xref: /openbmc/linux/drivers/net/ethernet/cavium/thunder/nic_main.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (C) 2015 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/etherdevice.h>
13 #include <linux/of.h>
14 
15 #include "nic_reg.h"
16 #include "nic.h"
17 #include "q_struct.h"
18 #include "thunder_bgx.h"
19 
20 #define DRV_NAME	"thunder-nic"
21 #define DRV_VERSION	"1.0"
22 
23 struct nicpf {
24 	struct pci_dev		*pdev;
25 	u8			node;
26 	unsigned int		flags;
27 	u8			num_vf_en;      /* No of VF enabled */
28 	bool			vf_enabled[MAX_NUM_VFS_SUPPORTED];
29 	void __iomem		*reg_base;       /* Register start address */
30 	u8			num_sqs_en;	/* Secondary qsets enabled */
31 	u64			nicvf[MAX_NUM_VFS_SUPPORTED];
32 	u8			vf_sqs[MAX_NUM_VFS_SUPPORTED][MAX_SQS_PER_VF];
33 	u8			pqs_vf[MAX_NUM_VFS_SUPPORTED];
34 	bool			sqs_used[MAX_NUM_VFS_SUPPORTED];
35 	struct pkind_cfg	pkind;
36 #define	NIC_SET_VF_LMAC_MAP(bgx, lmac)	(((bgx & 0xF) << 4) | (lmac & 0xF))
37 #define	NIC_GET_BGX_FROM_VF_LMAC_MAP(map)	((map >> 4) & 0xF)
38 #define	NIC_GET_LMAC_FROM_VF_LMAC_MAP(map)	(map & 0xF)
39 	u8			vf_lmac_map[MAX_LMAC];
40 	struct delayed_work     dwork;
41 	struct workqueue_struct *check_link;
42 	u8			link[MAX_LMAC];
43 	u8			duplex[MAX_LMAC];
44 	u32			speed[MAX_LMAC];
45 	u16			cpi_base[MAX_NUM_VFS_SUPPORTED];
46 	u16			rssi_base[MAX_NUM_VFS_SUPPORTED];
47 	u16			rss_ind_tbl_size;
48 	bool			mbx_lock[MAX_NUM_VFS_SUPPORTED];
49 
50 	/* MSI-X */
51 	bool			msix_enabled;
52 	u8			num_vec;
53 	struct msix_entry	msix_entries[NIC_PF_MSIX_VECTORS];
54 	bool			irq_allocated[NIC_PF_MSIX_VECTORS];
55 };
56 
57 static inline bool pass1_silicon(struct nicpf *nic)
58 {
59 	return nic->pdev->revision < 8;
60 }
61 
62 /* Supported devices */
63 static const struct pci_device_id nic_id_table[] = {
64 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_NIC_PF) },
65 	{ 0, }  /* end of table */
66 };
67 
68 MODULE_AUTHOR("Sunil Goutham");
69 MODULE_DESCRIPTION("Cavium Thunder NIC Physical Function Driver");
70 MODULE_LICENSE("GPL v2");
71 MODULE_VERSION(DRV_VERSION);
72 MODULE_DEVICE_TABLE(pci, nic_id_table);
73 
74 /* The Cavium ThunderX network controller can *only* be found in SoCs
75  * containing the ThunderX ARM64 CPU implementation.  All accesses to the device
76  * registers on this platform are implicitly strongly ordered with respect
77  * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
78  * with no memory barriers in this driver.  The readq()/writeq() functions add
79  * explicit ordering operation which in this case are redundant, and only
80  * add overhead.
81  */
82 
83 /* Register read/write APIs */
84 static void nic_reg_write(struct nicpf *nic, u64 offset, u64 val)
85 {
86 	writeq_relaxed(val, nic->reg_base + offset);
87 }
88 
89 static u64 nic_reg_read(struct nicpf *nic, u64 offset)
90 {
91 	return readq_relaxed(nic->reg_base + offset);
92 }
93 
94 /* PF -> VF mailbox communication APIs */
95 static void nic_enable_mbx_intr(struct nicpf *nic)
96 {
97 	/* Enable mailbox interrupt for all 128 VFs */
98 	nic_reg_write(nic, NIC_PF_MAILBOX_ENA_W1S, ~0ull);
99 	nic_reg_write(nic, NIC_PF_MAILBOX_ENA_W1S + sizeof(u64), ~0ull);
100 }
101 
102 static void nic_clear_mbx_intr(struct nicpf *nic, int vf, int mbx_reg)
103 {
104 	nic_reg_write(nic, NIC_PF_MAILBOX_INT + (mbx_reg << 3), BIT_ULL(vf));
105 }
106 
107 static u64 nic_get_mbx_addr(int vf)
108 {
109 	return NIC_PF_VF_0_127_MAILBOX_0_1 + (vf << NIC_VF_NUM_SHIFT);
110 }
111 
112 /* Send a mailbox message to VF
113  * @vf: vf to which this message to be sent
114  * @mbx: Message to be sent
115  */
116 static void nic_send_msg_to_vf(struct nicpf *nic, int vf, union nic_mbx *mbx)
117 {
118 	void __iomem *mbx_addr = nic->reg_base + nic_get_mbx_addr(vf);
119 	u64 *msg = (u64 *)mbx;
120 
121 	/* In first revision HW, mbox interrupt is triggerred
122 	 * when PF writes to MBOX(1), in next revisions when
123 	 * PF writes to MBOX(0)
124 	 */
125 	if (pass1_silicon(nic)) {
126 		/* see the comment for nic_reg_write()/nic_reg_read()
127 		 * functions above
128 		 */
129 		writeq_relaxed(msg[0], mbx_addr);
130 		writeq_relaxed(msg[1], mbx_addr + 8);
131 	} else {
132 		writeq_relaxed(msg[1], mbx_addr + 8);
133 		writeq_relaxed(msg[0], mbx_addr);
134 	}
135 }
136 
137 /* Responds to VF's READY message with VF's
138  * ID, node, MAC address e.t.c
139  * @vf: VF which sent READY message
140  */
141 static void nic_mbx_send_ready(struct nicpf *nic, int vf)
142 {
143 	union nic_mbx mbx = {};
144 	int bgx_idx, lmac;
145 	const char *mac;
146 
147 	mbx.nic_cfg.msg = NIC_MBOX_MSG_READY;
148 	mbx.nic_cfg.vf_id = vf;
149 
150 	mbx.nic_cfg.tns_mode = NIC_TNS_BYPASS_MODE;
151 
152 	if (vf < MAX_LMAC) {
153 		bgx_idx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]);
154 		lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]);
155 
156 		mac = bgx_get_lmac_mac(nic->node, bgx_idx, lmac);
157 		if (mac)
158 			ether_addr_copy((u8 *)&mbx.nic_cfg.mac_addr, mac);
159 	}
160 	mbx.nic_cfg.sqs_mode = (vf >= nic->num_vf_en) ? true : false;
161 	mbx.nic_cfg.node_id = nic->node;
162 
163 	mbx.nic_cfg.loopback_supported = vf < MAX_LMAC;
164 
165 	nic_send_msg_to_vf(nic, vf, &mbx);
166 }
167 
168 /* ACKs VF's mailbox message
169  * @vf: VF to which ACK to be sent
170  */
171 static void nic_mbx_send_ack(struct nicpf *nic, int vf)
172 {
173 	union nic_mbx mbx = {};
174 
175 	mbx.msg.msg = NIC_MBOX_MSG_ACK;
176 	nic_send_msg_to_vf(nic, vf, &mbx);
177 }
178 
179 /* NACKs VF's mailbox message that PF is not able to
180  * complete the action
181  * @vf: VF to which ACK to be sent
182  */
183 static void nic_mbx_send_nack(struct nicpf *nic, int vf)
184 {
185 	union nic_mbx mbx = {};
186 
187 	mbx.msg.msg = NIC_MBOX_MSG_NACK;
188 	nic_send_msg_to_vf(nic, vf, &mbx);
189 }
190 
191 /* Flush all in flight receive packets to memory and
192  * bring down an active RQ
193  */
194 static int nic_rcv_queue_sw_sync(struct nicpf *nic)
195 {
196 	u16 timeout = ~0x00;
197 
198 	nic_reg_write(nic, NIC_PF_SW_SYNC_RX, 0x01);
199 	/* Wait till sync cycle is finished */
200 	while (timeout) {
201 		if (nic_reg_read(nic, NIC_PF_SW_SYNC_RX_DONE) & 0x1)
202 			break;
203 		timeout--;
204 	}
205 	nic_reg_write(nic, NIC_PF_SW_SYNC_RX, 0x00);
206 	if (!timeout) {
207 		dev_err(&nic->pdev->dev, "Receive queue software sync failed");
208 		return 1;
209 	}
210 	return 0;
211 }
212 
213 /* Get BGX Rx/Tx stats and respond to VF's request */
214 static void nic_get_bgx_stats(struct nicpf *nic, struct bgx_stats_msg *bgx)
215 {
216 	int bgx_idx, lmac;
217 	union nic_mbx mbx = {};
218 
219 	bgx_idx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[bgx->vf_id]);
220 	lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[bgx->vf_id]);
221 
222 	mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
223 	mbx.bgx_stats.vf_id = bgx->vf_id;
224 	mbx.bgx_stats.rx = bgx->rx;
225 	mbx.bgx_stats.idx = bgx->idx;
226 	if (bgx->rx)
227 		mbx.bgx_stats.stats = bgx_get_rx_stats(nic->node, bgx_idx,
228 							    lmac, bgx->idx);
229 	else
230 		mbx.bgx_stats.stats = bgx_get_tx_stats(nic->node, bgx_idx,
231 							    lmac, bgx->idx);
232 	nic_send_msg_to_vf(nic, bgx->vf_id, &mbx);
233 }
234 
235 /* Update hardware min/max frame size */
236 static int nic_update_hw_frs(struct nicpf *nic, int new_frs, int vf)
237 {
238 	if ((new_frs > NIC_HW_MAX_FRS) || (new_frs < NIC_HW_MIN_FRS)) {
239 		dev_err(&nic->pdev->dev,
240 			"Invalid MTU setting from VF%d rejected, should be between %d and %d\n",
241 			   vf, NIC_HW_MIN_FRS, NIC_HW_MAX_FRS);
242 		return 1;
243 	}
244 	new_frs += ETH_HLEN;
245 	if (new_frs <= nic->pkind.maxlen)
246 		return 0;
247 
248 	nic->pkind.maxlen = new_frs;
249 	nic_reg_write(nic, NIC_PF_PKIND_0_15_CFG, *(u64 *)&nic->pkind);
250 	return 0;
251 }
252 
253 /* Set minimum transmit packet size */
254 static void nic_set_tx_pkt_pad(struct nicpf *nic, int size)
255 {
256 	int lmac;
257 	u64 lmac_cfg;
258 
259 	/* Max value that can be set is 60 */
260 	if (size > 60)
261 		size = 60;
262 
263 	for (lmac = 0; lmac < (MAX_BGX_PER_CN88XX * MAX_LMAC_PER_BGX); lmac++) {
264 		lmac_cfg = nic_reg_read(nic, NIC_PF_LMAC_0_7_CFG | (lmac << 3));
265 		lmac_cfg &= ~(0xF << 2);
266 		lmac_cfg |= ((size / 4) << 2);
267 		nic_reg_write(nic, NIC_PF_LMAC_0_7_CFG | (lmac << 3), lmac_cfg);
268 	}
269 }
270 
271 /* Function to check number of LMACs present and set VF::LMAC mapping.
272  * Mapping will be used while initializing channels.
273  */
274 static void nic_set_lmac_vf_mapping(struct nicpf *nic)
275 {
276 	unsigned bgx_map = bgx_get_map(nic->node);
277 	int bgx, next_bgx_lmac = 0;
278 	int lmac, lmac_cnt = 0;
279 	u64 lmac_credit;
280 
281 	nic->num_vf_en = 0;
282 
283 	for (bgx = 0; bgx < NIC_MAX_BGX; bgx++) {
284 		if (!(bgx_map & (1 << bgx)))
285 			continue;
286 		lmac_cnt = bgx_get_lmac_count(nic->node, bgx);
287 		for (lmac = 0; lmac < lmac_cnt; lmac++)
288 			nic->vf_lmac_map[next_bgx_lmac++] =
289 						NIC_SET_VF_LMAC_MAP(bgx, lmac);
290 		nic->num_vf_en += lmac_cnt;
291 
292 		/* Program LMAC credits */
293 		lmac_credit = (1ull << 1); /* channel credit enable */
294 		lmac_credit |= (0x1ff << 2); /* Max outstanding pkt count */
295 		/* 48KB BGX Tx buffer size, each unit is of size 16bytes */
296 		lmac_credit |= (((((48 * 1024) / lmac_cnt) -
297 				NIC_HW_MAX_FRS) / 16) << 12);
298 		lmac = bgx * MAX_LMAC_PER_BGX;
299 		for (; lmac < lmac_cnt + (bgx * MAX_LMAC_PER_BGX); lmac++)
300 			nic_reg_write(nic,
301 				      NIC_PF_LMAC_0_7_CREDIT + (lmac * 8),
302 				      lmac_credit);
303 	}
304 }
305 
306 #define BGX0_BLOCK 8
307 #define BGX1_BLOCK 9
308 
309 static void nic_init_hw(struct nicpf *nic)
310 {
311 	int i;
312 
313 	/* Enable NIC HW block */
314 	nic_reg_write(nic, NIC_PF_CFG, 0x3);
315 
316 	/* Enable backpressure */
317 	nic_reg_write(nic, NIC_PF_BP_CFG, (1ULL << 6) | 0x03);
318 
319 	/* Disable TNS mode on both interfaces */
320 	nic_reg_write(nic, NIC_PF_INTF_0_1_SEND_CFG,
321 		      (NIC_TNS_BYPASS_MODE << 7) | BGX0_BLOCK);
322 	nic_reg_write(nic, NIC_PF_INTF_0_1_SEND_CFG | (1 << 8),
323 		      (NIC_TNS_BYPASS_MODE << 7) | BGX1_BLOCK);
324 	nic_reg_write(nic, NIC_PF_INTF_0_1_BP_CFG,
325 		      (1ULL << 63) | BGX0_BLOCK);
326 	nic_reg_write(nic, NIC_PF_INTF_0_1_BP_CFG + (1 << 8),
327 		      (1ULL << 63) | BGX1_BLOCK);
328 
329 	/* PKIND configuration */
330 	nic->pkind.minlen = 0;
331 	nic->pkind.maxlen = NIC_HW_MAX_FRS + ETH_HLEN;
332 	nic->pkind.lenerr_en = 1;
333 	nic->pkind.rx_hdr = 0;
334 	nic->pkind.hdr_sl = 0;
335 
336 	for (i = 0; i < NIC_MAX_PKIND; i++)
337 		nic_reg_write(nic, NIC_PF_PKIND_0_15_CFG | (i << 3),
338 			      *(u64 *)&nic->pkind);
339 
340 	nic_set_tx_pkt_pad(nic, NIC_HW_MIN_FRS);
341 
342 	/* Timer config */
343 	nic_reg_write(nic, NIC_PF_INTR_TIMER_CFG, NICPF_CLK_PER_INT_TICK);
344 
345 	/* Enable VLAN ethertype matching and stripping */
346 	nic_reg_write(nic, NIC_PF_RX_ETYPE_0_7,
347 		      (2 << 19) | (ETYPE_ALG_VLAN_STRIP << 16) | ETH_P_8021Q);
348 }
349 
350 /* Channel parse index configuration */
351 static void nic_config_cpi(struct nicpf *nic, struct cpi_cfg_msg *cfg)
352 {
353 	u32 vnic, bgx, lmac, chan;
354 	u32 padd, cpi_count = 0;
355 	u64 cpi_base, cpi, rssi_base, rssi;
356 	u8  qset, rq_idx = 0;
357 
358 	vnic = cfg->vf_id;
359 	bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vnic]);
360 	lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vnic]);
361 
362 	chan = (lmac * MAX_BGX_CHANS_PER_LMAC) + (bgx * NIC_CHANS_PER_INF);
363 	cpi_base = (lmac * NIC_MAX_CPI_PER_LMAC) + (bgx * NIC_CPI_PER_BGX);
364 	rssi_base = (lmac * nic->rss_ind_tbl_size) + (bgx * NIC_RSSI_PER_BGX);
365 
366 	/* Rx channel configuration */
367 	nic_reg_write(nic, NIC_PF_CHAN_0_255_RX_BP_CFG | (chan << 3),
368 		      (1ull << 63) | (vnic << 0));
369 	nic_reg_write(nic, NIC_PF_CHAN_0_255_RX_CFG | (chan << 3),
370 		      ((u64)cfg->cpi_alg << 62) | (cpi_base << 48));
371 
372 	if (cfg->cpi_alg == CPI_ALG_NONE)
373 		cpi_count = 1;
374 	else if (cfg->cpi_alg == CPI_ALG_VLAN) /* 3 bits of PCP */
375 		cpi_count = 8;
376 	else if (cfg->cpi_alg == CPI_ALG_VLAN16) /* 3 bits PCP + DEI */
377 		cpi_count = 16;
378 	else if (cfg->cpi_alg == CPI_ALG_DIFF) /* 6bits DSCP */
379 		cpi_count = NIC_MAX_CPI_PER_LMAC;
380 
381 	/* RSS Qset, Qidx mapping */
382 	qset = cfg->vf_id;
383 	rssi = rssi_base;
384 	for (; rssi < (rssi_base + cfg->rq_cnt); rssi++) {
385 		nic_reg_write(nic, NIC_PF_RSSI_0_4097_RQ | (rssi << 3),
386 			      (qset << 3) | rq_idx);
387 		rq_idx++;
388 	}
389 
390 	rssi = 0;
391 	cpi = cpi_base;
392 	for (; cpi < (cpi_base + cpi_count); cpi++) {
393 		/* Determine port to channel adder */
394 		if (cfg->cpi_alg != CPI_ALG_DIFF)
395 			padd = cpi % cpi_count;
396 		else
397 			padd = cpi % 8; /* 3 bits CS out of 6bits DSCP */
398 
399 		/* Leave RSS_SIZE as '0' to disable RSS */
400 		if (pass1_silicon(nic)) {
401 			nic_reg_write(nic, NIC_PF_CPI_0_2047_CFG | (cpi << 3),
402 				      (vnic << 24) | (padd << 16) |
403 				      (rssi_base + rssi));
404 		} else {
405 			/* Set MPI_ALG to '0' to disable MCAM parsing */
406 			nic_reg_write(nic, NIC_PF_CPI_0_2047_CFG | (cpi << 3),
407 				      (padd << 16));
408 			/* MPI index is same as CPI if MPI_ALG is not enabled */
409 			nic_reg_write(nic, NIC_PF_MPI_0_2047_CFG | (cpi << 3),
410 				      (vnic << 24) | (rssi_base + rssi));
411 		}
412 
413 		if ((rssi + 1) >= cfg->rq_cnt)
414 			continue;
415 
416 		if (cfg->cpi_alg == CPI_ALG_VLAN)
417 			rssi++;
418 		else if (cfg->cpi_alg == CPI_ALG_VLAN16)
419 			rssi = ((cpi - cpi_base) & 0xe) >> 1;
420 		else if (cfg->cpi_alg == CPI_ALG_DIFF)
421 			rssi = ((cpi - cpi_base) & 0x38) >> 3;
422 	}
423 	nic->cpi_base[cfg->vf_id] = cpi_base;
424 	nic->rssi_base[cfg->vf_id] = rssi_base;
425 }
426 
427 /* Responsds to VF with its RSS indirection table size */
428 static void nic_send_rss_size(struct nicpf *nic, int vf)
429 {
430 	union nic_mbx mbx = {};
431 	u64  *msg;
432 
433 	msg = (u64 *)&mbx;
434 
435 	mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
436 	mbx.rss_size.ind_tbl_size = nic->rss_ind_tbl_size;
437 	nic_send_msg_to_vf(nic, vf, &mbx);
438 }
439 
440 /* Receive side scaling configuration
441  * configure:
442  * - RSS index
443  * - indir table i.e hash::RQ mapping
444  * - no of hash bits to consider
445  */
446 static void nic_config_rss(struct nicpf *nic, struct rss_cfg_msg *cfg)
447 {
448 	u8  qset, idx = 0;
449 	u64 cpi_cfg, cpi_base, rssi_base, rssi;
450 	u64 idx_addr;
451 
452 	rssi_base = nic->rssi_base[cfg->vf_id] + cfg->tbl_offset;
453 
454 	rssi = rssi_base;
455 	qset = cfg->vf_id;
456 
457 	for (; rssi < (rssi_base + cfg->tbl_len); rssi++) {
458 		u8 svf = cfg->ind_tbl[idx] >> 3;
459 
460 		if (svf)
461 			qset = nic->vf_sqs[cfg->vf_id][svf - 1];
462 		else
463 			qset = cfg->vf_id;
464 		nic_reg_write(nic, NIC_PF_RSSI_0_4097_RQ | (rssi << 3),
465 			      (qset << 3) | (cfg->ind_tbl[idx] & 0x7));
466 		idx++;
467 	}
468 
469 	cpi_base = nic->cpi_base[cfg->vf_id];
470 	if (pass1_silicon(nic))
471 		idx_addr = NIC_PF_CPI_0_2047_CFG;
472 	else
473 		idx_addr = NIC_PF_MPI_0_2047_CFG;
474 	cpi_cfg = nic_reg_read(nic, idx_addr | (cpi_base << 3));
475 	cpi_cfg &= ~(0xFULL << 20);
476 	cpi_cfg |= (cfg->hash_bits << 20);
477 	nic_reg_write(nic, idx_addr | (cpi_base << 3), cpi_cfg);
478 }
479 
480 /* 4 level transmit side scheduler configutation
481  * for TNS bypass mode
482  *
483  * Sample configuration for SQ0
484  * VNIC0-SQ0 -> TL4(0)   -> TL3[0]   -> TL2[0]  -> TL1[0] -> BGX0
485  * VNIC1-SQ0 -> TL4(8)   -> TL3[2]   -> TL2[0]  -> TL1[0] -> BGX0
486  * VNIC2-SQ0 -> TL4(16)  -> TL3[4]   -> TL2[1]  -> TL1[0] -> BGX0
487  * VNIC3-SQ0 -> TL4(24)  -> TL3[6]   -> TL2[1]  -> TL1[0] -> BGX0
488  * VNIC4-SQ0 -> TL4(512) -> TL3[128] -> TL2[32] -> TL1[1] -> BGX1
489  * VNIC5-SQ0 -> TL4(520) -> TL3[130] -> TL2[32] -> TL1[1] -> BGX1
490  * VNIC6-SQ0 -> TL4(528) -> TL3[132] -> TL2[33] -> TL1[1] -> BGX1
491  * VNIC7-SQ0 -> TL4(536) -> TL3[134] -> TL2[33] -> TL1[1] -> BGX1
492  */
493 static void nic_tx_channel_cfg(struct nicpf *nic, u8 vnic,
494 			       struct sq_cfg_msg *sq)
495 {
496 	u32 bgx, lmac, chan;
497 	u32 tl2, tl3, tl4;
498 	u32 rr_quantum;
499 	u8 sq_idx = sq->sq_num;
500 	u8 pqs_vnic;
501 
502 	if (sq->sqs_mode)
503 		pqs_vnic = nic->pqs_vf[vnic];
504 	else
505 		pqs_vnic = vnic;
506 
507 	bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[pqs_vnic]);
508 	lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[pqs_vnic]);
509 
510 	/* 24 bytes for FCS, IPG and preamble */
511 	rr_quantum = ((NIC_HW_MAX_FRS + 24) / 4);
512 
513 	tl4 = (lmac * NIC_TL4_PER_LMAC) + (bgx * NIC_TL4_PER_BGX);
514 	tl4 += sq_idx;
515 	if (sq->sqs_mode)
516 		tl4 += vnic * 8;
517 
518 	tl3 = tl4 / (NIC_MAX_TL4 / NIC_MAX_TL3);
519 	nic_reg_write(nic, NIC_PF_QSET_0_127_SQ_0_7_CFG2 |
520 		      ((u64)vnic << NIC_QS_ID_SHIFT) |
521 		      ((u32)sq_idx << NIC_Q_NUM_SHIFT), tl4);
522 	nic_reg_write(nic, NIC_PF_TL4_0_1023_CFG | (tl4 << 3),
523 		      ((u64)vnic << 27) | ((u32)sq_idx << 24) | rr_quantum);
524 
525 	nic_reg_write(nic, NIC_PF_TL3_0_255_CFG | (tl3 << 3), rr_quantum);
526 	chan = (lmac * MAX_BGX_CHANS_PER_LMAC) + (bgx * NIC_CHANS_PER_INF);
527 	nic_reg_write(nic, NIC_PF_TL3_0_255_CHAN | (tl3 << 3), chan);
528 	/* Enable backpressure on the channel */
529 	nic_reg_write(nic, NIC_PF_CHAN_0_255_TX_CFG | (chan << 3), 1);
530 
531 	tl2 = tl3 >> 2;
532 	nic_reg_write(nic, NIC_PF_TL3A_0_63_CFG | (tl2 << 3), tl2);
533 	nic_reg_write(nic, NIC_PF_TL2_0_63_CFG | (tl2 << 3), rr_quantum);
534 	/* No priorities as of now */
535 	nic_reg_write(nic, NIC_PF_TL2_0_63_PRI | (tl2 << 3), 0x00);
536 }
537 
538 /* Send primary nicvf pointer to secondary QS's VF */
539 static void nic_send_pnicvf(struct nicpf *nic, int sqs)
540 {
541 	union nic_mbx mbx = {};
542 
543 	mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
544 	mbx.nicvf.nicvf = nic->nicvf[nic->pqs_vf[sqs]];
545 	nic_send_msg_to_vf(nic, sqs, &mbx);
546 }
547 
548 /* Send SQS's nicvf pointer to primary QS's VF */
549 static void nic_send_snicvf(struct nicpf *nic, struct nicvf_ptr *nicvf)
550 {
551 	union nic_mbx mbx = {};
552 	int sqs_id = nic->vf_sqs[nicvf->vf_id][nicvf->sqs_id];
553 
554 	mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
555 	mbx.nicvf.sqs_id = nicvf->sqs_id;
556 	mbx.nicvf.nicvf = nic->nicvf[sqs_id];
557 	nic_send_msg_to_vf(nic, nicvf->vf_id, &mbx);
558 }
559 
560 /* Find next available Qset that can be assigned as a
561  * secondary Qset to a VF.
562  */
563 static int nic_nxt_avail_sqs(struct nicpf *nic)
564 {
565 	int sqs;
566 
567 	for (sqs = 0; sqs < nic->num_sqs_en; sqs++) {
568 		if (!nic->sqs_used[sqs])
569 			nic->sqs_used[sqs] = true;
570 		else
571 			continue;
572 		return sqs + nic->num_vf_en;
573 	}
574 	return -1;
575 }
576 
577 /* Allocate additional Qsets for requested VF */
578 static void nic_alloc_sqs(struct nicpf *nic, struct sqs_alloc *sqs)
579 {
580 	union nic_mbx mbx = {};
581 	int idx, alloc_qs = 0;
582 	int sqs_id;
583 
584 	if (!nic->num_sqs_en)
585 		goto send_mbox;
586 
587 	for (idx = 0; idx < sqs->qs_count; idx++) {
588 		sqs_id = nic_nxt_avail_sqs(nic);
589 		if (sqs_id < 0)
590 			break;
591 		nic->vf_sqs[sqs->vf_id][idx] = sqs_id;
592 		nic->pqs_vf[sqs_id] = sqs->vf_id;
593 		alloc_qs++;
594 	}
595 
596 send_mbox:
597 	mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
598 	mbx.sqs_alloc.vf_id = sqs->vf_id;
599 	mbx.sqs_alloc.qs_count = alloc_qs;
600 	nic_send_msg_to_vf(nic, sqs->vf_id, &mbx);
601 }
602 
603 static int nic_config_loopback(struct nicpf *nic, struct set_loopback *lbk)
604 {
605 	int bgx_idx, lmac_idx;
606 
607 	if (lbk->vf_id > MAX_LMAC)
608 		return -1;
609 
610 	bgx_idx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lbk->vf_id]);
611 	lmac_idx = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lbk->vf_id]);
612 
613 	bgx_lmac_internal_loopback(nic->node, bgx_idx, lmac_idx, lbk->enable);
614 
615 	return 0;
616 }
617 
618 /* Interrupt handler to handle mailbox messages from VFs */
619 static void nic_handle_mbx_intr(struct nicpf *nic, int vf)
620 {
621 	union nic_mbx mbx = {};
622 	u64 *mbx_data;
623 	u64 mbx_addr;
624 	u64 reg_addr;
625 	u64 cfg;
626 	int bgx, lmac;
627 	int i;
628 	int ret = 0;
629 
630 	nic->mbx_lock[vf] = true;
631 
632 	mbx_addr = nic_get_mbx_addr(vf);
633 	mbx_data = (u64 *)&mbx;
634 
635 	for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
636 		*mbx_data = nic_reg_read(nic, mbx_addr);
637 		mbx_data++;
638 		mbx_addr += sizeof(u64);
639 	}
640 
641 	dev_dbg(&nic->pdev->dev, "%s: Mailbox msg %d from VF%d\n",
642 		__func__, mbx.msg.msg, vf);
643 	switch (mbx.msg.msg) {
644 	case NIC_MBOX_MSG_READY:
645 		nic_mbx_send_ready(nic, vf);
646 		if (vf < MAX_LMAC) {
647 			nic->link[vf] = 0;
648 			nic->duplex[vf] = 0;
649 			nic->speed[vf] = 0;
650 		}
651 		ret = 1;
652 		break;
653 	case NIC_MBOX_MSG_QS_CFG:
654 		reg_addr = NIC_PF_QSET_0_127_CFG |
655 			   (mbx.qs.num << NIC_QS_ID_SHIFT);
656 		cfg = mbx.qs.cfg;
657 		/* Check if its a secondary Qset */
658 		if (vf >= nic->num_vf_en) {
659 			cfg = cfg & (~0x7FULL);
660 			/* Assign this Qset to primary Qset's VF */
661 			cfg |= nic->pqs_vf[vf];
662 		}
663 		nic_reg_write(nic, reg_addr, cfg);
664 		break;
665 	case NIC_MBOX_MSG_RQ_CFG:
666 		reg_addr = NIC_PF_QSET_0_127_RQ_0_7_CFG |
667 			   (mbx.rq.qs_num << NIC_QS_ID_SHIFT) |
668 			   (mbx.rq.rq_num << NIC_Q_NUM_SHIFT);
669 		nic_reg_write(nic, reg_addr, mbx.rq.cfg);
670 		break;
671 	case NIC_MBOX_MSG_RQ_BP_CFG:
672 		reg_addr = NIC_PF_QSET_0_127_RQ_0_7_BP_CFG |
673 			   (mbx.rq.qs_num << NIC_QS_ID_SHIFT) |
674 			   (mbx.rq.rq_num << NIC_Q_NUM_SHIFT);
675 		nic_reg_write(nic, reg_addr, mbx.rq.cfg);
676 		break;
677 	case NIC_MBOX_MSG_RQ_SW_SYNC:
678 		ret = nic_rcv_queue_sw_sync(nic);
679 		break;
680 	case NIC_MBOX_MSG_RQ_DROP_CFG:
681 		reg_addr = NIC_PF_QSET_0_127_RQ_0_7_DROP_CFG |
682 			   (mbx.rq.qs_num << NIC_QS_ID_SHIFT) |
683 			   (mbx.rq.rq_num << NIC_Q_NUM_SHIFT);
684 		nic_reg_write(nic, reg_addr, mbx.rq.cfg);
685 		break;
686 	case NIC_MBOX_MSG_SQ_CFG:
687 		reg_addr = NIC_PF_QSET_0_127_SQ_0_7_CFG |
688 			   (mbx.sq.qs_num << NIC_QS_ID_SHIFT) |
689 			   (mbx.sq.sq_num << NIC_Q_NUM_SHIFT);
690 		nic_reg_write(nic, reg_addr, mbx.sq.cfg);
691 		nic_tx_channel_cfg(nic, mbx.qs.num, &mbx.sq);
692 		break;
693 	case NIC_MBOX_MSG_SET_MAC:
694 		if (vf >= nic->num_vf_en)
695 			break;
696 		lmac = mbx.mac.vf_id;
697 		bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lmac]);
698 		lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[lmac]);
699 		bgx_set_lmac_mac(nic->node, bgx, lmac, mbx.mac.mac_addr);
700 		break;
701 	case NIC_MBOX_MSG_SET_MAX_FRS:
702 		ret = nic_update_hw_frs(nic, mbx.frs.max_frs,
703 					mbx.frs.vf_id);
704 		break;
705 	case NIC_MBOX_MSG_CPI_CFG:
706 		nic_config_cpi(nic, &mbx.cpi_cfg);
707 		break;
708 	case NIC_MBOX_MSG_RSS_SIZE:
709 		nic_send_rss_size(nic, vf);
710 		goto unlock;
711 	case NIC_MBOX_MSG_RSS_CFG:
712 	case NIC_MBOX_MSG_RSS_CFG_CONT:
713 		nic_config_rss(nic, &mbx.rss_cfg);
714 		break;
715 	case NIC_MBOX_MSG_CFG_DONE:
716 		/* Last message of VF config msg sequence */
717 		nic->vf_enabled[vf] = true;
718 		goto unlock;
719 	case NIC_MBOX_MSG_SHUTDOWN:
720 		/* First msg in VF teardown sequence */
721 		nic->vf_enabled[vf] = false;
722 		if (vf >= nic->num_vf_en)
723 			nic->sqs_used[vf - nic->num_vf_en] = false;
724 		nic->pqs_vf[vf] = 0;
725 		break;
726 	case NIC_MBOX_MSG_ALLOC_SQS:
727 		nic_alloc_sqs(nic, &mbx.sqs_alloc);
728 		goto unlock;
729 	case NIC_MBOX_MSG_NICVF_PTR:
730 		nic->nicvf[vf] = mbx.nicvf.nicvf;
731 		break;
732 	case NIC_MBOX_MSG_PNICVF_PTR:
733 		nic_send_pnicvf(nic, vf);
734 		goto unlock;
735 	case NIC_MBOX_MSG_SNICVF_PTR:
736 		nic_send_snicvf(nic, &mbx.nicvf);
737 		goto unlock;
738 	case NIC_MBOX_MSG_BGX_STATS:
739 		nic_get_bgx_stats(nic, &mbx.bgx_stats);
740 		goto unlock;
741 	case NIC_MBOX_MSG_LOOPBACK:
742 		ret = nic_config_loopback(nic, &mbx.lbk);
743 		break;
744 	default:
745 		dev_err(&nic->pdev->dev,
746 			"Invalid msg from VF%d, msg 0x%x\n", vf, mbx.msg.msg);
747 		break;
748 	}
749 
750 	if (!ret)
751 		nic_mbx_send_ack(nic, vf);
752 	else if (mbx.msg.msg != NIC_MBOX_MSG_READY)
753 		nic_mbx_send_nack(nic, vf);
754 unlock:
755 	nic->mbx_lock[vf] = false;
756 }
757 
758 static void nic_mbx_intr_handler (struct nicpf *nic, int mbx)
759 {
760 	u64 intr;
761 	u8  vf, vf_per_mbx_reg = 64;
762 
763 	intr = nic_reg_read(nic, NIC_PF_MAILBOX_INT + (mbx << 3));
764 	dev_dbg(&nic->pdev->dev, "PF interrupt Mbox%d 0x%llx\n", mbx, intr);
765 	for (vf = 0; vf < vf_per_mbx_reg; vf++) {
766 		if (intr & (1ULL << vf)) {
767 			dev_dbg(&nic->pdev->dev, "Intr from VF %d\n",
768 				vf + (mbx * vf_per_mbx_reg));
769 
770 			nic_handle_mbx_intr(nic, vf + (mbx * vf_per_mbx_reg));
771 			nic_clear_mbx_intr(nic, vf, mbx);
772 		}
773 	}
774 }
775 
776 static irqreturn_t nic_mbx0_intr_handler (int irq, void *nic_irq)
777 {
778 	struct nicpf *nic = (struct nicpf *)nic_irq;
779 
780 	nic_mbx_intr_handler(nic, 0);
781 
782 	return IRQ_HANDLED;
783 }
784 
785 static irqreturn_t nic_mbx1_intr_handler (int irq, void *nic_irq)
786 {
787 	struct nicpf *nic = (struct nicpf *)nic_irq;
788 
789 	nic_mbx_intr_handler(nic, 1);
790 
791 	return IRQ_HANDLED;
792 }
793 
794 static int nic_enable_msix(struct nicpf *nic)
795 {
796 	int i, ret;
797 
798 	nic->num_vec = NIC_PF_MSIX_VECTORS;
799 
800 	for (i = 0; i < nic->num_vec; i++)
801 		nic->msix_entries[i].entry = i;
802 
803 	ret = pci_enable_msix(nic->pdev, nic->msix_entries, nic->num_vec);
804 	if (ret) {
805 		dev_err(&nic->pdev->dev,
806 			"Request for #%d msix vectors failed\n",
807 			   nic->num_vec);
808 		return ret;
809 	}
810 
811 	nic->msix_enabled = 1;
812 	return 0;
813 }
814 
815 static void nic_disable_msix(struct nicpf *nic)
816 {
817 	if (nic->msix_enabled) {
818 		pci_disable_msix(nic->pdev);
819 		nic->msix_enabled = 0;
820 		nic->num_vec = 0;
821 	}
822 }
823 
824 static void nic_free_all_interrupts(struct nicpf *nic)
825 {
826 	int irq;
827 
828 	for (irq = 0; irq < nic->num_vec; irq++) {
829 		if (nic->irq_allocated[irq])
830 			free_irq(nic->msix_entries[irq].vector, nic);
831 		nic->irq_allocated[irq] = false;
832 	}
833 }
834 
835 static int nic_register_interrupts(struct nicpf *nic)
836 {
837 	int ret;
838 
839 	/* Enable MSI-X */
840 	ret = nic_enable_msix(nic);
841 	if (ret)
842 		return ret;
843 
844 	/* Register mailbox interrupt handlers */
845 	ret = request_irq(nic->msix_entries[NIC_PF_INTR_ID_MBOX0].vector,
846 			  nic_mbx0_intr_handler, 0, "NIC Mbox0", nic);
847 	if (ret)
848 		goto fail;
849 
850 	nic->irq_allocated[NIC_PF_INTR_ID_MBOX0] = true;
851 
852 	ret = request_irq(nic->msix_entries[NIC_PF_INTR_ID_MBOX1].vector,
853 			  nic_mbx1_intr_handler, 0, "NIC Mbox1", nic);
854 	if (ret)
855 		goto fail;
856 
857 	nic->irq_allocated[NIC_PF_INTR_ID_MBOX1] = true;
858 
859 	/* Enable mailbox interrupt */
860 	nic_enable_mbx_intr(nic);
861 	return 0;
862 
863 fail:
864 	dev_err(&nic->pdev->dev, "Request irq failed\n");
865 	nic_free_all_interrupts(nic);
866 	return ret;
867 }
868 
869 static void nic_unregister_interrupts(struct nicpf *nic)
870 {
871 	nic_free_all_interrupts(nic);
872 	nic_disable_msix(nic);
873 }
874 
875 static int nic_num_sqs_en(struct nicpf *nic, int vf_en)
876 {
877 	int pos, sqs_per_vf = MAX_SQS_PER_VF_SINGLE_NODE;
878 	u16 total_vf;
879 
880 	/* Check if its a multi-node environment */
881 	if (nr_node_ids > 1)
882 		sqs_per_vf = MAX_SQS_PER_VF;
883 
884 	pos = pci_find_ext_capability(nic->pdev, PCI_EXT_CAP_ID_SRIOV);
885 	pci_read_config_word(nic->pdev, (pos + PCI_SRIOV_TOTAL_VF), &total_vf);
886 	return min(total_vf - vf_en, vf_en * sqs_per_vf);
887 }
888 
889 static int nic_sriov_init(struct pci_dev *pdev, struct nicpf *nic)
890 {
891 	int pos = 0;
892 	int vf_en;
893 	int err;
894 	u16 total_vf_cnt;
895 
896 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
897 	if (!pos) {
898 		dev_err(&pdev->dev, "SRIOV capability is not found in PCIe config space\n");
899 		return -ENODEV;
900 	}
901 
902 	pci_read_config_word(pdev, (pos + PCI_SRIOV_TOTAL_VF), &total_vf_cnt);
903 	if (total_vf_cnt < nic->num_vf_en)
904 		nic->num_vf_en = total_vf_cnt;
905 
906 	if (!total_vf_cnt)
907 		return 0;
908 
909 	vf_en = nic->num_vf_en;
910 	nic->num_sqs_en = nic_num_sqs_en(nic, nic->num_vf_en);
911 	vf_en += nic->num_sqs_en;
912 
913 	err = pci_enable_sriov(pdev, vf_en);
914 	if (err) {
915 		dev_err(&pdev->dev, "SRIOV enable failed, num VF is %d\n",
916 			vf_en);
917 		nic->num_vf_en = 0;
918 		return err;
919 	}
920 
921 	dev_info(&pdev->dev, "SRIOV enabled, number of VF available %d\n",
922 		 vf_en);
923 
924 	nic->flags |= NIC_SRIOV_ENABLED;
925 	return 0;
926 }
927 
928 /* Poll for BGX LMAC link status and update corresponding VF
929  * if there is a change, valid only if internal L2 switch
930  * is not present otherwise VF link is always treated as up
931  */
932 static void nic_poll_for_link(struct work_struct *work)
933 {
934 	union nic_mbx mbx = {};
935 	struct nicpf *nic;
936 	struct bgx_link_status link;
937 	u8 vf, bgx, lmac;
938 
939 	nic = container_of(work, struct nicpf, dwork.work);
940 
941 	mbx.link_status.msg = NIC_MBOX_MSG_BGX_LINK_CHANGE;
942 
943 	for (vf = 0; vf < nic->num_vf_en; vf++) {
944 		/* Poll only if VF is UP */
945 		if (!nic->vf_enabled[vf])
946 			continue;
947 
948 		/* Get BGX, LMAC indices for the VF */
949 		bgx = NIC_GET_BGX_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]);
950 		lmac = NIC_GET_LMAC_FROM_VF_LMAC_MAP(nic->vf_lmac_map[vf]);
951 		/* Get interface link status */
952 		bgx_get_lmac_link_state(nic->node, bgx, lmac, &link);
953 
954 		/* Inform VF only if link status changed */
955 		if (nic->link[vf] == link.link_up)
956 			continue;
957 
958 		if (!nic->mbx_lock[vf]) {
959 			nic->link[vf] = link.link_up;
960 			nic->duplex[vf] = link.duplex;
961 			nic->speed[vf] = link.speed;
962 
963 			/* Send a mbox message to VF with current link status */
964 			mbx.link_status.link_up = link.link_up;
965 			mbx.link_status.duplex = link.duplex;
966 			mbx.link_status.speed = link.speed;
967 			nic_send_msg_to_vf(nic, vf, &mbx);
968 		}
969 	}
970 	queue_delayed_work(nic->check_link, &nic->dwork, HZ * 2);
971 }
972 
973 static int nic_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
974 {
975 	struct device *dev = &pdev->dev;
976 	struct nicpf *nic;
977 	int    err;
978 
979 	BUILD_BUG_ON(sizeof(union nic_mbx) > 16);
980 
981 	nic = devm_kzalloc(dev, sizeof(*nic), GFP_KERNEL);
982 	if (!nic)
983 		return -ENOMEM;
984 
985 	pci_set_drvdata(pdev, nic);
986 
987 	nic->pdev = pdev;
988 
989 	err = pci_enable_device(pdev);
990 	if (err) {
991 		dev_err(dev, "Failed to enable PCI device\n");
992 		pci_set_drvdata(pdev, NULL);
993 		return err;
994 	}
995 
996 	err = pci_request_regions(pdev, DRV_NAME);
997 	if (err) {
998 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
999 		goto err_disable_device;
1000 	}
1001 
1002 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
1003 	if (err) {
1004 		dev_err(dev, "Unable to get usable DMA configuration\n");
1005 		goto err_release_regions;
1006 	}
1007 
1008 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
1009 	if (err) {
1010 		dev_err(dev, "Unable to get 48-bit DMA for consistent allocations\n");
1011 		goto err_release_regions;
1012 	}
1013 
1014 	/* MAP PF's configuration registers */
1015 	nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
1016 	if (!nic->reg_base) {
1017 		dev_err(dev, "Cannot map config register space, aborting\n");
1018 		err = -ENOMEM;
1019 		goto err_release_regions;
1020 	}
1021 
1022 	nic->node = nic_get_node_id(pdev);
1023 
1024 	nic_set_lmac_vf_mapping(nic);
1025 
1026 	/* Initialize hardware */
1027 	nic_init_hw(nic);
1028 
1029 	/* Set RSS TBL size for each VF */
1030 	nic->rss_ind_tbl_size = NIC_MAX_RSS_IDR_TBL_SIZE;
1031 
1032 	/* Register interrupts */
1033 	err = nic_register_interrupts(nic);
1034 	if (err)
1035 		goto err_release_regions;
1036 
1037 	/* Configure SRIOV */
1038 	err = nic_sriov_init(pdev, nic);
1039 	if (err)
1040 		goto err_unregister_interrupts;
1041 
1042 	/* Register a physical link status poll fn() */
1043 	nic->check_link = alloc_workqueue("check_link_status",
1044 					  WQ_UNBOUND | WQ_MEM_RECLAIM, 1);
1045 	if (!nic->check_link) {
1046 		err = -ENOMEM;
1047 		goto err_disable_sriov;
1048 	}
1049 
1050 	INIT_DELAYED_WORK(&nic->dwork, nic_poll_for_link);
1051 	queue_delayed_work(nic->check_link, &nic->dwork, 0);
1052 
1053 	return 0;
1054 
1055 err_disable_sriov:
1056 	if (nic->flags & NIC_SRIOV_ENABLED)
1057 		pci_disable_sriov(pdev);
1058 err_unregister_interrupts:
1059 	nic_unregister_interrupts(nic);
1060 err_release_regions:
1061 	pci_release_regions(pdev);
1062 err_disable_device:
1063 	pci_disable_device(pdev);
1064 	pci_set_drvdata(pdev, NULL);
1065 	return err;
1066 }
1067 
1068 static void nic_remove(struct pci_dev *pdev)
1069 {
1070 	struct nicpf *nic = pci_get_drvdata(pdev);
1071 
1072 	if (nic->flags & NIC_SRIOV_ENABLED)
1073 		pci_disable_sriov(pdev);
1074 
1075 	if (nic->check_link) {
1076 		/* Destroy work Queue */
1077 		cancel_delayed_work(&nic->dwork);
1078 		flush_workqueue(nic->check_link);
1079 		destroy_workqueue(nic->check_link);
1080 	}
1081 
1082 	nic_unregister_interrupts(nic);
1083 	pci_release_regions(pdev);
1084 	pci_disable_device(pdev);
1085 	pci_set_drvdata(pdev, NULL);
1086 }
1087 
1088 static struct pci_driver nic_driver = {
1089 	.name = DRV_NAME,
1090 	.id_table = nic_id_table,
1091 	.probe = nic_probe,
1092 	.remove = nic_remove,
1093 };
1094 
1095 static int __init nic_init_module(void)
1096 {
1097 	pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
1098 
1099 	return pci_register_driver(&nic_driver);
1100 }
1101 
1102 static void __exit nic_cleanup_module(void)
1103 {
1104 	pci_unregister_driver(&nic_driver);
1105 }
1106 
1107 module_init(nic_init_module);
1108 module_exit(nic_cleanup_module);
1109