xref: /openbmc/linux/drivers/net/ethernet/cavium/liquidio/cn66xx_device.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 *          Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT.  See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/version.h>
23 #include <linux/types.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/kthread.h>
28 #include <linux/netdevice.h>
29 #include "octeon_config.h"
30 #include "liquidio_common.h"
31 #include "octeon_droq.h"
32 #include "octeon_iq.h"
33 #include "response_manager.h"
34 #include "octeon_device.h"
35 #include "octeon_nic.h"
36 #include "octeon_main.h"
37 #include "octeon_network.h"
38 #include "cn66xx_regs.h"
39 #include "cn66xx_device.h"
40 #include "liquidio_image.h"
41 #include "octeon_mem_ops.h"
42 
43 int lio_cn6xxx_soft_reset(struct octeon_device *oct)
44 {
45 	octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
46 
47 	dev_dbg(&oct->pci_dev->dev, "BIST enabled for soft reset\n");
48 
49 	lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_BIST);
50 	octeon_write_csr64(oct, CN6XXX_SLI_SCRATCH1, 0x1234ULL);
51 
52 	lio_pci_readq(oct, CN6XXX_CIU_SOFT_RST);
53 	lio_pci_writeq(oct, 1, CN6XXX_CIU_SOFT_RST);
54 
55 	/* make sure that the reset is written before starting timer */
56 	mmiowb();
57 
58 	/* Wait for 10ms as Octeon resets. */
59 	mdelay(100);
60 
61 	if (octeon_read_csr64(oct, CN6XXX_SLI_SCRATCH1) == 0x1234ULL) {
62 		dev_err(&oct->pci_dev->dev, "Soft reset failed\n");
63 		return 1;
64 	}
65 
66 	dev_dbg(&oct->pci_dev->dev, "Reset completed\n");
67 	octeon_write_csr64(oct, CN6XXX_WIN_WR_MASK_REG, 0xFF);
68 
69 	return 0;
70 }
71 
72 void lio_cn6xxx_enable_error_reporting(struct octeon_device *oct)
73 {
74 	u32 val;
75 
76 	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
77 	if (val & 0x000f0000) {
78 		dev_err(&oct->pci_dev->dev, "PCI-E Link error detected: 0x%08x\n",
79 			val & 0x000f0000);
80 	}
81 
82 	val |= 0xf;          /* Enable Link error reporting */
83 
84 	dev_dbg(&oct->pci_dev->dev, "Enabling PCI-E error reporting..\n");
85 	pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
86 }
87 
88 void lio_cn6xxx_setup_pcie_mps(struct octeon_device *oct,
89 			       enum octeon_pcie_mps mps)
90 {
91 	u32 val;
92 	u64 r64;
93 
94 	/* Read config register for MPS */
95 	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
96 
97 	if (mps == PCIE_MPS_DEFAULT) {
98 		mps = ((val & (0x7 << 5)) >> 5);
99 	} else {
100 		val &= ~(0x7 << 5);  /* Turn off any MPS bits */
101 		val |= (mps << 5);   /* Set MPS */
102 		pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
103 	}
104 
105 	/* Set MPS in DPI_SLI_PRT0_CFG to the same value. */
106 	r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
107 	r64 |= (mps << 4);
108 	lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
109 }
110 
111 void lio_cn6xxx_setup_pcie_mrrs(struct octeon_device *oct,
112 				enum octeon_pcie_mrrs mrrs)
113 {
114 	u32 val;
115 	u64 r64;
116 
117 	/* Read config register for MRRS */
118 	pci_read_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, &val);
119 
120 	if (mrrs == PCIE_MRRS_DEFAULT) {
121 		mrrs = ((val & (0x7 << 12)) >> 12);
122 	} else {
123 		val &= ~(0x7 << 12); /* Turn off any MRRS bits */
124 		val |= (mrrs << 12); /* Set MRRS */
125 		pci_write_config_dword(oct->pci_dev, CN6XXX_PCIE_DEVCTL, val);
126 	}
127 
128 	/* Set MRRS in SLI_S2M_PORT0_CTL to the same value. */
129 	r64 = octeon_read_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port));
130 	r64 |= mrrs;
131 	octeon_write_csr64(oct, CN6XXX_SLI_S2M_PORTX_CTL(oct->pcie_port), r64);
132 
133 	/* Set MRRS in DPI_SLI_PRT0_CFG to the same value. */
134 	r64 = lio_pci_readq(oct, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
135 	r64 |= mrrs;
136 	lio_pci_writeq(oct, r64, CN6XXX_DPI_SLI_PRTX_CFG(oct->pcie_port));
137 }
138 
139 u32 lio_cn6xxx_coprocessor_clock(struct octeon_device *oct)
140 {
141 	/* Bits 29:24 of MIO_RST_BOOT holds the ref. clock multiplier
142 	 * for SLI.
143 	 */
144 	return ((lio_pci_readq(oct, CN6XXX_MIO_RST_BOOT) >> 24) & 0x3f) * 50;
145 }
146 
147 u32 lio_cn6xxx_get_oq_ticks(struct octeon_device *oct,
148 			    u32 time_intr_in_us)
149 {
150 	/* This gives the SLI clock per microsec */
151 	u32 oqticks_per_us = lio_cn6xxx_coprocessor_clock(oct);
152 
153 	/* core clock per us / oq ticks will be fractional. TO avoid that
154 	 * we use the method below.
155 	 */
156 
157 	/* This gives the clock cycles per millisecond */
158 	oqticks_per_us *= 1000;
159 
160 	/* This gives the oq ticks (1024 core clock cycles) per millisecond */
161 	oqticks_per_us /= 1024;
162 
163 	/* time_intr is in microseconds. The next 2 steps gives the oq ticks
164 	 * corressponding to time_intr.
165 	 */
166 	oqticks_per_us *= time_intr_in_us;
167 	oqticks_per_us /= 1000;
168 
169 	return oqticks_per_us;
170 }
171 
172 void lio_cn6xxx_setup_global_input_regs(struct octeon_device *oct)
173 {
174 	/* Select Round-Robin Arb, ES, RO, NS for Input Queues */
175 	octeon_write_csr(oct, CN6XXX_SLI_PKT_INPUT_CONTROL,
176 			 CN6XXX_INPUT_CTL_MASK);
177 
178 	/* Instruction Read Size - Max 4 instructions per PCIE Read */
179 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_INSTR_RD_SIZE,
180 			   0xFFFFFFFFFFFFFFFFULL);
181 
182 	/* Select PCIE Port for all Input rings. */
183 	octeon_write_csr64(oct, CN6XXX_SLI_IN_PCIE_PORT,
184 			   (oct->pcie_port * 0x5555555555555555ULL));
185 }
186 
187 static void lio_cn66xx_setup_pkt_ctl_regs(struct octeon_device *oct)
188 {
189 	u64 pktctl;
190 
191 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
192 
193 	pktctl = octeon_read_csr64(oct, CN6XXX_SLI_PKT_CTL);
194 
195 	/* 66XX SPECIFIC */
196 	if (CFG_GET_OQ_MAX_Q(cn6xxx->conf) <= 4)
197 		/* Disable RING_EN if only upto 4 rings are used. */
198 		pktctl &= ~(1 << 4);
199 	else
200 		pktctl |= (1 << 4);
201 
202 	if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf))
203 		pktctl |= 0xF;
204 	else
205 		/* Disable per-port backpressure. */
206 		pktctl &= ~0xF;
207 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_CTL, pktctl);
208 }
209 
210 void lio_cn6xxx_setup_global_output_regs(struct octeon_device *oct)
211 {
212 	u32 time_threshold;
213 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
214 
215 	/* / Select PCI-E Port for all Output queues */
216 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_PCIE_PORT64,
217 			   (oct->pcie_port * 0x5555555555555555ULL));
218 
219 	if (CFG_GET_IS_SLI_BP_ON(cn6xxx->conf)) {
220 		octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 32);
221 	} else {
222 		/* / Set Output queue watermark to 0 to disable backpressure */
223 		octeon_write_csr64(oct, CN6XXX_SLI_OQ_WMARK, 0);
224 	}
225 
226 	/* / Select Info Ptr for length & data */
227 	octeon_write_csr(oct, CN6XXX_SLI_PKT_IPTR, 0xFFFFFFFF);
228 
229 	/* / Select Packet count instead of bytes for SLI_PKTi_CNTS[CNT] */
230 	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_BMODE, 0);
231 
232 	/* / Select ES,RO,NS setting from register for Output Queue Packet
233 	 * Address
234 	 */
235 	octeon_write_csr(oct, CN6XXX_SLI_PKT_DPADDR, 0xFFFFFFFF);
236 
237 	/* No Relaxed Ordering, No Snoop, 64-bit swap for Output
238 	 * Queue ScatterList
239 	 */
240 	octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_ROR, 0);
241 	octeon_write_csr(oct, CN6XXX_SLI_PKT_SLIST_NS, 0);
242 
243 	/* / ENDIAN_SPECIFIC CHANGES - 0 works for LE. */
244 #ifdef __BIG_ENDIAN_BITFIELD
245 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64,
246 			   0x5555555555555555ULL);
247 #else
248 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_SLIST_ES64, 0ULL);
249 #endif
250 
251 	/* / No Relaxed Ordering, No Snoop, 64-bit swap for Output Queue Data */
252 	octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_ROR, 0);
253 	octeon_write_csr(oct, CN6XXX_SLI_PKT_DATA_OUT_NS, 0);
254 	octeon_write_csr64(oct, CN6XXX_SLI_PKT_DATA_OUT_ES64,
255 			   0x5555555555555555ULL);
256 
257 	/* / Set up interrupt packet and time threshold */
258 	octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_PKTS,
259 			 (u32)CFG_GET_OQ_INTR_PKT(cn6xxx->conf));
260 	time_threshold =
261 		lio_cn6xxx_get_oq_ticks(oct, (u32)
262 					CFG_GET_OQ_INTR_TIME(cn6xxx->conf));
263 
264 	octeon_write_csr(oct, CN6XXX_SLI_OQ_INT_LEVEL_TIME, time_threshold);
265 }
266 
267 static int lio_cn6xxx_setup_device_regs(struct octeon_device *oct)
268 {
269 	lio_cn6xxx_setup_pcie_mps(oct, PCIE_MPS_DEFAULT);
270 	lio_cn6xxx_setup_pcie_mrrs(oct, PCIE_MRRS_512B);
271 	lio_cn6xxx_enable_error_reporting(oct);
272 
273 	lio_cn6xxx_setup_global_input_regs(oct);
274 	lio_cn66xx_setup_pkt_ctl_regs(oct);
275 	lio_cn6xxx_setup_global_output_regs(oct);
276 
277 	/* Default error timeout value should be 0x200000 to avoid host hang
278 	 * when reads invalid register
279 	 */
280 	octeon_write_csr64(oct, CN6XXX_SLI_WINDOW_CTL, 0x200000ULL);
281 	return 0;
282 }
283 
284 void lio_cn6xxx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
285 {
286 	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
287 
288 	/* Disable Packet-by-Packet mode; No Parse Mode or Skip length */
289 	octeon_write_csr64(oct, CN6XXX_SLI_IQ_PKT_INSTR_HDR64(iq_no), 0);
290 
291 	/* Write the start of the input queue's ring and its size  */
292 	octeon_write_csr64(oct, CN6XXX_SLI_IQ_BASE_ADDR64(iq_no),
293 			   iq->base_addr_dma);
294 	octeon_write_csr(oct, CN6XXX_SLI_IQ_SIZE(iq_no), iq->max_count);
295 
296 	/* Remember the doorbell & instruction count register addr for this
297 	 * queue
298 	 */
299 	iq->doorbell_reg = oct->mmio[0].hw_addr + CN6XXX_SLI_IQ_DOORBELL(iq_no);
300 	iq->inst_cnt_reg = oct->mmio[0].hw_addr
301 			   + CN6XXX_SLI_IQ_INSTR_COUNT(iq_no);
302 	dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
303 		iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
304 
305 	/* Store the current instruction counter
306 	 * (used in flush_iq calculation)
307 	 */
308 	iq->reset_instr_cnt = readl(iq->inst_cnt_reg);
309 }
310 
311 static void lio_cn66xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
312 {
313 	lio_cn6xxx_setup_iq_regs(oct, iq_no);
314 
315 	/* Backpressure for this queue - WMARK set to all F's. This effectively
316 	 * disables the backpressure mechanism.
317 	 */
318 	octeon_write_csr64(oct, CN66XX_SLI_IQ_BP64(iq_no),
319 			   (0xFFFFFFFFULL << 32));
320 }
321 
322 void lio_cn6xxx_setup_oq_regs(struct octeon_device *oct, u32 oq_no)
323 {
324 	u32 intr;
325 	struct octeon_droq *droq = oct->droq[oq_no];
326 
327 	octeon_write_csr64(oct, CN6XXX_SLI_OQ_BASE_ADDR64(oq_no),
328 			   droq->desc_ring_dma);
329 	octeon_write_csr(oct, CN6XXX_SLI_OQ_SIZE(oq_no), droq->max_count);
330 
331 	octeon_write_csr(oct, CN6XXX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
332 			 (droq->buffer_size | (OCT_RH_SIZE << 16)));
333 
334 	/* Get the mapped address of the pkt_sent and pkts_credit regs */
335 	droq->pkts_sent_reg =
336 		oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_SENT(oq_no);
337 	droq->pkts_credit_reg =
338 		oct->mmio[0].hw_addr + CN6XXX_SLI_OQ_PKTS_CREDIT(oq_no);
339 
340 	/* Enable this output queue to generate Packet Timer Interrupt */
341 	intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
342 	intr |= (1 << oq_no);
343 	octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB, intr);
344 
345 	/* Enable this output queue to generate Packet Timer Interrupt */
346 	intr = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
347 	intr |= (1 << oq_no);
348 	octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB, intr);
349 }
350 
351 void lio_cn6xxx_enable_io_queues(struct octeon_device *oct)
352 {
353 	u32 mask;
354 
355 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE);
356 	mask |= oct->io_qmask.iq64B;
357 	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_SIZE, mask);
358 
359 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
360 	mask |= oct->io_qmask.iq;
361 	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
362 
363 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
364 	mask |= oct->io_qmask.oq;
365 	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
366 }
367 
368 void lio_cn6xxx_disable_io_queues(struct octeon_device *oct)
369 {
370 	u32 mask, i, loop = HZ;
371 	u32 d32;
372 
373 	/* Reset the Enable bits for Input Queues. */
374 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB);
375 	mask ^= oct->io_qmask.iq;
376 	octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, mask);
377 
378 	/* Wait until hardware indicates that the queues are out of reset. */
379 	mask = oct->io_qmask.iq;
380 	d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
381 	while (((d32 & mask) != mask) && loop--) {
382 		d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_IQ);
383 		schedule_timeout_uninterruptible(1);
384 	}
385 
386 	/* Reset the doorbell register for each Input queue. */
387 	for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
388 		if (!(oct->io_qmask.iq & (1UL << i)))
389 			continue;
390 		octeon_write_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i), 0xFFFFFFFF);
391 		d32 = octeon_read_csr(oct, CN6XXX_SLI_IQ_DOORBELL(i));
392 	}
393 
394 	/* Reset the Enable bits for Output Queues. */
395 	mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
396 	mask ^= oct->io_qmask.oq;
397 	octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, mask);
398 
399 	/* Wait until hardware indicates that the queues are out of reset. */
400 	loop = HZ;
401 	mask = oct->io_qmask.oq;
402 	d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
403 	while (((d32 & mask) != mask) && loop--) {
404 		d32 = octeon_read_csr(oct, CN6XXX_SLI_PORT_IN_RST_OQ);
405 		schedule_timeout_uninterruptible(1);
406 	}
407 	;
408 
409 	/* Reset the doorbell register for each Output queue. */
410 	/* for (i = 0; i < oct->num_oqs; i++) { */
411 	for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
412 		if (!(oct->io_qmask.oq & (1UL << i)))
413 			continue;
414 		octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i), 0xFFFFFFFF);
415 		d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_CREDIT(i));
416 
417 		d32 = octeon_read_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i));
418 		octeon_write_csr(oct, CN6XXX_SLI_OQ_PKTS_SENT(i), d32);
419 	}
420 
421 	d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
422 	if (d32)
423 		octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, d32);
424 
425 	d32 = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
426 	if (d32)
427 		octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, d32);
428 }
429 
430 void lio_cn6xxx_reinit_regs(struct octeon_device *oct)
431 {
432 	u32 i;
433 
434 	for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
435 		if (!(oct->io_qmask.iq & (1UL << i)))
436 			continue;
437 		oct->fn_list.setup_iq_regs(oct, i);
438 	}
439 
440 	for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
441 		if (!(oct->io_qmask.oq & (1UL << i)))
442 			continue;
443 		oct->fn_list.setup_oq_regs(oct, i);
444 	}
445 
446 	oct->fn_list.setup_device_regs(oct);
447 
448 	oct->fn_list.enable_interrupt(oct->chip);
449 
450 	oct->fn_list.enable_io_queues(oct);
451 
452 	/* for (i = 0; i < oct->num_oqs; i++) { */
453 	for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
454 		if (!(oct->io_qmask.oq & (1UL << i)))
455 			continue;
456 		writel(oct->droq[i]->max_count, oct->droq[i]->pkts_credit_reg);
457 	}
458 }
459 
460 void
461 lio_cn6xxx_bar1_idx_setup(struct octeon_device *oct,
462 			  u64 core_addr,
463 			  u32 idx,
464 			  int valid)
465 {
466 	u64 bar1;
467 
468 	if (valid == 0) {
469 		bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
470 		lio_pci_writeq(oct, (bar1 & 0xFFFFFFFEULL),
471 			       CN6XXX_BAR1_REG(idx, oct->pcie_port));
472 		bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
473 		return;
474 	}
475 
476 	/* Bits 17:4 of the PCI_BAR1_INDEXx stores bits 35:22 of
477 	 * the Core Addr
478 	 */
479 	lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK),
480 		       CN6XXX_BAR1_REG(idx, oct->pcie_port));
481 
482 	bar1 = lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
483 }
484 
485 void lio_cn6xxx_bar1_idx_write(struct octeon_device *oct,
486 			       u32 idx,
487 			       u32 mask)
488 {
489 	lio_pci_writeq(oct, mask, CN6XXX_BAR1_REG(idx, oct->pcie_port));
490 }
491 
492 u32 lio_cn6xxx_bar1_idx_read(struct octeon_device *oct, u32 idx)
493 {
494 	return (u32)lio_pci_readq(oct, CN6XXX_BAR1_REG(idx, oct->pcie_port));
495 }
496 
497 u32
498 lio_cn6xxx_update_read_index(struct octeon_device *oct __attribute__((unused)),
499 			     struct octeon_instr_queue *iq)
500 {
501 	u32 new_idx = readl(iq->inst_cnt_reg);
502 
503 	/* The new instr cnt reg is a 32-bit counter that can roll over. We have
504 	 * noted the counter's initial value at init time into
505 	 * reset_instr_cnt
506 	 */
507 	if (iq->reset_instr_cnt < new_idx)
508 		new_idx -= iq->reset_instr_cnt;
509 	else
510 		new_idx += (0xffffffff - iq->reset_instr_cnt) + 1;
511 
512 	/* Modulo of the new index with the IQ size will give us
513 	 * the new index.
514 	 */
515 	new_idx %= iq->max_count;
516 
517 	return new_idx;
518 }
519 
520 void lio_cn6xxx_enable_interrupt(void *chip)
521 {
522 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;
523 	u64 mask = cn6xxx->intr_mask64 | CN6XXX_INTR_DMA0_FORCE;
524 
525 	/* Enable Interrupt */
526 	writeq(mask, cn6xxx->intr_enb_reg64);
527 }
528 
529 void lio_cn6xxx_disable_interrupt(void *chip)
530 {
531 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;
532 
533 	/* Disable Interrupts */
534 	writeq(0, cn6xxx->intr_enb_reg64);
535 
536 	/* make sure interrupts are really disabled */
537 	mmiowb();
538 }
539 
540 static void lio_cn6xxx_get_pcie_qlmport(struct octeon_device *oct)
541 {
542 	/* CN63xx Pass2 and newer parts implements the SLI_MAC_NUMBER register
543 	 * to determine the PCIE port #
544 	 */
545 	oct->pcie_port = octeon_read_csr(oct, CN6XXX_SLI_MAC_NUMBER) & 0xff;
546 
547 	dev_dbg(&oct->pci_dev->dev, "Using PCIE Port %d\n", oct->pcie_port);
548 }
549 
550 void
551 lio_cn6xxx_process_pcie_error_intr(struct octeon_device *oct, u64 intr64)
552 {
553 	dev_err(&oct->pci_dev->dev, "Error Intr: 0x%016llx\n",
554 		CVM_CAST64(intr64));
555 }
556 
557 int lio_cn6xxx_process_droq_intr_regs(struct octeon_device *oct)
558 {
559 	struct octeon_droq *droq;
560 	u32 oq_no, pkt_count, droq_time_mask, droq_mask, droq_int_enb;
561 	u32 droq_cnt_enb, droq_cnt_mask;
562 
563 	droq_cnt_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT_ENB);
564 	droq_cnt_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_CNT_INT);
565 	droq_mask = droq_cnt_mask & droq_cnt_enb;
566 
567 	droq_time_mask = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT);
568 	droq_int_enb = octeon_read_csr(oct, CN6XXX_SLI_PKT_TIME_INT_ENB);
569 	droq_mask |= (droq_time_mask & droq_int_enb);
570 
571 	droq_mask &= oct->io_qmask.oq;
572 
573 	oct->droq_intr = 0;
574 
575 	/* for (oq_no = 0; oq_no < oct->num_oqs; oq_no++) { */
576 	for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES; oq_no++) {
577 		if (!(droq_mask & (1 << oq_no)))
578 			continue;
579 
580 		droq = oct->droq[oq_no];
581 		pkt_count = octeon_droq_check_hw_for_pkts(oct, droq);
582 		if (pkt_count) {
583 			oct->droq_intr |= (1ULL << oq_no);
584 			if (droq->ops.poll_mode) {
585 				u32 value;
586 				u32 reg;
587 
588 				struct octeon_cn6xxx *cn6xxx =
589 					(struct octeon_cn6xxx *)oct->chip;
590 
591 				/* disable interrupts for this droq */
592 				spin_lock
593 					(&cn6xxx->lock_for_droq_int_enb_reg);
594 				reg = CN6XXX_SLI_PKT_TIME_INT_ENB;
595 				value = octeon_read_csr(oct, reg);
596 				value &= ~(1 << oq_no);
597 				octeon_write_csr(oct, reg, value);
598 				reg = CN6XXX_SLI_PKT_CNT_INT_ENB;
599 				value = octeon_read_csr(oct, reg);
600 				value &= ~(1 << oq_no);
601 				octeon_write_csr(oct, reg, value);
602 
603 				/* Ensure that the enable register is written.
604 				 */
605 				mmiowb();
606 
607 				spin_unlock(&cn6xxx->lock_for_droq_int_enb_reg);
608 			}
609 		}
610 	}
611 
612 	droq_time_mask &= oct->io_qmask.oq;
613 	droq_cnt_mask &= oct->io_qmask.oq;
614 
615 	/* Reset the PKT_CNT/TIME_INT registers. */
616 	if (droq_time_mask)
617 		octeon_write_csr(oct, CN6XXX_SLI_PKT_TIME_INT, droq_time_mask);
618 
619 	if (droq_cnt_mask)      /* reset PKT_CNT register:66xx */
620 		octeon_write_csr(oct, CN6XXX_SLI_PKT_CNT_INT, droq_cnt_mask);
621 
622 	return 0;
623 }
624 
625 irqreturn_t lio_cn6xxx_process_interrupt_regs(void *dev)
626 {
627 	struct octeon_device *oct = (struct octeon_device *)dev;
628 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
629 	u64 intr64;
630 
631 	intr64 = readq(cn6xxx->intr_sum_reg64);
632 
633 	/* If our device has interrupted, then proceed.
634 	 * Also check for all f's if interrupt was triggered on an error
635 	 * and the PCI read fails.
636 	 */
637 	if (!intr64 || (intr64 == 0xFFFFFFFFFFFFFFFFULL))
638 		return IRQ_NONE;
639 
640 	oct->int_status = 0;
641 
642 	if (intr64 & CN6XXX_INTR_ERR)
643 		lio_cn6xxx_process_pcie_error_intr(oct, intr64);
644 
645 	if (intr64 & CN6XXX_INTR_PKT_DATA) {
646 		lio_cn6xxx_process_droq_intr_regs(oct);
647 		oct->int_status |= OCT_DEV_INTR_PKT_DATA;
648 	}
649 
650 	if (intr64 & CN6XXX_INTR_DMA0_FORCE)
651 		oct->int_status |= OCT_DEV_INTR_DMA0_FORCE;
652 
653 	if (intr64 & CN6XXX_INTR_DMA1_FORCE)
654 		oct->int_status |= OCT_DEV_INTR_DMA1_FORCE;
655 
656 	/* Clear the current interrupts */
657 	writeq(intr64, cn6xxx->intr_sum_reg64);
658 
659 	return IRQ_HANDLED;
660 }
661 
662 void lio_cn6xxx_setup_reg_address(struct octeon_device *oct,
663 				  void *chip,
664 				  struct octeon_reg_list *reg_list)
665 {
666 	u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
667 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)chip;
668 
669 	reg_list->pci_win_wr_addr_hi =
670 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_HI);
671 	reg_list->pci_win_wr_addr_lo =
672 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR_LO);
673 	reg_list->pci_win_wr_addr =
674 		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_ADDR64);
675 
676 	reg_list->pci_win_rd_addr_hi =
677 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_HI);
678 	reg_list->pci_win_rd_addr_lo =
679 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR_LO);
680 	reg_list->pci_win_rd_addr =
681 		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_ADDR64);
682 
683 	reg_list->pci_win_wr_data_hi =
684 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_HI);
685 	reg_list->pci_win_wr_data_lo =
686 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA_LO);
687 	reg_list->pci_win_wr_data =
688 		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_WR_DATA64);
689 
690 	reg_list->pci_win_rd_data_hi =
691 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_HI);
692 	reg_list->pci_win_rd_data_lo =
693 		(u32 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA_LO);
694 	reg_list->pci_win_rd_data =
695 		(u64 __iomem *)(bar0_pciaddr + CN6XXX_WIN_RD_DATA64);
696 
697 	lio_cn6xxx_get_pcie_qlmport(oct);
698 
699 	cn6xxx->intr_sum_reg64 = bar0_pciaddr + CN6XXX_SLI_INT_SUM64;
700 	cn6xxx->intr_mask64 = CN6XXX_INTR_MASK;
701 	cn6xxx->intr_enb_reg64 =
702 		bar0_pciaddr + CN6XXX_SLI_INT_ENB64(oct->pcie_port);
703 }
704 
705 int lio_setup_cn66xx_octeon_device(struct octeon_device *oct)
706 {
707 	struct octeon_cn6xxx *cn6xxx = (struct octeon_cn6xxx *)oct->chip;
708 
709 	if (octeon_map_pci_barx(oct, 0, 0))
710 		return 1;
711 
712 	if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) {
713 		dev_err(&oct->pci_dev->dev, "%s CN66XX BAR1 map failed\n",
714 			__func__);
715 		octeon_unmap_pci_barx(oct, 0);
716 		return 1;
717 	}
718 
719 	spin_lock_init(&cn6xxx->lock_for_droq_int_enb_reg);
720 
721 	oct->fn_list.setup_iq_regs = lio_cn66xx_setup_iq_regs;
722 	oct->fn_list.setup_oq_regs = lio_cn6xxx_setup_oq_regs;
723 
724 	oct->fn_list.soft_reset = lio_cn6xxx_soft_reset;
725 	oct->fn_list.setup_device_regs = lio_cn6xxx_setup_device_regs;
726 	oct->fn_list.reinit_regs = lio_cn6xxx_reinit_regs;
727 	oct->fn_list.update_iq_read_idx = lio_cn6xxx_update_read_index;
728 
729 	oct->fn_list.bar1_idx_setup = lio_cn6xxx_bar1_idx_setup;
730 	oct->fn_list.bar1_idx_write = lio_cn6xxx_bar1_idx_write;
731 	oct->fn_list.bar1_idx_read = lio_cn6xxx_bar1_idx_read;
732 
733 	oct->fn_list.process_interrupt_regs = lio_cn6xxx_process_interrupt_regs;
734 	oct->fn_list.enable_interrupt = lio_cn6xxx_enable_interrupt;
735 	oct->fn_list.disable_interrupt = lio_cn6xxx_disable_interrupt;
736 
737 	oct->fn_list.enable_io_queues = lio_cn6xxx_enable_io_queues;
738 	oct->fn_list.disable_io_queues = lio_cn6xxx_disable_io_queues;
739 
740 	lio_cn6xxx_setup_reg_address(oct, oct->chip, &oct->reg_list);
741 
742 	cn6xxx->conf = (struct octeon_config *)
743 		       oct_get_config_info(oct, LIO_210SV);
744 	if (!cn6xxx->conf) {
745 		dev_err(&oct->pci_dev->dev, "%s No Config found for CN66XX\n",
746 			__func__);
747 		octeon_unmap_pci_barx(oct, 0);
748 		octeon_unmap_pci_barx(oct, 1);
749 		return 1;
750 	}
751 
752 	oct->coproc_clock_rate = 1000000ULL * lio_cn6xxx_coprocessor_clock(oct);
753 
754 	return 0;
755 }
756 
757 int lio_validate_cn6xxx_config_info(struct octeon_device *oct,
758 				    struct octeon_config *conf6xxx)
759 {
760 	/* int total_instrs = 0; */
761 
762 	if (CFG_GET_IQ_MAX_Q(conf6xxx) > CN6XXX_MAX_INPUT_QUEUES) {
763 		dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n",
764 			__func__, CFG_GET_IQ_MAX_Q(conf6xxx),
765 			CN6XXX_MAX_INPUT_QUEUES);
766 		return 1;
767 	}
768 
769 	if (CFG_GET_OQ_MAX_Q(conf6xxx) > CN6XXX_MAX_OUTPUT_QUEUES) {
770 		dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n",
771 			__func__, CFG_GET_OQ_MAX_Q(conf6xxx),
772 			CN6XXX_MAX_OUTPUT_QUEUES);
773 		return 1;
774 	}
775 
776 	if (CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_32BYTE_INSTR &&
777 	    CFG_GET_IQ_INSTR_TYPE(conf6xxx) != OCTEON_64BYTE_INSTR) {
778 		dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n",
779 			__func__);
780 		return 1;
781 	}
782 	if (!(CFG_GET_OQ_INFO_PTR(conf6xxx)) ||
783 	    !(CFG_GET_OQ_REFILL_THRESHOLD(conf6xxx))) {
784 		dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
785 			__func__);
786 		return 1;
787 	}
788 
789 	if (!(CFG_GET_OQ_INTR_TIME(conf6xxx))) {
790 		dev_err(&oct->pci_dev->dev, "%s: No Time Interrupt for OQ\n",
791 			__func__);
792 		return 1;
793 	}
794 
795 	return 0;
796 }
797