xref: /openbmc/linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 
46 #include <asm/unaligned.h>
47 
48 #include "bcmgenet.h"
49 
50 /* Maximum number of hardware queues, downsized if needed */
51 #define GENET_MAX_MQ_CNT	4
52 
53 /* Default highest priority queue for multi queue support */
54 #define GENET_Q0_PRIORITY	0
55 
56 #define GENET_DEFAULT_BD_CNT	\
57 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->bds_cnt)
58 
59 #define RX_BUF_LENGTH		2048
60 #define SKB_ALIGNMENT		32
61 
62 /* Tx/Rx DMA register offset, skip 256 descriptors */
63 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
64 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
65 
66 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
67 				TOTAL_DESC * DMA_DESC_SIZE)
68 
69 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
73 					     void __iomem *d, u32 value)
74 {
75 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
76 }
77 
78 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
79 					    void __iomem *d)
80 {
81 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
82 }
83 
84 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
85 				    void __iomem *d,
86 				    dma_addr_t addr)
87 {
88 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
89 
90 	/* Register writes to GISB bus can take couple hundred nanoseconds
91 	 * and are done for each packet, save these expensive writes unless
92 	 * the platform is explicitly configured for 64-bits/LPAE.
93 	 */
94 #ifdef CONFIG_PHYS_ADDR_T_64BIT
95 	if (priv->hw_params->flags & GENET_HAS_40BITS)
96 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
97 #endif
98 }
99 
100 /* Combined address + length/status setter */
101 static inline void dmadesc_set(struct bcmgenet_priv *priv,
102 			       void __iomem *d, dma_addr_t addr, u32 val)
103 {
104 	dmadesc_set_length_status(priv, d, val);
105 	dmadesc_set_addr(priv, d, addr);
106 }
107 
108 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
109 					  void __iomem *d)
110 {
111 	dma_addr_t addr;
112 
113 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
114 
115 	/* Register writes to GISB bus can take couple hundred nanoseconds
116 	 * and are done for each packet, save these expensive writes unless
117 	 * the platform is explicitly configured for 64-bits/LPAE.
118 	 */
119 #ifdef CONFIG_PHYS_ADDR_T_64BIT
120 	if (priv->hw_params->flags & GENET_HAS_40BITS)
121 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
122 #endif
123 	return addr;
124 }
125 
126 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
127 
128 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
129 				NETIF_MSG_LINK)
130 
131 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
132 {
133 	if (GENET_IS_V1(priv))
134 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
135 	else
136 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
137 }
138 
139 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
140 {
141 	if (GENET_IS_V1(priv))
142 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
143 	else
144 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
145 }
146 
147 /* These macros are defined to deal with register map change
148  * between GENET1.1 and GENET2. Only those currently being used
149  * by driver are defined.
150  */
151 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
152 {
153 	if (GENET_IS_V1(priv))
154 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
155 	else
156 		return __raw_readl(priv->base +
157 				priv->hw_params->tbuf_offset + TBUF_CTRL);
158 }
159 
160 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
161 {
162 	if (GENET_IS_V1(priv))
163 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
164 	else
165 		__raw_writel(val, priv->base +
166 				priv->hw_params->tbuf_offset + TBUF_CTRL);
167 }
168 
169 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
170 {
171 	if (GENET_IS_V1(priv))
172 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
173 	else
174 		return __raw_readl(priv->base +
175 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
176 }
177 
178 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
179 {
180 	if (GENET_IS_V1(priv))
181 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
182 	else
183 		__raw_writel(val, priv->base +
184 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
185 }
186 
187 /* RX/TX DMA register accessors */
188 enum dma_reg {
189 	DMA_RING_CFG = 0,
190 	DMA_CTRL,
191 	DMA_STATUS,
192 	DMA_SCB_BURST_SIZE,
193 	DMA_ARB_CTRL,
194 	DMA_PRIORITY_0,
195 	DMA_PRIORITY_1,
196 	DMA_PRIORITY_2,
197 };
198 
199 static const u8 bcmgenet_dma_regs_v3plus[] = {
200 	[DMA_RING_CFG]		= 0x00,
201 	[DMA_CTRL]		= 0x04,
202 	[DMA_STATUS]		= 0x08,
203 	[DMA_SCB_BURST_SIZE]	= 0x0C,
204 	[DMA_ARB_CTRL]		= 0x2C,
205 	[DMA_PRIORITY_0]	= 0x30,
206 	[DMA_PRIORITY_1]	= 0x34,
207 	[DMA_PRIORITY_2]	= 0x38,
208 };
209 
210 static const u8 bcmgenet_dma_regs_v2[] = {
211 	[DMA_RING_CFG]		= 0x00,
212 	[DMA_CTRL]		= 0x04,
213 	[DMA_STATUS]		= 0x08,
214 	[DMA_SCB_BURST_SIZE]	= 0x0C,
215 	[DMA_ARB_CTRL]		= 0x30,
216 	[DMA_PRIORITY_0]	= 0x34,
217 	[DMA_PRIORITY_1]	= 0x38,
218 	[DMA_PRIORITY_2]	= 0x3C,
219 };
220 
221 static const u8 bcmgenet_dma_regs_v1[] = {
222 	[DMA_CTRL]		= 0x00,
223 	[DMA_STATUS]		= 0x04,
224 	[DMA_SCB_BURST_SIZE]	= 0x0C,
225 	[DMA_ARB_CTRL]		= 0x30,
226 	[DMA_PRIORITY_0]	= 0x34,
227 	[DMA_PRIORITY_1]	= 0x38,
228 	[DMA_PRIORITY_2]	= 0x3C,
229 };
230 
231 /* Set at runtime once bcmgenet version is known */
232 static const u8 *bcmgenet_dma_regs;
233 
234 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
235 {
236 	return netdev_priv(dev_get_drvdata(dev));
237 }
238 
239 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
240 				      enum dma_reg r)
241 {
242 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
243 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
244 }
245 
246 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
247 					u32 val, enum dma_reg r)
248 {
249 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
250 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
251 }
252 
253 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
254 				      enum dma_reg r)
255 {
256 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
257 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
258 }
259 
260 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
261 					u32 val, enum dma_reg r)
262 {
263 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
264 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
265 }
266 
267 /* RDMA/TDMA ring registers and accessors
268  * we merge the common fields and just prefix with T/D the registers
269  * having different meaning depending on the direction
270  */
271 enum dma_ring_reg {
272 	TDMA_READ_PTR = 0,
273 	RDMA_WRITE_PTR = TDMA_READ_PTR,
274 	TDMA_READ_PTR_HI,
275 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
276 	TDMA_CONS_INDEX,
277 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
278 	TDMA_PROD_INDEX,
279 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
280 	DMA_RING_BUF_SIZE,
281 	DMA_START_ADDR,
282 	DMA_START_ADDR_HI,
283 	DMA_END_ADDR,
284 	DMA_END_ADDR_HI,
285 	DMA_MBUF_DONE_THRESH,
286 	TDMA_FLOW_PERIOD,
287 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
288 	TDMA_WRITE_PTR,
289 	RDMA_READ_PTR = TDMA_WRITE_PTR,
290 	TDMA_WRITE_PTR_HI,
291 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
292 };
293 
294 /* GENET v4 supports 40-bits pointer addressing
295  * for obvious reasons the LO and HI word parts
296  * are contiguous, but this offsets the other
297  * registers.
298  */
299 static const u8 genet_dma_ring_regs_v4[] = {
300 	[TDMA_READ_PTR]			= 0x00,
301 	[TDMA_READ_PTR_HI]		= 0x04,
302 	[TDMA_CONS_INDEX]		= 0x08,
303 	[TDMA_PROD_INDEX]		= 0x0C,
304 	[DMA_RING_BUF_SIZE]		= 0x10,
305 	[DMA_START_ADDR]		= 0x14,
306 	[DMA_START_ADDR_HI]		= 0x18,
307 	[DMA_END_ADDR]			= 0x1C,
308 	[DMA_END_ADDR_HI]		= 0x20,
309 	[DMA_MBUF_DONE_THRESH]		= 0x24,
310 	[TDMA_FLOW_PERIOD]		= 0x28,
311 	[TDMA_WRITE_PTR]		= 0x2C,
312 	[TDMA_WRITE_PTR_HI]		= 0x30,
313 };
314 
315 static const u8 genet_dma_ring_regs_v123[] = {
316 	[TDMA_READ_PTR]			= 0x00,
317 	[TDMA_CONS_INDEX]		= 0x04,
318 	[TDMA_PROD_INDEX]		= 0x08,
319 	[DMA_RING_BUF_SIZE]		= 0x0C,
320 	[DMA_START_ADDR]		= 0x10,
321 	[DMA_END_ADDR]			= 0x14,
322 	[DMA_MBUF_DONE_THRESH]		= 0x18,
323 	[TDMA_FLOW_PERIOD]		= 0x1C,
324 	[TDMA_WRITE_PTR]		= 0x20,
325 };
326 
327 /* Set at runtime once GENET version is known */
328 static const u8 *genet_dma_ring_regs;
329 
330 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
331 					   unsigned int ring,
332 					   enum dma_ring_reg r)
333 {
334 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
335 			(DMA_RING_SIZE * ring) +
336 			genet_dma_ring_regs[r]);
337 }
338 
339 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
340 					     unsigned int ring, u32 val,
341 					     enum dma_ring_reg r)
342 {
343 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
344 			(DMA_RING_SIZE * ring) +
345 			genet_dma_ring_regs[r]);
346 }
347 
348 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
349 					   unsigned int ring,
350 					   enum dma_ring_reg r)
351 {
352 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
353 			(DMA_RING_SIZE * ring) +
354 			genet_dma_ring_regs[r]);
355 }
356 
357 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
358 					     unsigned int ring, u32 val,
359 					     enum dma_ring_reg r)
360 {
361 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
362 			(DMA_RING_SIZE * ring) +
363 			genet_dma_ring_regs[r]);
364 }
365 
366 static int bcmgenet_get_settings(struct net_device *dev,
367 				 struct ethtool_cmd *cmd)
368 {
369 	struct bcmgenet_priv *priv = netdev_priv(dev);
370 
371 	if (!netif_running(dev))
372 		return -EINVAL;
373 
374 	if (!priv->phydev)
375 		return -ENODEV;
376 
377 	return phy_ethtool_gset(priv->phydev, cmd);
378 }
379 
380 static int bcmgenet_set_settings(struct net_device *dev,
381 				 struct ethtool_cmd *cmd)
382 {
383 	struct bcmgenet_priv *priv = netdev_priv(dev);
384 
385 	if (!netif_running(dev))
386 		return -EINVAL;
387 
388 	if (!priv->phydev)
389 		return -ENODEV;
390 
391 	return phy_ethtool_sset(priv->phydev, cmd);
392 }
393 
394 static int bcmgenet_set_rx_csum(struct net_device *dev,
395 				netdev_features_t wanted)
396 {
397 	struct bcmgenet_priv *priv = netdev_priv(dev);
398 	u32 rbuf_chk_ctrl;
399 	bool rx_csum_en;
400 
401 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
402 
403 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
404 
405 	/* enable rx checksumming */
406 	if (rx_csum_en)
407 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
408 	else
409 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
410 	priv->desc_rxchk_en = rx_csum_en;
411 
412 	/* If UniMAC forwards CRC, we need to skip over it to get
413 	 * a valid CHK bit to be set in the per-packet status word
414 	*/
415 	if (rx_csum_en && priv->crc_fwd_en)
416 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
417 	else
418 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
419 
420 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
421 
422 	return 0;
423 }
424 
425 static int bcmgenet_set_tx_csum(struct net_device *dev,
426 				netdev_features_t wanted)
427 {
428 	struct bcmgenet_priv *priv = netdev_priv(dev);
429 	bool desc_64b_en;
430 	u32 tbuf_ctrl, rbuf_ctrl;
431 
432 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
433 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
434 
435 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
436 
437 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
438 	if (desc_64b_en) {
439 		tbuf_ctrl |= RBUF_64B_EN;
440 		rbuf_ctrl |= RBUF_64B_EN;
441 	} else {
442 		tbuf_ctrl &= ~RBUF_64B_EN;
443 		rbuf_ctrl &= ~RBUF_64B_EN;
444 	}
445 	priv->desc_64b_en = desc_64b_en;
446 
447 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
448 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
449 
450 	return 0;
451 }
452 
453 static int bcmgenet_set_features(struct net_device *dev,
454 				 netdev_features_t features)
455 {
456 	netdev_features_t changed = features ^ dev->features;
457 	netdev_features_t wanted = dev->wanted_features;
458 	int ret = 0;
459 
460 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
461 		ret = bcmgenet_set_tx_csum(dev, wanted);
462 	if (changed & (NETIF_F_RXCSUM))
463 		ret = bcmgenet_set_rx_csum(dev, wanted);
464 
465 	return ret;
466 }
467 
468 static u32 bcmgenet_get_msglevel(struct net_device *dev)
469 {
470 	struct bcmgenet_priv *priv = netdev_priv(dev);
471 
472 	return priv->msg_enable;
473 }
474 
475 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
476 {
477 	struct bcmgenet_priv *priv = netdev_priv(dev);
478 
479 	priv->msg_enable = level;
480 }
481 
482 /* standard ethtool support functions. */
483 enum bcmgenet_stat_type {
484 	BCMGENET_STAT_NETDEV = -1,
485 	BCMGENET_STAT_MIB_RX,
486 	BCMGENET_STAT_MIB_TX,
487 	BCMGENET_STAT_RUNT,
488 	BCMGENET_STAT_MISC,
489 };
490 
491 struct bcmgenet_stats {
492 	char stat_string[ETH_GSTRING_LEN];
493 	int stat_sizeof;
494 	int stat_offset;
495 	enum bcmgenet_stat_type type;
496 	/* reg offset from UMAC base for misc counters */
497 	u16 reg_offset;
498 };
499 
500 #define STAT_NETDEV(m) { \
501 	.stat_string = __stringify(m), \
502 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
503 	.stat_offset = offsetof(struct net_device_stats, m), \
504 	.type = BCMGENET_STAT_NETDEV, \
505 }
506 
507 #define STAT_GENET_MIB(str, m, _type) { \
508 	.stat_string = str, \
509 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
510 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
511 	.type = _type, \
512 }
513 
514 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
515 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
516 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
517 
518 #define STAT_GENET_MISC(str, m, offset) { \
519 	.stat_string = str, \
520 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
521 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
522 	.type = BCMGENET_STAT_MISC, \
523 	.reg_offset = offset, \
524 }
525 
526 
527 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
528  * between the end of TX stats and the beginning of the RX RUNT
529  */
530 #define BCMGENET_STAT_OFFSET	0xc
531 
532 /* Hardware counters must be kept in sync because the order/offset
533  * is important here (order in structure declaration = order in hardware)
534  */
535 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
536 	/* general stats */
537 	STAT_NETDEV(rx_packets),
538 	STAT_NETDEV(tx_packets),
539 	STAT_NETDEV(rx_bytes),
540 	STAT_NETDEV(tx_bytes),
541 	STAT_NETDEV(rx_errors),
542 	STAT_NETDEV(tx_errors),
543 	STAT_NETDEV(rx_dropped),
544 	STAT_NETDEV(tx_dropped),
545 	STAT_NETDEV(multicast),
546 	/* UniMAC RSV counters */
547 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
548 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
549 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
550 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
551 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
552 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
553 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
554 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
555 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
556 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
557 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
558 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
559 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
560 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
561 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
562 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
563 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
564 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
565 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
566 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
567 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
568 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
569 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
570 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
571 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
572 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
573 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
574 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
575 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
576 	/* UniMAC TSV counters */
577 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
578 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
579 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
580 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
581 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
582 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
583 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
584 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
585 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
586 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
587 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
588 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
589 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
590 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
591 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
592 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
593 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
594 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
595 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
596 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
597 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
598 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
599 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
600 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
601 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
602 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
603 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
604 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
605 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
606 	/* UniMAC RUNT counters */
607 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
608 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
609 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
610 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
611 	/* Misc UniMAC counters */
612 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
613 			UMAC_RBUF_OVFL_CNT),
614 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
615 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
616 };
617 
618 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
619 
620 static void bcmgenet_get_drvinfo(struct net_device *dev,
621 				 struct ethtool_drvinfo *info)
622 {
623 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
624 	strlcpy(info->version, "v2.0", sizeof(info->version));
625 	info->n_stats = BCMGENET_STATS_LEN;
626 }
627 
628 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
629 {
630 	switch (string_set) {
631 	case ETH_SS_STATS:
632 		return BCMGENET_STATS_LEN;
633 	default:
634 		return -EOPNOTSUPP;
635 	}
636 }
637 
638 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
639 				 u8 *data)
640 {
641 	int i;
642 
643 	switch (stringset) {
644 	case ETH_SS_STATS:
645 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
646 			memcpy(data + i * ETH_GSTRING_LEN,
647 			       bcmgenet_gstrings_stats[i].stat_string,
648 			       ETH_GSTRING_LEN);
649 		}
650 		break;
651 	}
652 }
653 
654 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
655 {
656 	int i, j = 0;
657 
658 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
659 		const struct bcmgenet_stats *s;
660 		u8 offset = 0;
661 		u32 val = 0;
662 		char *p;
663 
664 		s = &bcmgenet_gstrings_stats[i];
665 		switch (s->type) {
666 		case BCMGENET_STAT_NETDEV:
667 			continue;
668 		case BCMGENET_STAT_MIB_RX:
669 		case BCMGENET_STAT_MIB_TX:
670 		case BCMGENET_STAT_RUNT:
671 			if (s->type != BCMGENET_STAT_MIB_RX)
672 				offset = BCMGENET_STAT_OFFSET;
673 			val = bcmgenet_umac_readl(priv,
674 						  UMAC_MIB_START + j + offset);
675 			break;
676 		case BCMGENET_STAT_MISC:
677 			val = bcmgenet_umac_readl(priv, s->reg_offset);
678 			/* clear if overflowed */
679 			if (val == ~0)
680 				bcmgenet_umac_writel(priv, 0, s->reg_offset);
681 			break;
682 		}
683 
684 		j += s->stat_sizeof;
685 		p = (char *)priv + s->stat_offset;
686 		*(u32 *)p = val;
687 	}
688 }
689 
690 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
691 				       struct ethtool_stats *stats,
692 				       u64 *data)
693 {
694 	struct bcmgenet_priv *priv = netdev_priv(dev);
695 	int i;
696 
697 	if (netif_running(dev))
698 		bcmgenet_update_mib_counters(priv);
699 
700 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
701 		const struct bcmgenet_stats *s;
702 		char *p;
703 
704 		s = &bcmgenet_gstrings_stats[i];
705 		if (s->type == BCMGENET_STAT_NETDEV)
706 			p = (char *)&dev->stats;
707 		else
708 			p = (char *)priv;
709 		p += s->stat_offset;
710 		data[i] = *(u32 *)p;
711 	}
712 }
713 
714 /* standard ethtool support functions. */
715 static struct ethtool_ops bcmgenet_ethtool_ops = {
716 	.get_strings		= bcmgenet_get_strings,
717 	.get_sset_count		= bcmgenet_get_sset_count,
718 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
719 	.get_settings		= bcmgenet_get_settings,
720 	.set_settings		= bcmgenet_set_settings,
721 	.get_drvinfo		= bcmgenet_get_drvinfo,
722 	.get_link		= ethtool_op_get_link,
723 	.get_msglevel		= bcmgenet_get_msglevel,
724 	.set_msglevel		= bcmgenet_set_msglevel,
725 	.get_wol		= bcmgenet_get_wol,
726 	.set_wol		= bcmgenet_set_wol,
727 };
728 
729 /* Power down the unimac, based on mode. */
730 static void bcmgenet_power_down(struct bcmgenet_priv *priv,
731 				enum bcmgenet_power_mode mode)
732 {
733 	u32 reg;
734 
735 	switch (mode) {
736 	case GENET_POWER_CABLE_SENSE:
737 		phy_detach(priv->phydev);
738 		break;
739 
740 	case GENET_POWER_WOL_MAGIC:
741 		bcmgenet_wol_power_down_cfg(priv, mode);
742 		break;
743 
744 	case GENET_POWER_PASSIVE:
745 		/* Power down LED */
746 		if (priv->hw_params->flags & GENET_HAS_EXT) {
747 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
748 			reg |= (EXT_PWR_DOWN_PHY |
749 				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
750 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
751 		}
752 		break;
753 	default:
754 		break;
755 	}
756 }
757 
758 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
759 			      enum bcmgenet_power_mode mode)
760 {
761 	u32 reg;
762 
763 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
764 		return;
765 
766 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
767 
768 	switch (mode) {
769 	case GENET_POWER_PASSIVE:
770 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
771 				EXT_PWR_DOWN_BIAS);
772 		/* fallthrough */
773 	case GENET_POWER_CABLE_SENSE:
774 		/* enable APD */
775 		reg |= EXT_PWR_DN_EN_LD;
776 		break;
777 	case GENET_POWER_WOL_MAGIC:
778 		bcmgenet_wol_power_up_cfg(priv, mode);
779 		return;
780 	default:
781 		break;
782 	}
783 
784 	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
785 
786 	if (mode == GENET_POWER_PASSIVE)
787 		bcmgenet_mii_reset(priv->dev);
788 }
789 
790 /* ioctl handle special commands that are not present in ethtool. */
791 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
792 {
793 	struct bcmgenet_priv *priv = netdev_priv(dev);
794 	int val = 0;
795 
796 	if (!netif_running(dev))
797 		return -EINVAL;
798 
799 	switch (cmd) {
800 	case SIOCGMIIPHY:
801 	case SIOCGMIIREG:
802 	case SIOCSMIIREG:
803 		if (!priv->phydev)
804 			val = -ENODEV;
805 		else
806 			val = phy_mii_ioctl(priv->phydev, rq, cmd);
807 		break;
808 
809 	default:
810 		val = -EINVAL;
811 		break;
812 	}
813 
814 	return val;
815 }
816 
817 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
818 					 struct bcmgenet_tx_ring *ring)
819 {
820 	struct enet_cb *tx_cb_ptr;
821 
822 	tx_cb_ptr = ring->cbs;
823 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
824 	tx_cb_ptr->bd_addr = priv->tx_bds + ring->write_ptr * DMA_DESC_SIZE;
825 	/* Advancing local write pointer */
826 	if (ring->write_ptr == ring->end_ptr)
827 		ring->write_ptr = ring->cb_ptr;
828 	else
829 		ring->write_ptr++;
830 
831 	return tx_cb_ptr;
832 }
833 
834 /* Simple helper to free a control block's resources */
835 static void bcmgenet_free_cb(struct enet_cb *cb)
836 {
837 	dev_kfree_skb_any(cb->skb);
838 	cb->skb = NULL;
839 	dma_unmap_addr_set(cb, dma_addr, 0);
840 }
841 
842 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_priv *priv,
843 						  struct bcmgenet_tx_ring *ring)
844 {
845 	bcmgenet_intrl2_0_writel(priv,
846 				 UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
847 				 INTRL2_CPU_MASK_SET);
848 }
849 
850 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_priv *priv,
851 						 struct bcmgenet_tx_ring *ring)
852 {
853 	bcmgenet_intrl2_0_writel(priv,
854 				 UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
855 				 INTRL2_CPU_MASK_CLEAR);
856 }
857 
858 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_priv *priv,
859 					       struct bcmgenet_tx_ring *ring)
860 {
861 	bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
862 				 INTRL2_CPU_MASK_CLEAR);
863 	priv->int1_mask &= ~(1 << ring->index);
864 }
865 
866 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_priv *priv,
867 						struct bcmgenet_tx_ring *ring)
868 {
869 	bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
870 				 INTRL2_CPU_MASK_SET);
871 	priv->int1_mask |= (1 << ring->index);
872 }
873 
874 /* Unlocked version of the reclaim routine */
875 static void __bcmgenet_tx_reclaim(struct net_device *dev,
876 				  struct bcmgenet_tx_ring *ring)
877 {
878 	struct bcmgenet_priv *priv = netdev_priv(dev);
879 	int last_tx_cn, last_c_index, num_tx_bds;
880 	struct enet_cb *tx_cb_ptr;
881 	struct netdev_queue *txq;
882 	unsigned int bds_compl;
883 	unsigned int c_index;
884 
885 	/* Compute how many buffers are transmitted since last xmit call */
886 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
887 	txq = netdev_get_tx_queue(dev, ring->queue);
888 
889 	last_c_index = ring->c_index;
890 	num_tx_bds = ring->size;
891 
892 	c_index &= (num_tx_bds - 1);
893 
894 	if (c_index >= last_c_index)
895 		last_tx_cn = c_index - last_c_index;
896 	else
897 		last_tx_cn = num_tx_bds - last_c_index + c_index;
898 
899 	netif_dbg(priv, tx_done, dev,
900 		  "%s ring=%d index=%d last_tx_cn=%d last_index=%d\n",
901 		  __func__, ring->index,
902 		  c_index, last_tx_cn, last_c_index);
903 
904 	/* Reclaim transmitted buffers */
905 	while (last_tx_cn-- > 0) {
906 		tx_cb_ptr = ring->cbs + last_c_index;
907 		bds_compl = 0;
908 		if (tx_cb_ptr->skb) {
909 			bds_compl = skb_shinfo(tx_cb_ptr->skb)->nr_frags + 1;
910 			dev->stats.tx_bytes += tx_cb_ptr->skb->len;
911 			dma_unmap_single(&dev->dev,
912 					 dma_unmap_addr(tx_cb_ptr, dma_addr),
913 					 tx_cb_ptr->skb->len,
914 					 DMA_TO_DEVICE);
915 			bcmgenet_free_cb(tx_cb_ptr);
916 		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
917 			dev->stats.tx_bytes +=
918 				dma_unmap_len(tx_cb_ptr, dma_len);
919 			dma_unmap_page(&dev->dev,
920 				       dma_unmap_addr(tx_cb_ptr, dma_addr),
921 				       dma_unmap_len(tx_cb_ptr, dma_len),
922 				       DMA_TO_DEVICE);
923 			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
924 		}
925 		dev->stats.tx_packets++;
926 		ring->free_bds += bds_compl;
927 
928 		last_c_index++;
929 		last_c_index &= (num_tx_bds - 1);
930 	}
931 
932 	if (ring->free_bds > (MAX_SKB_FRAGS + 1))
933 		ring->int_disable(priv, ring);
934 
935 	if (netif_tx_queue_stopped(txq))
936 		netif_tx_wake_queue(txq);
937 
938 	ring->c_index = c_index;
939 }
940 
941 static void bcmgenet_tx_reclaim(struct net_device *dev,
942 				struct bcmgenet_tx_ring *ring)
943 {
944 	unsigned long flags;
945 
946 	spin_lock_irqsave(&ring->lock, flags);
947 	__bcmgenet_tx_reclaim(dev, ring);
948 	spin_unlock_irqrestore(&ring->lock, flags);
949 }
950 
951 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
952 {
953 	struct bcmgenet_priv *priv = netdev_priv(dev);
954 	int i;
955 
956 	if (netif_is_multiqueue(dev)) {
957 		for (i = 0; i < priv->hw_params->tx_queues; i++)
958 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
959 	}
960 
961 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
962 }
963 
964 /* Transmits a single SKB (either head of a fragment or a single SKB)
965  * caller must hold priv->lock
966  */
967 static int bcmgenet_xmit_single(struct net_device *dev,
968 				struct sk_buff *skb,
969 				u16 dma_desc_flags,
970 				struct bcmgenet_tx_ring *ring)
971 {
972 	struct bcmgenet_priv *priv = netdev_priv(dev);
973 	struct device *kdev = &priv->pdev->dev;
974 	struct enet_cb *tx_cb_ptr;
975 	unsigned int skb_len;
976 	dma_addr_t mapping;
977 	u32 length_status;
978 	int ret;
979 
980 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
981 
982 	if (unlikely(!tx_cb_ptr))
983 		BUG();
984 
985 	tx_cb_ptr->skb = skb;
986 
987 	skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
988 
989 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
990 	ret = dma_mapping_error(kdev, mapping);
991 	if (ret) {
992 		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
993 		dev_kfree_skb(skb);
994 		return ret;
995 	}
996 
997 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
998 	dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
999 	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1000 			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1001 			DMA_TX_APPEND_CRC;
1002 
1003 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1004 		length_status |= DMA_TX_DO_CSUM;
1005 
1006 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1007 
1008 	/* Decrement total BD count and advance our write pointer */
1009 	ring->free_bds -= 1;
1010 	ring->prod_index += 1;
1011 	ring->prod_index &= DMA_P_INDEX_MASK;
1012 
1013 	return 0;
1014 }
1015 
1016 /* Transmit a SKB fragment */
1017 static int bcmgenet_xmit_frag(struct net_device *dev,
1018 			      skb_frag_t *frag,
1019 			      u16 dma_desc_flags,
1020 			      struct bcmgenet_tx_ring *ring)
1021 {
1022 	struct bcmgenet_priv *priv = netdev_priv(dev);
1023 	struct device *kdev = &priv->pdev->dev;
1024 	struct enet_cb *tx_cb_ptr;
1025 	dma_addr_t mapping;
1026 	int ret;
1027 
1028 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1029 
1030 	if (unlikely(!tx_cb_ptr))
1031 		BUG();
1032 	tx_cb_ptr->skb = NULL;
1033 
1034 	mapping = skb_frag_dma_map(kdev, frag, 0,
1035 				   skb_frag_size(frag), DMA_TO_DEVICE);
1036 	ret = dma_mapping_error(kdev, mapping);
1037 	if (ret) {
1038 		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1039 			  __func__);
1040 		return ret;
1041 	}
1042 
1043 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1044 	dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1045 
1046 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1047 		    (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1048 		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1049 
1050 
1051 	ring->free_bds -= 1;
1052 	ring->prod_index += 1;
1053 	ring->prod_index &= DMA_P_INDEX_MASK;
1054 
1055 	return 0;
1056 }
1057 
1058 /* Reallocate the SKB to put enough headroom in front of it and insert
1059  * the transmit checksum offsets in the descriptors
1060  */
1061 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1062 					    struct sk_buff *skb)
1063 {
1064 	struct status_64 *status = NULL;
1065 	struct sk_buff *new_skb;
1066 	u16 offset;
1067 	u8 ip_proto;
1068 	u16 ip_ver;
1069 	u32 tx_csum_info;
1070 
1071 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1072 		/* If 64 byte status block enabled, must make sure skb has
1073 		 * enough headroom for us to insert 64B status block.
1074 		 */
1075 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1076 		dev_kfree_skb(skb);
1077 		if (!new_skb) {
1078 			dev->stats.tx_errors++;
1079 			dev->stats.tx_dropped++;
1080 			return NULL;
1081 		}
1082 		skb = new_skb;
1083 	}
1084 
1085 	skb_push(skb, sizeof(*status));
1086 	status = (struct status_64 *)skb->data;
1087 
1088 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1089 		ip_ver = htons(skb->protocol);
1090 		switch (ip_ver) {
1091 		case ETH_P_IP:
1092 			ip_proto = ip_hdr(skb)->protocol;
1093 			break;
1094 		case ETH_P_IPV6:
1095 			ip_proto = ipv6_hdr(skb)->nexthdr;
1096 			break;
1097 		default:
1098 			return skb;
1099 		}
1100 
1101 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1102 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1103 				(offset + skb->csum_offset);
1104 
1105 		/* Set the length valid bit for TCP and UDP and just set
1106 		 * the special UDP flag for IPv4, else just set to 0.
1107 		 */
1108 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1109 			tx_csum_info |= STATUS_TX_CSUM_LV;
1110 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1111 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1112 		} else {
1113 			tx_csum_info = 0;
1114 		}
1115 
1116 		status->tx_csum_info = tx_csum_info;
1117 	}
1118 
1119 	return skb;
1120 }
1121 
1122 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1123 {
1124 	struct bcmgenet_priv *priv = netdev_priv(dev);
1125 	struct bcmgenet_tx_ring *ring = NULL;
1126 	struct netdev_queue *txq;
1127 	unsigned long flags = 0;
1128 	int nr_frags, index;
1129 	u16 dma_desc_flags;
1130 	int ret;
1131 	int i;
1132 
1133 	index = skb_get_queue_mapping(skb);
1134 	/* Mapping strategy:
1135 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1136 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1137 	 * queue_mapping = 2, goes to ring 1.
1138 	 * queue_mapping = 3, goes to ring 2.
1139 	 * queue_mapping = 4, goes to ring 3.
1140 	 */
1141 	if (index == 0)
1142 		index = DESC_INDEX;
1143 	else
1144 		index -= 1;
1145 
1146 	nr_frags = skb_shinfo(skb)->nr_frags;
1147 	ring = &priv->tx_rings[index];
1148 	txq = netdev_get_tx_queue(dev, ring->queue);
1149 
1150 	spin_lock_irqsave(&ring->lock, flags);
1151 	if (ring->free_bds <= nr_frags + 1) {
1152 		netif_tx_stop_queue(txq);
1153 		netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1154 			   __func__, index, ring->queue);
1155 		ret = NETDEV_TX_BUSY;
1156 		goto out;
1157 	}
1158 
1159 	if (skb_padto(skb, ETH_ZLEN)) {
1160 		ret = NETDEV_TX_OK;
1161 		goto out;
1162 	}
1163 
1164 	/* set the SKB transmit checksum */
1165 	if (priv->desc_64b_en) {
1166 		skb = bcmgenet_put_tx_csum(dev, skb);
1167 		if (!skb) {
1168 			ret = NETDEV_TX_OK;
1169 			goto out;
1170 		}
1171 	}
1172 
1173 	dma_desc_flags = DMA_SOP;
1174 	if (nr_frags == 0)
1175 		dma_desc_flags |= DMA_EOP;
1176 
1177 	/* Transmit single SKB or head of fragment list */
1178 	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1179 	if (ret) {
1180 		ret = NETDEV_TX_OK;
1181 		goto out;
1182 	}
1183 
1184 	/* xmit fragment */
1185 	for (i = 0; i < nr_frags; i++) {
1186 		ret = bcmgenet_xmit_frag(dev,
1187 					 &skb_shinfo(skb)->frags[i],
1188 					 (i == nr_frags - 1) ? DMA_EOP : 0,
1189 					 ring);
1190 		if (ret) {
1191 			ret = NETDEV_TX_OK;
1192 			goto out;
1193 		}
1194 	}
1195 
1196 	skb_tx_timestamp(skb);
1197 
1198 	/* we kept a software copy of how much we should advance the TDMA
1199 	 * producer index, now write it down to the hardware
1200 	 */
1201 	bcmgenet_tdma_ring_writel(priv, ring->index,
1202 				  ring->prod_index, TDMA_PROD_INDEX);
1203 
1204 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) {
1205 		netif_tx_stop_queue(txq);
1206 		ring->int_enable(priv, ring);
1207 	}
1208 
1209 out:
1210 	spin_unlock_irqrestore(&ring->lock, flags);
1211 
1212 	return ret;
1213 }
1214 
1215 
1216 static int bcmgenet_rx_refill(struct bcmgenet_priv *priv, struct enet_cb *cb)
1217 {
1218 	struct device *kdev = &priv->pdev->dev;
1219 	struct sk_buff *skb;
1220 	dma_addr_t mapping;
1221 	int ret;
1222 
1223 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1224 	if (!skb)
1225 		return -ENOMEM;
1226 
1227 	/* a caller did not release this control block */
1228 	WARN_ON(cb->skb != NULL);
1229 	cb->skb = skb;
1230 	mapping = dma_map_single(kdev, skb->data,
1231 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1232 	ret = dma_mapping_error(kdev, mapping);
1233 	if (ret) {
1234 		bcmgenet_free_cb(cb);
1235 		netif_err(priv, rx_err, priv->dev,
1236 			  "%s DMA map failed\n", __func__);
1237 		return ret;
1238 	}
1239 
1240 	dma_unmap_addr_set(cb, dma_addr, mapping);
1241 	/* assign packet, prepare descriptor, and advance pointer */
1242 
1243 	dmadesc_set_addr(priv, priv->rx_bd_assign_ptr, mapping);
1244 
1245 	/* turn on the newly assigned BD for DMA to use */
1246 	priv->rx_bd_assign_index++;
1247 	priv->rx_bd_assign_index &= (priv->num_rx_bds - 1);
1248 
1249 	priv->rx_bd_assign_ptr = priv->rx_bds +
1250 		(priv->rx_bd_assign_index * DMA_DESC_SIZE);
1251 
1252 	return 0;
1253 }
1254 
1255 /* bcmgenet_desc_rx - descriptor based rx process.
1256  * this could be called from bottom half, or from NAPI polling method.
1257  */
1258 static unsigned int bcmgenet_desc_rx(struct bcmgenet_priv *priv,
1259 				     unsigned int budget)
1260 {
1261 	struct net_device *dev = priv->dev;
1262 	struct enet_cb *cb;
1263 	struct sk_buff *skb;
1264 	u32 dma_length_status;
1265 	unsigned long dma_flag;
1266 	int len, err;
1267 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1268 	unsigned int p_index;
1269 	unsigned int chksum_ok = 0;
1270 
1271 	p_index = bcmgenet_rdma_ring_readl(priv, DESC_INDEX, RDMA_PROD_INDEX);
1272 	p_index &= DMA_P_INDEX_MASK;
1273 
1274 	if (p_index < priv->rx_c_index)
1275 		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) -
1276 			priv->rx_c_index + p_index;
1277 	else
1278 		rxpkttoprocess = p_index - priv->rx_c_index;
1279 
1280 	netif_dbg(priv, rx_status, dev,
1281 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1282 
1283 	while ((rxpktprocessed < rxpkttoprocess) &&
1284 	       (rxpktprocessed < budget)) {
1285 		cb = &priv->rx_cbs[priv->rx_read_ptr];
1286 		skb = cb->skb;
1287 
1288 		/* We do not have a backing SKB, so we do not have a
1289 		 * corresponding DMA mapping for this incoming packet since
1290 		 * bcmgenet_rx_refill always either has both skb and mapping or
1291 		 * none.
1292 		 */
1293 		if (unlikely(!skb)) {
1294 			dev->stats.rx_dropped++;
1295 			dev->stats.rx_errors++;
1296 			goto refill;
1297 		}
1298 
1299 		/* Unmap the packet contents such that we can use the
1300 		 * RSV from the 64 bytes descriptor when enabled and save
1301 		 * a 32-bits register read
1302 		 */
1303 		dma_unmap_single(&dev->dev, dma_unmap_addr(cb, dma_addr),
1304 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1305 
1306 		if (!priv->desc_64b_en) {
1307 			dma_length_status =
1308 				dmadesc_get_length_status(priv,
1309 							  priv->rx_bds +
1310 							  (priv->rx_read_ptr *
1311 							   DMA_DESC_SIZE));
1312 		} else {
1313 			struct status_64 *status;
1314 
1315 			status = (struct status_64 *)skb->data;
1316 			dma_length_status = status->length_status;
1317 		}
1318 
1319 		/* DMA flags and length are still valid no matter how
1320 		 * we got the Receive Status Vector (64B RSB or register)
1321 		 */
1322 		dma_flag = dma_length_status & 0xffff;
1323 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1324 
1325 		netif_dbg(priv, rx_status, dev,
1326 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1327 			  __func__, p_index, priv->rx_c_index,
1328 			  priv->rx_read_ptr, dma_length_status);
1329 
1330 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1331 			netif_err(priv, rx_status, dev,
1332 				  "dropping fragmented packet!\n");
1333 			dev->stats.rx_dropped++;
1334 			dev->stats.rx_errors++;
1335 			dev_kfree_skb_any(cb->skb);
1336 			cb->skb = NULL;
1337 			goto refill;
1338 		}
1339 		/* report errors */
1340 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1341 						DMA_RX_OV |
1342 						DMA_RX_NO |
1343 						DMA_RX_LG |
1344 						DMA_RX_RXER))) {
1345 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1346 				  (unsigned int)dma_flag);
1347 			if (dma_flag & DMA_RX_CRC_ERROR)
1348 				dev->stats.rx_crc_errors++;
1349 			if (dma_flag & DMA_RX_OV)
1350 				dev->stats.rx_over_errors++;
1351 			if (dma_flag & DMA_RX_NO)
1352 				dev->stats.rx_frame_errors++;
1353 			if (dma_flag & DMA_RX_LG)
1354 				dev->stats.rx_length_errors++;
1355 			dev->stats.rx_dropped++;
1356 			dev->stats.rx_errors++;
1357 
1358 			/* discard the packet and advance consumer index.*/
1359 			dev_kfree_skb_any(cb->skb);
1360 			cb->skb = NULL;
1361 			goto refill;
1362 		} /* error packet */
1363 
1364 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1365 			     priv->desc_rxchk_en;
1366 
1367 		skb_put(skb, len);
1368 		if (priv->desc_64b_en) {
1369 			skb_pull(skb, 64);
1370 			len -= 64;
1371 		}
1372 
1373 		if (likely(chksum_ok))
1374 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1375 
1376 		/* remove hardware 2bytes added for IP alignment */
1377 		skb_pull(skb, 2);
1378 		len -= 2;
1379 
1380 		if (priv->crc_fwd_en) {
1381 			skb_trim(skb, len - ETH_FCS_LEN);
1382 			len -= ETH_FCS_LEN;
1383 		}
1384 
1385 		/*Finish setting up the received SKB and send it to the kernel*/
1386 		skb->protocol = eth_type_trans(skb, priv->dev);
1387 		dev->stats.rx_packets++;
1388 		dev->stats.rx_bytes += len;
1389 		if (dma_flag & DMA_RX_MULT)
1390 			dev->stats.multicast++;
1391 
1392 		/* Notify kernel */
1393 		napi_gro_receive(&priv->napi, skb);
1394 		cb->skb = NULL;
1395 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1396 
1397 		/* refill RX path on the current control block */
1398 refill:
1399 		err = bcmgenet_rx_refill(priv, cb);
1400 		if (err)
1401 			netif_err(priv, rx_err, dev, "Rx refill failed\n");
1402 
1403 		rxpktprocessed++;
1404 		priv->rx_read_ptr++;
1405 		priv->rx_read_ptr &= (priv->num_rx_bds - 1);
1406 	}
1407 
1408 	return rxpktprocessed;
1409 }
1410 
1411 /* Assign skb to RX DMA descriptor. */
1412 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv)
1413 {
1414 	struct enet_cb *cb;
1415 	int ret = 0;
1416 	int i;
1417 
1418 	netif_dbg(priv, hw, priv->dev, "%s:\n", __func__);
1419 
1420 	/* loop here for each buffer needing assign */
1421 	for (i = 0; i < priv->num_rx_bds; i++) {
1422 		cb = &priv->rx_cbs[priv->rx_bd_assign_index];
1423 		if (cb->skb)
1424 			continue;
1425 
1426 		ret = bcmgenet_rx_refill(priv, cb);
1427 		if (ret)
1428 			break;
1429 	}
1430 
1431 	return ret;
1432 }
1433 
1434 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1435 {
1436 	struct enet_cb *cb;
1437 	int i;
1438 
1439 	for (i = 0; i < priv->num_rx_bds; i++) {
1440 		cb = &priv->rx_cbs[i];
1441 
1442 		if (dma_unmap_addr(cb, dma_addr)) {
1443 			dma_unmap_single(&priv->dev->dev,
1444 					 dma_unmap_addr(cb, dma_addr),
1445 					 priv->rx_buf_len, DMA_FROM_DEVICE);
1446 			dma_unmap_addr_set(cb, dma_addr, 0);
1447 		}
1448 
1449 		if (cb->skb)
1450 			bcmgenet_free_cb(cb);
1451 	}
1452 }
1453 
1454 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1455 {
1456 	u32 reg;
1457 
1458 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1459 	if (enable)
1460 		reg |= mask;
1461 	else
1462 		reg &= ~mask;
1463 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1464 
1465 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1466 	 * to be processed
1467 	 */
1468 	if (enable == 0)
1469 		usleep_range(1000, 2000);
1470 }
1471 
1472 static int reset_umac(struct bcmgenet_priv *priv)
1473 {
1474 	struct device *kdev = &priv->pdev->dev;
1475 	unsigned int timeout = 0;
1476 	u32 reg;
1477 
1478 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1479 	bcmgenet_rbuf_ctrl_set(priv, 0);
1480 	udelay(10);
1481 
1482 	/* disable MAC while updating its registers */
1483 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1484 
1485 	/* issue soft reset, wait for it to complete */
1486 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1487 	while (timeout++ < 1000) {
1488 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1489 		if (!(reg & CMD_SW_RESET))
1490 			return 0;
1491 
1492 		udelay(1);
1493 	}
1494 
1495 	if (timeout == 1000) {
1496 		dev_err(kdev,
1497 			"timeout waiting for MAC to come out of reset\n");
1498 		return -ETIMEDOUT;
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1505 {
1506 	/* Mask all interrupts.*/
1507 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1508 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1509 	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1510 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1511 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1512 	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1513 }
1514 
1515 static int init_umac(struct bcmgenet_priv *priv)
1516 {
1517 	struct device *kdev = &priv->pdev->dev;
1518 	int ret;
1519 	u32 reg, cpu_mask_clear;
1520 
1521 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1522 
1523 	ret = reset_umac(priv);
1524 	if (ret)
1525 		return ret;
1526 
1527 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1528 	/* clear tx/rx counter */
1529 	bcmgenet_umac_writel(priv,
1530 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1531 			     UMAC_MIB_CTRL);
1532 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1533 
1534 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1535 
1536 	/* init rx registers, enable ip header optimization */
1537 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1538 	reg |= RBUF_ALIGN_2B;
1539 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1540 
1541 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1542 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1543 
1544 	bcmgenet_intr_disable(priv);
1545 
1546 	cpu_mask_clear = UMAC_IRQ_RXDMA_BDONE;
1547 
1548 	dev_dbg(kdev, "%s:Enabling RXDMA_BDONE interrupt\n", __func__);
1549 
1550 	/* Monitor cable plug/unplugged event for internal PHY */
1551 	if (phy_is_internal(priv->phydev)) {
1552 		cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1553 	} else if (priv->ext_phy) {
1554 		cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1555 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1556 		reg = bcmgenet_bp_mc_get(priv);
1557 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1558 
1559 		/* bp_mask: back pressure mask */
1560 		if (netif_is_multiqueue(priv->dev))
1561 			reg |= priv->hw_params->bp_in_mask;
1562 		else
1563 			reg &= ~priv->hw_params->bp_in_mask;
1564 		bcmgenet_bp_mc_set(priv, reg);
1565 	}
1566 
1567 	/* Enable MDIO interrupts on GENET v3+ */
1568 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1569 		cpu_mask_clear |= UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR;
1570 
1571 	bcmgenet_intrl2_0_writel(priv, cpu_mask_clear, INTRL2_CPU_MASK_CLEAR);
1572 
1573 	/* Enable rx/tx engine.*/
1574 	dev_dbg(kdev, "done init umac\n");
1575 
1576 	return 0;
1577 }
1578 
1579 /* Initialize all house-keeping variables for a TX ring, along
1580  * with corresponding hardware registers
1581  */
1582 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1583 				  unsigned int index, unsigned int size,
1584 				  unsigned int write_ptr, unsigned int end_ptr)
1585 {
1586 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1587 	u32 words_per_bd = WORDS_PER_BD(priv);
1588 	u32 flow_period_val = 0;
1589 	unsigned int first_bd;
1590 
1591 	spin_lock_init(&ring->lock);
1592 	ring->index = index;
1593 	if (index == DESC_INDEX) {
1594 		ring->queue = 0;
1595 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
1596 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
1597 	} else {
1598 		ring->queue = index + 1;
1599 		ring->int_enable = bcmgenet_tx_ring_int_enable;
1600 		ring->int_disable = bcmgenet_tx_ring_int_disable;
1601 	}
1602 	ring->cbs = priv->tx_cbs + write_ptr;
1603 	ring->size = size;
1604 	ring->c_index = 0;
1605 	ring->free_bds = size;
1606 	ring->write_ptr = write_ptr;
1607 	ring->cb_ptr = write_ptr;
1608 	ring->end_ptr = end_ptr - 1;
1609 	ring->prod_index = 0;
1610 
1611 	/* Set flow period for ring != 16 */
1612 	if (index != DESC_INDEX)
1613 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
1614 
1615 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1616 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1617 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1618 	/* Disable rate control for now */
1619 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1620 				  TDMA_FLOW_PERIOD);
1621 	/* Unclassified traffic goes to ring 16 */
1622 	bcmgenet_tdma_ring_writel(priv, index,
1623 				  ((size << DMA_RING_SIZE_SHIFT) |
1624 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1625 
1626 	first_bd = write_ptr;
1627 
1628 	/* Set start and end address, read and write pointers */
1629 	bcmgenet_tdma_ring_writel(priv, index, first_bd * words_per_bd,
1630 				  DMA_START_ADDR);
1631 	bcmgenet_tdma_ring_writel(priv, index, first_bd * words_per_bd,
1632 				  TDMA_READ_PTR);
1633 	bcmgenet_tdma_ring_writel(priv, index, first_bd,
1634 				  TDMA_WRITE_PTR);
1635 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1636 				  DMA_END_ADDR);
1637 }
1638 
1639 /* Initialize a RDMA ring */
1640 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1641 				 unsigned int index, unsigned int size)
1642 {
1643 	u32 words_per_bd = WORDS_PER_BD(priv);
1644 	int ret;
1645 
1646 	priv->num_rx_bds = TOTAL_DESC;
1647 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
1648 	priv->rx_bd_assign_ptr = priv->rx_bds;
1649 	priv->rx_bd_assign_index = 0;
1650 	priv->rx_c_index = 0;
1651 	priv->rx_read_ptr = 0;
1652 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
1653 			       GFP_KERNEL);
1654 	if (!priv->rx_cbs)
1655 		return -ENOMEM;
1656 
1657 	ret = bcmgenet_alloc_rx_buffers(priv);
1658 	if (ret) {
1659 		kfree(priv->rx_cbs);
1660 		return ret;
1661 	}
1662 
1663 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_WRITE_PTR);
1664 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
1665 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
1666 	bcmgenet_rdma_ring_writel(priv, index,
1667 				  ((size << DMA_RING_SIZE_SHIFT) |
1668 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1669 	bcmgenet_rdma_ring_writel(priv, index, 0, DMA_START_ADDR);
1670 	bcmgenet_rdma_ring_writel(priv, index,
1671 				  words_per_bd * size - 1, DMA_END_ADDR);
1672 	bcmgenet_rdma_ring_writel(priv, index,
1673 				  (DMA_FC_THRESH_LO <<
1674 				   DMA_XOFF_THRESHOLD_SHIFT) |
1675 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
1676 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_READ_PTR);
1677 
1678 	return ret;
1679 }
1680 
1681 /* init multi xmit queues, only available for GENET2+
1682  * the queue is partitioned as follows:
1683  *
1684  * queue 0 - 3 is priority based, each one has 32 descriptors,
1685  * with queue 0 being the highest priority queue.
1686  *
1687  * queue 16 is the default tx queue with GENET_DEFAULT_BD_CNT
1688  * descriptors: 256 - (number of tx queues * bds per queues) = 128
1689  * descriptors.
1690  *
1691  * The transmit control block pool is then partitioned as following:
1692  * - tx_cbs[0...127] are for queue 16
1693  * - tx_ring_cbs[0] points to tx_cbs[128..159]
1694  * - tx_ring_cbs[1] points to tx_cbs[160..191]
1695  * - tx_ring_cbs[2] points to tx_cbs[192..223]
1696  * - tx_ring_cbs[3] points to tx_cbs[224..255]
1697  */
1698 static void bcmgenet_init_multiq(struct net_device *dev)
1699 {
1700 	struct bcmgenet_priv *priv = netdev_priv(dev);
1701 	unsigned int i, dma_enable;
1702 	u32 reg, dma_ctrl, ring_cfg = 0;
1703 	u32 dma_priority[3] = {0, 0, 0};
1704 
1705 	if (!netif_is_multiqueue(dev)) {
1706 		netdev_warn(dev, "called with non multi queue aware HW\n");
1707 		return;
1708 	}
1709 
1710 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
1711 	dma_enable = dma_ctrl & DMA_EN;
1712 	dma_ctrl &= ~DMA_EN;
1713 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1714 
1715 	/* Enable strict priority arbiter mode */
1716 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
1717 
1718 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
1719 		/* first 64 tx_cbs are reserved for default tx queue
1720 		 * (ring 16)
1721 		 */
1722 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->bds_cnt,
1723 				      i * priv->hw_params->bds_cnt,
1724 				      (i + 1) * priv->hw_params->bds_cnt);
1725 
1726 		/* Configure ring as descriptor ring and setup priority */
1727 		ring_cfg |= 1 << i;
1728 		dma_ctrl |= 1 << (i + DMA_RING_BUF_EN_SHIFT);
1729 
1730 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
1731 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
1732 	}
1733 
1734 	/* Set ring 16 priority and program the hardware registers */
1735 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
1736 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
1737 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
1738 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
1739 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
1740 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
1741 
1742 	/* Enable rings */
1743 	reg = bcmgenet_tdma_readl(priv, DMA_RING_CFG);
1744 	reg |= ring_cfg;
1745 	bcmgenet_tdma_writel(priv, reg, DMA_RING_CFG);
1746 
1747 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
1748 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1749 	reg |= dma_ctrl;
1750 	if (dma_enable)
1751 		reg |= DMA_EN;
1752 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1753 }
1754 
1755 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
1756 {
1757 	int ret = 0;
1758 	int timeout = 0;
1759 	u32 reg;
1760 
1761 	/* Disable TDMA to stop add more frames in TX DMA */
1762 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1763 	reg &= ~DMA_EN;
1764 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1765 
1766 	/* Check TDMA status register to confirm TDMA is disabled */
1767 	while (timeout++ < DMA_TIMEOUT_VAL) {
1768 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
1769 		if (reg & DMA_DISABLED)
1770 			break;
1771 
1772 		udelay(1);
1773 	}
1774 
1775 	if (timeout == DMA_TIMEOUT_VAL) {
1776 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
1777 		ret = -ETIMEDOUT;
1778 	}
1779 
1780 	/* Wait 10ms for packet drain in both tx and rx dma */
1781 	usleep_range(10000, 20000);
1782 
1783 	/* Disable RDMA */
1784 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
1785 	reg &= ~DMA_EN;
1786 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
1787 
1788 	timeout = 0;
1789 	/* Check RDMA status register to confirm RDMA is disabled */
1790 	while (timeout++ < DMA_TIMEOUT_VAL) {
1791 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
1792 		if (reg & DMA_DISABLED)
1793 			break;
1794 
1795 		udelay(1);
1796 	}
1797 
1798 	if (timeout == DMA_TIMEOUT_VAL) {
1799 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
1800 		ret = -ETIMEDOUT;
1801 	}
1802 
1803 	return ret;
1804 }
1805 
1806 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
1807 {
1808 	int i;
1809 
1810 	/* disable DMA */
1811 	bcmgenet_dma_teardown(priv);
1812 
1813 	for (i = 0; i < priv->num_tx_bds; i++) {
1814 		if (priv->tx_cbs[i].skb != NULL) {
1815 			dev_kfree_skb(priv->tx_cbs[i].skb);
1816 			priv->tx_cbs[i].skb = NULL;
1817 		}
1818 	}
1819 
1820 	bcmgenet_free_rx_buffers(priv);
1821 	kfree(priv->rx_cbs);
1822 	kfree(priv->tx_cbs);
1823 }
1824 
1825 /* init_edma: Initialize DMA control register */
1826 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
1827 {
1828 	int ret;
1829 
1830 	netif_dbg(priv, hw, priv->dev, "bcmgenet: init_edma\n");
1831 
1832 	/* by default, enable ring 16 (descriptor based) */
1833 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, TOTAL_DESC);
1834 	if (ret) {
1835 		netdev_err(priv->dev, "failed to initialize RX ring\n");
1836 		return ret;
1837 	}
1838 
1839 	/* init rDma */
1840 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
1841 
1842 	/* Init tDma */
1843 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
1844 
1845 	/* Initialize common TX ring structures */
1846 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
1847 	priv->num_tx_bds = TOTAL_DESC;
1848 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
1849 			       GFP_KERNEL);
1850 	if (!priv->tx_cbs) {
1851 		bcmgenet_fini_dma(priv);
1852 		return -ENOMEM;
1853 	}
1854 
1855 	/* initialize multi xmit queue */
1856 	bcmgenet_init_multiq(priv->dev);
1857 
1858 	/* initialize special ring 16 */
1859 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_DEFAULT_BD_CNT,
1860 			      priv->hw_params->tx_queues *
1861 			      priv->hw_params->bds_cnt,
1862 			      TOTAL_DESC);
1863 
1864 	return 0;
1865 }
1866 
1867 /* NAPI polling method*/
1868 static int bcmgenet_poll(struct napi_struct *napi, int budget)
1869 {
1870 	struct bcmgenet_priv *priv = container_of(napi,
1871 			struct bcmgenet_priv, napi);
1872 	unsigned int work_done;
1873 
1874 	/* tx reclaim */
1875 	bcmgenet_tx_reclaim(priv->dev, &priv->tx_rings[DESC_INDEX]);
1876 
1877 	work_done = bcmgenet_desc_rx(priv, budget);
1878 
1879 	/* Advancing our consumer index*/
1880 	priv->rx_c_index += work_done;
1881 	priv->rx_c_index &= DMA_C_INDEX_MASK;
1882 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
1883 				  priv->rx_c_index, RDMA_CONS_INDEX);
1884 	if (work_done < budget) {
1885 		napi_complete(napi);
1886 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
1887 					 INTRL2_CPU_MASK_CLEAR);
1888 	}
1889 
1890 	return work_done;
1891 }
1892 
1893 /* Interrupt bottom half */
1894 static void bcmgenet_irq_task(struct work_struct *work)
1895 {
1896 	struct bcmgenet_priv *priv = container_of(
1897 			work, struct bcmgenet_priv, bcmgenet_irq_work);
1898 
1899 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
1900 
1901 	if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
1902 		priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
1903 		netif_dbg(priv, wol, priv->dev,
1904 			  "magic packet detected, waking up\n");
1905 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
1906 	}
1907 
1908 	/* Link UP/DOWN event */
1909 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
1910 	    (priv->irq0_stat & (UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN))) {
1911 		phy_mac_interrupt(priv->phydev,
1912 				  priv->irq0_stat & UMAC_IRQ_LINK_UP);
1913 		priv->irq0_stat &= ~(UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN);
1914 	}
1915 }
1916 
1917 /* bcmgenet_isr1: interrupt handler for ring buffer. */
1918 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
1919 {
1920 	struct bcmgenet_priv *priv = dev_id;
1921 	unsigned int index;
1922 
1923 	/* Save irq status for bottom-half processing. */
1924 	priv->irq1_stat =
1925 		bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
1926 		~priv->int1_mask;
1927 	/* clear interrupts */
1928 	bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
1929 
1930 	netif_dbg(priv, intr, priv->dev,
1931 		  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
1932 	/* Check the MBDONE interrupts.
1933 	 * packet is done, reclaim descriptors
1934 	 */
1935 	if (priv->irq1_stat & 0x0000ffff) {
1936 		index = 0;
1937 		for (index = 0; index < 16; index++) {
1938 			if (priv->irq1_stat & (1 << index))
1939 				bcmgenet_tx_reclaim(priv->dev,
1940 						    &priv->tx_rings[index]);
1941 		}
1942 	}
1943 	return IRQ_HANDLED;
1944 }
1945 
1946 /* bcmgenet_isr0: Handle various interrupts. */
1947 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
1948 {
1949 	struct bcmgenet_priv *priv = dev_id;
1950 
1951 	/* Save irq status for bottom-half processing. */
1952 	priv->irq0_stat =
1953 		bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
1954 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
1955 	/* clear interrupts */
1956 	bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
1957 
1958 	netif_dbg(priv, intr, priv->dev,
1959 		  "IRQ=0x%x\n", priv->irq0_stat);
1960 
1961 	if (priv->irq0_stat & (UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_RXDMA_PDONE)) {
1962 		/* We use NAPI(software interrupt throttling, if
1963 		 * Rx Descriptor throttling is not used.
1964 		 * Disable interrupt, will be enabled in the poll method.
1965 		 */
1966 		if (likely(napi_schedule_prep(&priv->napi))) {
1967 			bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
1968 						 INTRL2_CPU_MASK_SET);
1969 			__napi_schedule(&priv->napi);
1970 		}
1971 	}
1972 	if (priv->irq0_stat &
1973 			(UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE)) {
1974 		/* Tx reclaim */
1975 		bcmgenet_tx_reclaim(priv->dev, &priv->tx_rings[DESC_INDEX]);
1976 	}
1977 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
1978 				UMAC_IRQ_PHY_DET_F |
1979 				UMAC_IRQ_LINK_UP |
1980 				UMAC_IRQ_LINK_DOWN |
1981 				UMAC_IRQ_HFB_SM |
1982 				UMAC_IRQ_HFB_MM |
1983 				UMAC_IRQ_MPD_R)) {
1984 		/* all other interested interrupts handled in bottom half */
1985 		schedule_work(&priv->bcmgenet_irq_work);
1986 	}
1987 
1988 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
1989 	    priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
1990 		priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1991 		wake_up(&priv->wq);
1992 	}
1993 
1994 	return IRQ_HANDLED;
1995 }
1996 
1997 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
1998 {
1999 	struct bcmgenet_priv *priv = dev_id;
2000 
2001 	pm_wakeup_event(&priv->pdev->dev, 0);
2002 
2003 	return IRQ_HANDLED;
2004 }
2005 
2006 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2007 {
2008 	u32 reg;
2009 
2010 	reg = bcmgenet_rbuf_ctrl_get(priv);
2011 	reg |= BIT(1);
2012 	bcmgenet_rbuf_ctrl_set(priv, reg);
2013 	udelay(10);
2014 
2015 	reg &= ~BIT(1);
2016 	bcmgenet_rbuf_ctrl_set(priv, reg);
2017 	udelay(10);
2018 }
2019 
2020 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2021 				 unsigned char *addr)
2022 {
2023 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2024 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2025 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2026 }
2027 
2028 /* Returns a reusable dma control register value */
2029 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2030 {
2031 	u32 reg;
2032 	u32 dma_ctrl;
2033 
2034 	/* disable DMA */
2035 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2036 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2037 	reg &= ~dma_ctrl;
2038 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2039 
2040 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2041 	reg &= ~dma_ctrl;
2042 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2043 
2044 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2045 	udelay(10);
2046 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2047 
2048 	return dma_ctrl;
2049 }
2050 
2051 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2052 {
2053 	u32 reg;
2054 
2055 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2056 	reg |= dma_ctrl;
2057 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2058 
2059 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2060 	reg |= dma_ctrl;
2061 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2062 }
2063 
2064 static void bcmgenet_netif_start(struct net_device *dev)
2065 {
2066 	struct bcmgenet_priv *priv = netdev_priv(dev);
2067 
2068 	/* Start the network engine */
2069 	napi_enable(&priv->napi);
2070 
2071 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2072 
2073 	if (phy_is_internal(priv->phydev))
2074 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2075 
2076 	netif_tx_start_all_queues(dev);
2077 
2078 	phy_start(priv->phydev);
2079 }
2080 
2081 static int bcmgenet_open(struct net_device *dev)
2082 {
2083 	struct bcmgenet_priv *priv = netdev_priv(dev);
2084 	unsigned long dma_ctrl;
2085 	u32 reg;
2086 	int ret;
2087 
2088 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2089 
2090 	/* Turn on the clock */
2091 	if (!IS_ERR(priv->clk))
2092 		clk_prepare_enable(priv->clk);
2093 
2094 	/* take MAC out of reset */
2095 	bcmgenet_umac_reset(priv);
2096 
2097 	ret = init_umac(priv);
2098 	if (ret)
2099 		goto err_clk_disable;
2100 
2101 	/* disable ethernet MAC while updating its registers */
2102 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2103 
2104 	/* Make sure we reflect the value of CRC_CMD_FWD */
2105 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2106 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2107 
2108 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2109 
2110 	if (phy_is_internal(priv->phydev)) {
2111 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2112 		reg |= EXT_ENERGY_DET_MASK;
2113 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2114 	}
2115 
2116 	/* Disable RX/TX DMA and flush TX queues */
2117 	dma_ctrl = bcmgenet_dma_disable(priv);
2118 
2119 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2120 	ret = bcmgenet_init_dma(priv);
2121 	if (ret) {
2122 		netdev_err(dev, "failed to initialize DMA\n");
2123 		goto err_fini_dma;
2124 	}
2125 
2126 	/* Always enable ring 16 - descriptor ring */
2127 	bcmgenet_enable_dma(priv, dma_ctrl);
2128 
2129 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2130 			  dev->name, priv);
2131 	if (ret < 0) {
2132 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2133 		goto err_fini_dma;
2134 	}
2135 
2136 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2137 			  dev->name, priv);
2138 	if (ret < 0) {
2139 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2140 		goto err_irq0;
2141 	}
2142 
2143 	/* Re-configure the port multiplexer towards the PHY device */
2144 	bcmgenet_mii_config(priv->dev, false);
2145 
2146 	phy_connect_direct(dev, priv->phydev, bcmgenet_mii_setup,
2147 			   priv->phy_interface);
2148 
2149 	bcmgenet_netif_start(dev);
2150 
2151 	return 0;
2152 
2153 err_irq0:
2154 	free_irq(priv->irq0, dev);
2155 err_fini_dma:
2156 	bcmgenet_fini_dma(priv);
2157 err_clk_disable:
2158 	if (!IS_ERR(priv->clk))
2159 		clk_disable_unprepare(priv->clk);
2160 	return ret;
2161 }
2162 
2163 static void bcmgenet_netif_stop(struct net_device *dev)
2164 {
2165 	struct bcmgenet_priv *priv = netdev_priv(dev);
2166 
2167 	netif_tx_stop_all_queues(dev);
2168 	napi_disable(&priv->napi);
2169 	phy_stop(priv->phydev);
2170 
2171 	bcmgenet_intr_disable(priv);
2172 
2173 	/* Wait for pending work items to complete. Since interrupts are
2174 	 * disabled no new work will be scheduled.
2175 	 */
2176 	cancel_work_sync(&priv->bcmgenet_irq_work);
2177 
2178 	priv->old_link = -1;
2179 	priv->old_speed = -1;
2180 	priv->old_duplex = -1;
2181 	priv->old_pause = -1;
2182 }
2183 
2184 static int bcmgenet_close(struct net_device *dev)
2185 {
2186 	struct bcmgenet_priv *priv = netdev_priv(dev);
2187 	int ret;
2188 
2189 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2190 
2191 	bcmgenet_netif_stop(dev);
2192 
2193 	/* Really kill the PHY state machine and disconnect from it */
2194 	phy_disconnect(priv->phydev);
2195 
2196 	/* Disable MAC receive */
2197 	umac_enable_set(priv, CMD_RX_EN, false);
2198 
2199 	ret = bcmgenet_dma_teardown(priv);
2200 	if (ret)
2201 		return ret;
2202 
2203 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2204 	umac_enable_set(priv, CMD_TX_EN, false);
2205 
2206 	/* tx reclaim */
2207 	bcmgenet_tx_reclaim_all(dev);
2208 	bcmgenet_fini_dma(priv);
2209 
2210 	free_irq(priv->irq0, priv);
2211 	free_irq(priv->irq1, priv);
2212 
2213 	if (phy_is_internal(priv->phydev))
2214 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2215 
2216 	if (!IS_ERR(priv->clk))
2217 		clk_disable_unprepare(priv->clk);
2218 
2219 	return 0;
2220 }
2221 
2222 static void bcmgenet_timeout(struct net_device *dev)
2223 {
2224 	struct bcmgenet_priv *priv = netdev_priv(dev);
2225 
2226 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2227 
2228 	dev->trans_start = jiffies;
2229 
2230 	dev->stats.tx_errors++;
2231 
2232 	netif_tx_wake_all_queues(dev);
2233 }
2234 
2235 #define MAX_MC_COUNT	16
2236 
2237 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2238 					 unsigned char *addr,
2239 					 int *i,
2240 					 int *mc)
2241 {
2242 	u32 reg;
2243 
2244 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
2245 			     UMAC_MDF_ADDR + (*i * 4));
2246 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
2247 			     addr[4] << 8 | addr[5],
2248 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
2249 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
2250 	reg |= (1 << (MAX_MC_COUNT - *mc));
2251 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
2252 	*i += 2;
2253 	(*mc)++;
2254 }
2255 
2256 static void bcmgenet_set_rx_mode(struct net_device *dev)
2257 {
2258 	struct bcmgenet_priv *priv = netdev_priv(dev);
2259 	struct netdev_hw_addr *ha;
2260 	int i, mc;
2261 	u32 reg;
2262 
2263 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
2264 
2265 	/* Promiscuous mode */
2266 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2267 	if (dev->flags & IFF_PROMISC) {
2268 		reg |= CMD_PROMISC;
2269 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2270 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
2271 		return;
2272 	} else {
2273 		reg &= ~CMD_PROMISC;
2274 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2275 	}
2276 
2277 	/* UniMac doesn't support ALLMULTI */
2278 	if (dev->flags & IFF_ALLMULTI) {
2279 		netdev_warn(dev, "ALLMULTI is not supported\n");
2280 		return;
2281 	}
2282 
2283 	/* update MDF filter */
2284 	i = 0;
2285 	mc = 0;
2286 	/* Broadcast */
2287 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
2288 	/* my own address.*/
2289 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
2290 	/* Unicast list*/
2291 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
2292 		return;
2293 
2294 	if (!netdev_uc_empty(dev))
2295 		netdev_for_each_uc_addr(ha, dev)
2296 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2297 	/* Multicast */
2298 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
2299 		return;
2300 
2301 	netdev_for_each_mc_addr(ha, dev)
2302 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2303 }
2304 
2305 /* Set the hardware MAC address. */
2306 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
2307 {
2308 	struct sockaddr *addr = p;
2309 
2310 	/* Setting the MAC address at the hardware level is not possible
2311 	 * without disabling the UniMAC RX/TX enable bits.
2312 	 */
2313 	if (netif_running(dev))
2314 		return -EBUSY;
2315 
2316 	ether_addr_copy(dev->dev_addr, addr->sa_data);
2317 
2318 	return 0;
2319 }
2320 
2321 static const struct net_device_ops bcmgenet_netdev_ops = {
2322 	.ndo_open		= bcmgenet_open,
2323 	.ndo_stop		= bcmgenet_close,
2324 	.ndo_start_xmit		= bcmgenet_xmit,
2325 	.ndo_tx_timeout		= bcmgenet_timeout,
2326 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
2327 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
2328 	.ndo_do_ioctl		= bcmgenet_ioctl,
2329 	.ndo_set_features	= bcmgenet_set_features,
2330 };
2331 
2332 /* Array of GENET hardware parameters/characteristics */
2333 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
2334 	[GENET_V1] = {
2335 		.tx_queues = 0,
2336 		.rx_queues = 0,
2337 		.bds_cnt = 0,
2338 		.bp_in_en_shift = 16,
2339 		.bp_in_mask = 0xffff,
2340 		.hfb_filter_cnt = 16,
2341 		.qtag_mask = 0x1F,
2342 		.hfb_offset = 0x1000,
2343 		.rdma_offset = 0x2000,
2344 		.tdma_offset = 0x3000,
2345 		.words_per_bd = 2,
2346 	},
2347 	[GENET_V2] = {
2348 		.tx_queues = 4,
2349 		.rx_queues = 4,
2350 		.bds_cnt = 32,
2351 		.bp_in_en_shift = 16,
2352 		.bp_in_mask = 0xffff,
2353 		.hfb_filter_cnt = 16,
2354 		.qtag_mask = 0x1F,
2355 		.tbuf_offset = 0x0600,
2356 		.hfb_offset = 0x1000,
2357 		.hfb_reg_offset = 0x2000,
2358 		.rdma_offset = 0x3000,
2359 		.tdma_offset = 0x4000,
2360 		.words_per_bd = 2,
2361 		.flags = GENET_HAS_EXT,
2362 	},
2363 	[GENET_V3] = {
2364 		.tx_queues = 4,
2365 		.rx_queues = 4,
2366 		.bds_cnt = 32,
2367 		.bp_in_en_shift = 17,
2368 		.bp_in_mask = 0x1ffff,
2369 		.hfb_filter_cnt = 48,
2370 		.qtag_mask = 0x3F,
2371 		.tbuf_offset = 0x0600,
2372 		.hfb_offset = 0x8000,
2373 		.hfb_reg_offset = 0xfc00,
2374 		.rdma_offset = 0x10000,
2375 		.tdma_offset = 0x11000,
2376 		.words_per_bd = 2,
2377 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2378 	},
2379 	[GENET_V4] = {
2380 		.tx_queues = 4,
2381 		.rx_queues = 4,
2382 		.bds_cnt = 32,
2383 		.bp_in_en_shift = 17,
2384 		.bp_in_mask = 0x1ffff,
2385 		.hfb_filter_cnt = 48,
2386 		.qtag_mask = 0x3F,
2387 		.tbuf_offset = 0x0600,
2388 		.hfb_offset = 0x8000,
2389 		.hfb_reg_offset = 0xfc00,
2390 		.rdma_offset = 0x2000,
2391 		.tdma_offset = 0x4000,
2392 		.words_per_bd = 3,
2393 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2394 	},
2395 };
2396 
2397 /* Infer hardware parameters from the detected GENET version */
2398 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
2399 {
2400 	struct bcmgenet_hw_params *params;
2401 	u32 reg;
2402 	u8 major;
2403 
2404 	if (GENET_IS_V4(priv)) {
2405 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2406 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
2407 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2408 		priv->version = GENET_V4;
2409 	} else if (GENET_IS_V3(priv)) {
2410 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2411 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2412 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2413 		priv->version = GENET_V3;
2414 	} else if (GENET_IS_V2(priv)) {
2415 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
2416 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2417 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2418 		priv->version = GENET_V2;
2419 	} else if (GENET_IS_V1(priv)) {
2420 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
2421 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2422 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2423 		priv->version = GENET_V1;
2424 	}
2425 
2426 	/* enum genet_version starts at 1 */
2427 	priv->hw_params = &bcmgenet_hw_params[priv->version];
2428 	params = priv->hw_params;
2429 
2430 	/* Read GENET HW version */
2431 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
2432 	major = (reg >> 24 & 0x0f);
2433 	if (major == 5)
2434 		major = 4;
2435 	else if (major == 0)
2436 		major = 1;
2437 	if (major != priv->version) {
2438 		dev_err(&priv->pdev->dev,
2439 			"GENET version mismatch, got: %d, configured for: %d\n",
2440 			major, priv->version);
2441 	}
2442 
2443 	/* Print the GENET core version */
2444 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
2445 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
2446 
2447 	/* Store the integrated PHY revision for the MDIO probing function
2448 	 * to pass this information to the PHY driver. The PHY driver expects
2449 	 * to find the PHY major revision in bits 15:8 while the GENET register
2450 	 * stores that information in bits 7:0, account for that.
2451 	 */
2452 	priv->gphy_rev = (reg & 0xffff) << 8;
2453 
2454 #ifdef CONFIG_PHYS_ADDR_T_64BIT
2455 	if (!(params->flags & GENET_HAS_40BITS))
2456 		pr_warn("GENET does not support 40-bits PA\n");
2457 #endif
2458 
2459 	pr_debug("Configuration for version: %d\n"
2460 		"TXq: %1d, RXq: %1d, BDs: %1d\n"
2461 		"BP << en: %2d, BP msk: 0x%05x\n"
2462 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
2463 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
2464 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
2465 		"Words/BD: %d\n",
2466 		priv->version,
2467 		params->tx_queues, params->rx_queues, params->bds_cnt,
2468 		params->bp_in_en_shift, params->bp_in_mask,
2469 		params->hfb_filter_cnt, params->qtag_mask,
2470 		params->tbuf_offset, params->hfb_offset,
2471 		params->hfb_reg_offset,
2472 		params->rdma_offset, params->tdma_offset,
2473 		params->words_per_bd);
2474 }
2475 
2476 static const struct of_device_id bcmgenet_match[] = {
2477 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
2478 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
2479 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
2480 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
2481 	{ },
2482 };
2483 
2484 static int bcmgenet_probe(struct platform_device *pdev)
2485 {
2486 	struct device_node *dn = pdev->dev.of_node;
2487 	const struct of_device_id *of_id;
2488 	struct bcmgenet_priv *priv;
2489 	struct net_device *dev;
2490 	const void *macaddr;
2491 	struct resource *r;
2492 	int err = -EIO;
2493 
2494 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and a single RX queue */
2495 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 1);
2496 	if (!dev) {
2497 		dev_err(&pdev->dev, "can't allocate net device\n");
2498 		return -ENOMEM;
2499 	}
2500 
2501 	of_id = of_match_node(bcmgenet_match, dn);
2502 	if (!of_id)
2503 		return -EINVAL;
2504 
2505 	priv = netdev_priv(dev);
2506 	priv->irq0 = platform_get_irq(pdev, 0);
2507 	priv->irq1 = platform_get_irq(pdev, 1);
2508 	priv->wol_irq = platform_get_irq(pdev, 2);
2509 	if (!priv->irq0 || !priv->irq1) {
2510 		dev_err(&pdev->dev, "can't find IRQs\n");
2511 		err = -EINVAL;
2512 		goto err;
2513 	}
2514 
2515 	macaddr = of_get_mac_address(dn);
2516 	if (!macaddr) {
2517 		dev_err(&pdev->dev, "can't find MAC address\n");
2518 		err = -EINVAL;
2519 		goto err;
2520 	}
2521 
2522 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2523 	priv->base = devm_ioremap_resource(&pdev->dev, r);
2524 	if (IS_ERR(priv->base)) {
2525 		err = PTR_ERR(priv->base);
2526 		goto err;
2527 	}
2528 
2529 	SET_NETDEV_DEV(dev, &pdev->dev);
2530 	dev_set_drvdata(&pdev->dev, dev);
2531 	ether_addr_copy(dev->dev_addr, macaddr);
2532 	dev->watchdog_timeo = 2 * HZ;
2533 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
2534 	dev->netdev_ops = &bcmgenet_netdev_ops;
2535 	netif_napi_add(dev, &priv->napi, bcmgenet_poll, 64);
2536 
2537 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
2538 
2539 	/* Set hardware features */
2540 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
2541 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2542 
2543 	/* Request the WOL interrupt and advertise suspend if available */
2544 	priv->wol_irq_disabled = true;
2545 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
2546 			       dev->name, priv);
2547 	if (!err)
2548 		device_set_wakeup_capable(&pdev->dev, 1);
2549 
2550 	/* Set the needed headroom to account for any possible
2551 	 * features enabling/disabling at runtime
2552 	 */
2553 	dev->needed_headroom += 64;
2554 
2555 	netdev_boot_setup_check(dev);
2556 
2557 	priv->dev = dev;
2558 	priv->pdev = pdev;
2559 	priv->version = (enum bcmgenet_version)of_id->data;
2560 
2561 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
2562 	if (IS_ERR(priv->clk))
2563 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
2564 
2565 	if (!IS_ERR(priv->clk))
2566 		clk_prepare_enable(priv->clk);
2567 
2568 	bcmgenet_set_hw_params(priv);
2569 
2570 	/* Mii wait queue */
2571 	init_waitqueue_head(&priv->wq);
2572 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
2573 	priv->rx_buf_len = RX_BUF_LENGTH;
2574 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
2575 
2576 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
2577 	if (IS_ERR(priv->clk_wol))
2578 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
2579 
2580 	err = reset_umac(priv);
2581 	if (err)
2582 		goto err_clk_disable;
2583 
2584 	err = bcmgenet_mii_init(dev);
2585 	if (err)
2586 		goto err_clk_disable;
2587 
2588 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
2589 	 * just the ring 16 descriptor based TX
2590 	 */
2591 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
2592 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
2593 
2594 	/* libphy will determine the link state */
2595 	netif_carrier_off(dev);
2596 
2597 	/* Turn off the main clock, WOL clock is handled separately */
2598 	if (!IS_ERR(priv->clk))
2599 		clk_disable_unprepare(priv->clk);
2600 
2601 	err = register_netdev(dev);
2602 	if (err)
2603 		goto err;
2604 
2605 	return err;
2606 
2607 err_clk_disable:
2608 	if (!IS_ERR(priv->clk))
2609 		clk_disable_unprepare(priv->clk);
2610 err:
2611 	free_netdev(dev);
2612 	return err;
2613 }
2614 
2615 static int bcmgenet_remove(struct platform_device *pdev)
2616 {
2617 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
2618 
2619 	dev_set_drvdata(&pdev->dev, NULL);
2620 	unregister_netdev(priv->dev);
2621 	bcmgenet_mii_exit(priv->dev);
2622 	free_netdev(priv->dev);
2623 
2624 	return 0;
2625 }
2626 
2627 #ifdef CONFIG_PM_SLEEP
2628 static int bcmgenet_suspend(struct device *d)
2629 {
2630 	struct net_device *dev = dev_get_drvdata(d);
2631 	struct bcmgenet_priv *priv = netdev_priv(dev);
2632 	int ret;
2633 
2634 	if (!netif_running(dev))
2635 		return 0;
2636 
2637 	bcmgenet_netif_stop(dev);
2638 
2639 	phy_suspend(priv->phydev);
2640 
2641 	netif_device_detach(dev);
2642 
2643 	/* Disable MAC receive */
2644 	umac_enable_set(priv, CMD_RX_EN, false);
2645 
2646 	ret = bcmgenet_dma_teardown(priv);
2647 	if (ret)
2648 		return ret;
2649 
2650 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2651 	umac_enable_set(priv, CMD_TX_EN, false);
2652 
2653 	/* tx reclaim */
2654 	bcmgenet_tx_reclaim_all(dev);
2655 	bcmgenet_fini_dma(priv);
2656 
2657 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
2658 	if (device_may_wakeup(d) && priv->wolopts) {
2659 		bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
2660 		clk_prepare_enable(priv->clk_wol);
2661 	}
2662 
2663 	/* Turn off the clocks */
2664 	clk_disable_unprepare(priv->clk);
2665 
2666 	return 0;
2667 }
2668 
2669 static int bcmgenet_resume(struct device *d)
2670 {
2671 	struct net_device *dev = dev_get_drvdata(d);
2672 	struct bcmgenet_priv *priv = netdev_priv(dev);
2673 	unsigned long dma_ctrl;
2674 	int ret;
2675 	u32 reg;
2676 
2677 	if (!netif_running(dev))
2678 		return 0;
2679 
2680 	/* Turn on the clock */
2681 	ret = clk_prepare_enable(priv->clk);
2682 	if (ret)
2683 		return ret;
2684 
2685 	bcmgenet_umac_reset(priv);
2686 
2687 	ret = init_umac(priv);
2688 	if (ret)
2689 		goto out_clk_disable;
2690 
2691 	/* From WOL-enabled suspend, switch to regular clock */
2692 	if (priv->wolopts)
2693 		clk_disable_unprepare(priv->clk_wol);
2694 
2695 	phy_init_hw(priv->phydev);
2696 	/* Speed settings must be restored */
2697 	bcmgenet_mii_config(priv->dev, false);
2698 
2699 	/* disable ethernet MAC while updating its registers */
2700 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2701 
2702 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2703 
2704 	if (phy_is_internal(priv->phydev)) {
2705 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2706 		reg |= EXT_ENERGY_DET_MASK;
2707 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2708 	}
2709 
2710 	if (priv->wolopts)
2711 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2712 
2713 	/* Disable RX/TX DMA and flush TX queues */
2714 	dma_ctrl = bcmgenet_dma_disable(priv);
2715 
2716 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2717 	ret = bcmgenet_init_dma(priv);
2718 	if (ret) {
2719 		netdev_err(dev, "failed to initialize DMA\n");
2720 		goto out_clk_disable;
2721 	}
2722 
2723 	/* Always enable ring 16 - descriptor ring */
2724 	bcmgenet_enable_dma(priv, dma_ctrl);
2725 
2726 	netif_device_attach(dev);
2727 
2728 	phy_resume(priv->phydev);
2729 
2730 	bcmgenet_netif_start(dev);
2731 
2732 	return 0;
2733 
2734 out_clk_disable:
2735 	clk_disable_unprepare(priv->clk);
2736 	return ret;
2737 }
2738 #endif /* CONFIG_PM_SLEEP */
2739 
2740 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
2741 
2742 static struct platform_driver bcmgenet_driver = {
2743 	.probe	= bcmgenet_probe,
2744 	.remove	= bcmgenet_remove,
2745 	.driver	= {
2746 		.name	= "bcmgenet",
2747 		.owner	= THIS_MODULE,
2748 		.of_match_table = bcmgenet_match,
2749 		.pm	= &bcmgenet_pm_ops,
2750 	},
2751 };
2752 module_platform_driver(bcmgenet_driver);
2753 
2754 MODULE_AUTHOR("Broadcom Corporation");
2755 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
2756 MODULE_ALIAS("platform:bcmgenet");
2757 MODULE_LICENSE("GPL");
2758