = MTUVALUE_G(v);
5748 		if (mtu_log)
5749 			mtu_log[i] = MTUWIDTH_G(v);
5750 	}
5751 }
5752 
5753 /**
5754  *	t4_read_cong_tbl - reads the congestion control table
5755  *	@adap: the adapter
5756  *	@incr: where to store the alpha values
5757  *
5758  *	Reads the additive increments programmed into the HW congestion
5759  *	control table.
5760  */
5761 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5762 {
5763 	unsigned int mtu, w;
5764 
5765 	for (mtu = 0; mtu < NMTUS; ++mtu)
5766 		for (w = 0; w < NCCTRL_WIN; ++w) {
5767 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5768 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5769 			incr[mtu][w] = (u16)t4_read_reg(adap,
5770 						TP_CCTRL_TABLE_A) & 0x1fff;
5771 		}
5772 }
5773 
5774 /**
5775  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5776  *	@adap: the adapter
5777  *	@addr: the indirect TP register address
5778  *	@mask: specifies the field within the register to modify
5779  *	@val: new value for the field
5780  *
5781  *	Sets a field of an indirect TP register to the given value.
5782  */
5783 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5784 			    unsigned int mask, unsigned int val)
5785 {
5786 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5787 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5788 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5789 }
5790 
5791 /**
5792  *	init_cong_ctrl - initialize congestion control parameters
5793  *	@a: the alpha values for congestion control
5794  *	@b: the beta values for congestion control
5795  *
5796  *	Initialize the congestion control parameters.
5797  */
5798 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5799 {
5800 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5801 	a[9] = 2;
5802 	a[10] = 3;
5803 	a[11] = 4;
5804 	a[12] = 5;
5805 	a[13] = 6;
5806 	a[14] = 7;
5807 	a[15] = 8;
5808 	a[16] = 9;
5809 	a[17] = 10;
5810 	a[18] = 14;
5811 	a[19] = 17;
5812 	a[20] = 21;
5813 	a[21] = 25;
5814 	a[22] = 30;
5815 	a[23] = 35;
5816 	a[24] = 45;
5817 	a[25] = 60;
5818 	a[26] = 80;
5819 	a[27] = 100;
5820 	a[28] = 200;
5821 	a[29] = 300;
5822 	a[30] = 400;
5823 	a[31] = 500;
5824 
5825 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5826 	b[9] = b[10] = 1;
5827 	b[11] = b[12] = 2;
5828 	b[13] = b[14] = b[15] = b[16] = 3;
5829 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5830 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5831 	b[28] = b[29] = 6;
5832 	b[30] = b[31] = 7;
5833 }
5834 
5835 /* The minimum additive increment value for the congestion control table */
5836 #define CC_MIN_INCR 2U
5837 
5838 /**
5839  *	t4_load_mtus - write the MTU and congestion control HW tables
5840  *	@adap: the adapter
5841  *	@mtus: the values for the MTU table
5842  *	@alpha: the values for the congestion control alpha parameter
5843  *	@beta: the values for the congestion control beta parameter
5844  *
5845  *	Write the HW MTU table with the supplied MTUs and the high-speed
5846  *	congestion control table with the supplied alpha, beta, and MTUs.
5847  *	We write the two tables together because the additive increments
5848  *	depend on the MTUs.
5849  */
5850 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5851 		  const unsigned short *alpha, const unsigned short *beta)
5852 {
5853 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5854 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5855 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5856 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5857 	};
5858 
5859 	unsigned int i, w;
5860 
5861 	for (i = 0; i < NMTUS; ++i) {
5862 		unsigned int mtu = mtus[i];
5863 		unsigned int log2 = fls(mtu);
5864 
5865 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5866 			log2--;
5867 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5868 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5869 
5870 		for (w = 0; w < NCCTRL_WIN; ++w) {
5871 			unsigned int inc;
5872 
5873 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5874 				  CC_MIN_INCR);
5875 
5876 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5877 				     (w << 16) | (beta[w] << 13) | inc);
5878 		}
5879 	}
5880 }
5881 
5882 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5883  * clocks.  The formula is
5884  *
5885  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5886  *
5887  * which is equivalent to
5888  *
5889  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5890  */
5891 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5892 {
5893 	u64 v = bytes256 * adap->params.vpd.cclk;
5894 
5895 	return v * 62 + v / 2;
5896 }
5897 
5898 /**
5899  *	t4_get_chan_txrate - get the current per channel Tx rates
5900  *	@adap: the adapter
5901  *	@nic_rate: rates for NIC traffic
5902  *	@ofld_rate: rates for offloaded traffic
5903  *
5904  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5905  *	for each channel.
5906  */
5907 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5908 {
5909 	u32 v;
5910 
5911 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5912 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5913 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5914 	if (adap->params.arch.nchan == NCHAN) {
5915 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5916 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5917 	}
5918 
5919 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5920 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5921 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5922 	if (adap->params.arch.nchan == NCHAN) {
5923 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5924 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5925 	}
5926 }
5927 
5928 /**
5929  *	t4_set_trace_filter - configure one of the tracing filters
5930  *	@adap: the adapter
5931  *	@tp: the desired trace filter parameters
5932  *	@idx: which filter to configure
5933  *	@enable: whether to enable or disable the filter
5934  *
5935  *	Configures one of the tracing filters available in HW.  If @enable is
5936  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5937  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5938  */
5939 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5940 			int idx, int enable)
5941 {
5942 	int i, ofst = idx * 4;
5943 	u32 data_reg, mask_reg, cfg;
5944 
5945 	if (!enable) {
5946 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5947 		return 0;
5948 	}
5949 
5950 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5951 	if (cfg & TRCMULTIFILTER_F) {
5952 		/* If multiple tracers are enabled, then maximum
5953 		 * capture size is 2.5KB (FIFO size of a single channel)
5954 		 * minus 2 flits for CPL_TRACE_PKT header.
5955 		 */
5956 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5957 			return -EINVAL;
5958 	} else {
5959 		/* If multiple tracers are disabled, to avoid deadlocks
5960 		 * maximum packet capture size of 9600 bytes is recommended.
5961 		 * Also in this mode, only trace0 can be enabled and running.
5962 		 */
5963 		if (tp->snap_len > 9600 || idx)
5964 			return -EINVAL;
5965 	}
5966 
5967 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5968 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5969 	    tp->min_len > TFMINPKTSIZE_M)
5970 		return -EINVAL;
5971 
5972 	/* stop the tracer we'll be changing */
5973 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5974 
5975 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5976 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5977 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5978 
5979 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5980 		t4_write_reg(adap, data_reg, tp->data[i]);
5981 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5982 	}
5983 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5984 		     TFCAPTUREMAX_V(tp->snap_len) |
5985 		     TFMINPKTSIZE_V(tp->min_len));
5986 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5987 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5988 		     (is_t4(adap->params.chip) ?
5989 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5990 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5991 		     T5_TFINVERTMATCH_V(tp->invert)));
5992 
5993 	return 0;
5994 }
5995 
5996 /**
5997  *	t4_get_trace_filter - query one of the tracing filters
5998  *	@adap: the adapter
5999  *	@tp: the current trace filter parameters
6000  *	@idx: which trace filter to query
6001  *	@enabled: non-zero if the filter is enabled
6002  *
6003  *	Returns the current settings of one of the HW tracing filters.
6004  */
6005 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6006 			 int *enabled)
6007 {
6008 	u32 ctla, ctlb;
6009 	int i, ofst = idx * 4;
6010 	u32 data_reg, mask_reg;
6011 
6012 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
6013 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
6014 
6015 	if (is_t4(adap->params.chip)) {
6016 		*enabled = !!(ctla & TFEN_F);
6017 		tp->port =  TFPORT_G(ctla);
6018 		tp->invert = !!(ctla & TFINVERTMATCH_F);
6019 	} else {
6020 		*enabled = !!(ctla & T5_TFEN_F);
6021 		tp->port = T5_TFPORT_G(ctla);
6022 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
6023 	}
6024 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
6025 	tp->min_len = TFMINPKTSIZE_G(ctlb);
6026 	tp->skip_ofst = TFOFFSET_G(ctla);
6027 	tp->skip_len = TFLENGTH_G(ctla);
6028 
6029 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
6030 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
6031 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
6032 
6033 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6034 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6035 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6036 	}
6037 }
6038 
6039 /**
6040  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6041  *	@adap: the adapter
6042  *	@cnt: where to store the count statistics
6043  *	@cycles: where to store the cycle statistics
6044  *
6045  *	Returns performance statistics from PMTX.
6046  */
6047 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6048 {
6049 	int i;
6050 	u32 data[2];
6051 
6052 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6053 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
6054 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
6055 		if (is_t4(adap->params.chip)) {
6056 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
6057 		} else {
6058 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
6059 					 PM_TX_DBG_DATA_A, data, 2,
6060 					 PM_TX_DBG_STAT_MSB_A);
6061 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6062 		}
6063 	}
6064 }
6065 
6066 /**
6067  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6068  *	@adap: the adapter
6069  *	@cnt: where to store the count statistics
6070  *	@cycles: where to store the cycle statistics
6071  *
6072  *	Returns performance statistics from PMRX.
6073  */
6074 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6075 {
6076 	int i;
6077 	u32 data[2];
6078 
6079 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
6080 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
6081 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
6082 		if (is_t4(adap->params.chip)) {
6083 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
6084 		} else {
6085 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
6086 					 PM_RX_DBG_DATA_A, data, 2,
6087 					 PM_RX_DBG_STAT_MSB_A);
6088 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6089 		}
6090 	}
6091 }
6092 
6093 /**
6094  *	compute_mps_bg_map - compute the MPS Buffer Group Map for a Port
6095  *	@adapter: the adapter
6096  *	@pidx: the port index
6097  *
6098  *	Computes and returns a bitmap indicating which MPS buffer groups are
6099  *	associated with the given Port.  Bit i is set if buffer group i is
6100  *	used by the Port.
6101  */
6102 static inline unsigned int compute_mps_bg_map(struct adapter *adapter,
6103 					      int pidx)
6104 {
6105 	unsigned int chip_version, nports;
6106 
6107 	chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6108 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6109 
6110 	switch (chip_version) {
6111 	case CHELSIO_T4:
6112 	case CHELSIO_T5:
6113 		switch (nports) {
6114 		case 1: return 0xf;
6115 		case 2: return 3 << (2 * pidx);
6116 		case 4: return 1 << pidx;
6117 		}
6118 		break;
6119 
6120 	case CHELSIO_T6:
6121 		switch (nports) {
6122 		case 2: return 1 << (2 * pidx);
6123 		}
6124 		break;
6125 	}
6126 
6127 	dev_err(adapter->pdev_dev, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
6128 		chip_version, nports);
6129 
6130 	return 0;
6131 }
6132 
6133 /**
6134  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6135  *	@adapter: the adapter
6136  *	@pidx: the port index
6137  *
6138  *	Returns a bitmap indicating which MPS buffer groups are associated
6139  *	with the given Port.  Bit i is set if buffer group i is used by the
6140  *	Port.
6141  */
6142 unsigned int t4_get_mps_bg_map(struct adapter *adapter, int pidx)
6143 {
6144 	u8 *mps_bg_map;
6145 	unsigned int nports;
6146 
6147 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6148 	if (pidx >= nports) {
6149 		CH_WARN(adapter, "MPS Port Index %d >= Nports %d\n",
6150 			pidx, nports);
6151 		return 0;
6152 	}
6153 
6154 	/* If we've already retrieved/computed this, just return the result.
6155 	 */
6156 	mps_bg_map = adapter->params.mps_bg_map;
6157 	if (mps_bg_map[pidx])
6158 		return mps_bg_map[pidx];
6159 
6160 	/* Newer Firmware can tell us what the MPS Buffer Group Map is.
6161 	 * If we're talking to such Firmware, let it tell us.  If the new
6162 	 * API isn't supported, revert back to old hardcoded way.  The value
6163 	 * obtained from Firmware is encoded in below format:
6164 	 *
6165 	 * val = (( MPSBGMAP[Port 3] << 24 ) |
6166 	 *        ( MPSBGMAP[Port 2] << 16 ) |
6167 	 *        ( MPSBGMAP[Port 1] <<  8 ) |
6168 	 *        ( MPSBGMAP[Port 0] <<  0 ))
6169 	 */
6170 	if (adapter->flags & CXGB4_FW_OK) {
6171 		u32 param, val;
6172 		int ret;
6173 
6174 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6175 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_MPSBGMAP));
6176 		ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6177 					 0, 1, &param, &val);
6178 		if (!ret) {
6179 			int p;
6180 
6181 			/* Store the BG Map for all of the Ports in order to
6182 			 * avoid more calls to the Firmware in the future.
6183 			 */
6184 			for (p = 0; p < MAX_NPORTS; p++, val >>= 8)
6185 				mps_bg_map[p] = val & 0xff;
6186 
6187 			return mps_bg_map[pidx];
6188 		}
6189 	}
6190 
6191 	/* Either we're not talking to the Firmware or we're dealing with
6192 	 * older Firmware which doesn't support the new API to get the MPS
6193 	 * Buffer Group Map.  Fall back to computing it ourselves.
6194 	 */
6195 	mps_bg_map[pidx] = compute_mps_bg_map(adapter, pidx);
6196 	return mps_bg_map[pidx];
6197 }
6198 
6199 /**
6200  *      t4_get_tp_e2c_map - return the E2C channel map associated with a port
6201  *      @adapter: the adapter
6202  *      @pidx: the port index
6203  */
6204 static unsigned int t4_get_tp_e2c_map(struct adapter *adapter, int pidx)
6205 {
6206 	unsigned int nports;
6207 	u32 param, val = 0;
6208 	int ret;
6209 
6210 	nports = 1 << NUMPORTS_G(t4_read_reg(adapter, MPS_CMN_CTL_A));
6211 	if (pidx >= nports) {
6212 		CH_WARN(adapter, "TP E2C Channel Port Index %d >= Nports %d\n",
6213 			pidx, nports);
6214 		return 0;
6215 	}
6216 
6217 	/* FW version >= 1.16.44.0 can determine E2C channel map using
6218 	 * FW_PARAMS_PARAM_DEV_TPCHMAP API.
6219 	 */
6220 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6221 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPCHMAP));
6222 	ret = t4_query_params_ns(adapter, adapter->mbox, adapter->pf,
6223 				 0, 1, &param, &val);
6224 	if (!ret)
6225 		return (val >> (8 * pidx)) & 0xff;
6226 
6227 	return 0;
6228 }
6229 
6230 /**
6231  *	t4_get_tp_ch_map - return TP ingress channels associated with a port
6232  *	@adap: the adapter
6233  *	@pidx: the port index
6234  *
6235  *	Returns a bitmap indicating which TP Ingress Channels are associated
6236  *	with a given Port.  Bit i is set if TP Ingress Channel i is used by
6237  *	the Port.
6238  */
6239 unsigned int t4_get_tp_ch_map(struct adapter *adap, int pidx)
6240 {
6241 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
6242 	unsigned int nports = 1 << NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
6243 
6244 	if (pidx >= nports) {
6245 		dev_warn(adap->pdev_dev, "TP Port Index %d >= Nports %d\n",
6246 			 pidx, nports);
6247 		return 0;
6248 	}
6249 
6250 	switch (chip_version) {
6251 	case CHELSIO_T4:
6252 	case CHELSIO_T5:
6253 		/* Note that this happens to be the same values as the MPS
6254 		 * Buffer Group Map for these Chips.  But we replicate the code
6255 		 * here because they're really separate concepts.
6256 		 */
6257 		switch (nports) {
6258 		case 1: return 0xf;
6259 		case 2: return 3 << (2 * pidx);
6260 		case 4: return 1 << pidx;
6261 		}
6262 		break;
6263 
6264 	case CHELSIO_T6:
6265 		switch (nports) {
6266 		case 1:
6267 		case 2: return 1 << pidx;
6268 		}
6269 		break;
6270 	}
6271 
6272 	dev_err(adap->pdev_dev, "Need TP Channel Map for Chip %0x, Nports %d\n",
6273 		chip_version, nports);
6274 	return 0;
6275 }
6276 
6277 /**
6278  *      t4_get_port_type_description - return Port Type string description
6279  *      @port_type: firmware Port Type enumeration
6280  */
6281 const char *t4_get_port_type_description(enum fw_port_type port_type)
6282 {
6283 	static const char *const port_type_description[] = {
6284 		"Fiber_XFI",
6285 		"Fiber_XAUI",
6286 		"BT_SGMII",
6287 		"BT_XFI",
6288 		"BT_XAUI",
6289 		"KX4",
6290 		"CX4",
6291 		"KX",
6292 		"KR",
6293 		"SFP",
6294 		"BP_AP",
6295 		"BP4_AP",
6296 		"QSFP_10G",
6297 		"QSA",
6298 		"QSFP",
6299 		"BP40_BA",
6300 		"KR4_100G",
6301 		"CR4_QSFP",
6302 		"CR_QSFP",
6303 		"CR2_QSFP",
6304 		"SFP28",
6305 		"KR_SFP28",
6306 		"KR_XLAUI"
6307 	};
6308 
6309 	if (port_type < ARRAY_SIZE(port_type_description))
6310 		return port_type_description[port_type];
6311 	return "UNKNOWN";
6312 }
6313 
6314 /**
6315  *      t4_get_port_stats_offset - collect port stats relative to a previous
6316  *                                 snapshot
6317  *      @adap: The adapter
6318  *      @idx: The port
6319  *      @stats: Current stats to fill
6320  *      @offset: Previous stats snapshot
6321  */
6322 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6323 			      struct port_stats *stats,
6324 			      struct port_stats *offset)
6325 {
6326 	u64 *s, *o;
6327 	int i;
6328 
6329 	t4_get_port_stats(adap, idx, stats);
6330 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
6331 			i < (sizeof(struct port_stats) / sizeof(u64));
6332 			i++, s++, o++)
6333 		*s -= *o;
6334 }
6335 
6336 /**
6337  *	t4_get_port_stats - collect port statistics
6338  *	@adap: the adapter
6339  *	@idx: the port index
6340  *	@p: the stats structure to fill
6341  *
6342  *	Collect statistics related to the given port from HW.
6343  */
6344 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6345 {
6346 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6347 	u32 stat_ctl = t4_read_reg(adap, MPS_STAT_CTL_A);
6348 
6349 #define GET_STAT(name) \
6350 	t4_read_reg64(adap, \
6351 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
6352 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
6353 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6354 
6355 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
6356 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
6357 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
6358 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
6359 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
6360 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
6361 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
6362 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
6363 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
6364 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
6365 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
6366 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
6367 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
6368 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
6369 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
6370 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
6371 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
6372 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
6373 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
6374 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
6375 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
6376 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
6377 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
6378 
6379 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6380 		if (stat_ctl & COUNTPAUSESTATTX_F)
6381 			p->tx_frames_64 -= p->tx_pause;
6382 		if (stat_ctl & COUNTPAUSEMCTX_F)
6383 			p->tx_mcast_frames -= p->tx_pause;
6384 	}
6385 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
6386 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
6387 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
6388 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
6389 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
6390 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
6391 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
6392 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
6393 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
6394 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
6395 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
6396 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
6397 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
6398 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
6399 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
6400 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
6401 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
6402 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
6403 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
6404 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
6405 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
6406 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
6407 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
6408 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
6409 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
6410 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
6411 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
6412 
6413 	if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
6414 		if (stat_ctl & COUNTPAUSESTATRX_F)
6415 			p->rx_frames_64 -= p->rx_pause;
6416 		if (stat_ctl & COUNTPAUSEMCRX_F)
6417 			p->rx_mcast_frames -= p->rx_pause;
6418 	}
6419 
6420 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6421 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6422 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6423 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6424 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6425 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6426 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6427 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6428 
6429 #undef GET_STAT
6430 #undef GET_STAT_COM
6431 }
6432 
6433 /**
6434  *	t4_get_lb_stats - collect loopback port statistics
6435  *	@adap: the adapter
6436  *	@idx: the loopback port index
6437  *	@p: the stats structure to fill
6438  *
6439  *	Return HW statistics for the given loopback port.
6440  */
6441 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6442 {
6443 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
6444 
6445 #define GET_STAT(name) \
6446 	t4_read_reg64(adap, \
6447 	(is_t4(adap->params.chip) ? \
6448 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
6449 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
6450 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
6451 
6452 	p->octets           = GET_STAT(BYTES);
6453 	p->frames           = GET_STAT(FRAMES);
6454 	p->bcast_frames     = GET_STAT(BCAST);
6455 	p->mcast_frames     = GET_STAT(MCAST);
6456 	p->ucast_frames     = GET_STAT(UCAST);
6457 	p->error_frames     = GET_STAT(ERROR);
6458 
6459 	p->frames_64        = GET_STAT(64B);
6460 	p->frames_65_127    = GET_STAT(65B_127B);
6461 	p->frames_128_255   = GET_STAT(128B_255B);
6462 	p->frames_256_511   = GET_STAT(256B_511B);
6463 	p->frames_512_1023  = GET_STAT(512B_1023B);
6464 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
6465 	p->frames_1519_max  = GET_STAT(1519B_MAX);
6466 	p->drop             = GET_STAT(DROP_FRAMES);
6467 
6468 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6469 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6470 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6471 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6472 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6473 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6474 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6475 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6476 
6477 #undef GET_STAT
6478 #undef GET_STAT_COM
6479 }
6480 
6481 /*     t4_mk_filtdelwr - create a delete filter WR
6482  *     @ftid: the filter ID
6483  *     @wr: the filter work request to populate
6484  *     @qid: ingress queue to receive the delete notification
6485  *
6486  *     Creates a filter work request to delete the supplied filter.  If @qid is
6487  *     negative the delete notification is suppressed.
6488  */
6489 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6490 {
6491 	memset(wr, 0, sizeof(*wr));
6492 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
6493 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
6494 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
6495 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
6496 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
6497 	if (qid >= 0)
6498 		wr->rx_chan_rx_rpl_iq =
6499 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
6500 }
6501 
6502 #define INIT_CMD(var, cmd, rd_wr) do { \
6503 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
6504 					FW_CMD_REQUEST_F | \
6505 					FW_CMD_##rd_wr##_F); \
6506 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6507 } while (0)
6508 
6509 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6510 			  u32 addr, u32 val)
6511 {
6512 	u32 ldst_addrspace;
6513 	struct fw_ldst_cmd c;
6514 
6515 	memset(&c, 0, sizeof(c));
6516 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
6517 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6518 					FW_CMD_REQUEST_F |
6519 					FW_CMD_WRITE_F |
6520 					ldst_addrspace);
6521 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6522 	c.u.addrval.addr = cpu_to_be32(addr);
6523 	c.u.addrval.val = cpu_to_be32(val);
6524 
6525 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6526 }
6527 
6528 /**
6529  *	t4_mdio_rd - read a PHY register through MDIO
6530  *	@adap: the adapter
6531  *	@mbox: mailbox to use for the FW command
6532  *	@phy_addr: the PHY address
6533  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6534  *	@reg: the register to read
6535  *	@valp: where to store the value
6536  *
6537  *	Issues a FW command through the given mailbox to read a PHY register.
6538  */
6539 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6540 	       unsigned int mmd, unsigned int reg, u16 *valp)
6541 {
6542 	int ret;
6543 	u32 ldst_addrspace;
6544 	struct fw_ldst_cmd c;
6545 
6546 	memset(&c, 0, sizeof(c));
6547 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6548 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6549 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6550 					ldst_addrspace);
6551 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6552 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6553 					 FW_LDST_CMD_MMD_V(mmd));
6554 	c.u.mdio.raddr = cpu_to_be16(reg);
6555 
6556 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6557 	if (ret == 0)
6558 		*valp = be16_to_cpu(c.u.mdio.rval);
6559 	return ret;
6560 }
6561 
6562 /**
6563  *	t4_mdio_wr - write a PHY register through MDIO
6564  *	@adap: the adapter
6565  *	@mbox: mailbox to use for the FW command
6566  *	@phy_addr: the PHY address
6567  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6568  *	@reg: the register to write
6569  *	@val: value to write
6570  *
6571  *	Issues a FW command through the given mailbox to write a PHY register.
6572  */
6573 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6574 	       unsigned int mmd, unsigned int reg, u16 val)
6575 {
6576 	u32 ldst_addrspace;
6577 	struct fw_ldst_cmd c;
6578 
6579 	memset(&c, 0, sizeof(c));
6580 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
6581 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6582 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6583 					ldst_addrspace);
6584 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6585 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
6586 					 FW_LDST_CMD_MMD_V(mmd));
6587 	c.u.mdio.raddr = cpu_to_be16(reg);
6588 	c.u.mdio.rval = cpu_to_be16(val);
6589 
6590 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6591 }
6592 
6593 /**
6594  *	t4_sge_decode_idma_state - decode the idma state
6595  *	@adapter: the adapter
6596  *	@state: the state idma is stuck in
6597  */
6598 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6599 {
6600 	static const char * const t4_decode[] = {
6601 		"IDMA_IDLE",
6602 		"IDMA_PUSH_MORE_CPL_FIFO",
6603 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6604 		"Not used",
6605 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6606 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6607 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6608 		"IDMA_SEND_FIFO_TO_IMSG",
6609 		"IDMA_FL_REQ_DATA_FL_PREP",
6610 		"IDMA_FL_REQ_DATA_FL",
6611 		"IDMA_FL_DROP",
6612 		"IDMA_FL_H_REQ_HEADER_FL",
6613 		"IDMA_FL_H_SEND_PCIEHDR",
6614 		"IDMA_FL_H_PUSH_CPL_FIFO",
6615 		"IDMA_FL_H_SEND_CPL",
6616 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6617 		"IDMA_FL_H_SEND_IP_HDR",
6618 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6619 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6620 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6621 		"IDMA_FL_D_SEND_PCIEHDR",
6622 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6623 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6624 		"IDMA_FL_SEND_PCIEHDR",
6625 		"IDMA_FL_PUSH_CPL_FIFO",
6626 		"IDMA_FL_SEND_CPL",
6627 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6628 		"IDMA_FL_SEND_PAYLOAD",
6629 		"IDMA_FL_REQ_NEXT_DATA_FL",
6630 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6631 		"IDMA_FL_SEND_PADDING",
6632 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6633 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6634 		"IDMA_FL_REQ_DATAFL_DONE",
6635 		"IDMA_FL_REQ_HEADERFL_DONE",
6636 	};
6637 	static const char * const t5_decode[] = {
6638 		"IDMA_IDLE",
6639 		"IDMA_ALMOST_IDLE",
6640 		"IDMA_PUSH_MORE_CPL_FIFO",
6641 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6642 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6643 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6644 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6645 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6646 		"IDMA_SEND_FIFO_TO_IMSG",
6647 		"IDMA_FL_REQ_DATA_FL",
6648 		"IDMA_FL_DROP",
6649 		"IDMA_FL_DROP_SEND_INC",
6650 		"IDMA_FL_H_REQ_HEADER_FL",
6651 		"IDMA_FL_H_SEND_PCIEHDR",
6652 		"IDMA_FL_H_PUSH_CPL_FIFO",
6653 		"IDMA_FL_H_SEND_CPL",
6654 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6655 		"IDMA_FL_H_SEND_IP_HDR",
6656 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6657 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6658 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6659 		"IDMA_FL_D_SEND_PCIEHDR",
6660 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6661 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6662 		"IDMA_FL_SEND_PCIEHDR",
6663 		"IDMA_FL_PUSH_CPL_FIFO",
6664 		"IDMA_FL_SEND_CPL",
6665 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6666 		"IDMA_FL_SEND_PAYLOAD",
6667 		"IDMA_FL_REQ_NEXT_DATA_FL",
6668 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6669 		"IDMA_FL_SEND_PADDING",
6670 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6671 	};
6672 	static const char * const t6_decode[] = {
6673 		"IDMA_IDLE",
6674 		"IDMA_PUSH_MORE_CPL_FIFO",
6675 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6676 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6677 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6678 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6679 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6680 		"IDMA_FL_REQ_DATA_FL",
6681 		"IDMA_FL_DROP",
6682 		"IDMA_FL_DROP_SEND_INC",
6683 		"IDMA_FL_H_REQ_HEADER_FL",
6684 		"IDMA_FL_H_SEND_PCIEHDR",
6685 		"IDMA_FL_H_PUSH_CPL_FIFO",
6686 		"IDMA_FL_H_SEND_CPL",
6687 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6688 		"IDMA_FL_H_SEND_IP_HDR",
6689 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6690 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6691 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6692 		"IDMA_FL_D_SEND_PCIEHDR",
6693 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6694 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6695 		"IDMA_FL_SEND_PCIEHDR",
6696 		"IDMA_FL_PUSH_CPL_FIFO",
6697 		"IDMA_FL_SEND_CPL",
6698 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6699 		"IDMA_FL_SEND_PAYLOAD",
6700 		"IDMA_FL_REQ_NEXT_DATA_FL",
6701 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6702 		"IDMA_FL_SEND_PADDING",
6703 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6704 	};
6705 	static const u32 sge_regs[] = {
6706 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
6707 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
6708 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
6709 	};
6710 	const char **sge_idma_decode;
6711 	int sge_idma_decode_nstates;
6712 	int i;
6713 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
6714 
6715 	/* Select the right set of decode strings to dump depending on the
6716 	 * adapter chip type.
6717 	 */
6718 	switch (chip_version) {
6719 	case CHELSIO_T4:
6720 		sge_idma_decode = (const char **)t4_decode;
6721 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6722 		break;
6723 
6724 	case CHELSIO_T5:
6725 		sge_idma_decode = (const char **)t5_decode;
6726 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6727 		break;
6728 
6729 	case CHELSIO_T6:
6730 		sge_idma_decode = (const char **)t6_decode;
6731 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6732 		break;
6733 
6734 	default:
6735 		dev_err(adapter->pdev_dev,
6736 			"Unsupported chip version %d\n", chip_version);
6737 		return;
6738 	}
6739 
6740 	if (is_t4(adapter->params.chip)) {
6741 		sge_idma_decode = (const char **)t4_decode;
6742 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6743 	} else {
6744 		sge_idma_decode = (const char **)t5_decode;
6745 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6746 	}
6747 
6748 	if (state < sge_idma_decode_nstates)
6749 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6750 	else
6751 		CH_WARN(adapter, "idma state %d unknown\n", state);
6752 
6753 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6754 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6755 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6756 }
6757 
6758 /**
6759  *      t4_sge_ctxt_flush - flush the SGE context cache
6760  *      @adap: the adapter
6761  *      @mbox: mailbox to use for the FW command
6762  *      @ctxt_type: Egress or Ingress
6763  *
6764  *      Issues a FW command through the given mailbox to flush the
6765  *      SGE context cache.
6766  */
6767 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
6768 {
6769 	int ret;
6770 	u32 ldst_addrspace;
6771 	struct fw_ldst_cmd c;
6772 
6773 	memset(&c, 0, sizeof(c));
6774 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(ctxt_type == CTXT_EGRESS ?
6775 						 FW_LDST_ADDRSPC_SGE_EGRC :
6776 						 FW_LDST_ADDRSPC_SGE_INGC);
6777 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
6778 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
6779 					ldst_addrspace);
6780 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6781 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
6782 
6783 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6784 	return ret;
6785 }
6786 
6787 /**
6788  *	t4_read_sge_dbqtimers - read SGE Doorbell Queue Timer values
6789  *	@adap: the adapter
6790  *	@ndbqtimers: size of the provided SGE Doorbell Queue Timer table
6791  *	@dbqtimers: SGE Doorbell Queue Timer table
6792  *
6793  *	Reads the SGE Doorbell Queue Timer values into the provided table.
6794  *	Returns 0 on success (Firmware and Hardware support this feature),
6795  *	an error on failure.
6796  */
6797 int t4_read_sge_dbqtimers(struct adapter *adap, unsigned int ndbqtimers,
6798 			  u16 *dbqtimers)
6799 {
6800 	int ret, dbqtimerix;
6801 
6802 	ret = 0;
6803 	dbqtimerix = 0;
6804 	while (dbqtimerix < ndbqtimers) {
6805 		int nparams, param;
6806 		u32 params[7], vals[7];
6807 
6808 		nparams = ndbqtimers - dbqtimerix;
6809 		if (nparams > ARRAY_SIZE(params))
6810 			nparams = ARRAY_SIZE(params);
6811 
6812 		for (param = 0; param < nparams; param++)
6813 			params[param] =
6814 			  (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
6815 			   FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_DBQ_TIMER) |
6816 			   FW_PARAMS_PARAM_Y_V(dbqtimerix + param));
6817 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
6818 				      nparams, params, vals);
6819 		if (ret)
6820 			break;
6821 
6822 		for (param = 0; param < nparams; param++)
6823 			dbqtimers[dbqtimerix++] = vals[param];
6824 	}
6825 	return ret;
6826 }
6827 
6828 /**
6829  *      t4_fw_hello - establish communication with FW
6830  *      @adap: the adapter
6831  *      @mbox: mailbox to use for the FW command
6832  *      @evt_mbox: mailbox to receive async FW events
6833  *      @master: specifies the caller's willingness to be the device master
6834  *	@state: returns the current device state (if non-NULL)
6835  *
6836  *	Issues a command to establish communication with FW.  Returns either
6837  *	an error (negative integer) or the mailbox of the Master PF.
6838  */
6839 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6840 		enum dev_master master, enum dev_state *state)
6841 {
6842 	int ret;
6843 	struct fw_hello_cmd c;
6844 	u32 v;
6845 	unsigned int master_mbox;
6846 	int retries = FW_CMD_HELLO_RETRIES;
6847 
6848 retry:
6849 	memset(&c, 0, sizeof(c));
6850 	INIT_CMD(c, HELLO, WRITE);
6851 	c.err_to_clearinit = cpu_to_be32(
6852 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
6853 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
6854 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
6855 					mbox : FW_HELLO_CMD_MBMASTER_M) |
6856 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
6857 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
6858 		FW_HELLO_CMD_CLEARINIT_F);
6859 
6860 	/*
6861 	 * Issue the HELLO command to the firmware.  If it's not successful
6862 	 * but indicates that we got a "busy" or "timeout" condition, retry
6863 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6864 	 * retry limit, check to see if the firmware left us any error
6865 	 * information and report that if so.
6866 	 */
6867 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6868 	if (ret < 0) {
6869 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6870 			goto retry;
6871 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
6872 			t4_report_fw_error(adap);
6873 		return ret;
6874 	}
6875 
6876 	v = be32_to_cpu(c.err_to_clearinit);
6877 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
6878 	if (state) {
6879 		if (v & FW_HELLO_CMD_ERR_F)
6880 			*state = DEV_STATE_ERR;
6881 		else if (v & FW_HELLO_CMD_INIT_F)
6882 			*state = DEV_STATE_INIT;
6883 		else
6884 			*state = DEV_STATE_UNINIT;
6885 	}
6886 
6887 	/*
6888 	 * If we're not the Master PF then we need to wait around for the
6889 	 * Master PF Driver to finish setting up the adapter.
6890 	 *
6891 	 * Note that we also do this wait if we're a non-Master-capable PF and
6892 	 * there is no current Master PF; a Master PF may show up momentarily
6893 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6894 	 * OS loads lots of different drivers rapidly at the same time).  In
6895 	 * this case, the Master PF returned by the firmware will be
6896 	 * PCIE_FW_MASTER_M so the test below will work ...
6897 	 */
6898 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
6899 	    master_mbox != mbox) {
6900 		int waiting = FW_CMD_HELLO_TIMEOUT;
6901 
6902 		/*
6903 		 * Wait for the firmware to either indicate an error or
6904 		 * initialized state.  If we see either of these we bail out
6905 		 * and report the issue to the caller.  If we exhaust the
6906 		 * "hello timeout" and we haven't exhausted our retries, try
6907 		 * again.  Otherwise bail with a timeout error.
6908 		 */
6909 		for (;;) {
6910 			u32 pcie_fw;
6911 
6912 			msleep(50);
6913 			waiting -= 50;
6914 
6915 			/*
6916 			 * If neither Error nor Initialized are indicated
6917 			 * by the firmware keep waiting till we exhaust our
6918 			 * timeout ... and then retry if we haven't exhausted
6919 			 * our retries ...
6920 			 */
6921 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
6922 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
6923 				if (waiting <= 0) {
6924 					if (retries-- > 0)
6925 						goto retry;
6926 
6927 					return -ETIMEDOUT;
6928 				}
6929 				continue;
6930 			}
6931 
6932 			/*
6933 			 * We either have an Error or Initialized condition
6934 			 * report errors preferentially.
6935 			 */
6936 			if (state) {
6937 				if (pcie_fw & PCIE_FW_ERR_F)
6938 					*state = DEV_STATE_ERR;
6939 				else if (pcie_fw & PCIE_FW_INIT_F)
6940 					*state = DEV_STATE_INIT;
6941 			}
6942 
6943 			/*
6944 			 * If we arrived before a Master PF was selected and
6945 			 * there's not a valid Master PF, grab its identity
6946 			 * for our caller.
6947 			 */
6948 			if (master_mbox == PCIE_FW_MASTER_M &&
6949 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
6950 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
6951 			break;
6952 		}
6953 	}
6954 
6955 	return master_mbox;
6956 }
6957 
6958 /**
6959  *	t4_fw_bye - end communication with FW
6960  *	@adap: the adapter
6961  *	@mbox: mailbox to use for the FW command
6962  *
6963  *	Issues a command to terminate communication with FW.
6964  */
6965 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6966 {
6967 	struct fw_bye_cmd c;
6968 
6969 	memset(&c, 0, sizeof(c));
6970 	INIT_CMD(c, BYE, WRITE);
6971 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6972 }
6973 
6974 /**
6975  *	t4_early_init - ask FW to initialize the device
6976  *	@adap: the adapter
6977  *	@mbox: mailbox to use for the FW command
6978  *
6979  *	Issues a command to FW to partially initialize the device.  This
6980  *	performs initialization that generally doesn't depend on user input.
6981  */
6982 int t4_early_init(struct adapter *adap, unsigned int mbox)
6983 {
6984 	struct fw_initialize_cmd c;
6985 
6986 	memset(&c, 0, sizeof(c));
6987 	INIT_CMD(c, INITIALIZE, WRITE);
6988 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6989 }
6990 
6991 /**
6992  *	t4_fw_reset - issue a reset to FW
6993  *	@adap: the adapter
6994  *	@mbox: mailbox to use for the FW command
6995  *	@reset: specifies the type of reset to perform
6996  *
6997  *	Issues a reset command of the specified type to FW.
6998  */
6999 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7000 {
7001 	struct fw_reset_cmd c;
7002 
7003 	memset(&c, 0, sizeof(c));
7004 	INIT_CMD(c, RESET, WRITE);
7005 	c.val = cpu_to_be32(reset);
7006 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7007 }
7008 
7009 /**
7010  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7011  *	@adap: the adapter
7012  *	@mbox: mailbox to use for the FW RESET command (if desired)
7013  *	@force: force uP into RESET even if FW RESET command fails
7014  *
7015  *	Issues a RESET command to firmware (if desired) with a HALT indication
7016  *	and then puts the microprocessor into RESET state.  The RESET command
7017  *	will only be issued if a legitimate mailbox is provided (mbox <=
7018  *	PCIE_FW_MASTER_M).
7019  *
7020  *	This is generally used in order for the host to safely manipulate the
7021  *	adapter without fear of conflicting with whatever the firmware might
7022  *	be doing.  The only way out of this state is to RESTART the firmware
7023  *	...
7024  */
7025 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7026 {
7027 	int ret = 0;
7028 
7029 	/*
7030 	 * If a legitimate mailbox is provided, issue a RESET command
7031 	 * with a HALT indication.
7032 	 */
7033 	if (mbox <= PCIE_FW_MASTER_M) {
7034 		struct fw_reset_cmd c;
7035 
7036 		memset(&c, 0, sizeof(c));
7037 		INIT_CMD(c, RESET, WRITE);
7038 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
7039 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
7040 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7041 	}
7042 
7043 	/*
7044 	 * Normally we won't complete the operation if the firmware RESET
7045 	 * command fails but if our caller insists we'll go ahead and put the
7046 	 * uP into RESET.  This can be useful if the firmware is hung or even
7047 	 * missing ...  We'll have to take the risk of putting the uP into
7048 	 * RESET without the cooperation of firmware in that case.
7049 	 *
7050 	 * We also force the firmware's HALT flag to be on in case we bypassed
7051 	 * the firmware RESET command above or we're dealing with old firmware
7052 	 * which doesn't have the HALT capability.  This will serve as a flag
7053 	 * for the incoming firmware to know that it's coming out of a HALT
7054 	 * rather than a RESET ... if it's new enough to understand that ...
7055 	 */
7056 	if (ret == 0 || force) {
7057 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
7058 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
7059 				 PCIE_FW_HALT_F);
7060 	}
7061 
7062 	/*
7063 	 * And we always return the result of the firmware RESET command
7064 	 * even when we force the uP into RESET ...
7065 	 */
7066 	return ret;
7067 }
7068 
7069 /**
7070  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7071  *	@adap: the adapter
7072  *	@mbox: mailbox to use for the FW command
7073  *	@reset: if we want to do a RESET to restart things
7074  *
7075  *	Restart firmware previously halted by t4_fw_halt().  On successful
7076  *	return the previous PF Master remains as the new PF Master and there
7077  *	is no need to issue a new HELLO command, etc.
7078  *
7079  *	We do this in two ways:
7080  *
7081  *	 1. If we're dealing with newer firmware we'll simply want to take
7082  *	    the chip's microprocessor out of RESET.  This will cause the
7083  *	    firmware to start up from its start vector.  And then we'll loop
7084  *	    until the firmware indicates it's started again (PCIE_FW.HALT
7085  *	    reset to 0) or we timeout.
7086  *
7087  *	 2. If we're dealing with older firmware then we'll need to RESET
7088  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
7089  *	    flag and automatically RESET itself on startup.
7090  */
7091 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
7092 {
7093 	if (reset) {
7094 		/*
7095 		 * Since we're directing the RESET instead of the firmware
7096 		 * doing it automatically, we need to clear the PCIE_FW.HALT
7097 		 * bit.
7098 		 */
7099 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
7100 
7101 		/*
7102 		 * If we've been given a valid mailbox, first try to get the
7103 		 * firmware to do the RESET.  If that works, great and we can
7104 		 * return success.  Otherwise, if we haven't been given a
7105 		 * valid mailbox or the RESET command failed, fall back to
7106 		 * hitting the chip with a hammer.
7107 		 */
7108 		if (mbox <= PCIE_FW_MASTER_M) {
7109 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7110 			msleep(100);
7111 			if (t4_fw_reset(adap, mbox,
7112 					PIORST_F | PIORSTMODE_F) == 0)
7113 				return 0;
7114 		}
7115 
7116 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
7117 		msleep(2000);
7118 	} else {
7119 		int ms;
7120 
7121 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
7122 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7123 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
7124 				return 0;
7125 			msleep(100);
7126 			ms += 100;
7127 		}
7128 		return -ETIMEDOUT;
7129 	}
7130 	return 0;
7131 }
7132 
7133 /**
7134  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7135  *	@adap: the adapter
7136  *	@mbox: mailbox to use for the FW RESET command (if desired)
7137  *	@fw_data: the firmware image to write
7138  *	@size: image size
7139  *	@force: force upgrade even if firmware doesn't cooperate
7140  *
7141  *	Perform all of the steps necessary for upgrading an adapter's
7142  *	firmware image.  Normally this requires the cooperation of the
7143  *	existing firmware in order to halt all existing activities
7144  *	but if an invalid mailbox token is passed in we skip that step
7145  *	(though we'll still put the adapter microprocessor into RESET in
7146  *	that case).
7147  *
7148  *	On successful return the new firmware will have been loaded and
7149  *	the adapter will have been fully RESET losing all previous setup
7150  *	state.  On unsuccessful return the adapter may be completely hosed ...
7151  *	positive errno indicates that the adapter is ~probably~ intact, a
7152  *	negative errno indicates that things are looking bad ...
7153  */
7154 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7155 		  const u8 *fw_data, unsigned int size, int force)
7156 {
7157 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7158 	int reset, ret;
7159 
7160 	if (!t4_fw_matches_chip(adap, fw_hdr))
7161 		return -EINVAL;
7162 
7163 	/* Disable CXGB4_FW_OK flag so that mbox commands with CXGB4_FW_OK flag
7164 	 * set wont be sent when we are flashing FW.
7165 	 */
7166 	adap->flags &= ~CXGB4_FW_OK;
7167 
7168 	ret = t4_fw_halt(adap, mbox, force);
7169 	if (ret < 0 && !force)
7170 		goto out;
7171 
7172 	ret = t4_load_fw(adap, fw_data, size);
7173 	if (ret < 0)
7174 		goto out;
7175 
7176 	/*
7177 	 * If there was a Firmware Configuration File stored in FLASH,
7178 	 * there's a good chance that it won't be compatible with the new
7179 	 * Firmware.  In order to prevent difficult to diagnose adapter
7180 	 * initialization issues, we clear out the Firmware Configuration File
7181 	 * portion of the FLASH .  The user will need to re-FLASH a new
7182 	 * Firmware Configuration File which is compatible with the new
7183 	 * Firmware if that's desired.
7184 	 */
7185 	(void)t4_load_cfg(adap, NULL, 0);
7186 
7187 	/*
7188 	 * Older versions of the firmware don't understand the new
7189 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7190 	 * restart.  So for newly loaded older firmware we'll have to do the
7191 	 * RESET for it so it starts up on a clean slate.  We can tell if
7192 	 * the newly loaded firmware will handle this right by checking
7193 	 * its header flags to see if it advertises the capability.
7194 	 */
7195 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7196 	ret = t4_fw_restart(adap, mbox, reset);
7197 
7198 	/* Grab potentially new Firmware Device Log parameters so we can see
7199 	 * how healthy the new Firmware is.  It's okay to contact the new
7200 	 * Firmware for these parameters even though, as far as it's
7201 	 * concerned, we've never said "HELLO" to it ...
7202 	 */
7203 	(void)t4_init_devlog_params(adap);
7204 out:
7205 	adap->flags |= CXGB4_FW_OK;
7206 	return ret;
7207 }
7208 
7209 /**
7210  *	t4_fl_pkt_align - return the fl packet alignment
7211  *	@adap: the adapter
7212  *
7213  *	T4 has a single field to specify the packing and padding boundary.
7214  *	T5 onwards has separate fields for this and hence the alignment for
7215  *	next packet offset is maximum of these two.
7216  *
7217  */
7218 int t4_fl_pkt_align(struct adapter *adap)
7219 {
7220 	u32 sge_control, sge_control2;
7221 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
7222 
7223 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
7224 
7225 	/* T4 uses a single control field to specify both the PCIe Padding and
7226 	 * Packing Boundary.  T5 introduced the ability to specify these
7227 	 * separately.  The actual Ingress Packet Data alignment boundary
7228 	 * within Packed Buffer Mode is the maximum of these two
7229 	 * specifications.  (Note that it makes no real practical sense to
7230 	 * have the Padding Boundary be larger than the Packing Boundary but you
7231 	 * could set the chip up that way and, in fact, legacy T4 code would
7232 	 * end doing this because it would initialize the Padding Boundary and
7233 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
7234 	 * Padding Boundary values in T6 starts from 8B,
7235 	 * where as it is 32B for T4 and T5.
7236 	 */
7237 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
7238 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
7239 	else
7240 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
7241 
7242 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
7243 
7244 	fl_align = ingpadboundary;
7245 	if (!is_t4(adap->params.chip)) {
7246 		/* T5 has a weird interpretation of one of the PCIe Packing
7247 		 * Boundary values.  No idea why ...
7248 		 */
7249 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
7250 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
7251 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
7252 			ingpackboundary = 16;
7253 		else
7254 			ingpackboundary = 1 << (ingpackboundary +
7255 						INGPACKBOUNDARY_SHIFT_X);
7256 
7257 		fl_align = max(ingpadboundary, ingpackboundary);
7258 	}
7259 	return fl_align;
7260 }
7261 
7262 /**
7263  *	t4_fixup_host_params - fix up host-dependent parameters
7264  *	@adap: the adapter
7265  *	@page_size: the host's Base Page Size
7266  *	@cache_line_size: the host's Cache Line Size
7267  *
7268  *	Various registers in T4 contain values which are dependent on the
7269  *	host's Base Page and Cache Line Sizes.  This function will fix all of
7270  *	those registers with the appropriate values as passed in ...
7271  */
7272 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
7273 			 unsigned int cache_line_size)
7274 {
7275 	unsigned int page_shift = fls(page_size) - 1;
7276 	unsigned int sge_hps = page_shift - 10;
7277 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
7278 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
7279 	unsigned int fl_align_log = fls(fl_align) - 1;
7280 
7281 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
7282 		     HOSTPAGESIZEPF0_V(sge_hps) |
7283 		     HOSTPAGESIZEPF1_V(sge_hps) |
7284 		     HOSTPAGESIZEPF2_V(sge_hps) |
7285 		     HOSTPAGESIZEPF3_V(sge_hps) |
7286 		     HOSTPAGESIZEPF4_V(sge_hps) |
7287 		     HOSTPAGESIZEPF5_V(sge_hps) |
7288 		     HOSTPAGESIZEPF6_V(sge_hps) |
7289 		     HOSTPAGESIZEPF7_V(sge_hps));
7290 
7291 	if (is_t4(adap->params.chip)) {
7292 		t4_set_reg_field(adap, SGE_CONTROL_A,
7293 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7294 				 EGRSTATUSPAGESIZE_F,
7295 				 INGPADBOUNDARY_V(fl_align_log -
7296 						  INGPADBOUNDARY_SHIFT_X) |
7297 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7298 	} else {
7299 		unsigned int pack_align;
7300 		unsigned int ingpad, ingpack;
7301 
7302 		/* T5 introduced the separation of the Free List Padding and
7303 		 * Packing Boundaries.  Thus, we can select a smaller Padding
7304 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
7305 		 * Bandwidth, and use a Packing Boundary which is large enough
7306 		 * to avoid false sharing between CPUs, etc.
7307 		 *
7308 		 * For the PCI Link, the smaller the Padding Boundary the
7309 		 * better.  For the Memory Controller, a smaller Padding
7310 		 * Boundary is better until we cross under the Memory Line
7311 		 * Size (the minimum unit of transfer to/from Memory).  If we
7312 		 * have a Padding Boundary which is smaller than the Memory
7313 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
7314 		 * Memory Controller which is never good.
7315 		 */
7316 
7317 		/* We want the Packing Boundary to be based on the Cache Line
7318 		 * Size in order to help avoid False Sharing performance
7319 		 * issues between CPUs, etc.  We also want the Packing
7320 		 * Boundary to incorporate the PCI-E Maximum Payload Size.  We
7321 		 * get best performance when the Packing Boundary is a
7322 		 * multiple of the Maximum Payload Size.
7323 		 */
7324 		pack_align = fl_align;
7325 		if (pci_is_pcie(adap->pdev)) {
7326 			unsigned int mps, mps_log;
7327 			u16 devctl;
7328 
7329 			/* The PCIe Device Control Maximum Payload Size field
7330 			 * [bits 7:5] encodes sizes as powers of 2 starting at
7331 			 * 128 bytes.
7332 			 */
7333 			pcie_capability_read_word(adap->pdev, PCI_EXP_DEVCTL,
7334 						  &devctl);
7335 			mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
7336 			mps = 1 << mps_log;
7337 			if (mps > pack_align)
7338 				pack_align = mps;
7339 		}
7340 
7341 		/* N.B. T5/T6 have a crazy special interpretation of the "0"
7342 		 * value for the Packing Boundary.  This corresponds to 16
7343 		 * bytes instead of the expected 32 bytes.  So if we want 32
7344 		 * bytes, the best we can really do is 64 bytes ...
7345 		 */
7346 		if (pack_align <= 16) {
7347 			ingpack = INGPACKBOUNDARY_16B_X;
7348 			fl_align = 16;
7349 		} else if (pack_align == 32) {
7350 			ingpack = INGPACKBOUNDARY_64B_X;
7351 			fl_align = 64;
7352 		} else {
7353 			unsigned int pack_align_log = fls(pack_align) - 1;
7354 
7355 			ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
7356 			fl_align = pack_align;
7357 		}
7358 
7359 		/* Use the smallest Ingress Padding which isn't smaller than
7360 		 * the Memory Controller Read/Write Size.  We'll take that as
7361 		 * being 8 bytes since we don't know of any system with a
7362 		 * wider Memory Controller Bus Width.
7363 		 */
7364 		if (is_t5(adap->params.chip))
7365 			ingpad = INGPADBOUNDARY_32B_X;
7366 		else
7367 			ingpad = T6_INGPADBOUNDARY_8B_X;
7368 
7369 		t4_set_reg_field(adap, SGE_CONTROL_A,
7370 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
7371 				 EGRSTATUSPAGESIZE_F,
7372 				 INGPADBOUNDARY_V(ingpad) |
7373 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
7374 		t4_set_reg_field(adap, SGE_CONTROL2_A,
7375 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
7376 				 INGPACKBOUNDARY_V(ingpack));
7377 	}
7378 	/*
7379 	 * Adjust various SGE Free List Host Buffer Sizes.
7380 	 *
7381 	 * This is something of a crock since we're using fixed indices into
7382 	 * the array which are also known by the sge.c code and the T4
7383 	 * Firmware Configuration File.  We need to come up with a much better
7384 	 * approach to managing this array.  For now, the first four entries
7385 	 * are:
7386 	 *
7387 	 *   0: Host Page Size
7388 	 *   1: 64KB
7389 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
7390 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
7391 	 *
7392 	 * For the single-MTU buffers in unpacked mode we need to include
7393 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
7394 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
7395 	 * Padding boundary.  All of these are accommodated in the Factory
7396 	 * Default Firmware Configuration File but we need to adjust it for
7397 	 * this host's cache line size.
7398 	 */
7399 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
7400 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
7401 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
7402 		     & ~(fl_align-1));
7403 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
7404 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
7405 		     & ~(fl_align-1));
7406 
7407 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
7408 
7409 	return 0;
7410 }
7411 
7412 /**
7413  *	t4_fw_initialize - ask FW to initialize the device
7414  *	@adap: the adapter
7415  *	@mbox: mailbox to use for the FW command
7416  *
7417  *	Issues a command to FW to partially initialize the device.  This
7418  *	performs initialization that generally doesn't depend on user input.
7419  */
7420 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7421 {
7422 	struct fw_initialize_cmd c;
7423 
7424 	memset(&c, 0, sizeof(c));
7425 	INIT_CMD(c, INITIALIZE, WRITE);
7426 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7427 }
7428 
7429 /**
7430  *	t4_query_params_rw - query FW or device parameters
7431  *	@adap: the adapter
7432  *	@mbox: mailbox to use for the FW command
7433  *	@pf: the PF
7434  *	@vf: the VF
7435  *	@nparams: the number of parameters
7436  *	@params: the parameter names
7437  *	@val: the parameter values
7438  *	@rw: Write and read flag
7439  *	@sleep_ok: if true, we may sleep awaiting mbox cmd completion
7440  *
7441  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7442  *	queried at once.
7443  */
7444 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7445 		       unsigned int vf, unsigned int nparams, const u32 *params,
7446 		       u32 *val, int rw, bool sleep_ok)
7447 {
7448 	int i, ret;
7449 	struct fw_params_cmd c;
7450 	__be32 *p = &c.param[0].mnem;
7451 
7452 	if (nparams > 7)
7453 		return -EINVAL;
7454 
7455 	memset(&c, 0, sizeof(c));
7456 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7457 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
7458 				  FW_PARAMS_CMD_PFN_V(pf) |
7459 				  FW_PARAMS_CMD_VFN_V(vf));
7460 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7461 
7462 	for (i = 0; i < nparams; i++) {
7463 		*p++ = cpu_to_be32(*params++);
7464 		if (rw)
7465 			*p = cpu_to_be32(*(val + i));
7466 		p++;
7467 	}
7468 
7469 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7470 	if (ret == 0)
7471 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7472 			*val++ = be32_to_cpu(*p);
7473 	return ret;
7474 }
7475 
7476 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7477 		    unsigned int vf, unsigned int nparams, const u32 *params,
7478 		    u32 *val)
7479 {
7480 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7481 				  true);
7482 }
7483 
7484 int t4_query_params_ns(struct adapter *adap, unsigned int mbox, unsigned int pf,
7485 		       unsigned int vf, unsigned int nparams, const u32 *params,
7486 		       u32 *val)
7487 {
7488 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0,
7489 				  false);
7490 }
7491 
7492 /**
7493  *      t4_set_params_timeout - sets FW or device parameters
7494  *      @adap: the adapter
7495  *      @mbox: mailbox to use for the FW command
7496  *      @pf: the PF
7497  *      @vf: the VF
7498  *      @nparams: the number of parameters
7499  *      @params: the parameter names
7500  *      @val: the parameter values
7501  *      @timeout: the timeout time
7502  *
7503  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7504  *      specified at once.
7505  */
7506 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7507 			  unsigned int pf, unsigned int vf,
7508 			  unsigned int nparams, const u32 *params,
7509 			  const u32 *val, int timeout)
7510 {
7511 	struct fw_params_cmd c;
7512 	__be32 *p = &c.param[0].mnem;
7513 
7514 	if (nparams > 7)
7515 		return -EINVAL;
7516 
7517 	memset(&c, 0, sizeof(c));
7518 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
7519 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7520 				  FW_PARAMS_CMD_PFN_V(pf) |
7521 				  FW_PARAMS_CMD_VFN_V(vf));
7522 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7523 
7524 	while (nparams--) {
7525 		*p++ = cpu_to_be32(*params++);
7526 		*p++ = cpu_to_be32(*val++);
7527 	}
7528 
7529 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7530 }
7531 
7532 /**
7533  *	t4_set_params - sets FW or device parameters
7534  *	@adap: the adapter
7535  *	@mbox: mailbox to use for the FW command
7536  *	@pf: the PF
7537  *	@vf: the VF
7538  *	@nparams: the number of parameters
7539  *	@params: the parameter names
7540  *	@val: the parameter values
7541  *
7542  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7543  *	specified at once.
7544  */
7545 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7546 		  unsigned int vf, unsigned int nparams, const u32 *params,
7547 		  const u32 *val)
7548 {
7549 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7550 				     FW_CMD_MAX_TIMEOUT);
7551 }
7552 
7553 /**
7554  *	t4_cfg_pfvf - configure PF/VF resource limits
7555  *	@adap: the adapter
7556  *	@mbox: mailbox to use for the FW command
7557  *	@pf: the PF being configured
7558  *	@vf: the VF being configured
7559  *	@txq: the max number of egress queues
7560  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7561  *	@rxqi: the max number of interrupt-capable ingress queues
7562  *	@rxq: the max number of interruptless ingress queues
7563  *	@tc: the PCI traffic class
7564  *	@vi: the max number of virtual interfaces
7565  *	@cmask: the channel access rights mask for the PF/VF
7566  *	@pmask: the port access rights mask for the PF/VF
7567  *	@nexact: the maximum number of exact MPS filters
7568  *	@rcaps: read capabilities
7569  *	@wxcaps: write/execute capabilities
7570  *
7571  *	Configures resource limits and capabilities for a physical or virtual
7572  *	function.
7573  */
7574 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7575 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7576 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7577 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7578 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7579 {
7580 	struct fw_pfvf_cmd c;
7581 
7582 	memset(&c, 0, sizeof(c));
7583 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
7584 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
7585 				  FW_PFVF_CMD_VFN_V(vf));
7586 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7587 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
7588 				     FW_PFVF_CMD_NIQ_V(rxq));
7589 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
7590 				    FW_PFVF_CMD_PMASK_V(pmask) |
7591 				    FW_PFVF_CMD_NEQ_V(txq));
7592 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
7593 				      FW_PFVF_CMD_NVI_V(vi) |
7594 				      FW_PFVF_CMD_NEXACTF_V(nexact));
7595 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
7596 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
7597 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
7598 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7599 }
7600 
7601 /**
7602  *	t4_alloc_vi - allocate a virtual interface
7603  *	@adap: the adapter
7604  *	@mbox: mailbox to use for the FW command
7605  *	@port: physical port associated with the VI
7606  *	@pf: the PF owning the VI
7607  *	@vf: the VF owning the VI
7608  *	@nmac: number of MAC addresses needed (1 to 5)
7609  *	@mac: the MAC addresses of the VI
7610  *	@rss_size: size of RSS table slice associated with this VI
7611  *	@vivld: the destination to store the VI Valid value.
7612  *	@vin: the destination to store the VIN value.
7613  *
7614  *	Allocates a virtual interface for the given physical port.  If @mac is
7615  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7616  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7617  *	stored consecutively so the space needed is @nmac * 6 bytes.
7618  *	Returns a negative error number or the non-negative VI id.
7619  */
7620 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7621 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7622 		unsigned int *rss_size, u8 *vivld, u8 *vin)
7623 {
7624 	int ret;
7625 	struct fw_vi_cmd c;
7626 
7627 	memset(&c, 0, sizeof(c));
7628 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
7629 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
7630 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
7631 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
7632 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
7633 	c.nmac = nmac - 1;
7634 
7635 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7636 	if (ret)
7637 		return ret;
7638 
7639 	if (mac) {
7640 		memcpy(mac, c.mac, sizeof(c.mac));
7641 		switch (nmac) {
7642 		case 5:
7643 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7644 			fallthrough;
7645 		case 4:
7646 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7647 			fallthrough;
7648 		case 3:
7649 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7650 			fallthrough;
7651 		case 2:
7652 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7653 		}
7654 	}
7655 	if (rss_size)
7656 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
7657 
7658 	if (vivld)
7659 		*vivld = FW_VI_CMD_VFVLD_G(be32_to_cpu(c.alloc_to_len16));
7660 
7661 	if (vin)
7662 		*vin = FW_VI_CMD_VIN_G(be32_to_cpu(c.alloc_to_len16));
7663 
7664 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
7665 }
7666 
7667 /**
7668  *	t4_free_vi - free a virtual interface
7669  *	@adap: the adapter
7670  *	@mbox: mailbox to use for the FW command
7671  *	@pf: the PF owning the VI
7672  *	@vf: the VF owning the VI
7673  *	@viid: virtual interface identifiler
7674  *
7675  *	Free a previously allocated virtual interface.
7676  */
7677 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7678 	       unsigned int vf, unsigned int viid)
7679 {
7680 	struct fw_vi_cmd c;
7681 
7682 	memset(&c, 0, sizeof(c));
7683 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
7684 				  FW_CMD_REQUEST_F |
7685 				  FW_CMD_EXEC_F |
7686 				  FW_VI_CMD_PFN_V(pf) |
7687 				  FW_VI_CMD_VFN_V(vf));
7688 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
7689 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
7690 
7691 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7692 }
7693 
7694 /**
7695  *	t4_set_rxmode - set Rx properties of a virtual interface
7696  *	@adap: the adapter
7697  *	@mbox: mailbox to use for the FW command
7698  *	@viid: the VI id
7699  *	@viid_mirror: the mirror VI id
7700  *	@mtu: the new MTU or -1
7701  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7702  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7703  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7704  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7705  *	@sleep_ok: if true we may sleep while awaiting command completion
7706  *
7707  *	Sets Rx properties of a virtual interface.
7708  */
7709 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7710 		  unsigned int viid_mirror, int mtu, int promisc, int all_multi,
7711 		  int bcast, int vlanex, bool sleep_ok)
7712 {
7713 	struct fw_vi_rxmode_cmd c, c_mirror;
7714 	int ret;
7715 
7716 	/* convert to FW values */
7717 	if (mtu < 0)
7718 		mtu = FW_RXMODE_MTU_NO_CHG;
7719 	if (promisc < 0)
7720 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
7721 	if (all_multi < 0)
7722 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
7723 	if (bcast < 0)
7724 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
7725 	if (vlanex < 0)
7726 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
7727 
7728 	memset(&c, 0, sizeof(c));
7729 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7730 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7731 				   FW_VI_RXMODE_CMD_VIID_V(viid));
7732 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7733 	c.mtu_to_vlanexen =
7734 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
7735 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
7736 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
7737 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
7738 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
7739 
7740 	if (viid_mirror) {
7741 		memcpy(&c_mirror, &c, sizeof(c_mirror));
7742 		c_mirror.op_to_viid =
7743 			cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
7744 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7745 				    FW_VI_RXMODE_CMD_VIID_V(viid_mirror));
7746 	}
7747 
7748 	ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7749 	if (ret)
7750 		return ret;
7751 
7752 	if (viid_mirror)
7753 		ret = t4_wr_mbox_meat(adap, mbox, &c_mirror, sizeof(c_mirror),
7754 				      NULL, sleep_ok);
7755 
7756 	return ret;
7757 }
7758 
7759 /**
7760  *      t4_free_encap_mac_filt - frees MPS entry at given index
7761  *      @adap: the adapter
7762  *      @viid: the VI id
7763  *      @idx: index of MPS entry to be freed
7764  *      @sleep_ok: call is allowed to sleep
7765  *
7766  *      Frees the MPS entry at supplied index
7767  *
7768  *      Returns a negative error number or zero on success
7769  */
7770 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
7771 			   int idx, bool sleep_ok)
7772 {
7773 	struct fw_vi_mac_exact *p;
7774 	struct fw_vi_mac_cmd c;
7775 	int ret = 0;
7776 	u32 exact;
7777 
7778 	memset(&c, 0, sizeof(c));
7779 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7780 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7781 				   FW_CMD_EXEC_V(0) |
7782 				   FW_VI_MAC_CMD_VIID_V(viid));
7783 	exact = FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC);
7784 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7785 					  exact |
7786 					  FW_CMD_LEN16_V(1));
7787 	p = c.u.exact;
7788 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7789 				      FW_VI_MAC_CMD_IDX_V(idx));
7790 	eth_zero_addr(p->macaddr);
7791 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7792 	return ret;
7793 }
7794 
7795 /**
7796  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
7797  *	@adap: the adapter
7798  *	@viid: the VI id
7799  *	@addr: the MAC address
7800  *	@mask: the mask
7801  *	@idx: index of the entry in mps tcam
7802  *	@lookup_type: MAC address for inner (1) or outer (0) header
7803  *	@port_id: the port index
7804  *	@sleep_ok: call is allowed to sleep
7805  *
7806  *	Removes the mac entry at the specified index using raw mac interface.
7807  *
7808  *	Returns a negative error number on failure.
7809  */
7810 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
7811 			 const u8 *addr, const u8 *mask, unsigned int idx,
7812 			 u8 lookup_type, u8 port_id, bool sleep_ok)
7813 {
7814 	struct fw_vi_mac_cmd c;
7815 	struct fw_vi_mac_raw *p = &c.u.raw;
7816 	u32 val;
7817 
7818 	memset(&c, 0, sizeof(c));
7819 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7820 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7821 				   FW_CMD_EXEC_V(0) |
7822 				   FW_VI_MAC_CMD_VIID_V(viid));
7823 	val = FW_CMD_LEN16_V(1) |
7824 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7825 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
7826 					  FW_CMD_LEN16_V(val));
7827 
7828 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx) |
7829 				     FW_VI_MAC_ID_BASED_FREE);
7830 
7831 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7832 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7833 				   DATAPORTNUM_V(port_id));
7834 	/* Lookup mask and port mask */
7835 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7836 				    DATAPORTNUM_V(DATAPORTNUM_M));
7837 
7838 	/* Copy the address and the mask */
7839 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7840 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7841 
7842 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7843 }
7844 
7845 /**
7846  *      t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
7847  *      @adap: the adapter
7848  *      @viid: the VI id
7849  *      @addr: the MAC address
7850  *      @mask: the mask
7851  *      @vni: the VNI id for the tunnel protocol
7852  *      @vni_mask: mask for the VNI id
7853  *      @dip_hit: to enable DIP match for the MPS entry
7854  *      @lookup_type: MAC address for inner (1) or outer (0) header
7855  *      @sleep_ok: call is allowed to sleep
7856  *
7857  *      Allocates an MPS entry with specified MAC address and VNI value.
7858  *
7859  *      Returns a negative error number or the allocated index for this mac.
7860  */
7861 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
7862 			    const u8 *addr, const u8 *mask, unsigned int vni,
7863 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
7864 			    bool sleep_ok)
7865 {
7866 	struct fw_vi_mac_cmd c;
7867 	struct fw_vi_mac_vni *p = c.u.exact_vni;
7868 	int ret = 0;
7869 	u32 val;
7870 
7871 	memset(&c, 0, sizeof(c));
7872 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7873 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7874 				   FW_VI_MAC_CMD_VIID_V(viid));
7875 	val = FW_CMD_LEN16_V(1) |
7876 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_EXACTMAC_VNI);
7877 	c.freemacs_to_len16 = cpu_to_be32(val);
7878 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
7879 				      FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
7880 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7881 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
7882 
7883 	p->lookup_type_to_vni =
7884 		cpu_to_be32(FW_VI_MAC_CMD_VNI_V(vni) |
7885 			    FW_VI_MAC_CMD_DIP_HIT_V(dip_hit) |
7886 			    FW_VI_MAC_CMD_LOOKUP_TYPE_V(lookup_type));
7887 	p->vni_mask_pkd = cpu_to_be32(FW_VI_MAC_CMD_VNI_MASK_V(vni_mask));
7888 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7889 	if (ret == 0)
7890 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
7891 	return ret;
7892 }
7893 
7894 /**
7895  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
7896  *	@adap: the adapter
7897  *	@viid: the VI id
7898  *	@addr: the MAC address
7899  *	@mask: the mask
7900  *	@idx: index at which to add this entry
7901  *	@lookup_type: MAC address for inner (1) or outer (0) header
7902  *	@port_id: the port index
7903  *	@sleep_ok: call is allowed to sleep
7904  *
7905  *	Adds the mac entry at the specified index using raw mac interface.
7906  *
7907  *	Returns a negative error number or the allocated index for this mac.
7908  */
7909 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
7910 			  const u8 *addr, const u8 *mask, unsigned int idx,
7911 			  u8 lookup_type, u8 port_id, bool sleep_ok)
7912 {
7913 	int ret = 0;
7914 	struct fw_vi_mac_cmd c;
7915 	struct fw_vi_mac_raw *p = &c.u.raw;
7916 	u32 val;
7917 
7918 	memset(&c, 0, sizeof(c));
7919 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7920 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
7921 				   FW_VI_MAC_CMD_VIID_V(viid));
7922 	val = FW_CMD_LEN16_V(1) |
7923 	      FW_VI_MAC_CMD_ENTRY_TYPE_V(FW_VI_MAC_TYPE_RAW);
7924 	c.freemacs_to_len16 = cpu_to_be32(val);
7925 
7926 	/* Specify that this is an inner mac address */
7927 	p->raw_idx_pkd = cpu_to_be32(FW_VI_MAC_CMD_RAW_IDX_V(idx));
7928 
7929 	/* Lookup Type. Outer header: 0, Inner header: 1 */
7930 	p->data0_pkd = cpu_to_be32(DATALKPTYPE_V(lookup_type) |
7931 				   DATAPORTNUM_V(port_id));
7932 	/* Lookup mask and port mask */
7933 	p->data0m_pkd = cpu_to_be64(DATALKPTYPE_V(DATALKPTYPE_M) |
7934 				    DATAPORTNUM_V(DATAPORTNUM_M));
7935 
7936 	/* Copy the address and the mask */
7937 	memcpy((u8 *)&p->data1[0] + 2, addr, ETH_ALEN);
7938 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETH_ALEN);
7939 
7940 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
7941 	if (ret == 0) {
7942 		ret = FW_VI_MAC_CMD_RAW_IDX_G(be32_to_cpu(p->raw_idx_pkd));
7943 		if (ret != idx)
7944 			ret = -ENOMEM;
7945 	}
7946 
7947 	return ret;
7948 }
7949 
7950 /**
7951  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7952  *	@adap: the adapter
7953  *	@mbox: mailbox to use for the FW command
7954  *	@viid: the VI id
7955  *	@free: if true any existing filters for this VI id are first removed
7956  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7957  *	@addr: the MAC address(es)
7958  *	@idx: where to store the index of each allocated filter
7959  *	@hash: pointer to hash address filter bitmap
7960  *	@sleep_ok: call is allowed to sleep
7961  *
7962  *	Allocates an exact-match filter for each of the supplied addresses and
7963  *	sets it to the corresponding address.  If @idx is not %NULL it should
7964  *	have at least @naddr entries, each of which will be set to the index of
7965  *	the filter allocated for the corresponding MAC address.  If a filter
7966  *	could not be allocated for an address its index is set to 0xffff.
7967  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7968  *	are hashed and update the hash filter bitmap pointed at by @hash.
7969  *
7970  *	Returns a negative error number or the number of filters allocated.
7971  */
7972 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7973 		      unsigned int viid, bool free, unsigned int naddr,
7974 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7975 {
7976 	int offset, ret = 0;
7977 	struct fw_vi_mac_cmd c;
7978 	unsigned int nfilters = 0;
7979 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
7980 	unsigned int rem = naddr;
7981 
7982 	if (naddr > max_naddr)
7983 		return -EINVAL;
7984 
7985 	for (offset = 0; offset < naddr ; /**/) {
7986 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
7987 					 rem : ARRAY_SIZE(c.u.exact));
7988 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7989 						     u.exact[fw_naddr]), 16);
7990 		struct fw_vi_mac_exact *p;
7991 		int i;
7992 
7993 		memset(&c, 0, sizeof(c));
7994 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
7995 					   FW_CMD_REQUEST_F |
7996 					   FW_CMD_WRITE_F |
7997 					   FW_CMD_EXEC_V(free) |
7998 					   FW_VI_MAC_CMD_VIID_V(viid));
7999 		c.freemacs_to_len16 =
8000 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
8001 				    FW_CMD_LEN16_V(len16));
8002 
8003 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8004 			p->valid_to_idx =
8005 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8006 					    FW_VI_MAC_CMD_IDX_V(
8007 						    FW_VI_MAC_ADD_MAC));
8008 			memcpy(p->macaddr, addr[offset + i],
8009 			       sizeof(p->macaddr));
8010 		}
8011 
8012 		/* It's okay if we run out of space in our MAC address arena.
8013 		 * Some of the addresses we submit may get stored so we need
8014 		 * to run through the reply to see what the results were ...
8015 		 */
8016 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8017 		if (ret && ret != -FW_ENOMEM)
8018 			break;
8019 
8020 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8021 			u16 index = FW_VI_MAC_CMD_IDX_G(
8022 					be16_to_cpu(p->valid_to_idx));
8023 
8024 			if (idx)
8025 				idx[offset + i] = (index >= max_naddr ?
8026 						   0xffff : index);
8027 			if (index < max_naddr)
8028 				nfilters++;
8029 			else if (hash)
8030 				*hash |= (1ULL <<
8031 					  hash_mac_addr(addr[offset + i]));
8032 		}
8033 
8034 		free = false;
8035 		offset += fw_naddr;
8036 		rem -= fw_naddr;
8037 	}
8038 
8039 	if (ret == 0 || ret == -FW_ENOMEM)
8040 		ret = nfilters;
8041 	return ret;
8042 }
8043 
8044 /**
8045  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8046  *	@adap: the adapter
8047  *	@mbox: mailbox to use for the FW command
8048  *	@viid: the VI id
8049  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8050  *	@addr: the MAC address(es)
8051  *	@sleep_ok: call is allowed to sleep
8052  *
8053  *	Frees the exact-match filter for each of the supplied addresses
8054  *
8055  *	Returns a negative error number or the number of filters freed.
8056  */
8057 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8058 		     unsigned int viid, unsigned int naddr,
8059 		     const u8 **addr, bool sleep_ok)
8060 {
8061 	int offset, ret = 0;
8062 	struct fw_vi_mac_cmd c;
8063 	unsigned int nfilters = 0;
8064 	unsigned int max_naddr = is_t4(adap->params.chip) ?
8065 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
8066 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
8067 	unsigned int rem = naddr;
8068 
8069 	if (naddr > max_naddr)
8070 		return -EINVAL;
8071 
8072 	for (offset = 0; offset < (int)naddr ; /**/) {
8073 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8074 					 ? rem
8075 					 : ARRAY_SIZE(c.u.exact));
8076 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8077 						     u.exact[fw_naddr]), 16);
8078 		struct fw_vi_mac_exact *p;
8079 		int i;
8080 
8081 		memset(&c, 0, sizeof(c));
8082 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8083 				     FW_CMD_REQUEST_F |
8084 				     FW_CMD_WRITE_F |
8085 				     FW_CMD_EXEC_V(0) |
8086 				     FW_VI_MAC_CMD_VIID_V(viid));
8087 		c.freemacs_to_len16 =
8088 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
8089 					    FW_CMD_LEN16_V(len16));
8090 
8091 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8092 			p->valid_to_idx = cpu_to_be16(
8093 				FW_VI_MAC_CMD_VALID_F |
8094 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
8095 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8096 		}
8097 
8098 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8099 		if (ret)
8100 			break;
8101 
8102 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8103 			u16 index = FW_VI_MAC_CMD_IDX_G(
8104 						be16_to_cpu(p->valid_to_idx));
8105 
8106 			if (index < max_naddr)
8107 				nfilters++;
8108 		}
8109 
8110 		offset += fw_naddr;
8111 		rem -= fw_naddr;
8112 	}
8113 
8114 	if (ret == 0)
8115 		ret = nfilters;
8116 	return ret;
8117 }
8118 
8119 /**
8120  *	t4_change_mac - modifies the exact-match filter for a MAC address
8121  *	@adap: the adapter
8122  *	@mbox: mailbox to use for the FW command
8123  *	@viid: the VI id
8124  *	@idx: index of existing filter for old value of MAC address, or -1
8125  *	@addr: the new MAC address value
8126  *	@persist: whether a new MAC allocation should be persistent
8127  *	@smt_idx: the destination to store the new SMT index.
8128  *
8129  *	Modifies an exact-match filter and sets it to the new MAC address.
8130  *	Note that in general it is not possible to modify the value of a given
8131  *	filter so the generic way to modify an address filter is to free the one
8132  *	being used by the old address value and allocate a new filter for the
8133  *	new address value.  @idx can be -1 if the address is a new addition.
8134  *
8135  *	Returns a negative error number or the index of the filter with the new
8136  *	MAC value.
8137  */
8138 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8139 		  int idx, const u8 *addr, bool persist, u8 *smt_idx)
8140 {
8141 	int ret, mode;
8142 	struct fw_vi_mac_cmd c;
8143 	struct fw_vi_mac_exact *p = c.u.exact;
8144 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
8145 
8146 	if (idx < 0)                             /* new allocation */
8147 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8148 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8149 
8150 	memset(&c, 0, sizeof(c));
8151 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8152 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8153 				   FW_VI_MAC_CMD_VIID_V(viid));
8154 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
8155 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
8156 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
8157 				      FW_VI_MAC_CMD_IDX_V(idx));
8158 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8159 
8160 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8161 	if (ret == 0) {
8162 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
8163 		if (ret >= max_mac_addr)
8164 			ret = -ENOMEM;
8165 		if (smt_idx) {
8166 			if (adap->params.viid_smt_extn_support) {
8167 				*smt_idx = FW_VI_MAC_CMD_SMTID_G
8168 						    (be32_to_cpu(c.op_to_viid));
8169 			} else {
8170 				/* In T4/T5, SMT contains 256 SMAC entries
8171 				 * organized in 128 rows of 2 entries each.
8172 				 * In T6, SMT contains 256 SMAC entries in
8173 				 * 256 rows.
8174 				 */
8175 				if (CHELSIO_CHIP_VERSION(adap->params.chip) <=
8176 								     CHELSIO_T5)
8177 					*smt_idx = (viid & FW_VIID_VIN_M) << 1;
8178 				else
8179 					*smt_idx = (viid & FW_VIID_VIN_M);
8180 			}
8181 		}
8182 	}
8183 	return ret;
8184 }
8185 
8186 /**
8187  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8188  *	@adap: the adapter
8189  *	@mbox: mailbox to use for the FW command
8190  *	@viid: the VI id
8191  *	@ucast: whether the hash filter should also match unicast addresses
8192  *	@vec: the value to be written to the hash filter
8193  *	@sleep_ok: call is allowed to sleep
8194  *
8195  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8196  */
8197 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8198 		     bool ucast, u64 vec, bool sleep_ok)
8199 {
8200 	struct fw_vi_mac_cmd c;
8201 
8202 	memset(&c, 0, sizeof(c));
8203 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
8204 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
8205 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8206 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
8207 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
8208 					  FW_CMD_LEN16_V(1));
8209 	c.u.hash.hashvec = cpu_to_be64(vec);
8210 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8211 }
8212 
8213 /**
8214  *      t4_enable_vi_params - enable/disable a virtual interface
8215  *      @adap: the adapter
8216  *      @mbox: mailbox to use for the FW command
8217  *      @viid: the VI id
8218  *      @rx_en: 1=enable Rx, 0=disable Rx
8219  *      @tx_en: 1=enable Tx, 0=disable Tx
8220  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8221  *
8222  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8223  *      only makes sense when enabling a Virtual Interface ...
8224  */
8225 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8226 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8227 {
8228 	struct fw_vi_enable_cmd c;
8229 
8230 	memset(&c, 0, sizeof(c));
8231 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8232 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8233 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8234 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
8235 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
8236 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
8237 				     FW_LEN16(c));
8238 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8239 }
8240 
8241 /**
8242  *	t4_enable_vi - enable/disable a virtual interface
8243  *	@adap: the adapter
8244  *	@mbox: mailbox to use for the FW command
8245  *	@viid: the VI id
8246  *	@rx_en: 1=enable Rx, 0=disable Rx
8247  *	@tx_en: 1=enable Tx, 0=disable Tx
8248  *
8249  *	Enables/disables a virtual interface.
8250  */
8251 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8252 		 bool rx_en, bool tx_en)
8253 {
8254 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8255 }
8256 
8257 /**
8258  *	t4_enable_pi_params - enable/disable a Port's Virtual Interface
8259  *      @adap: the adapter
8260  *      @mbox: mailbox to use for the FW command
8261  *      @pi: the Port Information structure
8262  *      @rx_en: 1=enable Rx, 0=disable Rx
8263  *      @tx_en: 1=enable Tx, 0=disable Tx
8264  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8265  *
8266  *      Enables/disables a Port's Virtual Interface.  Note that setting DCB
8267  *	Enable only makes sense when enabling a Virtual Interface ...
8268  *	If the Virtual Interface enable/disable operation is successful,
8269  *	we notify the OS-specific code of a potential Link Status change
8270  *	via the OS Contract API t4_os_link_changed().
8271  */
8272 int t4_enable_pi_params(struct adapter *adap, unsigned int mbox,
8273 			struct port_info *pi,
8274 			bool rx_en, bool tx_en, bool dcb_en)
8275 {
8276 	int ret = t4_enable_vi_params(adap, mbox, pi->viid,
8277 				      rx_en, tx_en, dcb_en);
8278 	if (ret)
8279 		return ret;
8280 	t4_os_link_changed(adap, pi->port_id,
8281 			   rx_en && tx_en && pi->link_cfg.link_ok);
8282 	return 0;
8283 }
8284 
8285 /**
8286  *	t4_identify_port - identify a VI's port by blinking its LED
8287  *	@adap: the adapter
8288  *	@mbox: mailbox to use for the FW command
8289  *	@viid: the VI id
8290  *	@nblinks: how many times to blink LED at 2.5 Hz
8291  *
8292  *	Identifies a VI's port by blinking its LED.
8293  */
8294 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8295 		     unsigned int nblinks)
8296 {
8297 	struct fw_vi_enable_cmd c;
8298 
8299 	memset(&c, 0, sizeof(c));
8300 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
8301 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8302 				   FW_VI_ENABLE_CMD_VIID_V(viid));
8303 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
8304 	c.blinkdur = cpu_to_be16(nblinks);
8305 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8306 }
8307 
8308 /**
8309  *	t4_iq_stop - stop an ingress queue and its FLs
8310  *	@adap: the adapter
8311  *	@mbox: mailbox to use for the FW command
8312  *	@pf: the PF owning the queues
8313  *	@vf: the VF owning the queues
8314  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8315  *	@iqid: ingress queue id
8316  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8317  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8318  *
8319  *	Stops an ingress queue and its associated FLs, if any.  This causes
8320  *	any current or future data/messages destined for these queues to be
8321  *	tossed.
8322  */
8323 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8324 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8325 	       unsigned int fl0id, unsigned int fl1id)
8326 {
8327 	struct fw_iq_cmd c;
8328 
8329 	memset(&c, 0, sizeof(c));
8330 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8331 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8332 				  FW_IQ_CMD_VFN_V(vf));
8333 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
8334 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8335 	c.iqid = cpu_to_be16(iqid);
8336 	c.fl0id = cpu_to_be16(fl0id);
8337 	c.fl1id = cpu_to_be16(fl1id);
8338 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8339 }
8340 
8341 /**
8342  *	t4_iq_free - free an ingress queue and its FLs
8343  *	@adap: the adapter
8344  *	@mbox: mailbox to use for the FW command
8345  *	@pf: the PF owning the queues
8346  *	@vf: the VF owning the queues
8347  *	@iqtype: the ingress queue type
8348  *	@iqid: ingress queue id
8349  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8350  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8351  *
8352  *	Frees an ingress queue and its associated FLs, if any.
8353  */
8354 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8355 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8356 	       unsigned int fl0id, unsigned int fl1id)
8357 {
8358 	struct fw_iq_cmd c;
8359 
8360 	memset(&c, 0, sizeof(c));
8361 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
8362 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
8363 				  FW_IQ_CMD_VFN_V(vf));
8364 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
8365 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
8366 	c.iqid = cpu_to_be16(iqid);
8367 	c.fl0id = cpu_to_be16(fl0id);
8368 	c.fl1id = cpu_to_be16(fl1id);
8369 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8370 }
8371 
8372 /**
8373  *	t4_eth_eq_free - free an Ethernet egress queue
8374  *	@adap: the adapter
8375  *	@mbox: mailbox to use for the FW command
8376  *	@pf: the PF owning the queue
8377  *	@vf: the VF owning the queue
8378  *	@eqid: egress queue id
8379  *
8380  *	Frees an Ethernet egress queue.
8381  */
8382 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8383 		   unsigned int vf, unsigned int eqid)
8384 {
8385 	struct fw_eq_eth_cmd c;
8386 
8387 	memset(&c, 0, sizeof(c));
8388 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
8389 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8390 				  FW_EQ_ETH_CMD_PFN_V(pf) |
8391 				  FW_EQ_ETH_CMD_VFN_V(vf));
8392 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
8393 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
8394 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8395 }
8396 
8397 /**
8398  *	t4_ctrl_eq_free - free a control egress queue
8399  *	@adap: the adapter
8400  *	@mbox: mailbox to use for the FW command
8401  *	@pf: the PF owning the queue
8402  *	@vf: the VF owning the queue
8403  *	@eqid: egress queue id
8404  *
8405  *	Frees a control egress queue.
8406  */
8407 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8408 		    unsigned int vf, unsigned int eqid)
8409 {
8410 	struct fw_eq_ctrl_cmd c;
8411 
8412 	memset(&c, 0, sizeof(c));
8413 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
8414 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8415 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
8416 				  FW_EQ_CTRL_CMD_VFN_V(vf));
8417 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
8418 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
8419 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8420 }
8421 
8422 /**
8423  *	t4_ofld_eq_free - free an offload egress queue
8424  *	@adap: the adapter
8425  *	@mbox: mailbox to use for the FW command
8426  *	@pf: the PF owning the queue
8427  *	@vf: the VF owning the queue
8428  *	@eqid: egress queue id
8429  *
8430  *	Frees a control egress queue.
8431  */
8432 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8433 		    unsigned int vf, unsigned int eqid)
8434 {
8435 	struct fw_eq_ofld_cmd c;
8436 
8437 	memset(&c, 0, sizeof(c));
8438 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
8439 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
8440 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
8441 				  FW_EQ_OFLD_CMD_VFN_V(vf));
8442 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
8443 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
8444 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8445 }
8446 
8447 /**
8448  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8449  *	@link_down_rc: Link Down Reason Code
8450  *
8451  *	Returns a string representation of the Link Down Reason Code.
8452  */
8453 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
8454 {
8455 	static const char * const reason[] = {
8456 		"Link Down",
8457 		"Remote Fault",
8458 		"Auto-negotiation Failure",
8459 		"Reserved",
8460 		"Insufficient Airflow",
8461 		"Unable To Determine Reason",
8462 		"No RX Signal Detected",
8463 		"Reserved",
8464 	};
8465 
8466 	if (link_down_rc >= ARRAY_SIZE(reason))
8467 		return "Bad Reason Code";
8468 
8469 	return reason[link_down_rc];
8470 }
8471 
8472 /* Return the highest speed set in the port capabilities, in Mb/s. */
8473 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
8474 {
8475 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8476 		do { \
8477 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8478 				return __speed; \
8479 		} while (0)
8480 
8481 	TEST_SPEED_RETURN(400G, 400000);
8482 	TEST_SPEED_RETURN(200G, 200000);
8483 	TEST_SPEED_RETURN(100G, 100000);
8484 	TEST_SPEED_RETURN(50G,   50000);
8485 	TEST_SPEED_RETURN(40G,   40000);
8486 	TEST_SPEED_RETURN(25G,   25000);
8487 	TEST_SPEED_RETURN(10G,   10000);
8488 	TEST_SPEED_RETURN(1G,     1000);
8489 	TEST_SPEED_RETURN(100M,    100);
8490 
8491 	#undef TEST_SPEED_RETURN
8492 
8493 	return 0;
8494 }
8495 
8496 /**
8497  *	fwcap_to_fwspeed - return highest speed in Port Capabilities
8498  *	@acaps: advertised Port Capabilities
8499  *
8500  *	Get the highest speed for the port from the advertised Port
8501  *	Capabilities.  It will be either the highest speed from the list of
8502  *	speeds or whatever user has set using ethtool.
8503  */
8504 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
8505 {
8506 	#define TEST_SPEED_RETURN(__caps_speed) \
8507 		do { \
8508 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8509 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8510 		} while (0)
8511 
8512 	TEST_SPEED_RETURN(400G);
8513 	TEST_SPEED_RETURN(200G);
8514 	TEST_SPEED_RETURN(100G);
8515 	TEST_SPEED_RETURN(50G);
8516 	TEST_SPEED_RETURN(40G);
8517 	TEST_SPEED_RETURN(25G);
8518 	TEST_SPEED_RETURN(10G);
8519 	TEST_SPEED_RETURN(1G);
8520 	TEST_SPEED_RETURN(100M);
8521 
8522 	#undef TEST_SPEED_RETURN
8523 
8524 	return 0;
8525 }
8526 
8527 /**
8528  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8529  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8530  *
8531  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8532  *	32-bit Port Capabilities value.
8533  */
8534 static fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
8535 {
8536 	fw_port_cap32_t linkattr = 0;
8537 
8538 	/* Unfortunately the format of the Link Status in the old
8539 	 * 16-bit Port Information message isn't the same as the
8540 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8541 	 */
8542 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
8543 		linkattr |= FW_PORT_CAP32_FC_RX;
8544 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
8545 		linkattr |= FW_PORT_CAP32_FC_TX;
8546 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
8547 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8548 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
8549 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8550 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
8551 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8552 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
8553 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8554 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
8555 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8556 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
8557 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8558 
8559 	return linkattr;
8560 }
8561 
8562 /**
8563  *	t4_handle_get_port_info - process a FW reply message
8564  *	@pi: the port info
8565  *	@rpl: start of the FW message
8566  *
8567  *	Processes a GET_PORT_INFO FW reply message.
8568  */
8569 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
8570 {
8571 	const struct fw_port_cmd *cmd = (const void *)rpl;
8572 	fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
8573 	struct link_config *lc = &pi->link_cfg;
8574 	struct adapter *adapter = pi->adapter;
8575 	unsigned int speed, fc, fec, adv_fc;
8576 	enum fw_port_module_type mod_type;
8577 	int action, link_ok, linkdnrc;
8578 	enum fw_port_type port_type;
8579 
8580 	/* Extract the various fields from the Port Information message.
8581 	 */
8582 	action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
8583 	switch (action) {
8584 	case FW_PORT_ACTION_GET_PORT_INFO: {
8585 		u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
8586 
8587 		link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
8588 		linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
8589 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
8590 		mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
8591 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
8592 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
8593 		lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
8594 		linkattr = lstatus_to_fwcap(lstatus);
8595 		break;
8596 	}
8597 
8598 	case FW_PORT_ACTION_GET_PORT_INFO32: {
8599 		u32 lstatus32;
8600 
8601 		lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
8602 		link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
8603 		linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
8604 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
8605 		mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
8606 		pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
8607 		acaps = be32_to_cpu(cmd->u.info32.acaps32);
8608 		lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
8609 		linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
8610 		break;
8611 	}
8612 
8613 	default:
8614 		dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
8615 			be32_to_cpu(cmd->action_to_len16));
8616 		return;
8617 	}
8618 
8619 	fec = fwcap_to_cc_fec(acaps);
8620 	adv_fc = fwcap_to_cc_pause(acaps);
8621 	fc = fwcap_to_cc_pause(linkattr);
8622 	speed = fwcap_to_speed(linkattr);
8623 
8624 	/* Reset state for communicating new Transceiver Module status and
8625 	 * whether the OS-dependent layer wants us to redo the current
8626 	 * "sticky" L1 Configure Link Parameters.
8627 	 */
8628 	lc->new_module = false;
8629 	lc->redo_l1cfg = false;
8630 
8631 	if (mod_type != pi->mod_type) {
8632 		/* With the newer SFP28 and QSFP28 Transceiver Module Types,
8633 		 * various fundamental Port Capabilities which used to be
8634 		 * immutable can now change radically.  We can now have
8635 		 * Speeds, Auto-Negotiation, Forward Error Correction, etc.
8636 		 * all change based on what Transceiver Module is inserted.
8637 		 * So we need to record the Physical "Port" Capabilities on
8638 		 * every Transceiver Module change.
8639 		 */
8640 		lc->pcaps = pcaps;
8641 
8642 		/* When a new Transceiver Module is inserted, the Firmware
8643 		 * will examine its i2c EPROM to determine its type and
8644 		 * general operating parameters including things like Forward
8645 		 * Error Control, etc.  Various IEEE 802.3 standards dictate
8646 		 * how to interpret these i2c values to determine default
8647 		 * "sutomatic" settings.  We record these for future use when
8648 		 * the user explicitly requests these standards-based values.
8649 		 */
8650 		lc->def_acaps = acaps;
8651 
8652 		/* Some versions of the early T6 Firmware "cheated" when
8653 		 * handling different Transceiver Modules by changing the
8654 		 * underlaying Port Type reported to the Host Drivers.  As
8655 		 * such we need to capture whatever Port Type the Firmware
8656 		 * sends us and record it in case it's different from what we
8657 		 * were told earlier.  Unfortunately, since Firmware is
8658 		 * forever, we'll need to keep this code here forever, but in
8659 		 * later T6 Firmware it should just be an assignment of the
8660 		 * same value already recorded.
8661 		 */
8662 		pi->port_type = port_type;
8663 
8664 		/* Record new Module Type information.
8665 		 */
8666 		pi->mod_type = mod_type;
8667 
8668 		/* Let the OS-dependent layer know if we have a new
8669 		 * Transceiver Module inserted.
8670 		 */
8671 		lc->new_module = t4_is_inserted_mod_type(mod_type);
8672 
8673 		t4_os_portmod_changed(adapter, pi->port_id);
8674 	}
8675 
8676 	if (link_ok != lc->link_ok || speed != lc->speed ||
8677 	    fc != lc->fc || adv_fc != lc->advertised_fc ||
8678 	    fec != lc->fec) {
8679 		/* something changed */
8680 		if (!link_ok && lc->link_ok) {
8681 			lc->link_down_rc = linkdnrc;
8682 			dev_warn_ratelimited(adapter->pdev_dev,
8683 					     "Port %d link down, reason: %s\n",
8684 					     pi->tx_chan,
8685 					     t4_link_down_rc_str(linkdnrc));
8686 		}
8687 		lc->link_ok = link_ok;
8688 		lc->speed = speed;
8689 		lc->advertised_fc = adv_fc;
8690 		lc->fc = fc;
8691 		lc->fec = fec;
8692 
8693 		lc->lpacaps = lpacaps;
8694 		lc->acaps = acaps & ADVERT_MASK;
8695 
8696 		/* If we're not physically capable of Auto-Negotiation, note
8697 		 * this as Auto-Negotiation disabled.  Otherwise, we track
8698 		 * what Auto-Negotiation settings we have.  Note parallel
8699 		 * structure in t4_link_l1cfg_core() and init_link_config().
8700 		 */
8701 		if (!(lc->acaps & FW_PORT_CAP32_ANEG)) {
8702 			lc->autoneg = AUTONEG_DISABLE;
8703 		} else if (lc->acaps & FW_PORT_CAP32_ANEG) {
8704 			lc->autoneg = AUTONEG_ENABLE;
8705 		} else {
8706 			/* When Autoneg is disabled, user needs to set
8707 			 * single speed.
8708 			 * Similar to cxgb4_ethtool.c: set_link_ksettings
8709 			 */
8710 			lc->acaps = 0;
8711 			lc->speed_caps = fwcap_to_fwspeed(acaps);
8712 			lc->autoneg = AUTONEG_DISABLE;
8713 		}
8714 
8715 		t4_os_link_changed(adapter, pi->port_id, link_ok);
8716 	}
8717 
8718 	/* If we have a new Transceiver Module and the OS-dependent code has
8719 	 * told us that it wants us to redo whatever "sticky" L1 Configuration
8720 	 * Link Parameters are set, do that now.
8721 	 */
8722 	if (lc->new_module && lc->redo_l1cfg) {
8723 		struct link_config old_lc;
8724 		int ret;
8725 
8726 		/* Save the current L1 Configuration and restore it if an
8727 		 * error occurs.  We probably should fix the l1_cfg*()
8728 		 * routines not to change the link_config when an error
8729 		 * occurs ...
8730 		 */
8731 		old_lc = *lc;
8732 		ret = t4_link_l1cfg_ns(adapter, adapter->mbox, pi->lport, lc);
8733 		if (ret) {
8734 			*lc = old_lc;
8735 			dev_warn(adapter->pdev_dev,
8736 				 "Attempt to update new Transceiver Module settings failed\n");
8737 		}
8738 	}
8739 	lc->new_module = false;
8740 	lc->redo_l1cfg = false;
8741 }
8742 
8743 /**
8744  *	t4_update_port_info - retrieve and update port information if changed
8745  *	@pi: the port_info
8746  *
8747  *	We issue a Get Port Information Command to the Firmware and, if
8748  *	successful, we check to see if anything is different from what we
8749  *	last recorded and update things accordingly.
8750  */
8751 int t4_update_port_info(struct port_info *pi)
8752 {
8753 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8754 	struct fw_port_cmd port_cmd;
8755 	int ret;
8756 
8757 	memset(&port_cmd, 0, sizeof(port_cmd));
8758 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8759 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8760 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8761 	port_cmd.action_to_len16 = cpu_to_be32(
8762 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
8763 				     ? FW_PORT_ACTION_GET_PORT_INFO
8764 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
8765 		FW_LEN16(port_cmd));
8766 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8767 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8768 	if (ret)
8769 		return ret;
8770 
8771 	t4_handle_get_port_info(pi, (__be64 *)&port_cmd);
8772 	return 0;
8773 }
8774 
8775 /**
8776  *	t4_get_link_params - retrieve basic link parameters for given port
8777  *	@pi: the port
8778  *	@link_okp: value return pointer for link up/down
8779  *	@speedp: value return pointer for speed (Mb/s)
8780  *	@mtup: value return pointer for mtu
8781  *
8782  *	Retrieves basic link parameters for a port: link up/down, speed (Mb/s),
8783  *	and MTU for a specified port.  A negative error is returned on
8784  *	failure; 0 on success.
8785  */
8786 int t4_get_link_params(struct port_info *pi, unsigned int *link_okp,
8787 		       unsigned int *speedp, unsigned int *mtup)
8788 {
8789 	unsigned int fw_caps = pi->adapter->params.fw_caps_support;
8790 	unsigned int action, link_ok, mtu;
8791 	struct fw_port_cmd port_cmd;
8792 	fw_port_cap32_t linkattr;
8793 	int ret;
8794 
8795 	memset(&port_cmd, 0, sizeof(port_cmd));
8796 	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
8797 					    FW_CMD_REQUEST_F | FW_CMD_READ_F |
8798 					    FW_PORT_CMD_PORTID_V(pi->tx_chan));
8799 	action = (fw_caps == FW_CAPS16
8800 		  ? FW_PORT_ACTION_GET_PORT_INFO
8801 		  : FW_PORT_ACTION_GET_PORT_INFO32);
8802 	port_cmd.action_to_len16 = cpu_to_be32(
8803 		FW_PORT_CMD_ACTION_V(action) |
8804 		FW_LEN16(port_cmd));
8805 	ret = t4_wr_mbox(pi->adapter, pi->adapter->mbox,
8806 			 &port_cmd, sizeof(port_cmd), &port_cmd);
8807 	if (ret)
8808 		return ret;
8809 
8810 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8811 		u32 lstatus = be32_to_cpu(port_cmd.u.info.lstatus_to_modtype);
8812 
8813 		link_ok = !!(lstatus & FW_PORT_CMD_LSTATUS_F);
8814 		linkattr = lstatus_to_fwcap(lstatus);
8815 		mtu = be16_to_cpu(port_cmd.u.info.mtu);
8816 	} else {
8817 		u32 lstatus32 =
8818 			   be32_to_cpu(port_cmd.u.info32.lstatus32_to_cbllen32);
8819 
8820 		link_ok = !!(lstatus32 & FW_PORT_CMD_LSTATUS32_F);
8821 		linkattr = be32_to_cpu(port_cmd.u.info32.linkattr32);
8822 		mtu = FW_PORT_CMD_MTU32_G(
8823 			be32_to_cpu(port_cmd.u.info32.auxlinfo32_mtu32));
8824 	}
8825 
8826 	if (link_okp)
8827 		*link_okp = link_ok;
8828 	if (speedp)
8829 		*speedp = fwcap_to_speed(linkattr);
8830 	if (mtup)
8831 		*mtup = mtu;
8832 
8833 	return 0;
8834 }
8835 
8836 /**
8837  *      t4_handle_fw_rpl - process a FW reply message
8838  *      @adap: the adapter
8839  *      @rpl: start of the FW message
8840  *
8841  *      Processes a FW message, such as link state change messages.
8842  */
8843 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8844 {
8845 	u8 opcode = *(const u8 *)rpl;
8846 
8847 	/* This might be a port command ... this simplifies the following
8848 	 * conditionals ...  We can get away with pre-dereferencing
8849 	 * action_to_len16 because it's in the first 16 bytes and all messages
8850 	 * will be at least that long.
8851 	 */
8852 	const struct fw_port_cmd *p = (const void *)rpl;
8853 	unsigned int action =
8854 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
8855 
8856 	if (opcode == FW_PORT_CMD &&
8857 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8858 	     action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8859 		int i;
8860 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
8861 		struct port_info *pi = NULL;
8862 
8863 		for_each_port(adap, i) {
8864 			pi = adap2pinfo(adap, i);
8865 			if (pi->tx_chan == chan)
8866 				break;
8867 		}
8868 
8869 		t4_handle_get_port_info(pi, rpl);
8870 	} else {
8871 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n",
8872 			 opcode);
8873 		return -EINVAL;
8874 	}
8875 	return 0;
8876 }
8877 
8878 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
8879 {
8880 	u16 val;
8881 
8882 	if (pci_is_pcie(adapter->pdev)) {
8883 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
8884 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8885 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8886 	}
8887 }
8888 
8889 /**
8890  *	init_link_config - initialize a link's SW state
8891  *	@lc: pointer to structure holding the link state
8892  *	@pcaps: link Port Capabilities
8893  *	@acaps: link current Advertised Port Capabilities
8894  *
8895  *	Initializes the SW state maintained for each link, including the link's
8896  *	capabilities and default speed/flow-control/autonegotiation settings.
8897  */
8898 static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
8899 			     fw_port_cap32_t acaps)
8900 {
8901 	lc->pcaps = pcaps;
8902 	lc->def_acaps = acaps;
8903 	lc->lpacaps = 0;
8904 	lc->speed_caps = 0;
8905 	lc->speed = 0;
8906 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
8907 
8908 	/* For Forward Error Control, we default to whatever the Firmware
8909 	 * tells us the Link is currently advertising.
8910 	 */
8911 	lc->requested_fec = FEC_AUTO;
8912 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
8913 
8914 	/* If the Port is capable of Auto-Negtotiation, initialize it as
8915 	 * "enabled" and copy over all of the Physical Port Capabilities
8916 	 * to the Advertised Port Capabilities.  Otherwise mark it as
8917 	 * Auto-Negotiate disabled and select the highest supported speed
8918 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
8919 	 * and t4_handle_get_port_info().
8920 	 */
8921 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
8922 		lc->acaps = lc->pcaps & ADVERT_MASK;
8923 		lc->autoneg = AUTONEG_ENABLE;
8924 		lc->requested_fc |= PAUSE_AUTONEG;
8925 	} else {
8926 		lc->acaps = 0;
8927 		lc->autoneg = AUTONEG_DISABLE;
8928 		lc->speed_caps = fwcap_to_fwspeed(acaps);
8929 	}
8930 }
8931 
8932 #define CIM_PF_NOACCESS 0xeeeeeeee
8933 
8934 int t4_wait_dev_ready(void __iomem *regs)
8935 {
8936 	u32 whoami;
8937 
8938 	whoami = readl(regs + PL_WHOAMI_A);
8939 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
8940 		return 0;
8941 
8942 	msleep(500);
8943 	whoami = readl(regs + PL_WHOAMI_A);
8944 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
8945 }
8946 
8947 struct flash_desc {
8948 	u32 vendor_and_model_id;
8949 	u32 size_mb;
8950 };
8951 
8952 static int t4_get_flash_params(struct adapter *adap)
8953 {
8954 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
8955 	 * to the preexisting code.  All flash parts have 64KB sectors.
8956 	 */
8957 	static struct flash_desc supported_flash[] = {
8958 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
8959 	};
8960 
8961 	unsigned int part, manufacturer;
8962 	unsigned int density, size = 0;
8963 	u32 flashid = 0;
8964 	int ret;
8965 
8966 	/* Issue a Read ID Command to the Flash part.  We decode supported
8967 	 * Flash parts and their sizes from this.  There's a newer Query
8968 	 * Command which can retrieve detailed geometry information but many
8969 	 * Flash parts don't support it.
8970 	 */
8971 
8972 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
8973 	if (!ret)
8974 		ret = sf1_read(adap, 3, 0, 1, &flashid);
8975 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
8976 	if (ret)
8977 		return ret;
8978 
8979 	/* Check to see if it's one of our non-standard supported Flash parts.
8980 	 */
8981 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8982 		if (supported_flash[part].vendor_and_model_id == flashid) {
8983 			adap->params.sf_size = supported_flash[part].size_mb;
8984 			adap->params.sf_nsec =
8985 				adap->params.sf_size / SF_SEC_SIZE;
8986 			goto found;
8987 		}
8988 
8989 	/* Decode Flash part size.  The code below looks repetitive with
8990 	 * common encodings, but that's not guaranteed in the JEDEC
8991 	 * specification for the Read JEDEC ID command.  The only thing that
8992 	 * we're guaranteed by the JEDEC specification is where the
8993 	 * Manufacturer ID is in the returned result.  After that each
8994 	 * Manufacturer ~could~ encode things completely differently.
8995 	 * Note, all Flash parts must have 64KB sectors.
8996 	 */
8997 	manufacturer = flashid & 0xff;
8998 	switch (manufacturer) {
8999 	case 0x20: { /* Micron/Numonix */
9000 		/* This Density -> Size decoding table is taken from Micron
9001 		 * Data Sheets.
9002 		 */
9003 		density = (flashid >> 16) & 0xff;
9004 		switch (density) {
9005 		case 0x14: /* 1MB */
9006 			size = 1 << 20;
9007 			break;
9008 		case 0x15: /* 2MB */
9009 			size = 1 << 21;
9010 			break;
9011 		case 0x16: /* 4MB */
9012 			size = 1 << 22;
9013 			break;
9014 		case 0x17: /* 8MB */
9015 			size = 1 << 23;
9016 			break;
9017 		case 0x18: /* 16MB */
9018 			size = 1 << 24;
9019 			break;
9020 		case 0x19: /* 32MB */
9021 			size = 1 << 25;
9022 			break;
9023 		case 0x20: /* 64MB */
9024 			size = 1 << 26;
9025 			break;
9026 		case 0x21: /* 128MB */
9027 			size = 1 << 27;
9028 			break;
9029 		case 0x22: /* 256MB */
9030 			size = 1 << 28;
9031 			break;
9032 		}
9033 		break;
9034 	}
9035 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
9036 		/* This Density -> Size decoding table is taken from ISSI
9037 		 * Data Sheets.
9038 		 */
9039 		density = (flashid >> 16) & 0xff;
9040 		switch (density) {
9041 		case 0x16: /* 32 MB */
9042 			size = 1 << 25;
9043 			break;
9044 		case 0x17: /* 64MB */
9045 			size = 1 << 26;
9046 			break;
9047 		}
9048 		break;
9049 	}
9050 	case 0xc2: { /* Macronix */
9051 		/* This Density -> Size decoding table is taken from Macronix
9052 		 * Data Sheets.
9053 		 */
9054 		density = (flashid >> 16) & 0xff;
9055 		switch (density) {
9056 		case 0x17: /* 8MB */
9057 			size = 1 << 23;
9058 			break;
9059 		case 0x18: /* 16MB */
9060 			size = 1 << 24;
9061 			break;
9062 		}
9063 		break;
9064 	}
9065 	case 0xef: { /* Winbond */
9066 		/* This Density -> Size decoding table is taken from Winbond
9067 		 * Data Sheets.
9068 		 */
9069 		density = (flashid >> 16) & 0xff;
9070 		switch (density) {
9071 		case 0x17: /* 8MB */
9072 			size = 1 << 23;
9073 			break;
9074 		case 0x18: /* 16MB */
9075 			size = 1 << 24;
9076 			break;
9077 		}
9078 		break;
9079 	}
9080 	}
9081 
9082 	/* If we didn't recognize the FLASH part, that's no real issue: the
9083 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9084 	 * use a FLASH part which is at least 4MB in size and has 64KB
9085 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9086 	 * than 4MB, but that's all we really need.
9087 	 */
9088 	if (size == 0) {
9089 		dev_warn(adap->pdev_dev, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
9090 			 flashid);
9091 		size = 1 << 22;
9092 	}
9093 
9094 	/* Store decoded Flash size and fall through into vetting code. */
9095 	adap->params.sf_size = size;
9096 	adap->params.sf_nsec = size / SF_SEC_SIZE;
9097 
9098 found:
9099 	if (adap->params.sf_size < FLASH_MIN_SIZE)
9100 		dev_warn(adap->pdev_dev, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9101 			 flashid, adap->params.sf_size, FLASH_MIN_SIZE);
9102 	return 0;
9103 }
9104 
9105 /**
9106  *	t4_prep_adapter - prepare SW and HW for operation
9107  *	@adapter: the adapter
9108  *
9109  *	Initialize adapter SW state for the various HW modules, set initial
9110  *	values for some adapter tunables, take PHYs out of reset, and
9111  *	initialize the MDIO interface.
9112  */
9113 int t4_prep_adapter(struct adapter *adapter)
9114 {
9115 	int ret, ver;
9116 	uint16_t device_id;
9117 	u32 pl_rev;
9118 
9119 	get_pci_mode(adapter, &adapter->params.pci);
9120 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
9121 
9122 	ret = t4_get_flash_params(adapter);
9123 	if (ret < 0) {
9124 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
9125 		return ret;
9126 	}
9127 
9128 	/* Retrieve adapter's device ID
9129 	 */
9130 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
9131 	ver = device_id >> 12;
9132 	adapter->params.chip = 0;
9133 	switch (ver) {
9134 	case CHELSIO_T4:
9135 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
9136 		adapter->params.arch.sge_fl_db = DBPRIO_F;
9137 		adapter->params.arch.mps_tcam_size =
9138 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
9139 		adapter->params.arch.mps_rplc_size = 128;
9140 		adapter->params.arch.nchan = NCHAN;
9141 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9142 		adapter->params.arch.vfcount = 128;
9143 		/* Congestion map is for 4 channels so that
9144 		 * MPS can have 4 priority per port.
9145 		 */
9146 		adapter->params.arch.cng_ch_bits_log = 2;
9147 		break;
9148 	case CHELSIO_T5:
9149 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
9150 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
9151 		adapter->params.arch.mps_tcam_size =
9152 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9153 		adapter->params.arch.mps_rplc_size = 128;
9154 		adapter->params.arch.nchan = NCHAN;
9155 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
9156 		adapter->params.arch.vfcount = 128;
9157 		adapter->params.arch.cng_ch_bits_log = 2;
9158 		break;
9159 	case CHELSIO_T6:
9160 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
9161 		adapter->params.arch.sge_fl_db = 0;
9162 		adapter->params.arch.mps_tcam_size =
9163 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
9164 		adapter->params.arch.mps_rplc_size = 256;
9165 		adapter->params.arch.nchan = 2;
9166 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
9167 		adapter->params.arch.vfcount = 256;
9168 		/* Congestion map will be for 2 channels so that
9169 		 * MPS can have 8 priority per port.
9170 		 */
9171 		adapter->params.arch.cng_ch_bits_log = 3;
9172 		break;
9173 	default:
9174 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
9175 			device_id);
9176 		return -EINVAL;
9177 	}
9178 
9179 	adapter->params.cim_la_size = CIMLA_SIZE;
9180 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9181 
9182 	/*
9183 	 * Default port for debugging in case we can't reach FW.
9184 	 */
9185 	adapter->params.nports = 1;
9186 	adapter->params.portvec = 1;
9187 	adapter->params.vpd.cclk = 50000;
9188 
9189 	/* Set PCIe completion timeout to 4 seconds. */
9190 	pcie_capability_clear_and_set_word(adapter->pdev, PCI_EXP_DEVCTL2,
9191 					   PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
9192 	return 0;
9193 }
9194 
9195 /**
9196  *	t4_shutdown_adapter - shut down adapter, host & wire
9197  *	@adapter: the adapter
9198  *
9199  *	Perform an emergency shutdown of the adapter and stop it from
9200  *	continuing any further communication on the ports or DMA to the
9201  *	host.  This is typically used when the adapter and/or firmware
9202  *	have crashed and we want to prevent any further accidental
9203  *	communication with the rest of the world.  This will also force
9204  *	the port Link Status to go down -- if register writes work --
9205  *	which should help our peers figure out that we're down.
9206  */
9207 int t4_shutdown_adapter(struct adapter *adapter)
9208 {
9209 	int port;
9210 
9211 	t4_intr_disable(adapter);
9212 	t4_write_reg(adapter, DBG_GPIO_EN_A, 0);
9213 	for_each_port(adapter, port) {
9214 		u32 a_port_cfg = is_t4(adapter->params.chip) ?
9215 				       PORT_REG(port, XGMAC_PORT_CFG_A) :
9216 				       T5_PORT_REG(port, MAC_PORT_CFG_A);
9217 
9218 		t4_write_reg(adapter, a_port_cfg,
9219 			     t4_read_reg(adapter, a_port_cfg)
9220 			     & ~SIGNAL_DET_V(1));
9221 	}
9222 	t4_set_reg_field(adapter, SGE_CONTROL_A, GLOBALENABLE_F, 0);
9223 
9224 	return 0;
9225 }
9226 
9227 /**
9228  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9229  *	@adapter: the adapter
9230  *	@qid: the Queue ID
9231  *	@qtype: the Ingress or Egress type for @qid
9232  *	@user: true if this request is for a user mode queue
9233  *	@pbar2_qoffset: BAR2 Queue Offset
9234  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9235  *
9236  *	Returns the BAR2 SGE Queue Registers information associated with the
9237  *	indicated Absolute Queue ID.  These are passed back in return value
9238  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9239  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9240  *
9241  *	This may return an error which indicates that BAR2 SGE Queue
9242  *	registers aren't available.  If an error is not returned, then the
9243  *	following values are returned:
9244  *
9245  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9246  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9247  *
9248  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9249  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9250  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9251  *	then these "Inferred Queue ID" register may not be used.
9252  */
9253 int t4_bar2_sge_qregs(struct adapter *adapter,
9254 		      unsigned int qid,
9255 		      enum t4_bar2_qtype qtype,
9256 		      int user,
9257 		      u64 *pbar2_qoffset,
9258 		      unsigned int *pbar2_qid)
9259 {
9260 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9261 	u64 bar2_page_offset, bar2_qoffset;
9262 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9263 
9264 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
9265 	if (!user && is_t4(adapter->params.chip))
9266 		return -EINVAL;
9267 
9268 	/* Get our SGE Page Size parameters.
9269 	 */
9270 	page_shift = adapter->params.sge.hps + 10;
9271 	page_size = 1 << page_shift;
9272 
9273 	/* Get the right Queues per Page parameters for our Queue.
9274 	 */
9275 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9276 		     ? adapter->params.sge.eq_qpp
9277 		     : adapter->params.sge.iq_qpp);
9278 	qpp_mask = (1 << qpp_shift) - 1;
9279 
9280 	/*  Calculate the basics of the BAR2 SGE Queue register area:
9281 	 *  o The BAR2 page the Queue registers will be in.
9282 	 *  o The BAR2 Queue ID.
9283 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9284 	 */
9285 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9286 	bar2_qid = qid & qpp_mask;
9287 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9288 
9289 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9290 	 * hardware will infer the Absolute Queue ID simply from the writes to
9291 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9292 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9293 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9294 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9295 	 * from the BAR2 Page and BAR2 Queue ID.
9296 	 *
9297 	 * One important censequence of this is that some BAR2 SGE registers
9298 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9299 	 * there.  But other registers synthesize the SGE Queue ID purely
9300 	 * from the writes to the registers -- the Write Combined Doorbell
9301 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9302 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9303 	 * Queue ID can be inferred from simple writes.
9304 	 */
9305 	bar2_qoffset = bar2_page_offset;
9306 	bar2_qinferred = (bar2_qid_offset < page_size);
9307 	if (bar2_qinferred) {
9308 		bar2_qoffset += bar2_qid_offset;
9309 		bar2_qid = 0;
9310 	}
9311 
9312 	*pbar2_qoffset = bar2_qoffset;
9313 	*pbar2_qid = bar2_qid;
9314 	return 0;
9315 }
9316 
9317 /**
9318  *	t4_init_devlog_params - initialize adapter->params.devlog
9319  *	@adap: the adapter
9320  *
9321  *	Initialize various fields of the adapter's Firmware Device Log
9322  *	Parameters structure.
9323  */
9324 int t4_init_devlog_params(struct adapter *adap)
9325 {
9326 	struct devlog_params *dparams = &adap->params.devlog;
9327 	u32 pf_dparams;
9328 	unsigned int devlog_meminfo;
9329 	struct fw_devlog_cmd devlog_cmd;
9330 	int ret;
9331 
9332 	/* If we're dealing with newer firmware, the Device Log Parameters
9333 	 * are stored in a designated register which allows us to access the
9334 	 * Device Log even if we can't talk to the firmware.
9335 	 */
9336 	pf_dparams =
9337 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
9338 	if (pf_dparams) {
9339 		unsigned int nentries, nentries128;
9340 
9341 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
9342 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
9343 
9344 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
9345 		nentries = (nentries128 + 1) * 128;
9346 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9347 
9348 		return 0;
9349 	}
9350 
9351 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9352 	 */
9353 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9354 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
9355 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
9356 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9357 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9358 			 &devlog_cmd);
9359 	if (ret)
9360 		return ret;
9361 
9362 	devlog_meminfo =
9363 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9364 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
9365 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
9366 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9367 
9368 	return 0;
9369 }
9370 
9371 /**
9372  *	t4_init_sge_params - initialize adap->params.sge
9373  *	@adapter: the adapter
9374  *
9375  *	Initialize various fields of the adapter's SGE Parameters structure.
9376  */
9377 int t4_init_sge_params(struct adapter *adapter)
9378 {
9379 	struct sge_params *sge_params = &adapter->params.sge;
9380 	u32 hps, qpp;
9381 	unsigned int s_hps, s_qpp;
9382 
9383 	/* Extract the SGE Page Size for our PF.
9384 	 */
9385 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
9386 	s_hps = (HOSTPAGESIZEPF0_S +
9387 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
9388 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
9389 
9390 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
9391 	 */
9392 	s_qpp = (QUEUESPERPAGEPF0_S +
9393 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
9394 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
9395 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9396 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
9397 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
9398 
9399 	return 0;
9400 }
9401 
9402 /**
9403  *      t4_init_tp_params - initialize adap->params.tp
9404  *      @adap: the adapter
9405  *      @sleep_ok: if true we may sleep while awaiting command completion
9406  *
9407  *      Initialize various fields of the adapter's TP Parameters structure.
9408  */
9409 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9410 {
9411 	u32 param, val, v;
9412 	int chan, ret;
9413 
9414 
9415 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
9416 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
9417 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
9418 
9419 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9420 	for (chan = 0; chan < NCHAN; chan++)
9421 		adap->params.tp.tx_modq[chan] = chan;
9422 
9423 	/* Cache the adapter's Compressed Filter Mode/Mask and global Ingress
9424 	 * Configuration.
9425 	 */
9426 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
9427 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FILTER) |
9428 		 FW_PARAMS_PARAM_Y_V(FW_PARAM_DEV_FILTER_MODE_MASK));
9429 
9430 	/* Read current value */
9431 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
9432 			      &param, &val);
9433 	if (ret == 0) {
9434 		dev_info(adap->pdev_dev,
9435 			 "Current filter mode/mask 0x%x:0x%x\n",
9436 			 FW_PARAMS_PARAM_FILTER_MODE_G(val),
9437 			 FW_PARAMS_PARAM_FILTER_MASK_G(val));
9438 		adap->params.tp.vlan_pri_map =
9439 			FW_PARAMS_PARAM_FILTER_MODE_G(val);
9440 		adap->params.tp.filter_mask =
9441 			FW_PARAMS_PARAM_FILTER_MASK_G(val);
9442 	} else {
9443 		dev_info(adap->pdev_dev,
9444 			 "Failed to read filter mode/mask via fw api, using indirect-reg-read\n");
9445 
9446 		/* Incase of older-fw (which doesn't expose the api
9447 		 * FW_PARAM_DEV_FILTER_MODE_MASK) and newer-driver (which uses
9448 		 * the fw api) combination, fall-back to older method of reading
9449 		 * the filter mode from indirect-register
9450 		 */
9451 		t4_tp_pio_read(adap, &adap->params.tp.vlan_pri_map, 1,
9452 			       TP_VLAN_PRI_MAP_A, sleep_ok);
9453 
9454 		/* With the older-fw and newer-driver combination we might run
9455 		 * into an issue when user wants to use hash filter region but
9456 		 * the filter_mask is zero, in this case filter_mask validation
9457 		 * is tough. To avoid that we set the filter_mask same as filter
9458 		 * mode, which will behave exactly as the older way of ignoring
9459 		 * the filter mask validation.
9460 		 */
9461 		adap->params.tp.filter_mask = adap->params.tp.vlan_pri_map;
9462 	}
9463 
9464 	t4_tp_pio_read(adap, &adap->params.tp.ingress_config, 1,
9465 		       TP_INGRESS_CONFIG_A, sleep_ok);
9466 
9467 	/* For T6, cache the adapter's compressed error vector
9468 	 * and passing outer header info for encapsulated packets.
9469 	 */
9470 	if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
9471 		v = t4_read_reg(adap, TP_OUT_CONFIG_A);
9472 		adap->params.tp.rx_pkt_encap = (v & CRXPKTENC_F) ? 1 : 0;
9473 	}
9474 
9475 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9476 	 * shift positions of several elements of the Compressed Filter Tuple
9477 	 * for this adapter which we need frequently ...
9478 	 */
9479 	adap->params.tp.fcoe_shift = t4_filter_field_shift(adap, FCOE_F);
9480 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
9481 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
9482 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
9483 	adap->params.tp.tos_shift = t4_filter_field_shift(adap, TOS_F);
9484 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
9485 							       PROTOCOL_F);
9486 	adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
9487 								ETHERTYPE_F);
9488 	adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
9489 							       MACMATCH_F);
9490 	adap->params.tp.matchtype_shift = t4_filter_field_shift(adap,
9491 								MPSHITTYPE_F);
9492 	adap->params.tp.frag_shift = t4_filter_field_shift(adap,
9493 							   FRAGMENTATION_F);
9494 
9495 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
9496 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
9497 	 */
9498 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
9499 		adap->params.tp.vnic_shift = -1;
9500 
9501 	v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
9502 	adap->params.tp.hash_filter_mask = v;
9503 	v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
9504 	adap->params.tp.hash_filter_mask |= ((u64)v << 32);
9505 	return 0;
9506 }
9507 
9508 /**
9509  *      t4_filter_field_shift - calculate filter field shift
9510  *      @adap: the adapter
9511  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9512  *
9513  *      Return the shift position of a filter field within the Compressed
9514  *      Filter Tuple.  The filter field is specified via its selection bit
9515  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9516  */
9517 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9518 {
9519 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9520 	unsigned int sel;
9521 	int field_shift;
9522 
9523 	if ((filter_mode & filter_sel) == 0)
9524 		return -1;
9525 
9526 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9527 		switch (filter_mode & sel) {
9528 		case FCOE_F:
9529 			field_shift += FT_FCOE_W;
9530 			break;
9531 		case PORT_F:
9532 			field_shift += FT_PORT_W;
9533 			break;
9534 		case VNIC_ID_F:
9535 			field_shift += FT_VNIC_ID_W;
9536 			break;
9537 		case VLAN_F:
9538 			field_shift += FT_VLAN_W;
9539 			break;
9540 		case TOS_F:
9541 			field_shift += FT_TOS_W;
9542 			break;
9543 		case PROTOCOL_F:
9544 			field_shift += FT_PROTOCOL_W;
9545 			break;
9546 		case ETHERTYPE_F:
9547 			field_shift += FT_ETHERTYPE_W;
9548 			break;
9549 		case MACMATCH_F:
9550 			field_shift += FT_MACMATCH_W;
9551 			break;
9552 		case MPSHITTYPE_F:
9553 			field_shift += FT_MPSHITTYPE_W;
9554 			break;
9555 		case FRAGMENTATION_F:
9556 			field_shift += FT_FRAGMENTATION_W;
9557 			break;
9558 		}
9559 	}
9560 	return field_shift;
9561 }
9562 
9563 int t4_init_rss_mode(struct adapter *adap, int mbox)
9564 {
9565 	int i, ret;
9566 	struct fw_rss_vi_config_cmd rvc;
9567 
9568 	memset(&rvc, 0, sizeof(rvc));
9569 
9570 	for_each_port(adap, i) {
9571 		struct port_info *p = adap2pinfo(adap, i);
9572 
9573 		rvc.op_to_viid =
9574 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
9575 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
9576 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
9577 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
9578 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
9579 		if (ret)
9580 			return ret;
9581 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
9582 	}
9583 	return 0;
9584 }
9585 
9586 /**
9587  *	t4_init_portinfo - allocate a virtual interface and initialize port_info
9588  *	@pi: the port_info
9589  *	@mbox: mailbox to use for the FW command
9590  *	@port: physical port associated with the VI
9591  *	@pf: the PF owning the VI
9592  *	@vf: the VF owning the VI
9593  *	@mac: the MAC address of the VI
9594  *
9595  *	Allocates a virtual interface for the given physical port.  If @mac is
9596  *	not %NULL it contains the MAC address of the VI as assigned by FW.
9597  *	@mac should be large enough to hold an Ethernet address.
9598  *	Returns < 0 on error.
9599  */
9600 int t4_init_portinfo(struct port_info *pi, int mbox,
9601 		     int port, int pf, int vf, u8 mac[])
9602 {
9603 	struct adapter *adapter = pi->adapter;
9604 	unsigned int fw_caps = adapter->params.fw_caps_support;
9605 	struct fw_port_cmd cmd;
9606 	unsigned int rss_size;
9607 	enum fw_port_type port_type;
9608 	int mdio_addr;
9609 	fw_port_cap32_t pcaps, acaps;
9610 	u8 vivld = 0, vin = 0;
9611 	int ret;
9612 
9613 	/* If we haven't yet determined whether we're talking to Firmware
9614 	 * which knows the new 32-bit Port Capabilities, it's time to find
9615 	 * out now.  This will also tell new Firmware to send us Port Status
9616 	 * Updates using the new 32-bit Port Capabilities version of the
9617 	 * Port Information message.
9618 	 */
9619 	if (fw_caps == FW_CAPS_UNKNOWN) {
9620 		u32 param, val;
9621 
9622 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
9623 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
9624 		val = 1;
9625 		ret = t4_set_params(adapter, mbox, pf, vf, 1, &param, &val);
9626 		fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
9627 		adapter->params.fw_caps_support = fw_caps;
9628 	}
9629 
9630 	memset(&cmd, 0, sizeof(cmd));
9631 	cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
9632 				       FW_CMD_REQUEST_F | FW_CMD_READ_F |
9633 				       FW_PORT_CMD_PORTID_V(port));
9634 	cmd.action_to_len16 = cpu_to_be32(
9635 		FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
9636 				     ? FW_PORT_ACTION_GET_PORT_INFO
9637 				     : FW_PORT_ACTION_GET_PORT_INFO32) |
9638 		FW_LEN16(cmd));
9639 	ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
9640 	if (ret)
9641 		return ret;
9642 
9643 	/* Extract the various fields from the Port Information message.
9644 	 */
9645 	if (fw_caps == FW_CAPS16) {
9646 		u32 lstatus = be32_to_cpu(cmd.u.info.lstatus_to_modtype);
9647 
9648 		port_type = FW_PORT_CMD_PTYPE_G(lstatus);
9649 		mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
9650 			     ? FW_PORT_CMD_MDIOADDR_G(lstatus)
9651 			     : -1);
9652 		pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.pcap));
9653 		acaps = fwcaps16_to_caps32(be16_to_cpu(cmd.u.info.acap));
9654 	} else {
9655 		u32 lstatus32 = be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
9656 
9657 		port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
9658 		mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
9659 			     ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
9660 			     : -1);
9661 		pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
9662 		acaps = be32_to_cpu(cmd.u.info32.acaps32);
9663 	}
9664 
9665 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size,
9666 			  &vivld, &vin);
9667 	if (ret < 0)
9668 		return ret;
9669 
9670 	pi->viid = ret;
9671 	pi->tx_chan = port;
9672 	pi->lport = port;
9673 	pi->rss_size = rss_size;
9674 	pi->rx_cchan = t4_get_tp_e2c_map(pi->adapter, port);
9675 
9676 	/* If fw supports returning the VIN as part of FW_VI_CMD,
9677 	 * save the returned values.
9678 	 */
9679 	if (adapter->params.viid_smt_extn_support) {
9680 		pi->vivld = vivld;
9681 		pi->vin = vin;
9682 	} else {
9683 		/* Retrieve the values from VIID */
9684 		pi->vivld = FW_VIID_VIVLD_G(pi->viid);
9685 		pi->vin =  FW_VIID_VIN_G(pi->viid);
9686 	}
9687 
9688 	pi->port_type = port_type;
9689 	pi->mdio_addr = mdio_addr;
9690 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
9691 
9692 	init_link_config(&pi->link_cfg, pcaps, acaps);
9693 	return 0;
9694 }
9695 
9696 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
9697 {
9698 	u8 addr[6];
9699 	int ret, i, j = 0;
9700 
9701 	for_each_port(adap, i) {
9702 		struct port_info *pi = adap2pinfo(adap, i);
9703 
9704 		while ((adap->params.portvec & (1 << j)) == 0)
9705 			j++;
9706 
9707 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
9708 		if (ret)
9709 			return ret;
9710 
9711 		eth_hw_addr_set(adap->port[i], addr);
9712 		j++;
9713 	}
9714 	return 0;
9715 }
9716 
9717 int t4_init_port_mirror(struct port_info *pi, u8 mbox, u8 port, u8 pf, u8 vf,
9718 			u16 *mirror_viid)
9719 {
9720 	int ret;
9721 
9722 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, NULL, NULL,
9723 			  NULL, NULL);
9724 	if (ret < 0)
9725 		return ret;
9726 
9727 	if (mirror_viid)
9728 		*mirror_viid = ret;
9729 
9730 	return 0;
9731 }
9732 
9733 /**
9734  *	t4_read_cimq_cfg - read CIM queue configuration
9735  *	@adap: the adapter
9736  *	@base: holds the queue base addresses in bytes
9737  *	@size: holds the queue sizes in bytes
9738  *	@thres: holds the queue full thresholds in bytes
9739  *
9740  *	Returns the current configuration of the CIM queues, starting with
9741  *	the IBQs, then the OBQs.
9742  */
9743 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9744 {
9745 	unsigned int i, v;
9746 	int cim_num_obq = is_t4(adap->params.chip) ?
9747 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9748 
9749 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9750 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
9751 			     QUENUMSELECT_V(i));
9752 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9753 		/* value is in 256-byte units */
9754 		*base++ = CIMQBASE_G(v) * 256;
9755 		*size++ = CIMQSIZE_G(v) * 256;
9756 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
9757 	}
9758 	for (i = 0; i < cim_num_obq; i++) {
9759 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9760 			     QUENUMSELECT_V(i));
9761 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9762 		/* value is in 256-byte units */
9763 		*base++ = CIMQBASE_G(v) * 256;
9764 		*size++ = CIMQSIZE_G(v) * 256;
9765 	}
9766 }
9767 
9768 /**
9769  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9770  *	@adap: the adapter
9771  *	@qid: the queue index
9772  *	@data: where to store the queue contents
9773  *	@n: capacity of @data in 32-bit words
9774  *
9775  *	Reads the contents of the selected CIM queue starting at address 0 up
9776  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9777  *	error and the number of 32-bit words actually read on success.
9778  */
9779 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9780 {
9781 	int i, err, attempts;
9782 	unsigned int addr;
9783 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9784 
9785 	if (qid > 5 || (n & 3))
9786 		return -EINVAL;
9787 
9788 	addr = qid * nwords;
9789 	if (n > nwords)
9790 		n = nwords;
9791 
9792 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9793 	 * Wait for 1 Sec with a delay of 1 usec.
9794 	 */
9795 	attempts = 1000000;
9796 
9797 	for (i = 0; i < n; i++, addr++) {
9798 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
9799 			     IBQDBGEN_F);
9800 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
9801 				      attempts, 1);
9802 		if (err)
9803 			return err;
9804 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
9805 	}
9806 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
9807 	return i;
9808 }
9809 
9810 /**
9811  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9812  *	@adap: the adapter
9813  *	@qid: the queue index
9814  *	@data: where to store the queue contents
9815  *	@n: capacity of @data in 32-bit words
9816  *
9817  *	Reads the contents of the selected CIM queue starting at address 0 up
9818  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9819  *	error and the number of 32-bit words actually read on success.
9820  */
9821 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9822 {
9823 	int i, err;
9824 	unsigned int addr, v, nwords;
9825 	int cim_num_obq = is_t4(adap->params.chip) ?
9826 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
9827 
9828 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9829 		return -EINVAL;
9830 
9831 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
9832 		     QUENUMSELECT_V(qid));
9833 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
9834 
9835 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
9836 	nwords = CIMQSIZE_G(v) * 64;  /* same */
9837 	if (n > nwords)
9838 		n = nwords;
9839 
9840 	for (i = 0; i < n; i++, addr++) {
9841 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
9842 			     OBQDBGEN_F);
9843 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
9844 				      2, 1);
9845 		if (err)
9846 			return err;
9847 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
9848 	}
9849 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
9850 	return i;
9851 }
9852 
9853 /**
9854  *	t4_cim_read - read a block from CIM internal address space
9855  *	@adap: the adapter
9856  *	@addr: the start address within the CIM address space
9857  *	@n: number of words to read
9858  *	@valp: where to store the result
9859  *
9860  *	Reads a block of 4-byte words from the CIM intenal address space.
9861  */
9862 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9863 		unsigned int *valp)
9864 {
9865 	int ret = 0;
9866 
9867 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9868 		return -EBUSY;
9869 
9870 	for ( ; !ret && n--; addr += 4) {
9871 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
9872 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9873 				      0, 5, 2);
9874 		if (!ret)
9875 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
9876 	}
9877 	return ret;
9878 }
9879 
9880 /**
9881  *	t4_cim_write - write a block into CIM internal address space
9882  *	@adap: the adapter
9883  *	@addr: the start address within the CIM address space
9884  *	@n: number of words to write
9885  *	@valp: set of values to write
9886  *
9887  *	Writes a block of 4-byte words into the CIM intenal address space.
9888  */
9889 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9890 		 const unsigned int *valp)
9891 {
9892 	int ret = 0;
9893 
9894 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
9895 		return -EBUSY;
9896 
9897 	for ( ; !ret && n--; addr += 4) {
9898 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
9899 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
9900 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
9901 				      0, 5, 2);
9902 	}
9903 	return ret;
9904 }
9905 
9906 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9907 			 unsigned int val)
9908 {
9909 	return t4_cim_write(adap, addr, 1, &val);
9910 }
9911 
9912 /**
9913  *	t4_cim_read_la - read CIM LA capture buffer
9914  *	@adap: the adapter
9915  *	@la_buf: where to store the LA data
9916  *	@wrptr: the HW write pointer within the capture buffer
9917  *
9918  *	Reads the contents of the CIM LA buffer with the most recent entry at
9919  *	the end	of the returned data and with the entry at @wrptr first.
9920  *	We try to leave the LA in the running state we find it in.
9921  */
9922 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9923 {
9924 	int i, ret;
9925 	unsigned int cfg, val, idx;
9926 
9927 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
9928 	if (ret)
9929 		return ret;
9930 
9931 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
9932 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
9933 		if (ret)
9934 			return ret;
9935 	}
9936 
9937 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9938 	if (ret)
9939 		goto restart;
9940 
9941 	idx = UPDBGLAWRPTR_G(val);
9942 	if (wrptr)
9943 		*wrptr = idx;
9944 
9945 	for (i = 0; i < adap->params.cim_la_size; i++) {
9946 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9947 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
9948 		if (ret)
9949 			break;
9950 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
9951 		if (ret)
9952 			break;
9953 		if (val & UPDBGLARDEN_F) {
9954 			ret = -ETIMEDOUT;
9955 			break;
9956 		}
9957 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
9958 		if (ret)
9959 			break;
9960 
9961 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9962 		 * identify the 32-bit portion of the full 312-bit data
9963 		 */
9964 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
9965 			idx = (idx & 0xff0) + 0x10;
9966 		else
9967 			idx++;
9968 		/* address can't exceed 0xfff */
9969 		idx &= UPDBGLARDPTR_M;
9970 	}
9971 restart:
9972 	if (cfg & UPDBGLAEN_F) {
9973 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
9974 				      cfg & ~UPDBGLARDEN_F);
9975 		if (!ret)
9976 			ret = r;
9977 	}
9978 	return ret;
9979 }
9980 
9981 /**
9982  *	t4_tp_read_la - read TP LA capture buffer
9983  *	@adap: the adapter
9984  *	@la_buf: where to store the LA data
9985  *	@wrptr: the HW write pointer within the capture buffer
9986  *
9987  *	Reads the contents of the TP LA buffer with the most recent entry at
9988  *	the end	of the returned data and with the entry at @wrptr first.
9989  *	We leave the LA in the running state we find it in.
9990  */
9991 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9992 {
9993 	bool last_incomplete;
9994 	unsigned int i, cfg, val, idx;
9995 
9996 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
9997 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
9998 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
9999 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
10000 
10001 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
10002 	idx = DBGLAWPTR_G(val);
10003 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
10004 	if (last_incomplete)
10005 		idx = (idx + 1) & DBGLARPTR_M;
10006 	if (wrptr)
10007 		*wrptr = idx;
10008 
10009 	val &= 0xffff;
10010 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
10011 	val |= adap->params.tp.la_mask;
10012 
10013 	for (i = 0; i < TPLA_SIZE; i++) {
10014 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
10015 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
10016 		idx = (idx + 1) & DBGLARPTR_M;
10017 	}
10018 
10019 	/* Wipe out last entry if it isn't valid */
10020 	if (last_incomplete)
10021 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10022 
10023 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
10024 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
10025 			     cfg | adap->params.tp.la_mask);
10026 }
10027 
10028 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10029  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10030  * state for more than the Warning Threshold then we'll issue a warning about
10031  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10032  * appears to be hung every Warning Repeat second till the situation clears.
10033  * If the situation clears, we'll note that as well.
10034  */
10035 #define SGE_IDMA_WARN_THRESH 1
10036 #define SGE_IDMA_WARN_REPEAT 300
10037 
10038 /**
10039  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10040  *	@adapter: the adapter
10041  *	@idma: the adapter IDMA Monitor state
10042  *
10043  *	Initialize the state of an SGE Ingress DMA Monitor.
10044  */
10045 void t4_idma_monitor_init(struct adapter *adapter,
10046 			  struct sge_idma_monitor_state *idma)
10047 {
10048 	/* Initialize the state variables for detecting an SGE Ingress DMA
10049 	 * hang.  The SGE has internal counters which count up on each clock
10050 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10051 	 * same state they were on the previous clock tick.  The clock used is
10052 	 * the Core Clock so we have a limit on the maximum "time" they can
10053 	 * record; typically a very small number of seconds.  For instance,
10054 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10055 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10056 	 * risk of having the "timers" overflow and give us the flexibility to
10057 	 * maintain a Hung SGE State Machine of our own which operates across
10058 	 * a longer time frame.
10059 	 */
10060 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10061 	idma->idma_stalled[0] = 0;
10062 	idma->idma_stalled[1] = 0;
10063 }
10064 
10065 /**
10066  *	t4_idma_monitor - monitor SGE Ingress DMA state
10067  *	@adapter: the adapter
10068  *	@idma: the adapter IDMA Monitor state
10069  *	@hz: number of ticks/second
10070  *	@ticks: number of ticks since the last IDMA Monitor call
10071  */
10072 void t4_idma_monitor(struct adapter *adapter,
10073 		     struct sge_idma_monitor_state *idma,
10074 		     int hz, int ticks)
10075 {
10076 	int i, idma_same_state_cnt[2];
10077 
10078 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10079 	  * are counters inside the SGE which count up on each clock when the
10080 	  * SGE finds its Ingress DMA State Engines in the same states they
10081 	  * were in the previous clock.  The counters will peg out at
10082 	  * 0xffffffff without wrapping around so once they pass the 1s
10083 	  * threshold they'll stay above that till the IDMA state changes.
10084 	  */
10085 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
10086 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
10087 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10088 
10089 	for (i = 0; i < 2; i++) {
10090 		u32 debug0, debug11;
10091 
10092 		/* If the Ingress DMA Same State Counter ("timer") is less
10093 		 * than 1s, then we can reset our synthesized Stall Timer and
10094 		 * continue.  If we have previously emitted warnings about a
10095 		 * potential stalled Ingress Queue, issue a note indicating
10096 		 * that the Ingress Queue has resumed forward progress.
10097 		 */
10098 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10099 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
10100 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
10101 					 "resumed after %d seconds\n",
10102 					 i, idma->idma_qid[i],
10103 					 idma->idma_stalled[i] / hz);
10104 			idma->idma_stalled[i] = 0;
10105 			continue;
10106 		}
10107 
10108 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10109 		 * domain.  The first time we get here it'll be because we
10110 		 * passed the 1s Threshold; each additional time it'll be
10111 		 * because the RX Timer Callback is being fired on its regular
10112 		 * schedule.
10113 		 *
10114 		 * If the stall is below our Potential Hung Ingress Queue
10115 		 * Warning Threshold, continue.
10116 		 */
10117 		if (idma->idma_stalled[i] == 0) {
10118 			idma->idma_stalled[i] = hz;
10119 			idma->idma_warn[i] = 0;
10120 		} else {
10121 			idma->idma_stalled[i] += ticks;
10122 			idma->idma_warn[i] -= ticks;
10123 		}
10124 
10125 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
10126 			continue;
10127 
10128 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10129 		 */
10130 		if (idma->idma_warn[i] > 0)
10131 			continue;
10132 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
10133 
10134 		/* Read and save the SGE IDMA State and Queue ID information.
10135 		 * We do this every time in case it changes across time ...
10136 		 * can't be too careful ...
10137 		 */
10138 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
10139 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10140 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10141 
10142 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
10143 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
10144 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10145 
10146 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
10147 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10148 			 i, idma->idma_qid[i], idma->idma_state[i],
10149 			 idma->idma_stalled[i] / hz,
10150 			 debug0, debug11);
10151 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10152 	}
10153 }
10154 
10155 /**
10156  *	t4_load_cfg - download config file
10157  *	@adap: the adapter
10158  *	@cfg_data: the cfg text file to write
10159  *	@size: text file size
10160  *
10161  *	Write the supplied config text file to the card's serial flash.
10162  */
10163 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10164 {
10165 	int ret, i, n, cfg_addr;
10166 	unsigned int addr;
10167 	unsigned int flash_cfg_start_sec;
10168 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10169 
10170 	cfg_addr = t4_flash_cfg_addr(adap);
10171 	if (cfg_addr < 0)
10172 		return cfg_addr;
10173 
10174 	addr = cfg_addr;
10175 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10176 
10177 	if (size > FLASH_CFG_MAX_SIZE) {
10178 		dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
10179 			FLASH_CFG_MAX_SIZE);
10180 		return -EFBIG;
10181 	}
10182 
10183 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10184 			 sf_sec_size);
10185 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10186 				     flash_cfg_start_sec + i - 1);
10187 	/* If size == 0 then we're simply erasing the FLASH sectors associated
10188 	 * with the on-adapter Firmware Configuration File.
10189 	 */
10190 	if (ret || size == 0)
10191 		goto out;
10192 
10193 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10194 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10195 		if ((size - i) <  SF_PAGE_SIZE)
10196 			n = size - i;
10197 		else
10198 			n = SF_PAGE_SIZE;
10199 		ret = t4_write_flash(adap, addr, n, cfg_data, true);
10200 		if (ret)
10201 			goto out;
10202 
10203 		addr += SF_PAGE_SIZE;
10204 		cfg_data += SF_PAGE_SIZE;
10205 	}
10206 
10207 out:
10208 	if (ret)
10209 		dev_err(adap->pdev_dev, "config file %s failed %d\n",
10210 			(size == 0 ? "clear" : "download"), ret);
10211 	return ret;
10212 }
10213 
10214 /**
10215  *	t4_set_vf_mac_acl - Set MAC address for the specified VF
10216  *	@adapter: The adapter
10217  *	@vf: one of the VFs instantiated by the specified PF
10218  *	@naddr: the number of MAC addresses
10219  *	@addr: the MAC address(es) to be set to the specified VF
10220  */
10221 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
10222 		      unsigned int naddr, u8 *addr)
10223 {
10224 	struct fw_acl_mac_cmd cmd;
10225 
10226 	memset(&cmd, 0, sizeof(cmd));
10227 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
10228 				    FW_CMD_REQUEST_F |
10229 				    FW_CMD_WRITE_F |
10230 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
10231 				    FW_ACL_MAC_CMD_VFN_V(vf));
10232 
10233 	/* Note: Do not enable the ACL */
10234 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10235 	cmd.nmac = naddr;
10236 
10237 	switch (adapter->pf) {
10238 	case 3:
10239 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10240 		break;
10241 	case 2:
10242 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10243 		break;
10244 	case 1:
10245 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10246 		break;
10247 	case 0:
10248 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10249 		break;
10250 	}
10251 
10252 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10253 }
10254 
10255 /**
10256  * t4_read_pace_tbl - read the pace table
10257  * @adap: the adapter
10258  * @pace_vals: holds the returned values
10259  *
10260  * Returns the values of TP's pace table in microseconds.
10261  */
10262 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10263 {
10264 	unsigned int i, v;
10265 
10266 	for (i = 0; i < NTX_SCHED; i++) {
10267 		t4_write_reg(adap, TP_PACE_TABLE_A, 0xffff0000 + i);
10268 		v = t4_read_reg(adap, TP_PACE_TABLE_A);
10269 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10270 	}
10271 }
10272 
10273 /**
10274  * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10275  * @adap: the adapter
10276  * @sched: the scheduler index
10277  * @kbps: the byte rate in Kbps
10278  * @ipg: the interpacket delay in tenths of nanoseconds
10279  * @sleep_ok: if true we may sleep while awaiting command completion
10280  *
10281  * Return the current configuration of a HW Tx scheduler.
10282  */
10283 void t4_get_tx_sched(struct adapter *adap, unsigned int sched,
10284 		     unsigned int *kbps, unsigned int *ipg, bool sleep_ok)
10285 {
10286 	unsigned int v, addr, bpt, cpt;
10287 
10288 	if (kbps) {
10289 		addr = TP_TX_MOD_Q1_Q0_RATE_LIMIT_A - sched / 2;
10290 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10291 		if (sched & 1)
10292 			v >>= 16;
10293 		bpt = (v >> 8) & 0xff;
10294 		cpt = v & 0xff;
10295 		if (!cpt) {
10296 			*kbps = 0;	/* scheduler disabled */
10297 		} else {
10298 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10299 			*kbps = (v * bpt) / 125;
10300 		}
10301 	}
10302 	if (ipg) {
10303 		addr = TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR_A - sched / 2;
10304 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10305 		if (sched & 1)
10306 			v >>= 16;
10307 		v &= 0xffff;
10308 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10309 	}
10310 }
10311 
10312 /* t4_sge_ctxt_rd - read an SGE context through FW
10313  * @adap: the adapter
10314  * @mbox: mailbox to use for the FW command
10315  * @cid: the context id
10316  * @ctype: the context type
10317  * @data: where to store the context data
10318  *
10319  * Issues a FW command through the given mailbox to read an SGE context.
10320  */
10321 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10322 		   enum ctxt_type ctype, u32 *data)
10323 {
10324 	struct fw_ldst_cmd c;
10325 	int ret;
10326 
10327 	if (ctype == CTXT_FLM)
10328 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10329 	else
10330 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10331 
10332 	memset(&c, 0, sizeof(c));
10333 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10334 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
10335 					FW_LDST_CMD_ADDRSPACE_V(ret));
10336 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10337 	c.u.idctxt.physid = cpu_to_be32(cid);
10338 
10339 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10340 	if (ret == 0) {
10341 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10342 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10343 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10344 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10345 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10346 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10347 	}
10348 	return ret;
10349 }
10350 
10351 /**
10352  * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10353  * @adap: the adapter
10354  * @cid: the context id
10355  * @ctype: the context type
10356  * @data: where to store the context data
10357  *
10358  * Reads an SGE context directly, bypassing FW.  This is only for
10359  * debugging when FW is unavailable.
10360  */
10361 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid,
10362 		      enum ctxt_type ctype, u32 *data)
10363 {
10364 	int i, ret;
10365 
10366 	t4_write_reg(adap, SGE_CTXT_CMD_A, CTXTQID_V(cid) | CTXTTYPE_V(ctype));
10367 	ret = t4_wait_op_done(adap, SGE_CTXT_CMD_A, BUSY_F, 0, 3, 1);
10368 	if (!ret)
10369 		for (i = SGE_CTXT_DATA0_A; i <= SGE_CTXT_DATA5_A; i += 4)
10370 			*data++ = t4_read_reg(adap, i);
10371 	return ret;
10372 }
10373 
10374 int t4_sched_params(struct adapter *adapter, u8 type, u8 level, u8 mode,
10375 		    u8 rateunit, u8 ratemode, u8 channel, u8 class,
10376 		    u32 minrate, u32 maxrate, u16 weight, u16 pktsize,
10377 		    u16 burstsize)
10378 {
10379 	struct fw_sched_cmd cmd;
10380 
10381 	memset(&cmd, 0, sizeof(cmd));
10382 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
10383 				      FW_CMD_REQUEST_F |
10384 				      FW_CMD_WRITE_F);
10385 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10386 
10387 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10388 	cmd.u.params.type = type;
10389 	cmd.u.params.level = level;
10390 	cmd.u.params.mode = mode;
10391 	cmd.u.params.ch = channel;
10392 	cmd.u.params.cl = class;
10393 	cmd.u.params.unit = rateunit;
10394 	cmd.u.params.rate = ratemode;
10395 	cmd.u.params.min = cpu_to_be32(minrate);
10396 	cmd.u.params.max = cpu_to_be32(maxrate);
10397 	cmd.u.params.weight = cpu_to_be16(weight);
10398 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10399 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10400 
10401 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
10402 			       NULL, 1);
10403 }
10404 
10405 /**
10406  *	t4_i2c_rd - read I2C data from adapter
10407  *	@adap: the adapter
10408  *	@mbox: mailbox to use for the FW command
10409  *	@port: Port number if per-port device; <0 if not
10410  *	@devid: per-port device ID or absolute device ID
10411  *	@offset: byte offset into device I2C space
10412  *	@len: byte length of I2C space data
10413  *	@buf: buffer in which to return I2C data
10414  *
10415  *	Reads the I2C data from the indicated device and location.
10416  */
10417 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, int port,
10418 	      unsigned int devid, unsigned int offset,
10419 	      unsigned int len, u8 *buf)
10420 {
10421 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10422 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10423 	int ret = 0;
10424 
10425 	if (len > I2C_PAGE_SIZE)
10426 		return -EINVAL;
10427 
10428 	/* Dont allow reads that spans multiple pages */
10429 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10430 		return -EINVAL;
10431 
10432 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10433 	ldst_cmd.op_to_addrspace =
10434 		cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
10435 			    FW_CMD_REQUEST_F |
10436 			    FW_CMD_READ_F |
10437 			    FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_I2C));
10438 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10439 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10440 	ldst_cmd.u.i2c.did = devid;
10441 
10442 	while (len > 0) {
10443 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10444 
10445 		ldst_cmd.u.i2c.boffset = offset;
10446 		ldst_cmd.u.i2c.blen = i2c_len;
10447 
10448 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10449 				 &ldst_rpl);
10450 		if (ret)
10451 			break;
10452 
10453 		memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10454 		offset += i2c_len;
10455 		buf += i2c_len;
10456 		len -= i2c_len;
10457 	}
10458 
10459 	return ret;
10460 }
10461 
10462 /**
10463  *      t4_set_vlan_acl - Set a VLAN id for the specified VF
10464  *      @adap: the adapter
10465  *      @mbox: mailbox to use for the FW command
10466  *      @vf: one of the VFs instantiated by the specified PF
10467  *      @vlan: The vlanid to be set
10468  */
10469 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
10470 		    u16 vlan)
10471 {
10472 	struct fw_acl_vlan_cmd vlan_cmd;
10473 	unsigned int enable;
10474 
10475 	enable = (vlan ? FW_ACL_VLAN_CMD_EN_F : 0);
10476 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
10477 	vlan_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
10478 					 FW_CMD_REQUEST_F |
10479 					 FW_CMD_WRITE_F |
10480 					 FW_CMD_EXEC_F |
10481 					 FW_ACL_VLAN_CMD_PFN_V(adap->pf) |
10482 					 FW_ACL_VLAN_CMD_VFN_V(vf));
10483 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
10484 	/* Drop all packets that donot match vlan id */
10485 	vlan_cmd.dropnovlan_fm = (enable
10486 				  ? (FW_ACL_VLAN_CMD_DROPNOVLAN_F |
10487 				     FW_ACL_VLAN_CMD_FM_F) : 0);
10488 	if (enable != 0) {
10489 		vlan_cmd.nvlan = 1;
10490 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
10491 	}
10492 
10493 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
10494 }
10495 
10496 /**
10497  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10498  *	@device_id: the device ID to write.
10499  *	@boot_data: the boot image to modify.
10500  *
10501  *	Write the supplied device ID to the boot BIOS image.
10502  */
10503 static void modify_device_id(int device_id, u8 *boot_data)
10504 {
10505 	struct cxgb4_pcir_data *pcir_header;
10506 	struct legacy_pci_rom_hdr *header;
10507 	u8 *cur_header = boot_data;
10508 	u16 pcir_offset;
10509 
10510 	 /* Loop through all chained images and change the device ID's */
10511 	do {
10512 		header = (struct legacy_pci_rom_hdr *)cur_header;
10513 		pcir_offset = le16_to_cpu(header->pcir_offset);
10514 		pcir_header = (struct cxgb4_pcir_data *)(cur_header +
10515 			      pcir_offset);
10516 
10517 		/**
10518 		 * Only modify the Device ID if code type is Legacy or HP.
10519 		 * 0x00: Okay to modify
10520 		 * 0x01: FCODE. Do not modify
10521 		 * 0x03: Okay to modify
10522 		 * 0x04-0xFF: Do not modify
10523 		 */
10524 		if (pcir_header->code_type == CXGB4_HDR_CODE1) {
10525 			u8 csum = 0;
10526 			int i;
10527 
10528 			/**
10529 			 * Modify Device ID to match current adatper
10530 			 */
10531 			pcir_header->device_id = cpu_to_le16(device_id);
10532 
10533 			/**
10534 			 * Set checksum temporarily to 0.
10535 			 * We will recalculate it later.
10536 			 */
10537 			header->cksum = 0x0;
10538 
10539 			/**
10540 			 * Calculate and update checksum
10541 			 */
10542 			for (i = 0; i < (header->size512 * 512); i++)
10543 				csum += cur_header[i];
10544 
10545 			/**
10546 			 * Invert summed value to create the checksum
10547 			 * Writing new checksum value directly to the boot data
10548 			 */
10549 			cur_header[7] = -csum;
10550 
10551 		} else if (pcir_header->code_type == CXGB4_HDR_CODE2) {
10552 			/**
10553 			 * Modify Device ID to match current adatper
10554 			 */
10555 			pcir_header->device_id = cpu_to_le16(device_id);
10556 		}
10557 
10558 		/**
10559 		 * Move header pointer up to the next image in the ROM.
10560 		 */
10561 		cur_header += header->size512 * 512;
10562 	} while (!(pcir_header->indicator & CXGB4_HDR_INDI));
10563 }
10564 
10565 /**
10566  *	t4_load_boot - download boot flash
10567  *	@adap: the adapter
10568  *	@boot_data: the boot image to write
10569  *	@boot_addr: offset in flash to write boot_data
10570  *	@size: image size
10571  *
10572  *	Write the supplied boot image to the card's serial flash.
10573  *	The boot image has the following sections: a 28-byte header and the
10574  *	boot image.
10575  */
10576 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10577 		 unsigned int boot_addr, unsigned int size)
10578 {
10579 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10580 	unsigned int boot_sector = (boot_addr * 1024);
10581 	struct cxgb4_pci_exp_rom_header *header;
10582 	struct cxgb4_pcir_data *pcir_header;
10583 	int pcir_offset;
10584 	unsigned int i;
10585 	u16 device_id;
10586 	int ret, addr;
10587 
10588 	/**
10589 	 * Make sure the boot image does not encroach on the firmware region
10590 	 */
10591 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10592 		dev_err(adap->pdev_dev, "boot image encroaching on firmware region\n");
10593 		return -EFBIG;
10594 	}
10595 
10596 	/* Get boot header */
10597 	header = (struct cxgb4_pci_exp_rom_header *)boot_data;
10598 	pcir_offset = le16_to_cpu(header->pcir_offset);
10599 	/* PCIR Data Structure */
10600 	pcir_header = (struct cxgb4_pcir_data *)&boot_data[pcir_offset];
10601 
10602 	/**
10603 	 * Perform some primitive sanity testing to avoid accidentally
10604 	 * writing garbage over the boot sectors.  We ought to check for
10605 	 * more but it's not worth it for now ...
10606 	 */
10607 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10608 		dev_err(adap->pdev_dev, "boot image too small/large\n");
10609 		return -EFBIG;
10610 	}
10611 
10612 	if (le16_to_cpu(header->signature) != BOOT_SIGNATURE) {
10613 		dev_err(adap->pdev_dev, "Boot image missing signature\n");
10614 		return -EINVAL;
10615 	}
10616 
10617 	/* Check PCI header signature */
10618 	if (le32_to_cpu(pcir_header->signature) != PCIR_SIGNATURE) {
10619 		dev_err(adap->pdev_dev, "PCI header missing signature\n");
10620 		return -EINVAL;
10621 	}
10622 
10623 	/* Check Vendor ID matches Chelsio ID*/
10624 	if (le16_to_cpu(pcir_header->vendor_id) != PCI_VENDOR_ID_CHELSIO) {
10625 		dev_err(adap->pdev_dev, "Vendor ID missing signature\n");
10626 		return -EINVAL;
10627 	}
10628 
10629 	/**
10630 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10631 	 * and Boot configuration data sections. These 3 boot sections span
10632 	 * sectors 0 to 7 in flash and live right before the FW image location.
10633 	 */
10634 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,  sf_sec_size);
10635 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10636 				     (boot_sector >> 16) + i - 1);
10637 
10638 	/**
10639 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10640 	 * with the on-adapter option ROM file
10641 	 */
10642 	if (ret || size == 0)
10643 		goto out;
10644 	/* Retrieve adapter's device ID */
10645 	pci_read_config_word(adap->pdev, PCI_DEVICE_ID, &device_id);
10646        /* Want to deal with PF 0 so I strip off PF 4 indicator */
10647 	device_id = device_id & 0xf0ff;
10648 
10649 	 /* Check PCIE Device ID */
10650 	if (le16_to_cpu(pcir_header->device_id) != device_id) {
10651 		/**
10652 		 * Change the device ID in the Boot BIOS image to match
10653 		 * the Device ID of the current adapter.
10654 		 */
10655 		modify_device_id(device_id, boot_data);
10656 	}
10657 
10658 	/**
10659 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10660 	 * we finish copying the rest of the boot image. This will ensure
10661 	 * that the BIOS boot header will only be written if the boot image
10662 	 * was written in full.
10663 	 */
10664 	addr = boot_sector;
10665 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10666 		addr += SF_PAGE_SIZE;
10667 		boot_data += SF_PAGE_SIZE;
10668 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data,
10669 				     false);
10670 		if (ret)
10671 			goto out;
10672 	}
10673 
10674 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10675 			     (const u8 *)header, false);
10676 
10677 out:
10678 	if (ret)
10679 		dev_err(adap->pdev_dev, "boot image load failed, error %d\n",
10680 			ret);
10681 	return ret;
10682 }
10683 
10684 /**
10685  *	t4_flash_bootcfg_addr - return the address of the flash
10686  *	optionrom configuration
10687  *	@adapter: the adapter
10688  *
10689  *	Return the address within the flash where the OptionROM Configuration
10690  *	is stored, or an error if the device FLASH is too small to contain
10691  *	a OptionROM Configuration.
10692  */
10693 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10694 {
10695 	/**
10696 	 * If the device FLASH isn't large enough to hold a Firmware
10697 	 * Configuration File, return an error.
10698 	 */
10699 	if (adapter->params.sf_size <
10700 	    FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10701 		return -ENOSPC;
10702 
10703 	return FLASH_BOOTCFG_START;
10704 }
10705 
10706 int t4_load_bootcfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10707 {
10708 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10709 	struct cxgb4_bootcfg_data *header;
10710 	unsigned int flash_cfg_start_sec;
10711 	unsigned int addr, npad;
10712 	int ret, i, n, cfg_addr;
10713 
10714 	cfg_addr = t4_flash_bootcfg_addr(adap);
10715 	if (cfg_addr < 0)
10716 		return cfg_addr;
10717 
10718 	addr = cfg_addr;
10719 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10720 
10721 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10722 		dev_err(adap->pdev_dev, "bootcfg file too large, max is %u bytes\n",
10723 			FLASH_BOOTCFG_MAX_SIZE);
10724 		return -EFBIG;
10725 	}
10726 
10727 	header = (struct cxgb4_bootcfg_data *)cfg_data;
10728 	if (le16_to_cpu(header->signature) != BOOT_CFG_SIG) {
10729 		dev_err(adap->pdev_dev, "Wrong bootcfg signature\n");
10730 		ret = -EINVAL;
10731 		goto out;
10732 	}
10733 
10734 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,
10735 			 sf_sec_size);
10736 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10737 				     flash_cfg_start_sec + i - 1);
10738 
10739 	/**
10740 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10741 	 * with the on-adapter OptionROM Configuration File.
10742 	 */
10743 	if (ret || size == 0)
10744 		goto out;
10745 
10746 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10747 	for (i = 0; i < size; i += SF_PAGE_SIZE) {
10748 		n = min_t(u32, size - i, SF_PAGE_SIZE);
10749 
10750 		ret = t4_write_flash(adap, addr, n, cfg_data, false);
10751 		if (ret)
10752 			goto out;
10753 
10754 		addr += SF_PAGE_SIZE;
10755 		cfg_data += SF_PAGE_SIZE;
10756 	}
10757 
10758 	npad = ((size + 4 - 1) & ~3) - size;
10759 	for (i = 0; i < npad; i++) {
10760 		u8 data = 0;
10761 
10762 		ret = t4_write_flash(adap, cfg_addr + size + i, 1, &data,
10763 				     false);
10764 		if (ret)
10765 			goto out;
10766 	}
10767 
10768 out:
10769 	if (ret)
10770 		dev_err(adap->pdev_dev, "boot config data %s failed %d\n",
10771 			(size == 0 ? "clear" : "download"), ret);
10772 	return ret;
10773 }
10774