xref: /openbmc/linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c (revision 81464192839de0b5bc84c5739381101e04d94f62)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2020 Broadcom
6  */
7 
8 #define pr_fmt(fmt)				"bcmgenet: " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27 
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39 
40 #include <asm/unaligned.h>
41 
42 #include "bcmgenet.h"
43 
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT	4
46 
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY	0
49 
50 #define GENET_Q16_RX_BD_CNT	\
51 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT	\
53 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54 
55 #define RX_BUF_LENGTH		2048
56 #define SKB_ALIGNMENT		32
57 
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
61 
62 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
63 				TOTAL_DESC * DMA_DESC_SIZE)
64 
65 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
66 				TOTAL_DESC * DMA_DESC_SIZE)
67 
68 /* Forward declarations */
69 static void bcmgenet_set_rx_mode(struct net_device *dev);
70 
71 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
72 {
73 	/* MIPS chips strapped for BE will automagically configure the
74 	 * peripheral registers for CPU-native byte order.
75 	 */
76 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
77 		__raw_writel(value, offset);
78 	else
79 		writel_relaxed(value, offset);
80 }
81 
82 static inline u32 bcmgenet_readl(void __iomem *offset)
83 {
84 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
85 		return __raw_readl(offset);
86 	else
87 		return readl_relaxed(offset);
88 }
89 
90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
91 					     void __iomem *d, u32 value)
92 {
93 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
94 }
95 
96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
97 				    void __iomem *d,
98 				    dma_addr_t addr)
99 {
100 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
101 
102 	/* Register writes to GISB bus can take couple hundred nanoseconds
103 	 * and are done for each packet, save these expensive writes unless
104 	 * the platform is explicitly configured for 64-bits/LPAE.
105 	 */
106 #ifdef CONFIG_PHYS_ADDR_T_64BIT
107 	if (priv->hw_params->flags & GENET_HAS_40BITS)
108 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
109 #endif
110 }
111 
112 /* Combined address + length/status setter */
113 static inline void dmadesc_set(struct bcmgenet_priv *priv,
114 			       void __iomem *d, dma_addr_t addr, u32 val)
115 {
116 	dmadesc_set_addr(priv, d, addr);
117 	dmadesc_set_length_status(priv, d, val);
118 }
119 
120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
121 					  void __iomem *d)
122 {
123 	dma_addr_t addr;
124 
125 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
126 
127 	/* Register writes to GISB bus can take couple hundred nanoseconds
128 	 * and are done for each packet, save these expensive writes unless
129 	 * the platform is explicitly configured for 64-bits/LPAE.
130 	 */
131 #ifdef CONFIG_PHYS_ADDR_T_64BIT
132 	if (priv->hw_params->flags & GENET_HAS_40BITS)
133 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
134 #endif
135 	return addr;
136 }
137 
138 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
139 
140 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
141 				NETIF_MSG_LINK)
142 
143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
144 {
145 	if (GENET_IS_V1(priv))
146 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
147 	else
148 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
149 }
150 
151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
152 {
153 	if (GENET_IS_V1(priv))
154 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
155 	else
156 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
157 }
158 
159 /* These macros are defined to deal with register map change
160  * between GENET1.1 and GENET2. Only those currently being used
161  * by driver are defined.
162  */
163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
164 {
165 	if (GENET_IS_V1(priv))
166 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
167 	else
168 		return bcmgenet_readl(priv->base +
169 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
173 {
174 	if (GENET_IS_V1(priv))
175 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
176 	else
177 		bcmgenet_writel(val, priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_CTRL);
179 }
180 
181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
182 {
183 	if (GENET_IS_V1(priv))
184 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
185 	else
186 		return bcmgenet_readl(priv->base +
187 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
191 {
192 	if (GENET_IS_V1(priv))
193 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
194 	else
195 		bcmgenet_writel(val, priv->base +
196 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
197 }
198 
199 /* RX/TX DMA register accessors */
200 enum dma_reg {
201 	DMA_RING_CFG = 0,
202 	DMA_CTRL,
203 	DMA_STATUS,
204 	DMA_SCB_BURST_SIZE,
205 	DMA_ARB_CTRL,
206 	DMA_PRIORITY_0,
207 	DMA_PRIORITY_1,
208 	DMA_PRIORITY_2,
209 	DMA_INDEX2RING_0,
210 	DMA_INDEX2RING_1,
211 	DMA_INDEX2RING_2,
212 	DMA_INDEX2RING_3,
213 	DMA_INDEX2RING_4,
214 	DMA_INDEX2RING_5,
215 	DMA_INDEX2RING_6,
216 	DMA_INDEX2RING_7,
217 	DMA_RING0_TIMEOUT,
218 	DMA_RING1_TIMEOUT,
219 	DMA_RING2_TIMEOUT,
220 	DMA_RING3_TIMEOUT,
221 	DMA_RING4_TIMEOUT,
222 	DMA_RING5_TIMEOUT,
223 	DMA_RING6_TIMEOUT,
224 	DMA_RING7_TIMEOUT,
225 	DMA_RING8_TIMEOUT,
226 	DMA_RING9_TIMEOUT,
227 	DMA_RING10_TIMEOUT,
228 	DMA_RING11_TIMEOUT,
229 	DMA_RING12_TIMEOUT,
230 	DMA_RING13_TIMEOUT,
231 	DMA_RING14_TIMEOUT,
232 	DMA_RING15_TIMEOUT,
233 	DMA_RING16_TIMEOUT,
234 };
235 
236 static const u8 bcmgenet_dma_regs_v3plus[] = {
237 	[DMA_RING_CFG]		= 0x00,
238 	[DMA_CTRL]		= 0x04,
239 	[DMA_STATUS]		= 0x08,
240 	[DMA_SCB_BURST_SIZE]	= 0x0C,
241 	[DMA_ARB_CTRL]		= 0x2C,
242 	[DMA_PRIORITY_0]	= 0x30,
243 	[DMA_PRIORITY_1]	= 0x34,
244 	[DMA_PRIORITY_2]	= 0x38,
245 	[DMA_RING0_TIMEOUT]	= 0x2C,
246 	[DMA_RING1_TIMEOUT]	= 0x30,
247 	[DMA_RING2_TIMEOUT]	= 0x34,
248 	[DMA_RING3_TIMEOUT]	= 0x38,
249 	[DMA_RING4_TIMEOUT]	= 0x3c,
250 	[DMA_RING5_TIMEOUT]	= 0x40,
251 	[DMA_RING6_TIMEOUT]	= 0x44,
252 	[DMA_RING7_TIMEOUT]	= 0x48,
253 	[DMA_RING8_TIMEOUT]	= 0x4c,
254 	[DMA_RING9_TIMEOUT]	= 0x50,
255 	[DMA_RING10_TIMEOUT]	= 0x54,
256 	[DMA_RING11_TIMEOUT]	= 0x58,
257 	[DMA_RING12_TIMEOUT]	= 0x5c,
258 	[DMA_RING13_TIMEOUT]	= 0x60,
259 	[DMA_RING14_TIMEOUT]	= 0x64,
260 	[DMA_RING15_TIMEOUT]	= 0x68,
261 	[DMA_RING16_TIMEOUT]	= 0x6C,
262 	[DMA_INDEX2RING_0]	= 0x70,
263 	[DMA_INDEX2RING_1]	= 0x74,
264 	[DMA_INDEX2RING_2]	= 0x78,
265 	[DMA_INDEX2RING_3]	= 0x7C,
266 	[DMA_INDEX2RING_4]	= 0x80,
267 	[DMA_INDEX2RING_5]	= 0x84,
268 	[DMA_INDEX2RING_6]	= 0x88,
269 	[DMA_INDEX2RING_7]	= 0x8C,
270 };
271 
272 static const u8 bcmgenet_dma_regs_v2[] = {
273 	[DMA_RING_CFG]		= 0x00,
274 	[DMA_CTRL]		= 0x04,
275 	[DMA_STATUS]		= 0x08,
276 	[DMA_SCB_BURST_SIZE]	= 0x0C,
277 	[DMA_ARB_CTRL]		= 0x30,
278 	[DMA_PRIORITY_0]	= 0x34,
279 	[DMA_PRIORITY_1]	= 0x38,
280 	[DMA_PRIORITY_2]	= 0x3C,
281 	[DMA_RING0_TIMEOUT]	= 0x2C,
282 	[DMA_RING1_TIMEOUT]	= 0x30,
283 	[DMA_RING2_TIMEOUT]	= 0x34,
284 	[DMA_RING3_TIMEOUT]	= 0x38,
285 	[DMA_RING4_TIMEOUT]	= 0x3c,
286 	[DMA_RING5_TIMEOUT]	= 0x40,
287 	[DMA_RING6_TIMEOUT]	= 0x44,
288 	[DMA_RING7_TIMEOUT]	= 0x48,
289 	[DMA_RING8_TIMEOUT]	= 0x4c,
290 	[DMA_RING9_TIMEOUT]	= 0x50,
291 	[DMA_RING10_TIMEOUT]	= 0x54,
292 	[DMA_RING11_TIMEOUT]	= 0x58,
293 	[DMA_RING12_TIMEOUT]	= 0x5c,
294 	[DMA_RING13_TIMEOUT]	= 0x60,
295 	[DMA_RING14_TIMEOUT]	= 0x64,
296 	[DMA_RING15_TIMEOUT]	= 0x68,
297 	[DMA_RING16_TIMEOUT]	= 0x6C,
298 };
299 
300 static const u8 bcmgenet_dma_regs_v1[] = {
301 	[DMA_CTRL]		= 0x00,
302 	[DMA_STATUS]		= 0x04,
303 	[DMA_SCB_BURST_SIZE]	= 0x0C,
304 	[DMA_ARB_CTRL]		= 0x30,
305 	[DMA_PRIORITY_0]	= 0x34,
306 	[DMA_PRIORITY_1]	= 0x38,
307 	[DMA_PRIORITY_2]	= 0x3C,
308 	[DMA_RING0_TIMEOUT]	= 0x2C,
309 	[DMA_RING1_TIMEOUT]	= 0x30,
310 	[DMA_RING2_TIMEOUT]	= 0x34,
311 	[DMA_RING3_TIMEOUT]	= 0x38,
312 	[DMA_RING4_TIMEOUT]	= 0x3c,
313 	[DMA_RING5_TIMEOUT]	= 0x40,
314 	[DMA_RING6_TIMEOUT]	= 0x44,
315 	[DMA_RING7_TIMEOUT]	= 0x48,
316 	[DMA_RING8_TIMEOUT]	= 0x4c,
317 	[DMA_RING9_TIMEOUT]	= 0x50,
318 	[DMA_RING10_TIMEOUT]	= 0x54,
319 	[DMA_RING11_TIMEOUT]	= 0x58,
320 	[DMA_RING12_TIMEOUT]	= 0x5c,
321 	[DMA_RING13_TIMEOUT]	= 0x60,
322 	[DMA_RING14_TIMEOUT]	= 0x64,
323 	[DMA_RING15_TIMEOUT]	= 0x68,
324 	[DMA_RING16_TIMEOUT]	= 0x6C,
325 };
326 
327 /* Set at runtime once bcmgenet version is known */
328 static const u8 *bcmgenet_dma_regs;
329 
330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
331 {
332 	return netdev_priv(dev_get_drvdata(dev));
333 }
334 
335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
336 				      enum dma_reg r)
337 {
338 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
339 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
340 }
341 
342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
343 					u32 val, enum dma_reg r)
344 {
345 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
346 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348 
349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
350 				      enum dma_reg r)
351 {
352 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
353 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355 
356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
357 					u32 val, enum dma_reg r)
358 {
359 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
360 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362 
363 /* RDMA/TDMA ring registers and accessors
364  * we merge the common fields and just prefix with T/D the registers
365  * having different meaning depending on the direction
366  */
367 enum dma_ring_reg {
368 	TDMA_READ_PTR = 0,
369 	RDMA_WRITE_PTR = TDMA_READ_PTR,
370 	TDMA_READ_PTR_HI,
371 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
372 	TDMA_CONS_INDEX,
373 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
374 	TDMA_PROD_INDEX,
375 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
376 	DMA_RING_BUF_SIZE,
377 	DMA_START_ADDR,
378 	DMA_START_ADDR_HI,
379 	DMA_END_ADDR,
380 	DMA_END_ADDR_HI,
381 	DMA_MBUF_DONE_THRESH,
382 	TDMA_FLOW_PERIOD,
383 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
384 	TDMA_WRITE_PTR,
385 	RDMA_READ_PTR = TDMA_WRITE_PTR,
386 	TDMA_WRITE_PTR_HI,
387 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
388 };
389 
390 /* GENET v4 supports 40-bits pointer addressing
391  * for obvious reasons the LO and HI word parts
392  * are contiguous, but this offsets the other
393  * registers.
394  */
395 static const u8 genet_dma_ring_regs_v4[] = {
396 	[TDMA_READ_PTR]			= 0x00,
397 	[TDMA_READ_PTR_HI]		= 0x04,
398 	[TDMA_CONS_INDEX]		= 0x08,
399 	[TDMA_PROD_INDEX]		= 0x0C,
400 	[DMA_RING_BUF_SIZE]		= 0x10,
401 	[DMA_START_ADDR]		= 0x14,
402 	[DMA_START_ADDR_HI]		= 0x18,
403 	[DMA_END_ADDR]			= 0x1C,
404 	[DMA_END_ADDR_HI]		= 0x20,
405 	[DMA_MBUF_DONE_THRESH]		= 0x24,
406 	[TDMA_FLOW_PERIOD]		= 0x28,
407 	[TDMA_WRITE_PTR]		= 0x2C,
408 	[TDMA_WRITE_PTR_HI]		= 0x30,
409 };
410 
411 static const u8 genet_dma_ring_regs_v123[] = {
412 	[TDMA_READ_PTR]			= 0x00,
413 	[TDMA_CONS_INDEX]		= 0x04,
414 	[TDMA_PROD_INDEX]		= 0x08,
415 	[DMA_RING_BUF_SIZE]		= 0x0C,
416 	[DMA_START_ADDR]		= 0x10,
417 	[DMA_END_ADDR]			= 0x14,
418 	[DMA_MBUF_DONE_THRESH]		= 0x18,
419 	[TDMA_FLOW_PERIOD]		= 0x1C,
420 	[TDMA_WRITE_PTR]		= 0x20,
421 };
422 
423 /* Set at runtime once GENET version is known */
424 static const u8 *genet_dma_ring_regs;
425 
426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
427 					   unsigned int ring,
428 					   enum dma_ring_reg r)
429 {
430 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
431 			      (DMA_RING_SIZE * ring) +
432 			      genet_dma_ring_regs[r]);
433 }
434 
435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
436 					     unsigned int ring, u32 val,
437 					     enum dma_ring_reg r)
438 {
439 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
445 					   unsigned int ring,
446 					   enum dma_ring_reg r)
447 {
448 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
449 			      (DMA_RING_SIZE * ring) +
450 			      genet_dma_ring_regs[r]);
451 }
452 
453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
454 					     unsigned int ring, u32 val,
455 					     enum dma_ring_reg r)
456 {
457 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
458 			(DMA_RING_SIZE * ring) +
459 			genet_dma_ring_regs[r]);
460 }
461 
462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
463 {
464 	u32 offset;
465 	u32 reg;
466 
467 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
468 	reg = bcmgenet_hfb_reg_readl(priv, offset);
469 	reg |= (1 << (f_index % 32));
470 	bcmgenet_hfb_reg_writel(priv, reg, offset);
471 	reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
472 	reg |= RBUF_HFB_EN;
473 	bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
474 }
475 
476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index)
477 {
478 	u32 offset, reg, reg1;
479 
480 	offset = HFB_FLT_ENABLE_V3PLUS;
481 	reg = bcmgenet_hfb_reg_readl(priv, offset);
482 	reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
483 	if  (f_index < 32) {
484 		reg1 &= ~(1 << (f_index % 32));
485 		bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32));
486 	} else {
487 		reg &= ~(1 << (f_index % 32));
488 		bcmgenet_hfb_reg_writel(priv, reg, offset);
489 	}
490 	if (!reg && !reg1) {
491 		reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
492 		reg &= ~RBUF_HFB_EN;
493 		bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL);
494 	}
495 }
496 
497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
498 						     u32 f_index, u32 rx_queue)
499 {
500 	u32 offset;
501 	u32 reg;
502 
503 	offset = f_index / 8;
504 	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
505 	reg &= ~(0xF << (4 * (f_index % 8)));
506 	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
507 	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
508 }
509 
510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
511 					   u32 f_index, u32 f_length)
512 {
513 	u32 offset;
514 	u32 reg;
515 
516 	offset = HFB_FLT_LEN_V3PLUS +
517 		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
518 		 sizeof(u32);
519 	reg = bcmgenet_hfb_reg_readl(priv, offset);
520 	reg &= ~(0xFF << (8 * (f_index % 4)));
521 	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
522 	bcmgenet_hfb_reg_writel(priv, reg, offset);
523 }
524 
525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size)
526 {
527 	while (size) {
528 		switch (*(unsigned char *)mask++) {
529 		case 0x00:
530 		case 0x0f:
531 		case 0xf0:
532 		case 0xff:
533 			size--;
534 			continue;
535 		default:
536 			return -EINVAL;
537 		}
538 	}
539 
540 	return 0;
541 }
542 
543 #define VALIDATE_MASK(x) \
544 	bcmgenet_hfb_validate_mask(&(x), sizeof(x))
545 
546 static int bcmgenet_hfb_insert_data(u32 *f, int offset,
547 				    void *val, void *mask, size_t size)
548 {
549 	int index;
550 	u32 tmp;
551 
552 	index = offset / 2;
553 	tmp = f[index];
554 
555 	while (size--) {
556 		if (offset++ & 1) {
557 			tmp &= ~0x300FF;
558 			tmp |= (*(unsigned char *)val++);
559 			switch ((*(unsigned char *)mask++)) {
560 			case 0xFF:
561 				tmp |= 0x30000;
562 				break;
563 			case 0xF0:
564 				tmp |= 0x20000;
565 				break;
566 			case 0x0F:
567 				tmp |= 0x10000;
568 				break;
569 			}
570 			f[index++] = tmp;
571 			if (size)
572 				tmp = f[index];
573 		} else {
574 			tmp &= ~0xCFF00;
575 			tmp |= (*(unsigned char *)val++) << 8;
576 			switch ((*(unsigned char *)mask++)) {
577 			case 0xFF:
578 				tmp |= 0xC0000;
579 				break;
580 			case 0xF0:
581 				tmp |= 0x80000;
582 				break;
583 			case 0x0F:
584 				tmp |= 0x40000;
585 				break;
586 			}
587 			if (!size)
588 				f[index] = tmp;
589 		}
590 	}
591 
592 	return 0;
593 }
594 
595 static void bcmgenet_hfb_set_filter(struct bcmgenet_priv *priv, u32 *f_data,
596 				    u32 f_length, u32 rx_queue, int f_index)
597 {
598 	u32 base = f_index * priv->hw_params->hfb_filter_size;
599 	int i;
600 
601 	for (i = 0; i < f_length; i++)
602 		bcmgenet_hfb_writel(priv, f_data[i], (base + i) * sizeof(u32));
603 
604 	bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
605 	bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
606 }
607 
608 static int bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv,
609 					    struct bcmgenet_rxnfc_rule *rule)
610 {
611 	struct ethtool_rx_flow_spec *fs = &rule->fs;
612 	int err = 0, offset = 0, f_length = 0;
613 	u8 val_8, mask_8;
614 	__be16 val_16;
615 	u16 mask_16;
616 	size_t size;
617 	u32 *f_data;
618 
619 	f_data = kcalloc(priv->hw_params->hfb_filter_size, sizeof(u32),
620 			 GFP_KERNEL);
621 	if (!f_data)
622 		return -ENOMEM;
623 
624 	if (fs->flow_type & FLOW_MAC_EXT) {
625 		bcmgenet_hfb_insert_data(f_data, 0,
626 					 &fs->h_ext.h_dest, &fs->m_ext.h_dest,
627 					 sizeof(fs->h_ext.h_dest));
628 	}
629 
630 	if (fs->flow_type & FLOW_EXT) {
631 		if (fs->m_ext.vlan_etype ||
632 		    fs->m_ext.vlan_tci) {
633 			bcmgenet_hfb_insert_data(f_data, 12,
634 						 &fs->h_ext.vlan_etype,
635 						 &fs->m_ext.vlan_etype,
636 						 sizeof(fs->h_ext.vlan_etype));
637 			bcmgenet_hfb_insert_data(f_data, 14,
638 						 &fs->h_ext.vlan_tci,
639 						 &fs->m_ext.vlan_tci,
640 						 sizeof(fs->h_ext.vlan_tci));
641 			offset += VLAN_HLEN;
642 			f_length += DIV_ROUND_UP(VLAN_HLEN, 2);
643 		}
644 	}
645 
646 	switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
647 	case ETHER_FLOW:
648 		f_length += DIV_ROUND_UP(ETH_HLEN, 2);
649 		bcmgenet_hfb_insert_data(f_data, 0,
650 					 &fs->h_u.ether_spec.h_dest,
651 					 &fs->m_u.ether_spec.h_dest,
652 					 sizeof(fs->h_u.ether_spec.h_dest));
653 		bcmgenet_hfb_insert_data(f_data, ETH_ALEN,
654 					 &fs->h_u.ether_spec.h_source,
655 					 &fs->m_u.ether_spec.h_source,
656 					 sizeof(fs->h_u.ether_spec.h_source));
657 		bcmgenet_hfb_insert_data(f_data, (2 * ETH_ALEN) + offset,
658 					 &fs->h_u.ether_spec.h_proto,
659 					 &fs->m_u.ether_spec.h_proto,
660 					 sizeof(fs->h_u.ether_spec.h_proto));
661 		break;
662 	case IP_USER_FLOW:
663 		f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2);
664 		/* Specify IP Ether Type */
665 		val_16 = htons(ETH_P_IP);
666 		mask_16 = 0xFFFF;
667 		bcmgenet_hfb_insert_data(f_data, (2 * ETH_ALEN) + offset,
668 					 &val_16, &mask_16, sizeof(val_16));
669 		bcmgenet_hfb_insert_data(f_data, 15 + offset,
670 					 &fs->h_u.usr_ip4_spec.tos,
671 					 &fs->m_u.usr_ip4_spec.tos,
672 					 sizeof(fs->h_u.usr_ip4_spec.tos));
673 		bcmgenet_hfb_insert_data(f_data, 23 + offset,
674 					 &fs->h_u.usr_ip4_spec.proto,
675 					 &fs->m_u.usr_ip4_spec.proto,
676 					 sizeof(fs->h_u.usr_ip4_spec.proto));
677 		bcmgenet_hfb_insert_data(f_data, 26 + offset,
678 					 &fs->h_u.usr_ip4_spec.ip4src,
679 					 &fs->m_u.usr_ip4_spec.ip4src,
680 					 sizeof(fs->h_u.usr_ip4_spec.ip4src));
681 		bcmgenet_hfb_insert_data(f_data, 30 + offset,
682 					 &fs->h_u.usr_ip4_spec.ip4dst,
683 					 &fs->m_u.usr_ip4_spec.ip4dst,
684 					 sizeof(fs->h_u.usr_ip4_spec.ip4dst));
685 		if (!fs->m_u.usr_ip4_spec.l4_4_bytes)
686 			break;
687 
688 		/* Only supports 20 byte IPv4 header */
689 		val_8 = 0x45;
690 		mask_8 = 0xFF;
691 		bcmgenet_hfb_insert_data(f_data, ETH_HLEN + offset,
692 					 &val_8, &mask_8,
693 					 sizeof(val_8));
694 		size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes);
695 		bcmgenet_hfb_insert_data(f_data,
696 					 ETH_HLEN + 20 + offset,
697 					 &fs->h_u.usr_ip4_spec.l4_4_bytes,
698 					 &fs->m_u.usr_ip4_spec.l4_4_bytes,
699 					 size);
700 		f_length += DIV_ROUND_UP(size, 2);
701 		break;
702 	}
703 
704 	if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) {
705 		/* Ring 0 flows can be handled by the default Descriptor Ring
706 		 * We'll map them to ring 0, but don't enable the filter
707 		 */
708 		bcmgenet_hfb_set_filter(priv, f_data, f_length,	0,
709 					fs->location);
710 		rule->state = BCMGENET_RXNFC_STATE_DISABLED;
711 	} else {
712 		/* Other Rx rings are direct mapped here */
713 		bcmgenet_hfb_set_filter(priv, f_data, f_length,
714 					fs->ring_cookie, fs->location);
715 		bcmgenet_hfb_enable_filter(priv, fs->location);
716 		rule->state = BCMGENET_RXNFC_STATE_ENABLED;
717 	}
718 
719 	kfree(f_data);
720 
721 	return err;
722 }
723 
724 /* bcmgenet_hfb_clear
725  *
726  * Clear Hardware Filter Block and disable all filtering.
727  */
728 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
729 {
730 	u32 i;
731 
732 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
733 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
734 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
735 
736 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
737 		bcmgenet_rdma_writel(priv, 0x0, i);
738 
739 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
740 		bcmgenet_hfb_reg_writel(priv, 0x0,
741 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
742 
743 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
744 			priv->hw_params->hfb_filter_size; i++)
745 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
746 }
747 
748 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
749 {
750 	int i;
751 
752 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
753 		return;
754 
755 	INIT_LIST_HEAD(&priv->rxnfc_list);
756 	for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) {
757 		INIT_LIST_HEAD(&priv->rxnfc_rules[i].list);
758 		priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED;
759 	}
760 
761 	bcmgenet_hfb_clear(priv);
762 }
763 
764 static int bcmgenet_begin(struct net_device *dev)
765 {
766 	struct bcmgenet_priv *priv = netdev_priv(dev);
767 
768 	/* Turn on the clock */
769 	return clk_prepare_enable(priv->clk);
770 }
771 
772 static void bcmgenet_complete(struct net_device *dev)
773 {
774 	struct bcmgenet_priv *priv = netdev_priv(dev);
775 
776 	/* Turn off the clock */
777 	clk_disable_unprepare(priv->clk);
778 }
779 
780 static int bcmgenet_get_link_ksettings(struct net_device *dev,
781 				       struct ethtool_link_ksettings *cmd)
782 {
783 	if (!netif_running(dev))
784 		return -EINVAL;
785 
786 	if (!dev->phydev)
787 		return -ENODEV;
788 
789 	phy_ethtool_ksettings_get(dev->phydev, cmd);
790 
791 	return 0;
792 }
793 
794 static int bcmgenet_set_link_ksettings(struct net_device *dev,
795 				       const struct ethtool_link_ksettings *cmd)
796 {
797 	if (!netif_running(dev))
798 		return -EINVAL;
799 
800 	if (!dev->phydev)
801 		return -ENODEV;
802 
803 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
804 }
805 
806 static int bcmgenet_set_features(struct net_device *dev,
807 				 netdev_features_t features)
808 {
809 	struct bcmgenet_priv *priv = netdev_priv(dev);
810 	u32 reg;
811 	int ret;
812 
813 	ret = clk_prepare_enable(priv->clk);
814 	if (ret)
815 		return ret;
816 
817 	/* Make sure we reflect the value of CRC_CMD_FWD */
818 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
819 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
820 
821 	clk_disable_unprepare(priv->clk);
822 
823 	return ret;
824 }
825 
826 static u32 bcmgenet_get_msglevel(struct net_device *dev)
827 {
828 	struct bcmgenet_priv *priv = netdev_priv(dev);
829 
830 	return priv->msg_enable;
831 }
832 
833 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
834 {
835 	struct bcmgenet_priv *priv = netdev_priv(dev);
836 
837 	priv->msg_enable = level;
838 }
839 
840 static int bcmgenet_get_coalesce(struct net_device *dev,
841 				 struct ethtool_coalesce *ec)
842 {
843 	struct bcmgenet_priv *priv = netdev_priv(dev);
844 	struct bcmgenet_rx_ring *ring;
845 	unsigned int i;
846 
847 	ec->tx_max_coalesced_frames =
848 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
849 					 DMA_MBUF_DONE_THRESH);
850 	ec->rx_max_coalesced_frames =
851 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
852 					 DMA_MBUF_DONE_THRESH);
853 	ec->rx_coalesce_usecs =
854 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
855 
856 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
857 		ring = &priv->rx_rings[i];
858 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
859 	}
860 	ring = &priv->rx_rings[DESC_INDEX];
861 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
862 
863 	return 0;
864 }
865 
866 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
867 				     u32 usecs, u32 pkts)
868 {
869 	struct bcmgenet_priv *priv = ring->priv;
870 	unsigned int i = ring->index;
871 	u32 reg;
872 
873 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
874 
875 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
876 	reg &= ~DMA_TIMEOUT_MASK;
877 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
878 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
879 }
880 
881 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
882 					  struct ethtool_coalesce *ec)
883 {
884 	struct dim_cq_moder moder;
885 	u32 usecs, pkts;
886 
887 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
888 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
889 	usecs = ring->rx_coalesce_usecs;
890 	pkts = ring->rx_max_coalesced_frames;
891 
892 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
893 		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
894 		usecs = moder.usec;
895 		pkts = moder.pkts;
896 	}
897 
898 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
899 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
900 }
901 
902 static int bcmgenet_set_coalesce(struct net_device *dev,
903 				 struct ethtool_coalesce *ec)
904 {
905 	struct bcmgenet_priv *priv = netdev_priv(dev);
906 	unsigned int i;
907 
908 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
909 	 * divided by 1024, which yields roughly 8.192us, our maximum value
910 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
911 	 */
912 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
913 	    ec->tx_max_coalesced_frames == 0 ||
914 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
915 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
916 		return -EINVAL;
917 
918 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
919 		return -EINVAL;
920 
921 	/* GENET TDMA hardware does not support a configurable timeout, but will
922 	 * always generate an interrupt either after MBDONE packets have been
923 	 * transmitted, or when the ring is empty.
924 	 */
925 
926 	/* Program all TX queues with the same values, as there is no
927 	 * ethtool knob to do coalescing on a per-queue basis
928 	 */
929 	for (i = 0; i < priv->hw_params->tx_queues; i++)
930 		bcmgenet_tdma_ring_writel(priv, i,
931 					  ec->tx_max_coalesced_frames,
932 					  DMA_MBUF_DONE_THRESH);
933 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
934 				  ec->tx_max_coalesced_frames,
935 				  DMA_MBUF_DONE_THRESH);
936 
937 	for (i = 0; i < priv->hw_params->rx_queues; i++)
938 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
939 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
940 
941 	return 0;
942 }
943 
944 /* standard ethtool support functions. */
945 enum bcmgenet_stat_type {
946 	BCMGENET_STAT_NETDEV = -1,
947 	BCMGENET_STAT_MIB_RX,
948 	BCMGENET_STAT_MIB_TX,
949 	BCMGENET_STAT_RUNT,
950 	BCMGENET_STAT_MISC,
951 	BCMGENET_STAT_SOFT,
952 };
953 
954 struct bcmgenet_stats {
955 	char stat_string[ETH_GSTRING_LEN];
956 	int stat_sizeof;
957 	int stat_offset;
958 	enum bcmgenet_stat_type type;
959 	/* reg offset from UMAC base for misc counters */
960 	u16 reg_offset;
961 };
962 
963 #define STAT_NETDEV(m) { \
964 	.stat_string = __stringify(m), \
965 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
966 	.stat_offset = offsetof(struct net_device_stats, m), \
967 	.type = BCMGENET_STAT_NETDEV, \
968 }
969 
970 #define STAT_GENET_MIB(str, m, _type) { \
971 	.stat_string = str, \
972 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
973 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
974 	.type = _type, \
975 }
976 
977 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
978 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
979 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
980 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
981 
982 #define STAT_GENET_MISC(str, m, offset) { \
983 	.stat_string = str, \
984 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
985 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
986 	.type = BCMGENET_STAT_MISC, \
987 	.reg_offset = offset, \
988 }
989 
990 #define STAT_GENET_Q(num) \
991 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
992 			tx_rings[num].packets), \
993 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
994 			tx_rings[num].bytes), \
995 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
996 			rx_rings[num].bytes),	 \
997 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
998 			rx_rings[num].packets), \
999 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
1000 			rx_rings[num].errors), \
1001 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
1002 			rx_rings[num].dropped)
1003 
1004 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
1005  * between the end of TX stats and the beginning of the RX RUNT
1006  */
1007 #define BCMGENET_STAT_OFFSET	0xc
1008 
1009 /* Hardware counters must be kept in sync because the order/offset
1010  * is important here (order in structure declaration = order in hardware)
1011  */
1012 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
1013 	/* general stats */
1014 	STAT_NETDEV(rx_packets),
1015 	STAT_NETDEV(tx_packets),
1016 	STAT_NETDEV(rx_bytes),
1017 	STAT_NETDEV(tx_bytes),
1018 	STAT_NETDEV(rx_errors),
1019 	STAT_NETDEV(tx_errors),
1020 	STAT_NETDEV(rx_dropped),
1021 	STAT_NETDEV(tx_dropped),
1022 	STAT_NETDEV(multicast),
1023 	/* UniMAC RSV counters */
1024 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
1025 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
1026 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
1027 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
1028 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
1029 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
1030 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
1031 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
1032 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
1033 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
1034 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
1035 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
1036 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
1037 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
1038 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
1039 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
1040 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
1041 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
1042 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
1043 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
1044 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
1045 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
1046 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
1047 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
1048 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
1049 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
1050 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
1051 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
1052 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
1053 	/* UniMAC TSV counters */
1054 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
1055 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
1056 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
1057 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
1058 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
1059 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
1060 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
1061 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
1062 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
1063 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
1064 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
1065 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
1066 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
1067 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
1068 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
1069 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
1070 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
1071 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
1072 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
1073 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
1074 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
1075 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
1076 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
1077 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
1078 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
1079 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
1080 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
1081 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
1082 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
1083 	/* UniMAC RUNT counters */
1084 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
1085 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
1086 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
1087 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
1088 	/* Misc UniMAC counters */
1089 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
1090 			UMAC_RBUF_OVFL_CNT_V1),
1091 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
1092 			UMAC_RBUF_ERR_CNT_V1),
1093 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
1094 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
1095 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
1096 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
1097 	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
1098 	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
1099 			    mib.tx_realloc_tsb_failed),
1100 	/* Per TX queues */
1101 	STAT_GENET_Q(0),
1102 	STAT_GENET_Q(1),
1103 	STAT_GENET_Q(2),
1104 	STAT_GENET_Q(3),
1105 	STAT_GENET_Q(16),
1106 };
1107 
1108 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
1109 
1110 static void bcmgenet_get_drvinfo(struct net_device *dev,
1111 				 struct ethtool_drvinfo *info)
1112 {
1113 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
1114 }
1115 
1116 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
1117 {
1118 	switch (string_set) {
1119 	case ETH_SS_STATS:
1120 		return BCMGENET_STATS_LEN;
1121 	default:
1122 		return -EOPNOTSUPP;
1123 	}
1124 }
1125 
1126 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
1127 				 u8 *data)
1128 {
1129 	int i;
1130 
1131 	switch (stringset) {
1132 	case ETH_SS_STATS:
1133 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1134 			memcpy(data + i * ETH_GSTRING_LEN,
1135 			       bcmgenet_gstrings_stats[i].stat_string,
1136 			       ETH_GSTRING_LEN);
1137 		}
1138 		break;
1139 	}
1140 }
1141 
1142 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
1143 {
1144 	u16 new_offset;
1145 	u32 val;
1146 
1147 	switch (offset) {
1148 	case UMAC_RBUF_OVFL_CNT_V1:
1149 		if (GENET_IS_V2(priv))
1150 			new_offset = RBUF_OVFL_CNT_V2;
1151 		else
1152 			new_offset = RBUF_OVFL_CNT_V3PLUS;
1153 
1154 		val = bcmgenet_rbuf_readl(priv,	new_offset);
1155 		/* clear if overflowed */
1156 		if (val == ~0)
1157 			bcmgenet_rbuf_writel(priv, 0, new_offset);
1158 		break;
1159 	case UMAC_RBUF_ERR_CNT_V1:
1160 		if (GENET_IS_V2(priv))
1161 			new_offset = RBUF_ERR_CNT_V2;
1162 		else
1163 			new_offset = RBUF_ERR_CNT_V3PLUS;
1164 
1165 		val = bcmgenet_rbuf_readl(priv,	new_offset);
1166 		/* clear if overflowed */
1167 		if (val == ~0)
1168 			bcmgenet_rbuf_writel(priv, 0, new_offset);
1169 		break;
1170 	default:
1171 		val = bcmgenet_umac_readl(priv, offset);
1172 		/* clear if overflowed */
1173 		if (val == ~0)
1174 			bcmgenet_umac_writel(priv, 0, offset);
1175 		break;
1176 	}
1177 
1178 	return val;
1179 }
1180 
1181 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
1182 {
1183 	int i, j = 0;
1184 
1185 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1186 		const struct bcmgenet_stats *s;
1187 		u8 offset = 0;
1188 		u32 val = 0;
1189 		char *p;
1190 
1191 		s = &bcmgenet_gstrings_stats[i];
1192 		switch (s->type) {
1193 		case BCMGENET_STAT_NETDEV:
1194 		case BCMGENET_STAT_SOFT:
1195 			continue;
1196 		case BCMGENET_STAT_RUNT:
1197 			offset += BCMGENET_STAT_OFFSET;
1198 			/* fall through */
1199 		case BCMGENET_STAT_MIB_TX:
1200 			offset += BCMGENET_STAT_OFFSET;
1201 			/* fall through */
1202 		case BCMGENET_STAT_MIB_RX:
1203 			val = bcmgenet_umac_readl(priv,
1204 						  UMAC_MIB_START + j + offset);
1205 			offset = 0;	/* Reset Offset */
1206 			break;
1207 		case BCMGENET_STAT_MISC:
1208 			if (GENET_IS_V1(priv)) {
1209 				val = bcmgenet_umac_readl(priv, s->reg_offset);
1210 				/* clear if overflowed */
1211 				if (val == ~0)
1212 					bcmgenet_umac_writel(priv, 0,
1213 							     s->reg_offset);
1214 			} else {
1215 				val = bcmgenet_update_stat_misc(priv,
1216 								s->reg_offset);
1217 			}
1218 			break;
1219 		}
1220 
1221 		j += s->stat_sizeof;
1222 		p = (char *)priv + s->stat_offset;
1223 		*(u32 *)p = val;
1224 	}
1225 }
1226 
1227 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
1228 				       struct ethtool_stats *stats,
1229 				       u64 *data)
1230 {
1231 	struct bcmgenet_priv *priv = netdev_priv(dev);
1232 	int i;
1233 
1234 	if (netif_running(dev))
1235 		bcmgenet_update_mib_counters(priv);
1236 
1237 	dev->netdev_ops->ndo_get_stats(dev);
1238 
1239 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1240 		const struct bcmgenet_stats *s;
1241 		char *p;
1242 
1243 		s = &bcmgenet_gstrings_stats[i];
1244 		if (s->type == BCMGENET_STAT_NETDEV)
1245 			p = (char *)&dev->stats;
1246 		else
1247 			p = (char *)priv;
1248 		p += s->stat_offset;
1249 		if (sizeof(unsigned long) != sizeof(u32) &&
1250 		    s->stat_sizeof == sizeof(unsigned long))
1251 			data[i] = *(unsigned long *)p;
1252 		else
1253 			data[i] = *(u32 *)p;
1254 	}
1255 }
1256 
1257 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1258 {
1259 	struct bcmgenet_priv *priv = netdev_priv(dev);
1260 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1261 	u32 reg;
1262 
1263 	if (enable && !priv->clk_eee_enabled) {
1264 		clk_prepare_enable(priv->clk_eee);
1265 		priv->clk_eee_enabled = true;
1266 	}
1267 
1268 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1269 	if (enable)
1270 		reg |= EEE_EN;
1271 	else
1272 		reg &= ~EEE_EN;
1273 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1274 
1275 	/* Enable EEE and switch to a 27Mhz clock automatically */
1276 	reg = bcmgenet_readl(priv->base + off);
1277 	if (enable)
1278 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1279 	else
1280 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1281 	bcmgenet_writel(reg, priv->base + off);
1282 
1283 	/* Do the same for thing for RBUF */
1284 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1285 	if (enable)
1286 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1287 	else
1288 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1289 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1290 
1291 	if (!enable && priv->clk_eee_enabled) {
1292 		clk_disable_unprepare(priv->clk_eee);
1293 		priv->clk_eee_enabled = false;
1294 	}
1295 
1296 	priv->eee.eee_enabled = enable;
1297 	priv->eee.eee_active = enable;
1298 }
1299 
1300 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1301 {
1302 	struct bcmgenet_priv *priv = netdev_priv(dev);
1303 	struct ethtool_eee *p = &priv->eee;
1304 
1305 	if (GENET_IS_V1(priv))
1306 		return -EOPNOTSUPP;
1307 
1308 	if (!dev->phydev)
1309 		return -ENODEV;
1310 
1311 	e->eee_enabled = p->eee_enabled;
1312 	e->eee_active = p->eee_active;
1313 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1314 
1315 	return phy_ethtool_get_eee(dev->phydev, e);
1316 }
1317 
1318 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1319 {
1320 	struct bcmgenet_priv *priv = netdev_priv(dev);
1321 	struct ethtool_eee *p = &priv->eee;
1322 	int ret = 0;
1323 
1324 	if (GENET_IS_V1(priv))
1325 		return -EOPNOTSUPP;
1326 
1327 	if (!dev->phydev)
1328 		return -ENODEV;
1329 
1330 	p->eee_enabled = e->eee_enabled;
1331 
1332 	if (!p->eee_enabled) {
1333 		bcmgenet_eee_enable_set(dev, false);
1334 	} else {
1335 		ret = phy_init_eee(dev->phydev, 0);
1336 		if (ret) {
1337 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1338 			return ret;
1339 		}
1340 
1341 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1342 		bcmgenet_eee_enable_set(dev, true);
1343 	}
1344 
1345 	return phy_ethtool_set_eee(dev->phydev, e);
1346 }
1347 
1348 static int bcmgenet_validate_flow(struct net_device *dev,
1349 				  struct ethtool_rxnfc *cmd)
1350 {
1351 	struct ethtool_usrip4_spec *l4_mask;
1352 	struct ethhdr *eth_mask;
1353 
1354 	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) {
1355 		netdev_err(dev, "rxnfc: Invalid location (%d)\n",
1356 			   cmd->fs.location);
1357 		return -EINVAL;
1358 	}
1359 
1360 	switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
1361 	case IP_USER_FLOW:
1362 		l4_mask = &cmd->fs.m_u.usr_ip4_spec;
1363 		/* don't allow mask which isn't valid */
1364 		if (VALIDATE_MASK(l4_mask->ip4src) ||
1365 		    VALIDATE_MASK(l4_mask->ip4dst) ||
1366 		    VALIDATE_MASK(l4_mask->l4_4_bytes) ||
1367 		    VALIDATE_MASK(l4_mask->proto) ||
1368 		    VALIDATE_MASK(l4_mask->ip_ver) ||
1369 		    VALIDATE_MASK(l4_mask->tos)) {
1370 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1371 			return -EINVAL;
1372 		}
1373 		break;
1374 	case ETHER_FLOW:
1375 		eth_mask = &cmd->fs.m_u.ether_spec;
1376 		/* don't allow mask which isn't valid */
1377 		if (VALIDATE_MASK(eth_mask->h_source) ||
1378 		    VALIDATE_MASK(eth_mask->h_source) ||
1379 		    VALIDATE_MASK(eth_mask->h_proto)) {
1380 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1381 			return -EINVAL;
1382 		}
1383 		break;
1384 	default:
1385 		netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n",
1386 			   cmd->fs.flow_type);
1387 		return -EINVAL;
1388 	}
1389 
1390 	if ((cmd->fs.flow_type & FLOW_EXT)) {
1391 		/* don't allow mask which isn't valid */
1392 		if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) ||
1393 		    VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) {
1394 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1395 			return -EINVAL;
1396 		}
1397 		if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) {
1398 			netdev_err(dev, "rxnfc: user-def not supported\n");
1399 			return -EINVAL;
1400 		}
1401 	}
1402 
1403 	if ((cmd->fs.flow_type & FLOW_MAC_EXT)) {
1404 		/* don't allow mask which isn't valid */
1405 		if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) {
1406 			netdev_err(dev, "rxnfc: Unsupported mask\n");
1407 			return -EINVAL;
1408 		}
1409 	}
1410 
1411 	return 0;
1412 }
1413 
1414 static int bcmgenet_insert_flow(struct net_device *dev,
1415 				struct ethtool_rxnfc *cmd)
1416 {
1417 	struct bcmgenet_priv *priv = netdev_priv(dev);
1418 	struct bcmgenet_rxnfc_rule *loc_rule;
1419 	int err;
1420 
1421 	if (priv->hw_params->hfb_filter_size < 128) {
1422 		netdev_err(dev, "rxnfc: Not supported by this device\n");
1423 		return -EINVAL;
1424 	}
1425 
1426 	if (cmd->fs.ring_cookie > priv->hw_params->rx_queues &&
1427 	    cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) {
1428 		netdev_err(dev, "rxnfc: Unsupported action (%llu)\n",
1429 			   cmd->fs.ring_cookie);
1430 		return -EINVAL;
1431 	}
1432 
1433 	err = bcmgenet_validate_flow(dev, cmd);
1434 	if (err)
1435 		return err;
1436 
1437 	loc_rule = &priv->rxnfc_rules[cmd->fs.location];
1438 	if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1439 		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1440 	if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED)
1441 		list_del(&loc_rule->list);
1442 	loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1443 	memcpy(&loc_rule->fs, &cmd->fs,
1444 	       sizeof(struct ethtool_rx_flow_spec));
1445 
1446 	err = bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule);
1447 	if (err) {
1448 		netdev_err(dev, "rxnfc: Could not install rule (%d)\n",
1449 			   err);
1450 		return err;
1451 	}
1452 
1453 	list_add_tail(&loc_rule->list, &priv->rxnfc_list);
1454 
1455 	return 0;
1456 }
1457 
1458 static int bcmgenet_delete_flow(struct net_device *dev,
1459 				struct ethtool_rxnfc *cmd)
1460 {
1461 	struct bcmgenet_priv *priv = netdev_priv(dev);
1462 	struct bcmgenet_rxnfc_rule *rule;
1463 	int err = 0;
1464 
1465 	if (cmd->fs.location >= MAX_NUM_OF_FS_RULES)
1466 		return -EINVAL;
1467 
1468 	rule = &priv->rxnfc_rules[cmd->fs.location];
1469 	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) {
1470 		err =  -ENOENT;
1471 		goto out;
1472 	}
1473 
1474 	if (rule->state == BCMGENET_RXNFC_STATE_ENABLED)
1475 		bcmgenet_hfb_disable_filter(priv, cmd->fs.location);
1476 	if (rule->state != BCMGENET_RXNFC_STATE_UNUSED)
1477 		list_del(&rule->list);
1478 	rule->state = BCMGENET_RXNFC_STATE_UNUSED;
1479 	memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec));
1480 
1481 out:
1482 	return err;
1483 }
1484 
1485 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
1486 {
1487 	struct bcmgenet_priv *priv = netdev_priv(dev);
1488 	int err = 0;
1489 
1490 	switch (cmd->cmd) {
1491 	case ETHTOOL_SRXCLSRLINS:
1492 		err = bcmgenet_insert_flow(dev, cmd);
1493 		break;
1494 	case ETHTOOL_SRXCLSRLDEL:
1495 		err = bcmgenet_delete_flow(dev, cmd);
1496 		break;
1497 	default:
1498 		netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n",
1499 			    cmd->cmd);
1500 		return -EINVAL;
1501 	}
1502 
1503 	return err;
1504 }
1505 
1506 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd,
1507 			     int loc)
1508 {
1509 	struct bcmgenet_priv *priv = netdev_priv(dev);
1510 	struct bcmgenet_rxnfc_rule *rule;
1511 	int err = 0;
1512 
1513 	if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES)
1514 		return -EINVAL;
1515 
1516 	rule = &priv->rxnfc_rules[loc];
1517 	if (rule->state == BCMGENET_RXNFC_STATE_UNUSED)
1518 		err = -ENOENT;
1519 	else
1520 		memcpy(&cmd->fs, &rule->fs,
1521 		       sizeof(struct ethtool_rx_flow_spec));
1522 
1523 	return err;
1524 }
1525 
1526 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv)
1527 {
1528 	struct list_head *pos;
1529 	int res = 0;
1530 
1531 	list_for_each(pos, &priv->rxnfc_list)
1532 		res++;
1533 
1534 	return res;
1535 }
1536 
1537 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
1538 			      u32 *rule_locs)
1539 {
1540 	struct bcmgenet_priv *priv = netdev_priv(dev);
1541 	struct bcmgenet_rxnfc_rule *rule;
1542 	int err = 0;
1543 	int i = 0;
1544 
1545 	switch (cmd->cmd) {
1546 	case ETHTOOL_GRXRINGS:
1547 		cmd->data = priv->hw_params->rx_queues ?: 1;
1548 		break;
1549 	case ETHTOOL_GRXCLSRLCNT:
1550 		cmd->rule_cnt = bcmgenet_get_num_flows(priv);
1551 		cmd->data = MAX_NUM_OF_FS_RULES;
1552 		break;
1553 	case ETHTOOL_GRXCLSRULE:
1554 		err = bcmgenet_get_flow(dev, cmd, cmd->fs.location);
1555 		break;
1556 	case ETHTOOL_GRXCLSRLALL:
1557 		list_for_each_entry(rule, &priv->rxnfc_list, list)
1558 			if (i < cmd->rule_cnt)
1559 				rule_locs[i++] = rule->fs.location;
1560 		cmd->rule_cnt = i;
1561 		cmd->data = MAX_NUM_OF_FS_RULES;
1562 		break;
1563 	default:
1564 		err = -EOPNOTSUPP;
1565 		break;
1566 	}
1567 
1568 	return err;
1569 }
1570 
1571 /* standard ethtool support functions. */
1572 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1573 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1574 				     ETHTOOL_COALESCE_MAX_FRAMES |
1575 				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1576 	.begin			= bcmgenet_begin,
1577 	.complete		= bcmgenet_complete,
1578 	.get_strings		= bcmgenet_get_strings,
1579 	.get_sset_count		= bcmgenet_get_sset_count,
1580 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1581 	.get_drvinfo		= bcmgenet_get_drvinfo,
1582 	.get_link		= ethtool_op_get_link,
1583 	.get_msglevel		= bcmgenet_get_msglevel,
1584 	.set_msglevel		= bcmgenet_set_msglevel,
1585 	.get_wol		= bcmgenet_get_wol,
1586 	.set_wol		= bcmgenet_set_wol,
1587 	.get_eee		= bcmgenet_get_eee,
1588 	.set_eee		= bcmgenet_set_eee,
1589 	.nway_reset		= phy_ethtool_nway_reset,
1590 	.get_coalesce		= bcmgenet_get_coalesce,
1591 	.set_coalesce		= bcmgenet_set_coalesce,
1592 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1593 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1594 	.get_ts_info		= ethtool_op_get_ts_info,
1595 	.get_rxnfc		= bcmgenet_get_rxnfc,
1596 	.set_rxnfc		= bcmgenet_set_rxnfc,
1597 };
1598 
1599 /* Power down the unimac, based on mode. */
1600 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1601 				enum bcmgenet_power_mode mode)
1602 {
1603 	int ret = 0;
1604 	u32 reg;
1605 
1606 	switch (mode) {
1607 	case GENET_POWER_CABLE_SENSE:
1608 		phy_detach(priv->dev->phydev);
1609 		break;
1610 
1611 	case GENET_POWER_WOL_MAGIC:
1612 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1613 		break;
1614 
1615 	case GENET_POWER_PASSIVE:
1616 		/* Power down LED */
1617 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1618 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1619 			if (GENET_IS_V5(priv))
1620 				reg |= EXT_PWR_DOWN_PHY_EN |
1621 				       EXT_PWR_DOWN_PHY_RD |
1622 				       EXT_PWR_DOWN_PHY_SD |
1623 				       EXT_PWR_DOWN_PHY_RX |
1624 				       EXT_PWR_DOWN_PHY_TX |
1625 				       EXT_IDDQ_GLBL_PWR;
1626 			else
1627 				reg |= EXT_PWR_DOWN_PHY;
1628 
1629 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1630 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1631 
1632 			bcmgenet_phy_power_set(priv->dev, false);
1633 		}
1634 		break;
1635 	default:
1636 		break;
1637 	}
1638 
1639 	return ret;
1640 }
1641 
1642 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1643 			      enum bcmgenet_power_mode mode)
1644 {
1645 	u32 reg;
1646 
1647 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1648 		return;
1649 
1650 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1651 
1652 	switch (mode) {
1653 	case GENET_POWER_PASSIVE:
1654 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1655 		if (GENET_IS_V5(priv)) {
1656 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1657 				 EXT_PWR_DOWN_PHY_RD |
1658 				 EXT_PWR_DOWN_PHY_SD |
1659 				 EXT_PWR_DOWN_PHY_RX |
1660 				 EXT_PWR_DOWN_PHY_TX |
1661 				 EXT_IDDQ_GLBL_PWR);
1662 			reg |=   EXT_PHY_RESET;
1663 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1664 			mdelay(1);
1665 
1666 			reg &=  ~EXT_PHY_RESET;
1667 		} else {
1668 			reg &= ~EXT_PWR_DOWN_PHY;
1669 			reg |= EXT_PWR_DN_EN_LD;
1670 		}
1671 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1672 		bcmgenet_phy_power_set(priv->dev, true);
1673 		break;
1674 
1675 	case GENET_POWER_CABLE_SENSE:
1676 		/* enable APD */
1677 		if (!GENET_IS_V5(priv)) {
1678 			reg |= EXT_PWR_DN_EN_LD;
1679 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1680 		}
1681 		break;
1682 	case GENET_POWER_WOL_MAGIC:
1683 		bcmgenet_wol_power_up_cfg(priv, mode);
1684 		return;
1685 	default:
1686 		break;
1687 	}
1688 }
1689 
1690 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1691 					 struct bcmgenet_tx_ring *ring)
1692 {
1693 	struct enet_cb *tx_cb_ptr;
1694 
1695 	tx_cb_ptr = ring->cbs;
1696 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1697 
1698 	/* Advancing local write pointer */
1699 	if (ring->write_ptr == ring->end_ptr)
1700 		ring->write_ptr = ring->cb_ptr;
1701 	else
1702 		ring->write_ptr++;
1703 
1704 	return tx_cb_ptr;
1705 }
1706 
1707 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1708 					 struct bcmgenet_tx_ring *ring)
1709 {
1710 	struct enet_cb *tx_cb_ptr;
1711 
1712 	tx_cb_ptr = ring->cbs;
1713 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1714 
1715 	/* Rewinding local write pointer */
1716 	if (ring->write_ptr == ring->cb_ptr)
1717 		ring->write_ptr = ring->end_ptr;
1718 	else
1719 		ring->write_ptr--;
1720 
1721 	return tx_cb_ptr;
1722 }
1723 
1724 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1725 {
1726 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1727 				 INTRL2_CPU_MASK_SET);
1728 }
1729 
1730 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1731 {
1732 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1733 				 INTRL2_CPU_MASK_CLEAR);
1734 }
1735 
1736 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1737 {
1738 	bcmgenet_intrl2_1_writel(ring->priv,
1739 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1740 				 INTRL2_CPU_MASK_SET);
1741 }
1742 
1743 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1744 {
1745 	bcmgenet_intrl2_1_writel(ring->priv,
1746 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1747 				 INTRL2_CPU_MASK_CLEAR);
1748 }
1749 
1750 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1751 {
1752 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1753 				 INTRL2_CPU_MASK_SET);
1754 }
1755 
1756 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1757 {
1758 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1759 				 INTRL2_CPU_MASK_CLEAR);
1760 }
1761 
1762 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1763 {
1764 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1765 				 INTRL2_CPU_MASK_CLEAR);
1766 }
1767 
1768 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1769 {
1770 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1771 				 INTRL2_CPU_MASK_SET);
1772 }
1773 
1774 /* Simple helper to free a transmit control block's resources
1775  * Returns an skb when the last transmit control block associated with the
1776  * skb is freed.  The skb should be freed by the caller if necessary.
1777  */
1778 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1779 					   struct enet_cb *cb)
1780 {
1781 	struct sk_buff *skb;
1782 
1783 	skb = cb->skb;
1784 
1785 	if (skb) {
1786 		cb->skb = NULL;
1787 		if (cb == GENET_CB(skb)->first_cb)
1788 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1789 					 dma_unmap_len(cb, dma_len),
1790 					 DMA_TO_DEVICE);
1791 		else
1792 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1793 				       dma_unmap_len(cb, dma_len),
1794 				       DMA_TO_DEVICE);
1795 		dma_unmap_addr_set(cb, dma_addr, 0);
1796 
1797 		if (cb == GENET_CB(skb)->last_cb)
1798 			return skb;
1799 
1800 	} else if (dma_unmap_addr(cb, dma_addr)) {
1801 		dma_unmap_page(dev,
1802 			       dma_unmap_addr(cb, dma_addr),
1803 			       dma_unmap_len(cb, dma_len),
1804 			       DMA_TO_DEVICE);
1805 		dma_unmap_addr_set(cb, dma_addr, 0);
1806 	}
1807 
1808 	return NULL;
1809 }
1810 
1811 /* Simple helper to free a receive control block's resources */
1812 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1813 					   struct enet_cb *cb)
1814 {
1815 	struct sk_buff *skb;
1816 
1817 	skb = cb->skb;
1818 	cb->skb = NULL;
1819 
1820 	if (dma_unmap_addr(cb, dma_addr)) {
1821 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1822 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1823 		dma_unmap_addr_set(cb, dma_addr, 0);
1824 	}
1825 
1826 	return skb;
1827 }
1828 
1829 /* Unlocked version of the reclaim routine */
1830 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1831 					  struct bcmgenet_tx_ring *ring)
1832 {
1833 	struct bcmgenet_priv *priv = netdev_priv(dev);
1834 	unsigned int txbds_processed = 0;
1835 	unsigned int bytes_compl = 0;
1836 	unsigned int pkts_compl = 0;
1837 	unsigned int txbds_ready;
1838 	unsigned int c_index;
1839 	struct sk_buff *skb;
1840 
1841 	/* Clear status before servicing to reduce spurious interrupts */
1842 	if (ring->index == DESC_INDEX)
1843 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1844 					 INTRL2_CPU_CLEAR);
1845 	else
1846 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1847 					 INTRL2_CPU_CLEAR);
1848 
1849 	/* Compute how many buffers are transmitted since last xmit call */
1850 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1851 		& DMA_C_INDEX_MASK;
1852 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1853 
1854 	netif_dbg(priv, tx_done, dev,
1855 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1856 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1857 
1858 	/* Reclaim transmitted buffers */
1859 	while (txbds_processed < txbds_ready) {
1860 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1861 					  &priv->tx_cbs[ring->clean_ptr]);
1862 		if (skb) {
1863 			pkts_compl++;
1864 			bytes_compl += GENET_CB(skb)->bytes_sent;
1865 			dev_consume_skb_any(skb);
1866 		}
1867 
1868 		txbds_processed++;
1869 		if (likely(ring->clean_ptr < ring->end_ptr))
1870 			ring->clean_ptr++;
1871 		else
1872 			ring->clean_ptr = ring->cb_ptr;
1873 	}
1874 
1875 	ring->free_bds += txbds_processed;
1876 	ring->c_index = c_index;
1877 
1878 	ring->packets += pkts_compl;
1879 	ring->bytes += bytes_compl;
1880 
1881 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1882 				  pkts_compl, bytes_compl);
1883 
1884 	return txbds_processed;
1885 }
1886 
1887 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1888 				struct bcmgenet_tx_ring *ring)
1889 {
1890 	unsigned int released;
1891 
1892 	spin_lock_bh(&ring->lock);
1893 	released = __bcmgenet_tx_reclaim(dev, ring);
1894 	spin_unlock_bh(&ring->lock);
1895 
1896 	return released;
1897 }
1898 
1899 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1900 {
1901 	struct bcmgenet_tx_ring *ring =
1902 		container_of(napi, struct bcmgenet_tx_ring, napi);
1903 	unsigned int work_done = 0;
1904 	struct netdev_queue *txq;
1905 
1906 	spin_lock(&ring->lock);
1907 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1908 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1909 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1910 		netif_tx_wake_queue(txq);
1911 	}
1912 	spin_unlock(&ring->lock);
1913 
1914 	if (work_done == 0) {
1915 		napi_complete(napi);
1916 		ring->int_enable(ring);
1917 
1918 		return 0;
1919 	}
1920 
1921 	return budget;
1922 }
1923 
1924 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1925 {
1926 	struct bcmgenet_priv *priv = netdev_priv(dev);
1927 	int i;
1928 
1929 	if (netif_is_multiqueue(dev)) {
1930 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1931 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1932 	}
1933 
1934 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1935 }
1936 
1937 /* Reallocate the SKB to put enough headroom in front of it and insert
1938  * the transmit checksum offsets in the descriptors
1939  */
1940 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1941 					struct sk_buff *skb)
1942 {
1943 	struct bcmgenet_priv *priv = netdev_priv(dev);
1944 	struct status_64 *status = NULL;
1945 	struct sk_buff *new_skb;
1946 	u16 offset;
1947 	u8 ip_proto;
1948 	__be16 ip_ver;
1949 	u32 tx_csum_info;
1950 
1951 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1952 		/* If 64 byte status block enabled, must make sure skb has
1953 		 * enough headroom for us to insert 64B status block.
1954 		 */
1955 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1956 		if (!new_skb) {
1957 			dev_kfree_skb_any(skb);
1958 			priv->mib.tx_realloc_tsb_failed++;
1959 			dev->stats.tx_dropped++;
1960 			return NULL;
1961 		}
1962 		dev_consume_skb_any(skb);
1963 		skb = new_skb;
1964 		priv->mib.tx_realloc_tsb++;
1965 	}
1966 
1967 	skb_push(skb, sizeof(*status));
1968 	status = (struct status_64 *)skb->data;
1969 
1970 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1971 		ip_ver = skb->protocol;
1972 		switch (ip_ver) {
1973 		case htons(ETH_P_IP):
1974 			ip_proto = ip_hdr(skb)->protocol;
1975 			break;
1976 		case htons(ETH_P_IPV6):
1977 			ip_proto = ipv6_hdr(skb)->nexthdr;
1978 			break;
1979 		default:
1980 			/* don't use UDP flag */
1981 			ip_proto = 0;
1982 			break;
1983 		}
1984 
1985 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1986 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1987 				(offset + skb->csum_offset) |
1988 				STATUS_TX_CSUM_LV;
1989 
1990 		/* Set the special UDP flag for UDP */
1991 		if (ip_proto == IPPROTO_UDP)
1992 			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1993 
1994 		status->tx_csum_info = tx_csum_info;
1995 	}
1996 
1997 	return skb;
1998 }
1999 
2000 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
2001 {
2002 	struct bcmgenet_priv *priv = netdev_priv(dev);
2003 	struct device *kdev = &priv->pdev->dev;
2004 	struct bcmgenet_tx_ring *ring = NULL;
2005 	struct enet_cb *tx_cb_ptr;
2006 	struct netdev_queue *txq;
2007 	int nr_frags, index;
2008 	dma_addr_t mapping;
2009 	unsigned int size;
2010 	skb_frag_t *frag;
2011 	u32 len_stat;
2012 	int ret;
2013 	int i;
2014 
2015 	index = skb_get_queue_mapping(skb);
2016 	/* Mapping strategy:
2017 	 * queue_mapping = 0, unclassified, packet xmited through ring16
2018 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
2019 	 * queue_mapping = 2, goes to ring 1.
2020 	 * queue_mapping = 3, goes to ring 2.
2021 	 * queue_mapping = 4, goes to ring 3.
2022 	 */
2023 	if (index == 0)
2024 		index = DESC_INDEX;
2025 	else
2026 		index -= 1;
2027 
2028 	ring = &priv->tx_rings[index];
2029 	txq = netdev_get_tx_queue(dev, ring->queue);
2030 
2031 	nr_frags = skb_shinfo(skb)->nr_frags;
2032 
2033 	spin_lock(&ring->lock);
2034 	if (ring->free_bds <= (nr_frags + 1)) {
2035 		if (!netif_tx_queue_stopped(txq)) {
2036 			netif_tx_stop_queue(txq);
2037 			netdev_err(dev,
2038 				   "%s: tx ring %d full when queue %d awake\n",
2039 				   __func__, index, ring->queue);
2040 		}
2041 		ret = NETDEV_TX_BUSY;
2042 		goto out;
2043 	}
2044 
2045 	/* Retain how many bytes will be sent on the wire, without TSB inserted
2046 	 * by transmit checksum offload
2047 	 */
2048 	GENET_CB(skb)->bytes_sent = skb->len;
2049 
2050 	/* add the Transmit Status Block */
2051 	skb = bcmgenet_add_tsb(dev, skb);
2052 	if (!skb) {
2053 		ret = NETDEV_TX_OK;
2054 		goto out;
2055 	}
2056 
2057 	for (i = 0; i <= nr_frags; i++) {
2058 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
2059 
2060 		BUG_ON(!tx_cb_ptr);
2061 
2062 		if (!i) {
2063 			/* Transmit single SKB or head of fragment list */
2064 			GENET_CB(skb)->first_cb = tx_cb_ptr;
2065 			size = skb_headlen(skb);
2066 			mapping = dma_map_single(kdev, skb->data, size,
2067 						 DMA_TO_DEVICE);
2068 		} else {
2069 			/* xmit fragment */
2070 			frag = &skb_shinfo(skb)->frags[i - 1];
2071 			size = skb_frag_size(frag);
2072 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
2073 						   DMA_TO_DEVICE);
2074 		}
2075 
2076 		ret = dma_mapping_error(kdev, mapping);
2077 		if (ret) {
2078 			priv->mib.tx_dma_failed++;
2079 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
2080 			ret = NETDEV_TX_OK;
2081 			goto out_unmap_frags;
2082 		}
2083 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
2084 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
2085 
2086 		tx_cb_ptr->skb = skb;
2087 
2088 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
2089 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
2090 
2091 		/* Note: if we ever change from DMA_TX_APPEND_CRC below we
2092 		 * will need to restore software padding of "runt" packets
2093 		 */
2094 		if (!i) {
2095 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
2096 			if (skb->ip_summed == CHECKSUM_PARTIAL)
2097 				len_stat |= DMA_TX_DO_CSUM;
2098 		}
2099 		if (i == nr_frags)
2100 			len_stat |= DMA_EOP;
2101 
2102 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
2103 	}
2104 
2105 	GENET_CB(skb)->last_cb = tx_cb_ptr;
2106 	skb_tx_timestamp(skb);
2107 
2108 	/* Decrement total BD count and advance our write pointer */
2109 	ring->free_bds -= nr_frags + 1;
2110 	ring->prod_index += nr_frags + 1;
2111 	ring->prod_index &= DMA_P_INDEX_MASK;
2112 
2113 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
2114 
2115 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
2116 		netif_tx_stop_queue(txq);
2117 
2118 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
2119 		/* Packets are ready, update producer index */
2120 		bcmgenet_tdma_ring_writel(priv, ring->index,
2121 					  ring->prod_index, TDMA_PROD_INDEX);
2122 out:
2123 	spin_unlock(&ring->lock);
2124 
2125 	return ret;
2126 
2127 out_unmap_frags:
2128 	/* Back up for failed control block mapping */
2129 	bcmgenet_put_txcb(priv, ring);
2130 
2131 	/* Unmap successfully mapped control blocks */
2132 	while (i-- > 0) {
2133 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
2134 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
2135 	}
2136 
2137 	dev_kfree_skb(skb);
2138 	goto out;
2139 }
2140 
2141 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
2142 					  struct enet_cb *cb)
2143 {
2144 	struct device *kdev = &priv->pdev->dev;
2145 	struct sk_buff *skb;
2146 	struct sk_buff *rx_skb;
2147 	dma_addr_t mapping;
2148 
2149 	/* Allocate a new Rx skb */
2150 	skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
2151 				 GFP_ATOMIC | __GFP_NOWARN);
2152 	if (!skb) {
2153 		priv->mib.alloc_rx_buff_failed++;
2154 		netif_err(priv, rx_err, priv->dev,
2155 			  "%s: Rx skb allocation failed\n", __func__);
2156 		return NULL;
2157 	}
2158 
2159 	/* DMA-map the new Rx skb */
2160 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
2161 				 DMA_FROM_DEVICE);
2162 	if (dma_mapping_error(kdev, mapping)) {
2163 		priv->mib.rx_dma_failed++;
2164 		dev_kfree_skb_any(skb);
2165 		netif_err(priv, rx_err, priv->dev,
2166 			  "%s: Rx skb DMA mapping failed\n", __func__);
2167 		return NULL;
2168 	}
2169 
2170 	/* Grab the current Rx skb from the ring and DMA-unmap it */
2171 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
2172 
2173 	/* Put the new Rx skb on the ring */
2174 	cb->skb = skb;
2175 	dma_unmap_addr_set(cb, dma_addr, mapping);
2176 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
2177 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
2178 
2179 	/* Return the current Rx skb to caller */
2180 	return rx_skb;
2181 }
2182 
2183 /* bcmgenet_desc_rx - descriptor based rx process.
2184  * this could be called from bottom half, or from NAPI polling method.
2185  */
2186 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
2187 				     unsigned int budget)
2188 {
2189 	struct bcmgenet_priv *priv = ring->priv;
2190 	struct net_device *dev = priv->dev;
2191 	struct enet_cb *cb;
2192 	struct sk_buff *skb;
2193 	u32 dma_length_status;
2194 	unsigned long dma_flag;
2195 	int len;
2196 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
2197 	unsigned int bytes_processed = 0;
2198 	unsigned int p_index, mask;
2199 	unsigned int discards;
2200 
2201 	/* Clear status before servicing to reduce spurious interrupts */
2202 	if (ring->index == DESC_INDEX) {
2203 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
2204 					 INTRL2_CPU_CLEAR);
2205 	} else {
2206 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
2207 		bcmgenet_intrl2_1_writel(priv,
2208 					 mask,
2209 					 INTRL2_CPU_CLEAR);
2210 	}
2211 
2212 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
2213 
2214 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
2215 		   DMA_P_INDEX_DISCARD_CNT_MASK;
2216 	if (discards > ring->old_discards) {
2217 		discards = discards - ring->old_discards;
2218 		ring->errors += discards;
2219 		ring->old_discards += discards;
2220 
2221 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
2222 		if (ring->old_discards >= 0xC000) {
2223 			ring->old_discards = 0;
2224 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
2225 						  RDMA_PROD_INDEX);
2226 		}
2227 	}
2228 
2229 	p_index &= DMA_P_INDEX_MASK;
2230 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
2231 
2232 	netif_dbg(priv, rx_status, dev,
2233 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
2234 
2235 	while ((rxpktprocessed < rxpkttoprocess) &&
2236 	       (rxpktprocessed < budget)) {
2237 		struct status_64 *status;
2238 		__be16 rx_csum;
2239 
2240 		cb = &priv->rx_cbs[ring->read_ptr];
2241 		skb = bcmgenet_rx_refill(priv, cb);
2242 
2243 		if (unlikely(!skb)) {
2244 			ring->dropped++;
2245 			goto next;
2246 		}
2247 
2248 		status = (struct status_64 *)skb->data;
2249 		dma_length_status = status->length_status;
2250 		if (dev->features & NETIF_F_RXCSUM) {
2251 			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
2252 			skb->csum = (__force __wsum)ntohs(rx_csum);
2253 			skb->ip_summed = CHECKSUM_COMPLETE;
2254 		}
2255 
2256 		/* DMA flags and length are still valid no matter how
2257 		 * we got the Receive Status Vector (64B RSB or register)
2258 		 */
2259 		dma_flag = dma_length_status & 0xffff;
2260 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
2261 
2262 		netif_dbg(priv, rx_status, dev,
2263 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
2264 			  __func__, p_index, ring->c_index,
2265 			  ring->read_ptr, dma_length_status);
2266 
2267 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
2268 			netif_err(priv, rx_status, dev,
2269 				  "dropping fragmented packet!\n");
2270 			ring->errors++;
2271 			dev_kfree_skb_any(skb);
2272 			goto next;
2273 		}
2274 
2275 		/* report errors */
2276 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
2277 						DMA_RX_OV |
2278 						DMA_RX_NO |
2279 						DMA_RX_LG |
2280 						DMA_RX_RXER))) {
2281 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
2282 				  (unsigned int)dma_flag);
2283 			if (dma_flag & DMA_RX_CRC_ERROR)
2284 				dev->stats.rx_crc_errors++;
2285 			if (dma_flag & DMA_RX_OV)
2286 				dev->stats.rx_over_errors++;
2287 			if (dma_flag & DMA_RX_NO)
2288 				dev->stats.rx_frame_errors++;
2289 			if (dma_flag & DMA_RX_LG)
2290 				dev->stats.rx_length_errors++;
2291 			dev->stats.rx_errors++;
2292 			dev_kfree_skb_any(skb);
2293 			goto next;
2294 		} /* error packet */
2295 
2296 		skb_put(skb, len);
2297 
2298 		/* remove RSB and hardware 2bytes added for IP alignment */
2299 		skb_pull(skb, 66);
2300 		len -= 66;
2301 
2302 		if (priv->crc_fwd_en) {
2303 			skb_trim(skb, len - ETH_FCS_LEN);
2304 			len -= ETH_FCS_LEN;
2305 		}
2306 
2307 		bytes_processed += len;
2308 
2309 		/*Finish setting up the received SKB and send it to the kernel*/
2310 		skb->protocol = eth_type_trans(skb, priv->dev);
2311 		ring->packets++;
2312 		ring->bytes += len;
2313 		if (dma_flag & DMA_RX_MULT)
2314 			dev->stats.multicast++;
2315 
2316 		/* Notify kernel */
2317 		napi_gro_receive(&ring->napi, skb);
2318 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
2319 
2320 next:
2321 		rxpktprocessed++;
2322 		if (likely(ring->read_ptr < ring->end_ptr))
2323 			ring->read_ptr++;
2324 		else
2325 			ring->read_ptr = ring->cb_ptr;
2326 
2327 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
2328 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
2329 	}
2330 
2331 	ring->dim.bytes = bytes_processed;
2332 	ring->dim.packets = rxpktprocessed;
2333 
2334 	return rxpktprocessed;
2335 }
2336 
2337 /* Rx NAPI polling method */
2338 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
2339 {
2340 	struct bcmgenet_rx_ring *ring = container_of(napi,
2341 			struct bcmgenet_rx_ring, napi);
2342 	struct dim_sample dim_sample = {};
2343 	unsigned int work_done;
2344 
2345 	work_done = bcmgenet_desc_rx(ring, budget);
2346 
2347 	if (work_done < budget) {
2348 		napi_complete_done(napi, work_done);
2349 		ring->int_enable(ring);
2350 	}
2351 
2352 	if (ring->dim.use_dim) {
2353 		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
2354 				  ring->dim.bytes, &dim_sample);
2355 		net_dim(&ring->dim.dim, dim_sample);
2356 	}
2357 
2358 	return work_done;
2359 }
2360 
2361 static void bcmgenet_dim_work(struct work_struct *work)
2362 {
2363 	struct dim *dim = container_of(work, struct dim, work);
2364 	struct bcmgenet_net_dim *ndim =
2365 			container_of(dim, struct bcmgenet_net_dim, dim);
2366 	struct bcmgenet_rx_ring *ring =
2367 			container_of(ndim, struct bcmgenet_rx_ring, dim);
2368 	struct dim_cq_moder cur_profile =
2369 			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
2370 
2371 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
2372 	dim->state = DIM_START_MEASURE;
2373 }
2374 
2375 /* Assign skb to RX DMA descriptor. */
2376 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
2377 				     struct bcmgenet_rx_ring *ring)
2378 {
2379 	struct enet_cb *cb;
2380 	struct sk_buff *skb;
2381 	int i;
2382 
2383 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2384 
2385 	/* loop here for each buffer needing assign */
2386 	for (i = 0; i < ring->size; i++) {
2387 		cb = ring->cbs + i;
2388 		skb = bcmgenet_rx_refill(priv, cb);
2389 		if (skb)
2390 			dev_consume_skb_any(skb);
2391 		if (!cb->skb)
2392 			return -ENOMEM;
2393 	}
2394 
2395 	return 0;
2396 }
2397 
2398 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
2399 {
2400 	struct sk_buff *skb;
2401 	struct enet_cb *cb;
2402 	int i;
2403 
2404 	for (i = 0; i < priv->num_rx_bds; i++) {
2405 		cb = &priv->rx_cbs[i];
2406 
2407 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
2408 		if (skb)
2409 			dev_consume_skb_any(skb);
2410 	}
2411 }
2412 
2413 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
2414 {
2415 	u32 reg;
2416 
2417 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2418 	if (reg & CMD_SW_RESET)
2419 		return;
2420 	if (enable)
2421 		reg |= mask;
2422 	else
2423 		reg &= ~mask;
2424 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2425 
2426 	/* UniMAC stops on a packet boundary, wait for a full-size packet
2427 	 * to be processed
2428 	 */
2429 	if (enable == 0)
2430 		usleep_range(1000, 2000);
2431 }
2432 
2433 static void reset_umac(struct bcmgenet_priv *priv)
2434 {
2435 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
2436 	bcmgenet_rbuf_ctrl_set(priv, 0);
2437 	udelay(10);
2438 
2439 	/* issue soft reset and disable MAC while updating its registers */
2440 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
2441 	udelay(2);
2442 }
2443 
2444 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2445 {
2446 	/* Mask all interrupts.*/
2447 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2448 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2449 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2450 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2451 }
2452 
2453 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2454 {
2455 	u32 int0_enable = 0;
2456 
2457 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2458 	 * and MoCA PHY
2459 	 */
2460 	if (priv->internal_phy) {
2461 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2462 		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2463 			int0_enable |= UMAC_IRQ_PHY_DET_R;
2464 	} else if (priv->ext_phy) {
2465 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2466 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2467 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2468 			int0_enable |= UMAC_IRQ_LINK_EVENT;
2469 	}
2470 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2471 }
2472 
2473 static void init_umac(struct bcmgenet_priv *priv)
2474 {
2475 	struct device *kdev = &priv->pdev->dev;
2476 	u32 reg;
2477 	u32 int0_enable = 0;
2478 
2479 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2480 
2481 	reset_umac(priv);
2482 
2483 	/* clear tx/rx counter */
2484 	bcmgenet_umac_writel(priv,
2485 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2486 			     UMAC_MIB_CTRL);
2487 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2488 
2489 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2490 
2491 	/* init tx registers, enable TSB */
2492 	reg = bcmgenet_tbuf_ctrl_get(priv);
2493 	reg |= TBUF_64B_EN;
2494 	bcmgenet_tbuf_ctrl_set(priv, reg);
2495 
2496 	/* init rx registers, enable ip header optimization and RSB */
2497 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2498 	reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
2499 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2500 
2501 	/* enable rx checksumming */
2502 	reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
2503 	reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
2504 	/* If UniMAC forwards CRC, we need to skip over it to get
2505 	 * a valid CHK bit to be set in the per-packet status word
2506 	 */
2507 	if (priv->crc_fwd_en)
2508 		reg |= RBUF_SKIP_FCS;
2509 	else
2510 		reg &= ~RBUF_SKIP_FCS;
2511 	bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
2512 
2513 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2514 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2515 
2516 	bcmgenet_intr_disable(priv);
2517 
2518 	/* Configure backpressure vectors for MoCA */
2519 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2520 		reg = bcmgenet_bp_mc_get(priv);
2521 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2522 
2523 		/* bp_mask: back pressure mask */
2524 		if (netif_is_multiqueue(priv->dev))
2525 			reg |= priv->hw_params->bp_in_mask;
2526 		else
2527 			reg &= ~priv->hw_params->bp_in_mask;
2528 		bcmgenet_bp_mc_set(priv, reg);
2529 	}
2530 
2531 	/* Enable MDIO interrupts on GENET v3+ */
2532 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2533 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2534 
2535 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2536 
2537 	dev_dbg(kdev, "done init umac\n");
2538 }
2539 
2540 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2541 			      void (*cb)(struct work_struct *work))
2542 {
2543 	struct bcmgenet_net_dim *dim = &ring->dim;
2544 
2545 	INIT_WORK(&dim->dim.work, cb);
2546 	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2547 	dim->event_ctr = 0;
2548 	dim->packets = 0;
2549 	dim->bytes = 0;
2550 }
2551 
2552 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2553 {
2554 	struct bcmgenet_net_dim *dim = &ring->dim;
2555 	struct dim_cq_moder moder;
2556 	u32 usecs, pkts;
2557 
2558 	usecs = ring->rx_coalesce_usecs;
2559 	pkts = ring->rx_max_coalesced_frames;
2560 
2561 	/* If DIM was enabled, re-apply default parameters */
2562 	if (dim->use_dim) {
2563 		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2564 		usecs = moder.usec;
2565 		pkts = moder.pkts;
2566 	}
2567 
2568 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2569 }
2570 
2571 /* Initialize a Tx ring along with corresponding hardware registers */
2572 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2573 				  unsigned int index, unsigned int size,
2574 				  unsigned int start_ptr, unsigned int end_ptr)
2575 {
2576 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2577 	u32 words_per_bd = WORDS_PER_BD(priv);
2578 	u32 flow_period_val = 0;
2579 
2580 	spin_lock_init(&ring->lock);
2581 	ring->priv = priv;
2582 	ring->index = index;
2583 	if (index == DESC_INDEX) {
2584 		ring->queue = 0;
2585 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2586 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2587 	} else {
2588 		ring->queue = index + 1;
2589 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2590 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2591 	}
2592 	ring->cbs = priv->tx_cbs + start_ptr;
2593 	ring->size = size;
2594 	ring->clean_ptr = start_ptr;
2595 	ring->c_index = 0;
2596 	ring->free_bds = size;
2597 	ring->write_ptr = start_ptr;
2598 	ring->cb_ptr = start_ptr;
2599 	ring->end_ptr = end_ptr - 1;
2600 	ring->prod_index = 0;
2601 
2602 	/* Set flow period for ring != 16 */
2603 	if (index != DESC_INDEX)
2604 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2605 
2606 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2607 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2608 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2609 	/* Disable rate control for now */
2610 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2611 				  TDMA_FLOW_PERIOD);
2612 	bcmgenet_tdma_ring_writel(priv, index,
2613 				  ((size << DMA_RING_SIZE_SHIFT) |
2614 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2615 
2616 	/* Set start and end address, read and write pointers */
2617 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2618 				  DMA_START_ADDR);
2619 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2620 				  TDMA_READ_PTR);
2621 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2622 				  TDMA_WRITE_PTR);
2623 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2624 				  DMA_END_ADDR);
2625 
2626 	/* Initialize Tx NAPI */
2627 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2628 			  NAPI_POLL_WEIGHT);
2629 }
2630 
2631 /* Initialize a RDMA ring */
2632 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2633 				 unsigned int index, unsigned int size,
2634 				 unsigned int start_ptr, unsigned int end_ptr)
2635 {
2636 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2637 	u32 words_per_bd = WORDS_PER_BD(priv);
2638 	int ret;
2639 
2640 	ring->priv = priv;
2641 	ring->index = index;
2642 	if (index == DESC_INDEX) {
2643 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2644 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2645 	} else {
2646 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2647 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2648 	}
2649 	ring->cbs = priv->rx_cbs + start_ptr;
2650 	ring->size = size;
2651 	ring->c_index = 0;
2652 	ring->read_ptr = start_ptr;
2653 	ring->cb_ptr = start_ptr;
2654 	ring->end_ptr = end_ptr - 1;
2655 
2656 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2657 	if (ret)
2658 		return ret;
2659 
2660 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2661 	bcmgenet_init_rx_coalesce(ring);
2662 
2663 	/* Initialize Rx NAPI */
2664 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2665 		       NAPI_POLL_WEIGHT);
2666 
2667 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2668 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2669 	bcmgenet_rdma_ring_writel(priv, index,
2670 				  ((size << DMA_RING_SIZE_SHIFT) |
2671 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2672 	bcmgenet_rdma_ring_writel(priv, index,
2673 				  (DMA_FC_THRESH_LO <<
2674 				   DMA_XOFF_THRESHOLD_SHIFT) |
2675 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2676 
2677 	/* Set start and end address, read and write pointers */
2678 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2679 				  DMA_START_ADDR);
2680 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2681 				  RDMA_READ_PTR);
2682 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2683 				  RDMA_WRITE_PTR);
2684 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2685 				  DMA_END_ADDR);
2686 
2687 	return ret;
2688 }
2689 
2690 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2691 {
2692 	unsigned int i;
2693 	struct bcmgenet_tx_ring *ring;
2694 
2695 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2696 		ring = &priv->tx_rings[i];
2697 		napi_enable(&ring->napi);
2698 		ring->int_enable(ring);
2699 	}
2700 
2701 	ring = &priv->tx_rings[DESC_INDEX];
2702 	napi_enable(&ring->napi);
2703 	ring->int_enable(ring);
2704 }
2705 
2706 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2707 {
2708 	unsigned int i;
2709 	struct bcmgenet_tx_ring *ring;
2710 
2711 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2712 		ring = &priv->tx_rings[i];
2713 		napi_disable(&ring->napi);
2714 	}
2715 
2716 	ring = &priv->tx_rings[DESC_INDEX];
2717 	napi_disable(&ring->napi);
2718 }
2719 
2720 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2721 {
2722 	unsigned int i;
2723 	struct bcmgenet_tx_ring *ring;
2724 
2725 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2726 		ring = &priv->tx_rings[i];
2727 		netif_napi_del(&ring->napi);
2728 	}
2729 
2730 	ring = &priv->tx_rings[DESC_INDEX];
2731 	netif_napi_del(&ring->napi);
2732 }
2733 
2734 /* Initialize Tx queues
2735  *
2736  * Queues 0-3 are priority-based, each one has 32 descriptors,
2737  * with queue 0 being the highest priority queue.
2738  *
2739  * Queue 16 is the default Tx queue with
2740  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2741  *
2742  * The transmit control block pool is then partitioned as follows:
2743  * - Tx queue 0 uses tx_cbs[0..31]
2744  * - Tx queue 1 uses tx_cbs[32..63]
2745  * - Tx queue 2 uses tx_cbs[64..95]
2746  * - Tx queue 3 uses tx_cbs[96..127]
2747  * - Tx queue 16 uses tx_cbs[128..255]
2748  */
2749 static void bcmgenet_init_tx_queues(struct net_device *dev)
2750 {
2751 	struct bcmgenet_priv *priv = netdev_priv(dev);
2752 	u32 i, dma_enable;
2753 	u32 dma_ctrl, ring_cfg;
2754 	u32 dma_priority[3] = {0, 0, 0};
2755 
2756 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2757 	dma_enable = dma_ctrl & DMA_EN;
2758 	dma_ctrl &= ~DMA_EN;
2759 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2760 
2761 	dma_ctrl = 0;
2762 	ring_cfg = 0;
2763 
2764 	/* Enable strict priority arbiter mode */
2765 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2766 
2767 	/* Initialize Tx priority queues */
2768 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2769 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2770 				      i * priv->hw_params->tx_bds_per_q,
2771 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2772 		ring_cfg |= (1 << i);
2773 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2774 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2775 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2776 	}
2777 
2778 	/* Initialize Tx default queue 16 */
2779 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2780 			      priv->hw_params->tx_queues *
2781 			      priv->hw_params->tx_bds_per_q,
2782 			      TOTAL_DESC);
2783 	ring_cfg |= (1 << DESC_INDEX);
2784 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2785 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2786 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2787 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2788 
2789 	/* Set Tx queue priorities */
2790 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2791 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2792 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2793 
2794 	/* Enable Tx queues */
2795 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2796 
2797 	/* Enable Tx DMA */
2798 	if (dma_enable)
2799 		dma_ctrl |= DMA_EN;
2800 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2801 }
2802 
2803 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2804 {
2805 	unsigned int i;
2806 	struct bcmgenet_rx_ring *ring;
2807 
2808 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2809 		ring = &priv->rx_rings[i];
2810 		napi_enable(&ring->napi);
2811 		ring->int_enable(ring);
2812 	}
2813 
2814 	ring = &priv->rx_rings[DESC_INDEX];
2815 	napi_enable(&ring->napi);
2816 	ring->int_enable(ring);
2817 }
2818 
2819 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2820 {
2821 	unsigned int i;
2822 	struct bcmgenet_rx_ring *ring;
2823 
2824 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2825 		ring = &priv->rx_rings[i];
2826 		napi_disable(&ring->napi);
2827 		cancel_work_sync(&ring->dim.dim.work);
2828 	}
2829 
2830 	ring = &priv->rx_rings[DESC_INDEX];
2831 	napi_disable(&ring->napi);
2832 	cancel_work_sync(&ring->dim.dim.work);
2833 }
2834 
2835 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2836 {
2837 	unsigned int i;
2838 	struct bcmgenet_rx_ring *ring;
2839 
2840 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2841 		ring = &priv->rx_rings[i];
2842 		netif_napi_del(&ring->napi);
2843 	}
2844 
2845 	ring = &priv->rx_rings[DESC_INDEX];
2846 	netif_napi_del(&ring->napi);
2847 }
2848 
2849 /* Initialize Rx queues
2850  *
2851  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2852  * used to direct traffic to these queues.
2853  *
2854  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2855  */
2856 static int bcmgenet_init_rx_queues(struct net_device *dev)
2857 {
2858 	struct bcmgenet_priv *priv = netdev_priv(dev);
2859 	u32 i;
2860 	u32 dma_enable;
2861 	u32 dma_ctrl;
2862 	u32 ring_cfg;
2863 	int ret;
2864 
2865 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2866 	dma_enable = dma_ctrl & DMA_EN;
2867 	dma_ctrl &= ~DMA_EN;
2868 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2869 
2870 	dma_ctrl = 0;
2871 	ring_cfg = 0;
2872 
2873 	/* Initialize Rx priority queues */
2874 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2875 		ret = bcmgenet_init_rx_ring(priv, i,
2876 					    priv->hw_params->rx_bds_per_q,
2877 					    i * priv->hw_params->rx_bds_per_q,
2878 					    (i + 1) *
2879 					    priv->hw_params->rx_bds_per_q);
2880 		if (ret)
2881 			return ret;
2882 
2883 		ring_cfg |= (1 << i);
2884 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2885 	}
2886 
2887 	/* Initialize Rx default queue 16 */
2888 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2889 				    priv->hw_params->rx_queues *
2890 				    priv->hw_params->rx_bds_per_q,
2891 				    TOTAL_DESC);
2892 	if (ret)
2893 		return ret;
2894 
2895 	ring_cfg |= (1 << DESC_INDEX);
2896 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2897 
2898 	/* Enable rings */
2899 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2900 
2901 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2902 	if (dma_enable)
2903 		dma_ctrl |= DMA_EN;
2904 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2905 
2906 	return 0;
2907 }
2908 
2909 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2910 {
2911 	int ret = 0;
2912 	int timeout = 0;
2913 	u32 reg;
2914 	u32 dma_ctrl;
2915 	int i;
2916 
2917 	/* Disable TDMA to stop add more frames in TX DMA */
2918 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2919 	reg &= ~DMA_EN;
2920 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2921 
2922 	/* Check TDMA status register to confirm TDMA is disabled */
2923 	while (timeout++ < DMA_TIMEOUT_VAL) {
2924 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2925 		if (reg & DMA_DISABLED)
2926 			break;
2927 
2928 		udelay(1);
2929 	}
2930 
2931 	if (timeout == DMA_TIMEOUT_VAL) {
2932 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2933 		ret = -ETIMEDOUT;
2934 	}
2935 
2936 	/* Wait 10ms for packet drain in both tx and rx dma */
2937 	usleep_range(10000, 20000);
2938 
2939 	/* Disable RDMA */
2940 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2941 	reg &= ~DMA_EN;
2942 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2943 
2944 	timeout = 0;
2945 	/* Check RDMA status register to confirm RDMA is disabled */
2946 	while (timeout++ < DMA_TIMEOUT_VAL) {
2947 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2948 		if (reg & DMA_DISABLED)
2949 			break;
2950 
2951 		udelay(1);
2952 	}
2953 
2954 	if (timeout == DMA_TIMEOUT_VAL) {
2955 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2956 		ret = -ETIMEDOUT;
2957 	}
2958 
2959 	dma_ctrl = 0;
2960 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2961 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2962 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2963 	reg &= ~dma_ctrl;
2964 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2965 
2966 	dma_ctrl = 0;
2967 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2968 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2969 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2970 	reg &= ~dma_ctrl;
2971 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2972 
2973 	return ret;
2974 }
2975 
2976 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2977 {
2978 	struct netdev_queue *txq;
2979 	int i;
2980 
2981 	bcmgenet_fini_rx_napi(priv);
2982 	bcmgenet_fini_tx_napi(priv);
2983 
2984 	for (i = 0; i < priv->num_tx_bds; i++)
2985 		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2986 						  priv->tx_cbs + i));
2987 
2988 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2989 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2990 		netdev_tx_reset_queue(txq);
2991 	}
2992 
2993 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2994 	netdev_tx_reset_queue(txq);
2995 
2996 	bcmgenet_free_rx_buffers(priv);
2997 	kfree(priv->rx_cbs);
2998 	kfree(priv->tx_cbs);
2999 }
3000 
3001 /* init_edma: Initialize DMA control register */
3002 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
3003 {
3004 	int ret;
3005 	unsigned int i;
3006 	struct enet_cb *cb;
3007 
3008 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
3009 
3010 	/* Initialize common Rx ring structures */
3011 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
3012 	priv->num_rx_bds = TOTAL_DESC;
3013 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
3014 			       GFP_KERNEL);
3015 	if (!priv->rx_cbs)
3016 		return -ENOMEM;
3017 
3018 	for (i = 0; i < priv->num_rx_bds; i++) {
3019 		cb = priv->rx_cbs + i;
3020 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
3021 	}
3022 
3023 	/* Initialize common TX ring structures */
3024 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
3025 	priv->num_tx_bds = TOTAL_DESC;
3026 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
3027 			       GFP_KERNEL);
3028 	if (!priv->tx_cbs) {
3029 		kfree(priv->rx_cbs);
3030 		return -ENOMEM;
3031 	}
3032 
3033 	for (i = 0; i < priv->num_tx_bds; i++) {
3034 		cb = priv->tx_cbs + i;
3035 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
3036 	}
3037 
3038 	/* Init rDma */
3039 	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
3040 			     DMA_SCB_BURST_SIZE);
3041 
3042 	/* Initialize Rx queues */
3043 	ret = bcmgenet_init_rx_queues(priv->dev);
3044 	if (ret) {
3045 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
3046 		bcmgenet_free_rx_buffers(priv);
3047 		kfree(priv->rx_cbs);
3048 		kfree(priv->tx_cbs);
3049 		return ret;
3050 	}
3051 
3052 	/* Init tDma */
3053 	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
3054 			     DMA_SCB_BURST_SIZE);
3055 
3056 	/* Initialize Tx queues */
3057 	bcmgenet_init_tx_queues(priv->dev);
3058 
3059 	return 0;
3060 }
3061 
3062 /* Interrupt bottom half */
3063 static void bcmgenet_irq_task(struct work_struct *work)
3064 {
3065 	unsigned int status;
3066 	struct bcmgenet_priv *priv = container_of(
3067 			work, struct bcmgenet_priv, bcmgenet_irq_work);
3068 
3069 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
3070 
3071 	spin_lock_irq(&priv->lock);
3072 	status = priv->irq0_stat;
3073 	priv->irq0_stat = 0;
3074 	spin_unlock_irq(&priv->lock);
3075 
3076 	if (status & UMAC_IRQ_PHY_DET_R &&
3077 	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
3078 		phy_init_hw(priv->dev->phydev);
3079 		genphy_config_aneg(priv->dev->phydev);
3080 	}
3081 
3082 	/* Link UP/DOWN event */
3083 	if (status & UMAC_IRQ_LINK_EVENT)
3084 		phy_mac_interrupt(priv->dev->phydev);
3085 
3086 }
3087 
3088 /* bcmgenet_isr1: handle Rx and Tx priority queues */
3089 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
3090 {
3091 	struct bcmgenet_priv *priv = dev_id;
3092 	struct bcmgenet_rx_ring *rx_ring;
3093 	struct bcmgenet_tx_ring *tx_ring;
3094 	unsigned int index, status;
3095 
3096 	/* Read irq status */
3097 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
3098 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3099 
3100 	/* clear interrupts */
3101 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
3102 
3103 	netif_dbg(priv, intr, priv->dev,
3104 		  "%s: IRQ=0x%x\n", __func__, status);
3105 
3106 	/* Check Rx priority queue interrupts */
3107 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
3108 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
3109 			continue;
3110 
3111 		rx_ring = &priv->rx_rings[index];
3112 		rx_ring->dim.event_ctr++;
3113 
3114 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3115 			rx_ring->int_disable(rx_ring);
3116 			__napi_schedule_irqoff(&rx_ring->napi);
3117 		}
3118 	}
3119 
3120 	/* Check Tx priority queue interrupts */
3121 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
3122 		if (!(status & BIT(index)))
3123 			continue;
3124 
3125 		tx_ring = &priv->tx_rings[index];
3126 
3127 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3128 			tx_ring->int_disable(tx_ring);
3129 			__napi_schedule_irqoff(&tx_ring->napi);
3130 		}
3131 	}
3132 
3133 	return IRQ_HANDLED;
3134 }
3135 
3136 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
3137 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
3138 {
3139 	struct bcmgenet_priv *priv = dev_id;
3140 	struct bcmgenet_rx_ring *rx_ring;
3141 	struct bcmgenet_tx_ring *tx_ring;
3142 	unsigned int status;
3143 	unsigned long flags;
3144 
3145 	/* Read irq status */
3146 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
3147 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3148 
3149 	/* clear interrupts */
3150 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
3151 
3152 	netif_dbg(priv, intr, priv->dev,
3153 		  "IRQ=0x%x\n", status);
3154 
3155 	if (status & UMAC_IRQ_RXDMA_DONE) {
3156 		rx_ring = &priv->rx_rings[DESC_INDEX];
3157 		rx_ring->dim.event_ctr++;
3158 
3159 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
3160 			rx_ring->int_disable(rx_ring);
3161 			__napi_schedule_irqoff(&rx_ring->napi);
3162 		}
3163 	}
3164 
3165 	if (status & UMAC_IRQ_TXDMA_DONE) {
3166 		tx_ring = &priv->tx_rings[DESC_INDEX];
3167 
3168 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
3169 			tx_ring->int_disable(tx_ring);
3170 			__napi_schedule_irqoff(&tx_ring->napi);
3171 		}
3172 	}
3173 
3174 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
3175 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
3176 		wake_up(&priv->wq);
3177 	}
3178 
3179 	/* all other interested interrupts handled in bottom half */
3180 	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
3181 	if (status) {
3182 		/* Save irq status for bottom-half processing. */
3183 		spin_lock_irqsave(&priv->lock, flags);
3184 		priv->irq0_stat |= status;
3185 		spin_unlock_irqrestore(&priv->lock, flags);
3186 
3187 		schedule_work(&priv->bcmgenet_irq_work);
3188 	}
3189 
3190 	return IRQ_HANDLED;
3191 }
3192 
3193 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
3194 {
3195 	/* Acknowledge the interrupt */
3196 	return IRQ_HANDLED;
3197 }
3198 
3199 #ifdef CONFIG_NET_POLL_CONTROLLER
3200 static void bcmgenet_poll_controller(struct net_device *dev)
3201 {
3202 	struct bcmgenet_priv *priv = netdev_priv(dev);
3203 
3204 	/* Invoke the main RX/TX interrupt handler */
3205 	disable_irq(priv->irq0);
3206 	bcmgenet_isr0(priv->irq0, priv);
3207 	enable_irq(priv->irq0);
3208 
3209 	/* And the interrupt handler for RX/TX priority queues */
3210 	disable_irq(priv->irq1);
3211 	bcmgenet_isr1(priv->irq1, priv);
3212 	enable_irq(priv->irq1);
3213 }
3214 #endif
3215 
3216 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
3217 {
3218 	u32 reg;
3219 
3220 	reg = bcmgenet_rbuf_ctrl_get(priv);
3221 	reg |= BIT(1);
3222 	bcmgenet_rbuf_ctrl_set(priv, reg);
3223 	udelay(10);
3224 
3225 	reg &= ~BIT(1);
3226 	bcmgenet_rbuf_ctrl_set(priv, reg);
3227 	udelay(10);
3228 }
3229 
3230 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
3231 				 unsigned char *addr)
3232 {
3233 	bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
3234 	bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
3235 }
3236 
3237 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
3238 				 unsigned char *addr)
3239 {
3240 	u32 addr_tmp;
3241 
3242 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
3243 	put_unaligned_be32(addr_tmp, &addr[0]);
3244 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
3245 	put_unaligned_be16(addr_tmp, &addr[4]);
3246 }
3247 
3248 /* Returns a reusable dma control register value */
3249 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
3250 {
3251 	u32 reg;
3252 	u32 dma_ctrl;
3253 
3254 	/* disable DMA */
3255 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
3256 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3257 	reg &= ~dma_ctrl;
3258 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3259 
3260 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3261 	reg &= ~dma_ctrl;
3262 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3263 
3264 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
3265 	udelay(10);
3266 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
3267 
3268 	return dma_ctrl;
3269 }
3270 
3271 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
3272 {
3273 	u32 reg;
3274 
3275 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
3276 	reg |= dma_ctrl;
3277 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
3278 
3279 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
3280 	reg |= dma_ctrl;
3281 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
3282 }
3283 
3284 static void bcmgenet_netif_start(struct net_device *dev)
3285 {
3286 	struct bcmgenet_priv *priv = netdev_priv(dev);
3287 
3288 	/* Start the network engine */
3289 	bcmgenet_set_rx_mode(dev);
3290 	bcmgenet_enable_rx_napi(priv);
3291 
3292 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
3293 
3294 	bcmgenet_enable_tx_napi(priv);
3295 
3296 	/* Monitor link interrupts now */
3297 	bcmgenet_link_intr_enable(priv);
3298 
3299 	phy_start(dev->phydev);
3300 }
3301 
3302 static int bcmgenet_open(struct net_device *dev)
3303 {
3304 	struct bcmgenet_priv *priv = netdev_priv(dev);
3305 	unsigned long dma_ctrl;
3306 	u32 reg;
3307 	int ret;
3308 
3309 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
3310 
3311 	/* Turn on the clock */
3312 	clk_prepare_enable(priv->clk);
3313 
3314 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3315 	 * brought out of reset as absolutely no UniMAC activity is allowed
3316 	 */
3317 	if (priv->internal_phy)
3318 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3319 
3320 	/* take MAC out of reset */
3321 	bcmgenet_umac_reset(priv);
3322 
3323 	init_umac(priv);
3324 
3325 	/* Apply features again in case we changed them while interface was
3326 	 * down
3327 	 */
3328 	bcmgenet_set_features(dev, dev->features);
3329 
3330 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3331 
3332 	if (priv->internal_phy) {
3333 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3334 		reg |= EXT_ENERGY_DET_MASK;
3335 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3336 	}
3337 
3338 	/* Disable RX/TX DMA and flush TX queues */
3339 	dma_ctrl = bcmgenet_dma_disable(priv);
3340 
3341 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3342 	ret = bcmgenet_init_dma(priv);
3343 	if (ret) {
3344 		netdev_err(dev, "failed to initialize DMA\n");
3345 		goto err_clk_disable;
3346 	}
3347 
3348 	/* Always enable ring 16 - descriptor ring */
3349 	bcmgenet_enable_dma(priv, dma_ctrl);
3350 
3351 	/* HFB init */
3352 	bcmgenet_hfb_init(priv);
3353 
3354 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
3355 			  dev->name, priv);
3356 	if (ret < 0) {
3357 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
3358 		goto err_fini_dma;
3359 	}
3360 
3361 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
3362 			  dev->name, priv);
3363 	if (ret < 0) {
3364 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
3365 		goto err_irq0;
3366 	}
3367 
3368 	ret = bcmgenet_mii_probe(dev);
3369 	if (ret) {
3370 		netdev_err(dev, "failed to connect to PHY\n");
3371 		goto err_irq1;
3372 	}
3373 
3374 	bcmgenet_netif_start(dev);
3375 
3376 	netif_tx_start_all_queues(dev);
3377 
3378 	return 0;
3379 
3380 err_irq1:
3381 	free_irq(priv->irq1, priv);
3382 err_irq0:
3383 	free_irq(priv->irq0, priv);
3384 err_fini_dma:
3385 	bcmgenet_dma_teardown(priv);
3386 	bcmgenet_fini_dma(priv);
3387 err_clk_disable:
3388 	if (priv->internal_phy)
3389 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3390 	clk_disable_unprepare(priv->clk);
3391 	return ret;
3392 }
3393 
3394 static void bcmgenet_netif_stop(struct net_device *dev)
3395 {
3396 	struct bcmgenet_priv *priv = netdev_priv(dev);
3397 
3398 	bcmgenet_disable_tx_napi(priv);
3399 	netif_tx_disable(dev);
3400 
3401 	/* Disable MAC receive */
3402 	umac_enable_set(priv, CMD_RX_EN, false);
3403 
3404 	bcmgenet_dma_teardown(priv);
3405 
3406 	/* Disable MAC transmit. TX DMA disabled must be done before this */
3407 	umac_enable_set(priv, CMD_TX_EN, false);
3408 
3409 	phy_stop(dev->phydev);
3410 	bcmgenet_disable_rx_napi(priv);
3411 	bcmgenet_intr_disable(priv);
3412 
3413 	/* Wait for pending work items to complete. Since interrupts are
3414 	 * disabled no new work will be scheduled.
3415 	 */
3416 	cancel_work_sync(&priv->bcmgenet_irq_work);
3417 
3418 	priv->old_link = -1;
3419 	priv->old_speed = -1;
3420 	priv->old_duplex = -1;
3421 	priv->old_pause = -1;
3422 
3423 	/* tx reclaim */
3424 	bcmgenet_tx_reclaim_all(dev);
3425 	bcmgenet_fini_dma(priv);
3426 }
3427 
3428 static int bcmgenet_close(struct net_device *dev)
3429 {
3430 	struct bcmgenet_priv *priv = netdev_priv(dev);
3431 	int ret = 0;
3432 
3433 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3434 
3435 	bcmgenet_netif_stop(dev);
3436 
3437 	/* Really kill the PHY state machine and disconnect from it */
3438 	phy_disconnect(dev->phydev);
3439 
3440 	free_irq(priv->irq0, priv);
3441 	free_irq(priv->irq1, priv);
3442 
3443 	if (priv->internal_phy)
3444 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3445 
3446 	clk_disable_unprepare(priv->clk);
3447 
3448 	return ret;
3449 }
3450 
3451 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3452 {
3453 	struct bcmgenet_priv *priv = ring->priv;
3454 	u32 p_index, c_index, intsts, intmsk;
3455 	struct netdev_queue *txq;
3456 	unsigned int free_bds;
3457 	bool txq_stopped;
3458 
3459 	if (!netif_msg_tx_err(priv))
3460 		return;
3461 
3462 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3463 
3464 	spin_lock(&ring->lock);
3465 	if (ring->index == DESC_INDEX) {
3466 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3467 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3468 	} else {
3469 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3470 		intmsk = 1 << ring->index;
3471 	}
3472 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3473 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3474 	txq_stopped = netif_tx_queue_stopped(txq);
3475 	free_bds = ring->free_bds;
3476 	spin_unlock(&ring->lock);
3477 
3478 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3479 		  "TX queue status: %s, interrupts: %s\n"
3480 		  "(sw)free_bds: %d (sw)size: %d\n"
3481 		  "(sw)p_index: %d (hw)p_index: %d\n"
3482 		  "(sw)c_index: %d (hw)c_index: %d\n"
3483 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3484 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3485 		  ring->index, ring->queue,
3486 		  txq_stopped ? "stopped" : "active",
3487 		  intsts & intmsk ? "enabled" : "disabled",
3488 		  free_bds, ring->size,
3489 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3490 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3491 		  ring->clean_ptr, ring->write_ptr,
3492 		  ring->cb_ptr, ring->end_ptr);
3493 }
3494 
3495 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3496 {
3497 	struct bcmgenet_priv *priv = netdev_priv(dev);
3498 	u32 int0_enable = 0;
3499 	u32 int1_enable = 0;
3500 	unsigned int q;
3501 
3502 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3503 
3504 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3505 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3506 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3507 
3508 	bcmgenet_tx_reclaim_all(dev);
3509 
3510 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3511 		int1_enable |= (1 << q);
3512 
3513 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3514 
3515 	/* Re-enable TX interrupts if disabled */
3516 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3517 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3518 
3519 	netif_trans_update(dev);
3520 
3521 	dev->stats.tx_errors++;
3522 
3523 	netif_tx_wake_all_queues(dev);
3524 }
3525 
3526 #define MAX_MDF_FILTER	17
3527 
3528 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3529 					 unsigned char *addr,
3530 					 int *i)
3531 {
3532 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3533 			     UMAC_MDF_ADDR + (*i * 4));
3534 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3535 			     addr[4] << 8 | addr[5],
3536 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3537 	*i += 2;
3538 }
3539 
3540 static void bcmgenet_set_rx_mode(struct net_device *dev)
3541 {
3542 	struct bcmgenet_priv *priv = netdev_priv(dev);
3543 	struct netdev_hw_addr *ha;
3544 	int i, nfilter;
3545 	u32 reg;
3546 
3547 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3548 
3549 	/* Number of filters needed */
3550 	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3551 
3552 	/*
3553 	 * Turn on promicuous mode for three scenarios
3554 	 * 1. IFF_PROMISC flag is set
3555 	 * 2. IFF_ALLMULTI flag is set
3556 	 * 3. The number of filters needed exceeds the number filters
3557 	 *    supported by the hardware.
3558 	*/
3559 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3560 	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3561 	    (nfilter > MAX_MDF_FILTER)) {
3562 		reg |= CMD_PROMISC;
3563 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3564 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3565 		return;
3566 	} else {
3567 		reg &= ~CMD_PROMISC;
3568 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3569 	}
3570 
3571 	/* update MDF filter */
3572 	i = 0;
3573 	/* Broadcast */
3574 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3575 	/* my own address.*/
3576 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3577 
3578 	/* Unicast */
3579 	netdev_for_each_uc_addr(ha, dev)
3580 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3581 
3582 	/* Multicast */
3583 	netdev_for_each_mc_addr(ha, dev)
3584 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3585 
3586 	/* Enable filters */
3587 	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3588 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3589 }
3590 
3591 /* Set the hardware MAC address. */
3592 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3593 {
3594 	struct sockaddr *addr = p;
3595 
3596 	/* Setting the MAC address at the hardware level is not possible
3597 	 * without disabling the UniMAC RX/TX enable bits.
3598 	 */
3599 	if (netif_running(dev))
3600 		return -EBUSY;
3601 
3602 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3603 
3604 	return 0;
3605 }
3606 
3607 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3608 {
3609 	struct bcmgenet_priv *priv = netdev_priv(dev);
3610 	unsigned long tx_bytes = 0, tx_packets = 0;
3611 	unsigned long rx_bytes = 0, rx_packets = 0;
3612 	unsigned long rx_errors = 0, rx_dropped = 0;
3613 	struct bcmgenet_tx_ring *tx_ring;
3614 	struct bcmgenet_rx_ring *rx_ring;
3615 	unsigned int q;
3616 
3617 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3618 		tx_ring = &priv->tx_rings[q];
3619 		tx_bytes += tx_ring->bytes;
3620 		tx_packets += tx_ring->packets;
3621 	}
3622 	tx_ring = &priv->tx_rings[DESC_INDEX];
3623 	tx_bytes += tx_ring->bytes;
3624 	tx_packets += tx_ring->packets;
3625 
3626 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3627 		rx_ring = &priv->rx_rings[q];
3628 
3629 		rx_bytes += rx_ring->bytes;
3630 		rx_packets += rx_ring->packets;
3631 		rx_errors += rx_ring->errors;
3632 		rx_dropped += rx_ring->dropped;
3633 	}
3634 	rx_ring = &priv->rx_rings[DESC_INDEX];
3635 	rx_bytes += rx_ring->bytes;
3636 	rx_packets += rx_ring->packets;
3637 	rx_errors += rx_ring->errors;
3638 	rx_dropped += rx_ring->dropped;
3639 
3640 	dev->stats.tx_bytes = tx_bytes;
3641 	dev->stats.tx_packets = tx_packets;
3642 	dev->stats.rx_bytes = rx_bytes;
3643 	dev->stats.rx_packets = rx_packets;
3644 	dev->stats.rx_errors = rx_errors;
3645 	dev->stats.rx_missed_errors = rx_errors;
3646 	dev->stats.rx_dropped = rx_dropped;
3647 	return &dev->stats;
3648 }
3649 
3650 static const struct net_device_ops bcmgenet_netdev_ops = {
3651 	.ndo_open		= bcmgenet_open,
3652 	.ndo_stop		= bcmgenet_close,
3653 	.ndo_start_xmit		= bcmgenet_xmit,
3654 	.ndo_tx_timeout		= bcmgenet_timeout,
3655 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3656 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3657 	.ndo_do_ioctl		= phy_do_ioctl_running,
3658 	.ndo_set_features	= bcmgenet_set_features,
3659 #ifdef CONFIG_NET_POLL_CONTROLLER
3660 	.ndo_poll_controller	= bcmgenet_poll_controller,
3661 #endif
3662 	.ndo_get_stats		= bcmgenet_get_stats,
3663 };
3664 
3665 /* Array of GENET hardware parameters/characteristics */
3666 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3667 	[GENET_V1] = {
3668 		.tx_queues = 0,
3669 		.tx_bds_per_q = 0,
3670 		.rx_queues = 0,
3671 		.rx_bds_per_q = 0,
3672 		.bp_in_en_shift = 16,
3673 		.bp_in_mask = 0xffff,
3674 		.hfb_filter_cnt = 16,
3675 		.qtag_mask = 0x1F,
3676 		.hfb_offset = 0x1000,
3677 		.rdma_offset = 0x2000,
3678 		.tdma_offset = 0x3000,
3679 		.words_per_bd = 2,
3680 	},
3681 	[GENET_V2] = {
3682 		.tx_queues = 4,
3683 		.tx_bds_per_q = 32,
3684 		.rx_queues = 0,
3685 		.rx_bds_per_q = 0,
3686 		.bp_in_en_shift = 16,
3687 		.bp_in_mask = 0xffff,
3688 		.hfb_filter_cnt = 16,
3689 		.qtag_mask = 0x1F,
3690 		.tbuf_offset = 0x0600,
3691 		.hfb_offset = 0x1000,
3692 		.hfb_reg_offset = 0x2000,
3693 		.rdma_offset = 0x3000,
3694 		.tdma_offset = 0x4000,
3695 		.words_per_bd = 2,
3696 		.flags = GENET_HAS_EXT,
3697 	},
3698 	[GENET_V3] = {
3699 		.tx_queues = 4,
3700 		.tx_bds_per_q = 32,
3701 		.rx_queues = 0,
3702 		.rx_bds_per_q = 0,
3703 		.bp_in_en_shift = 17,
3704 		.bp_in_mask = 0x1ffff,
3705 		.hfb_filter_cnt = 48,
3706 		.hfb_filter_size = 128,
3707 		.qtag_mask = 0x3F,
3708 		.tbuf_offset = 0x0600,
3709 		.hfb_offset = 0x8000,
3710 		.hfb_reg_offset = 0xfc00,
3711 		.rdma_offset = 0x10000,
3712 		.tdma_offset = 0x11000,
3713 		.words_per_bd = 2,
3714 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3715 			 GENET_HAS_MOCA_LINK_DET,
3716 	},
3717 	[GENET_V4] = {
3718 		.tx_queues = 4,
3719 		.tx_bds_per_q = 32,
3720 		.rx_queues = 0,
3721 		.rx_bds_per_q = 0,
3722 		.bp_in_en_shift = 17,
3723 		.bp_in_mask = 0x1ffff,
3724 		.hfb_filter_cnt = 48,
3725 		.hfb_filter_size = 128,
3726 		.qtag_mask = 0x3F,
3727 		.tbuf_offset = 0x0600,
3728 		.hfb_offset = 0x8000,
3729 		.hfb_reg_offset = 0xfc00,
3730 		.rdma_offset = 0x2000,
3731 		.tdma_offset = 0x4000,
3732 		.words_per_bd = 3,
3733 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3734 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3735 	},
3736 	[GENET_V5] = {
3737 		.tx_queues = 4,
3738 		.tx_bds_per_q = 32,
3739 		.rx_queues = 0,
3740 		.rx_bds_per_q = 0,
3741 		.bp_in_en_shift = 17,
3742 		.bp_in_mask = 0x1ffff,
3743 		.hfb_filter_cnt = 48,
3744 		.hfb_filter_size = 128,
3745 		.qtag_mask = 0x3F,
3746 		.tbuf_offset = 0x0600,
3747 		.hfb_offset = 0x8000,
3748 		.hfb_reg_offset = 0xfc00,
3749 		.rdma_offset = 0x2000,
3750 		.tdma_offset = 0x4000,
3751 		.words_per_bd = 3,
3752 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3753 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3754 	},
3755 };
3756 
3757 /* Infer hardware parameters from the detected GENET version */
3758 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3759 {
3760 	struct bcmgenet_hw_params *params;
3761 	u32 reg;
3762 	u8 major;
3763 	u16 gphy_rev;
3764 
3765 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3766 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3767 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3768 	} else if (GENET_IS_V3(priv)) {
3769 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3770 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3771 	} else if (GENET_IS_V2(priv)) {
3772 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3773 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3774 	} else if (GENET_IS_V1(priv)) {
3775 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3776 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3777 	}
3778 
3779 	/* enum genet_version starts at 1 */
3780 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3781 	params = priv->hw_params;
3782 
3783 	/* Read GENET HW version */
3784 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3785 	major = (reg >> 24 & 0x0f);
3786 	if (major == 6)
3787 		major = 5;
3788 	else if (major == 5)
3789 		major = 4;
3790 	else if (major == 0)
3791 		major = 1;
3792 	if (major != priv->version) {
3793 		dev_err(&priv->pdev->dev,
3794 			"GENET version mismatch, got: %d, configured for: %d\n",
3795 			major, priv->version);
3796 	}
3797 
3798 	/* Print the GENET core version */
3799 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3800 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3801 
3802 	/* Store the integrated PHY revision for the MDIO probing function
3803 	 * to pass this information to the PHY driver. The PHY driver expects
3804 	 * to find the PHY major revision in bits 15:8 while the GENET register
3805 	 * stores that information in bits 7:0, account for that.
3806 	 *
3807 	 * On newer chips, starting with PHY revision G0, a new scheme is
3808 	 * deployed similar to the Starfighter 2 switch with GPHY major
3809 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3810 	 * is reserved as well as special value 0x01ff, we have a small
3811 	 * heuristic to check for the new GPHY revision and re-arrange things
3812 	 * so the GPHY driver is happy.
3813 	 */
3814 	gphy_rev = reg & 0xffff;
3815 
3816 	if (GENET_IS_V5(priv)) {
3817 		/* The EPHY revision should come from the MDIO registers of
3818 		 * the PHY not from GENET.
3819 		 */
3820 		if (gphy_rev != 0) {
3821 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3822 				gphy_rev);
3823 		}
3824 	/* This is reserved so should require special treatment */
3825 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3826 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3827 		return;
3828 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3829 	} else if ((gphy_rev & 0xf0) != 0) {
3830 		priv->gphy_rev = gphy_rev << 8;
3831 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3832 	} else if ((gphy_rev & 0xff00) != 0) {
3833 		priv->gphy_rev = gphy_rev;
3834 	}
3835 
3836 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3837 	if (!(params->flags & GENET_HAS_40BITS))
3838 		pr_warn("GENET does not support 40-bits PA\n");
3839 #endif
3840 
3841 	pr_debug("Configuration for version: %d\n"
3842 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3843 		"BP << en: %2d, BP msk: 0x%05x\n"
3844 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3845 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3846 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3847 		"Words/BD: %d\n",
3848 		priv->version,
3849 		params->tx_queues, params->tx_bds_per_q,
3850 		params->rx_queues, params->rx_bds_per_q,
3851 		params->bp_in_en_shift, params->bp_in_mask,
3852 		params->hfb_filter_cnt, params->qtag_mask,
3853 		params->tbuf_offset, params->hfb_offset,
3854 		params->hfb_reg_offset,
3855 		params->rdma_offset, params->tdma_offset,
3856 		params->words_per_bd);
3857 }
3858 
3859 struct bcmgenet_plat_data {
3860 	enum bcmgenet_version version;
3861 	u32 dma_max_burst_length;
3862 };
3863 
3864 static const struct bcmgenet_plat_data v1_plat_data = {
3865 	.version = GENET_V1,
3866 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3867 };
3868 
3869 static const struct bcmgenet_plat_data v2_plat_data = {
3870 	.version = GENET_V2,
3871 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3872 };
3873 
3874 static const struct bcmgenet_plat_data v3_plat_data = {
3875 	.version = GENET_V3,
3876 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3877 };
3878 
3879 static const struct bcmgenet_plat_data v4_plat_data = {
3880 	.version = GENET_V4,
3881 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3882 };
3883 
3884 static const struct bcmgenet_plat_data v5_plat_data = {
3885 	.version = GENET_V5,
3886 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3887 };
3888 
3889 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3890 	.version = GENET_V5,
3891 	.dma_max_burst_length = 0x08,
3892 };
3893 
3894 static const struct of_device_id bcmgenet_match[] = {
3895 	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3896 	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3897 	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3898 	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3899 	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3900 	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3901 	{ },
3902 };
3903 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3904 
3905 static int bcmgenet_probe(struct platform_device *pdev)
3906 {
3907 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3908 	const struct bcmgenet_plat_data *pdata;
3909 	struct bcmgenet_priv *priv;
3910 	struct net_device *dev;
3911 	unsigned int i;
3912 	int err = -EIO;
3913 
3914 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3915 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3916 				 GENET_MAX_MQ_CNT + 1);
3917 	if (!dev) {
3918 		dev_err(&pdev->dev, "can't allocate net device\n");
3919 		return -ENOMEM;
3920 	}
3921 
3922 	priv = netdev_priv(dev);
3923 	priv->irq0 = platform_get_irq(pdev, 0);
3924 	if (priv->irq0 < 0) {
3925 		err = priv->irq0;
3926 		goto err;
3927 	}
3928 	priv->irq1 = platform_get_irq(pdev, 1);
3929 	if (priv->irq1 < 0) {
3930 		err = priv->irq1;
3931 		goto err;
3932 	}
3933 	priv->wol_irq = platform_get_irq_optional(pdev, 2);
3934 
3935 	priv->base = devm_platform_ioremap_resource(pdev, 0);
3936 	if (IS_ERR(priv->base)) {
3937 		err = PTR_ERR(priv->base);
3938 		goto err;
3939 	}
3940 
3941 	spin_lock_init(&priv->lock);
3942 
3943 	SET_NETDEV_DEV(dev, &pdev->dev);
3944 	dev_set_drvdata(&pdev->dev, dev);
3945 	dev->watchdog_timeo = 2 * HZ;
3946 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3947 	dev->netdev_ops = &bcmgenet_netdev_ops;
3948 
3949 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3950 
3951 	/* Set default features */
3952 	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3953 			 NETIF_F_RXCSUM;
3954 	dev->hw_features |= dev->features;
3955 	dev->vlan_features |= dev->features;
3956 
3957 	/* Request the WOL interrupt and advertise suspend if available */
3958 	priv->wol_irq_disabled = true;
3959 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3960 			       dev->name, priv);
3961 	if (!err)
3962 		device_set_wakeup_capable(&pdev->dev, 1);
3963 
3964 	/* Set the needed headroom to account for any possible
3965 	 * features enabling/disabling at runtime
3966 	 */
3967 	dev->needed_headroom += 64;
3968 
3969 	netdev_boot_setup_check(dev);
3970 
3971 	priv->dev = dev;
3972 	priv->pdev = pdev;
3973 
3974 	pdata = device_get_match_data(&pdev->dev);
3975 	if (pdata) {
3976 		priv->version = pdata->version;
3977 		priv->dma_max_burst_length = pdata->dma_max_burst_length;
3978 	} else {
3979 		priv->version = pd->genet_version;
3980 		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3981 	}
3982 
3983 	priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
3984 	if (IS_ERR(priv->clk)) {
3985 		dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3986 		err = PTR_ERR(priv->clk);
3987 		goto err;
3988 	}
3989 
3990 	err = clk_prepare_enable(priv->clk);
3991 	if (err)
3992 		goto err;
3993 
3994 	bcmgenet_set_hw_params(priv);
3995 
3996 	err = -EIO;
3997 	if (priv->hw_params->flags & GENET_HAS_40BITS)
3998 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
3999 	if (err)
4000 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4001 	if (err)
4002 		goto err;
4003 
4004 	/* Mii wait queue */
4005 	init_waitqueue_head(&priv->wq);
4006 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
4007 	priv->rx_buf_len = RX_BUF_LENGTH;
4008 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
4009 
4010 	priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
4011 	if (IS_ERR(priv->clk_wol)) {
4012 		dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
4013 		err = PTR_ERR(priv->clk_wol);
4014 		goto err;
4015 	}
4016 
4017 	priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
4018 	if (IS_ERR(priv->clk_eee)) {
4019 		dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
4020 		err = PTR_ERR(priv->clk_eee);
4021 		goto err;
4022 	}
4023 
4024 	/* If this is an internal GPHY, power it on now, before UniMAC is
4025 	 * brought out of reset as absolutely no UniMAC activity is allowed
4026 	 */
4027 	if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
4028 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4029 
4030 	if (pd && !IS_ERR_OR_NULL(pd->mac_address))
4031 		ether_addr_copy(dev->dev_addr, pd->mac_address);
4032 	else
4033 		if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
4034 			if (has_acpi_companion(&pdev->dev))
4035 				bcmgenet_get_hw_addr(priv, dev->dev_addr);
4036 
4037 	if (!is_valid_ether_addr(dev->dev_addr)) {
4038 		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
4039 		eth_hw_addr_random(dev);
4040 	}
4041 
4042 	reset_umac(priv);
4043 
4044 	err = bcmgenet_mii_init(dev);
4045 	if (err)
4046 		goto err_clk_disable;
4047 
4048 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
4049 	 * just the ring 16 descriptor based TX
4050 	 */
4051 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
4052 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
4053 
4054 	/* Set default coalescing parameters */
4055 	for (i = 0; i < priv->hw_params->rx_queues; i++)
4056 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
4057 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
4058 
4059 	/* libphy will determine the link state */
4060 	netif_carrier_off(dev);
4061 
4062 	/* Turn off the main clock, WOL clock is handled separately */
4063 	clk_disable_unprepare(priv->clk);
4064 
4065 	err = register_netdev(dev);
4066 	if (err)
4067 		goto err;
4068 
4069 	return err;
4070 
4071 err_clk_disable:
4072 	clk_disable_unprepare(priv->clk);
4073 err:
4074 	free_netdev(dev);
4075 	return err;
4076 }
4077 
4078 static int bcmgenet_remove(struct platform_device *pdev)
4079 {
4080 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
4081 
4082 	dev_set_drvdata(&pdev->dev, NULL);
4083 	unregister_netdev(priv->dev);
4084 	bcmgenet_mii_exit(priv->dev);
4085 	free_netdev(priv->dev);
4086 
4087 	return 0;
4088 }
4089 
4090 static void bcmgenet_shutdown(struct platform_device *pdev)
4091 {
4092 	bcmgenet_remove(pdev);
4093 }
4094 
4095 #ifdef CONFIG_PM_SLEEP
4096 static int bcmgenet_resume_noirq(struct device *d)
4097 {
4098 	struct net_device *dev = dev_get_drvdata(d);
4099 	struct bcmgenet_priv *priv = netdev_priv(dev);
4100 	int ret;
4101 	u32 reg;
4102 
4103 	if (!netif_running(dev))
4104 		return 0;
4105 
4106 	/* Turn on the clock */
4107 	ret = clk_prepare_enable(priv->clk);
4108 	if (ret)
4109 		return ret;
4110 
4111 	if (device_may_wakeup(d) && priv->wolopts) {
4112 		/* Account for Wake-on-LAN events and clear those events
4113 		 * (Some devices need more time between enabling the clocks
4114 		 *  and the interrupt register reflecting the wake event so
4115 		 *  read the register twice)
4116 		 */
4117 		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4118 		reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT);
4119 		if (reg & UMAC_IRQ_WAKE_EVENT)
4120 			pm_wakeup_event(&priv->pdev->dev, 0);
4121 	}
4122 
4123 	bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR);
4124 
4125 	return 0;
4126 }
4127 
4128 static int bcmgenet_resume(struct device *d)
4129 {
4130 	struct net_device *dev = dev_get_drvdata(d);
4131 	struct bcmgenet_priv *priv = netdev_priv(dev);
4132 	unsigned long dma_ctrl;
4133 	u32 offset, reg;
4134 	int ret;
4135 
4136 	if (!netif_running(dev))
4137 		return 0;
4138 
4139 	/* From WOL-enabled suspend, switch to regular clock */
4140 	if (device_may_wakeup(d) && priv->wolopts)
4141 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
4142 
4143 	/* If this is an internal GPHY, power it back on now, before UniMAC is
4144 	 * brought out of reset as absolutely no UniMAC activity is allowed
4145 	 */
4146 	if (priv->internal_phy)
4147 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
4148 
4149 	bcmgenet_umac_reset(priv);
4150 
4151 	init_umac(priv);
4152 
4153 	phy_init_hw(dev->phydev);
4154 
4155 	/* Speed settings must be restored */
4156 	genphy_config_aneg(dev->phydev);
4157 	bcmgenet_mii_config(priv->dev, false);
4158 
4159 	/* Restore enabled features */
4160 	bcmgenet_set_features(dev, dev->features);
4161 
4162 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
4163 
4164 	offset = HFB_FLT_ENABLE_V3PLUS;
4165 	bcmgenet_hfb_reg_writel(priv, priv->hfb_en[1], offset);
4166 	bcmgenet_hfb_reg_writel(priv, priv->hfb_en[2], offset + sizeof(u32));
4167 	bcmgenet_hfb_reg_writel(priv, priv->hfb_en[0], HFB_CTRL);
4168 
4169 	if (priv->internal_phy) {
4170 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
4171 		reg |= EXT_ENERGY_DET_MASK;
4172 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
4173 	}
4174 
4175 	/* Disable RX/TX DMA and flush TX queues */
4176 	dma_ctrl = bcmgenet_dma_disable(priv);
4177 
4178 	/* Reinitialize TDMA and RDMA and SW housekeeping */
4179 	ret = bcmgenet_init_dma(priv);
4180 	if (ret) {
4181 		netdev_err(dev, "failed to initialize DMA\n");
4182 		goto out_clk_disable;
4183 	}
4184 
4185 	/* Always enable ring 16 - descriptor ring */
4186 	bcmgenet_enable_dma(priv, dma_ctrl);
4187 
4188 	if (!device_may_wakeup(d))
4189 		phy_resume(dev->phydev);
4190 
4191 	if (priv->eee.eee_enabled)
4192 		bcmgenet_eee_enable_set(dev, true);
4193 
4194 	bcmgenet_netif_start(dev);
4195 
4196 	netif_device_attach(dev);
4197 
4198 	return 0;
4199 
4200 out_clk_disable:
4201 	if (priv->internal_phy)
4202 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4203 	clk_disable_unprepare(priv->clk);
4204 	return ret;
4205 }
4206 
4207 static int bcmgenet_suspend(struct device *d)
4208 {
4209 	struct net_device *dev = dev_get_drvdata(d);
4210 	struct bcmgenet_priv *priv = netdev_priv(dev);
4211 	u32 offset;
4212 
4213 	if (!netif_running(dev))
4214 		return 0;
4215 
4216 	netif_device_detach(dev);
4217 
4218 	bcmgenet_netif_stop(dev);
4219 
4220 	if (!device_may_wakeup(d))
4221 		phy_suspend(dev->phydev);
4222 
4223 	/* Preserve filter state and disable filtering */
4224 	priv->hfb_en[0] = bcmgenet_hfb_reg_readl(priv, HFB_CTRL);
4225 	offset = HFB_FLT_ENABLE_V3PLUS;
4226 	priv->hfb_en[1] = bcmgenet_hfb_reg_readl(priv, offset);
4227 	priv->hfb_en[2] = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32));
4228 	bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL);
4229 
4230 	return 0;
4231 }
4232 
4233 static int bcmgenet_suspend_noirq(struct device *d)
4234 {
4235 	struct net_device *dev = dev_get_drvdata(d);
4236 	struct bcmgenet_priv *priv = netdev_priv(dev);
4237 	int ret = 0;
4238 
4239 	if (!netif_running(dev))
4240 		return 0;
4241 
4242 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
4243 	if (device_may_wakeup(d) && priv->wolopts)
4244 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
4245 	else if (priv->internal_phy)
4246 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
4247 
4248 	/* Let the framework handle resumption and leave the clocks on */
4249 	if (ret)
4250 		return ret;
4251 
4252 	/* Turn off the clocks */
4253 	clk_disable_unprepare(priv->clk);
4254 
4255 	return 0;
4256 }
4257 #else
4258 #define bcmgenet_suspend	NULL
4259 #define bcmgenet_suspend_noirq	NULL
4260 #define bcmgenet_resume		NULL
4261 #define bcmgenet_resume_noirq	NULL
4262 #endif /* CONFIG_PM_SLEEP */
4263 
4264 static const struct dev_pm_ops bcmgenet_pm_ops = {
4265 	.suspend	= bcmgenet_suspend,
4266 	.suspend_noirq	= bcmgenet_suspend_noirq,
4267 	.resume		= bcmgenet_resume,
4268 	.resume_noirq	= bcmgenet_resume_noirq,
4269 };
4270 
4271 static const struct acpi_device_id genet_acpi_match[] = {
4272 	{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
4273 	{ },
4274 };
4275 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
4276 
4277 static struct platform_driver bcmgenet_driver = {
4278 	.probe	= bcmgenet_probe,
4279 	.remove	= bcmgenet_remove,
4280 	.shutdown = bcmgenet_shutdown,
4281 	.driver	= {
4282 		.name	= "bcmgenet",
4283 		.of_match_table = bcmgenet_match,
4284 		.pm	= &bcmgenet_pm_ops,
4285 		.acpi_match_table = genet_acpi_match,
4286 	},
4287 };
4288 module_platform_driver(bcmgenet_driver);
4289 
4290 MODULE_AUTHOR("Broadcom Corporation");
4291 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
4292 MODULE_ALIAS("platform:bcmgenet");
4293 MODULE_LICENSE("GPL");
4294