xref: /openbmc/linux/drivers/net/ethernet/broadcom/bnxt/bnxt.c (revision bf3608f338e928e5d26b620feb7d8afcdfff50e3)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2019 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 
13 #include <linux/stringify.h>
14 #include <linux/kernel.h>
15 #include <linux/timer.h>
16 #include <linux/errno.h>
17 #include <linux/ioport.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/bitops.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29 #include <linux/delay.h>
30 #include <asm/byteorder.h>
31 #include <asm/page.h>
32 #include <linux/time.h>
33 #include <linux/mii.h>
34 #include <linux/mdio.h>
35 #include <linux/if.h>
36 #include <linux/if_vlan.h>
37 #include <linux/if_bridge.h>
38 #include <linux/rtc.h>
39 #include <linux/bpf.h>
40 #include <net/gro.h>
41 #include <net/ip.h>
42 #include <net/tcp.h>
43 #include <net/udp.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <net/udp_tunnel.h>
47 #include <linux/workqueue.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/log2.h>
51 #include <linux/aer.h>
52 #include <linux/bitmap.h>
53 #include <linux/cpu_rmap.h>
54 #include <linux/cpumask.h>
55 #include <net/pkt_cls.h>
56 #include <linux/hwmon.h>
57 #include <linux/hwmon-sysfs.h>
58 #include <net/page_pool.h>
59 
60 #include "bnxt_hsi.h"
61 #include "bnxt.h"
62 #include "bnxt_hwrm.h"
63 #include "bnxt_ulp.h"
64 #include "bnxt_sriov.h"
65 #include "bnxt_ethtool.h"
66 #include "bnxt_dcb.h"
67 #include "bnxt_xdp.h"
68 #include "bnxt_ptp.h"
69 #include "bnxt_vfr.h"
70 #include "bnxt_tc.h"
71 #include "bnxt_devlink.h"
72 #include "bnxt_debugfs.h"
73 
74 #define BNXT_TX_TIMEOUT		(5 * HZ)
75 #define BNXT_DEF_MSG_ENABLE	(NETIF_MSG_DRV | NETIF_MSG_HW | \
76 				 NETIF_MSG_TX_ERR)
77 
78 MODULE_LICENSE("GPL");
79 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
80 
81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
83 #define BNXT_RX_COPY_THRESH 256
84 
85 #define BNXT_TX_PUSH_THRESH 164
86 
87 /* indexed by enum board_idx */
88 static const struct {
89 	char *name;
90 } board_info[] = {
91 	[BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
92 	[BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
93 	[BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
94 	[BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
95 	[BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
96 	[BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
97 	[BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
98 	[BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
99 	[BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
100 	[BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
101 	[BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
102 	[BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
103 	[BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
104 	[BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
105 	[BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
106 	[BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
107 	[BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
108 	[BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
109 	[BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
110 	[BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
111 	[BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
112 	[BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
113 	[BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
114 	[BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
115 	[BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
116 	[BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
117 	[BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" },
118 	[BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
119 	[BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" },
120 	[BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
121 	[BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" },
122 	[BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" },
123 	[BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" },
124 	[BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" },
125 	[BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" },
126 	[BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" },
127 	[BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
128 	[BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" },
129 	[NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" },
130 	[NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" },
131 	[NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" },
132 	[NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" },
133 	[NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" },
134 	[NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" },
135 	[NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" },
136 };
137 
138 static const struct pci_device_id bnxt_pci_tbl[] = {
139 	{ PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR },
140 	{ PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR },
141 	{ PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 },
142 	{ PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
143 	{ PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
144 	{ PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
145 	{ PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
146 	{ PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
147 	{ PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
148 	{ PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
149 	{ PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
150 	{ PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
151 	{ PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
152 	{ PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
153 	{ PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
154 	{ PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
155 	{ PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
156 	{ PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
157 	{ PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
158 	{ PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
159 	{ PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
160 	{ PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
161 	{ PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
162 	{ PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
163 	{ PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
164 	{ PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
165 	{ PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
166 	{ PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
167 	{ PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
168 	{ PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
169 	{ PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
170 	{ PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
171 	{ PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
172 	{ PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 },
173 	{ PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 },
174 	{ PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 },
175 	{ PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 },
176 	{ PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 },
177 	{ PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57508_NPAR },
178 	{ PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR },
179 	{ PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57502_NPAR },
180 	{ PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57508_NPAR },
181 	{ PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR },
182 	{ PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57502_NPAR },
183 	{ PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 },
184 	{ PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 },
185 #ifdef CONFIG_BNXT_SRIOV
186 	{ PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF },
187 	{ PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV },
188 	{ PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV },
189 	{ PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF },
190 	{ PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV },
191 	{ PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
192 	{ PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV },
193 	{ PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV },
194 	{ PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV },
195 	{ PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV },
196 	{ PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
197 	{ PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
198 	{ PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
199 	{ PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
200 	{ PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
201 	{ PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV },
202 	{ PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF },
203 	{ PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF },
204 	{ PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV },
205 	{ PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV },
206 	{ PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF },
207 #endif
208 	{ 0 }
209 };
210 
211 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
212 
213 static const u16 bnxt_vf_req_snif[] = {
214 	HWRM_FUNC_CFG,
215 	HWRM_FUNC_VF_CFG,
216 	HWRM_PORT_PHY_QCFG,
217 	HWRM_CFA_L2_FILTER_ALLOC,
218 };
219 
220 static const u16 bnxt_async_events_arr[] = {
221 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
222 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE,
223 	ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
224 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
225 	ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
226 	ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
227 	ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE,
228 	ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY,
229 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY,
230 	ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION,
231 	ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE,
232 	ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG,
233 	ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST,
234 	ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP,
235 	ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT,
236 };
237 
238 static struct workqueue_struct *bnxt_pf_wq;
239 
240 static bool bnxt_vf_pciid(enum board_idx idx)
241 {
242 	return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF ||
243 		idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV ||
244 		idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF ||
245 		idx == NETXTREME_E_P5_VF_HV);
246 }
247 
248 #define DB_CP_REARM_FLAGS	(DB_KEY_CP | DB_IDX_VALID)
249 #define DB_CP_FLAGS		(DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
250 #define DB_CP_IRQ_DIS_FLAGS	(DB_KEY_CP | DB_IRQ_DIS)
251 
252 #define BNXT_CP_DB_IRQ_DIS(db)						\
253 		writel(DB_CP_IRQ_DIS_FLAGS, db)
254 
255 #define BNXT_DB_CQ(db, idx)						\
256 	writel(DB_CP_FLAGS | RING_CMP(idx), (db)->doorbell)
257 
258 #define BNXT_DB_NQ_P5(db, idx)						\
259 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | RING_CMP(idx),	\
260 		    (db)->doorbell)
261 
262 #define BNXT_DB_CQ_ARM(db, idx)						\
263 	writel(DB_CP_REARM_FLAGS | RING_CMP(idx), (db)->doorbell)
264 
265 #define BNXT_DB_NQ_ARM_P5(db, idx)					\
266 	bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | RING_CMP(idx),\
267 		    (db)->doorbell)
268 
269 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
270 {
271 	if (bp->flags & BNXT_FLAG_CHIP_P5)
272 		BNXT_DB_NQ_P5(db, idx);
273 	else
274 		BNXT_DB_CQ(db, idx);
275 }
276 
277 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
278 {
279 	if (bp->flags & BNXT_FLAG_CHIP_P5)
280 		BNXT_DB_NQ_ARM_P5(db, idx);
281 	else
282 		BNXT_DB_CQ_ARM(db, idx);
283 }
284 
285 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx)
286 {
287 	if (bp->flags & BNXT_FLAG_CHIP_P5)
288 		bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL |
289 			    RING_CMP(idx), db->doorbell);
290 	else
291 		BNXT_DB_CQ(db, idx);
292 }
293 
294 const u16 bnxt_lhint_arr[] = {
295 	TX_BD_FLAGS_LHINT_512_AND_SMALLER,
296 	TX_BD_FLAGS_LHINT_512_TO_1023,
297 	TX_BD_FLAGS_LHINT_1024_TO_2047,
298 	TX_BD_FLAGS_LHINT_1024_TO_2047,
299 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
300 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
301 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
302 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
303 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
304 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
305 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
306 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
307 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
308 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
309 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
310 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
311 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
312 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
313 	TX_BD_FLAGS_LHINT_2048_AND_LARGER,
314 };
315 
316 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb)
317 {
318 	struct metadata_dst *md_dst = skb_metadata_dst(skb);
319 
320 	if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX)
321 		return 0;
322 
323 	return md_dst->u.port_info.port_id;
324 }
325 
326 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr,
327 			     u16 prod)
328 {
329 	bnxt_db_write(bp, &txr->tx_db, prod);
330 	txr->kick_pending = 0;
331 }
332 
333 static bool bnxt_txr_netif_try_stop_queue(struct bnxt *bp,
334 					  struct bnxt_tx_ring_info *txr,
335 					  struct netdev_queue *txq)
336 {
337 	netif_tx_stop_queue(txq);
338 
339 	/* netif_tx_stop_queue() must be done before checking
340 	 * tx index in bnxt_tx_avail() below, because in
341 	 * bnxt_tx_int(), we update tx index before checking for
342 	 * netif_tx_queue_stopped().
343 	 */
344 	smp_mb();
345 	if (bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh) {
346 		netif_tx_wake_queue(txq);
347 		return false;
348 	}
349 
350 	return true;
351 }
352 
353 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
354 {
355 	struct bnxt *bp = netdev_priv(dev);
356 	struct tx_bd *txbd;
357 	struct tx_bd_ext *txbd1;
358 	struct netdev_queue *txq;
359 	int i;
360 	dma_addr_t mapping;
361 	unsigned int length, pad = 0;
362 	u32 len, free_size, vlan_tag_flags, cfa_action, flags;
363 	u16 prod, last_frag;
364 	struct pci_dev *pdev = bp->pdev;
365 	struct bnxt_tx_ring_info *txr;
366 	struct bnxt_sw_tx_bd *tx_buf;
367 	__le32 lflags = 0;
368 
369 	i = skb_get_queue_mapping(skb);
370 	if (unlikely(i >= bp->tx_nr_rings)) {
371 		dev_kfree_skb_any(skb);
372 		atomic_long_inc(&dev->tx_dropped);
373 		return NETDEV_TX_OK;
374 	}
375 
376 	txq = netdev_get_tx_queue(dev, i);
377 	txr = &bp->tx_ring[bp->tx_ring_map[i]];
378 	prod = txr->tx_prod;
379 
380 	free_size = bnxt_tx_avail(bp, txr);
381 	if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
382 		/* We must have raced with NAPI cleanup */
383 		if (net_ratelimit() && txr->kick_pending)
384 			netif_warn(bp, tx_err, dev,
385 				   "bnxt: ring busy w/ flush pending!\n");
386 		if (bnxt_txr_netif_try_stop_queue(bp, txr, txq))
387 			return NETDEV_TX_BUSY;
388 	}
389 
390 	length = skb->len;
391 	len = skb_headlen(skb);
392 	last_frag = skb_shinfo(skb)->nr_frags;
393 
394 	txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
395 
396 	txbd->tx_bd_opaque = prod;
397 
398 	tx_buf = &txr->tx_buf_ring[prod];
399 	tx_buf->skb = skb;
400 	tx_buf->nr_frags = last_frag;
401 
402 	vlan_tag_flags = 0;
403 	cfa_action = bnxt_xmit_get_cfa_action(skb);
404 	if (skb_vlan_tag_present(skb)) {
405 		vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
406 				 skb_vlan_tag_get(skb);
407 		/* Currently supports 8021Q, 8021AD vlan offloads
408 		 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
409 		 */
410 		if (skb->vlan_proto == htons(ETH_P_8021Q))
411 			vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
412 	}
413 
414 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
415 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
416 
417 		if (ptp && ptp->tx_tstamp_en && !skb_is_gso(skb) &&
418 		    atomic_dec_if_positive(&ptp->tx_avail) >= 0) {
419 			if (!bnxt_ptp_parse(skb, &ptp->tx_seqid,
420 					    &ptp->tx_hdr_off)) {
421 				if (vlan_tag_flags)
422 					ptp->tx_hdr_off += VLAN_HLEN;
423 				lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP);
424 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
425 			} else {
426 				atomic_inc(&bp->ptp_cfg->tx_avail);
427 			}
428 		}
429 	}
430 
431 	if (unlikely(skb->no_fcs))
432 		lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC);
433 
434 	if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh &&
435 	    !lflags) {
436 		struct tx_push_buffer *tx_push_buf = txr->tx_push;
437 		struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
438 		struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
439 		void __iomem *db = txr->tx_db.doorbell;
440 		void *pdata = tx_push_buf->data;
441 		u64 *end;
442 		int j, push_len;
443 
444 		/* Set COAL_NOW to be ready quickly for the next push */
445 		tx_push->tx_bd_len_flags_type =
446 			cpu_to_le32((length << TX_BD_LEN_SHIFT) |
447 					TX_BD_TYPE_LONG_TX_BD |
448 					TX_BD_FLAGS_LHINT_512_AND_SMALLER |
449 					TX_BD_FLAGS_COAL_NOW |
450 					TX_BD_FLAGS_PACKET_END |
451 					(2 << TX_BD_FLAGS_BD_CNT_SHIFT));
452 
453 		if (skb->ip_summed == CHECKSUM_PARTIAL)
454 			tx_push1->tx_bd_hsize_lflags =
455 					cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
456 		else
457 			tx_push1->tx_bd_hsize_lflags = 0;
458 
459 		tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
460 		tx_push1->tx_bd_cfa_action =
461 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
462 
463 		end = pdata + length;
464 		end = PTR_ALIGN(end, 8) - 1;
465 		*end = 0;
466 
467 		skb_copy_from_linear_data(skb, pdata, len);
468 		pdata += len;
469 		for (j = 0; j < last_frag; j++) {
470 			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
471 			void *fptr;
472 
473 			fptr = skb_frag_address_safe(frag);
474 			if (!fptr)
475 				goto normal_tx;
476 
477 			memcpy(pdata, fptr, skb_frag_size(frag));
478 			pdata += skb_frag_size(frag);
479 		}
480 
481 		txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
482 		txbd->tx_bd_haddr = txr->data_mapping;
483 		prod = NEXT_TX(prod);
484 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
485 		memcpy(txbd, tx_push1, sizeof(*txbd));
486 		prod = NEXT_TX(prod);
487 		tx_push->doorbell =
488 			cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
489 		txr->tx_prod = prod;
490 
491 		tx_buf->is_push = 1;
492 		netdev_tx_sent_queue(txq, skb->len);
493 		wmb();	/* Sync is_push and byte queue before pushing data */
494 
495 		push_len = (length + sizeof(*tx_push) + 7) / 8;
496 		if (push_len > 16) {
497 			__iowrite64_copy(db, tx_push_buf, 16);
498 			__iowrite32_copy(db + 4, tx_push_buf + 1,
499 					 (push_len - 16) << 1);
500 		} else {
501 			__iowrite64_copy(db, tx_push_buf, push_len);
502 		}
503 
504 		goto tx_done;
505 	}
506 
507 normal_tx:
508 	if (length < BNXT_MIN_PKT_SIZE) {
509 		pad = BNXT_MIN_PKT_SIZE - length;
510 		if (skb_pad(skb, pad))
511 			/* SKB already freed. */
512 			goto tx_kick_pending;
513 		length = BNXT_MIN_PKT_SIZE;
514 	}
515 
516 	mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
517 
518 	if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
519 		goto tx_free;
520 
521 	dma_unmap_addr_set(tx_buf, mapping, mapping);
522 	flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
523 		((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
524 
525 	txbd->tx_bd_haddr = cpu_to_le64(mapping);
526 
527 	prod = NEXT_TX(prod);
528 	txbd1 = (struct tx_bd_ext *)
529 		&txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
530 
531 	txbd1->tx_bd_hsize_lflags = lflags;
532 	if (skb_is_gso(skb)) {
533 		u32 hdr_len;
534 
535 		if (skb->encapsulation)
536 			hdr_len = skb_inner_network_offset(skb) +
537 				skb_inner_network_header_len(skb) +
538 				inner_tcp_hdrlen(skb);
539 		else
540 			hdr_len = skb_transport_offset(skb) +
541 				tcp_hdrlen(skb);
542 
543 		txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO |
544 					TX_BD_FLAGS_T_IPID |
545 					(hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
546 		length = skb_shinfo(skb)->gso_size;
547 		txbd1->tx_bd_mss = cpu_to_le32(length);
548 		length += hdr_len;
549 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
550 		txbd1->tx_bd_hsize_lflags |=
551 			cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
552 		txbd1->tx_bd_mss = 0;
553 	}
554 
555 	length >>= 9;
556 	if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) {
557 		dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n",
558 				     skb->len);
559 		i = 0;
560 		goto tx_dma_error;
561 	}
562 	flags |= bnxt_lhint_arr[length];
563 	txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
564 
565 	txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
566 	txbd1->tx_bd_cfa_action =
567 			cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT);
568 	for (i = 0; i < last_frag; i++) {
569 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
570 
571 		prod = NEXT_TX(prod);
572 		txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
573 
574 		len = skb_frag_size(frag);
575 		mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
576 					   DMA_TO_DEVICE);
577 
578 		if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
579 			goto tx_dma_error;
580 
581 		tx_buf = &txr->tx_buf_ring[prod];
582 		dma_unmap_addr_set(tx_buf, mapping, mapping);
583 
584 		txbd->tx_bd_haddr = cpu_to_le64(mapping);
585 
586 		flags = len << TX_BD_LEN_SHIFT;
587 		txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
588 	}
589 
590 	flags &= ~TX_BD_LEN;
591 	txbd->tx_bd_len_flags_type =
592 		cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
593 			    TX_BD_FLAGS_PACKET_END);
594 
595 	netdev_tx_sent_queue(txq, skb->len);
596 
597 	skb_tx_timestamp(skb);
598 
599 	/* Sync BD data before updating doorbell */
600 	wmb();
601 
602 	prod = NEXT_TX(prod);
603 	txr->tx_prod = prod;
604 
605 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
606 		bnxt_txr_db_kick(bp, txr, prod);
607 	else
608 		txr->kick_pending = 1;
609 
610 tx_done:
611 
612 	if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
613 		if (netdev_xmit_more() && !tx_buf->is_push)
614 			bnxt_txr_db_kick(bp, txr, prod);
615 
616 		bnxt_txr_netif_try_stop_queue(bp, txr, txq);
617 	}
618 	return NETDEV_TX_OK;
619 
620 tx_dma_error:
621 	if (BNXT_TX_PTP_IS_SET(lflags))
622 		atomic_inc(&bp->ptp_cfg->tx_avail);
623 
624 	last_frag = i;
625 
626 	/* start back at beginning and unmap skb */
627 	prod = txr->tx_prod;
628 	tx_buf = &txr->tx_buf_ring[prod];
629 	dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
630 			 skb_headlen(skb), DMA_TO_DEVICE);
631 	prod = NEXT_TX(prod);
632 
633 	/* unmap remaining mapped pages */
634 	for (i = 0; i < last_frag; i++) {
635 		prod = NEXT_TX(prod);
636 		tx_buf = &txr->tx_buf_ring[prod];
637 		dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
638 			       skb_frag_size(&skb_shinfo(skb)->frags[i]),
639 			       DMA_TO_DEVICE);
640 	}
641 
642 tx_free:
643 	dev_kfree_skb_any(skb);
644 tx_kick_pending:
645 	if (txr->kick_pending)
646 		bnxt_txr_db_kick(bp, txr, txr->tx_prod);
647 	txr->tx_buf_ring[txr->tx_prod].skb = NULL;
648 	atomic_long_inc(&dev->tx_dropped);
649 	return NETDEV_TX_OK;
650 }
651 
652 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
653 {
654 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
655 	struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index);
656 	u16 cons = txr->tx_cons;
657 	struct pci_dev *pdev = bp->pdev;
658 	int i;
659 	unsigned int tx_bytes = 0;
660 
661 	for (i = 0; i < nr_pkts; i++) {
662 		struct bnxt_sw_tx_bd *tx_buf;
663 		bool compl_deferred = false;
664 		struct sk_buff *skb;
665 		int j, last;
666 
667 		tx_buf = &txr->tx_buf_ring[cons];
668 		cons = NEXT_TX(cons);
669 		skb = tx_buf->skb;
670 		tx_buf->skb = NULL;
671 
672 		if (tx_buf->is_push) {
673 			tx_buf->is_push = 0;
674 			goto next_tx_int;
675 		}
676 
677 		dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
678 				 skb_headlen(skb), DMA_TO_DEVICE);
679 		last = tx_buf->nr_frags;
680 
681 		for (j = 0; j < last; j++) {
682 			cons = NEXT_TX(cons);
683 			tx_buf = &txr->tx_buf_ring[cons];
684 			dma_unmap_page(
685 				&pdev->dev,
686 				dma_unmap_addr(tx_buf, mapping),
687 				skb_frag_size(&skb_shinfo(skb)->frags[j]),
688 				DMA_TO_DEVICE);
689 		}
690 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
691 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
692 				if (!bnxt_get_tx_ts_p5(bp, skb))
693 					compl_deferred = true;
694 				else
695 					atomic_inc(&bp->ptp_cfg->tx_avail);
696 			}
697 		}
698 
699 next_tx_int:
700 		cons = NEXT_TX(cons);
701 
702 		tx_bytes += skb->len;
703 		if (!compl_deferred)
704 			dev_kfree_skb_any(skb);
705 	}
706 
707 	netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
708 	txr->tx_cons = cons;
709 
710 	/* Need to make the tx_cons update visible to bnxt_start_xmit()
711 	 * before checking for netif_tx_queue_stopped().  Without the
712 	 * memory barrier, there is a small possibility that bnxt_start_xmit()
713 	 * will miss it and cause the queue to be stopped forever.
714 	 */
715 	smp_mb();
716 
717 	if (unlikely(netif_tx_queue_stopped(txq)) &&
718 	    bnxt_tx_avail(bp, txr) >= bp->tx_wake_thresh &&
719 	    READ_ONCE(txr->dev_state) != BNXT_DEV_STATE_CLOSING)
720 		netif_tx_wake_queue(txq);
721 }
722 
723 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping,
724 					 struct bnxt_rx_ring_info *rxr,
725 					 gfp_t gfp)
726 {
727 	struct device *dev = &bp->pdev->dev;
728 	struct page *page;
729 
730 	page = page_pool_dev_alloc_pages(rxr->page_pool);
731 	if (!page)
732 		return NULL;
733 
734 	*mapping = dma_map_page_attrs(dev, page, 0, PAGE_SIZE, bp->rx_dir,
735 				      DMA_ATTR_WEAK_ORDERING);
736 	if (dma_mapping_error(dev, *mapping)) {
737 		page_pool_recycle_direct(rxr->page_pool, page);
738 		return NULL;
739 	}
740 	*mapping += bp->rx_dma_offset;
741 	return page;
742 }
743 
744 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping,
745 				       gfp_t gfp)
746 {
747 	u8 *data;
748 	struct pci_dev *pdev = bp->pdev;
749 
750 	if (gfp == GFP_ATOMIC)
751 		data = napi_alloc_frag(bp->rx_buf_size);
752 	else
753 		data = netdev_alloc_frag(bp->rx_buf_size);
754 	if (!data)
755 		return NULL;
756 
757 	*mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset,
758 					bp->rx_buf_use_size, bp->rx_dir,
759 					DMA_ATTR_WEAK_ORDERING);
760 
761 	if (dma_mapping_error(&pdev->dev, *mapping)) {
762 		skb_free_frag(data);
763 		data = NULL;
764 	}
765 	return data;
766 }
767 
768 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
769 		       u16 prod, gfp_t gfp)
770 {
771 	struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
772 	struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
773 	dma_addr_t mapping;
774 
775 	if (BNXT_RX_PAGE_MODE(bp)) {
776 		struct page *page =
777 			__bnxt_alloc_rx_page(bp, &mapping, rxr, gfp);
778 
779 		if (!page)
780 			return -ENOMEM;
781 
782 		rx_buf->data = page;
783 		rx_buf->data_ptr = page_address(page) + bp->rx_offset;
784 	} else {
785 		u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp);
786 
787 		if (!data)
788 			return -ENOMEM;
789 
790 		rx_buf->data = data;
791 		rx_buf->data_ptr = data + bp->rx_offset;
792 	}
793 	rx_buf->mapping = mapping;
794 
795 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
796 	return 0;
797 }
798 
799 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data)
800 {
801 	u16 prod = rxr->rx_prod;
802 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
803 	struct rx_bd *cons_bd, *prod_bd;
804 
805 	prod_rx_buf = &rxr->rx_buf_ring[prod];
806 	cons_rx_buf = &rxr->rx_buf_ring[cons];
807 
808 	prod_rx_buf->data = data;
809 	prod_rx_buf->data_ptr = cons_rx_buf->data_ptr;
810 
811 	prod_rx_buf->mapping = cons_rx_buf->mapping;
812 
813 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
814 	cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
815 
816 	prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
817 }
818 
819 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
820 {
821 	u16 next, max = rxr->rx_agg_bmap_size;
822 
823 	next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
824 	if (next >= max)
825 		next = find_first_zero_bit(rxr->rx_agg_bmap, max);
826 	return next;
827 }
828 
829 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
830 				     struct bnxt_rx_ring_info *rxr,
831 				     u16 prod, gfp_t gfp)
832 {
833 	struct rx_bd *rxbd =
834 		&rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
835 	struct bnxt_sw_rx_agg_bd *rx_agg_buf;
836 	struct pci_dev *pdev = bp->pdev;
837 	struct page *page;
838 	dma_addr_t mapping;
839 	u16 sw_prod = rxr->rx_sw_agg_prod;
840 	unsigned int offset = 0;
841 
842 	if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
843 		page = rxr->rx_page;
844 		if (!page) {
845 			page = alloc_page(gfp);
846 			if (!page)
847 				return -ENOMEM;
848 			rxr->rx_page = page;
849 			rxr->rx_page_offset = 0;
850 		}
851 		offset = rxr->rx_page_offset;
852 		rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
853 		if (rxr->rx_page_offset == PAGE_SIZE)
854 			rxr->rx_page = NULL;
855 		else
856 			get_page(page);
857 	} else {
858 		page = alloc_page(gfp);
859 		if (!page)
860 			return -ENOMEM;
861 	}
862 
863 	mapping = dma_map_page_attrs(&pdev->dev, page, offset,
864 				     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
865 				     DMA_ATTR_WEAK_ORDERING);
866 	if (dma_mapping_error(&pdev->dev, mapping)) {
867 		__free_page(page);
868 		return -EIO;
869 	}
870 
871 	if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
872 		sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
873 
874 	__set_bit(sw_prod, rxr->rx_agg_bmap);
875 	rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
876 	rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
877 
878 	rx_agg_buf->page = page;
879 	rx_agg_buf->offset = offset;
880 	rx_agg_buf->mapping = mapping;
881 	rxbd->rx_bd_haddr = cpu_to_le64(mapping);
882 	rxbd->rx_bd_opaque = sw_prod;
883 	return 0;
884 }
885 
886 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp,
887 				       struct bnxt_cp_ring_info *cpr,
888 				       u16 cp_cons, u16 curr)
889 {
890 	struct rx_agg_cmp *agg;
891 
892 	cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr));
893 	agg = (struct rx_agg_cmp *)
894 		&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
895 	return agg;
896 }
897 
898 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp,
899 					      struct bnxt_rx_ring_info *rxr,
900 					      u16 agg_id, u16 curr)
901 {
902 	struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id];
903 
904 	return &tpa_info->agg_arr[curr];
905 }
906 
907 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx,
908 				   u16 start, u32 agg_bufs, bool tpa)
909 {
910 	struct bnxt_napi *bnapi = cpr->bnapi;
911 	struct bnxt *bp = bnapi->bp;
912 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
913 	u16 prod = rxr->rx_agg_prod;
914 	u16 sw_prod = rxr->rx_sw_agg_prod;
915 	bool p5_tpa = false;
916 	u32 i;
917 
918 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
919 		p5_tpa = true;
920 
921 	for (i = 0; i < agg_bufs; i++) {
922 		u16 cons;
923 		struct rx_agg_cmp *agg;
924 		struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
925 		struct rx_bd *prod_bd;
926 		struct page *page;
927 
928 		if (p5_tpa)
929 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i);
930 		else
931 			agg = bnxt_get_agg(bp, cpr, idx, start + i);
932 		cons = agg->rx_agg_cmp_opaque;
933 		__clear_bit(cons, rxr->rx_agg_bmap);
934 
935 		if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
936 			sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
937 
938 		__set_bit(sw_prod, rxr->rx_agg_bmap);
939 		prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
940 		cons_rx_buf = &rxr->rx_agg_ring[cons];
941 
942 		/* It is possible for sw_prod to be equal to cons, so
943 		 * set cons_rx_buf->page to NULL first.
944 		 */
945 		page = cons_rx_buf->page;
946 		cons_rx_buf->page = NULL;
947 		prod_rx_buf->page = page;
948 		prod_rx_buf->offset = cons_rx_buf->offset;
949 
950 		prod_rx_buf->mapping = cons_rx_buf->mapping;
951 
952 		prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
953 
954 		prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
955 		prod_bd->rx_bd_opaque = sw_prod;
956 
957 		prod = NEXT_RX_AGG(prod);
958 		sw_prod = NEXT_RX_AGG(sw_prod);
959 	}
960 	rxr->rx_agg_prod = prod;
961 	rxr->rx_sw_agg_prod = sw_prod;
962 }
963 
964 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp,
965 					struct bnxt_rx_ring_info *rxr,
966 					u16 cons, void *data, u8 *data_ptr,
967 					dma_addr_t dma_addr,
968 					unsigned int offset_and_len)
969 {
970 	unsigned int payload = offset_and_len >> 16;
971 	unsigned int len = offset_and_len & 0xffff;
972 	skb_frag_t *frag;
973 	struct page *page = data;
974 	u16 prod = rxr->rx_prod;
975 	struct sk_buff *skb;
976 	int off, err;
977 
978 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
979 	if (unlikely(err)) {
980 		bnxt_reuse_rx_data(rxr, cons, data);
981 		return NULL;
982 	}
983 	dma_addr -= bp->rx_dma_offset;
984 	dma_unmap_page_attrs(&bp->pdev->dev, dma_addr, PAGE_SIZE, bp->rx_dir,
985 			     DMA_ATTR_WEAK_ORDERING);
986 	page_pool_release_page(rxr->page_pool, page);
987 
988 	if (unlikely(!payload))
989 		payload = eth_get_headlen(bp->dev, data_ptr, len);
990 
991 	skb = napi_alloc_skb(&rxr->bnapi->napi, payload);
992 	if (!skb) {
993 		__free_page(page);
994 		return NULL;
995 	}
996 
997 	off = (void *)data_ptr - page_address(page);
998 	skb_add_rx_frag(skb, 0, page, off, len, PAGE_SIZE);
999 	memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN,
1000 	       payload + NET_IP_ALIGN);
1001 
1002 	frag = &skb_shinfo(skb)->frags[0];
1003 	skb_frag_size_sub(frag, payload);
1004 	skb_frag_off_add(frag, payload);
1005 	skb->data_len -= payload;
1006 	skb->tail += payload;
1007 
1008 	return skb;
1009 }
1010 
1011 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
1012 				   struct bnxt_rx_ring_info *rxr, u16 cons,
1013 				   void *data, u8 *data_ptr,
1014 				   dma_addr_t dma_addr,
1015 				   unsigned int offset_and_len)
1016 {
1017 	u16 prod = rxr->rx_prod;
1018 	struct sk_buff *skb;
1019 	int err;
1020 
1021 	err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
1022 	if (unlikely(err)) {
1023 		bnxt_reuse_rx_data(rxr, cons, data);
1024 		return NULL;
1025 	}
1026 
1027 	skb = build_skb(data, bp->rx_buf_size);
1028 	dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
1029 			       bp->rx_dir, DMA_ATTR_WEAK_ORDERING);
1030 	if (!skb) {
1031 		skb_free_frag(data);
1032 		return NULL;
1033 	}
1034 
1035 	skb_reserve(skb, bp->rx_offset);
1036 	skb_put(skb, offset_and_len & 0xffff);
1037 	return skb;
1038 }
1039 
1040 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp,
1041 				     struct bnxt_cp_ring_info *cpr,
1042 				     struct sk_buff *skb, u16 idx,
1043 				     u32 agg_bufs, bool tpa)
1044 {
1045 	struct bnxt_napi *bnapi = cpr->bnapi;
1046 	struct pci_dev *pdev = bp->pdev;
1047 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1048 	u16 prod = rxr->rx_agg_prod;
1049 	bool p5_tpa = false;
1050 	u32 i;
1051 
1052 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && tpa)
1053 		p5_tpa = true;
1054 
1055 	for (i = 0; i < agg_bufs; i++) {
1056 		u16 cons, frag_len;
1057 		struct rx_agg_cmp *agg;
1058 		struct bnxt_sw_rx_agg_bd *cons_rx_buf;
1059 		struct page *page;
1060 		dma_addr_t mapping;
1061 
1062 		if (p5_tpa)
1063 			agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i);
1064 		else
1065 			agg = bnxt_get_agg(bp, cpr, idx, i);
1066 		cons = agg->rx_agg_cmp_opaque;
1067 		frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
1068 			    RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
1069 
1070 		cons_rx_buf = &rxr->rx_agg_ring[cons];
1071 		skb_fill_page_desc(skb, i, cons_rx_buf->page,
1072 				   cons_rx_buf->offset, frag_len);
1073 		__clear_bit(cons, rxr->rx_agg_bmap);
1074 
1075 		/* It is possible for bnxt_alloc_rx_page() to allocate
1076 		 * a sw_prod index that equals the cons index, so we
1077 		 * need to clear the cons entry now.
1078 		 */
1079 		mapping = cons_rx_buf->mapping;
1080 		page = cons_rx_buf->page;
1081 		cons_rx_buf->page = NULL;
1082 
1083 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
1084 			struct skb_shared_info *shinfo;
1085 			unsigned int nr_frags;
1086 
1087 			shinfo = skb_shinfo(skb);
1088 			nr_frags = --shinfo->nr_frags;
1089 			__skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
1090 
1091 			dev_kfree_skb(skb);
1092 
1093 			cons_rx_buf->page = page;
1094 
1095 			/* Update prod since possibly some pages have been
1096 			 * allocated already.
1097 			 */
1098 			rxr->rx_agg_prod = prod;
1099 			bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa);
1100 			return NULL;
1101 		}
1102 
1103 		dma_unmap_page_attrs(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
1104 				     DMA_FROM_DEVICE,
1105 				     DMA_ATTR_WEAK_ORDERING);
1106 
1107 		skb->data_len += frag_len;
1108 		skb->len += frag_len;
1109 		skb->truesize += PAGE_SIZE;
1110 
1111 		prod = NEXT_RX_AGG(prod);
1112 	}
1113 	rxr->rx_agg_prod = prod;
1114 	return skb;
1115 }
1116 
1117 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1118 			       u8 agg_bufs, u32 *raw_cons)
1119 {
1120 	u16 last;
1121 	struct rx_agg_cmp *agg;
1122 
1123 	*raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
1124 	last = RING_CMP(*raw_cons);
1125 	agg = (struct rx_agg_cmp *)
1126 		&cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
1127 	return RX_AGG_CMP_VALID(agg, *raw_cons);
1128 }
1129 
1130 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
1131 					    unsigned int len,
1132 					    dma_addr_t mapping)
1133 {
1134 	struct bnxt *bp = bnapi->bp;
1135 	struct pci_dev *pdev = bp->pdev;
1136 	struct sk_buff *skb;
1137 
1138 	skb = napi_alloc_skb(&bnapi->napi, len);
1139 	if (!skb)
1140 		return NULL;
1141 
1142 	dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh,
1143 				bp->rx_dir);
1144 
1145 	memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN,
1146 	       len + NET_IP_ALIGN);
1147 
1148 	dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh,
1149 				   bp->rx_dir);
1150 
1151 	skb_put(skb, len);
1152 	return skb;
1153 }
1154 
1155 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1156 			   u32 *raw_cons, void *cmp)
1157 {
1158 	struct rx_cmp *rxcmp = cmp;
1159 	u32 tmp_raw_cons = *raw_cons;
1160 	u8 cmp_type, agg_bufs = 0;
1161 
1162 	cmp_type = RX_CMP_TYPE(rxcmp);
1163 
1164 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1165 		agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
1166 			    RX_CMP_AGG_BUFS) >>
1167 			   RX_CMP_AGG_BUFS_SHIFT;
1168 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1169 		struct rx_tpa_end_cmp *tpa_end = cmp;
1170 
1171 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1172 			return 0;
1173 
1174 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1175 	}
1176 
1177 	if (agg_bufs) {
1178 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1179 			return -EBUSY;
1180 	}
1181 	*raw_cons = tmp_raw_cons;
1182 	return 0;
1183 }
1184 
1185 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay)
1186 {
1187 	if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)))
1188 		return;
1189 
1190 	if (BNXT_PF(bp))
1191 		queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay);
1192 	else
1193 		schedule_delayed_work(&bp->fw_reset_task, delay);
1194 }
1195 
1196 static void bnxt_queue_sp_work(struct bnxt *bp)
1197 {
1198 	if (BNXT_PF(bp))
1199 		queue_work(bnxt_pf_wq, &bp->sp_task);
1200 	else
1201 		schedule_work(&bp->sp_task);
1202 }
1203 
1204 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
1205 {
1206 	if (!rxr->bnapi->in_reset) {
1207 		rxr->bnapi->in_reset = true;
1208 		if (bp->flags & BNXT_FLAG_CHIP_P5)
1209 			set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
1210 		else
1211 			set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event);
1212 		bnxt_queue_sp_work(bp);
1213 	}
1214 	rxr->rx_next_cons = 0xffff;
1215 }
1216 
1217 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1218 {
1219 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1220 	u16 idx = agg_id & MAX_TPA_P5_MASK;
1221 
1222 	if (test_bit(idx, map->agg_idx_bmap))
1223 		idx = find_first_zero_bit(map->agg_idx_bmap,
1224 					  BNXT_AGG_IDX_BMAP_SIZE);
1225 	__set_bit(idx, map->agg_idx_bmap);
1226 	map->agg_id_tbl[agg_id] = idx;
1227 	return idx;
1228 }
1229 
1230 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
1231 {
1232 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1233 
1234 	__clear_bit(idx, map->agg_idx_bmap);
1235 }
1236 
1237 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id)
1238 {
1239 	struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map;
1240 
1241 	return map->agg_id_tbl[agg_id];
1242 }
1243 
1244 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1245 			   struct rx_tpa_start_cmp *tpa_start,
1246 			   struct rx_tpa_start_cmp_ext *tpa_start1)
1247 {
1248 	struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
1249 	struct bnxt_tpa_info *tpa_info;
1250 	u16 cons, prod, agg_id;
1251 	struct rx_bd *prod_bd;
1252 	dma_addr_t mapping;
1253 
1254 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1255 		agg_id = TPA_START_AGG_ID_P5(tpa_start);
1256 		agg_id = bnxt_alloc_agg_idx(rxr, agg_id);
1257 	} else {
1258 		agg_id = TPA_START_AGG_ID(tpa_start);
1259 	}
1260 	cons = tpa_start->rx_tpa_start_cmp_opaque;
1261 	prod = rxr->rx_prod;
1262 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1263 	prod_rx_buf = &rxr->rx_buf_ring[prod];
1264 	tpa_info = &rxr->rx_tpa[agg_id];
1265 
1266 	if (unlikely(cons != rxr->rx_next_cons ||
1267 		     TPA_START_ERROR(tpa_start))) {
1268 		netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n",
1269 			    cons, rxr->rx_next_cons,
1270 			    TPA_START_ERROR_CODE(tpa_start1));
1271 		bnxt_sched_reset(bp, rxr);
1272 		return;
1273 	}
1274 	/* Store cfa_code in tpa_info to use in tpa_end
1275 	 * completion processing.
1276 	 */
1277 	tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1);
1278 	prod_rx_buf->data = tpa_info->data;
1279 	prod_rx_buf->data_ptr = tpa_info->data_ptr;
1280 
1281 	mapping = tpa_info->mapping;
1282 	prod_rx_buf->mapping = mapping;
1283 
1284 	prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
1285 
1286 	prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
1287 
1288 	tpa_info->data = cons_rx_buf->data;
1289 	tpa_info->data_ptr = cons_rx_buf->data_ptr;
1290 	cons_rx_buf->data = NULL;
1291 	tpa_info->mapping = cons_rx_buf->mapping;
1292 
1293 	tpa_info->len =
1294 		le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
1295 				RX_TPA_START_CMP_LEN_SHIFT;
1296 	if (likely(TPA_START_HASH_VALID(tpa_start))) {
1297 		u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
1298 
1299 		tpa_info->hash_type = PKT_HASH_TYPE_L4;
1300 		tpa_info->gso_type = SKB_GSO_TCPV4;
1301 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1302 		if (hash_type == 3 || TPA_START_IS_IPV6(tpa_start1))
1303 			tpa_info->gso_type = SKB_GSO_TCPV6;
1304 		tpa_info->rss_hash =
1305 			le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
1306 	} else {
1307 		tpa_info->hash_type = PKT_HASH_TYPE_NONE;
1308 		tpa_info->gso_type = 0;
1309 		netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n");
1310 	}
1311 	tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
1312 	tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
1313 	tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
1314 	tpa_info->agg_count = 0;
1315 
1316 	rxr->rx_prod = NEXT_RX(prod);
1317 	cons = NEXT_RX(cons);
1318 	rxr->rx_next_cons = NEXT_RX(cons);
1319 	cons_rx_buf = &rxr->rx_buf_ring[cons];
1320 
1321 	bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
1322 	rxr->rx_prod = NEXT_RX(rxr->rx_prod);
1323 	cons_rx_buf->data = NULL;
1324 }
1325 
1326 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs)
1327 {
1328 	if (agg_bufs)
1329 		bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true);
1330 }
1331 
1332 #ifdef CONFIG_INET
1333 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto)
1334 {
1335 	struct udphdr *uh = NULL;
1336 
1337 	if (ip_proto == htons(ETH_P_IP)) {
1338 		struct iphdr *iph = (struct iphdr *)skb->data;
1339 
1340 		if (iph->protocol == IPPROTO_UDP)
1341 			uh = (struct udphdr *)(iph + 1);
1342 	} else {
1343 		struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1344 
1345 		if (iph->nexthdr == IPPROTO_UDP)
1346 			uh = (struct udphdr *)(iph + 1);
1347 	}
1348 	if (uh) {
1349 		if (uh->check)
1350 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM;
1351 		else
1352 			skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1353 	}
1354 }
1355 #endif
1356 
1357 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1358 					   int payload_off, int tcp_ts,
1359 					   struct sk_buff *skb)
1360 {
1361 #ifdef CONFIG_INET
1362 	struct tcphdr *th;
1363 	int len, nw_off;
1364 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1365 	u32 hdr_info = tpa_info->hdr_info;
1366 	bool loopback = false;
1367 
1368 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1369 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1370 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1371 
1372 	/* If the packet is an internal loopback packet, the offsets will
1373 	 * have an extra 4 bytes.
1374 	 */
1375 	if (inner_mac_off == 4) {
1376 		loopback = true;
1377 	} else if (inner_mac_off > 4) {
1378 		__be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1379 					    ETH_HLEN - 2));
1380 
1381 		/* We only support inner iPv4/ipv6.  If we don't see the
1382 		 * correct protocol ID, it must be a loopback packet where
1383 		 * the offsets are off by 4.
1384 		 */
1385 		if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1386 			loopback = true;
1387 	}
1388 	if (loopback) {
1389 		/* internal loopback packet, subtract all offsets by 4 */
1390 		inner_ip_off -= 4;
1391 		inner_mac_off -= 4;
1392 		outer_ip_off -= 4;
1393 	}
1394 
1395 	nw_off = inner_ip_off - ETH_HLEN;
1396 	skb_set_network_header(skb, nw_off);
1397 	if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1398 		struct ipv6hdr *iph = ipv6_hdr(skb);
1399 
1400 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1401 		len = skb->len - skb_transport_offset(skb);
1402 		th = tcp_hdr(skb);
1403 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1404 	} else {
1405 		struct iphdr *iph = ip_hdr(skb);
1406 
1407 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1408 		len = skb->len - skb_transport_offset(skb);
1409 		th = tcp_hdr(skb);
1410 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1411 	}
1412 
1413 	if (inner_mac_off) { /* tunnel */
1414 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1415 					    ETH_HLEN - 2));
1416 
1417 		bnxt_gro_tunnel(skb, proto);
1418 	}
1419 #endif
1420 	return skb;
1421 }
1422 
1423 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info,
1424 					   int payload_off, int tcp_ts,
1425 					   struct sk_buff *skb)
1426 {
1427 #ifdef CONFIG_INET
1428 	u16 outer_ip_off, inner_ip_off, inner_mac_off;
1429 	u32 hdr_info = tpa_info->hdr_info;
1430 	int iphdr_len, nw_off;
1431 
1432 	inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1433 	inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1434 	outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1435 
1436 	nw_off = inner_ip_off - ETH_HLEN;
1437 	skb_set_network_header(skb, nw_off);
1438 	iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ?
1439 		     sizeof(struct ipv6hdr) : sizeof(struct iphdr);
1440 	skb_set_transport_header(skb, nw_off + iphdr_len);
1441 
1442 	if (inner_mac_off) { /* tunnel */
1443 		__be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1444 					    ETH_HLEN - 2));
1445 
1446 		bnxt_gro_tunnel(skb, proto);
1447 	}
1448 #endif
1449 	return skb;
1450 }
1451 
1452 #define BNXT_IPV4_HDR_SIZE	(sizeof(struct iphdr) + sizeof(struct tcphdr))
1453 #define BNXT_IPV6_HDR_SIZE	(sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1454 
1455 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1456 					   int payload_off, int tcp_ts,
1457 					   struct sk_buff *skb)
1458 {
1459 #ifdef CONFIG_INET
1460 	struct tcphdr *th;
1461 	int len, nw_off, tcp_opt_len = 0;
1462 
1463 	if (tcp_ts)
1464 		tcp_opt_len = 12;
1465 
1466 	if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1467 		struct iphdr *iph;
1468 
1469 		nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1470 			 ETH_HLEN;
1471 		skb_set_network_header(skb, nw_off);
1472 		iph = ip_hdr(skb);
1473 		skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1474 		len = skb->len - skb_transport_offset(skb);
1475 		th = tcp_hdr(skb);
1476 		th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1477 	} else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1478 		struct ipv6hdr *iph;
1479 
1480 		nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1481 			 ETH_HLEN;
1482 		skb_set_network_header(skb, nw_off);
1483 		iph = ipv6_hdr(skb);
1484 		skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1485 		len = skb->len - skb_transport_offset(skb);
1486 		th = tcp_hdr(skb);
1487 		th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1488 	} else {
1489 		dev_kfree_skb_any(skb);
1490 		return NULL;
1491 	}
1492 
1493 	if (nw_off) /* tunnel */
1494 		bnxt_gro_tunnel(skb, skb->protocol);
1495 #endif
1496 	return skb;
1497 }
1498 
1499 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1500 					   struct bnxt_tpa_info *tpa_info,
1501 					   struct rx_tpa_end_cmp *tpa_end,
1502 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1503 					   struct sk_buff *skb)
1504 {
1505 #ifdef CONFIG_INET
1506 	int payload_off;
1507 	u16 segs;
1508 
1509 	segs = TPA_END_TPA_SEGS(tpa_end);
1510 	if (segs == 1)
1511 		return skb;
1512 
1513 	NAPI_GRO_CB(skb)->count = segs;
1514 	skb_shinfo(skb)->gso_size =
1515 		le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1516 	skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1517 	if (bp->flags & BNXT_FLAG_CHIP_P5)
1518 		payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1);
1519 	else
1520 		payload_off = TPA_END_PAYLOAD_OFF(tpa_end);
1521 	skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1522 	if (likely(skb))
1523 		tcp_gro_complete(skb);
1524 #endif
1525 	return skb;
1526 }
1527 
1528 /* Given the cfa_code of a received packet determine which
1529  * netdev (vf-rep or PF) the packet is destined to.
1530  */
1531 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code)
1532 {
1533 	struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code);
1534 
1535 	/* if vf-rep dev is NULL, the must belongs to the PF */
1536 	return dev ? dev : bp->dev;
1537 }
1538 
1539 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1540 					   struct bnxt_cp_ring_info *cpr,
1541 					   u32 *raw_cons,
1542 					   struct rx_tpa_end_cmp *tpa_end,
1543 					   struct rx_tpa_end_cmp_ext *tpa_end1,
1544 					   u8 *event)
1545 {
1546 	struct bnxt_napi *bnapi = cpr->bnapi;
1547 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1548 	u8 *data_ptr, agg_bufs;
1549 	unsigned int len;
1550 	struct bnxt_tpa_info *tpa_info;
1551 	dma_addr_t mapping;
1552 	struct sk_buff *skb;
1553 	u16 idx = 0, agg_id;
1554 	void *data;
1555 	bool gro;
1556 
1557 	if (unlikely(bnapi->in_reset)) {
1558 		int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end);
1559 
1560 		if (rc < 0)
1561 			return ERR_PTR(-EBUSY);
1562 		return NULL;
1563 	}
1564 
1565 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
1566 		agg_id = TPA_END_AGG_ID_P5(tpa_end);
1567 		agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1568 		agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1);
1569 		tpa_info = &rxr->rx_tpa[agg_id];
1570 		if (unlikely(agg_bufs != tpa_info->agg_count)) {
1571 			netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n",
1572 				    agg_bufs, tpa_info->agg_count);
1573 			agg_bufs = tpa_info->agg_count;
1574 		}
1575 		tpa_info->agg_count = 0;
1576 		*event |= BNXT_AGG_EVENT;
1577 		bnxt_free_agg_idx(rxr, agg_id);
1578 		idx = agg_id;
1579 		gro = !!(bp->flags & BNXT_FLAG_GRO);
1580 	} else {
1581 		agg_id = TPA_END_AGG_ID(tpa_end);
1582 		agg_bufs = TPA_END_AGG_BUFS(tpa_end);
1583 		tpa_info = &rxr->rx_tpa[agg_id];
1584 		idx = RING_CMP(*raw_cons);
1585 		if (agg_bufs) {
1586 			if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1587 				return ERR_PTR(-EBUSY);
1588 
1589 			*event |= BNXT_AGG_EVENT;
1590 			idx = NEXT_CMP(idx);
1591 		}
1592 		gro = !!TPA_END_GRO(tpa_end);
1593 	}
1594 	data = tpa_info->data;
1595 	data_ptr = tpa_info->data_ptr;
1596 	prefetch(data_ptr);
1597 	len = tpa_info->len;
1598 	mapping = tpa_info->mapping;
1599 
1600 	if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) {
1601 		bnxt_abort_tpa(cpr, idx, agg_bufs);
1602 		if (agg_bufs > MAX_SKB_FRAGS)
1603 			netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1604 				    agg_bufs, (int)MAX_SKB_FRAGS);
1605 		return NULL;
1606 	}
1607 
1608 	if (len <= bp->rx_copy_thresh) {
1609 		skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping);
1610 		if (!skb) {
1611 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1612 			cpr->sw_stats.rx.rx_oom_discards += 1;
1613 			return NULL;
1614 		}
1615 	} else {
1616 		u8 *new_data;
1617 		dma_addr_t new_mapping;
1618 
1619 		new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC);
1620 		if (!new_data) {
1621 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1622 			cpr->sw_stats.rx.rx_oom_discards += 1;
1623 			return NULL;
1624 		}
1625 
1626 		tpa_info->data = new_data;
1627 		tpa_info->data_ptr = new_data + bp->rx_offset;
1628 		tpa_info->mapping = new_mapping;
1629 
1630 		skb = build_skb(data, bp->rx_buf_size);
1631 		dma_unmap_single_attrs(&bp->pdev->dev, mapping,
1632 				       bp->rx_buf_use_size, bp->rx_dir,
1633 				       DMA_ATTR_WEAK_ORDERING);
1634 
1635 		if (!skb) {
1636 			skb_free_frag(data);
1637 			bnxt_abort_tpa(cpr, idx, agg_bufs);
1638 			cpr->sw_stats.rx.rx_oom_discards += 1;
1639 			return NULL;
1640 		}
1641 		skb_reserve(skb, bp->rx_offset);
1642 		skb_put(skb, len);
1643 	}
1644 
1645 	if (agg_bufs) {
1646 		skb = bnxt_rx_pages(bp, cpr, skb, idx, agg_bufs, true);
1647 		if (!skb) {
1648 			/* Page reuse already handled by bnxt_rx_pages(). */
1649 			cpr->sw_stats.rx.rx_oom_discards += 1;
1650 			return NULL;
1651 		}
1652 	}
1653 
1654 	skb->protocol =
1655 		eth_type_trans(skb, bnxt_get_pkt_dev(bp, tpa_info->cfa_code));
1656 
1657 	if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1658 		skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1659 
1660 	if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1661 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1662 		__be16 vlan_proto = htons(tpa_info->metadata >>
1663 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1664 		u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1665 
1666 		if (eth_type_vlan(vlan_proto)) {
1667 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1668 		} else {
1669 			dev_kfree_skb(skb);
1670 			return NULL;
1671 		}
1672 	}
1673 
1674 	skb_checksum_none_assert(skb);
1675 	if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1676 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1677 		skb->csum_level =
1678 			(tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1679 	}
1680 
1681 	if (gro)
1682 		skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1683 
1684 	return skb;
1685 }
1686 
1687 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
1688 			 struct rx_agg_cmp *rx_agg)
1689 {
1690 	u16 agg_id = TPA_AGG_AGG_ID(rx_agg);
1691 	struct bnxt_tpa_info *tpa_info;
1692 
1693 	agg_id = bnxt_lookup_agg_idx(rxr, agg_id);
1694 	tpa_info = &rxr->rx_tpa[agg_id];
1695 	BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS);
1696 	tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
1697 }
1698 
1699 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi,
1700 			     struct sk_buff *skb)
1701 {
1702 	if (skb->dev != bp->dev) {
1703 		/* this packet belongs to a vf-rep */
1704 		bnxt_vf_rep_rx(bp, skb);
1705 		return;
1706 	}
1707 	skb_record_rx_queue(skb, bnapi->index);
1708 	napi_gro_receive(&bnapi->napi, skb);
1709 }
1710 
1711 /* returns the following:
1712  * 1       - 1 packet successfully received
1713  * 0       - successful TPA_START, packet not completed yet
1714  * -EBUSY  - completion ring does not have all the agg buffers yet
1715  * -ENOMEM - packet aborted due to out of memory
1716  * -EIO    - packet aborted due to hw error indicated in BD
1717  */
1718 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
1719 		       u32 *raw_cons, u8 *event)
1720 {
1721 	struct bnxt_napi *bnapi = cpr->bnapi;
1722 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1723 	struct net_device *dev = bp->dev;
1724 	struct rx_cmp *rxcmp;
1725 	struct rx_cmp_ext *rxcmp1;
1726 	u32 tmp_raw_cons = *raw_cons;
1727 	u16 cfa_code, cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1728 	struct bnxt_sw_rx_bd *rx_buf;
1729 	unsigned int len;
1730 	u8 *data_ptr, agg_bufs, cmp_type;
1731 	dma_addr_t dma_addr;
1732 	struct sk_buff *skb;
1733 	u32 flags, misc;
1734 	void *data;
1735 	int rc = 0;
1736 
1737 	rxcmp = (struct rx_cmp *)
1738 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1739 
1740 	cmp_type = RX_CMP_TYPE(rxcmp);
1741 
1742 	if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) {
1743 		bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp);
1744 		goto next_rx_no_prod_no_len;
1745 	}
1746 
1747 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1748 	cp_cons = RING_CMP(tmp_raw_cons);
1749 	rxcmp1 = (struct rx_cmp_ext *)
1750 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1751 
1752 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1753 		return -EBUSY;
1754 
1755 	/* The valid test of the entry must be done first before
1756 	 * reading any further.
1757 	 */
1758 	dma_rmb();
1759 	prod = rxr->rx_prod;
1760 
1761 	if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1762 		bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1763 			       (struct rx_tpa_start_cmp_ext *)rxcmp1);
1764 
1765 		*event |= BNXT_RX_EVENT;
1766 		goto next_rx_no_prod_no_len;
1767 
1768 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1769 		skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons,
1770 				   (struct rx_tpa_end_cmp *)rxcmp,
1771 				   (struct rx_tpa_end_cmp_ext *)rxcmp1, event);
1772 
1773 		if (IS_ERR(skb))
1774 			return -EBUSY;
1775 
1776 		rc = -ENOMEM;
1777 		if (likely(skb)) {
1778 			bnxt_deliver_skb(bp, bnapi, skb);
1779 			rc = 1;
1780 		}
1781 		*event |= BNXT_RX_EVENT;
1782 		goto next_rx_no_prod_no_len;
1783 	}
1784 
1785 	cons = rxcmp->rx_cmp_opaque;
1786 	if (unlikely(cons != rxr->rx_next_cons)) {
1787 		int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
1788 
1789 		/* 0xffff is forced error, don't print it */
1790 		if (rxr->rx_next_cons != 0xffff)
1791 			netdev_warn(bp->dev, "RX cons %x != expected cons %x\n",
1792 				    cons, rxr->rx_next_cons);
1793 		bnxt_sched_reset(bp, rxr);
1794 		if (rc1)
1795 			return rc1;
1796 		goto next_rx_no_prod_no_len;
1797 	}
1798 	rx_buf = &rxr->rx_buf_ring[cons];
1799 	data = rx_buf->data;
1800 	data_ptr = rx_buf->data_ptr;
1801 	prefetch(data_ptr);
1802 
1803 	misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1);
1804 	agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT;
1805 
1806 	if (agg_bufs) {
1807 		if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1808 			return -EBUSY;
1809 
1810 		cp_cons = NEXT_CMP(cp_cons);
1811 		*event |= BNXT_AGG_EVENT;
1812 	}
1813 	*event |= BNXT_RX_EVENT;
1814 
1815 	rx_buf->data = NULL;
1816 	if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1817 		u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2);
1818 
1819 		bnxt_reuse_rx_data(rxr, cons, data);
1820 		if (agg_bufs)
1821 			bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs,
1822 					       false);
1823 
1824 		rc = -EIO;
1825 		if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) {
1826 			bnapi->cp_ring.sw_stats.rx.rx_buf_errors++;
1827 			if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
1828 			    !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) {
1829 				netdev_warn_once(bp->dev, "RX buffer error %x\n",
1830 						 rx_err);
1831 				bnxt_sched_reset(bp, rxr);
1832 			}
1833 		}
1834 		goto next_rx_no_len;
1835 	}
1836 
1837 	flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type);
1838 	len = flags >> RX_CMP_LEN_SHIFT;
1839 	dma_addr = rx_buf->mapping;
1840 
1841 	if (bnxt_rx_xdp(bp, rxr, cons, data, &data_ptr, &len, event)) {
1842 		rc = 1;
1843 		goto next_rx;
1844 	}
1845 
1846 	if (len <= bp->rx_copy_thresh) {
1847 		skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr);
1848 		bnxt_reuse_rx_data(rxr, cons, data);
1849 		if (!skb) {
1850 			if (agg_bufs)
1851 				bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0,
1852 						       agg_bufs, false);
1853 			cpr->sw_stats.rx.rx_oom_discards += 1;
1854 			rc = -ENOMEM;
1855 			goto next_rx;
1856 		}
1857 	} else {
1858 		u32 payload;
1859 
1860 		if (rx_buf->data_ptr == data_ptr)
1861 			payload = misc & RX_CMP_PAYLOAD_OFFSET;
1862 		else
1863 			payload = 0;
1864 		skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr,
1865 				      payload | len);
1866 		if (!skb) {
1867 			cpr->sw_stats.rx.rx_oom_discards += 1;
1868 			rc = -ENOMEM;
1869 			goto next_rx;
1870 		}
1871 	}
1872 
1873 	if (agg_bufs) {
1874 		skb = bnxt_rx_pages(bp, cpr, skb, cp_cons, agg_bufs, false);
1875 		if (!skb) {
1876 			cpr->sw_stats.rx.rx_oom_discards += 1;
1877 			rc = -ENOMEM;
1878 			goto next_rx;
1879 		}
1880 	}
1881 
1882 	if (RX_CMP_HASH_VALID(rxcmp)) {
1883 		u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1884 		enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1885 
1886 		/* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1887 		if (hash_type != 1 && hash_type != 3)
1888 			type = PKT_HASH_TYPE_L3;
1889 		skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1890 	}
1891 
1892 	cfa_code = RX_CMP_CFA_CODE(rxcmp1);
1893 	skb->protocol = eth_type_trans(skb, bnxt_get_pkt_dev(bp, cfa_code));
1894 
1895 	if ((rxcmp1->rx_cmp_flags2 &
1896 	     cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1897 	    (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) {
1898 		u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1899 		u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK;
1900 		__be16 vlan_proto = htons(meta_data >>
1901 					  RX_CMP_FLAGS2_METADATA_TPID_SFT);
1902 
1903 		if (eth_type_vlan(vlan_proto)) {
1904 			__vlan_hwaccel_put_tag(skb, vlan_proto, vtag);
1905 		} else {
1906 			dev_kfree_skb(skb);
1907 			goto next_rx;
1908 		}
1909 	}
1910 
1911 	skb_checksum_none_assert(skb);
1912 	if (RX_CMP_L4_CS_OK(rxcmp1)) {
1913 		if (dev->features & NETIF_F_RXCSUM) {
1914 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1915 			skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1916 		}
1917 	} else {
1918 		if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1919 			if (dev->features & NETIF_F_RXCSUM)
1920 				bnapi->cp_ring.sw_stats.rx.rx_l4_csum_errors++;
1921 		}
1922 	}
1923 
1924 	if (unlikely((flags & RX_CMP_FLAGS_ITYPES_MASK) ==
1925 		     RX_CMP_FLAGS_ITYPE_PTP_W_TS)) {
1926 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
1927 			u32 cmpl_ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp);
1928 			u64 ns, ts;
1929 
1930 			if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) {
1931 				struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
1932 
1933 				spin_lock_bh(&ptp->ptp_lock);
1934 				ns = timecounter_cyc2time(&ptp->tc, ts);
1935 				spin_unlock_bh(&ptp->ptp_lock);
1936 				memset(skb_hwtstamps(skb), 0,
1937 				       sizeof(*skb_hwtstamps(skb)));
1938 				skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
1939 			}
1940 		}
1941 	}
1942 	bnxt_deliver_skb(bp, bnapi, skb);
1943 	rc = 1;
1944 
1945 next_rx:
1946 	cpr->rx_packets += 1;
1947 	cpr->rx_bytes += len;
1948 
1949 next_rx_no_len:
1950 	rxr->rx_prod = NEXT_RX(prod);
1951 	rxr->rx_next_cons = NEXT_RX(cons);
1952 
1953 next_rx_no_prod_no_len:
1954 	*raw_cons = tmp_raw_cons;
1955 
1956 	return rc;
1957 }
1958 
1959 /* In netpoll mode, if we are using a combined completion ring, we need to
1960  * discard the rx packets and recycle the buffers.
1961  */
1962 static int bnxt_force_rx_discard(struct bnxt *bp,
1963 				 struct bnxt_cp_ring_info *cpr,
1964 				 u32 *raw_cons, u8 *event)
1965 {
1966 	u32 tmp_raw_cons = *raw_cons;
1967 	struct rx_cmp_ext *rxcmp1;
1968 	struct rx_cmp *rxcmp;
1969 	u16 cp_cons;
1970 	u8 cmp_type;
1971 	int rc;
1972 
1973 	cp_cons = RING_CMP(tmp_raw_cons);
1974 	rxcmp = (struct rx_cmp *)
1975 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1976 
1977 	tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1978 	cp_cons = RING_CMP(tmp_raw_cons);
1979 	rxcmp1 = (struct rx_cmp_ext *)
1980 			&cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1981 
1982 	if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1983 		return -EBUSY;
1984 
1985 	/* The valid test of the entry must be done first before
1986 	 * reading any further.
1987 	 */
1988 	dma_rmb();
1989 	cmp_type = RX_CMP_TYPE(rxcmp);
1990 	if (cmp_type == CMP_TYPE_RX_L2_CMP) {
1991 		rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1992 			cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1993 	} else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1994 		struct rx_tpa_end_cmp_ext *tpa_end1;
1995 
1996 		tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1;
1997 		tpa_end1->rx_tpa_end_cmp_errors_v2 |=
1998 			cpu_to_le32(RX_TPA_END_CMP_ERRORS);
1999 	}
2000 	rc = bnxt_rx_pkt(bp, cpr, raw_cons, event);
2001 	if (rc && rc != -EBUSY)
2002 		cpr->sw_stats.rx.rx_netpoll_discards += 1;
2003 	return rc;
2004 }
2005 
2006 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx)
2007 {
2008 	struct bnxt_fw_health *fw_health = bp->fw_health;
2009 	u32 reg = fw_health->regs[reg_idx];
2010 	u32 reg_type, reg_off, val = 0;
2011 
2012 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
2013 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
2014 	switch (reg_type) {
2015 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
2016 		pci_read_config_dword(bp->pdev, reg_off, &val);
2017 		break;
2018 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
2019 		reg_off = fw_health->mapped_regs[reg_idx];
2020 		fallthrough;
2021 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
2022 		val = readl(bp->bar0 + reg_off);
2023 		break;
2024 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
2025 		val = readl(bp->bar1 + reg_off);
2026 		break;
2027 	}
2028 	if (reg_idx == BNXT_FW_RESET_INPROG_REG)
2029 		val &= fw_health->fw_reset_inprog_reg_mask;
2030 	return val;
2031 }
2032 
2033 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id)
2034 {
2035 	int i;
2036 
2037 	for (i = 0; i < bp->rx_nr_rings; i++) {
2038 		u16 grp_idx = bp->rx_ring[i].bnapi->index;
2039 		struct bnxt_ring_grp_info *grp_info;
2040 
2041 		grp_info = &bp->grp_info[grp_idx];
2042 		if (grp_info->agg_fw_ring_id == ring_id)
2043 			return grp_idx;
2044 	}
2045 	return INVALID_HW_RING_ID;
2046 }
2047 
2048 static void bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2)
2049 {
2050 	u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1);
2051 
2052 	switch (err_type) {
2053 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL:
2054 		netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n",
2055 			   BNXT_EVENT_INVALID_SIGNAL_DATA(data2));
2056 		break;
2057 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM:
2058 		netdev_warn(bp->dev, "Pause Storm detected!\n");
2059 		break;
2060 	case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD:
2061 		netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n");
2062 		break;
2063 	default:
2064 		netdev_err(bp->dev, "FW reported unknown error type %u\n",
2065 			   err_type);
2066 		break;
2067 	}
2068 }
2069 
2070 #define BNXT_GET_EVENT_PORT(data)	\
2071 	((data) &			\
2072 	 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
2073 
2074 #define BNXT_EVENT_RING_TYPE(data2)	\
2075 	((data2) &			\
2076 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK)
2077 
2078 #define BNXT_EVENT_RING_TYPE_RX(data2)	\
2079 	(BNXT_EVENT_RING_TYPE(data2) ==	\
2080 	 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX)
2081 
2082 static int bnxt_async_event_process(struct bnxt *bp,
2083 				    struct hwrm_async_event_cmpl *cmpl)
2084 {
2085 	u16 event_id = le16_to_cpu(cmpl->event_id);
2086 	u32 data1 = le32_to_cpu(cmpl->event_data1);
2087 	u32 data2 = le32_to_cpu(cmpl->event_data2);
2088 
2089 	netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n",
2090 		   event_id, data1, data2);
2091 
2092 	/* TODO CHIMP_FW: Define event id's for link change, error etc */
2093 	switch (event_id) {
2094 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
2095 		struct bnxt_link_info *link_info = &bp->link_info;
2096 
2097 		if (BNXT_VF(bp))
2098 			goto async_event_process_exit;
2099 
2100 		/* print unsupported speed warning in forced speed mode only */
2101 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) &&
2102 		    (data1 & 0x20000)) {
2103 			u16 fw_speed = link_info->force_link_speed;
2104 			u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
2105 
2106 			if (speed != SPEED_UNKNOWN)
2107 				netdev_warn(bp->dev, "Link speed %d no longer supported\n",
2108 					    speed);
2109 		}
2110 		set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
2111 	}
2112 		fallthrough;
2113 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE:
2114 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE:
2115 		set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event);
2116 		fallthrough;
2117 	case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
2118 		set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
2119 		break;
2120 	case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
2121 		set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
2122 		break;
2123 	case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
2124 		u16 port_id = BNXT_GET_EVENT_PORT(data1);
2125 
2126 		if (BNXT_VF(bp))
2127 			break;
2128 
2129 		if (bp->pf.port_id != port_id)
2130 			break;
2131 
2132 		set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
2133 		break;
2134 	}
2135 	case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
2136 		if (BNXT_PF(bp))
2137 			goto async_event_process_exit;
2138 		set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
2139 		break;
2140 	case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: {
2141 		char *type_str = "Solicited";
2142 
2143 		if (!bp->fw_health)
2144 			goto async_event_process_exit;
2145 
2146 		bp->fw_reset_timestamp = jiffies;
2147 		bp->fw_reset_min_dsecs = cmpl->timestamp_lo;
2148 		if (!bp->fw_reset_min_dsecs)
2149 			bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS;
2150 		bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi);
2151 		if (!bp->fw_reset_max_dsecs)
2152 			bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS;
2153 		if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) {
2154 			set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state);
2155 		} else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
2156 			type_str = "Fatal";
2157 			bp->fw_health->fatalities++;
2158 			set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
2159 		} else if (data2 && BNXT_FW_STATUS_HEALTHY !=
2160 			   EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) {
2161 			type_str = "Non-fatal";
2162 			bp->fw_health->survivals++;
2163 			set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
2164 		}
2165 		netif_warn(bp, hw, bp->dev,
2166 			   "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n",
2167 			   type_str, data1, data2,
2168 			   bp->fw_reset_min_dsecs * 100,
2169 			   bp->fw_reset_max_dsecs * 100);
2170 		set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event);
2171 		break;
2172 	}
2173 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: {
2174 		struct bnxt_fw_health *fw_health = bp->fw_health;
2175 		char *status_desc = "healthy";
2176 		u32 status;
2177 
2178 		if (!fw_health)
2179 			goto async_event_process_exit;
2180 
2181 		if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) {
2182 			fw_health->enabled = false;
2183 			netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n");
2184 			break;
2185 		}
2186 		fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1);
2187 		fw_health->tmr_multiplier =
2188 			DIV_ROUND_UP(fw_health->polling_dsecs * HZ,
2189 				     bp->current_interval * 10);
2190 		fw_health->tmr_counter = fw_health->tmr_multiplier;
2191 		if (!fw_health->enabled)
2192 			fw_health->last_fw_heartbeat =
2193 				bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
2194 		fw_health->last_fw_reset_cnt =
2195 			bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
2196 		status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
2197 		if (status != BNXT_FW_STATUS_HEALTHY)
2198 			status_desc = "unhealthy";
2199 		netif_info(bp, drv, bp->dev,
2200 			   "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n",
2201 			   fw_health->primary ? "primary" : "backup", status,
2202 			   status_desc, fw_health->last_fw_reset_cnt);
2203 		if (!fw_health->enabled) {
2204 			/* Make sure tmr_counter is set and visible to
2205 			 * bnxt_health_check() before setting enabled to true.
2206 			 */
2207 			smp_wmb();
2208 			fw_health->enabled = true;
2209 		}
2210 		goto async_event_process_exit;
2211 	}
2212 	case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION:
2213 		netif_notice(bp, hw, bp->dev,
2214 			     "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n",
2215 			     data1, data2);
2216 		goto async_event_process_exit;
2217 	case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: {
2218 		struct bnxt_rx_ring_info *rxr;
2219 		u16 grp_idx;
2220 
2221 		if (bp->flags & BNXT_FLAG_CHIP_P5)
2222 			goto async_event_process_exit;
2223 
2224 		netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n",
2225 			    BNXT_EVENT_RING_TYPE(data2), data1);
2226 		if (!BNXT_EVENT_RING_TYPE_RX(data2))
2227 			goto async_event_process_exit;
2228 
2229 		grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1);
2230 		if (grp_idx == INVALID_HW_RING_ID) {
2231 			netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n",
2232 				    data1);
2233 			goto async_event_process_exit;
2234 		}
2235 		rxr = bp->bnapi[grp_idx]->rx_ring;
2236 		bnxt_sched_reset(bp, rxr);
2237 		goto async_event_process_exit;
2238 	}
2239 	case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: {
2240 		struct bnxt_fw_health *fw_health = bp->fw_health;
2241 
2242 		netif_notice(bp, hw, bp->dev,
2243 			     "Received firmware echo request, data1: 0x%x, data2: 0x%x\n",
2244 			     data1, data2);
2245 		if (fw_health) {
2246 			fw_health->echo_req_data1 = data1;
2247 			fw_health->echo_req_data2 = data2;
2248 			set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event);
2249 			break;
2250 		}
2251 		goto async_event_process_exit;
2252 	}
2253 	case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: {
2254 		bnxt_ptp_pps_event(bp, data1, data2);
2255 		goto async_event_process_exit;
2256 	}
2257 	case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: {
2258 		bnxt_event_error_report(bp, data1, data2);
2259 		goto async_event_process_exit;
2260 	}
2261 	case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: {
2262 		u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff;
2263 
2264 		hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED);
2265 		goto async_event_process_exit;
2266 	}
2267 	default:
2268 		goto async_event_process_exit;
2269 	}
2270 	bnxt_queue_sp_work(bp);
2271 async_event_process_exit:
2272 	bnxt_ulp_async_events(bp, cmpl);
2273 	return 0;
2274 }
2275 
2276 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
2277 {
2278 	u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
2279 	struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
2280 	struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
2281 				(struct hwrm_fwd_req_cmpl *)txcmp;
2282 
2283 	switch (cmpl_type) {
2284 	case CMPL_BASE_TYPE_HWRM_DONE:
2285 		seq_id = le16_to_cpu(h_cmpl->sequence_id);
2286 		hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE);
2287 		break;
2288 
2289 	case CMPL_BASE_TYPE_HWRM_FWD_REQ:
2290 		vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
2291 
2292 		if ((vf_id < bp->pf.first_vf_id) ||
2293 		    (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
2294 			netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
2295 				   vf_id);
2296 			return -EINVAL;
2297 		}
2298 
2299 		set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
2300 		set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
2301 		bnxt_queue_sp_work(bp);
2302 		break;
2303 
2304 	case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
2305 		bnxt_async_event_process(bp,
2306 					 (struct hwrm_async_event_cmpl *)txcmp);
2307 		break;
2308 
2309 	default:
2310 		break;
2311 	}
2312 
2313 	return 0;
2314 }
2315 
2316 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
2317 {
2318 	struct bnxt_napi *bnapi = dev_instance;
2319 	struct bnxt *bp = bnapi->bp;
2320 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2321 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2322 
2323 	cpr->event_ctr++;
2324 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2325 	napi_schedule(&bnapi->napi);
2326 	return IRQ_HANDLED;
2327 }
2328 
2329 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
2330 {
2331 	u32 raw_cons = cpr->cp_raw_cons;
2332 	u16 cons = RING_CMP(raw_cons);
2333 	struct tx_cmp *txcmp;
2334 
2335 	txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2336 
2337 	return TX_CMP_VALID(txcmp, raw_cons);
2338 }
2339 
2340 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
2341 {
2342 	struct bnxt_napi *bnapi = dev_instance;
2343 	struct bnxt *bp = bnapi->bp;
2344 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2345 	u32 cons = RING_CMP(cpr->cp_raw_cons);
2346 	u32 int_status;
2347 
2348 	prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
2349 
2350 	if (!bnxt_has_work(bp, cpr)) {
2351 		int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
2352 		/* return if erroneous interrupt */
2353 		if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
2354 			return IRQ_NONE;
2355 	}
2356 
2357 	/* disable ring IRQ */
2358 	BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell);
2359 
2360 	/* Return here if interrupt is shared and is disabled. */
2361 	if (unlikely(atomic_read(&bp->intr_sem) != 0))
2362 		return IRQ_HANDLED;
2363 
2364 	napi_schedule(&bnapi->napi);
2365 	return IRQ_HANDLED;
2366 }
2367 
2368 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2369 			    int budget)
2370 {
2371 	struct bnxt_napi *bnapi = cpr->bnapi;
2372 	u32 raw_cons = cpr->cp_raw_cons;
2373 	u32 cons;
2374 	int tx_pkts = 0;
2375 	int rx_pkts = 0;
2376 	u8 event = 0;
2377 	struct tx_cmp *txcmp;
2378 
2379 	cpr->has_more_work = 0;
2380 	cpr->had_work_done = 1;
2381 	while (1) {
2382 		int rc;
2383 
2384 		cons = RING_CMP(raw_cons);
2385 		txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2386 
2387 		if (!TX_CMP_VALID(txcmp, raw_cons))
2388 			break;
2389 
2390 		/* The valid test of the entry must be done first before
2391 		 * reading any further.
2392 		 */
2393 		dma_rmb();
2394 		if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
2395 			tx_pkts++;
2396 			/* return full budget so NAPI will complete. */
2397 			if (unlikely(tx_pkts >= bp->tx_wake_thresh)) {
2398 				rx_pkts = budget;
2399 				raw_cons = NEXT_RAW_CMP(raw_cons);
2400 				if (budget)
2401 					cpr->has_more_work = 1;
2402 				break;
2403 			}
2404 		} else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2405 			if (likely(budget))
2406 				rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2407 			else
2408 				rc = bnxt_force_rx_discard(bp, cpr, &raw_cons,
2409 							   &event);
2410 			if (likely(rc >= 0))
2411 				rx_pkts += rc;
2412 			/* Increment rx_pkts when rc is -ENOMEM to count towards
2413 			 * the NAPI budget.  Otherwise, we may potentially loop
2414 			 * here forever if we consistently cannot allocate
2415 			 * buffers.
2416 			 */
2417 			else if (rc == -ENOMEM && budget)
2418 				rx_pkts++;
2419 			else if (rc == -EBUSY)	/* partial completion */
2420 				break;
2421 		} else if (unlikely((TX_CMP_TYPE(txcmp) ==
2422 				     CMPL_BASE_TYPE_HWRM_DONE) ||
2423 				    (TX_CMP_TYPE(txcmp) ==
2424 				     CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
2425 				    (TX_CMP_TYPE(txcmp) ==
2426 				     CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
2427 			bnxt_hwrm_handler(bp, txcmp);
2428 		}
2429 		raw_cons = NEXT_RAW_CMP(raw_cons);
2430 
2431 		if (rx_pkts && rx_pkts == budget) {
2432 			cpr->has_more_work = 1;
2433 			break;
2434 		}
2435 	}
2436 
2437 	if (event & BNXT_REDIRECT_EVENT)
2438 		xdp_do_flush();
2439 
2440 	if (event & BNXT_TX_EVENT) {
2441 		struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
2442 		u16 prod = txr->tx_prod;
2443 
2444 		/* Sync BD data before updating doorbell */
2445 		wmb();
2446 
2447 		bnxt_db_write_relaxed(bp, &txr->tx_db, prod);
2448 	}
2449 
2450 	cpr->cp_raw_cons = raw_cons;
2451 	bnapi->tx_pkts += tx_pkts;
2452 	bnapi->events |= event;
2453 	return rx_pkts;
2454 }
2455 
2456 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi)
2457 {
2458 	if (bnapi->tx_pkts) {
2459 		bnapi->tx_int(bp, bnapi, bnapi->tx_pkts);
2460 		bnapi->tx_pkts = 0;
2461 	}
2462 
2463 	if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) {
2464 		struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2465 
2466 		if (bnapi->events & BNXT_AGG_EVENT)
2467 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2468 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2469 	}
2470 	bnapi->events = 0;
2471 }
2472 
2473 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
2474 			  int budget)
2475 {
2476 	struct bnxt_napi *bnapi = cpr->bnapi;
2477 	int rx_pkts;
2478 
2479 	rx_pkts = __bnxt_poll_work(bp, cpr, budget);
2480 
2481 	/* ACK completion ring before freeing tx ring and producing new
2482 	 * buffers in rx/agg rings to prevent overflowing the completion
2483 	 * ring.
2484 	 */
2485 	bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons);
2486 
2487 	__bnxt_poll_work_done(bp, bnapi);
2488 	return rx_pkts;
2489 }
2490 
2491 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
2492 {
2493 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2494 	struct bnxt *bp = bnapi->bp;
2495 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2496 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
2497 	struct tx_cmp *txcmp;
2498 	struct rx_cmp_ext *rxcmp1;
2499 	u32 cp_cons, tmp_raw_cons;
2500 	u32 raw_cons = cpr->cp_raw_cons;
2501 	u32 rx_pkts = 0;
2502 	u8 event = 0;
2503 
2504 	while (1) {
2505 		int rc;
2506 
2507 		cp_cons = RING_CMP(raw_cons);
2508 		txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2509 
2510 		if (!TX_CMP_VALID(txcmp, raw_cons))
2511 			break;
2512 
2513 		/* The valid test of the entry must be done first before
2514 		 * reading any further.
2515 		 */
2516 		dma_rmb();
2517 		if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
2518 			tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
2519 			cp_cons = RING_CMP(tmp_raw_cons);
2520 			rxcmp1 = (struct rx_cmp_ext *)
2521 			  &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
2522 
2523 			if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
2524 				break;
2525 
2526 			/* force an error to recycle the buffer */
2527 			rxcmp1->rx_cmp_cfa_code_errors_v2 |=
2528 				cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
2529 
2530 			rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event);
2531 			if (likely(rc == -EIO) && budget)
2532 				rx_pkts++;
2533 			else if (rc == -EBUSY)	/* partial completion */
2534 				break;
2535 		} else if (unlikely(TX_CMP_TYPE(txcmp) ==
2536 				    CMPL_BASE_TYPE_HWRM_DONE)) {
2537 			bnxt_hwrm_handler(bp, txcmp);
2538 		} else {
2539 			netdev_err(bp->dev,
2540 				   "Invalid completion received on special ring\n");
2541 		}
2542 		raw_cons = NEXT_RAW_CMP(raw_cons);
2543 
2544 		if (rx_pkts == budget)
2545 			break;
2546 	}
2547 
2548 	cpr->cp_raw_cons = raw_cons;
2549 	BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons);
2550 	bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
2551 
2552 	if (event & BNXT_AGG_EVENT)
2553 		bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
2554 
2555 	if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
2556 		napi_complete_done(napi, rx_pkts);
2557 		BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2558 	}
2559 	return rx_pkts;
2560 }
2561 
2562 static int bnxt_poll(struct napi_struct *napi, int budget)
2563 {
2564 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2565 	struct bnxt *bp = bnapi->bp;
2566 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2567 	int work_done = 0;
2568 
2569 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2570 		napi_complete(napi);
2571 		return 0;
2572 	}
2573 	while (1) {
2574 		work_done += bnxt_poll_work(bp, cpr, budget - work_done);
2575 
2576 		if (work_done >= budget) {
2577 			if (!budget)
2578 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2579 			break;
2580 		}
2581 
2582 		if (!bnxt_has_work(bp, cpr)) {
2583 			if (napi_complete_done(napi, work_done))
2584 				BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons);
2585 			break;
2586 		}
2587 	}
2588 	if (bp->flags & BNXT_FLAG_DIM) {
2589 		struct dim_sample dim_sample = {};
2590 
2591 		dim_update_sample(cpr->event_ctr,
2592 				  cpr->rx_packets,
2593 				  cpr->rx_bytes,
2594 				  &dim_sample);
2595 		net_dim(&cpr->dim, dim_sample);
2596 	}
2597 	return work_done;
2598 }
2599 
2600 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
2601 {
2602 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2603 	int i, work_done = 0;
2604 
2605 	for (i = 0; i < 2; i++) {
2606 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2607 
2608 		if (cpr2) {
2609 			work_done += __bnxt_poll_work(bp, cpr2,
2610 						      budget - work_done);
2611 			cpr->has_more_work |= cpr2->has_more_work;
2612 		}
2613 	}
2614 	return work_done;
2615 }
2616 
2617 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi,
2618 				 u64 dbr_type)
2619 {
2620 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2621 	int i;
2622 
2623 	for (i = 0; i < 2; i++) {
2624 		struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[i];
2625 		struct bnxt_db_info *db;
2626 
2627 		if (cpr2 && cpr2->had_work_done) {
2628 			db = &cpr2->cp_db;
2629 			bnxt_writeq(bp, db->db_key64 | dbr_type |
2630 				    RING_CMP(cpr2->cp_raw_cons), db->doorbell);
2631 			cpr2->had_work_done = 0;
2632 		}
2633 	}
2634 	__bnxt_poll_work_done(bp, bnapi);
2635 }
2636 
2637 static int bnxt_poll_p5(struct napi_struct *napi, int budget)
2638 {
2639 	struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
2640 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2641 	struct bnxt_cp_ring_info *cpr_rx;
2642 	u32 raw_cons = cpr->cp_raw_cons;
2643 	struct bnxt *bp = bnapi->bp;
2644 	struct nqe_cn *nqcmp;
2645 	int work_done = 0;
2646 	u32 cons;
2647 
2648 	if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) {
2649 		napi_complete(napi);
2650 		return 0;
2651 	}
2652 	if (cpr->has_more_work) {
2653 		cpr->has_more_work = 0;
2654 		work_done = __bnxt_poll_cqs(bp, bnapi, budget);
2655 	}
2656 	while (1) {
2657 		cons = RING_CMP(raw_cons);
2658 		nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)];
2659 
2660 		if (!NQ_CMP_VALID(nqcmp, raw_cons)) {
2661 			if (cpr->has_more_work)
2662 				break;
2663 
2664 			__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL);
2665 			cpr->cp_raw_cons = raw_cons;
2666 			if (napi_complete_done(napi, work_done))
2667 				BNXT_DB_NQ_ARM_P5(&cpr->cp_db,
2668 						  cpr->cp_raw_cons);
2669 			goto poll_done;
2670 		}
2671 
2672 		/* The valid test of the entry must be done first before
2673 		 * reading any further.
2674 		 */
2675 		dma_rmb();
2676 
2677 		if (nqcmp->type == cpu_to_le16(NQ_CN_TYPE_CQ_NOTIFICATION)) {
2678 			u32 idx = le32_to_cpu(nqcmp->cq_handle_low);
2679 			struct bnxt_cp_ring_info *cpr2;
2680 
2681 			cpr2 = cpr->cp_ring_arr[idx];
2682 			work_done += __bnxt_poll_work(bp, cpr2,
2683 						      budget - work_done);
2684 			cpr->has_more_work |= cpr2->has_more_work;
2685 		} else {
2686 			bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp);
2687 		}
2688 		raw_cons = NEXT_RAW_CMP(raw_cons);
2689 	}
2690 	__bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ);
2691 	if (raw_cons != cpr->cp_raw_cons) {
2692 		cpr->cp_raw_cons = raw_cons;
2693 		BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons);
2694 	}
2695 poll_done:
2696 	cpr_rx = cpr->cp_ring_arr[BNXT_RX_HDL];
2697 	if (cpr_rx && (bp->flags & BNXT_FLAG_DIM)) {
2698 		struct dim_sample dim_sample = {};
2699 
2700 		dim_update_sample(cpr->event_ctr,
2701 				  cpr_rx->rx_packets,
2702 				  cpr_rx->rx_bytes,
2703 				  &dim_sample);
2704 		net_dim(&cpr->dim, dim_sample);
2705 	}
2706 	return work_done;
2707 }
2708 
2709 static void bnxt_free_tx_skbs(struct bnxt *bp)
2710 {
2711 	int i, max_idx;
2712 	struct pci_dev *pdev = bp->pdev;
2713 
2714 	if (!bp->tx_ring)
2715 		return;
2716 
2717 	max_idx = bp->tx_nr_pages * TX_DESC_CNT;
2718 	for (i = 0; i < bp->tx_nr_rings; i++) {
2719 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2720 		int j;
2721 
2722 		if (!txr->tx_buf_ring)
2723 			continue;
2724 
2725 		for (j = 0; j < max_idx;) {
2726 			struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
2727 			struct sk_buff *skb;
2728 			int k, last;
2729 
2730 			if (i < bp->tx_nr_rings_xdp &&
2731 			    tx_buf->action == XDP_REDIRECT) {
2732 				dma_unmap_single(&pdev->dev,
2733 					dma_unmap_addr(tx_buf, mapping),
2734 					dma_unmap_len(tx_buf, len),
2735 					DMA_TO_DEVICE);
2736 				xdp_return_frame(tx_buf->xdpf);
2737 				tx_buf->action = 0;
2738 				tx_buf->xdpf = NULL;
2739 				j++;
2740 				continue;
2741 			}
2742 
2743 			skb = tx_buf->skb;
2744 			if (!skb) {
2745 				j++;
2746 				continue;
2747 			}
2748 
2749 			tx_buf->skb = NULL;
2750 
2751 			if (tx_buf->is_push) {
2752 				dev_kfree_skb(skb);
2753 				j += 2;
2754 				continue;
2755 			}
2756 
2757 			dma_unmap_single(&pdev->dev,
2758 					 dma_unmap_addr(tx_buf, mapping),
2759 					 skb_headlen(skb),
2760 					 DMA_TO_DEVICE);
2761 
2762 			last = tx_buf->nr_frags;
2763 			j += 2;
2764 			for (k = 0; k < last; k++, j++) {
2765 				int ring_idx = j & bp->tx_ring_mask;
2766 				skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2767 
2768 				tx_buf = &txr->tx_buf_ring[ring_idx];
2769 				dma_unmap_page(
2770 					&pdev->dev,
2771 					dma_unmap_addr(tx_buf, mapping),
2772 					skb_frag_size(frag), DMA_TO_DEVICE);
2773 			}
2774 			dev_kfree_skb(skb);
2775 		}
2776 		netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
2777 	}
2778 }
2779 
2780 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr)
2781 {
2782 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
2783 	struct pci_dev *pdev = bp->pdev;
2784 	struct bnxt_tpa_idx_map *map;
2785 	int i, max_idx, max_agg_idx;
2786 
2787 	max_idx = bp->rx_nr_pages * RX_DESC_CNT;
2788 	max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
2789 	if (!rxr->rx_tpa)
2790 		goto skip_rx_tpa_free;
2791 
2792 	for (i = 0; i < bp->max_tpa; i++) {
2793 		struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i];
2794 		u8 *data = tpa_info->data;
2795 
2796 		if (!data)
2797 			continue;
2798 
2799 		dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping,
2800 				       bp->rx_buf_use_size, bp->rx_dir,
2801 				       DMA_ATTR_WEAK_ORDERING);
2802 
2803 		tpa_info->data = NULL;
2804 
2805 		skb_free_frag(data);
2806 	}
2807 
2808 skip_rx_tpa_free:
2809 	if (!rxr->rx_buf_ring)
2810 		goto skip_rx_buf_free;
2811 
2812 	for (i = 0; i < max_idx; i++) {
2813 		struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
2814 		dma_addr_t mapping = rx_buf->mapping;
2815 		void *data = rx_buf->data;
2816 
2817 		if (!data)
2818 			continue;
2819 
2820 		rx_buf->data = NULL;
2821 		if (BNXT_RX_PAGE_MODE(bp)) {
2822 			mapping -= bp->rx_dma_offset;
2823 			dma_unmap_page_attrs(&pdev->dev, mapping, PAGE_SIZE,
2824 					     bp->rx_dir,
2825 					     DMA_ATTR_WEAK_ORDERING);
2826 			page_pool_recycle_direct(rxr->page_pool, data);
2827 		} else {
2828 			dma_unmap_single_attrs(&pdev->dev, mapping,
2829 					       bp->rx_buf_use_size, bp->rx_dir,
2830 					       DMA_ATTR_WEAK_ORDERING);
2831 			skb_free_frag(data);
2832 		}
2833 	}
2834 
2835 skip_rx_buf_free:
2836 	if (!rxr->rx_agg_ring)
2837 		goto skip_rx_agg_free;
2838 
2839 	for (i = 0; i < max_agg_idx; i++) {
2840 		struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i];
2841 		struct page *page = rx_agg_buf->page;
2842 
2843 		if (!page)
2844 			continue;
2845 
2846 		dma_unmap_page_attrs(&pdev->dev, rx_agg_buf->mapping,
2847 				     BNXT_RX_PAGE_SIZE, DMA_FROM_DEVICE,
2848 				     DMA_ATTR_WEAK_ORDERING);
2849 
2850 		rx_agg_buf->page = NULL;
2851 		__clear_bit(i, rxr->rx_agg_bmap);
2852 
2853 		__free_page(page);
2854 	}
2855 
2856 skip_rx_agg_free:
2857 	if (rxr->rx_page) {
2858 		__free_page(rxr->rx_page);
2859 		rxr->rx_page = NULL;
2860 	}
2861 	map = rxr->rx_tpa_idx_map;
2862 	if (map)
2863 		memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap));
2864 }
2865 
2866 static void bnxt_free_rx_skbs(struct bnxt *bp)
2867 {
2868 	int i;
2869 
2870 	if (!bp->rx_ring)
2871 		return;
2872 
2873 	for (i = 0; i < bp->rx_nr_rings; i++)
2874 		bnxt_free_one_rx_ring_skbs(bp, i);
2875 }
2876 
2877 static void bnxt_free_skbs(struct bnxt *bp)
2878 {
2879 	bnxt_free_tx_skbs(bp);
2880 	bnxt_free_rx_skbs(bp);
2881 }
2882 
2883 static void bnxt_init_ctx_mem(struct bnxt_mem_init *mem_init, void *p, int len)
2884 {
2885 	u8 init_val = mem_init->init_val;
2886 	u16 offset = mem_init->offset;
2887 	u8 *p2 = p;
2888 	int i;
2889 
2890 	if (!init_val)
2891 		return;
2892 	if (offset == BNXT_MEM_INVALID_OFFSET) {
2893 		memset(p, init_val, len);
2894 		return;
2895 	}
2896 	for (i = 0; i < len; i += mem_init->size)
2897 		*(p2 + i + offset) = init_val;
2898 }
2899 
2900 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2901 {
2902 	struct pci_dev *pdev = bp->pdev;
2903 	int i;
2904 
2905 	if (!rmem->pg_arr)
2906 		goto skip_pages;
2907 
2908 	for (i = 0; i < rmem->nr_pages; i++) {
2909 		if (!rmem->pg_arr[i])
2910 			continue;
2911 
2912 		dma_free_coherent(&pdev->dev, rmem->page_size,
2913 				  rmem->pg_arr[i], rmem->dma_arr[i]);
2914 
2915 		rmem->pg_arr[i] = NULL;
2916 	}
2917 skip_pages:
2918 	if (rmem->pg_tbl) {
2919 		size_t pg_tbl_size = rmem->nr_pages * 8;
2920 
2921 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2922 			pg_tbl_size = rmem->page_size;
2923 		dma_free_coherent(&pdev->dev, pg_tbl_size,
2924 				  rmem->pg_tbl, rmem->pg_tbl_map);
2925 		rmem->pg_tbl = NULL;
2926 	}
2927 	if (rmem->vmem_size && *rmem->vmem) {
2928 		vfree(*rmem->vmem);
2929 		*rmem->vmem = NULL;
2930 	}
2931 }
2932 
2933 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem)
2934 {
2935 	struct pci_dev *pdev = bp->pdev;
2936 	u64 valid_bit = 0;
2937 	int i;
2938 
2939 	if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG))
2940 		valid_bit = PTU_PTE_VALID;
2941 	if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) {
2942 		size_t pg_tbl_size = rmem->nr_pages * 8;
2943 
2944 		if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG)
2945 			pg_tbl_size = rmem->page_size;
2946 		rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size,
2947 						  &rmem->pg_tbl_map,
2948 						  GFP_KERNEL);
2949 		if (!rmem->pg_tbl)
2950 			return -ENOMEM;
2951 	}
2952 
2953 	for (i = 0; i < rmem->nr_pages; i++) {
2954 		u64 extra_bits = valid_bit;
2955 
2956 		rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2957 						     rmem->page_size,
2958 						     &rmem->dma_arr[i],
2959 						     GFP_KERNEL);
2960 		if (!rmem->pg_arr[i])
2961 			return -ENOMEM;
2962 
2963 		if (rmem->mem_init)
2964 			bnxt_init_ctx_mem(rmem->mem_init, rmem->pg_arr[i],
2965 					  rmem->page_size);
2966 		if (rmem->nr_pages > 1 || rmem->depth > 0) {
2967 			if (i == rmem->nr_pages - 2 &&
2968 			    (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2969 				extra_bits |= PTU_PTE_NEXT_TO_LAST;
2970 			else if (i == rmem->nr_pages - 1 &&
2971 				 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG))
2972 				extra_bits |= PTU_PTE_LAST;
2973 			rmem->pg_tbl[i] =
2974 				cpu_to_le64(rmem->dma_arr[i] | extra_bits);
2975 		}
2976 	}
2977 
2978 	if (rmem->vmem_size) {
2979 		*rmem->vmem = vzalloc(rmem->vmem_size);
2980 		if (!(*rmem->vmem))
2981 			return -ENOMEM;
2982 	}
2983 	return 0;
2984 }
2985 
2986 static void bnxt_free_tpa_info(struct bnxt *bp)
2987 {
2988 	int i;
2989 
2990 	for (i = 0; i < bp->rx_nr_rings; i++) {
2991 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2992 
2993 		kfree(rxr->rx_tpa_idx_map);
2994 		rxr->rx_tpa_idx_map = NULL;
2995 		if (rxr->rx_tpa) {
2996 			kfree(rxr->rx_tpa[0].agg_arr);
2997 			rxr->rx_tpa[0].agg_arr = NULL;
2998 		}
2999 		kfree(rxr->rx_tpa);
3000 		rxr->rx_tpa = NULL;
3001 	}
3002 }
3003 
3004 static int bnxt_alloc_tpa_info(struct bnxt *bp)
3005 {
3006 	int i, j, total_aggs = 0;
3007 
3008 	bp->max_tpa = MAX_TPA;
3009 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
3010 		if (!bp->max_tpa_v2)
3011 			return 0;
3012 		bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5);
3013 		total_aggs = bp->max_tpa * MAX_SKB_FRAGS;
3014 	}
3015 
3016 	for (i = 0; i < bp->rx_nr_rings; i++) {
3017 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3018 		struct rx_agg_cmp *agg;
3019 
3020 		rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info),
3021 				      GFP_KERNEL);
3022 		if (!rxr->rx_tpa)
3023 			return -ENOMEM;
3024 
3025 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3026 			continue;
3027 		agg = kcalloc(total_aggs, sizeof(*agg), GFP_KERNEL);
3028 		rxr->rx_tpa[0].agg_arr = agg;
3029 		if (!agg)
3030 			return -ENOMEM;
3031 		for (j = 1; j < bp->max_tpa; j++)
3032 			rxr->rx_tpa[j].agg_arr = agg + j * MAX_SKB_FRAGS;
3033 		rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map),
3034 					      GFP_KERNEL);
3035 		if (!rxr->rx_tpa_idx_map)
3036 			return -ENOMEM;
3037 	}
3038 	return 0;
3039 }
3040 
3041 static void bnxt_free_rx_rings(struct bnxt *bp)
3042 {
3043 	int i;
3044 
3045 	if (!bp->rx_ring)
3046 		return;
3047 
3048 	bnxt_free_tpa_info(bp);
3049 	for (i = 0; i < bp->rx_nr_rings; i++) {
3050 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3051 		struct bnxt_ring_struct *ring;
3052 
3053 		if (rxr->xdp_prog)
3054 			bpf_prog_put(rxr->xdp_prog);
3055 
3056 		if (xdp_rxq_info_is_reg(&rxr->xdp_rxq))
3057 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3058 
3059 		page_pool_destroy(rxr->page_pool);
3060 		rxr->page_pool = NULL;
3061 
3062 		kfree(rxr->rx_agg_bmap);
3063 		rxr->rx_agg_bmap = NULL;
3064 
3065 		ring = &rxr->rx_ring_struct;
3066 		bnxt_free_ring(bp, &ring->ring_mem);
3067 
3068 		ring = &rxr->rx_agg_ring_struct;
3069 		bnxt_free_ring(bp, &ring->ring_mem);
3070 	}
3071 }
3072 
3073 static int bnxt_alloc_rx_page_pool(struct bnxt *bp,
3074 				   struct bnxt_rx_ring_info *rxr)
3075 {
3076 	struct page_pool_params pp = { 0 };
3077 
3078 	pp.pool_size = bp->rx_ring_size;
3079 	pp.nid = dev_to_node(&bp->pdev->dev);
3080 	pp.dev = &bp->pdev->dev;
3081 	pp.dma_dir = DMA_BIDIRECTIONAL;
3082 
3083 	rxr->page_pool = page_pool_create(&pp);
3084 	if (IS_ERR(rxr->page_pool)) {
3085 		int err = PTR_ERR(rxr->page_pool);
3086 
3087 		rxr->page_pool = NULL;
3088 		return err;
3089 	}
3090 	return 0;
3091 }
3092 
3093 static int bnxt_alloc_rx_rings(struct bnxt *bp)
3094 {
3095 	int i, rc = 0, agg_rings = 0;
3096 
3097 	if (!bp->rx_ring)
3098 		return -ENOMEM;
3099 
3100 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
3101 		agg_rings = 1;
3102 
3103 	for (i = 0; i < bp->rx_nr_rings; i++) {
3104 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3105 		struct bnxt_ring_struct *ring;
3106 
3107 		ring = &rxr->rx_ring_struct;
3108 
3109 		rc = bnxt_alloc_rx_page_pool(bp, rxr);
3110 		if (rc)
3111 			return rc;
3112 
3113 		rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0);
3114 		if (rc < 0)
3115 			return rc;
3116 
3117 		rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq,
3118 						MEM_TYPE_PAGE_POOL,
3119 						rxr->page_pool);
3120 		if (rc) {
3121 			xdp_rxq_info_unreg(&rxr->xdp_rxq);
3122 			return rc;
3123 		}
3124 
3125 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3126 		if (rc)
3127 			return rc;
3128 
3129 		ring->grp_idx = i;
3130 		if (agg_rings) {
3131 			u16 mem_size;
3132 
3133 			ring = &rxr->rx_agg_ring_struct;
3134 			rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3135 			if (rc)
3136 				return rc;
3137 
3138 			ring->grp_idx = i;
3139 			rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
3140 			mem_size = rxr->rx_agg_bmap_size / 8;
3141 			rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
3142 			if (!rxr->rx_agg_bmap)
3143 				return -ENOMEM;
3144 		}
3145 	}
3146 	if (bp->flags & BNXT_FLAG_TPA)
3147 		rc = bnxt_alloc_tpa_info(bp);
3148 	return rc;
3149 }
3150 
3151 static void bnxt_free_tx_rings(struct bnxt *bp)
3152 {
3153 	int i;
3154 	struct pci_dev *pdev = bp->pdev;
3155 
3156 	if (!bp->tx_ring)
3157 		return;
3158 
3159 	for (i = 0; i < bp->tx_nr_rings; i++) {
3160 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3161 		struct bnxt_ring_struct *ring;
3162 
3163 		if (txr->tx_push) {
3164 			dma_free_coherent(&pdev->dev, bp->tx_push_size,
3165 					  txr->tx_push, txr->tx_push_mapping);
3166 			txr->tx_push = NULL;
3167 		}
3168 
3169 		ring = &txr->tx_ring_struct;
3170 
3171 		bnxt_free_ring(bp, &ring->ring_mem);
3172 	}
3173 }
3174 
3175 static int bnxt_alloc_tx_rings(struct bnxt *bp)
3176 {
3177 	int i, j, rc;
3178 	struct pci_dev *pdev = bp->pdev;
3179 
3180 	bp->tx_push_size = 0;
3181 	if (bp->tx_push_thresh) {
3182 		int push_size;
3183 
3184 		push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
3185 					bp->tx_push_thresh);
3186 
3187 		if (push_size > 256) {
3188 			push_size = 0;
3189 			bp->tx_push_thresh = 0;
3190 		}
3191 
3192 		bp->tx_push_size = push_size;
3193 	}
3194 
3195 	for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
3196 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3197 		struct bnxt_ring_struct *ring;
3198 		u8 qidx;
3199 
3200 		ring = &txr->tx_ring_struct;
3201 
3202 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3203 		if (rc)
3204 			return rc;
3205 
3206 		ring->grp_idx = txr->bnapi->index;
3207 		if (bp->tx_push_size) {
3208 			dma_addr_t mapping;
3209 
3210 			/* One pre-allocated DMA buffer to backup
3211 			 * TX push operation
3212 			 */
3213 			txr->tx_push = dma_alloc_coherent(&pdev->dev,
3214 						bp->tx_push_size,
3215 						&txr->tx_push_mapping,
3216 						GFP_KERNEL);
3217 
3218 			if (!txr->tx_push)
3219 				return -ENOMEM;
3220 
3221 			mapping = txr->tx_push_mapping +
3222 				sizeof(struct tx_push_bd);
3223 			txr->data_mapping = cpu_to_le64(mapping);
3224 		}
3225 		qidx = bp->tc_to_qidx[j];
3226 		ring->queue_id = bp->q_info[qidx].queue_id;
3227 		if (i < bp->tx_nr_rings_xdp)
3228 			continue;
3229 		if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
3230 			j++;
3231 	}
3232 	return 0;
3233 }
3234 
3235 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr)
3236 {
3237 	struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3238 
3239 	kfree(cpr->cp_desc_ring);
3240 	cpr->cp_desc_ring = NULL;
3241 	ring->ring_mem.pg_arr = NULL;
3242 	kfree(cpr->cp_desc_mapping);
3243 	cpr->cp_desc_mapping = NULL;
3244 	ring->ring_mem.dma_arr = NULL;
3245 }
3246 
3247 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n)
3248 {
3249 	cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL);
3250 	if (!cpr->cp_desc_ring)
3251 		return -ENOMEM;
3252 	cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping),
3253 				       GFP_KERNEL);
3254 	if (!cpr->cp_desc_mapping)
3255 		return -ENOMEM;
3256 	return 0;
3257 }
3258 
3259 static void bnxt_free_all_cp_arrays(struct bnxt *bp)
3260 {
3261 	int i;
3262 
3263 	if (!bp->bnapi)
3264 		return;
3265 	for (i = 0; i < bp->cp_nr_rings; i++) {
3266 		struct bnxt_napi *bnapi = bp->bnapi[i];
3267 
3268 		if (!bnapi)
3269 			continue;
3270 		bnxt_free_cp_arrays(&bnapi->cp_ring);
3271 	}
3272 }
3273 
3274 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp)
3275 {
3276 	int i, n = bp->cp_nr_pages;
3277 
3278 	for (i = 0; i < bp->cp_nr_rings; i++) {
3279 		struct bnxt_napi *bnapi = bp->bnapi[i];
3280 		int rc;
3281 
3282 		if (!bnapi)
3283 			continue;
3284 		rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n);
3285 		if (rc)
3286 			return rc;
3287 	}
3288 	return 0;
3289 }
3290 
3291 static void bnxt_free_cp_rings(struct bnxt *bp)
3292 {
3293 	int i;
3294 
3295 	if (!bp->bnapi)
3296 		return;
3297 
3298 	for (i = 0; i < bp->cp_nr_rings; i++) {
3299 		struct bnxt_napi *bnapi = bp->bnapi[i];
3300 		struct bnxt_cp_ring_info *cpr;
3301 		struct bnxt_ring_struct *ring;
3302 		int j;
3303 
3304 		if (!bnapi)
3305 			continue;
3306 
3307 		cpr = &bnapi->cp_ring;
3308 		ring = &cpr->cp_ring_struct;
3309 
3310 		bnxt_free_ring(bp, &ring->ring_mem);
3311 
3312 		for (j = 0; j < 2; j++) {
3313 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3314 
3315 			if (cpr2) {
3316 				ring = &cpr2->cp_ring_struct;
3317 				bnxt_free_ring(bp, &ring->ring_mem);
3318 				bnxt_free_cp_arrays(cpr2);
3319 				kfree(cpr2);
3320 				cpr->cp_ring_arr[j] = NULL;
3321 			}
3322 		}
3323 	}
3324 }
3325 
3326 static struct bnxt_cp_ring_info *bnxt_alloc_cp_sub_ring(struct bnxt *bp)
3327 {
3328 	struct bnxt_ring_mem_info *rmem;
3329 	struct bnxt_ring_struct *ring;
3330 	struct bnxt_cp_ring_info *cpr;
3331 	int rc;
3332 
3333 	cpr = kzalloc(sizeof(*cpr), GFP_KERNEL);
3334 	if (!cpr)
3335 		return NULL;
3336 
3337 	rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages);
3338 	if (rc) {
3339 		bnxt_free_cp_arrays(cpr);
3340 		kfree(cpr);
3341 		return NULL;
3342 	}
3343 	ring = &cpr->cp_ring_struct;
3344 	rmem = &ring->ring_mem;
3345 	rmem->nr_pages = bp->cp_nr_pages;
3346 	rmem->page_size = HW_CMPD_RING_SIZE;
3347 	rmem->pg_arr = (void **)cpr->cp_desc_ring;
3348 	rmem->dma_arr = cpr->cp_desc_mapping;
3349 	rmem->flags = BNXT_RMEM_RING_PTE_FLAG;
3350 	rc = bnxt_alloc_ring(bp, rmem);
3351 	if (rc) {
3352 		bnxt_free_ring(bp, rmem);
3353 		bnxt_free_cp_arrays(cpr);
3354 		kfree(cpr);
3355 		cpr = NULL;
3356 	}
3357 	return cpr;
3358 }
3359 
3360 static int bnxt_alloc_cp_rings(struct bnxt *bp)
3361 {
3362 	bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS);
3363 	int i, rc, ulp_base_vec, ulp_msix;
3364 
3365 	ulp_msix = bnxt_get_ulp_msix_num(bp);
3366 	ulp_base_vec = bnxt_get_ulp_msix_base(bp);
3367 	for (i = 0; i < bp->cp_nr_rings; i++) {
3368 		struct bnxt_napi *bnapi = bp->bnapi[i];
3369 		struct bnxt_cp_ring_info *cpr;
3370 		struct bnxt_ring_struct *ring;
3371 
3372 		if (!bnapi)
3373 			continue;
3374 
3375 		cpr = &bnapi->cp_ring;
3376 		cpr->bnapi = bnapi;
3377 		ring = &cpr->cp_ring_struct;
3378 
3379 		rc = bnxt_alloc_ring(bp, &ring->ring_mem);
3380 		if (rc)
3381 			return rc;
3382 
3383 		if (ulp_msix && i >= ulp_base_vec)
3384 			ring->map_idx = i + ulp_msix;
3385 		else
3386 			ring->map_idx = i;
3387 
3388 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
3389 			continue;
3390 
3391 		if (i < bp->rx_nr_rings) {
3392 			struct bnxt_cp_ring_info *cpr2 =
3393 				bnxt_alloc_cp_sub_ring(bp);
3394 
3395 			cpr->cp_ring_arr[BNXT_RX_HDL] = cpr2;
3396 			if (!cpr2)
3397 				return -ENOMEM;
3398 			cpr2->bnapi = bnapi;
3399 		}
3400 		if ((sh && i < bp->tx_nr_rings) ||
3401 		    (!sh && i >= bp->rx_nr_rings)) {
3402 			struct bnxt_cp_ring_info *cpr2 =
3403 				bnxt_alloc_cp_sub_ring(bp);
3404 
3405 			cpr->cp_ring_arr[BNXT_TX_HDL] = cpr2;
3406 			if (!cpr2)
3407 				return -ENOMEM;
3408 			cpr2->bnapi = bnapi;
3409 		}
3410 	}
3411 	return 0;
3412 }
3413 
3414 static void bnxt_init_ring_struct(struct bnxt *bp)
3415 {
3416 	int i;
3417 
3418 	for (i = 0; i < bp->cp_nr_rings; i++) {
3419 		struct bnxt_napi *bnapi = bp->bnapi[i];
3420 		struct bnxt_ring_mem_info *rmem;
3421 		struct bnxt_cp_ring_info *cpr;
3422 		struct bnxt_rx_ring_info *rxr;
3423 		struct bnxt_tx_ring_info *txr;
3424 		struct bnxt_ring_struct *ring;
3425 
3426 		if (!bnapi)
3427 			continue;
3428 
3429 		cpr = &bnapi->cp_ring;
3430 		ring = &cpr->cp_ring_struct;
3431 		rmem = &ring->ring_mem;
3432 		rmem->nr_pages = bp->cp_nr_pages;
3433 		rmem->page_size = HW_CMPD_RING_SIZE;
3434 		rmem->pg_arr = (void **)cpr->cp_desc_ring;
3435 		rmem->dma_arr = cpr->cp_desc_mapping;
3436 		rmem->vmem_size = 0;
3437 
3438 		rxr = bnapi->rx_ring;
3439 		if (!rxr)
3440 			goto skip_rx;
3441 
3442 		ring = &rxr->rx_ring_struct;
3443 		rmem = &ring->ring_mem;
3444 		rmem->nr_pages = bp->rx_nr_pages;
3445 		rmem->page_size = HW_RXBD_RING_SIZE;
3446 		rmem->pg_arr = (void **)rxr->rx_desc_ring;
3447 		rmem->dma_arr = rxr->rx_desc_mapping;
3448 		rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
3449 		rmem->vmem = (void **)&rxr->rx_buf_ring;
3450 
3451 		ring = &rxr->rx_agg_ring_struct;
3452 		rmem = &ring->ring_mem;
3453 		rmem->nr_pages = bp->rx_agg_nr_pages;
3454 		rmem->page_size = HW_RXBD_RING_SIZE;
3455 		rmem->pg_arr = (void **)rxr->rx_agg_desc_ring;
3456 		rmem->dma_arr = rxr->rx_agg_desc_mapping;
3457 		rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
3458 		rmem->vmem = (void **)&rxr->rx_agg_ring;
3459 
3460 skip_rx:
3461 		txr = bnapi->tx_ring;
3462 		if (!txr)
3463 			continue;
3464 
3465 		ring = &txr->tx_ring_struct;
3466 		rmem = &ring->ring_mem;
3467 		rmem->nr_pages = bp->tx_nr_pages;
3468 		rmem->page_size = HW_RXBD_RING_SIZE;
3469 		rmem->pg_arr = (void **)txr->tx_desc_ring;
3470 		rmem->dma_arr = txr->tx_desc_mapping;
3471 		rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
3472 		rmem->vmem = (void **)&txr->tx_buf_ring;
3473 	}
3474 }
3475 
3476 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
3477 {
3478 	int i;
3479 	u32 prod;
3480 	struct rx_bd **rx_buf_ring;
3481 
3482 	rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr;
3483 	for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) {
3484 		int j;
3485 		struct rx_bd *rxbd;
3486 
3487 		rxbd = rx_buf_ring[i];
3488 		if (!rxbd)
3489 			continue;
3490 
3491 		for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
3492 			rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
3493 			rxbd->rx_bd_opaque = prod;
3494 		}
3495 	}
3496 }
3497 
3498 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr)
3499 {
3500 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
3501 	struct net_device *dev = bp->dev;
3502 	u32 prod;
3503 	int i;
3504 
3505 	prod = rxr->rx_prod;
3506 	for (i = 0; i < bp->rx_ring_size; i++) {
3507 		if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) {
3508 			netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
3509 				    ring_nr, i, bp->rx_ring_size);
3510 			break;
3511 		}
3512 		prod = NEXT_RX(prod);
3513 	}
3514 	rxr->rx_prod = prod;
3515 
3516 	if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
3517 		return 0;
3518 
3519 	prod = rxr->rx_agg_prod;
3520 	for (i = 0; i < bp->rx_agg_ring_size; i++) {
3521 		if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) {
3522 			netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
3523 				    ring_nr, i, bp->rx_ring_size);
3524 			break;
3525 		}
3526 		prod = NEXT_RX_AGG(prod);
3527 	}
3528 	rxr->rx_agg_prod = prod;
3529 
3530 	if (rxr->rx_tpa) {
3531 		dma_addr_t mapping;
3532 		u8 *data;
3533 
3534 		for (i = 0; i < bp->max_tpa; i++) {
3535 			data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL);
3536 			if (!data)
3537 				return -ENOMEM;
3538 
3539 			rxr->rx_tpa[i].data = data;
3540 			rxr->rx_tpa[i].data_ptr = data + bp->rx_offset;
3541 			rxr->rx_tpa[i].mapping = mapping;
3542 		}
3543 	}
3544 	return 0;
3545 }
3546 
3547 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
3548 {
3549 	struct bnxt_rx_ring_info *rxr;
3550 	struct bnxt_ring_struct *ring;
3551 	u32 type;
3552 
3553 	type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
3554 		RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
3555 
3556 	if (NET_IP_ALIGN == 2)
3557 		type |= RX_BD_FLAGS_SOP;
3558 
3559 	rxr = &bp->rx_ring[ring_nr];
3560 	ring = &rxr->rx_ring_struct;
3561 	bnxt_init_rxbd_pages(ring, type);
3562 
3563 	if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) {
3564 		bpf_prog_add(bp->xdp_prog, 1);
3565 		rxr->xdp_prog = bp->xdp_prog;
3566 	}
3567 	ring->fw_ring_id = INVALID_HW_RING_ID;
3568 
3569 	ring = &rxr->rx_agg_ring_struct;
3570 	ring->fw_ring_id = INVALID_HW_RING_ID;
3571 
3572 	if ((bp->flags & BNXT_FLAG_AGG_RINGS)) {
3573 		type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
3574 			RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
3575 
3576 		bnxt_init_rxbd_pages(ring, type);
3577 	}
3578 
3579 	return bnxt_alloc_one_rx_ring(bp, ring_nr);
3580 }
3581 
3582 static void bnxt_init_cp_rings(struct bnxt *bp)
3583 {
3584 	int i, j;
3585 
3586 	for (i = 0; i < bp->cp_nr_rings; i++) {
3587 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
3588 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3589 
3590 		ring->fw_ring_id = INVALID_HW_RING_ID;
3591 		cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3592 		cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3593 		for (j = 0; j < 2; j++) {
3594 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
3595 
3596 			if (!cpr2)
3597 				continue;
3598 
3599 			ring = &cpr2->cp_ring_struct;
3600 			ring->fw_ring_id = INVALID_HW_RING_ID;
3601 			cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks;
3602 			cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs;
3603 		}
3604 	}
3605 }
3606 
3607 static int bnxt_init_rx_rings(struct bnxt *bp)
3608 {
3609 	int i, rc = 0;
3610 
3611 	if (BNXT_RX_PAGE_MODE(bp)) {
3612 		bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM;
3613 		bp->rx_dma_offset = XDP_PACKET_HEADROOM;
3614 	} else {
3615 		bp->rx_offset = BNXT_RX_OFFSET;
3616 		bp->rx_dma_offset = BNXT_RX_DMA_OFFSET;
3617 	}
3618 
3619 	for (i = 0; i < bp->rx_nr_rings; i++) {
3620 		rc = bnxt_init_one_rx_ring(bp, i);
3621 		if (rc)
3622 			break;
3623 	}
3624 
3625 	return rc;
3626 }
3627 
3628 static int bnxt_init_tx_rings(struct bnxt *bp)
3629 {
3630 	u16 i;
3631 
3632 	bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
3633 				   BNXT_MIN_TX_DESC_CNT);
3634 
3635 	for (i = 0; i < bp->tx_nr_rings; i++) {
3636 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3637 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3638 
3639 		ring->fw_ring_id = INVALID_HW_RING_ID;
3640 	}
3641 
3642 	return 0;
3643 }
3644 
3645 static void bnxt_free_ring_grps(struct bnxt *bp)
3646 {
3647 	kfree(bp->grp_info);
3648 	bp->grp_info = NULL;
3649 }
3650 
3651 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
3652 {
3653 	int i;
3654 
3655 	if (irq_re_init) {
3656 		bp->grp_info = kcalloc(bp->cp_nr_rings,
3657 				       sizeof(struct bnxt_ring_grp_info),
3658 				       GFP_KERNEL);
3659 		if (!bp->grp_info)
3660 			return -ENOMEM;
3661 	}
3662 	for (i = 0; i < bp->cp_nr_rings; i++) {
3663 		if (irq_re_init)
3664 			bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
3665 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3666 		bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
3667 		bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
3668 		bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3669 	}
3670 	return 0;
3671 }
3672 
3673 static void bnxt_free_vnics(struct bnxt *bp)
3674 {
3675 	kfree(bp->vnic_info);
3676 	bp->vnic_info = NULL;
3677 	bp->nr_vnics = 0;
3678 }
3679 
3680 static int bnxt_alloc_vnics(struct bnxt *bp)
3681 {
3682 	int num_vnics = 1;
3683 
3684 #ifdef CONFIG_RFS_ACCEL
3685 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
3686 		num_vnics += bp->rx_nr_rings;
3687 #endif
3688 
3689 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3690 		num_vnics++;
3691 
3692 	bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
3693 				GFP_KERNEL);
3694 	if (!bp->vnic_info)
3695 		return -ENOMEM;
3696 
3697 	bp->nr_vnics = num_vnics;
3698 	return 0;
3699 }
3700 
3701 static void bnxt_init_vnics(struct bnxt *bp)
3702 {
3703 	int i;
3704 
3705 	for (i = 0; i < bp->nr_vnics; i++) {
3706 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3707 		int j;
3708 
3709 		vnic->fw_vnic_id = INVALID_HW_RING_ID;
3710 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++)
3711 			vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID;
3712 
3713 		vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
3714 
3715 		if (bp->vnic_info[i].rss_hash_key) {
3716 			if (i == 0)
3717 				prandom_bytes(vnic->rss_hash_key,
3718 					      HW_HASH_KEY_SIZE);
3719 			else
3720 				memcpy(vnic->rss_hash_key,
3721 				       bp->vnic_info[0].rss_hash_key,
3722 				       HW_HASH_KEY_SIZE);
3723 		}
3724 	}
3725 }
3726 
3727 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
3728 {
3729 	int pages;
3730 
3731 	pages = ring_size / desc_per_pg;
3732 
3733 	if (!pages)
3734 		return 1;
3735 
3736 	pages++;
3737 
3738 	while (pages & (pages - 1))
3739 		pages++;
3740 
3741 	return pages;
3742 }
3743 
3744 void bnxt_set_tpa_flags(struct bnxt *bp)
3745 {
3746 	bp->flags &= ~BNXT_FLAG_TPA;
3747 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
3748 		return;
3749 	if (bp->dev->features & NETIF_F_LRO)
3750 		bp->flags |= BNXT_FLAG_LRO;
3751 	else if (bp->dev->features & NETIF_F_GRO_HW)
3752 		bp->flags |= BNXT_FLAG_GRO;
3753 }
3754 
3755 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
3756  * be set on entry.
3757  */
3758 void bnxt_set_ring_params(struct bnxt *bp)
3759 {
3760 	u32 ring_size, rx_size, rx_space, max_rx_cmpl;
3761 	u32 agg_factor = 0, agg_ring_size = 0;
3762 
3763 	/* 8 for CRC and VLAN */
3764 	rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
3765 
3766 	rx_space = rx_size + NET_SKB_PAD +
3767 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3768 
3769 	bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
3770 	ring_size = bp->rx_ring_size;
3771 	bp->rx_agg_ring_size = 0;
3772 	bp->rx_agg_nr_pages = 0;
3773 
3774 	if (bp->flags & BNXT_FLAG_TPA)
3775 		agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
3776 
3777 	bp->flags &= ~BNXT_FLAG_JUMBO;
3778 	if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) {
3779 		u32 jumbo_factor;
3780 
3781 		bp->flags |= BNXT_FLAG_JUMBO;
3782 		jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
3783 		if (jumbo_factor > agg_factor)
3784 			agg_factor = jumbo_factor;
3785 	}
3786 	if (agg_factor) {
3787 		if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) {
3788 			ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA;
3789 			netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n",
3790 				    bp->rx_ring_size, ring_size);
3791 			bp->rx_ring_size = ring_size;
3792 		}
3793 		agg_ring_size = ring_size * agg_factor;
3794 
3795 		bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
3796 							RX_DESC_CNT);
3797 		if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
3798 			u32 tmp = agg_ring_size;
3799 
3800 			bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
3801 			agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
3802 			netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
3803 				    tmp, agg_ring_size);
3804 		}
3805 		bp->rx_agg_ring_size = agg_ring_size;
3806 		bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
3807 		rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
3808 		rx_space = rx_size + NET_SKB_PAD +
3809 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3810 	}
3811 
3812 	bp->rx_buf_use_size = rx_size;
3813 	bp->rx_buf_size = rx_space;
3814 
3815 	bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
3816 	bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
3817 
3818 	ring_size = bp->tx_ring_size;
3819 	bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
3820 	bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
3821 
3822 	max_rx_cmpl = bp->rx_ring_size;
3823 	/* MAX TPA needs to be added because TPA_START completions are
3824 	 * immediately recycled, so the TPA completions are not bound by
3825 	 * the RX ring size.
3826 	 */
3827 	if (bp->flags & BNXT_FLAG_TPA)
3828 		max_rx_cmpl += bp->max_tpa;
3829 	/* RX and TPA completions are 32-byte, all others are 16-byte */
3830 	ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size;
3831 	bp->cp_ring_size = ring_size;
3832 
3833 	bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
3834 	if (bp->cp_nr_pages > MAX_CP_PAGES) {
3835 		bp->cp_nr_pages = MAX_CP_PAGES;
3836 		bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
3837 		netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
3838 			    ring_size, bp->cp_ring_size);
3839 	}
3840 	bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
3841 	bp->cp_ring_mask = bp->cp_bit - 1;
3842 }
3843 
3844 /* Changing allocation mode of RX rings.
3845  * TODO: Update when extending xdp_rxq_info to support allocation modes.
3846  */
3847 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode)
3848 {
3849 	if (page_mode) {
3850 		if (bp->dev->mtu > BNXT_MAX_PAGE_MODE_MTU)
3851 			return -EOPNOTSUPP;
3852 		bp->dev->max_mtu =
3853 			min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU);
3854 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
3855 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS | BNXT_FLAG_RX_PAGE_MODE;
3856 		bp->rx_dir = DMA_BIDIRECTIONAL;
3857 		bp->rx_skb_func = bnxt_rx_page_skb;
3858 		/* Disable LRO or GRO_HW */
3859 		netdev_update_features(bp->dev);
3860 	} else {
3861 		bp->dev->max_mtu = bp->max_mtu;
3862 		bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE;
3863 		bp->rx_dir = DMA_FROM_DEVICE;
3864 		bp->rx_skb_func = bnxt_rx_skb;
3865 	}
3866 	return 0;
3867 }
3868 
3869 static void bnxt_free_vnic_attributes(struct bnxt *bp)
3870 {
3871 	int i;
3872 	struct bnxt_vnic_info *vnic;
3873 	struct pci_dev *pdev = bp->pdev;
3874 
3875 	if (!bp->vnic_info)
3876 		return;
3877 
3878 	for (i = 0; i < bp->nr_vnics; i++) {
3879 		vnic = &bp->vnic_info[i];
3880 
3881 		kfree(vnic->fw_grp_ids);
3882 		vnic->fw_grp_ids = NULL;
3883 
3884 		kfree(vnic->uc_list);
3885 		vnic->uc_list = NULL;
3886 
3887 		if (vnic->mc_list) {
3888 			dma_free_coherent(&pdev->dev, vnic->mc_list_size,
3889 					  vnic->mc_list, vnic->mc_list_mapping);
3890 			vnic->mc_list = NULL;
3891 		}
3892 
3893 		if (vnic->rss_table) {
3894 			dma_free_coherent(&pdev->dev, vnic->rss_table_size,
3895 					  vnic->rss_table,
3896 					  vnic->rss_table_dma_addr);
3897 			vnic->rss_table = NULL;
3898 		}
3899 
3900 		vnic->rss_hash_key = NULL;
3901 		vnic->flags = 0;
3902 	}
3903 }
3904 
3905 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
3906 {
3907 	int i, rc = 0, size;
3908 	struct bnxt_vnic_info *vnic;
3909 	struct pci_dev *pdev = bp->pdev;
3910 	int max_rings;
3911 
3912 	for (i = 0; i < bp->nr_vnics; i++) {
3913 		vnic = &bp->vnic_info[i];
3914 
3915 		if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
3916 			int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
3917 
3918 			if (mem_size > 0) {
3919 				vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
3920 				if (!vnic->uc_list) {
3921 					rc = -ENOMEM;
3922 					goto out;
3923 				}
3924 			}
3925 		}
3926 
3927 		if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
3928 			vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
3929 			vnic->mc_list =
3930 				dma_alloc_coherent(&pdev->dev,
3931 						   vnic->mc_list_size,
3932 						   &vnic->mc_list_mapping,
3933 						   GFP_KERNEL);
3934 			if (!vnic->mc_list) {
3935 				rc = -ENOMEM;
3936 				goto out;
3937 			}
3938 		}
3939 
3940 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3941 			goto vnic_skip_grps;
3942 
3943 		if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3944 			max_rings = bp->rx_nr_rings;
3945 		else
3946 			max_rings = 1;
3947 
3948 		vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
3949 		if (!vnic->fw_grp_ids) {
3950 			rc = -ENOMEM;
3951 			goto out;
3952 		}
3953 vnic_skip_grps:
3954 		if ((bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
3955 		    !(vnic->flags & BNXT_VNIC_RSS_FLAG))
3956 			continue;
3957 
3958 		/* Allocate rss table and hash key */
3959 		size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
3960 		if (bp->flags & BNXT_FLAG_CHIP_P5)
3961 			size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5);
3962 
3963 		vnic->rss_table_size = size + HW_HASH_KEY_SIZE;
3964 		vnic->rss_table = dma_alloc_coherent(&pdev->dev,
3965 						     vnic->rss_table_size,
3966 						     &vnic->rss_table_dma_addr,
3967 						     GFP_KERNEL);
3968 		if (!vnic->rss_table) {
3969 			rc = -ENOMEM;
3970 			goto out;
3971 		}
3972 
3973 		vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
3974 		vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
3975 	}
3976 	return 0;
3977 
3978 out:
3979 	return rc;
3980 }
3981 
3982 static void bnxt_free_hwrm_resources(struct bnxt *bp)
3983 {
3984 	struct bnxt_hwrm_wait_token *token;
3985 
3986 	dma_pool_destroy(bp->hwrm_dma_pool);
3987 	bp->hwrm_dma_pool = NULL;
3988 
3989 	rcu_read_lock();
3990 	hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node)
3991 		WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED);
3992 	rcu_read_unlock();
3993 }
3994 
3995 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
3996 {
3997 	bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev,
3998 					    BNXT_HWRM_DMA_SIZE,
3999 					    BNXT_HWRM_DMA_ALIGN, 0);
4000 	if (!bp->hwrm_dma_pool)
4001 		return -ENOMEM;
4002 
4003 	INIT_HLIST_HEAD(&bp->hwrm_pending_list);
4004 
4005 	return 0;
4006 }
4007 
4008 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats)
4009 {
4010 	kfree(stats->hw_masks);
4011 	stats->hw_masks = NULL;
4012 	kfree(stats->sw_stats);
4013 	stats->sw_stats = NULL;
4014 	if (stats->hw_stats) {
4015 		dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats,
4016 				  stats->hw_stats_map);
4017 		stats->hw_stats = NULL;
4018 	}
4019 }
4020 
4021 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats,
4022 				bool alloc_masks)
4023 {
4024 	stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len,
4025 					     &stats->hw_stats_map, GFP_KERNEL);
4026 	if (!stats->hw_stats)
4027 		return -ENOMEM;
4028 
4029 	stats->sw_stats = kzalloc(stats->len, GFP_KERNEL);
4030 	if (!stats->sw_stats)
4031 		goto stats_mem_err;
4032 
4033 	if (alloc_masks) {
4034 		stats->hw_masks = kzalloc(stats->len, GFP_KERNEL);
4035 		if (!stats->hw_masks)
4036 			goto stats_mem_err;
4037 	}
4038 	return 0;
4039 
4040 stats_mem_err:
4041 	bnxt_free_stats_mem(bp, stats);
4042 	return -ENOMEM;
4043 }
4044 
4045 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count)
4046 {
4047 	int i;
4048 
4049 	for (i = 0; i < count; i++)
4050 		mask_arr[i] = mask;
4051 }
4052 
4053 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count)
4054 {
4055 	int i;
4056 
4057 	for (i = 0; i < count; i++)
4058 		mask_arr[i] = le64_to_cpu(hw_mask_arr[i]);
4059 }
4060 
4061 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp,
4062 				    struct bnxt_stats_mem *stats)
4063 {
4064 	struct hwrm_func_qstats_ext_output *resp;
4065 	struct hwrm_func_qstats_ext_input *req;
4066 	__le64 *hw_masks;
4067 	int rc;
4068 
4069 	if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) ||
4070 	    !(bp->flags & BNXT_FLAG_CHIP_P5))
4071 		return -EOPNOTSUPP;
4072 
4073 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT);
4074 	if (rc)
4075 		return rc;
4076 
4077 	req->fid = cpu_to_le16(0xffff);
4078 	req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4079 
4080 	resp = hwrm_req_hold(bp, req);
4081 	rc = hwrm_req_send(bp, req);
4082 	if (!rc) {
4083 		hw_masks = &resp->rx_ucast_pkts;
4084 		bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8);
4085 	}
4086 	hwrm_req_drop(bp, req);
4087 	return rc;
4088 }
4089 
4090 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags);
4091 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags);
4092 
4093 static void bnxt_init_stats(struct bnxt *bp)
4094 {
4095 	struct bnxt_napi *bnapi = bp->bnapi[0];
4096 	struct bnxt_cp_ring_info *cpr;
4097 	struct bnxt_stats_mem *stats;
4098 	__le64 *rx_stats, *tx_stats;
4099 	int rc, rx_count, tx_count;
4100 	u64 *rx_masks, *tx_masks;
4101 	u64 mask;
4102 	u8 flags;
4103 
4104 	cpr = &bnapi->cp_ring;
4105 	stats = &cpr->stats;
4106 	rc = bnxt_hwrm_func_qstat_ext(bp, stats);
4107 	if (rc) {
4108 		if (bp->flags & BNXT_FLAG_CHIP_P5)
4109 			mask = (1ULL << 48) - 1;
4110 		else
4111 			mask = -1ULL;
4112 		bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8);
4113 	}
4114 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
4115 		stats = &bp->port_stats;
4116 		rx_stats = stats->hw_stats;
4117 		rx_masks = stats->hw_masks;
4118 		rx_count = sizeof(struct rx_port_stats) / 8;
4119 		tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4120 		tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
4121 		tx_count = sizeof(struct tx_port_stats) / 8;
4122 
4123 		flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK;
4124 		rc = bnxt_hwrm_port_qstats(bp, flags);
4125 		if (rc) {
4126 			mask = (1ULL << 40) - 1;
4127 
4128 			bnxt_fill_masks(rx_masks, mask, rx_count);
4129 			bnxt_fill_masks(tx_masks, mask, tx_count);
4130 		} else {
4131 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4132 			bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count);
4133 			bnxt_hwrm_port_qstats(bp, 0);
4134 		}
4135 	}
4136 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
4137 		stats = &bp->rx_port_stats_ext;
4138 		rx_stats = stats->hw_stats;
4139 		rx_masks = stats->hw_masks;
4140 		rx_count = sizeof(struct rx_port_stats_ext) / 8;
4141 		stats = &bp->tx_port_stats_ext;
4142 		tx_stats = stats->hw_stats;
4143 		tx_masks = stats->hw_masks;
4144 		tx_count = sizeof(struct tx_port_stats_ext) / 8;
4145 
4146 		flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK;
4147 		rc = bnxt_hwrm_port_qstats_ext(bp, flags);
4148 		if (rc) {
4149 			mask = (1ULL << 40) - 1;
4150 
4151 			bnxt_fill_masks(rx_masks, mask, rx_count);
4152 			if (tx_stats)
4153 				bnxt_fill_masks(tx_masks, mask, tx_count);
4154 		} else {
4155 			bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count);
4156 			if (tx_stats)
4157 				bnxt_copy_hw_masks(tx_masks, tx_stats,
4158 						   tx_count);
4159 			bnxt_hwrm_port_qstats_ext(bp, 0);
4160 		}
4161 	}
4162 }
4163 
4164 static void bnxt_free_port_stats(struct bnxt *bp)
4165 {
4166 	bp->flags &= ~BNXT_FLAG_PORT_STATS;
4167 	bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT;
4168 
4169 	bnxt_free_stats_mem(bp, &bp->port_stats);
4170 	bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext);
4171 	bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext);
4172 }
4173 
4174 static void bnxt_free_ring_stats(struct bnxt *bp)
4175 {
4176 	int i;
4177 
4178 	if (!bp->bnapi)
4179 		return;
4180 
4181 	for (i = 0; i < bp->cp_nr_rings; i++) {
4182 		struct bnxt_napi *bnapi = bp->bnapi[i];
4183 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4184 
4185 		bnxt_free_stats_mem(bp, &cpr->stats);
4186 	}
4187 }
4188 
4189 static int bnxt_alloc_stats(struct bnxt *bp)
4190 {
4191 	u32 size, i;
4192 	int rc;
4193 
4194 	size = bp->hw_ring_stats_size;
4195 
4196 	for (i = 0; i < bp->cp_nr_rings; i++) {
4197 		struct bnxt_napi *bnapi = bp->bnapi[i];
4198 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4199 
4200 		cpr->stats.len = size;
4201 		rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i);
4202 		if (rc)
4203 			return rc;
4204 
4205 		cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4206 	}
4207 
4208 	if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700)
4209 		return 0;
4210 
4211 	if (bp->port_stats.hw_stats)
4212 		goto alloc_ext_stats;
4213 
4214 	bp->port_stats.len = BNXT_PORT_STATS_SIZE;
4215 	rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true);
4216 	if (rc)
4217 		return rc;
4218 
4219 	bp->flags |= BNXT_FLAG_PORT_STATS;
4220 
4221 alloc_ext_stats:
4222 	/* Display extended statistics only if FW supports it */
4223 	if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900)
4224 		if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED))
4225 			return 0;
4226 
4227 	if (bp->rx_port_stats_ext.hw_stats)
4228 		goto alloc_tx_ext_stats;
4229 
4230 	bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext);
4231 	rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true);
4232 	/* Extended stats are optional */
4233 	if (rc)
4234 		return 0;
4235 
4236 alloc_tx_ext_stats:
4237 	if (bp->tx_port_stats_ext.hw_stats)
4238 		return 0;
4239 
4240 	if (bp->hwrm_spec_code >= 0x10902 ||
4241 	    (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) {
4242 		bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext);
4243 		rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true);
4244 		/* Extended stats are optional */
4245 		if (rc)
4246 			return 0;
4247 	}
4248 	bp->flags |= BNXT_FLAG_PORT_STATS_EXT;
4249 	return 0;
4250 }
4251 
4252 static void bnxt_clear_ring_indices(struct bnxt *bp)
4253 {
4254 	int i;
4255 
4256 	if (!bp->bnapi)
4257 		return;
4258 
4259 	for (i = 0; i < bp->cp_nr_rings; i++) {
4260 		struct bnxt_napi *bnapi = bp->bnapi[i];
4261 		struct bnxt_cp_ring_info *cpr;
4262 		struct bnxt_rx_ring_info *rxr;
4263 		struct bnxt_tx_ring_info *txr;
4264 
4265 		if (!bnapi)
4266 			continue;
4267 
4268 		cpr = &bnapi->cp_ring;
4269 		cpr->cp_raw_cons = 0;
4270 
4271 		txr = bnapi->tx_ring;
4272 		if (txr) {
4273 			txr->tx_prod = 0;
4274 			txr->tx_cons = 0;
4275 		}
4276 
4277 		rxr = bnapi->rx_ring;
4278 		if (rxr) {
4279 			rxr->rx_prod = 0;
4280 			rxr->rx_agg_prod = 0;
4281 			rxr->rx_sw_agg_prod = 0;
4282 			rxr->rx_next_cons = 0;
4283 		}
4284 	}
4285 }
4286 
4287 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
4288 {
4289 #ifdef CONFIG_RFS_ACCEL
4290 	int i;
4291 
4292 	/* Under rtnl_lock and all our NAPIs have been disabled.  It's
4293 	 * safe to delete the hash table.
4294 	 */
4295 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
4296 		struct hlist_head *head;
4297 		struct hlist_node *tmp;
4298 		struct bnxt_ntuple_filter *fltr;
4299 
4300 		head = &bp->ntp_fltr_hash_tbl[i];
4301 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
4302 			hlist_del(&fltr->hash);
4303 			kfree(fltr);
4304 		}
4305 	}
4306 	if (irq_reinit) {
4307 		kfree(bp->ntp_fltr_bmap);
4308 		bp->ntp_fltr_bmap = NULL;
4309 	}
4310 	bp->ntp_fltr_count = 0;
4311 #endif
4312 }
4313 
4314 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
4315 {
4316 #ifdef CONFIG_RFS_ACCEL
4317 	int i, rc = 0;
4318 
4319 	if (!(bp->flags & BNXT_FLAG_RFS))
4320 		return 0;
4321 
4322 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
4323 		INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
4324 
4325 	bp->ntp_fltr_count = 0;
4326 	bp->ntp_fltr_bmap = kcalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
4327 				    sizeof(long),
4328 				    GFP_KERNEL);
4329 
4330 	if (!bp->ntp_fltr_bmap)
4331 		rc = -ENOMEM;
4332 
4333 	return rc;
4334 #else
4335 	return 0;
4336 #endif
4337 }
4338 
4339 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
4340 {
4341 	bnxt_free_vnic_attributes(bp);
4342 	bnxt_free_tx_rings(bp);
4343 	bnxt_free_rx_rings(bp);
4344 	bnxt_free_cp_rings(bp);
4345 	bnxt_free_all_cp_arrays(bp);
4346 	bnxt_free_ntp_fltrs(bp, irq_re_init);
4347 	if (irq_re_init) {
4348 		bnxt_free_ring_stats(bp);
4349 		if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) ||
4350 		    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
4351 			bnxt_free_port_stats(bp);
4352 		bnxt_free_ring_grps(bp);
4353 		bnxt_free_vnics(bp);
4354 		kfree(bp->tx_ring_map);
4355 		bp->tx_ring_map = NULL;
4356 		kfree(bp->tx_ring);
4357 		bp->tx_ring = NULL;
4358 		kfree(bp->rx_ring);
4359 		bp->rx_ring = NULL;
4360 		kfree(bp->bnapi);
4361 		bp->bnapi = NULL;
4362 	} else {
4363 		bnxt_clear_ring_indices(bp);
4364 	}
4365 }
4366 
4367 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
4368 {
4369 	int i, j, rc, size, arr_size;
4370 	void *bnapi;
4371 
4372 	if (irq_re_init) {
4373 		/* Allocate bnapi mem pointer array and mem block for
4374 		 * all queues
4375 		 */
4376 		arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
4377 				bp->cp_nr_rings);
4378 		size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
4379 		bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
4380 		if (!bnapi)
4381 			return -ENOMEM;
4382 
4383 		bp->bnapi = bnapi;
4384 		bnapi += arr_size;
4385 		for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
4386 			bp->bnapi[i] = bnapi;
4387 			bp->bnapi[i]->index = i;
4388 			bp->bnapi[i]->bp = bp;
4389 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4390 				struct bnxt_cp_ring_info *cpr =
4391 					&bp->bnapi[i]->cp_ring;
4392 
4393 				cpr->cp_ring_struct.ring_mem.flags =
4394 					BNXT_RMEM_RING_PTE_FLAG;
4395 			}
4396 		}
4397 
4398 		bp->rx_ring = kcalloc(bp->rx_nr_rings,
4399 				      sizeof(struct bnxt_rx_ring_info),
4400 				      GFP_KERNEL);
4401 		if (!bp->rx_ring)
4402 			return -ENOMEM;
4403 
4404 		for (i = 0; i < bp->rx_nr_rings; i++) {
4405 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
4406 
4407 			if (bp->flags & BNXT_FLAG_CHIP_P5) {
4408 				rxr->rx_ring_struct.ring_mem.flags =
4409 					BNXT_RMEM_RING_PTE_FLAG;
4410 				rxr->rx_agg_ring_struct.ring_mem.flags =
4411 					BNXT_RMEM_RING_PTE_FLAG;
4412 			}
4413 			rxr->bnapi = bp->bnapi[i];
4414 			bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
4415 		}
4416 
4417 		bp->tx_ring = kcalloc(bp->tx_nr_rings,
4418 				      sizeof(struct bnxt_tx_ring_info),
4419 				      GFP_KERNEL);
4420 		if (!bp->tx_ring)
4421 			return -ENOMEM;
4422 
4423 		bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16),
4424 					  GFP_KERNEL);
4425 
4426 		if (!bp->tx_ring_map)
4427 			return -ENOMEM;
4428 
4429 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4430 			j = 0;
4431 		else
4432 			j = bp->rx_nr_rings;
4433 
4434 		for (i = 0; i < bp->tx_nr_rings; i++, j++) {
4435 			struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
4436 
4437 			if (bp->flags & BNXT_FLAG_CHIP_P5)
4438 				txr->tx_ring_struct.ring_mem.flags =
4439 					BNXT_RMEM_RING_PTE_FLAG;
4440 			txr->bnapi = bp->bnapi[j];
4441 			bp->bnapi[j]->tx_ring = txr;
4442 			bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i;
4443 			if (i >= bp->tx_nr_rings_xdp) {
4444 				txr->txq_index = i - bp->tx_nr_rings_xdp;
4445 				bp->bnapi[j]->tx_int = bnxt_tx_int;
4446 			} else {
4447 				bp->bnapi[j]->flags |= BNXT_NAPI_FLAG_XDP;
4448 				bp->bnapi[j]->tx_int = bnxt_tx_int_xdp;
4449 			}
4450 		}
4451 
4452 		rc = bnxt_alloc_stats(bp);
4453 		if (rc)
4454 			goto alloc_mem_err;
4455 		bnxt_init_stats(bp);
4456 
4457 		rc = bnxt_alloc_ntp_fltrs(bp);
4458 		if (rc)
4459 			goto alloc_mem_err;
4460 
4461 		rc = bnxt_alloc_vnics(bp);
4462 		if (rc)
4463 			goto alloc_mem_err;
4464 	}
4465 
4466 	rc = bnxt_alloc_all_cp_arrays(bp);
4467 	if (rc)
4468 		goto alloc_mem_err;
4469 
4470 	bnxt_init_ring_struct(bp);
4471 
4472 	rc = bnxt_alloc_rx_rings(bp);
4473 	if (rc)
4474 		goto alloc_mem_err;
4475 
4476 	rc = bnxt_alloc_tx_rings(bp);
4477 	if (rc)
4478 		goto alloc_mem_err;
4479 
4480 	rc = bnxt_alloc_cp_rings(bp);
4481 	if (rc)
4482 		goto alloc_mem_err;
4483 
4484 	bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
4485 				  BNXT_VNIC_UCAST_FLAG;
4486 	rc = bnxt_alloc_vnic_attributes(bp);
4487 	if (rc)
4488 		goto alloc_mem_err;
4489 	return 0;
4490 
4491 alloc_mem_err:
4492 	bnxt_free_mem(bp, true);
4493 	return rc;
4494 }
4495 
4496 static void bnxt_disable_int(struct bnxt *bp)
4497 {
4498 	int i;
4499 
4500 	if (!bp->bnapi)
4501 		return;
4502 
4503 	for (i = 0; i < bp->cp_nr_rings; i++) {
4504 		struct bnxt_napi *bnapi = bp->bnapi[i];
4505 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4506 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
4507 
4508 		if (ring->fw_ring_id != INVALID_HW_RING_ID)
4509 			bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
4510 	}
4511 }
4512 
4513 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n)
4514 {
4515 	struct bnxt_napi *bnapi = bp->bnapi[n];
4516 	struct bnxt_cp_ring_info *cpr;
4517 
4518 	cpr = &bnapi->cp_ring;
4519 	return cpr->cp_ring_struct.map_idx;
4520 }
4521 
4522 static void bnxt_disable_int_sync(struct bnxt *bp)
4523 {
4524 	int i;
4525 
4526 	if (!bp->irq_tbl)
4527 		return;
4528 
4529 	atomic_inc(&bp->intr_sem);
4530 
4531 	bnxt_disable_int(bp);
4532 	for (i = 0; i < bp->cp_nr_rings; i++) {
4533 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
4534 
4535 		synchronize_irq(bp->irq_tbl[map_idx].vector);
4536 	}
4537 }
4538 
4539 static void bnxt_enable_int(struct bnxt *bp)
4540 {
4541 	int i;
4542 
4543 	atomic_set(&bp->intr_sem, 0);
4544 	for (i = 0; i < bp->cp_nr_rings; i++) {
4545 		struct bnxt_napi *bnapi = bp->bnapi[i];
4546 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4547 
4548 		bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons);
4549 	}
4550 }
4551 
4552 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size,
4553 			    bool async_only)
4554 {
4555 	DECLARE_BITMAP(async_events_bmap, 256);
4556 	u32 *events = (u32 *)async_events_bmap;
4557 	struct hwrm_func_drv_rgtr_output *resp;
4558 	struct hwrm_func_drv_rgtr_input *req;
4559 	u32 flags;
4560 	int rc, i;
4561 
4562 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR);
4563 	if (rc)
4564 		return rc;
4565 
4566 	req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
4567 				   FUNC_DRV_RGTR_REQ_ENABLES_VER |
4568 				   FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4569 
4570 	req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
4571 	flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE;
4572 	if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET)
4573 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT;
4574 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
4575 		flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT |
4576 			 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT;
4577 	req->flags = cpu_to_le32(flags);
4578 	req->ver_maj_8b = DRV_VER_MAJ;
4579 	req->ver_min_8b = DRV_VER_MIN;
4580 	req->ver_upd_8b = DRV_VER_UPD;
4581 	req->ver_maj = cpu_to_le16(DRV_VER_MAJ);
4582 	req->ver_min = cpu_to_le16(DRV_VER_MIN);
4583 	req->ver_upd = cpu_to_le16(DRV_VER_UPD);
4584 
4585 	if (BNXT_PF(bp)) {
4586 		u32 data[8];
4587 		int i;
4588 
4589 		memset(data, 0, sizeof(data));
4590 		for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) {
4591 			u16 cmd = bnxt_vf_req_snif[i];
4592 			unsigned int bit, idx;
4593 
4594 			idx = cmd / 32;
4595 			bit = cmd % 32;
4596 			data[idx] |= 1 << bit;
4597 		}
4598 
4599 		for (i = 0; i < 8; i++)
4600 			req->vf_req_fwd[i] = cpu_to_le32(data[i]);
4601 
4602 		req->enables |=
4603 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
4604 	}
4605 
4606 	if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE)
4607 		req->flags |= cpu_to_le32(
4608 			FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE);
4609 
4610 	memset(async_events_bmap, 0, sizeof(async_events_bmap));
4611 	for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) {
4612 		u16 event_id = bnxt_async_events_arr[i];
4613 
4614 		if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY &&
4615 		    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
4616 			continue;
4617 		__set_bit(bnxt_async_events_arr[i], async_events_bmap);
4618 	}
4619 	if (bmap && bmap_size) {
4620 		for (i = 0; i < bmap_size; i++) {
4621 			if (test_bit(i, bmap))
4622 				__set_bit(i, async_events_bmap);
4623 		}
4624 	}
4625 	for (i = 0; i < 8; i++)
4626 		req->async_event_fwd[i] |= cpu_to_le32(events[i]);
4627 
4628 	if (async_only)
4629 		req->enables =
4630 			cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
4631 
4632 	resp = hwrm_req_hold(bp, req);
4633 	rc = hwrm_req_send(bp, req);
4634 	if (!rc) {
4635 		set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state);
4636 		if (resp->flags &
4637 		    cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED))
4638 			bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE;
4639 	}
4640 	hwrm_req_drop(bp, req);
4641 	return rc;
4642 }
4643 
4644 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
4645 {
4646 	struct hwrm_func_drv_unrgtr_input *req;
4647 	int rc;
4648 
4649 	if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state))
4650 		return 0;
4651 
4652 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR);
4653 	if (rc)
4654 		return rc;
4655 	return hwrm_req_send(bp, req);
4656 }
4657 
4658 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
4659 {
4660 	struct hwrm_tunnel_dst_port_free_input *req;
4661 	int rc;
4662 
4663 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN &&
4664 	    bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID)
4665 		return 0;
4666 	if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE &&
4667 	    bp->nge_fw_dst_port_id == INVALID_HW_RING_ID)
4668 		return 0;
4669 
4670 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE);
4671 	if (rc)
4672 		return rc;
4673 
4674 	req->tunnel_type = tunnel_type;
4675 
4676 	switch (tunnel_type) {
4677 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
4678 		req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id);
4679 		bp->vxlan_port = 0;
4680 		bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
4681 		break;
4682 	case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
4683 		req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id);
4684 		bp->nge_port = 0;
4685 		bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
4686 		break;
4687 	default:
4688 		break;
4689 	}
4690 
4691 	rc = hwrm_req_send(bp, req);
4692 	if (rc)
4693 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
4694 			   rc);
4695 	return rc;
4696 }
4697 
4698 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
4699 					   u8 tunnel_type)
4700 {
4701 	struct hwrm_tunnel_dst_port_alloc_output *resp;
4702 	struct hwrm_tunnel_dst_port_alloc_input *req;
4703 	int rc;
4704 
4705 	rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC);
4706 	if (rc)
4707 		return rc;
4708 
4709 	req->tunnel_type = tunnel_type;
4710 	req->tunnel_dst_port_val = port;
4711 
4712 	resp = hwrm_req_hold(bp, req);
4713 	rc = hwrm_req_send(bp, req);
4714 	if (rc) {
4715 		netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
4716 			   rc);
4717 		goto err_out;
4718 	}
4719 
4720 	switch (tunnel_type) {
4721 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
4722 		bp->vxlan_port = port;
4723 		bp->vxlan_fw_dst_port_id =
4724 			le16_to_cpu(resp->tunnel_dst_port_id);
4725 		break;
4726 	case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
4727 		bp->nge_port = port;
4728 		bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id);
4729 		break;
4730 	default:
4731 		break;
4732 	}
4733 
4734 err_out:
4735 	hwrm_req_drop(bp, req);
4736 	return rc;
4737 }
4738 
4739 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
4740 {
4741 	struct hwrm_cfa_l2_set_rx_mask_input *req;
4742 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4743 	int rc;
4744 
4745 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK);
4746 	if (rc)
4747 		return rc;
4748 
4749 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
4750 	req->num_mc_entries = cpu_to_le32(vnic->mc_list_count);
4751 	req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
4752 	req->mask = cpu_to_le32(vnic->rx_mask);
4753 	return hwrm_req_send_silent(bp, req);
4754 }
4755 
4756 #ifdef CONFIG_RFS_ACCEL
4757 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
4758 					    struct bnxt_ntuple_filter *fltr)
4759 {
4760 	struct hwrm_cfa_ntuple_filter_free_input *req;
4761 	int rc;
4762 
4763 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE);
4764 	if (rc)
4765 		return rc;
4766 
4767 	req->ntuple_filter_id = fltr->filter_id;
4768 	return hwrm_req_send(bp, req);
4769 }
4770 
4771 #define BNXT_NTP_FLTR_FLAGS					\
4772 	(CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |	\
4773 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |	\
4774 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |	\
4775 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |	\
4776 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |	\
4777 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |	\
4778 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |	\
4779 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |	\
4780 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |	\
4781 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |		\
4782 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |	\
4783 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |		\
4784 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |	\
4785 	 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
4786 
4787 #define BNXT_NTP_TUNNEL_FLTR_FLAG				\
4788 		CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE
4789 
4790 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
4791 					     struct bnxt_ntuple_filter *fltr)
4792 {
4793 	struct hwrm_cfa_ntuple_filter_alloc_output *resp;
4794 	struct hwrm_cfa_ntuple_filter_alloc_input *req;
4795 	struct flow_keys *keys = &fltr->fkeys;
4796 	struct bnxt_vnic_info *vnic;
4797 	u32 flags = 0;
4798 	int rc;
4799 
4800 	rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC);
4801 	if (rc)
4802 		return rc;
4803 
4804 	req->l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
4805 
4806 	if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) {
4807 		flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX;
4808 		req->dst_id = cpu_to_le16(fltr->rxq);
4809 	} else {
4810 		vnic = &bp->vnic_info[fltr->rxq + 1];
4811 		req->dst_id = cpu_to_le16(vnic->fw_vnic_id);
4812 	}
4813 	req->flags = cpu_to_le32(flags);
4814 	req->enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
4815 
4816 	req->ethertype = htons(ETH_P_IP);
4817 	memcpy(req->src_macaddr, fltr->src_mac_addr, ETH_ALEN);
4818 	req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
4819 	req->ip_protocol = keys->basic.ip_proto;
4820 
4821 	if (keys->basic.n_proto == htons(ETH_P_IPV6)) {
4822 		int i;
4823 
4824 		req->ethertype = htons(ETH_P_IPV6);
4825 		req->ip_addr_type =
4826 			CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6;
4827 		*(struct in6_addr *)&req->src_ipaddr[0] =
4828 			keys->addrs.v6addrs.src;
4829 		*(struct in6_addr *)&req->dst_ipaddr[0] =
4830 			keys->addrs.v6addrs.dst;
4831 		for (i = 0; i < 4; i++) {
4832 			req->src_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4833 			req->dst_ipaddr_mask[i] = cpu_to_be32(0xffffffff);
4834 		}
4835 	} else {
4836 		req->src_ipaddr[0] = keys->addrs.v4addrs.src;
4837 		req->src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4838 		req->dst_ipaddr[0] = keys->addrs.v4addrs.dst;
4839 		req->dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
4840 	}
4841 	if (keys->control.flags & FLOW_DIS_ENCAPSULATION) {
4842 		req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG);
4843 		req->tunnel_type =
4844 			CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL;
4845 	}
4846 
4847 	req->src_port = keys->ports.src;
4848 	req->src_port_mask = cpu_to_be16(0xffff);
4849 	req->dst_port = keys->ports.dst;
4850 	req->dst_port_mask = cpu_to_be16(0xffff);
4851 
4852 	resp = hwrm_req_hold(bp, req);
4853 	rc = hwrm_req_send(bp, req);
4854 	if (!rc)
4855 		fltr->filter_id = resp->ntuple_filter_id;
4856 	hwrm_req_drop(bp, req);
4857 	return rc;
4858 }
4859 #endif
4860 
4861 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
4862 				     const u8 *mac_addr)
4863 {
4864 	struct hwrm_cfa_l2_filter_alloc_output *resp;
4865 	struct hwrm_cfa_l2_filter_alloc_input *req;
4866 	int rc;
4867 
4868 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC);
4869 	if (rc)
4870 		return rc;
4871 
4872 	req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
4873 	if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
4874 		req->flags |=
4875 			cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
4876 	req->dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
4877 	req->enables =
4878 		cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
4879 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
4880 			    CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
4881 	memcpy(req->l2_addr, mac_addr, ETH_ALEN);
4882 	req->l2_addr_mask[0] = 0xff;
4883 	req->l2_addr_mask[1] = 0xff;
4884 	req->l2_addr_mask[2] = 0xff;
4885 	req->l2_addr_mask[3] = 0xff;
4886 	req->l2_addr_mask[4] = 0xff;
4887 	req->l2_addr_mask[5] = 0xff;
4888 
4889 	resp = hwrm_req_hold(bp, req);
4890 	rc = hwrm_req_send(bp, req);
4891 	if (!rc)
4892 		bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
4893 							resp->l2_filter_id;
4894 	hwrm_req_drop(bp, req);
4895 	return rc;
4896 }
4897 
4898 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
4899 {
4900 	struct hwrm_cfa_l2_filter_free_input *req;
4901 	u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
4902 	int rc;
4903 
4904 	/* Any associated ntuple filters will also be cleared by firmware. */
4905 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
4906 	if (rc)
4907 		return rc;
4908 	hwrm_req_hold(bp, req);
4909 	for (i = 0; i < num_of_vnics; i++) {
4910 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
4911 
4912 		for (j = 0; j < vnic->uc_filter_count; j++) {
4913 			req->l2_filter_id = vnic->fw_l2_filter_id[j];
4914 
4915 			rc = hwrm_req_send(bp, req);
4916 		}
4917 		vnic->uc_filter_count = 0;
4918 	}
4919 	hwrm_req_drop(bp, req);
4920 	return rc;
4921 }
4922 
4923 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
4924 {
4925 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
4926 	u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX;
4927 	struct hwrm_vnic_tpa_cfg_input *req;
4928 	int rc;
4929 
4930 	if (vnic->fw_vnic_id == INVALID_HW_RING_ID)
4931 		return 0;
4932 
4933 	rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG);
4934 	if (rc)
4935 		return rc;
4936 
4937 	if (tpa_flags) {
4938 		u16 mss = bp->dev->mtu - 40;
4939 		u32 nsegs, n, segs = 0, flags;
4940 
4941 		flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
4942 			VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
4943 			VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
4944 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
4945 			VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
4946 		if (tpa_flags & BNXT_FLAG_GRO)
4947 			flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
4948 
4949 		req->flags = cpu_to_le32(flags);
4950 
4951 		req->enables =
4952 			cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
4953 				    VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
4954 				    VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
4955 
4956 		/* Number of segs are log2 units, and first packet is not
4957 		 * included as part of this units.
4958 		 */
4959 		if (mss <= BNXT_RX_PAGE_SIZE) {
4960 			n = BNXT_RX_PAGE_SIZE / mss;
4961 			nsegs = (MAX_SKB_FRAGS - 1) * n;
4962 		} else {
4963 			n = mss / BNXT_RX_PAGE_SIZE;
4964 			if (mss & (BNXT_RX_PAGE_SIZE - 1))
4965 				n++;
4966 			nsegs = (MAX_SKB_FRAGS - n) / n;
4967 		}
4968 
4969 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
4970 			segs = MAX_TPA_SEGS_P5;
4971 			max_aggs = bp->max_tpa;
4972 		} else {
4973 			segs = ilog2(nsegs);
4974 		}
4975 		req->max_agg_segs = cpu_to_le16(segs);
4976 		req->max_aggs = cpu_to_le16(max_aggs);
4977 
4978 		req->min_agg_len = cpu_to_le32(512);
4979 	}
4980 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
4981 
4982 	return hwrm_req_send(bp, req);
4983 }
4984 
4985 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring)
4986 {
4987 	struct bnxt_ring_grp_info *grp_info;
4988 
4989 	grp_info = &bp->grp_info[ring->grp_idx];
4990 	return grp_info->cp_fw_ring_id;
4991 }
4992 
4993 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
4994 {
4995 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
4996 		struct bnxt_napi *bnapi = rxr->bnapi;
4997 		struct bnxt_cp_ring_info *cpr;
4998 
4999 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_RX_HDL];
5000 		return cpr->cp_ring_struct.fw_ring_id;
5001 	} else {
5002 		return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct);
5003 	}
5004 }
5005 
5006 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
5007 {
5008 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5009 		struct bnxt_napi *bnapi = txr->bnapi;
5010 		struct bnxt_cp_ring_info *cpr;
5011 
5012 		cpr = bnapi->cp_ring.cp_ring_arr[BNXT_TX_HDL];
5013 		return cpr->cp_ring_struct.fw_ring_id;
5014 	} else {
5015 		return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct);
5016 	}
5017 }
5018 
5019 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp)
5020 {
5021 	int entries;
5022 
5023 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5024 		entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5;
5025 	else
5026 		entries = HW_HASH_INDEX_SIZE;
5027 
5028 	bp->rss_indir_tbl_entries = entries;
5029 	bp->rss_indir_tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl),
5030 					  GFP_KERNEL);
5031 	if (!bp->rss_indir_tbl)
5032 		return -ENOMEM;
5033 	return 0;
5034 }
5035 
5036 static void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp)
5037 {
5038 	u16 max_rings, max_entries, pad, i;
5039 
5040 	if (!bp->rx_nr_rings)
5041 		return;
5042 
5043 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5044 		max_rings = bp->rx_nr_rings - 1;
5045 	else
5046 		max_rings = bp->rx_nr_rings;
5047 
5048 	max_entries = bnxt_get_rxfh_indir_size(bp->dev);
5049 
5050 	for (i = 0; i < max_entries; i++)
5051 		bp->rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings);
5052 
5053 	pad = bp->rss_indir_tbl_entries - max_entries;
5054 	if (pad)
5055 		memset(&bp->rss_indir_tbl[i], 0, pad * sizeof(u16));
5056 }
5057 
5058 static u16 bnxt_get_max_rss_ring(struct bnxt *bp)
5059 {
5060 	u16 i, tbl_size, max_ring = 0;
5061 
5062 	if (!bp->rss_indir_tbl)
5063 		return 0;
5064 
5065 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5066 	for (i = 0; i < tbl_size; i++)
5067 		max_ring = max(max_ring, bp->rss_indir_tbl[i]);
5068 	return max_ring;
5069 }
5070 
5071 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings)
5072 {
5073 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5074 		return DIV_ROUND_UP(rx_rings, BNXT_RSS_TABLE_ENTRIES_P5);
5075 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5076 		return 2;
5077 	return 1;
5078 }
5079 
5080 static void __bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5081 {
5082 	bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG);
5083 	u16 i, j;
5084 
5085 	/* Fill the RSS indirection table with ring group ids */
5086 	for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) {
5087 		if (!no_rss)
5088 			j = bp->rss_indir_tbl[i];
5089 		vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
5090 	}
5091 }
5092 
5093 static void __bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp,
5094 				      struct bnxt_vnic_info *vnic)
5095 {
5096 	__le16 *ring_tbl = vnic->rss_table;
5097 	struct bnxt_rx_ring_info *rxr;
5098 	u16 tbl_size, i;
5099 
5100 	tbl_size = bnxt_get_rxfh_indir_size(bp->dev);
5101 
5102 	for (i = 0; i < tbl_size; i++) {
5103 		u16 ring_id, j;
5104 
5105 		j = bp->rss_indir_tbl[i];
5106 		rxr = &bp->rx_ring[j];
5107 
5108 		ring_id = rxr->rx_ring_struct.fw_ring_id;
5109 		*ring_tbl++ = cpu_to_le16(ring_id);
5110 		ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5111 		*ring_tbl++ = cpu_to_le16(ring_id);
5112 	}
5113 }
5114 
5115 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic)
5116 {
5117 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5118 		__bnxt_fill_hw_rss_tbl_p5(bp, vnic);
5119 	else
5120 		__bnxt_fill_hw_rss_tbl(bp, vnic);
5121 }
5122 
5123 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
5124 {
5125 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5126 	struct hwrm_vnic_rss_cfg_input *req;
5127 	int rc;
5128 
5129 	if ((bp->flags & BNXT_FLAG_CHIP_P5) ||
5130 	    vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
5131 		return 0;
5132 
5133 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5134 	if (rc)
5135 		return rc;
5136 
5137 	if (set_rss) {
5138 		bnxt_fill_hw_rss_tbl(bp, vnic);
5139 		req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5140 		req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5141 		req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
5142 		req->hash_key_tbl_addr =
5143 			cpu_to_le64(vnic->rss_hash_key_dma_addr);
5144 	}
5145 	req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5146 	return hwrm_req_send(bp, req);
5147 }
5148 
5149 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, u16 vnic_id, bool set_rss)
5150 {
5151 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5152 	struct hwrm_vnic_rss_cfg_input *req;
5153 	dma_addr_t ring_tbl_map;
5154 	u32 i, nr_ctxs;
5155 	int rc;
5156 
5157 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG);
5158 	if (rc)
5159 		return rc;
5160 
5161 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5162 	if (!set_rss)
5163 		return hwrm_req_send(bp, req);
5164 
5165 	bnxt_fill_hw_rss_tbl(bp, vnic);
5166 	req->hash_type = cpu_to_le32(bp->rss_hash_cfg);
5167 	req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT;
5168 	req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr);
5169 	ring_tbl_map = vnic->rss_table_dma_addr;
5170 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
5171 
5172 	hwrm_req_hold(bp, req);
5173 	for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) {
5174 		req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map);
5175 		req->ring_table_pair_index = i;
5176 		req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]);
5177 		rc = hwrm_req_send(bp, req);
5178 		if (rc)
5179 			goto exit;
5180 	}
5181 
5182 exit:
5183 	hwrm_req_drop(bp, req);
5184 	return rc;
5185 }
5186 
5187 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
5188 {
5189 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5190 	struct hwrm_vnic_plcmodes_cfg_input *req;
5191 	int rc;
5192 
5193 	rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG);
5194 	if (rc)
5195 		return rc;
5196 
5197 	req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
5198 				 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
5199 				 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
5200 	req->enables =
5201 		cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
5202 			    VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
5203 	/* thresholds not implemented in firmware yet */
5204 	req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
5205 	req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
5206 	req->vnic_id = cpu_to_le32(vnic->fw_vnic_id);
5207 	return hwrm_req_send(bp, req);
5208 }
5209 
5210 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
5211 					u16 ctx_idx)
5212 {
5213 	struct hwrm_vnic_rss_cos_lb_ctx_free_input *req;
5214 
5215 	if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE))
5216 		return;
5217 
5218 	req->rss_cos_lb_ctx_id =
5219 		cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
5220 
5221 	hwrm_req_send(bp, req);
5222 	bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
5223 }
5224 
5225 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
5226 {
5227 	int i, j;
5228 
5229 	for (i = 0; i < bp->nr_vnics; i++) {
5230 		struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
5231 
5232 		for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
5233 			if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
5234 				bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
5235 		}
5236 	}
5237 	bp->rsscos_nr_ctxs = 0;
5238 }
5239 
5240 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
5241 {
5242 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp;
5243 	struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req;
5244 	int rc;
5245 
5246 	rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC);
5247 	if (rc)
5248 		return rc;
5249 
5250 	resp = hwrm_req_hold(bp, req);
5251 	rc = hwrm_req_send(bp, req);
5252 	if (!rc)
5253 		bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
5254 			le16_to_cpu(resp->rss_cos_lb_ctx_id);
5255 	hwrm_req_drop(bp, req);
5256 
5257 	return rc;
5258 }
5259 
5260 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp)
5261 {
5262 	if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP)
5263 		return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE;
5264 	return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE;
5265 }
5266 
5267 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
5268 {
5269 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5270 	struct hwrm_vnic_cfg_input *req;
5271 	unsigned int ring = 0, grp_idx;
5272 	u16 def_vlan = 0;
5273 	int rc;
5274 
5275 	rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG);
5276 	if (rc)
5277 		return rc;
5278 
5279 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5280 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0];
5281 
5282 		req->default_rx_ring_id =
5283 			cpu_to_le16(rxr->rx_ring_struct.fw_ring_id);
5284 		req->default_cmpl_ring_id =
5285 			cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr));
5286 		req->enables =
5287 			cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID |
5288 				    VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID);
5289 		goto vnic_mru;
5290 	}
5291 	req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
5292 	/* Only RSS support for now TBD: COS & LB */
5293 	if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
5294 		req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
5295 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5296 					   VNIC_CFG_REQ_ENABLES_MRU);
5297 	} else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) {
5298 		req->rss_rule =
5299 			cpu_to_le16(bp->vnic_info[0].fw_rss_cos_lb_ctx[0]);
5300 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
5301 					   VNIC_CFG_REQ_ENABLES_MRU);
5302 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE);
5303 	} else {
5304 		req->rss_rule = cpu_to_le16(0xffff);
5305 	}
5306 
5307 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
5308 	    (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
5309 		req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
5310 		req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
5311 	} else {
5312 		req->cos_rule = cpu_to_le16(0xffff);
5313 	}
5314 
5315 	if (vnic->flags & BNXT_VNIC_RSS_FLAG)
5316 		ring = 0;
5317 	else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
5318 		ring = vnic_id - 1;
5319 	else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
5320 		ring = bp->rx_nr_rings - 1;
5321 
5322 	grp_idx = bp->rx_ring[ring].bnapi->index;
5323 	req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
5324 	req->lb_rule = cpu_to_le16(0xffff);
5325 vnic_mru:
5326 	req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN);
5327 
5328 	req->vnic_id = cpu_to_le16(vnic->fw_vnic_id);
5329 #ifdef CONFIG_BNXT_SRIOV
5330 	if (BNXT_VF(bp))
5331 		def_vlan = bp->vf.vlan;
5332 #endif
5333 	if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
5334 		req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
5335 	if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
5336 		req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp));
5337 
5338 	return hwrm_req_send(bp, req);
5339 }
5340 
5341 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
5342 {
5343 	if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
5344 		struct hwrm_vnic_free_input *req;
5345 
5346 		if (hwrm_req_init(bp, req, HWRM_VNIC_FREE))
5347 			return;
5348 
5349 		req->vnic_id =
5350 			cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
5351 
5352 		hwrm_req_send(bp, req);
5353 		bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
5354 	}
5355 }
5356 
5357 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
5358 {
5359 	u16 i;
5360 
5361 	for (i = 0; i < bp->nr_vnics; i++)
5362 		bnxt_hwrm_vnic_free_one(bp, i);
5363 }
5364 
5365 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
5366 				unsigned int start_rx_ring_idx,
5367 				unsigned int nr_rings)
5368 {
5369 	unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
5370 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
5371 	struct hwrm_vnic_alloc_output *resp;
5372 	struct hwrm_vnic_alloc_input *req;
5373 	int rc;
5374 
5375 	rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC);
5376 	if (rc)
5377 		return rc;
5378 
5379 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5380 		goto vnic_no_ring_grps;
5381 
5382 	/* map ring groups to this vnic */
5383 	for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
5384 		grp_idx = bp->rx_ring[i].bnapi->index;
5385 		if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
5386 			netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
5387 				   j, nr_rings);
5388 			break;
5389 		}
5390 		vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id;
5391 	}
5392 
5393 vnic_no_ring_grps:
5394 	for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++)
5395 		vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID;
5396 	if (vnic_id == 0)
5397 		req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
5398 
5399 	resp = hwrm_req_hold(bp, req);
5400 	rc = hwrm_req_send(bp, req);
5401 	if (!rc)
5402 		vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id);
5403 	hwrm_req_drop(bp, req);
5404 	return rc;
5405 }
5406 
5407 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp)
5408 {
5409 	struct hwrm_vnic_qcaps_output *resp;
5410 	struct hwrm_vnic_qcaps_input *req;
5411 	int rc;
5412 
5413 	bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats);
5414 	bp->flags &= ~(BNXT_FLAG_NEW_RSS_CAP | BNXT_FLAG_ROCE_MIRROR_CAP);
5415 	if (bp->hwrm_spec_code < 0x10600)
5416 		return 0;
5417 
5418 	rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS);
5419 	if (rc)
5420 		return rc;
5421 
5422 	resp = hwrm_req_hold(bp, req);
5423 	rc = hwrm_req_send(bp, req);
5424 	if (!rc) {
5425 		u32 flags = le32_to_cpu(resp->flags);
5426 
5427 		if (!(bp->flags & BNXT_FLAG_CHIP_P5) &&
5428 		    (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP))
5429 			bp->flags |= BNXT_FLAG_NEW_RSS_CAP;
5430 		if (flags &
5431 		    VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP)
5432 			bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP;
5433 
5434 		/* Older P5 fw before EXT_HW_STATS support did not set
5435 		 * VLAN_STRIP_CAP properly.
5436 		 */
5437 		if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) ||
5438 		    (BNXT_CHIP_P5_THOR(bp) &&
5439 		     !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)))
5440 			bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP;
5441 		bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported);
5442 		if (bp->max_tpa_v2) {
5443 			if (BNXT_CHIP_P5_THOR(bp))
5444 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5;
5445 			else
5446 				bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5_SR2;
5447 		}
5448 	}
5449 	hwrm_req_drop(bp, req);
5450 	return rc;
5451 }
5452 
5453 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
5454 {
5455 	struct hwrm_ring_grp_alloc_output *resp;
5456 	struct hwrm_ring_grp_alloc_input *req;
5457 	int rc;
5458 	u16 i;
5459 
5460 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5461 		return 0;
5462 
5463 	rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC);
5464 	if (rc)
5465 		return rc;
5466 
5467 	resp = hwrm_req_hold(bp, req);
5468 	for (i = 0; i < bp->rx_nr_rings; i++) {
5469 		unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
5470 
5471 		req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
5472 		req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
5473 		req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
5474 		req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
5475 
5476 		rc = hwrm_req_send(bp, req);
5477 
5478 		if (rc)
5479 			break;
5480 
5481 		bp->grp_info[grp_idx].fw_grp_id =
5482 			le32_to_cpu(resp->ring_group_id);
5483 	}
5484 	hwrm_req_drop(bp, req);
5485 	return rc;
5486 }
5487 
5488 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp)
5489 {
5490 	struct hwrm_ring_grp_free_input *req;
5491 	u16 i;
5492 
5493 	if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5))
5494 		return;
5495 
5496 	if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE))
5497 		return;
5498 
5499 	hwrm_req_hold(bp, req);
5500 	for (i = 0; i < bp->cp_nr_rings; i++) {
5501 		if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
5502 			continue;
5503 		req->ring_group_id =
5504 			cpu_to_le32(bp->grp_info[i].fw_grp_id);
5505 
5506 		hwrm_req_send(bp, req);
5507 		bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
5508 	}
5509 	hwrm_req_drop(bp, req);
5510 }
5511 
5512 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
5513 				    struct bnxt_ring_struct *ring,
5514 				    u32 ring_type, u32 map_index)
5515 {
5516 	struct hwrm_ring_alloc_output *resp;
5517 	struct hwrm_ring_alloc_input *req;
5518 	struct bnxt_ring_mem_info *rmem = &ring->ring_mem;
5519 	struct bnxt_ring_grp_info *grp_info;
5520 	int rc, err = 0;
5521 	u16 ring_id;
5522 
5523 	rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC);
5524 	if (rc)
5525 		goto exit;
5526 
5527 	req->enables = 0;
5528 	if (rmem->nr_pages > 1) {
5529 		req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map);
5530 		/* Page size is in log2 units */
5531 		req->page_size = BNXT_PAGE_SHIFT;
5532 		req->page_tbl_depth = 1;
5533 	} else {
5534 		req->page_tbl_addr =  cpu_to_le64(rmem->dma_arr[0]);
5535 	}
5536 	req->fbo = 0;
5537 	/* Association of ring index with doorbell index and MSIX number */
5538 	req->logical_id = cpu_to_le16(map_index);
5539 
5540 	switch (ring_type) {
5541 	case HWRM_RING_ALLOC_TX: {
5542 		struct bnxt_tx_ring_info *txr;
5543 
5544 		txr = container_of(ring, struct bnxt_tx_ring_info,
5545 				   tx_ring_struct);
5546 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
5547 		/* Association of transmit ring with completion ring */
5548 		grp_info = &bp->grp_info[ring->grp_idx];
5549 		req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr));
5550 		req->length = cpu_to_le32(bp->tx_ring_mask + 1);
5551 		req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5552 		req->queue_id = cpu_to_le16(ring->queue_id);
5553 		break;
5554 	}
5555 	case HWRM_RING_ALLOC_RX:
5556 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5557 		req->length = cpu_to_le32(bp->rx_ring_mask + 1);
5558 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5559 			u16 flags = 0;
5560 
5561 			/* Association of rx ring with stats context */
5562 			grp_info = &bp->grp_info[ring->grp_idx];
5563 			req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size);
5564 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5565 			req->enables |= cpu_to_le32(
5566 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5567 			if (NET_IP_ALIGN == 2)
5568 				flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD;
5569 			req->flags = cpu_to_le16(flags);
5570 		}
5571 		break;
5572 	case HWRM_RING_ALLOC_AGG:
5573 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5574 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG;
5575 			/* Association of agg ring with rx ring */
5576 			grp_info = &bp->grp_info[ring->grp_idx];
5577 			req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id);
5578 			req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE);
5579 			req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx);
5580 			req->enables |= cpu_to_le32(
5581 				RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID |
5582 				RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID);
5583 		} else {
5584 			req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
5585 		}
5586 		req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
5587 		break;
5588 	case HWRM_RING_ALLOC_CMPL:
5589 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL;
5590 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5591 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5592 			/* Association of cp ring with nq */
5593 			grp_info = &bp->grp_info[map_index];
5594 			req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id);
5595 			req->cq_handle = cpu_to_le64(ring->handle);
5596 			req->enables |= cpu_to_le32(
5597 				RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID);
5598 		} else if (bp->flags & BNXT_FLAG_USING_MSIX) {
5599 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5600 		}
5601 		break;
5602 	case HWRM_RING_ALLOC_NQ:
5603 		req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ;
5604 		req->length = cpu_to_le32(bp->cp_ring_mask + 1);
5605 		if (bp->flags & BNXT_FLAG_USING_MSIX)
5606 			req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
5607 		break;
5608 	default:
5609 		netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
5610 			   ring_type);
5611 		return -1;
5612 	}
5613 
5614 	resp = hwrm_req_hold(bp, req);
5615 	rc = hwrm_req_send(bp, req);
5616 	err = le16_to_cpu(resp->error_code);
5617 	ring_id = le16_to_cpu(resp->ring_id);
5618 	hwrm_req_drop(bp, req);
5619 
5620 exit:
5621 	if (rc || err) {
5622 		netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n",
5623 			   ring_type, rc, err);
5624 		return -EIO;
5625 	}
5626 	ring->fw_ring_id = ring_id;
5627 	return rc;
5628 }
5629 
5630 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx)
5631 {
5632 	int rc;
5633 
5634 	if (BNXT_PF(bp)) {
5635 		struct hwrm_func_cfg_input *req;
5636 
5637 		rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
5638 		if (rc)
5639 			return rc;
5640 
5641 		req->fid = cpu_to_le16(0xffff);
5642 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5643 		req->async_event_cr = cpu_to_le16(idx);
5644 		return hwrm_req_send(bp, req);
5645 	} else {
5646 		struct hwrm_func_vf_cfg_input *req;
5647 
5648 		rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
5649 		if (rc)
5650 			return rc;
5651 
5652 		req->enables =
5653 			cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR);
5654 		req->async_event_cr = cpu_to_le16(idx);
5655 		return hwrm_req_send(bp, req);
5656 	}
5657 }
5658 
5659 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type,
5660 			u32 map_idx, u32 xid)
5661 {
5662 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
5663 		if (BNXT_PF(bp))
5664 			db->doorbell = bp->bar1 + DB_PF_OFFSET_P5;
5665 		else
5666 			db->doorbell = bp->bar1 + DB_VF_OFFSET_P5;
5667 		switch (ring_type) {
5668 		case HWRM_RING_ALLOC_TX:
5669 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ;
5670 			break;
5671 		case HWRM_RING_ALLOC_RX:
5672 		case HWRM_RING_ALLOC_AGG:
5673 			db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ;
5674 			break;
5675 		case HWRM_RING_ALLOC_CMPL:
5676 			db->db_key64 = DBR_PATH_L2;
5677 			break;
5678 		case HWRM_RING_ALLOC_NQ:
5679 			db->db_key64 = DBR_PATH_L2;
5680 			break;
5681 		}
5682 		db->db_key64 |= (u64)xid << DBR_XID_SFT;
5683 	} else {
5684 		db->doorbell = bp->bar1 + map_idx * 0x80;
5685 		switch (ring_type) {
5686 		case HWRM_RING_ALLOC_TX:
5687 			db->db_key32 = DB_KEY_TX;
5688 			break;
5689 		case HWRM_RING_ALLOC_RX:
5690 		case HWRM_RING_ALLOC_AGG:
5691 			db->db_key32 = DB_KEY_RX;
5692 			break;
5693 		case HWRM_RING_ALLOC_CMPL:
5694 			db->db_key32 = DB_KEY_CP;
5695 			break;
5696 		}
5697 	}
5698 }
5699 
5700 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
5701 {
5702 	bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS);
5703 	int i, rc = 0;
5704 	u32 type;
5705 
5706 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5707 		type = HWRM_RING_ALLOC_NQ;
5708 	else
5709 		type = HWRM_RING_ALLOC_CMPL;
5710 	for (i = 0; i < bp->cp_nr_rings; i++) {
5711 		struct bnxt_napi *bnapi = bp->bnapi[i];
5712 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5713 		struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
5714 		u32 map_idx = ring->map_idx;
5715 		unsigned int vector;
5716 
5717 		vector = bp->irq_tbl[map_idx].vector;
5718 		disable_irq_nosync(vector);
5719 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5720 		if (rc) {
5721 			enable_irq(vector);
5722 			goto err_out;
5723 		}
5724 		bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id);
5725 		bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons);
5726 		enable_irq(vector);
5727 		bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
5728 
5729 		if (!i) {
5730 			rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id);
5731 			if (rc)
5732 				netdev_warn(bp->dev, "Failed to set async event completion ring.\n");
5733 		}
5734 	}
5735 
5736 	type = HWRM_RING_ALLOC_TX;
5737 	for (i = 0; i < bp->tx_nr_rings; i++) {
5738 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5739 		struct bnxt_ring_struct *ring;
5740 		u32 map_idx;
5741 
5742 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5743 			struct bnxt_napi *bnapi = txr->bnapi;
5744 			struct bnxt_cp_ring_info *cpr, *cpr2;
5745 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5746 
5747 			cpr = &bnapi->cp_ring;
5748 			cpr2 = cpr->cp_ring_arr[BNXT_TX_HDL];
5749 			ring = &cpr2->cp_ring_struct;
5750 			ring->handle = BNXT_TX_HDL;
5751 			map_idx = bnapi->index;
5752 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5753 			if (rc)
5754 				goto err_out;
5755 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5756 				    ring->fw_ring_id);
5757 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5758 		}
5759 		ring = &txr->tx_ring_struct;
5760 		map_idx = i;
5761 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5762 		if (rc)
5763 			goto err_out;
5764 		bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id);
5765 	}
5766 
5767 	type = HWRM_RING_ALLOC_RX;
5768 	for (i = 0; i < bp->rx_nr_rings; i++) {
5769 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5770 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5771 		struct bnxt_napi *bnapi = rxr->bnapi;
5772 		u32 map_idx = bnapi->index;
5773 
5774 		rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5775 		if (rc)
5776 			goto err_out;
5777 		bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id);
5778 		/* If we have agg rings, post agg buffers first. */
5779 		if (!agg_rings)
5780 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5781 		bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
5782 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5783 			struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5784 			u32 type2 = HWRM_RING_ALLOC_CMPL;
5785 			struct bnxt_cp_ring_info *cpr2;
5786 
5787 			cpr2 = cpr->cp_ring_arr[BNXT_RX_HDL];
5788 			ring = &cpr2->cp_ring_struct;
5789 			ring->handle = BNXT_RX_HDL;
5790 			rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx);
5791 			if (rc)
5792 				goto err_out;
5793 			bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx,
5794 				    ring->fw_ring_id);
5795 			bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons);
5796 		}
5797 	}
5798 
5799 	if (agg_rings) {
5800 		type = HWRM_RING_ALLOC_AGG;
5801 		for (i = 0; i < bp->rx_nr_rings; i++) {
5802 			struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5803 			struct bnxt_ring_struct *ring =
5804 						&rxr->rx_agg_ring_struct;
5805 			u32 grp_idx = ring->grp_idx;
5806 			u32 map_idx = grp_idx + bp->rx_nr_rings;
5807 
5808 			rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx);
5809 			if (rc)
5810 				goto err_out;
5811 
5812 			bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx,
5813 				    ring->fw_ring_id);
5814 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
5815 			bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
5816 			bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
5817 		}
5818 	}
5819 err_out:
5820 	return rc;
5821 }
5822 
5823 static int hwrm_ring_free_send_msg(struct bnxt *bp,
5824 				   struct bnxt_ring_struct *ring,
5825 				   u32 ring_type, int cmpl_ring_id)
5826 {
5827 	struct hwrm_ring_free_output *resp;
5828 	struct hwrm_ring_free_input *req;
5829 	u16 error_code = 0;
5830 	int rc;
5831 
5832 	if (BNXT_NO_FW_ACCESS(bp))
5833 		return 0;
5834 
5835 	rc = hwrm_req_init(bp, req, HWRM_RING_FREE);
5836 	if (rc)
5837 		goto exit;
5838 
5839 	req->cmpl_ring = cpu_to_le16(cmpl_ring_id);
5840 	req->ring_type = ring_type;
5841 	req->ring_id = cpu_to_le16(ring->fw_ring_id);
5842 
5843 	resp = hwrm_req_hold(bp, req);
5844 	rc = hwrm_req_send(bp, req);
5845 	error_code = le16_to_cpu(resp->error_code);
5846 	hwrm_req_drop(bp, req);
5847 exit:
5848 	if (rc || error_code) {
5849 		netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n",
5850 			   ring_type, rc, error_code);
5851 		return -EIO;
5852 	}
5853 	return 0;
5854 }
5855 
5856 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
5857 {
5858 	u32 type;
5859 	int i;
5860 
5861 	if (!bp->bnapi)
5862 		return;
5863 
5864 	for (i = 0; i < bp->tx_nr_rings; i++) {
5865 		struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
5866 		struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
5867 
5868 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5869 			u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr);
5870 
5871 			hwrm_ring_free_send_msg(bp, ring,
5872 						RING_FREE_REQ_RING_TYPE_TX,
5873 						close_path ? cmpl_ring_id :
5874 						INVALID_HW_RING_ID);
5875 			ring->fw_ring_id = INVALID_HW_RING_ID;
5876 		}
5877 	}
5878 
5879 	for (i = 0; i < bp->rx_nr_rings; i++) {
5880 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5881 		struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
5882 		u32 grp_idx = rxr->bnapi->index;
5883 
5884 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5885 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5886 
5887 			hwrm_ring_free_send_msg(bp, ring,
5888 						RING_FREE_REQ_RING_TYPE_RX,
5889 						close_path ? cmpl_ring_id :
5890 						INVALID_HW_RING_ID);
5891 			ring->fw_ring_id = INVALID_HW_RING_ID;
5892 			bp->grp_info[grp_idx].rx_fw_ring_id =
5893 				INVALID_HW_RING_ID;
5894 		}
5895 	}
5896 
5897 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5898 		type = RING_FREE_REQ_RING_TYPE_RX_AGG;
5899 	else
5900 		type = RING_FREE_REQ_RING_TYPE_RX;
5901 	for (i = 0; i < bp->rx_nr_rings; i++) {
5902 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
5903 		struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
5904 		u32 grp_idx = rxr->bnapi->index;
5905 
5906 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5907 			u32 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr);
5908 
5909 			hwrm_ring_free_send_msg(bp, ring, type,
5910 						close_path ? cmpl_ring_id :
5911 						INVALID_HW_RING_ID);
5912 			ring->fw_ring_id = INVALID_HW_RING_ID;
5913 			bp->grp_info[grp_idx].agg_fw_ring_id =
5914 				INVALID_HW_RING_ID;
5915 		}
5916 	}
5917 
5918 	/* The completion rings are about to be freed.  After that the
5919 	 * IRQ doorbell will not work anymore.  So we need to disable
5920 	 * IRQ here.
5921 	 */
5922 	bnxt_disable_int_sync(bp);
5923 
5924 	if (bp->flags & BNXT_FLAG_CHIP_P5)
5925 		type = RING_FREE_REQ_RING_TYPE_NQ;
5926 	else
5927 		type = RING_FREE_REQ_RING_TYPE_L2_CMPL;
5928 	for (i = 0; i < bp->cp_nr_rings; i++) {
5929 		struct bnxt_napi *bnapi = bp->bnapi[i];
5930 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5931 		struct bnxt_ring_struct *ring;
5932 		int j;
5933 
5934 		for (j = 0; j < 2; j++) {
5935 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
5936 
5937 			if (cpr2) {
5938 				ring = &cpr2->cp_ring_struct;
5939 				if (ring->fw_ring_id == INVALID_HW_RING_ID)
5940 					continue;
5941 				hwrm_ring_free_send_msg(bp, ring,
5942 					RING_FREE_REQ_RING_TYPE_L2_CMPL,
5943 					INVALID_HW_RING_ID);
5944 				ring->fw_ring_id = INVALID_HW_RING_ID;
5945 			}
5946 		}
5947 		ring = &cpr->cp_ring_struct;
5948 		if (ring->fw_ring_id != INVALID_HW_RING_ID) {
5949 			hwrm_ring_free_send_msg(bp, ring, type,
5950 						INVALID_HW_RING_ID);
5951 			ring->fw_ring_id = INVALID_HW_RING_ID;
5952 			bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
5953 		}
5954 	}
5955 }
5956 
5957 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
5958 			   bool shared);
5959 
5960 static int bnxt_hwrm_get_rings(struct bnxt *bp)
5961 {
5962 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
5963 	struct hwrm_func_qcfg_output *resp;
5964 	struct hwrm_func_qcfg_input *req;
5965 	int rc;
5966 
5967 	if (bp->hwrm_spec_code < 0x10601)
5968 		return 0;
5969 
5970 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
5971 	if (rc)
5972 		return rc;
5973 
5974 	req->fid = cpu_to_le16(0xffff);
5975 	resp = hwrm_req_hold(bp, req);
5976 	rc = hwrm_req_send(bp, req);
5977 	if (rc) {
5978 		hwrm_req_drop(bp, req);
5979 		return rc;
5980 	}
5981 
5982 	hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings);
5983 	if (BNXT_NEW_RM(bp)) {
5984 		u16 cp, stats;
5985 
5986 		hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings);
5987 		hw_resc->resv_hw_ring_grps =
5988 			le32_to_cpu(resp->alloc_hw_ring_grps);
5989 		hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics);
5990 		cp = le16_to_cpu(resp->alloc_cmpl_rings);
5991 		stats = le16_to_cpu(resp->alloc_stat_ctx);
5992 		hw_resc->resv_irqs = cp;
5993 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
5994 			int rx = hw_resc->resv_rx_rings;
5995 			int tx = hw_resc->resv_tx_rings;
5996 
5997 			if (bp->flags & BNXT_FLAG_AGG_RINGS)
5998 				rx >>= 1;
5999 			if (cp < (rx + tx)) {
6000 				bnxt_trim_rings(bp, &rx, &tx, cp, false);
6001 				if (bp->flags & BNXT_FLAG_AGG_RINGS)
6002 					rx <<= 1;
6003 				hw_resc->resv_rx_rings = rx;
6004 				hw_resc->resv_tx_rings = tx;
6005 			}
6006 			hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix);
6007 			hw_resc->resv_hw_ring_grps = rx;
6008 		}
6009 		hw_resc->resv_cp_rings = cp;
6010 		hw_resc->resv_stat_ctxs = stats;
6011 	}
6012 	hwrm_req_drop(bp, req);
6013 	return 0;
6014 }
6015 
6016 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings)
6017 {
6018 	struct hwrm_func_qcfg_output *resp;
6019 	struct hwrm_func_qcfg_input *req;
6020 	int rc;
6021 
6022 	if (bp->hwrm_spec_code < 0x10601)
6023 		return 0;
6024 
6025 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6026 	if (rc)
6027 		return rc;
6028 
6029 	req->fid = cpu_to_le16(fid);
6030 	resp = hwrm_req_hold(bp, req);
6031 	rc = hwrm_req_send(bp, req);
6032 	if (!rc)
6033 		*tx_rings = le16_to_cpu(resp->alloc_tx_rings);
6034 
6035 	hwrm_req_drop(bp, req);
6036 	return rc;
6037 }
6038 
6039 static bool bnxt_rfs_supported(struct bnxt *bp);
6040 
6041 static struct hwrm_func_cfg_input *
6042 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6043 			     int ring_grps, int cp_rings, int stats, int vnics)
6044 {
6045 	struct hwrm_func_cfg_input *req;
6046 	u32 enables = 0;
6047 
6048 	if (hwrm_req_init(bp, req, HWRM_FUNC_CFG))
6049 		return NULL;
6050 
6051 	req->fid = cpu_to_le16(0xffff);
6052 	enables |= tx_rings ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6053 	req->num_tx_rings = cpu_to_le16(tx_rings);
6054 	if (BNXT_NEW_RM(bp)) {
6055 		enables |= rx_rings ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0;
6056 		enables |= stats ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6057 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6058 			enables |= cp_rings ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0;
6059 			enables |= tx_rings + ring_grps ?
6060 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6061 			enables |= rx_rings ?
6062 				FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6063 		} else {
6064 			enables |= cp_rings ?
6065 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6066 			enables |= ring_grps ?
6067 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS |
6068 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6069 		}
6070 		enables |= vnics ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0;
6071 
6072 		req->num_rx_rings = cpu_to_le16(rx_rings);
6073 		if (bp->flags & BNXT_FLAG_CHIP_P5) {
6074 			req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6075 			req->num_msix = cpu_to_le16(cp_rings);
6076 			req->num_rsscos_ctxs =
6077 				cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6078 		} else {
6079 			req->num_cmpl_rings = cpu_to_le16(cp_rings);
6080 			req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6081 			req->num_rsscos_ctxs = cpu_to_le16(1);
6082 			if (!(bp->flags & BNXT_FLAG_NEW_RSS_CAP) &&
6083 			    bnxt_rfs_supported(bp))
6084 				req->num_rsscos_ctxs =
6085 					cpu_to_le16(ring_grps + 1);
6086 		}
6087 		req->num_stat_ctxs = cpu_to_le16(stats);
6088 		req->num_vnics = cpu_to_le16(vnics);
6089 	}
6090 	req->enables = cpu_to_le32(enables);
6091 	return req;
6092 }
6093 
6094 static struct hwrm_func_vf_cfg_input *
6095 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6096 			     int ring_grps, int cp_rings, int stats, int vnics)
6097 {
6098 	struct hwrm_func_vf_cfg_input *req;
6099 	u32 enables = 0;
6100 
6101 	if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG))
6102 		return NULL;
6103 
6104 	enables |= tx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0;
6105 	enables |= rx_rings ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS |
6106 			      FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0;
6107 	enables |= stats ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0;
6108 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6109 		enables |= tx_rings + ring_grps ?
6110 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6111 	} else {
6112 		enables |= cp_rings ?
6113 			   FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0;
6114 		enables |= ring_grps ?
6115 			   FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0;
6116 	}
6117 	enables |= vnics ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0;
6118 	enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS;
6119 
6120 	req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
6121 	req->num_tx_rings = cpu_to_le16(tx_rings);
6122 	req->num_rx_rings = cpu_to_le16(rx_rings);
6123 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6124 		req->num_cmpl_rings = cpu_to_le16(tx_rings + ring_grps);
6125 		req->num_rsscos_ctxs = cpu_to_le16(DIV_ROUND_UP(ring_grps, 64));
6126 	} else {
6127 		req->num_cmpl_rings = cpu_to_le16(cp_rings);
6128 		req->num_hw_ring_grps = cpu_to_le16(ring_grps);
6129 		req->num_rsscos_ctxs = cpu_to_le16(BNXT_VF_MAX_RSS_CTX);
6130 	}
6131 	req->num_stat_ctxs = cpu_to_le16(stats);
6132 	req->num_vnics = cpu_to_le16(vnics);
6133 
6134 	req->enables = cpu_to_le32(enables);
6135 	return req;
6136 }
6137 
6138 static int
6139 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6140 			   int ring_grps, int cp_rings, int stats, int vnics)
6141 {
6142 	struct hwrm_func_cfg_input *req;
6143 	int rc;
6144 
6145 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6146 					   cp_rings, stats, vnics);
6147 	if (!req)
6148 		return -ENOMEM;
6149 
6150 	if (!req->enables) {
6151 		hwrm_req_drop(bp, req);
6152 		return 0;
6153 	}
6154 
6155 	rc = hwrm_req_send(bp, req);
6156 	if (rc)
6157 		return rc;
6158 
6159 	if (bp->hwrm_spec_code < 0x10601)
6160 		bp->hw_resc.resv_tx_rings = tx_rings;
6161 
6162 	return bnxt_hwrm_get_rings(bp);
6163 }
6164 
6165 static int
6166 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6167 			   int ring_grps, int cp_rings, int stats, int vnics)
6168 {
6169 	struct hwrm_func_vf_cfg_input *req;
6170 	int rc;
6171 
6172 	if (!BNXT_NEW_RM(bp)) {
6173 		bp->hw_resc.resv_tx_rings = tx_rings;
6174 		return 0;
6175 	}
6176 
6177 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6178 					   cp_rings, stats, vnics);
6179 	if (!req)
6180 		return -ENOMEM;
6181 
6182 	rc = hwrm_req_send(bp, req);
6183 	if (rc)
6184 		return rc;
6185 
6186 	return bnxt_hwrm_get_rings(bp);
6187 }
6188 
6189 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, int tx, int rx, int grp,
6190 				   int cp, int stat, int vnic)
6191 {
6192 	if (BNXT_PF(bp))
6193 		return bnxt_hwrm_reserve_pf_rings(bp, tx, rx, grp, cp, stat,
6194 						  vnic);
6195 	else
6196 		return bnxt_hwrm_reserve_vf_rings(bp, tx, rx, grp, cp, stat,
6197 						  vnic);
6198 }
6199 
6200 int bnxt_nq_rings_in_use(struct bnxt *bp)
6201 {
6202 	int cp = bp->cp_nr_rings;
6203 	int ulp_msix, ulp_base;
6204 
6205 	ulp_msix = bnxt_get_ulp_msix_num(bp);
6206 	if (ulp_msix) {
6207 		ulp_base = bnxt_get_ulp_msix_base(bp);
6208 		cp += ulp_msix;
6209 		if ((ulp_base + ulp_msix) > cp)
6210 			cp = ulp_base + ulp_msix;
6211 	}
6212 	return cp;
6213 }
6214 
6215 static int bnxt_cp_rings_in_use(struct bnxt *bp)
6216 {
6217 	int cp;
6218 
6219 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6220 		return bnxt_nq_rings_in_use(bp);
6221 
6222 	cp = bp->tx_nr_rings + bp->rx_nr_rings;
6223 	return cp;
6224 }
6225 
6226 static int bnxt_get_func_stat_ctxs(struct bnxt *bp)
6227 {
6228 	int ulp_stat = bnxt_get_ulp_stat_ctxs(bp);
6229 	int cp = bp->cp_nr_rings;
6230 
6231 	if (!ulp_stat)
6232 		return cp;
6233 
6234 	if (bnxt_nq_rings_in_use(bp) > cp + bnxt_get_ulp_msix_num(bp))
6235 		return bnxt_get_ulp_msix_base(bp) + ulp_stat;
6236 
6237 	return cp + ulp_stat;
6238 }
6239 
6240 /* Check if a default RSS map needs to be setup.  This function is only
6241  * used on older firmware that does not require reserving RX rings.
6242  */
6243 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp)
6244 {
6245 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6246 
6247 	/* The RSS map is valid for RX rings set to resv_rx_rings */
6248 	if (hw_resc->resv_rx_rings != bp->rx_nr_rings) {
6249 		hw_resc->resv_rx_rings = bp->rx_nr_rings;
6250 		if (!netif_is_rxfh_configured(bp->dev))
6251 			bnxt_set_dflt_rss_indir_tbl(bp);
6252 	}
6253 }
6254 
6255 static bool bnxt_need_reserve_rings(struct bnxt *bp)
6256 {
6257 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6258 	int cp = bnxt_cp_rings_in_use(bp);
6259 	int nq = bnxt_nq_rings_in_use(bp);
6260 	int rx = bp->rx_nr_rings, stat;
6261 	int vnic = 1, grp = rx;
6262 
6263 	if (hw_resc->resv_tx_rings != bp->tx_nr_rings &&
6264 	    bp->hwrm_spec_code >= 0x10601)
6265 		return true;
6266 
6267 	/* Old firmware does not need RX ring reservations but we still
6268 	 * need to setup a default RSS map when needed.  With new firmware
6269 	 * we go through RX ring reservations first and then set up the
6270 	 * RSS map for the successfully reserved RX rings when needed.
6271 	 */
6272 	if (!BNXT_NEW_RM(bp)) {
6273 		bnxt_check_rss_tbl_no_rmgr(bp);
6274 		return false;
6275 	}
6276 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6277 		vnic = rx + 1;
6278 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6279 		rx <<= 1;
6280 	stat = bnxt_get_func_stat_ctxs(bp);
6281 	if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp ||
6282 	    hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat ||
6283 	    (hw_resc->resv_hw_ring_grps != grp &&
6284 	     !(bp->flags & BNXT_FLAG_CHIP_P5)))
6285 		return true;
6286 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && BNXT_PF(bp) &&
6287 	    hw_resc->resv_irqs != nq)
6288 		return true;
6289 	return false;
6290 }
6291 
6292 static int __bnxt_reserve_rings(struct bnxt *bp)
6293 {
6294 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
6295 	int cp = bnxt_nq_rings_in_use(bp);
6296 	int tx = bp->tx_nr_rings;
6297 	int rx = bp->rx_nr_rings;
6298 	int grp, rx_rings, rc;
6299 	int vnic = 1, stat;
6300 	bool sh = false;
6301 
6302 	if (!bnxt_need_reserve_rings(bp))
6303 		return 0;
6304 
6305 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6306 		sh = true;
6307 	if ((bp->flags & BNXT_FLAG_RFS) && !(bp->flags & BNXT_FLAG_CHIP_P5))
6308 		vnic = rx + 1;
6309 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6310 		rx <<= 1;
6311 	grp = bp->rx_nr_rings;
6312 	stat = bnxt_get_func_stat_ctxs(bp);
6313 
6314 	rc = bnxt_hwrm_reserve_rings(bp, tx, rx, grp, cp, stat, vnic);
6315 	if (rc)
6316 		return rc;
6317 
6318 	tx = hw_resc->resv_tx_rings;
6319 	if (BNXT_NEW_RM(bp)) {
6320 		rx = hw_resc->resv_rx_rings;
6321 		cp = hw_resc->resv_irqs;
6322 		grp = hw_resc->resv_hw_ring_grps;
6323 		vnic = hw_resc->resv_vnics;
6324 		stat = hw_resc->resv_stat_ctxs;
6325 	}
6326 
6327 	rx_rings = rx;
6328 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
6329 		if (rx >= 2) {
6330 			rx_rings = rx >> 1;
6331 		} else {
6332 			if (netif_running(bp->dev))
6333 				return -ENOMEM;
6334 
6335 			bp->flags &= ~BNXT_FLAG_AGG_RINGS;
6336 			bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
6337 			bp->dev->hw_features &= ~NETIF_F_LRO;
6338 			bp->dev->features &= ~NETIF_F_LRO;
6339 			bnxt_set_ring_params(bp);
6340 		}
6341 	}
6342 	rx_rings = min_t(int, rx_rings, grp);
6343 	cp = min_t(int, cp, bp->cp_nr_rings);
6344 	if (stat > bnxt_get_ulp_stat_ctxs(bp))
6345 		stat -= bnxt_get_ulp_stat_ctxs(bp);
6346 	cp = min_t(int, cp, stat);
6347 	rc = bnxt_trim_rings(bp, &rx_rings, &tx, cp, sh);
6348 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
6349 		rx = rx_rings << 1;
6350 	cp = sh ? max_t(int, tx, rx_rings) : tx + rx_rings;
6351 	bp->tx_nr_rings = tx;
6352 
6353 	/* If we cannot reserve all the RX rings, reset the RSS map only
6354 	 * if absolutely necessary
6355 	 */
6356 	if (rx_rings != bp->rx_nr_rings) {
6357 		netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n",
6358 			    rx_rings, bp->rx_nr_rings);
6359 		if (netif_is_rxfh_configured(bp->dev) &&
6360 		    (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) !=
6361 		     bnxt_get_nr_rss_ctxs(bp, rx_rings) ||
6362 		     bnxt_get_max_rss_ring(bp) >= rx_rings)) {
6363 			netdev_warn(bp->dev, "RSS table entries reverting to default\n");
6364 			bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED;
6365 		}
6366 	}
6367 	bp->rx_nr_rings = rx_rings;
6368 	bp->cp_nr_rings = cp;
6369 
6370 	if (!tx || !rx || !cp || !grp || !vnic || !stat)
6371 		return -ENOMEM;
6372 
6373 	if (!netif_is_rxfh_configured(bp->dev))
6374 		bnxt_set_dflt_rss_indir_tbl(bp);
6375 
6376 	return rc;
6377 }
6378 
6379 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6380 				    int ring_grps, int cp_rings, int stats,
6381 				    int vnics)
6382 {
6383 	struct hwrm_func_vf_cfg_input *req;
6384 	u32 flags;
6385 
6386 	if (!BNXT_NEW_RM(bp))
6387 		return 0;
6388 
6389 	req = __bnxt_hwrm_reserve_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6390 					   cp_rings, stats, vnics);
6391 	flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST |
6392 		FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6393 		FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6394 		FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6395 		FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST |
6396 		FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST;
6397 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6398 		flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6399 
6400 	req->flags = cpu_to_le32(flags);
6401 	return hwrm_req_send_silent(bp, req);
6402 }
6403 
6404 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6405 				    int ring_grps, int cp_rings, int stats,
6406 				    int vnics)
6407 {
6408 	struct hwrm_func_cfg_input *req;
6409 	u32 flags;
6410 
6411 	req = __bnxt_hwrm_reserve_pf_rings(bp, tx_rings, rx_rings, ring_grps,
6412 					   cp_rings, stats, vnics);
6413 	flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST;
6414 	if (BNXT_NEW_RM(bp)) {
6415 		flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST |
6416 			 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST |
6417 			 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST |
6418 			 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST;
6419 		if (bp->flags & BNXT_FLAG_CHIP_P5)
6420 			flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST |
6421 				 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST;
6422 		else
6423 			flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST;
6424 	}
6425 
6426 	req->flags = cpu_to_le32(flags);
6427 	return hwrm_req_send_silent(bp, req);
6428 }
6429 
6430 static int bnxt_hwrm_check_rings(struct bnxt *bp, int tx_rings, int rx_rings,
6431 				 int ring_grps, int cp_rings, int stats,
6432 				 int vnics)
6433 {
6434 	if (bp->hwrm_spec_code < 0x10801)
6435 		return 0;
6436 
6437 	if (BNXT_PF(bp))
6438 		return bnxt_hwrm_check_pf_rings(bp, tx_rings, rx_rings,
6439 						ring_grps, cp_rings, stats,
6440 						vnics);
6441 
6442 	return bnxt_hwrm_check_vf_rings(bp, tx_rings, rx_rings, ring_grps,
6443 					cp_rings, stats, vnics);
6444 }
6445 
6446 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp)
6447 {
6448 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6449 	struct hwrm_ring_aggint_qcaps_output *resp;
6450 	struct hwrm_ring_aggint_qcaps_input *req;
6451 	int rc;
6452 
6453 	coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS;
6454 	coal_cap->num_cmpl_dma_aggr_max = 63;
6455 	coal_cap->num_cmpl_dma_aggr_during_int_max = 63;
6456 	coal_cap->cmpl_aggr_dma_tmr_max = 65535;
6457 	coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535;
6458 	coal_cap->int_lat_tmr_min_max = 65535;
6459 	coal_cap->int_lat_tmr_max_max = 65535;
6460 	coal_cap->num_cmpl_aggr_int_max = 65535;
6461 	coal_cap->timer_units = 80;
6462 
6463 	if (bp->hwrm_spec_code < 0x10902)
6464 		return;
6465 
6466 	if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS))
6467 		return;
6468 
6469 	resp = hwrm_req_hold(bp, req);
6470 	rc = hwrm_req_send_silent(bp, req);
6471 	if (!rc) {
6472 		coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params);
6473 		coal_cap->nq_params = le32_to_cpu(resp->nq_params);
6474 		coal_cap->num_cmpl_dma_aggr_max =
6475 			le16_to_cpu(resp->num_cmpl_dma_aggr_max);
6476 		coal_cap->num_cmpl_dma_aggr_during_int_max =
6477 			le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max);
6478 		coal_cap->cmpl_aggr_dma_tmr_max =
6479 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_max);
6480 		coal_cap->cmpl_aggr_dma_tmr_during_int_max =
6481 			le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max);
6482 		coal_cap->int_lat_tmr_min_max =
6483 			le16_to_cpu(resp->int_lat_tmr_min_max);
6484 		coal_cap->int_lat_tmr_max_max =
6485 			le16_to_cpu(resp->int_lat_tmr_max_max);
6486 		coal_cap->num_cmpl_aggr_int_max =
6487 			le16_to_cpu(resp->num_cmpl_aggr_int_max);
6488 		coal_cap->timer_units = le16_to_cpu(resp->timer_units);
6489 	}
6490 	hwrm_req_drop(bp, req);
6491 }
6492 
6493 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec)
6494 {
6495 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6496 
6497 	return usec * 1000 / coal_cap->timer_units;
6498 }
6499 
6500 static void bnxt_hwrm_set_coal_params(struct bnxt *bp,
6501 	struct bnxt_coal *hw_coal,
6502 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
6503 {
6504 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6505 	u16 val, tmr, max, flags = hw_coal->flags;
6506 	u32 cmpl_params = coal_cap->cmpl_params;
6507 
6508 	max = hw_coal->bufs_per_record * 128;
6509 	if (hw_coal->budget)
6510 		max = hw_coal->bufs_per_record * hw_coal->budget;
6511 	max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max);
6512 
6513 	val = clamp_t(u16, hw_coal->coal_bufs, 1, max);
6514 	req->num_cmpl_aggr_int = cpu_to_le16(val);
6515 
6516 	val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max);
6517 	req->num_cmpl_dma_aggr = cpu_to_le16(val);
6518 
6519 	val = clamp_t(u16, hw_coal->coal_bufs_irq, 1,
6520 		      coal_cap->num_cmpl_dma_aggr_during_int_max);
6521 	req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val);
6522 
6523 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks);
6524 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max);
6525 	req->int_lat_tmr_max = cpu_to_le16(tmr);
6526 
6527 	/* min timer set to 1/2 of interrupt timer */
6528 	if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) {
6529 		val = tmr / 2;
6530 		val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max);
6531 		req->int_lat_tmr_min = cpu_to_le16(val);
6532 		req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6533 	}
6534 
6535 	/* buf timer set to 1/4 of interrupt timer */
6536 	val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max);
6537 	req->cmpl_aggr_dma_tmr = cpu_to_le16(val);
6538 
6539 	if (cmpl_params &
6540 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) {
6541 		tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq);
6542 		val = clamp_t(u16, tmr, 1,
6543 			      coal_cap->cmpl_aggr_dma_tmr_during_int_max);
6544 		req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val);
6545 		req->enables |=
6546 			cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE);
6547 	}
6548 
6549 	if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) &&
6550 	    hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh)
6551 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
6552 	req->flags = cpu_to_le16(flags);
6553 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES);
6554 }
6555 
6556 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi,
6557 				   struct bnxt_coal *hw_coal)
6558 {
6559 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req;
6560 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6561 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
6562 	u32 nq_params = coal_cap->nq_params;
6563 	u16 tmr;
6564 	int rc;
6565 
6566 	if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN))
6567 		return 0;
6568 
6569 	rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6570 	if (rc)
6571 		return rc;
6572 
6573 	req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id);
6574 	req->flags =
6575 		cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ);
6576 
6577 	tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2;
6578 	tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max);
6579 	req->int_lat_tmr_min = cpu_to_le16(tmr);
6580 	req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE);
6581 	return hwrm_req_send(bp, req);
6582 }
6583 
6584 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi)
6585 {
6586 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx;
6587 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6588 	struct bnxt_coal coal;
6589 	int rc;
6590 
6591 	/* Tick values in micro seconds.
6592 	 * 1 coal_buf x bufs_per_record = 1 completion record.
6593 	 */
6594 	memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal));
6595 
6596 	coal.coal_ticks = cpr->rx_ring_coal.coal_ticks;
6597 	coal.coal_bufs = cpr->rx_ring_coal.coal_bufs;
6598 
6599 	if (!bnapi->rx_ring)
6600 		return -ENODEV;
6601 
6602 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6603 	if (rc)
6604 		return rc;
6605 
6606 	bnxt_hwrm_set_coal_params(bp, &coal, req_rx);
6607 
6608 	req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring));
6609 
6610 	return hwrm_req_send(bp, req_rx);
6611 }
6612 
6613 int bnxt_hwrm_set_coal(struct bnxt *bp)
6614 {
6615 	struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx,
6616 							   *req;
6617 	int i, rc;
6618 
6619 	rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6620 	if (rc)
6621 		return rc;
6622 
6623 	rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS);
6624 	if (rc) {
6625 		hwrm_req_drop(bp, req_rx);
6626 		return rc;
6627 	}
6628 
6629 	bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx);
6630 	bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx);
6631 
6632 	hwrm_req_hold(bp, req_rx);
6633 	hwrm_req_hold(bp, req_tx);
6634 	for (i = 0; i < bp->cp_nr_rings; i++) {
6635 		struct bnxt_napi *bnapi = bp->bnapi[i];
6636 		struct bnxt_coal *hw_coal;
6637 		u16 ring_id;
6638 
6639 		req = req_rx;
6640 		if (!bnapi->rx_ring) {
6641 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6642 			req = req_tx;
6643 		} else {
6644 			ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring);
6645 		}
6646 		req->ring_id = cpu_to_le16(ring_id);
6647 
6648 		rc = hwrm_req_send(bp, req);
6649 		if (rc)
6650 			break;
6651 
6652 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
6653 			continue;
6654 
6655 		if (bnapi->rx_ring && bnapi->tx_ring) {
6656 			req = req_tx;
6657 			ring_id = bnxt_cp_ring_for_tx(bp, bnapi->tx_ring);
6658 			req->ring_id = cpu_to_le16(ring_id);
6659 			rc = hwrm_req_send(bp, req);
6660 			if (rc)
6661 				break;
6662 		}
6663 		if (bnapi->rx_ring)
6664 			hw_coal = &bp->rx_coal;
6665 		else
6666 			hw_coal = &bp->tx_coal;
6667 		__bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal);
6668 	}
6669 	hwrm_req_drop(bp, req_rx);
6670 	hwrm_req_drop(bp, req_tx);
6671 	return rc;
6672 }
6673 
6674 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
6675 {
6676 	struct hwrm_stat_ctx_clr_stats_input *req0 = NULL;
6677 	struct hwrm_stat_ctx_free_input *req;
6678 	int i;
6679 
6680 	if (!bp->bnapi)
6681 		return;
6682 
6683 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6684 		return;
6685 
6686 	if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE))
6687 		return;
6688 	if (BNXT_FW_MAJ(bp) <= 20) {
6689 		if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) {
6690 			hwrm_req_drop(bp, req);
6691 			return;
6692 		}
6693 		hwrm_req_hold(bp, req0);
6694 	}
6695 	hwrm_req_hold(bp, req);
6696 	for (i = 0; i < bp->cp_nr_rings; i++) {
6697 		struct bnxt_napi *bnapi = bp->bnapi[i];
6698 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6699 
6700 		if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
6701 			req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
6702 			if (req0) {
6703 				req0->stat_ctx_id = req->stat_ctx_id;
6704 				hwrm_req_send(bp, req0);
6705 			}
6706 			hwrm_req_send(bp, req);
6707 
6708 			cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
6709 		}
6710 	}
6711 	hwrm_req_drop(bp, req);
6712 	if (req0)
6713 		hwrm_req_drop(bp, req0);
6714 }
6715 
6716 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
6717 {
6718 	struct hwrm_stat_ctx_alloc_output *resp;
6719 	struct hwrm_stat_ctx_alloc_input *req;
6720 	int rc, i;
6721 
6722 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
6723 		return 0;
6724 
6725 	rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC);
6726 	if (rc)
6727 		return rc;
6728 
6729 	req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size);
6730 	req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
6731 
6732 	resp = hwrm_req_hold(bp, req);
6733 	for (i = 0; i < bp->cp_nr_rings; i++) {
6734 		struct bnxt_napi *bnapi = bp->bnapi[i];
6735 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6736 
6737 		req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map);
6738 
6739 		rc = hwrm_req_send(bp, req);
6740 		if (rc)
6741 			break;
6742 
6743 		cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
6744 
6745 		bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
6746 	}
6747 	hwrm_req_drop(bp, req);
6748 	return rc;
6749 }
6750 
6751 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
6752 {
6753 	struct hwrm_func_qcfg_output *resp;
6754 	struct hwrm_func_qcfg_input *req;
6755 	u32 min_db_offset = 0;
6756 	u16 flags;
6757 	int rc;
6758 
6759 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
6760 	if (rc)
6761 		return rc;
6762 
6763 	req->fid = cpu_to_le16(0xffff);
6764 	resp = hwrm_req_hold(bp, req);
6765 	rc = hwrm_req_send(bp, req);
6766 	if (rc)
6767 		goto func_qcfg_exit;
6768 
6769 #ifdef CONFIG_BNXT_SRIOV
6770 	if (BNXT_VF(bp)) {
6771 		struct bnxt_vf_info *vf = &bp->vf;
6772 
6773 		vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
6774 	} else {
6775 		bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs);
6776 	}
6777 #endif
6778 	flags = le16_to_cpu(resp->flags);
6779 	if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED |
6780 		     FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) {
6781 		bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT;
6782 		if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED)
6783 			bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT;
6784 	}
6785 	if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST))
6786 		bp->flags |= BNXT_FLAG_MULTI_HOST;
6787 	if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED)
6788 		bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR;
6789 
6790 	switch (resp->port_partition_type) {
6791 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
6792 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
6793 	case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
6794 		bp->port_partition_type = resp->port_partition_type;
6795 		break;
6796 	}
6797 	if (bp->hwrm_spec_code < 0x10707 ||
6798 	    resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB)
6799 		bp->br_mode = BRIDGE_MODE_VEB;
6800 	else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA)
6801 		bp->br_mode = BRIDGE_MODE_VEPA;
6802 	else
6803 		bp->br_mode = BRIDGE_MODE_UNDEF;
6804 
6805 	bp->max_mtu = le16_to_cpu(resp->max_mtu_configured);
6806 	if (!bp->max_mtu)
6807 		bp->max_mtu = BNXT_MAX_MTU;
6808 
6809 	if (bp->db_size)
6810 		goto func_qcfg_exit;
6811 
6812 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
6813 		if (BNXT_PF(bp))
6814 			min_db_offset = DB_PF_OFFSET_P5;
6815 		else
6816 			min_db_offset = DB_VF_OFFSET_P5;
6817 	}
6818 	bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) *
6819 				 1024);
6820 	if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) ||
6821 	    bp->db_size <= min_db_offset)
6822 		bp->db_size = pci_resource_len(bp->pdev, 2);
6823 
6824 func_qcfg_exit:
6825 	hwrm_req_drop(bp, req);
6826 	return rc;
6827 }
6828 
6829 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_info *ctx,
6830 			struct hwrm_func_backing_store_qcaps_output *resp)
6831 {
6832 	struct bnxt_mem_init *mem_init;
6833 	u16 init_mask;
6834 	u8 init_val;
6835 	u8 *offset;
6836 	int i;
6837 
6838 	init_val = resp->ctx_kind_initializer;
6839 	init_mask = le16_to_cpu(resp->ctx_init_mask);
6840 	offset = &resp->qp_init_offset;
6841 	mem_init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
6842 	for (i = 0; i < BNXT_CTX_MEM_INIT_MAX; i++, mem_init++, offset++) {
6843 		mem_init->init_val = init_val;
6844 		mem_init->offset = BNXT_MEM_INVALID_OFFSET;
6845 		if (!init_mask)
6846 			continue;
6847 		if (i == BNXT_CTX_MEM_INIT_STAT)
6848 			offset = &resp->stat_init_offset;
6849 		if (init_mask & (1 << i))
6850 			mem_init->offset = *offset * 4;
6851 		else
6852 			mem_init->init_val = 0;
6853 	}
6854 	ctx->mem_init[BNXT_CTX_MEM_INIT_QP].size = ctx->qp_entry_size;
6855 	ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ].size = ctx->srq_entry_size;
6856 	ctx->mem_init[BNXT_CTX_MEM_INIT_CQ].size = ctx->cq_entry_size;
6857 	ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC].size = ctx->vnic_entry_size;
6858 	ctx->mem_init[BNXT_CTX_MEM_INIT_STAT].size = ctx->stat_entry_size;
6859 	ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV].size = ctx->mrav_entry_size;
6860 }
6861 
6862 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp)
6863 {
6864 	struct hwrm_func_backing_store_qcaps_output *resp;
6865 	struct hwrm_func_backing_store_qcaps_input *req;
6866 	int rc;
6867 
6868 	if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx)
6869 		return 0;
6870 
6871 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS);
6872 	if (rc)
6873 		return rc;
6874 
6875 	resp = hwrm_req_hold(bp, req);
6876 	rc = hwrm_req_send_silent(bp, req);
6877 	if (!rc) {
6878 		struct bnxt_ctx_pg_info *ctx_pg;
6879 		struct bnxt_ctx_mem_info *ctx;
6880 		int i, tqm_rings;
6881 
6882 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
6883 		if (!ctx) {
6884 			rc = -ENOMEM;
6885 			goto ctx_err;
6886 		}
6887 		ctx->qp_max_entries = le32_to_cpu(resp->qp_max_entries);
6888 		ctx->qp_min_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries);
6889 		ctx->qp_max_l2_entries = le16_to_cpu(resp->qp_max_l2_entries);
6890 		ctx->qp_entry_size = le16_to_cpu(resp->qp_entry_size);
6891 		ctx->srq_max_l2_entries = le16_to_cpu(resp->srq_max_l2_entries);
6892 		ctx->srq_max_entries = le32_to_cpu(resp->srq_max_entries);
6893 		ctx->srq_entry_size = le16_to_cpu(resp->srq_entry_size);
6894 		ctx->cq_max_l2_entries = le16_to_cpu(resp->cq_max_l2_entries);
6895 		ctx->cq_max_entries = le32_to_cpu(resp->cq_max_entries);
6896 		ctx->cq_entry_size = le16_to_cpu(resp->cq_entry_size);
6897 		ctx->vnic_max_vnic_entries =
6898 			le16_to_cpu(resp->vnic_max_vnic_entries);
6899 		ctx->vnic_max_ring_table_entries =
6900 			le16_to_cpu(resp->vnic_max_ring_table_entries);
6901 		ctx->vnic_entry_size = le16_to_cpu(resp->vnic_entry_size);
6902 		ctx->stat_max_entries = le32_to_cpu(resp->stat_max_entries);
6903 		ctx->stat_entry_size = le16_to_cpu(resp->stat_entry_size);
6904 		ctx->tqm_entry_size = le16_to_cpu(resp->tqm_entry_size);
6905 		ctx->tqm_min_entries_per_ring =
6906 			le32_to_cpu(resp->tqm_min_entries_per_ring);
6907 		ctx->tqm_max_entries_per_ring =
6908 			le32_to_cpu(resp->tqm_max_entries_per_ring);
6909 		ctx->tqm_entries_multiple = resp->tqm_entries_multiple;
6910 		if (!ctx->tqm_entries_multiple)
6911 			ctx->tqm_entries_multiple = 1;
6912 		ctx->mrav_max_entries = le32_to_cpu(resp->mrav_max_entries);
6913 		ctx->mrav_entry_size = le16_to_cpu(resp->mrav_entry_size);
6914 		ctx->mrav_num_entries_units =
6915 			le16_to_cpu(resp->mrav_num_entries_units);
6916 		ctx->tim_entry_size = le16_to_cpu(resp->tim_entry_size);
6917 		ctx->tim_max_entries = le32_to_cpu(resp->tim_max_entries);
6918 
6919 		bnxt_init_ctx_initializer(ctx, resp);
6920 
6921 		ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count;
6922 		if (!ctx->tqm_fp_rings_count)
6923 			ctx->tqm_fp_rings_count = bp->max_q;
6924 		else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS)
6925 			ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS;
6926 
6927 		tqm_rings = ctx->tqm_fp_rings_count + BNXT_MAX_TQM_SP_RINGS;
6928 		ctx_pg = kcalloc(tqm_rings, sizeof(*ctx_pg), GFP_KERNEL);
6929 		if (!ctx_pg) {
6930 			kfree(ctx);
6931 			rc = -ENOMEM;
6932 			goto ctx_err;
6933 		}
6934 		for (i = 0; i < tqm_rings; i++, ctx_pg++)
6935 			ctx->tqm_mem[i] = ctx_pg;
6936 		bp->ctx = ctx;
6937 	} else {
6938 		rc = 0;
6939 	}
6940 ctx_err:
6941 	hwrm_req_drop(bp, req);
6942 	return rc;
6943 }
6944 
6945 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr,
6946 				  __le64 *pg_dir)
6947 {
6948 	if (!rmem->nr_pages)
6949 		return;
6950 
6951 	BNXT_SET_CTX_PAGE_ATTR(*pg_attr);
6952 	if (rmem->depth >= 1) {
6953 		if (rmem->depth == 2)
6954 			*pg_attr |= 2;
6955 		else
6956 			*pg_attr |= 1;
6957 		*pg_dir = cpu_to_le64(rmem->pg_tbl_map);
6958 	} else {
6959 		*pg_dir = cpu_to_le64(rmem->dma_arr[0]);
6960 	}
6961 }
6962 
6963 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES			\
6964 	(FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP |		\
6965 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ |		\
6966 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ |		\
6967 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC |		\
6968 	 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT)
6969 
6970 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables)
6971 {
6972 	struct hwrm_func_backing_store_cfg_input *req;
6973 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
6974 	struct bnxt_ctx_pg_info *ctx_pg;
6975 	void **__req = (void **)&req;
6976 	u32 req_len = sizeof(*req);
6977 	__le32 *num_entries;
6978 	__le64 *pg_dir;
6979 	u32 flags = 0;
6980 	u8 *pg_attr;
6981 	u32 ena;
6982 	int rc;
6983 	int i;
6984 
6985 	if (!ctx)
6986 		return 0;
6987 
6988 	if (req_len > bp->hwrm_max_ext_req_len)
6989 		req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN;
6990 	rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len);
6991 	if (rc)
6992 		return rc;
6993 
6994 	req->enables = cpu_to_le32(enables);
6995 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) {
6996 		ctx_pg = &ctx->qp_mem;
6997 		req->qp_num_entries = cpu_to_le32(ctx_pg->entries);
6998 		req->qp_num_qp1_entries = cpu_to_le16(ctx->qp_min_qp1_entries);
6999 		req->qp_num_l2_entries = cpu_to_le16(ctx->qp_max_l2_entries);
7000 		req->qp_entry_size = cpu_to_le16(ctx->qp_entry_size);
7001 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7002 				      &req->qpc_pg_size_qpc_lvl,
7003 				      &req->qpc_page_dir);
7004 	}
7005 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) {
7006 		ctx_pg = &ctx->srq_mem;
7007 		req->srq_num_entries = cpu_to_le32(ctx_pg->entries);
7008 		req->srq_num_l2_entries = cpu_to_le16(ctx->srq_max_l2_entries);
7009 		req->srq_entry_size = cpu_to_le16(ctx->srq_entry_size);
7010 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7011 				      &req->srq_pg_size_srq_lvl,
7012 				      &req->srq_page_dir);
7013 	}
7014 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) {
7015 		ctx_pg = &ctx->cq_mem;
7016 		req->cq_num_entries = cpu_to_le32(ctx_pg->entries);
7017 		req->cq_num_l2_entries = cpu_to_le16(ctx->cq_max_l2_entries);
7018 		req->cq_entry_size = cpu_to_le16(ctx->cq_entry_size);
7019 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7020 				      &req->cq_pg_size_cq_lvl,
7021 				      &req->cq_page_dir);
7022 	}
7023 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) {
7024 		ctx_pg = &ctx->vnic_mem;
7025 		req->vnic_num_vnic_entries =
7026 			cpu_to_le16(ctx->vnic_max_vnic_entries);
7027 		req->vnic_num_ring_table_entries =
7028 			cpu_to_le16(ctx->vnic_max_ring_table_entries);
7029 		req->vnic_entry_size = cpu_to_le16(ctx->vnic_entry_size);
7030 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7031 				      &req->vnic_pg_size_vnic_lvl,
7032 				      &req->vnic_page_dir);
7033 	}
7034 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) {
7035 		ctx_pg = &ctx->stat_mem;
7036 		req->stat_num_entries = cpu_to_le32(ctx->stat_max_entries);
7037 		req->stat_entry_size = cpu_to_le16(ctx->stat_entry_size);
7038 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7039 				      &req->stat_pg_size_stat_lvl,
7040 				      &req->stat_page_dir);
7041 	}
7042 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) {
7043 		ctx_pg = &ctx->mrav_mem;
7044 		req->mrav_num_entries = cpu_to_le32(ctx_pg->entries);
7045 		if (ctx->mrav_num_entries_units)
7046 			flags |=
7047 			FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT;
7048 		req->mrav_entry_size = cpu_to_le16(ctx->mrav_entry_size);
7049 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7050 				      &req->mrav_pg_size_mrav_lvl,
7051 				      &req->mrav_page_dir);
7052 	}
7053 	if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) {
7054 		ctx_pg = &ctx->tim_mem;
7055 		req->tim_num_entries = cpu_to_le32(ctx_pg->entries);
7056 		req->tim_entry_size = cpu_to_le16(ctx->tim_entry_size);
7057 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem,
7058 				      &req->tim_pg_size_tim_lvl,
7059 				      &req->tim_page_dir);
7060 	}
7061 	for (i = 0, num_entries = &req->tqm_sp_num_entries,
7062 	     pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl,
7063 	     pg_dir = &req->tqm_sp_page_dir,
7064 	     ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP;
7065 	     i < BNXT_MAX_TQM_RINGS;
7066 	     i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) {
7067 		if (!(enables & ena))
7068 			continue;
7069 
7070 		req->tqm_entry_size = cpu_to_le16(ctx->tqm_entry_size);
7071 		ctx_pg = ctx->tqm_mem[i];
7072 		*num_entries = cpu_to_le32(ctx_pg->entries);
7073 		bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir);
7074 	}
7075 	req->flags = cpu_to_le32(flags);
7076 	return hwrm_req_send(bp, req);
7077 }
7078 
7079 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp,
7080 				  struct bnxt_ctx_pg_info *ctx_pg)
7081 {
7082 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7083 
7084 	rmem->page_size = BNXT_PAGE_SIZE;
7085 	rmem->pg_arr = ctx_pg->ctx_pg_arr;
7086 	rmem->dma_arr = ctx_pg->ctx_dma_arr;
7087 	rmem->flags = BNXT_RMEM_VALID_PTE_FLAG;
7088 	if (rmem->depth >= 1)
7089 		rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG;
7090 	return bnxt_alloc_ring(bp, rmem);
7091 }
7092 
7093 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp,
7094 				  struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size,
7095 				  u8 depth, struct bnxt_mem_init *mem_init)
7096 {
7097 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7098 	int rc;
7099 
7100 	if (!mem_size)
7101 		return -EINVAL;
7102 
7103 	ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7104 	if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) {
7105 		ctx_pg->nr_pages = 0;
7106 		return -EINVAL;
7107 	}
7108 	if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) {
7109 		int nr_tbls, i;
7110 
7111 		rmem->depth = 2;
7112 		ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg),
7113 					     GFP_KERNEL);
7114 		if (!ctx_pg->ctx_pg_tbl)
7115 			return -ENOMEM;
7116 		nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES);
7117 		rmem->nr_pages = nr_tbls;
7118 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7119 		if (rc)
7120 			return rc;
7121 		for (i = 0; i < nr_tbls; i++) {
7122 			struct bnxt_ctx_pg_info *pg_tbl;
7123 
7124 			pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL);
7125 			if (!pg_tbl)
7126 				return -ENOMEM;
7127 			ctx_pg->ctx_pg_tbl[i] = pg_tbl;
7128 			rmem = &pg_tbl->ring_mem;
7129 			rmem->pg_tbl = ctx_pg->ctx_pg_arr[i];
7130 			rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i];
7131 			rmem->depth = 1;
7132 			rmem->nr_pages = MAX_CTX_PAGES;
7133 			rmem->mem_init = mem_init;
7134 			if (i == (nr_tbls - 1)) {
7135 				int rem = ctx_pg->nr_pages % MAX_CTX_PAGES;
7136 
7137 				if (rem)
7138 					rmem->nr_pages = rem;
7139 			}
7140 			rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl);
7141 			if (rc)
7142 				break;
7143 		}
7144 	} else {
7145 		rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE);
7146 		if (rmem->nr_pages > 1 || depth)
7147 			rmem->depth = 1;
7148 		rmem->mem_init = mem_init;
7149 		rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg);
7150 	}
7151 	return rc;
7152 }
7153 
7154 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp,
7155 				  struct bnxt_ctx_pg_info *ctx_pg)
7156 {
7157 	struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem;
7158 
7159 	if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES ||
7160 	    ctx_pg->ctx_pg_tbl) {
7161 		int i, nr_tbls = rmem->nr_pages;
7162 
7163 		for (i = 0; i < nr_tbls; i++) {
7164 			struct bnxt_ctx_pg_info *pg_tbl;
7165 			struct bnxt_ring_mem_info *rmem2;
7166 
7167 			pg_tbl = ctx_pg->ctx_pg_tbl[i];
7168 			if (!pg_tbl)
7169 				continue;
7170 			rmem2 = &pg_tbl->ring_mem;
7171 			bnxt_free_ring(bp, rmem2);
7172 			ctx_pg->ctx_pg_arr[i] = NULL;
7173 			kfree(pg_tbl);
7174 			ctx_pg->ctx_pg_tbl[i] = NULL;
7175 		}
7176 		kfree(ctx_pg->ctx_pg_tbl);
7177 		ctx_pg->ctx_pg_tbl = NULL;
7178 	}
7179 	bnxt_free_ring(bp, rmem);
7180 	ctx_pg->nr_pages = 0;
7181 }
7182 
7183 void bnxt_free_ctx_mem(struct bnxt *bp)
7184 {
7185 	struct bnxt_ctx_mem_info *ctx = bp->ctx;
7186 	int i;
7187 
7188 	if (!ctx)
7189 		return;
7190 
7191 	if (ctx->tqm_mem[0]) {
7192 		for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++)
7193 			bnxt_free_ctx_pg_tbls(bp, ctx->tqm_mem[i]);
7194 		kfree(ctx->tqm_mem[0]);
7195 		ctx->tqm_mem[0] = NULL;
7196 	}
7197 
7198 	bnxt_free_ctx_pg_tbls(bp, &ctx->tim_mem);
7199 	bnxt_free_ctx_pg_tbls(bp, &ctx->mrav_mem);
7200 	bnxt_free_ctx_pg_tbls(bp, &ctx->stat_mem);
7201 	bnxt_free_ctx_pg_tbls(bp, &ctx->vnic_mem);
7202 	bnxt_free_ctx_pg_tbls(bp, &ctx->cq_mem);
7203 	bnxt_free_ctx_pg_tbls(bp, &ctx->srq_mem);
7204 	bnxt_free_ctx_pg_tbls(bp, &ctx->qp_mem);
7205 	ctx->flags &= ~BNXT_CTX_FLAG_INITED;
7206 }
7207 
7208 static int bnxt_alloc_ctx_mem(struct bnxt *bp)
7209 {
7210 	struct bnxt_ctx_pg_info *ctx_pg;
7211 	struct bnxt_ctx_mem_info *ctx;
7212 	struct bnxt_mem_init *init;
7213 	u32 mem_size, ena, entries;
7214 	u32 entries_sp, min;
7215 	u32 num_mr, num_ah;
7216 	u32 extra_srqs = 0;
7217 	u32 extra_qps = 0;
7218 	u8 pg_lvl = 1;
7219 	int i, rc;
7220 
7221 	rc = bnxt_hwrm_func_backing_store_qcaps(bp);
7222 	if (rc) {
7223 		netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n",
7224 			   rc);
7225 		return rc;
7226 	}
7227 	ctx = bp->ctx;
7228 	if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED))
7229 		return 0;
7230 
7231 	if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) {
7232 		pg_lvl = 2;
7233 		extra_qps = 65536;
7234 		extra_srqs = 8192;
7235 	}
7236 
7237 	ctx_pg = &ctx->qp_mem;
7238 	ctx_pg->entries = ctx->qp_min_qp1_entries + ctx->qp_max_l2_entries +
7239 			  extra_qps;
7240 	if (ctx->qp_entry_size) {
7241 		mem_size = ctx->qp_entry_size * ctx_pg->entries;
7242 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_QP];
7243 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7244 		if (rc)
7245 			return rc;
7246 	}
7247 
7248 	ctx_pg = &ctx->srq_mem;
7249 	ctx_pg->entries = ctx->srq_max_l2_entries + extra_srqs;
7250 	if (ctx->srq_entry_size) {
7251 		mem_size = ctx->srq_entry_size * ctx_pg->entries;
7252 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_SRQ];
7253 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7254 		if (rc)
7255 			return rc;
7256 	}
7257 
7258 	ctx_pg = &ctx->cq_mem;
7259 	ctx_pg->entries = ctx->cq_max_l2_entries + extra_qps * 2;
7260 	if (ctx->cq_entry_size) {
7261 		mem_size = ctx->cq_entry_size * ctx_pg->entries;
7262 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_CQ];
7263 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, pg_lvl, init);
7264 		if (rc)
7265 			return rc;
7266 	}
7267 
7268 	ctx_pg = &ctx->vnic_mem;
7269 	ctx_pg->entries = ctx->vnic_max_vnic_entries +
7270 			  ctx->vnic_max_ring_table_entries;
7271 	if (ctx->vnic_entry_size) {
7272 		mem_size = ctx->vnic_entry_size * ctx_pg->entries;
7273 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_VNIC];
7274 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7275 		if (rc)
7276 			return rc;
7277 	}
7278 
7279 	ctx_pg = &ctx->stat_mem;
7280 	ctx_pg->entries = ctx->stat_max_entries;
7281 	if (ctx->stat_entry_size) {
7282 		mem_size = ctx->stat_entry_size * ctx_pg->entries;
7283 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_STAT];
7284 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, init);
7285 		if (rc)
7286 			return rc;
7287 	}
7288 
7289 	ena = 0;
7290 	if (!(bp->flags & BNXT_FLAG_ROCE_CAP))
7291 		goto skip_rdma;
7292 
7293 	ctx_pg = &ctx->mrav_mem;
7294 	/* 128K extra is needed to accommodate static AH context
7295 	 * allocation by f/w.
7296 	 */
7297 	num_mr = 1024 * 256;
7298 	num_ah = 1024 * 128;
7299 	ctx_pg->entries = num_mr + num_ah;
7300 	if (ctx->mrav_entry_size) {
7301 		mem_size = ctx->mrav_entry_size * ctx_pg->entries;
7302 		init = &ctx->mem_init[BNXT_CTX_MEM_INIT_MRAV];
7303 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 2, init);
7304 		if (rc)
7305 			return rc;
7306 	}
7307 	ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV;
7308 	if (ctx->mrav_num_entries_units)
7309 		ctx_pg->entries =
7310 			((num_mr / ctx->mrav_num_entries_units) << 16) |
7311 			 (num_ah / ctx->mrav_num_entries_units);
7312 
7313 	ctx_pg = &ctx->tim_mem;
7314 	ctx_pg->entries = ctx->qp_mem.entries;
7315 	if (ctx->tim_entry_size) {
7316 		mem_size = ctx->tim_entry_size * ctx_pg->entries;
7317 		rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1, NULL);
7318 		if (rc)
7319 			return rc;
7320 	}
7321 	ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM;
7322 
7323 skip_rdma:
7324 	min = ctx->tqm_min_entries_per_ring;
7325 	entries_sp = ctx->vnic_max_vnic_entries + ctx->qp_max_l2_entries +
7326 		     2 * (extra_qps + ctx->qp_min_qp1_entries) + min;
7327 	entries_sp = roundup(entries_sp, ctx->tqm_entries_multiple);
7328 	entries = ctx->qp_max_l2_entries + 2 * (extra_qps + ctx->qp_min_qp1_entries);
7329 	entries = roundup(entries, ctx->tqm_entries_multiple);
7330 	entries = clamp_t(u32, entries, min, ctx->tqm_max_entries_per_ring);
7331 	for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) {
7332 		ctx_pg = ctx->tqm_mem[i];
7333 		ctx_pg->entries = i ? entries : entries_sp;
7334 		if (ctx->tqm_entry_size) {
7335 			mem_size = ctx->tqm_entry_size * ctx_pg->entries;
7336 			rc = bnxt_alloc_ctx_pg_tbls(bp, ctx_pg, mem_size, 1,
7337 						    NULL);
7338 			if (rc)
7339 				return rc;
7340 		}
7341 		ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i;
7342 	}
7343 	ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES;
7344 	rc = bnxt_hwrm_func_backing_store_cfg(bp, ena);
7345 	if (rc) {
7346 		netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n",
7347 			   rc);
7348 		return rc;
7349 	}
7350 	ctx->flags |= BNXT_CTX_FLAG_INITED;
7351 	return 0;
7352 }
7353 
7354 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all)
7355 {
7356 	struct hwrm_func_resource_qcaps_output *resp;
7357 	struct hwrm_func_resource_qcaps_input *req;
7358 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7359 	int rc;
7360 
7361 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS);
7362 	if (rc)
7363 		return rc;
7364 
7365 	req->fid = cpu_to_le16(0xffff);
7366 	resp = hwrm_req_hold(bp, req);
7367 	rc = hwrm_req_send_silent(bp, req);
7368 	if (rc)
7369 		goto hwrm_func_resc_qcaps_exit;
7370 
7371 	hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs);
7372 	if (!all)
7373 		goto hwrm_func_resc_qcaps_exit;
7374 
7375 	hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx);
7376 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7377 	hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings);
7378 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7379 	hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings);
7380 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7381 	hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings);
7382 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7383 	hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps);
7384 	hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps);
7385 	hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs);
7386 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7387 	hw_resc->min_vnics = le16_to_cpu(resp->min_vnics);
7388 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7389 	hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx);
7390 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7391 
7392 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
7393 		u16 max_msix = le16_to_cpu(resp->max_msix);
7394 
7395 		hw_resc->max_nqs = max_msix;
7396 		hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings;
7397 	}
7398 
7399 	if (BNXT_PF(bp)) {
7400 		struct bnxt_pf_info *pf = &bp->pf;
7401 
7402 		pf->vf_resv_strategy =
7403 			le16_to_cpu(resp->vf_reservation_strategy);
7404 		if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC)
7405 			pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL;
7406 	}
7407 hwrm_func_resc_qcaps_exit:
7408 	hwrm_req_drop(bp, req);
7409 	return rc;
7410 }
7411 
7412 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp)
7413 {
7414 	struct hwrm_port_mac_ptp_qcfg_output *resp;
7415 	struct hwrm_port_mac_ptp_qcfg_input *req;
7416 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
7417 	u8 flags;
7418 	int rc;
7419 
7420 	if (bp->hwrm_spec_code < 0x10801) {
7421 		rc = -ENODEV;
7422 		goto no_ptp;
7423 	}
7424 
7425 	rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG);
7426 	if (rc)
7427 		goto no_ptp;
7428 
7429 	req->port_id = cpu_to_le16(bp->pf.port_id);
7430 	resp = hwrm_req_hold(bp, req);
7431 	rc = hwrm_req_send(bp, req);
7432 	if (rc)
7433 		goto exit;
7434 
7435 	flags = resp->flags;
7436 	if (!(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) {
7437 		rc = -ENODEV;
7438 		goto exit;
7439 	}
7440 	if (!ptp) {
7441 		ptp = kzalloc(sizeof(*ptp), GFP_KERNEL);
7442 		if (!ptp) {
7443 			rc = -ENOMEM;
7444 			goto exit;
7445 		}
7446 		ptp->bp = bp;
7447 		bp->ptp_cfg = ptp;
7448 	}
7449 	if (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK) {
7450 		ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower);
7451 		ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper);
7452 	} else if (bp->flags & BNXT_FLAG_CHIP_P5) {
7453 		ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER;
7454 		ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER;
7455 	} else {
7456 		rc = -ENODEV;
7457 		goto exit;
7458 	}
7459 	rc = bnxt_ptp_init(bp);
7460 	if (rc)
7461 		netdev_warn(bp->dev, "PTP initialization failed.\n");
7462 exit:
7463 	hwrm_req_drop(bp, req);
7464 	if (!rc)
7465 		return 0;
7466 
7467 no_ptp:
7468 	bnxt_ptp_clear(bp);
7469 	kfree(ptp);
7470 	bp->ptp_cfg = NULL;
7471 	return rc;
7472 }
7473 
7474 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp)
7475 {
7476 	struct hwrm_func_qcaps_output *resp;
7477 	struct hwrm_func_qcaps_input *req;
7478 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
7479 	u32 flags, flags_ext;
7480 	int rc;
7481 
7482 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS);
7483 	if (rc)
7484 		return rc;
7485 
7486 	req->fid = cpu_to_le16(0xffff);
7487 	resp = hwrm_req_hold(bp, req);
7488 	rc = hwrm_req_send(bp, req);
7489 	if (rc)
7490 		goto hwrm_func_qcaps_exit;
7491 
7492 	flags = le32_to_cpu(resp->flags);
7493 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED)
7494 		bp->flags |= BNXT_FLAG_ROCEV1_CAP;
7495 	if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED)
7496 		bp->flags |= BNXT_FLAG_ROCEV2_CAP;
7497 	if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED)
7498 		bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED;
7499 	if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE)
7500 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET;
7501 	if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED)
7502 		bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED;
7503 	if (flags &  FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE)
7504 		bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY;
7505 	if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD)
7506 		bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD;
7507 	if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED))
7508 		bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT;
7509 	if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED)
7510 		bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS;
7511 
7512 	flags_ext = le32_to_cpu(resp->flags_ext);
7513 	if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED)
7514 		bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED;
7515 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED))
7516 		bp->fw_cap |= BNXT_FW_CAP_PTP_PPS;
7517 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT))
7518 		bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF;
7519 	if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED))
7520 		bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH;
7521 
7522 	bp->tx_push_thresh = 0;
7523 	if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) &&
7524 	    BNXT_FW_MAJ(bp) > 217)
7525 		bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
7526 
7527 	hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
7528 	hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
7529 	hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
7530 	hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
7531 	hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
7532 	if (!hw_resc->max_hw_ring_grps)
7533 		hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings;
7534 	hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
7535 	hw_resc->max_vnics = le16_to_cpu(resp->max_vnics);
7536 	hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
7537 
7538 	if (BNXT_PF(bp)) {
7539 		struct bnxt_pf_info *pf = &bp->pf;
7540 
7541 		pf->fw_fid = le16_to_cpu(resp->fid);
7542 		pf->port_id = le16_to_cpu(resp->port_id);
7543 		memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
7544 		pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
7545 		pf->max_vfs = le16_to_cpu(resp->max_vfs);
7546 		pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
7547 		pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
7548 		pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
7549 		pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
7550 		pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
7551 		pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
7552 		bp->flags &= ~BNXT_FLAG_WOL_CAP;
7553 		if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED)
7554 			bp->flags |= BNXT_FLAG_WOL_CAP;
7555 		if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) {
7556 			__bnxt_hwrm_ptp_qcfg(bp);
7557 		} else {
7558 			bnxt_ptp_clear(bp);
7559 			kfree(bp->ptp_cfg);
7560 			bp->ptp_cfg = NULL;
7561 		}
7562 	} else {
7563 #ifdef CONFIG_BNXT_SRIOV
7564 		struct bnxt_vf_info *vf = &bp->vf;
7565 
7566 		vf->fw_fid = le16_to_cpu(resp->fid);
7567 		memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
7568 #endif
7569 	}
7570 
7571 hwrm_func_qcaps_exit:
7572 	hwrm_req_drop(bp, req);
7573 	return rc;
7574 }
7575 
7576 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp)
7577 {
7578 	struct hwrm_dbg_qcaps_output *resp;
7579 	struct hwrm_dbg_qcaps_input *req;
7580 	int rc;
7581 
7582 	bp->fw_dbg_cap = 0;
7583 	if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS))
7584 		return;
7585 
7586 	rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS);
7587 	if (rc)
7588 		return;
7589 
7590 	req->fid = cpu_to_le16(0xffff);
7591 	resp = hwrm_req_hold(bp, req);
7592 	rc = hwrm_req_send(bp, req);
7593 	if (rc)
7594 		goto hwrm_dbg_qcaps_exit;
7595 
7596 	bp->fw_dbg_cap = le32_to_cpu(resp->flags);
7597 
7598 hwrm_dbg_qcaps_exit:
7599 	hwrm_req_drop(bp, req);
7600 }
7601 
7602 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp);
7603 
7604 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
7605 {
7606 	int rc;
7607 
7608 	rc = __bnxt_hwrm_func_qcaps(bp);
7609 	if (rc)
7610 		return rc;
7611 
7612 	bnxt_hwrm_dbg_qcaps(bp);
7613 
7614 	rc = bnxt_hwrm_queue_qportcfg(bp);
7615 	if (rc) {
7616 		netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc);
7617 		return rc;
7618 	}
7619 	if (bp->hwrm_spec_code >= 0x10803) {
7620 		rc = bnxt_alloc_ctx_mem(bp);
7621 		if (rc)
7622 			return rc;
7623 		rc = bnxt_hwrm_func_resc_qcaps(bp, true);
7624 		if (!rc)
7625 			bp->fw_cap |= BNXT_FW_CAP_NEW_RM;
7626 	}
7627 	return 0;
7628 }
7629 
7630 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp)
7631 {
7632 	struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp;
7633 	struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req;
7634 	u32 flags;
7635 	int rc;
7636 
7637 	if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW))
7638 		return 0;
7639 
7640 	rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS);
7641 	if (rc)
7642 		return rc;
7643 
7644 	resp = hwrm_req_hold(bp, req);
7645 	rc = hwrm_req_send(bp, req);
7646 	if (rc)
7647 		goto hwrm_cfa_adv_qcaps_exit;
7648 
7649 	flags = le32_to_cpu(resp->flags);
7650 	if (flags &
7651 	    CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED)
7652 		bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2;
7653 
7654 hwrm_cfa_adv_qcaps_exit:
7655 	hwrm_req_drop(bp, req);
7656 	return rc;
7657 }
7658 
7659 static int __bnxt_alloc_fw_health(struct bnxt *bp)
7660 {
7661 	if (bp->fw_health)
7662 		return 0;
7663 
7664 	bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL);
7665 	if (!bp->fw_health)
7666 		return -ENOMEM;
7667 
7668 	mutex_init(&bp->fw_health->lock);
7669 	return 0;
7670 }
7671 
7672 static int bnxt_alloc_fw_health(struct bnxt *bp)
7673 {
7674 	int rc;
7675 
7676 	if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) &&
7677 	    !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7678 		return 0;
7679 
7680 	rc = __bnxt_alloc_fw_health(bp);
7681 	if (rc) {
7682 		bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET;
7683 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7684 		return rc;
7685 	}
7686 
7687 	return 0;
7688 }
7689 
7690 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg)
7691 {
7692 	writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 +
7693 					 BNXT_GRCPF_REG_WINDOW_BASE_OUT +
7694 					 BNXT_FW_HEALTH_WIN_MAP_OFF);
7695 }
7696 
7697 static void bnxt_inv_fw_health_reg(struct bnxt *bp)
7698 {
7699 	struct bnxt_fw_health *fw_health = bp->fw_health;
7700 	u32 reg_type;
7701 
7702 	if (!fw_health)
7703 		return;
7704 
7705 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]);
7706 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7707 		fw_health->status_reliable = false;
7708 
7709 	reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]);
7710 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC)
7711 		fw_health->resets_reliable = false;
7712 }
7713 
7714 static void bnxt_try_map_fw_health_reg(struct bnxt *bp)
7715 {
7716 	void __iomem *hs;
7717 	u32 status_loc;
7718 	u32 reg_type;
7719 	u32 sig;
7720 
7721 	if (bp->fw_health)
7722 		bp->fw_health->status_reliable = false;
7723 
7724 	__bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC);
7725 	hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC);
7726 
7727 	sig = readl(hs + offsetof(struct hcomm_status, sig_ver));
7728 	if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) {
7729 		if (!bp->chip_num) {
7730 			__bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE);
7731 			bp->chip_num = readl(bp->bar0 +
7732 					     BNXT_FW_HEALTH_WIN_BASE +
7733 					     BNXT_GRC_REG_CHIP_NUM);
7734 		}
7735 		if (!BNXT_CHIP_P5(bp))
7736 			return;
7737 
7738 		status_loc = BNXT_GRC_REG_STATUS_P5 |
7739 			     BNXT_FW_HEALTH_REG_TYPE_BAR0;
7740 	} else {
7741 		status_loc = readl(hs + offsetof(struct hcomm_status,
7742 						 fw_status_loc));
7743 	}
7744 
7745 	if (__bnxt_alloc_fw_health(bp)) {
7746 		netdev_warn(bp->dev, "no memory for firmware status checks\n");
7747 		return;
7748 	}
7749 
7750 	bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc;
7751 	reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc);
7752 	if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) {
7753 		__bnxt_map_fw_health_reg(bp, status_loc);
7754 		bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] =
7755 			BNXT_FW_HEALTH_WIN_OFF(status_loc);
7756 	}
7757 
7758 	bp->fw_health->status_reliable = true;
7759 }
7760 
7761 static int bnxt_map_fw_health_regs(struct bnxt *bp)
7762 {
7763 	struct bnxt_fw_health *fw_health = bp->fw_health;
7764 	u32 reg_base = 0xffffffff;
7765 	int i;
7766 
7767 	bp->fw_health->status_reliable = false;
7768 	bp->fw_health->resets_reliable = false;
7769 	/* Only pre-map the monitoring GRC registers using window 3 */
7770 	for (i = 0; i < 4; i++) {
7771 		u32 reg = fw_health->regs[i];
7772 
7773 		if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC)
7774 			continue;
7775 		if (reg_base == 0xffffffff)
7776 			reg_base = reg & BNXT_GRC_BASE_MASK;
7777 		if ((reg & BNXT_GRC_BASE_MASK) != reg_base)
7778 			return -ERANGE;
7779 		fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg);
7780 	}
7781 	bp->fw_health->status_reliable = true;
7782 	bp->fw_health->resets_reliable = true;
7783 	if (reg_base == 0xffffffff)
7784 		return 0;
7785 
7786 	__bnxt_map_fw_health_reg(bp, reg_base);
7787 	return 0;
7788 }
7789 
7790 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp)
7791 {
7792 	struct bnxt_fw_health *fw_health = bp->fw_health;
7793 	struct hwrm_error_recovery_qcfg_output *resp;
7794 	struct hwrm_error_recovery_qcfg_input *req;
7795 	int rc, i;
7796 
7797 	if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY))
7798 		return 0;
7799 
7800 	rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG);
7801 	if (rc)
7802 		return rc;
7803 
7804 	resp = hwrm_req_hold(bp, req);
7805 	rc = hwrm_req_send(bp, req);
7806 	if (rc)
7807 		goto err_recovery_out;
7808 	fw_health->flags = le32_to_cpu(resp->flags);
7809 	if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) &&
7810 	    !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) {
7811 		rc = -EINVAL;
7812 		goto err_recovery_out;
7813 	}
7814 	fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq);
7815 	fw_health->master_func_wait_dsecs =
7816 		le32_to_cpu(resp->master_func_wait_period);
7817 	fw_health->normal_func_wait_dsecs =
7818 		le32_to_cpu(resp->normal_func_wait_period);
7819 	fw_health->post_reset_wait_dsecs =
7820 		le32_to_cpu(resp->master_func_wait_period_after_reset);
7821 	fw_health->post_reset_max_wait_dsecs =
7822 		le32_to_cpu(resp->max_bailout_time_after_reset);
7823 	fw_health->regs[BNXT_FW_HEALTH_REG] =
7824 		le32_to_cpu(resp->fw_health_status_reg);
7825 	fw_health->regs[BNXT_FW_HEARTBEAT_REG] =
7826 		le32_to_cpu(resp->fw_heartbeat_reg);
7827 	fw_health->regs[BNXT_FW_RESET_CNT_REG] =
7828 		le32_to_cpu(resp->fw_reset_cnt_reg);
7829 	fw_health->regs[BNXT_FW_RESET_INPROG_REG] =
7830 		le32_to_cpu(resp->reset_inprogress_reg);
7831 	fw_health->fw_reset_inprog_reg_mask =
7832 		le32_to_cpu(resp->reset_inprogress_reg_mask);
7833 	fw_health->fw_reset_seq_cnt = resp->reg_array_cnt;
7834 	if (fw_health->fw_reset_seq_cnt >= 16) {
7835 		rc = -EINVAL;
7836 		goto err_recovery_out;
7837 	}
7838 	for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) {
7839 		fw_health->fw_reset_seq_regs[i] =
7840 			le32_to_cpu(resp->reset_reg[i]);
7841 		fw_health->fw_reset_seq_vals[i] =
7842 			le32_to_cpu(resp->reset_reg_val[i]);
7843 		fw_health->fw_reset_seq_delay_msec[i] =
7844 			resp->delay_after_reset[i];
7845 	}
7846 err_recovery_out:
7847 	hwrm_req_drop(bp, req);
7848 	if (!rc)
7849 		rc = bnxt_map_fw_health_regs(bp);
7850 	if (rc)
7851 		bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY;
7852 	return rc;
7853 }
7854 
7855 static int bnxt_hwrm_func_reset(struct bnxt *bp)
7856 {
7857 	struct hwrm_func_reset_input *req;
7858 	int rc;
7859 
7860 	rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET);
7861 	if (rc)
7862 		return rc;
7863 
7864 	req->enables = 0;
7865 	hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT);
7866 	return hwrm_req_send(bp, req);
7867 }
7868 
7869 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp)
7870 {
7871 	struct hwrm_nvm_get_dev_info_output nvm_info;
7872 
7873 	if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info))
7874 		snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d",
7875 			 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min,
7876 			 nvm_info.nvm_cfg_ver_upd);
7877 }
7878 
7879 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
7880 {
7881 	struct hwrm_queue_qportcfg_output *resp;
7882 	struct hwrm_queue_qportcfg_input *req;
7883 	u8 i, j, *qptr;
7884 	bool no_rdma;
7885 	int rc = 0;
7886 
7887 	rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG);
7888 	if (rc)
7889 		return rc;
7890 
7891 	resp = hwrm_req_hold(bp, req);
7892 	rc = hwrm_req_send(bp, req);
7893 	if (rc)
7894 		goto qportcfg_exit;
7895 
7896 	if (!resp->max_configurable_queues) {
7897 		rc = -EINVAL;
7898 		goto qportcfg_exit;
7899 	}
7900 	bp->max_tc = resp->max_configurable_queues;
7901 	bp->max_lltc = resp->max_configurable_lossless_queues;
7902 	if (bp->max_tc > BNXT_MAX_QUEUE)
7903 		bp->max_tc = BNXT_MAX_QUEUE;
7904 
7905 	no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP);
7906 	qptr = &resp->queue_id0;
7907 	for (i = 0, j = 0; i < bp->max_tc; i++) {
7908 		bp->q_info[j].queue_id = *qptr;
7909 		bp->q_ids[i] = *qptr++;
7910 		bp->q_info[j].queue_profile = *qptr++;
7911 		bp->tc_to_qidx[j] = j;
7912 		if (!BNXT_CNPQ(bp->q_info[j].queue_profile) ||
7913 		    (no_rdma && BNXT_PF(bp)))
7914 			j++;
7915 	}
7916 	bp->max_q = bp->max_tc;
7917 	bp->max_tc = max_t(u8, j, 1);
7918 
7919 	if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
7920 		bp->max_tc = 1;
7921 
7922 	if (bp->max_lltc > bp->max_tc)
7923 		bp->max_lltc = bp->max_tc;
7924 
7925 qportcfg_exit:
7926 	hwrm_req_drop(bp, req);
7927 	return rc;
7928 }
7929 
7930 static int bnxt_hwrm_poll(struct bnxt *bp)
7931 {
7932 	struct hwrm_ver_get_input *req;
7933 	int rc;
7934 
7935 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
7936 	if (rc)
7937 		return rc;
7938 
7939 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
7940 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
7941 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
7942 
7943 	hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT);
7944 	rc = hwrm_req_send(bp, req);
7945 	return rc;
7946 }
7947 
7948 static int bnxt_hwrm_ver_get(struct bnxt *bp)
7949 {
7950 	struct hwrm_ver_get_output *resp;
7951 	struct hwrm_ver_get_input *req;
7952 	u16 fw_maj, fw_min, fw_bld, fw_rsv;
7953 	u32 dev_caps_cfg, hwrm_ver;
7954 	int rc, len;
7955 
7956 	rc = hwrm_req_init(bp, req, HWRM_VER_GET);
7957 	if (rc)
7958 		return rc;
7959 
7960 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
7961 	bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
7962 	req->hwrm_intf_maj = HWRM_VERSION_MAJOR;
7963 	req->hwrm_intf_min = HWRM_VERSION_MINOR;
7964 	req->hwrm_intf_upd = HWRM_VERSION_UPDATE;
7965 
7966 	resp = hwrm_req_hold(bp, req);
7967 	rc = hwrm_req_send(bp, req);
7968 	if (rc)
7969 		goto hwrm_ver_get_exit;
7970 
7971 	memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
7972 
7973 	bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 |
7974 			     resp->hwrm_intf_min_8b << 8 |
7975 			     resp->hwrm_intf_upd_8b;
7976 	if (resp->hwrm_intf_maj_8b < 1) {
7977 		netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
7978 			    resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7979 			    resp->hwrm_intf_upd_8b);
7980 		netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
7981 	}
7982 
7983 	hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 |
7984 			HWRM_VERSION_UPDATE;
7985 
7986 	if (bp->hwrm_spec_code > hwrm_ver)
7987 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7988 			 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR,
7989 			 HWRM_VERSION_UPDATE);
7990 	else
7991 		snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d",
7992 			 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b,
7993 			 resp->hwrm_intf_upd_8b);
7994 
7995 	fw_maj = le16_to_cpu(resp->hwrm_fw_major);
7996 	if (bp->hwrm_spec_code > 0x10803 && fw_maj) {
7997 		fw_min = le16_to_cpu(resp->hwrm_fw_minor);
7998 		fw_bld = le16_to_cpu(resp->hwrm_fw_build);
7999 		fw_rsv = le16_to_cpu(resp->hwrm_fw_patch);
8000 		len = FW_VER_STR_LEN;
8001 	} else {
8002 		fw_maj = resp->hwrm_fw_maj_8b;
8003 		fw_min = resp->hwrm_fw_min_8b;
8004 		fw_bld = resp->hwrm_fw_bld_8b;
8005 		fw_rsv = resp->hwrm_fw_rsvd_8b;
8006 		len = BC_HWRM_STR_LEN;
8007 	}
8008 	bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv);
8009 	snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld,
8010 		 fw_rsv);
8011 
8012 	if (strlen(resp->active_pkg_name)) {
8013 		int fw_ver_len = strlen(bp->fw_ver_str);
8014 
8015 		snprintf(bp->fw_ver_str + fw_ver_len,
8016 			 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s",
8017 			 resp->active_pkg_name);
8018 		bp->fw_cap |= BNXT_FW_CAP_PKG_VER;
8019 	}
8020 
8021 	bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
8022 	if (!bp->hwrm_cmd_timeout)
8023 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
8024 	bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000;
8025 	if (!bp->hwrm_cmd_max_timeout)
8026 		bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT;
8027 	else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT)
8028 		netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n",
8029 			    bp->hwrm_cmd_max_timeout / 1000);
8030 
8031 	if (resp->hwrm_intf_maj_8b >= 1) {
8032 		bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
8033 		bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len);
8034 	}
8035 	if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN)
8036 		bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN;
8037 
8038 	bp->chip_num = le16_to_cpu(resp->chip_num);
8039 	bp->chip_rev = resp->chip_rev;
8040 	if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
8041 	    !resp->chip_metal)
8042 		bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
8043 
8044 	dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg);
8045 	if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) &&
8046 	    (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED))
8047 		bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD;
8048 
8049 	if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED)
8050 		bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL;
8051 
8052 	if (dev_caps_cfg &
8053 	    VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED)
8054 		bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE;
8055 
8056 	if (dev_caps_cfg &
8057 	    VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED)
8058 		bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF;
8059 
8060 	if (dev_caps_cfg &
8061 	    VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED)
8062 		bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW;
8063 
8064 hwrm_ver_get_exit:
8065 	hwrm_req_drop(bp, req);
8066 	return rc;
8067 }
8068 
8069 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
8070 {
8071 	struct hwrm_fw_set_time_input *req;
8072 	struct tm tm;
8073 	time64_t now = ktime_get_real_seconds();
8074 	int rc;
8075 
8076 	if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) ||
8077 	    bp->hwrm_spec_code < 0x10400)
8078 		return -EOPNOTSUPP;
8079 
8080 	time64_to_tm(now, 0, &tm);
8081 	rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME);
8082 	if (rc)
8083 		return rc;
8084 
8085 	req->year = cpu_to_le16(1900 + tm.tm_year);
8086 	req->month = 1 + tm.tm_mon;
8087 	req->day = tm.tm_mday;
8088 	req->hour = tm.tm_hour;
8089 	req->minute = tm.tm_min;
8090 	req->second = tm.tm_sec;
8091 	return hwrm_req_send(bp, req);
8092 }
8093 
8094 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask)
8095 {
8096 	u64 sw_tmp;
8097 
8098 	hw &= mask;
8099 	sw_tmp = (*sw & ~mask) | hw;
8100 	if (hw < (*sw & mask))
8101 		sw_tmp += mask + 1;
8102 	WRITE_ONCE(*sw, sw_tmp);
8103 }
8104 
8105 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks,
8106 				    int count, bool ignore_zero)
8107 {
8108 	int i;
8109 
8110 	for (i = 0; i < count; i++) {
8111 		u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i]));
8112 
8113 		if (ignore_zero && !hw)
8114 			continue;
8115 
8116 		if (masks[i] == -1ULL)
8117 			sw_stats[i] = hw;
8118 		else
8119 			bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]);
8120 	}
8121 }
8122 
8123 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats)
8124 {
8125 	if (!stats->hw_stats)
8126 		return;
8127 
8128 	__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8129 				stats->hw_masks, stats->len / 8, false);
8130 }
8131 
8132 static void bnxt_accumulate_all_stats(struct bnxt *bp)
8133 {
8134 	struct bnxt_stats_mem *ring0_stats;
8135 	bool ignore_zero = false;
8136 	int i;
8137 
8138 	/* Chip bug.  Counter intermittently becomes 0. */
8139 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8140 		ignore_zero = true;
8141 
8142 	for (i = 0; i < bp->cp_nr_rings; i++) {
8143 		struct bnxt_napi *bnapi = bp->bnapi[i];
8144 		struct bnxt_cp_ring_info *cpr;
8145 		struct bnxt_stats_mem *stats;
8146 
8147 		cpr = &bnapi->cp_ring;
8148 		stats = &cpr->stats;
8149 		if (!i)
8150 			ring0_stats = stats;
8151 		__bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats,
8152 					ring0_stats->hw_masks,
8153 					ring0_stats->len / 8, ignore_zero);
8154 	}
8155 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
8156 		struct bnxt_stats_mem *stats = &bp->port_stats;
8157 		__le64 *hw_stats = stats->hw_stats;
8158 		u64 *sw_stats = stats->sw_stats;
8159 		u64 *masks = stats->hw_masks;
8160 		int cnt;
8161 
8162 		cnt = sizeof(struct rx_port_stats) / 8;
8163 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8164 
8165 		hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8166 		sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8167 		masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
8168 		cnt = sizeof(struct tx_port_stats) / 8;
8169 		__bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false);
8170 	}
8171 	if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) {
8172 		bnxt_accumulate_stats(&bp->rx_port_stats_ext);
8173 		bnxt_accumulate_stats(&bp->tx_port_stats_ext);
8174 	}
8175 }
8176 
8177 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags)
8178 {
8179 	struct hwrm_port_qstats_input *req;
8180 	struct bnxt_pf_info *pf = &bp->pf;
8181 	int rc;
8182 
8183 	if (!(bp->flags & BNXT_FLAG_PORT_STATS))
8184 		return 0;
8185 
8186 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8187 		return -EOPNOTSUPP;
8188 
8189 	rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS);
8190 	if (rc)
8191 		return rc;
8192 
8193 	req->flags = flags;
8194 	req->port_id = cpu_to_le16(pf->port_id);
8195 	req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map +
8196 					    BNXT_TX_PORT_STATS_BYTE_OFFSET);
8197 	req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map);
8198 	return hwrm_req_send(bp, req);
8199 }
8200 
8201 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags)
8202 {
8203 	struct hwrm_queue_pri2cos_qcfg_output *resp_qc;
8204 	struct hwrm_queue_pri2cos_qcfg_input *req_qc;
8205 	struct hwrm_port_qstats_ext_output *resp_qs;
8206 	struct hwrm_port_qstats_ext_input *req_qs;
8207 	struct bnxt_pf_info *pf = &bp->pf;
8208 	u32 tx_stat_size;
8209 	int rc;
8210 
8211 	if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT))
8212 		return 0;
8213 
8214 	if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))
8215 		return -EOPNOTSUPP;
8216 
8217 	rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT);
8218 	if (rc)
8219 		return rc;
8220 
8221 	req_qs->flags = flags;
8222 	req_qs->port_id = cpu_to_le16(pf->port_id);
8223 	req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext));
8224 	req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map);
8225 	tx_stat_size = bp->tx_port_stats_ext.hw_stats ?
8226 		       sizeof(struct tx_port_stats_ext) : 0;
8227 	req_qs->tx_stat_size = cpu_to_le16(tx_stat_size);
8228 	req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map);
8229 	resp_qs = hwrm_req_hold(bp, req_qs);
8230 	rc = hwrm_req_send(bp, req_qs);
8231 	if (!rc) {
8232 		bp->fw_rx_stats_ext_size =
8233 			le16_to_cpu(resp_qs->rx_stat_size) / 8;
8234 		if (BNXT_FW_MAJ(bp) < 220 &&
8235 		    bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY)
8236 			bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY;
8237 
8238 		bp->fw_tx_stats_ext_size = tx_stat_size ?
8239 			le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0;
8240 	} else {
8241 		bp->fw_rx_stats_ext_size = 0;
8242 		bp->fw_tx_stats_ext_size = 0;
8243 	}
8244 	hwrm_req_drop(bp, req_qs);
8245 
8246 	if (flags)
8247 		return rc;
8248 
8249 	if (bp->fw_tx_stats_ext_size <=
8250 	    offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) {
8251 		bp->pri2cos_valid = 0;
8252 		return rc;
8253 	}
8254 
8255 	rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG);
8256 	if (rc)
8257 		return rc;
8258 
8259 	req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN);
8260 
8261 	resp_qc = hwrm_req_hold(bp, req_qc);
8262 	rc = hwrm_req_send(bp, req_qc);
8263 	if (!rc) {
8264 		u8 *pri2cos;
8265 		int i, j;
8266 
8267 		pri2cos = &resp_qc->pri0_cos_queue_id;
8268 		for (i = 0; i < 8; i++) {
8269 			u8 queue_id = pri2cos[i];
8270 			u8 queue_idx;
8271 
8272 			/* Per port queue IDs start from 0, 10, 20, etc */
8273 			queue_idx = queue_id % 10;
8274 			if (queue_idx > BNXT_MAX_QUEUE) {
8275 				bp->pri2cos_valid = false;
8276 				hwrm_req_drop(bp, req_qc);
8277 				return rc;
8278 			}
8279 			for (j = 0; j < bp->max_q; j++) {
8280 				if (bp->q_ids[j] == queue_id)
8281 					bp->pri2cos_idx[i] = queue_idx;
8282 			}
8283 		}
8284 		bp->pri2cos_valid = true;
8285 	}
8286 	hwrm_req_drop(bp, req_qc);
8287 
8288 	return rc;
8289 }
8290 
8291 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
8292 {
8293 	bnxt_hwrm_tunnel_dst_port_free(bp,
8294 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
8295 	bnxt_hwrm_tunnel_dst_port_free(bp,
8296 		TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
8297 }
8298 
8299 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
8300 {
8301 	int rc, i;
8302 	u32 tpa_flags = 0;
8303 
8304 	if (set_tpa)
8305 		tpa_flags = bp->flags & BNXT_FLAG_TPA;
8306 	else if (BNXT_NO_FW_ACCESS(bp))
8307 		return 0;
8308 	for (i = 0; i < bp->nr_vnics; i++) {
8309 		rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
8310 		if (rc) {
8311 			netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
8312 				   i, rc);
8313 			return rc;
8314 		}
8315 	}
8316 	return 0;
8317 }
8318 
8319 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
8320 {
8321 	int i;
8322 
8323 	for (i = 0; i < bp->nr_vnics; i++)
8324 		bnxt_hwrm_vnic_set_rss(bp, i, false);
8325 }
8326 
8327 static void bnxt_clear_vnic(struct bnxt *bp)
8328 {
8329 	if (!bp->vnic_info)
8330 		return;
8331 
8332 	bnxt_hwrm_clear_vnic_filter(bp);
8333 	if (!(bp->flags & BNXT_FLAG_CHIP_P5)) {
8334 		/* clear all RSS setting before free vnic ctx */
8335 		bnxt_hwrm_clear_vnic_rss(bp);
8336 		bnxt_hwrm_vnic_ctx_free(bp);
8337 	}
8338 	/* before free the vnic, undo the vnic tpa settings */
8339 	if (bp->flags & BNXT_FLAG_TPA)
8340 		bnxt_set_tpa(bp, false);
8341 	bnxt_hwrm_vnic_free(bp);
8342 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8343 		bnxt_hwrm_vnic_ctx_free(bp);
8344 }
8345 
8346 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
8347 				    bool irq_re_init)
8348 {
8349 	bnxt_clear_vnic(bp);
8350 	bnxt_hwrm_ring_free(bp, close_path);
8351 	bnxt_hwrm_ring_grp_free(bp);
8352 	if (irq_re_init) {
8353 		bnxt_hwrm_stat_ctx_free(bp);
8354 		bnxt_hwrm_free_tunnel_ports(bp);
8355 	}
8356 }
8357 
8358 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode)
8359 {
8360 	struct hwrm_func_cfg_input *req;
8361 	u8 evb_mode;
8362 	int rc;
8363 
8364 	if (br_mode == BRIDGE_MODE_VEB)
8365 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB;
8366 	else if (br_mode == BRIDGE_MODE_VEPA)
8367 		evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA;
8368 	else
8369 		return -EINVAL;
8370 
8371 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8372 	if (rc)
8373 		return rc;
8374 
8375 	req->fid = cpu_to_le16(0xffff);
8376 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE);
8377 	req->evb_mode = evb_mode;
8378 	return hwrm_req_send(bp, req);
8379 }
8380 
8381 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size)
8382 {
8383 	struct hwrm_func_cfg_input *req;
8384 	int rc;
8385 
8386 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803)
8387 		return 0;
8388 
8389 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
8390 	if (rc)
8391 		return rc;
8392 
8393 	req->fid = cpu_to_le16(0xffff);
8394 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE);
8395 	req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64;
8396 	if (size == 128)
8397 		req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128;
8398 
8399 	return hwrm_req_send(bp, req);
8400 }
8401 
8402 static int __bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8403 {
8404 	struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
8405 	int rc;
8406 
8407 	if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG)
8408 		goto skip_rss_ctx;
8409 
8410 	/* allocate context for vnic */
8411 	rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
8412 	if (rc) {
8413 		netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8414 			   vnic_id, rc);
8415 		goto vnic_setup_err;
8416 	}
8417 	bp->rsscos_nr_ctxs++;
8418 
8419 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8420 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
8421 		if (rc) {
8422 			netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
8423 				   vnic_id, rc);
8424 			goto vnic_setup_err;
8425 		}
8426 		bp->rsscos_nr_ctxs++;
8427 	}
8428 
8429 skip_rss_ctx:
8430 	/* configure default vnic, ring grp */
8431 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8432 	if (rc) {
8433 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8434 			   vnic_id, rc);
8435 		goto vnic_setup_err;
8436 	}
8437 
8438 	/* Enable RSS hashing on vnic */
8439 	rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
8440 	if (rc) {
8441 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
8442 			   vnic_id, rc);
8443 		goto vnic_setup_err;
8444 	}
8445 
8446 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8447 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8448 		if (rc) {
8449 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8450 				   vnic_id, rc);
8451 		}
8452 	}
8453 
8454 vnic_setup_err:
8455 	return rc;
8456 }
8457 
8458 static int __bnxt_setup_vnic_p5(struct bnxt *bp, u16 vnic_id)
8459 {
8460 	int rc, i, nr_ctxs;
8461 
8462 	nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings);
8463 	for (i = 0; i < nr_ctxs; i++) {
8464 		rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, i);
8465 		if (rc) {
8466 			netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n",
8467 				   vnic_id, i, rc);
8468 			break;
8469 		}
8470 		bp->rsscos_nr_ctxs++;
8471 	}
8472 	if (i < nr_ctxs)
8473 		return -ENOMEM;
8474 
8475 	rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic_id, true);
8476 	if (rc) {
8477 		netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n",
8478 			   vnic_id, rc);
8479 		return rc;
8480 	}
8481 	rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
8482 	if (rc) {
8483 		netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
8484 			   vnic_id, rc);
8485 		return rc;
8486 	}
8487 	if (bp->flags & BNXT_FLAG_AGG_RINGS) {
8488 		rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
8489 		if (rc) {
8490 			netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
8491 				   vnic_id, rc);
8492 		}
8493 	}
8494 	return rc;
8495 }
8496 
8497 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
8498 {
8499 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8500 		return __bnxt_setup_vnic_p5(bp, vnic_id);
8501 	else
8502 		return __bnxt_setup_vnic(bp, vnic_id);
8503 }
8504 
8505 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
8506 {
8507 #ifdef CONFIG_RFS_ACCEL
8508 	int i, rc = 0;
8509 
8510 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8511 		return 0;
8512 
8513 	for (i = 0; i < bp->rx_nr_rings; i++) {
8514 		struct bnxt_vnic_info *vnic;
8515 		u16 vnic_id = i + 1;
8516 		u16 ring_id = i;
8517 
8518 		if (vnic_id >= bp->nr_vnics)
8519 			break;
8520 
8521 		vnic = &bp->vnic_info[vnic_id];
8522 		vnic->flags |= BNXT_VNIC_RFS_FLAG;
8523 		if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
8524 			vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG;
8525 		rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
8526 		if (rc) {
8527 			netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
8528 				   vnic_id, rc);
8529 			break;
8530 		}
8531 		rc = bnxt_setup_vnic(bp, vnic_id);
8532 		if (rc)
8533 			break;
8534 	}
8535 	return rc;
8536 #else
8537 	return 0;
8538 #endif
8539 }
8540 
8541 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */
8542 static bool bnxt_promisc_ok(struct bnxt *bp)
8543 {
8544 #ifdef CONFIG_BNXT_SRIOV
8545 	if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf))
8546 		return false;
8547 #endif
8548 	return true;
8549 }
8550 
8551 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
8552 {
8553 	unsigned int rc = 0;
8554 
8555 	rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
8556 	if (rc) {
8557 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8558 			   rc);
8559 		return rc;
8560 	}
8561 
8562 	rc = bnxt_hwrm_vnic_cfg(bp, 1);
8563 	if (rc) {
8564 		netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
8565 			   rc);
8566 		return rc;
8567 	}
8568 	return rc;
8569 }
8570 
8571 static int bnxt_cfg_rx_mode(struct bnxt *);
8572 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
8573 
8574 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
8575 {
8576 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
8577 	int rc = 0;
8578 	unsigned int rx_nr_rings = bp->rx_nr_rings;
8579 
8580 	if (irq_re_init) {
8581 		rc = bnxt_hwrm_stat_ctx_alloc(bp);
8582 		if (rc) {
8583 			netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
8584 				   rc);
8585 			goto err_out;
8586 		}
8587 	}
8588 
8589 	rc = bnxt_hwrm_ring_alloc(bp);
8590 	if (rc) {
8591 		netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
8592 		goto err_out;
8593 	}
8594 
8595 	rc = bnxt_hwrm_ring_grp_alloc(bp);
8596 	if (rc) {
8597 		netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
8598 		goto err_out;
8599 	}
8600 
8601 	if (BNXT_CHIP_TYPE_NITRO_A0(bp))
8602 		rx_nr_rings--;
8603 
8604 	/* default vnic 0 */
8605 	rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
8606 	if (rc) {
8607 		netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
8608 		goto err_out;
8609 	}
8610 
8611 	rc = bnxt_setup_vnic(bp, 0);
8612 	if (rc)
8613 		goto err_out;
8614 
8615 	if (bp->flags & BNXT_FLAG_RFS) {
8616 		rc = bnxt_alloc_rfs_vnics(bp);
8617 		if (rc)
8618 			goto err_out;
8619 	}
8620 
8621 	if (bp->flags & BNXT_FLAG_TPA) {
8622 		rc = bnxt_set_tpa(bp, true);
8623 		if (rc)
8624 			goto err_out;
8625 	}
8626 
8627 	if (BNXT_VF(bp))
8628 		bnxt_update_vf_mac(bp);
8629 
8630 	/* Filter for default vnic 0 */
8631 	rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
8632 	if (rc) {
8633 		if (BNXT_VF(bp) && rc == -ENODEV)
8634 			netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n");
8635 		else
8636 			netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
8637 		goto err_out;
8638 	}
8639 	vnic->uc_filter_count = 1;
8640 
8641 	vnic->rx_mask = 0;
8642 	if (bp->dev->flags & IFF_BROADCAST)
8643 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
8644 
8645 	if (bp->dev->flags & IFF_PROMISC)
8646 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
8647 
8648 	if (bp->dev->flags & IFF_ALLMULTI) {
8649 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
8650 		vnic->mc_list_count = 0;
8651 	} else {
8652 		u32 mask = 0;
8653 
8654 		bnxt_mc_list_updated(bp, &mask);
8655 		vnic->rx_mask |= mask;
8656 	}
8657 
8658 	rc = bnxt_cfg_rx_mode(bp);
8659 	if (rc)
8660 		goto err_out;
8661 
8662 	rc = bnxt_hwrm_set_coal(bp);
8663 	if (rc)
8664 		netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
8665 				rc);
8666 
8667 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
8668 		rc = bnxt_setup_nitroa0_vnic(bp);
8669 		if (rc)
8670 			netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
8671 				   rc);
8672 	}
8673 
8674 	if (BNXT_VF(bp)) {
8675 		bnxt_hwrm_func_qcfg(bp);
8676 		netdev_update_features(bp->dev);
8677 	}
8678 
8679 	return 0;
8680 
8681 err_out:
8682 	bnxt_hwrm_resource_free(bp, 0, true);
8683 
8684 	return rc;
8685 }
8686 
8687 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
8688 {
8689 	bnxt_hwrm_resource_free(bp, 1, irq_re_init);
8690 	return 0;
8691 }
8692 
8693 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
8694 {
8695 	bnxt_init_cp_rings(bp);
8696 	bnxt_init_rx_rings(bp);
8697 	bnxt_init_tx_rings(bp);
8698 	bnxt_init_ring_grps(bp, irq_re_init);
8699 	bnxt_init_vnics(bp);
8700 
8701 	return bnxt_init_chip(bp, irq_re_init);
8702 }
8703 
8704 static int bnxt_set_real_num_queues(struct bnxt *bp)
8705 {
8706 	int rc;
8707 	struct net_device *dev = bp->dev;
8708 
8709 	rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings -
8710 					  bp->tx_nr_rings_xdp);
8711 	if (rc)
8712 		return rc;
8713 
8714 	rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
8715 	if (rc)
8716 		return rc;
8717 
8718 #ifdef CONFIG_RFS_ACCEL
8719 	if (bp->flags & BNXT_FLAG_RFS)
8720 		dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
8721 #endif
8722 
8723 	return rc;
8724 }
8725 
8726 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
8727 			   bool shared)
8728 {
8729 	int _rx = *rx, _tx = *tx;
8730 
8731 	if (shared) {
8732 		*rx = min_t(int, _rx, max);
8733 		*tx = min_t(int, _tx, max);
8734 	} else {
8735 		if (max < 2)
8736 			return -ENOMEM;
8737 
8738 		while (_rx + _tx > max) {
8739 			if (_rx > _tx && _rx > 1)
8740 				_rx--;
8741 			else if (_tx > 1)
8742 				_tx--;
8743 		}
8744 		*rx = _rx;
8745 		*tx = _tx;
8746 	}
8747 	return 0;
8748 }
8749 
8750 static void bnxt_setup_msix(struct bnxt *bp)
8751 {
8752 	const int len = sizeof(bp->irq_tbl[0].name);
8753 	struct net_device *dev = bp->dev;
8754 	int tcs, i;
8755 
8756 	tcs = netdev_get_num_tc(dev);
8757 	if (tcs) {
8758 		int i, off, count;
8759 
8760 		for (i = 0; i < tcs; i++) {
8761 			count = bp->tx_nr_rings_per_tc;
8762 			off = i * count;
8763 			netdev_set_tc_queue(dev, i, count, off);
8764 		}
8765 	}
8766 
8767 	for (i = 0; i < bp->cp_nr_rings; i++) {
8768 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
8769 		char *attr;
8770 
8771 		if (bp->flags & BNXT_FLAG_SHARED_RINGS)
8772 			attr = "TxRx";
8773 		else if (i < bp->rx_nr_rings)
8774 			attr = "rx";
8775 		else
8776 			attr = "tx";
8777 
8778 		snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name,
8779 			 attr, i);
8780 		bp->irq_tbl[map_idx].handler = bnxt_msix;
8781 	}
8782 }
8783 
8784 static void bnxt_setup_inta(struct bnxt *bp)
8785 {
8786 	const int len = sizeof(bp->irq_tbl[0].name);
8787 
8788 	if (netdev_get_num_tc(bp->dev))
8789 		netdev_reset_tc(bp->dev);
8790 
8791 	snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
8792 		 0);
8793 	bp->irq_tbl[0].handler = bnxt_inta;
8794 }
8795 
8796 static int bnxt_init_int_mode(struct bnxt *bp);
8797 
8798 static int bnxt_setup_int_mode(struct bnxt *bp)
8799 {
8800 	int rc;
8801 
8802 	if (!bp->irq_tbl) {
8803 		rc = bnxt_init_int_mode(bp);
8804 		if (rc || !bp->irq_tbl)
8805 			return rc ?: -ENODEV;
8806 	}
8807 
8808 	if (bp->flags & BNXT_FLAG_USING_MSIX)
8809 		bnxt_setup_msix(bp);
8810 	else
8811 		bnxt_setup_inta(bp);
8812 
8813 	rc = bnxt_set_real_num_queues(bp);
8814 	return rc;
8815 }
8816 
8817 #ifdef CONFIG_RFS_ACCEL
8818 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp)
8819 {
8820 	return bp->hw_resc.max_rsscos_ctxs;
8821 }
8822 
8823 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp)
8824 {
8825 	return bp->hw_resc.max_vnics;
8826 }
8827 #endif
8828 
8829 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
8830 {
8831 	return bp->hw_resc.max_stat_ctxs;
8832 }
8833 
8834 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
8835 {
8836 	return bp->hw_resc.max_cp_rings;
8837 }
8838 
8839 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp)
8840 {
8841 	unsigned int cp = bp->hw_resc.max_cp_rings;
8842 
8843 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8844 		cp -= bnxt_get_ulp_msix_num(bp);
8845 
8846 	return cp;
8847 }
8848 
8849 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
8850 {
8851 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
8852 
8853 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8854 		return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs);
8855 
8856 	return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings);
8857 }
8858 
8859 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
8860 {
8861 	bp->hw_resc.max_irqs = max_irqs;
8862 }
8863 
8864 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp)
8865 {
8866 	unsigned int cp;
8867 
8868 	cp = bnxt_get_max_func_cp_rings_for_en(bp);
8869 	if (bp->flags & BNXT_FLAG_CHIP_P5)
8870 		return cp - bp->rx_nr_rings - bp->tx_nr_rings;
8871 	else
8872 		return cp - bp->cp_nr_rings;
8873 }
8874 
8875 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp)
8876 {
8877 	return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp);
8878 }
8879 
8880 int bnxt_get_avail_msix(struct bnxt *bp, int num)
8881 {
8882 	int max_cp = bnxt_get_max_func_cp_rings(bp);
8883 	int max_irq = bnxt_get_max_func_irqs(bp);
8884 	int total_req = bp->cp_nr_rings + num;
8885 	int max_idx, avail_msix;
8886 
8887 	max_idx = bp->total_irqs;
8888 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
8889 		max_idx = min_t(int, bp->total_irqs, max_cp);
8890 	avail_msix = max_idx - bp->cp_nr_rings;
8891 	if (!BNXT_NEW_RM(bp) || avail_msix >= num)
8892 		return avail_msix;
8893 
8894 	if (max_irq < total_req) {
8895 		num = max_irq - bp->cp_nr_rings;
8896 		if (num <= 0)
8897 			return 0;
8898 	}
8899 	return num;
8900 }
8901 
8902 static int bnxt_get_num_msix(struct bnxt *bp)
8903 {
8904 	if (!BNXT_NEW_RM(bp))
8905 		return bnxt_get_max_func_irqs(bp);
8906 
8907 	return bnxt_nq_rings_in_use(bp);
8908 }
8909 
8910 static int bnxt_init_msix(struct bnxt *bp)
8911 {
8912 	int i, total_vecs, max, rc = 0, min = 1, ulp_msix;
8913 	struct msix_entry *msix_ent;
8914 
8915 	total_vecs = bnxt_get_num_msix(bp);
8916 	max = bnxt_get_max_func_irqs(bp);
8917 	if (total_vecs > max)
8918 		total_vecs = max;
8919 
8920 	if (!total_vecs)
8921 		return 0;
8922 
8923 	msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
8924 	if (!msix_ent)
8925 		return -ENOMEM;
8926 
8927 	for (i = 0; i < total_vecs; i++) {
8928 		msix_ent[i].entry = i;
8929 		msix_ent[i].vector = 0;
8930 	}
8931 
8932 	if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
8933 		min = 2;
8934 
8935 	total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
8936 	ulp_msix = bnxt_get_ulp_msix_num(bp);
8937 	if (total_vecs < 0 || total_vecs < ulp_msix) {
8938 		rc = -ENODEV;
8939 		goto msix_setup_exit;
8940 	}
8941 
8942 	bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
8943 	if (bp->irq_tbl) {
8944 		for (i = 0; i < total_vecs; i++)
8945 			bp->irq_tbl[i].vector = msix_ent[i].vector;
8946 
8947 		bp->total_irqs = total_vecs;
8948 		/* Trim rings based upon num of vectors allocated */
8949 		rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
8950 				     total_vecs - ulp_msix, min == 1);
8951 		if (rc)
8952 			goto msix_setup_exit;
8953 
8954 		bp->cp_nr_rings = (min == 1) ?
8955 				  max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
8956 				  bp->tx_nr_rings + bp->rx_nr_rings;
8957 
8958 	} else {
8959 		rc = -ENOMEM;
8960 		goto msix_setup_exit;
8961 	}
8962 	bp->flags |= BNXT_FLAG_USING_MSIX;
8963 	kfree(msix_ent);
8964 	return 0;
8965 
8966 msix_setup_exit:
8967 	netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
8968 	kfree(bp->irq_tbl);
8969 	bp->irq_tbl = NULL;
8970 	pci_disable_msix(bp->pdev);
8971 	kfree(msix_ent);
8972 	return rc;
8973 }
8974 
8975 static int bnxt_init_inta(struct bnxt *bp)
8976 {
8977 	bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL);
8978 	if (!bp->irq_tbl)
8979 		return -ENOMEM;
8980 
8981 	bp->total_irqs = 1;
8982 	bp->rx_nr_rings = 1;
8983 	bp->tx_nr_rings = 1;
8984 	bp->cp_nr_rings = 1;
8985 	bp->flags |= BNXT_FLAG_SHARED_RINGS;
8986 	bp->irq_tbl[0].vector = bp->pdev->irq;
8987 	return 0;
8988 }
8989 
8990 static int bnxt_init_int_mode(struct bnxt *bp)
8991 {
8992 	int rc = -ENODEV;
8993 
8994 	if (bp->flags & BNXT_FLAG_MSIX_CAP)
8995 		rc = bnxt_init_msix(bp);
8996 
8997 	if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
8998 		/* fallback to INTA */
8999 		rc = bnxt_init_inta(bp);
9000 	}
9001 	return rc;
9002 }
9003 
9004 static void bnxt_clear_int_mode(struct bnxt *bp)
9005 {
9006 	if (bp->flags & BNXT_FLAG_USING_MSIX)
9007 		pci_disable_msix(bp->pdev);
9008 
9009 	kfree(bp->irq_tbl);
9010 	bp->irq_tbl = NULL;
9011 	bp->flags &= ~BNXT_FLAG_USING_MSIX;
9012 }
9013 
9014 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init)
9015 {
9016 	int tcs = netdev_get_num_tc(bp->dev);
9017 	bool irq_cleared = false;
9018 	int rc;
9019 
9020 	if (!bnxt_need_reserve_rings(bp))
9021 		return 0;
9022 
9023 	if (irq_re_init && BNXT_NEW_RM(bp) &&
9024 	    bnxt_get_num_msix(bp) != bp->total_irqs) {
9025 		bnxt_ulp_irq_stop(bp);
9026 		bnxt_clear_int_mode(bp);
9027 		irq_cleared = true;
9028 	}
9029 	rc = __bnxt_reserve_rings(bp);
9030 	if (irq_cleared) {
9031 		if (!rc)
9032 			rc = bnxt_init_int_mode(bp);
9033 		bnxt_ulp_irq_restart(bp, rc);
9034 	}
9035 	if (rc) {
9036 		netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc);
9037 		return rc;
9038 	}
9039 	if (tcs && (bp->tx_nr_rings_per_tc * tcs != bp->tx_nr_rings)) {
9040 		netdev_err(bp->dev, "tx ring reservation failure\n");
9041 		netdev_reset_tc(bp->dev);
9042 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
9043 		return -ENOMEM;
9044 	}
9045 	return 0;
9046 }
9047 
9048 static void bnxt_free_irq(struct bnxt *bp)
9049 {
9050 	struct bnxt_irq *irq;
9051 	int i;
9052 
9053 #ifdef CONFIG_RFS_ACCEL
9054 	free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
9055 	bp->dev->rx_cpu_rmap = NULL;
9056 #endif
9057 	if (!bp->irq_tbl || !bp->bnapi)
9058 		return;
9059 
9060 	for (i = 0; i < bp->cp_nr_rings; i++) {
9061 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9062 
9063 		irq = &bp->irq_tbl[map_idx];
9064 		if (irq->requested) {
9065 			if (irq->have_cpumask) {
9066 				irq_set_affinity_hint(irq->vector, NULL);
9067 				free_cpumask_var(irq->cpu_mask);
9068 				irq->have_cpumask = 0;
9069 			}
9070 			free_irq(irq->vector, bp->bnapi[i]);
9071 		}
9072 
9073 		irq->requested = 0;
9074 	}
9075 }
9076 
9077 static int bnxt_request_irq(struct bnxt *bp)
9078 {
9079 	int i, j, rc = 0;
9080 	unsigned long flags = 0;
9081 #ifdef CONFIG_RFS_ACCEL
9082 	struct cpu_rmap *rmap;
9083 #endif
9084 
9085 	rc = bnxt_setup_int_mode(bp);
9086 	if (rc) {
9087 		netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
9088 			   rc);
9089 		return rc;
9090 	}
9091 #ifdef CONFIG_RFS_ACCEL
9092 	rmap = bp->dev->rx_cpu_rmap;
9093 #endif
9094 	if (!(bp->flags & BNXT_FLAG_USING_MSIX))
9095 		flags = IRQF_SHARED;
9096 
9097 	for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
9098 		int map_idx = bnxt_cp_num_to_irq_num(bp, i);
9099 		struct bnxt_irq *irq = &bp->irq_tbl[map_idx];
9100 
9101 #ifdef CONFIG_RFS_ACCEL
9102 		if (rmap && bp->bnapi[i]->rx_ring) {
9103 			rc = irq_cpu_rmap_add(rmap, irq->vector);
9104 			if (rc)
9105 				netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
9106 					    j);
9107 			j++;
9108 		}
9109 #endif
9110 		rc = request_irq(irq->vector, irq->handler, flags, irq->name,
9111 				 bp->bnapi[i]);
9112 		if (rc)
9113 			break;
9114 
9115 		irq->requested = 1;
9116 
9117 		if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) {
9118 			int numa_node = dev_to_node(&bp->pdev->dev);
9119 
9120 			irq->have_cpumask = 1;
9121 			cpumask_set_cpu(cpumask_local_spread(i, numa_node),
9122 					irq->cpu_mask);
9123 			rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask);
9124 			if (rc) {
9125 				netdev_warn(bp->dev,
9126 					    "Set affinity failed, IRQ = %d\n",
9127 					    irq->vector);
9128 				break;
9129 			}
9130 		}
9131 	}
9132 	return rc;
9133 }
9134 
9135 static void bnxt_del_napi(struct bnxt *bp)
9136 {
9137 	int i;
9138 
9139 	if (!bp->bnapi)
9140 		return;
9141 
9142 	for (i = 0; i < bp->cp_nr_rings; i++) {
9143 		struct bnxt_napi *bnapi = bp->bnapi[i];
9144 
9145 		__netif_napi_del(&bnapi->napi);
9146 	}
9147 	/* We called __netif_napi_del(), we need
9148 	 * to respect an RCU grace period before freeing napi structures.
9149 	 */
9150 	synchronize_net();
9151 }
9152 
9153 static void bnxt_init_napi(struct bnxt *bp)
9154 {
9155 	int i;
9156 	unsigned int cp_nr_rings = bp->cp_nr_rings;
9157 	struct bnxt_napi *bnapi;
9158 
9159 	if (bp->flags & BNXT_FLAG_USING_MSIX) {
9160 		int (*poll_fn)(struct napi_struct *, int) = bnxt_poll;
9161 
9162 		if (bp->flags & BNXT_FLAG_CHIP_P5)
9163 			poll_fn = bnxt_poll_p5;
9164 		else if (BNXT_CHIP_TYPE_NITRO_A0(bp))
9165 			cp_nr_rings--;
9166 		for (i = 0; i < cp_nr_rings; i++) {
9167 			bnapi = bp->bnapi[i];
9168 			netif_napi_add(bp->dev, &bnapi->napi, poll_fn, 64);
9169 		}
9170 		if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
9171 			bnapi = bp->bnapi[cp_nr_rings];
9172 			netif_napi_add(bp->dev, &bnapi->napi,
9173 				       bnxt_poll_nitroa0, 64);
9174 		}
9175 	} else {
9176 		bnapi = bp->bnapi[0];
9177 		netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
9178 	}
9179 }
9180 
9181 static void bnxt_disable_napi(struct bnxt *bp)
9182 {
9183 	int i;
9184 
9185 	if (!bp->bnapi ||
9186 	    test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state))
9187 		return;
9188 
9189 	for (i = 0; i < bp->cp_nr_rings; i++) {
9190 		struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring;
9191 
9192 		napi_disable(&bp->bnapi[i]->napi);
9193 		if (bp->bnapi[i]->rx_ring)
9194 			cancel_work_sync(&cpr->dim.work);
9195 	}
9196 }
9197 
9198 static void bnxt_enable_napi(struct bnxt *bp)
9199 {
9200 	int i;
9201 
9202 	clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state);
9203 	for (i = 0; i < bp->cp_nr_rings; i++) {
9204 		struct bnxt_napi *bnapi = bp->bnapi[i];
9205 		struct bnxt_cp_ring_info *cpr;
9206 
9207 		cpr = &bnapi->cp_ring;
9208 		if (bnapi->in_reset)
9209 			cpr->sw_stats.rx.rx_resets++;
9210 		bnapi->in_reset = false;
9211 
9212 		if (bnapi->rx_ring) {
9213 			INIT_WORK(&cpr->dim.work, bnxt_dim_work);
9214 			cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
9215 		}
9216 		napi_enable(&bnapi->napi);
9217 	}
9218 }
9219 
9220 void bnxt_tx_disable(struct bnxt *bp)
9221 {
9222 	int i;
9223 	struct bnxt_tx_ring_info *txr;
9224 
9225 	if (bp->tx_ring) {
9226 		for (i = 0; i < bp->tx_nr_rings; i++) {
9227 			txr = &bp->tx_ring[i];
9228 			WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING);
9229 		}
9230 	}
9231 	/* Make sure napi polls see @dev_state change */
9232 	synchronize_net();
9233 	/* Drop carrier first to prevent TX timeout */
9234 	netif_carrier_off(bp->dev);
9235 	/* Stop all TX queues */
9236 	netif_tx_disable(bp->dev);
9237 }
9238 
9239 void bnxt_tx_enable(struct bnxt *bp)
9240 {
9241 	int i;
9242 	struct bnxt_tx_ring_info *txr;
9243 
9244 	for (i = 0; i < bp->tx_nr_rings; i++) {
9245 		txr = &bp->tx_ring[i];
9246 		WRITE_ONCE(txr->dev_state, 0);
9247 	}
9248 	/* Make sure napi polls see @dev_state change */
9249 	synchronize_net();
9250 	netif_tx_wake_all_queues(bp->dev);
9251 	if (bp->link_info.link_up)
9252 		netif_carrier_on(bp->dev);
9253 }
9254 
9255 static char *bnxt_report_fec(struct bnxt_link_info *link_info)
9256 {
9257 	u8 active_fec = link_info->active_fec_sig_mode &
9258 			PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK;
9259 
9260 	switch (active_fec) {
9261 	default:
9262 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE:
9263 		return "None";
9264 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE:
9265 		return "Clause 74 BaseR";
9266 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE:
9267 		return "Clause 91 RS(528,514)";
9268 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE:
9269 		return "Clause 91 RS544_1XN";
9270 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE:
9271 		return "Clause 91 RS(544,514)";
9272 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE:
9273 		return "Clause 91 RS272_1XN";
9274 	case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE:
9275 		return "Clause 91 RS(272,257)";
9276 	}
9277 }
9278 
9279 void bnxt_report_link(struct bnxt *bp)
9280 {
9281 	if (bp->link_info.link_up) {
9282 		const char *signal = "";
9283 		const char *flow_ctrl;
9284 		const char *duplex;
9285 		u32 speed;
9286 		u16 fec;
9287 
9288 		netif_carrier_on(bp->dev);
9289 		speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
9290 		if (speed == SPEED_UNKNOWN) {
9291 			netdev_info(bp->dev, "NIC Link is Up, speed unknown\n");
9292 			return;
9293 		}
9294 		if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
9295 			duplex = "full";
9296 		else
9297 			duplex = "half";
9298 		if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
9299 			flow_ctrl = "ON - receive & transmit";
9300 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
9301 			flow_ctrl = "ON - transmit";
9302 		else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
9303 			flow_ctrl = "ON - receive";
9304 		else
9305 			flow_ctrl = "none";
9306 		if (bp->link_info.phy_qcfg_resp.option_flags &
9307 		    PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) {
9308 			u8 sig_mode = bp->link_info.active_fec_sig_mode &
9309 				      PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK;
9310 			switch (sig_mode) {
9311 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ:
9312 				signal = "(NRZ) ";
9313 				break;
9314 			case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4:
9315 				signal = "(PAM4) ";
9316 				break;
9317 			default:
9318 				break;
9319 			}
9320 		}
9321 		netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n",
9322 			    speed, signal, duplex, flow_ctrl);
9323 		if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP)
9324 			netdev_info(bp->dev, "EEE is %s\n",
9325 				    bp->eee.eee_active ? "active" :
9326 							 "not active");
9327 		fec = bp->link_info.fec_cfg;
9328 		if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED))
9329 			netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n",
9330 				    (fec & BNXT_FEC_AUTONEG) ? "on" : "off",
9331 				    bnxt_report_fec(&bp->link_info));
9332 	} else {
9333 		netif_carrier_off(bp->dev);
9334 		netdev_err(bp->dev, "NIC Link is Down\n");
9335 	}
9336 }
9337 
9338 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp)
9339 {
9340 	if (!resp->supported_speeds_auto_mode &&
9341 	    !resp->supported_speeds_force_mode &&
9342 	    !resp->supported_pam4_speeds_auto_mode &&
9343 	    !resp->supported_pam4_speeds_force_mode)
9344 		return true;
9345 	return false;
9346 }
9347 
9348 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
9349 {
9350 	struct bnxt_link_info *link_info = &bp->link_info;
9351 	struct hwrm_port_phy_qcaps_output *resp;
9352 	struct hwrm_port_phy_qcaps_input *req;
9353 	int rc = 0;
9354 
9355 	if (bp->hwrm_spec_code < 0x10201)
9356 		return 0;
9357 
9358 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS);
9359 	if (rc)
9360 		return rc;
9361 
9362 	resp = hwrm_req_hold(bp, req);
9363 	rc = hwrm_req_send(bp, req);
9364 	if (rc)
9365 		goto hwrm_phy_qcaps_exit;
9366 
9367 	bp->phy_flags = resp->flags;
9368 	if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) {
9369 		struct ethtool_eee *eee = &bp->eee;
9370 		u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
9371 
9372 		eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9373 		bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
9374 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
9375 		bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
9376 				 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
9377 	}
9378 
9379 	if (bp->hwrm_spec_code >= 0x10a01) {
9380 		if (bnxt_phy_qcaps_no_speed(resp)) {
9381 			link_info->phy_state = BNXT_PHY_STATE_DISABLED;
9382 			netdev_warn(bp->dev, "Ethernet link disabled\n");
9383 		} else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) {
9384 			link_info->phy_state = BNXT_PHY_STATE_ENABLED;
9385 			netdev_info(bp->dev, "Ethernet link enabled\n");
9386 			/* Phy re-enabled, reprobe the speeds */
9387 			link_info->support_auto_speeds = 0;
9388 			link_info->support_pam4_auto_speeds = 0;
9389 		}
9390 	}
9391 	if (resp->supported_speeds_auto_mode)
9392 		link_info->support_auto_speeds =
9393 			le16_to_cpu(resp->supported_speeds_auto_mode);
9394 	if (resp->supported_pam4_speeds_auto_mode)
9395 		link_info->support_pam4_auto_speeds =
9396 			le16_to_cpu(resp->supported_pam4_speeds_auto_mode);
9397 
9398 	bp->port_count = resp->port_cnt;
9399 
9400 hwrm_phy_qcaps_exit:
9401 	hwrm_req_drop(bp, req);
9402 	return rc;
9403 }
9404 
9405 static bool bnxt_support_dropped(u16 advertising, u16 supported)
9406 {
9407 	u16 diff = advertising ^ supported;
9408 
9409 	return ((supported | diff) != supported);
9410 }
9411 
9412 int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
9413 {
9414 	struct bnxt_link_info *link_info = &bp->link_info;
9415 	struct hwrm_port_phy_qcfg_output *resp;
9416 	struct hwrm_port_phy_qcfg_input *req;
9417 	u8 link_up = link_info->link_up;
9418 	bool support_changed = false;
9419 	int rc;
9420 
9421 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG);
9422 	if (rc)
9423 		return rc;
9424 
9425 	resp = hwrm_req_hold(bp, req);
9426 	rc = hwrm_req_send(bp, req);
9427 	if (rc) {
9428 		hwrm_req_drop(bp, req);
9429 		if (BNXT_VF(bp) && rc == -ENODEV) {
9430 			netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n");
9431 			rc = 0;
9432 		}
9433 		return rc;
9434 	}
9435 
9436 	memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
9437 	link_info->phy_link_status = resp->link;
9438 	link_info->duplex = resp->duplex_cfg;
9439 	if (bp->hwrm_spec_code >= 0x10800)
9440 		link_info->duplex = resp->duplex_state;
9441 	link_info->pause = resp->pause;
9442 	link_info->auto_mode = resp->auto_mode;
9443 	link_info->auto_pause_setting = resp->auto_pause;
9444 	link_info->lp_pause = resp->link_partner_adv_pause;
9445 	link_info->force_pause_setting = resp->force_pause;
9446 	link_info->duplex_setting = resp->duplex_cfg;
9447 	if (link_info->phy_link_status == BNXT_LINK_LINK)
9448 		link_info->link_speed = le16_to_cpu(resp->link_speed);
9449 	else
9450 		link_info->link_speed = 0;
9451 	link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
9452 	link_info->force_pam4_link_speed =
9453 		le16_to_cpu(resp->force_pam4_link_speed);
9454 	link_info->support_speeds = le16_to_cpu(resp->support_speeds);
9455 	link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds);
9456 	link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
9457 	link_info->auto_pam4_link_speeds =
9458 		le16_to_cpu(resp->auto_pam4_link_speed_mask);
9459 	link_info->lp_auto_link_speeds =
9460 		le16_to_cpu(resp->link_partner_adv_speeds);
9461 	link_info->lp_auto_pam4_link_speeds =
9462 		resp->link_partner_pam4_adv_speeds;
9463 	link_info->preemphasis = le32_to_cpu(resp->preemphasis);
9464 	link_info->phy_ver[0] = resp->phy_maj;
9465 	link_info->phy_ver[1] = resp->phy_min;
9466 	link_info->phy_ver[2] = resp->phy_bld;
9467 	link_info->media_type = resp->media_type;
9468 	link_info->phy_type = resp->phy_type;
9469 	link_info->transceiver = resp->xcvr_pkg_type;
9470 	link_info->phy_addr = resp->eee_config_phy_addr &
9471 			      PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
9472 	link_info->module_status = resp->module_status;
9473 
9474 	if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) {
9475 		struct ethtool_eee *eee = &bp->eee;
9476 		u16 fw_speeds;
9477 
9478 		eee->eee_active = 0;
9479 		if (resp->eee_config_phy_addr &
9480 		    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
9481 			eee->eee_active = 1;
9482 			fw_speeds = le16_to_cpu(
9483 				resp->link_partner_adv_eee_link_speed_mask);
9484 			eee->lp_advertised =
9485 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9486 		}
9487 
9488 		/* Pull initial EEE config */
9489 		if (!chng_link_state) {
9490 			if (resp->eee_config_phy_addr &
9491 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
9492 				eee->eee_enabled = 1;
9493 
9494 			fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
9495 			eee->advertised =
9496 				_bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
9497 
9498 			if (resp->eee_config_phy_addr &
9499 			    PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
9500 				__le32 tmr;
9501 
9502 				eee->tx_lpi_enabled = 1;
9503 				tmr = resp->xcvr_identifier_type_tx_lpi_timer;
9504 				eee->tx_lpi_timer = le32_to_cpu(tmr) &
9505 					PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
9506 			}
9507 		}
9508 	}
9509 
9510 	link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED;
9511 	if (bp->hwrm_spec_code >= 0x10504) {
9512 		link_info->fec_cfg = le16_to_cpu(resp->fec_cfg);
9513 		link_info->active_fec_sig_mode = resp->active_fec_signal_mode;
9514 	}
9515 	/* TODO: need to add more logic to report VF link */
9516 	if (chng_link_state) {
9517 		if (link_info->phy_link_status == BNXT_LINK_LINK)
9518 			link_info->link_up = 1;
9519 		else
9520 			link_info->link_up = 0;
9521 		if (link_up != link_info->link_up)
9522 			bnxt_report_link(bp);
9523 	} else {
9524 		/* alwasy link down if not require to update link state */
9525 		link_info->link_up = 0;
9526 	}
9527 	hwrm_req_drop(bp, req);
9528 
9529 	if (!BNXT_PHY_CFG_ABLE(bp))
9530 		return 0;
9531 
9532 	/* Check if any advertised speeds are no longer supported. The caller
9533 	 * holds the link_lock mutex, so we can modify link_info settings.
9534 	 */
9535 	if (bnxt_support_dropped(link_info->advertising,
9536 				 link_info->support_auto_speeds)) {
9537 		link_info->advertising = link_info->support_auto_speeds;
9538 		support_changed = true;
9539 	}
9540 	if (bnxt_support_dropped(link_info->advertising_pam4,
9541 				 link_info->support_pam4_auto_speeds)) {
9542 		link_info->advertising_pam4 = link_info->support_pam4_auto_speeds;
9543 		support_changed = true;
9544 	}
9545 	if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED))
9546 		bnxt_hwrm_set_link_setting(bp, true, false);
9547 	return 0;
9548 }
9549 
9550 static void bnxt_get_port_module_status(struct bnxt *bp)
9551 {
9552 	struct bnxt_link_info *link_info = &bp->link_info;
9553 	struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
9554 	u8 module_status;
9555 
9556 	if (bnxt_update_link(bp, true))
9557 		return;
9558 
9559 	module_status = link_info->module_status;
9560 	switch (module_status) {
9561 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
9562 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
9563 	case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
9564 		netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
9565 			    bp->pf.port_id);
9566 		if (bp->hwrm_spec_code >= 0x10201) {
9567 			netdev_warn(bp->dev, "Module part number %s\n",
9568 				    resp->phy_vendor_partnumber);
9569 		}
9570 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
9571 			netdev_warn(bp->dev, "TX is disabled\n");
9572 		if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
9573 			netdev_warn(bp->dev, "SFP+ module is shutdown\n");
9574 	}
9575 }
9576 
9577 static void
9578 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9579 {
9580 	if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
9581 		if (bp->hwrm_spec_code >= 0x10201)
9582 			req->auto_pause =
9583 				PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
9584 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9585 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
9586 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9587 			req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
9588 		req->enables |=
9589 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9590 	} else {
9591 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
9592 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
9593 		if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
9594 			req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
9595 		req->enables |=
9596 			cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
9597 		if (bp->hwrm_spec_code >= 0x10201) {
9598 			req->auto_pause = req->force_pause;
9599 			req->enables |= cpu_to_le32(
9600 				PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
9601 		}
9602 	}
9603 }
9604 
9605 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
9606 {
9607 	if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) {
9608 		req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
9609 		if (bp->link_info.advertising) {
9610 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
9611 			req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising);
9612 		}
9613 		if (bp->link_info.advertising_pam4) {
9614 			req->enables |=
9615 				cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK);
9616 			req->auto_link_pam4_speed_mask =
9617 				cpu_to_le16(bp->link_info.advertising_pam4);
9618 		}
9619 		req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
9620 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
9621 	} else {
9622 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
9623 		if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) {
9624 			req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9625 			req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED);
9626 		} else {
9627 			req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed);
9628 		}
9629 	}
9630 
9631 	/* tell chimp that the setting takes effect immediately */
9632 	req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
9633 }
9634 
9635 int bnxt_hwrm_set_pause(struct bnxt *bp)
9636 {
9637 	struct hwrm_port_phy_cfg_input *req;
9638 	int rc;
9639 
9640 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9641 	if (rc)
9642 		return rc;
9643 
9644 	bnxt_hwrm_set_pause_common(bp, req);
9645 
9646 	if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
9647 	    bp->link_info.force_link_chng)
9648 		bnxt_hwrm_set_link_common(bp, req);
9649 
9650 	rc = hwrm_req_send(bp, req);
9651 	if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
9652 		/* since changing of pause setting doesn't trigger any link
9653 		 * change event, the driver needs to update the current pause
9654 		 * result upon successfully return of the phy_cfg command
9655 		 */
9656 		bp->link_info.pause =
9657 		bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
9658 		bp->link_info.auto_pause_setting = 0;
9659 		if (!bp->link_info.force_link_chng)
9660 			bnxt_report_link(bp);
9661 	}
9662 	bp->link_info.force_link_chng = false;
9663 	return rc;
9664 }
9665 
9666 static void bnxt_hwrm_set_eee(struct bnxt *bp,
9667 			      struct hwrm_port_phy_cfg_input *req)
9668 {
9669 	struct ethtool_eee *eee = &bp->eee;
9670 
9671 	if (eee->eee_enabled) {
9672 		u16 eee_speeds;
9673 		u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
9674 
9675 		if (eee->tx_lpi_enabled)
9676 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
9677 		else
9678 			flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
9679 
9680 		req->flags |= cpu_to_le32(flags);
9681 		eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
9682 		req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
9683 		req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
9684 	} else {
9685 		req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
9686 	}
9687 }
9688 
9689 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
9690 {
9691 	struct hwrm_port_phy_cfg_input *req;
9692 	int rc;
9693 
9694 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9695 	if (rc)
9696 		return rc;
9697 
9698 	if (set_pause)
9699 		bnxt_hwrm_set_pause_common(bp, req);
9700 
9701 	bnxt_hwrm_set_link_common(bp, req);
9702 
9703 	if (set_eee)
9704 		bnxt_hwrm_set_eee(bp, req);
9705 	return hwrm_req_send(bp, req);
9706 }
9707 
9708 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
9709 {
9710 	struct hwrm_port_phy_cfg_input *req;
9711 	int rc;
9712 
9713 	if (!BNXT_SINGLE_PF(bp))
9714 		return 0;
9715 
9716 	if (pci_num_vf(bp->pdev) &&
9717 	    !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN))
9718 		return 0;
9719 
9720 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG);
9721 	if (rc)
9722 		return rc;
9723 
9724 	req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
9725 	return hwrm_req_send(bp, req);
9726 }
9727 
9728 static int bnxt_fw_reset_via_optee(struct bnxt *bp)
9729 {
9730 #ifdef CONFIG_TEE_BNXT_FW
9731 	int rc = tee_bnxt_fw_load();
9732 
9733 	if (rc)
9734 		netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc);
9735 
9736 	return rc;
9737 #else
9738 	netdev_err(bp->dev, "OP-TEE not supported\n");
9739 	return -ENODEV;
9740 #endif
9741 }
9742 
9743 static int bnxt_try_recover_fw(struct bnxt *bp)
9744 {
9745 	if (bp->fw_health && bp->fw_health->status_reliable) {
9746 		int retry = 0, rc;
9747 		u32 sts;
9748 
9749 		do {
9750 			sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
9751 			rc = bnxt_hwrm_poll(bp);
9752 			if (!BNXT_FW_IS_BOOTING(sts) &&
9753 			    !BNXT_FW_IS_RECOVERING(sts))
9754 				break;
9755 			retry++;
9756 		} while (rc == -EBUSY && retry < BNXT_FW_RETRY);
9757 
9758 		if (!BNXT_FW_IS_HEALTHY(sts)) {
9759 			netdev_err(bp->dev,
9760 				   "Firmware not responding, status: 0x%x\n",
9761 				   sts);
9762 			rc = -ENODEV;
9763 		}
9764 		if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) {
9765 			netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n");
9766 			return bnxt_fw_reset_via_optee(bp);
9767 		}
9768 		return rc;
9769 	}
9770 
9771 	return -ENODEV;
9772 }
9773 
9774 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset)
9775 {
9776 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
9777 	int rc;
9778 
9779 	if (!BNXT_NEW_RM(bp))
9780 		return 0; /* no resource reservations required */
9781 
9782 	rc = bnxt_hwrm_func_resc_qcaps(bp, true);
9783 	if (rc)
9784 		netdev_err(bp->dev, "resc_qcaps failed\n");
9785 
9786 	hw_resc->resv_cp_rings = 0;
9787 	hw_resc->resv_stat_ctxs = 0;
9788 	hw_resc->resv_irqs = 0;
9789 	hw_resc->resv_tx_rings = 0;
9790 	hw_resc->resv_rx_rings = 0;
9791 	hw_resc->resv_hw_ring_grps = 0;
9792 	hw_resc->resv_vnics = 0;
9793 	if (!fw_reset) {
9794 		bp->tx_nr_rings = 0;
9795 		bp->rx_nr_rings = 0;
9796 	}
9797 
9798 	return rc;
9799 }
9800 
9801 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up)
9802 {
9803 	struct hwrm_func_drv_if_change_output *resp;
9804 	struct hwrm_func_drv_if_change_input *req;
9805 	bool fw_reset = !bp->irq_tbl;
9806 	bool resc_reinit = false;
9807 	int rc, retry = 0;
9808 	u32 flags = 0;
9809 
9810 	if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE))
9811 		return 0;
9812 
9813 	rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE);
9814 	if (rc)
9815 		return rc;
9816 
9817 	if (up)
9818 		req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP);
9819 	resp = hwrm_req_hold(bp, req);
9820 
9821 	hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT);
9822 	while (retry < BNXT_FW_IF_RETRY) {
9823 		rc = hwrm_req_send(bp, req);
9824 		if (rc != -EAGAIN)
9825 			break;
9826 
9827 		msleep(50);
9828 		retry++;
9829 	}
9830 
9831 	if (rc == -EAGAIN) {
9832 		hwrm_req_drop(bp, req);
9833 		return rc;
9834 	} else if (!rc) {
9835 		flags = le32_to_cpu(resp->flags);
9836 	} else if (up) {
9837 		rc = bnxt_try_recover_fw(bp);
9838 		fw_reset = true;
9839 	}
9840 	hwrm_req_drop(bp, req);
9841 	if (rc)
9842 		return rc;
9843 
9844 	if (!up) {
9845 		bnxt_inv_fw_health_reg(bp);
9846 		return 0;
9847 	}
9848 
9849 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE)
9850 		resc_reinit = true;
9851 	if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE)
9852 		fw_reset = true;
9853 	else if (bp->fw_health && !bp->fw_health->status_reliable)
9854 		bnxt_try_map_fw_health_reg(bp);
9855 
9856 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) {
9857 		netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n");
9858 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9859 		return -ENODEV;
9860 	}
9861 	if (resc_reinit || fw_reset) {
9862 		if (fw_reset) {
9863 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9864 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
9865 				bnxt_ulp_stop(bp);
9866 			bnxt_free_ctx_mem(bp);
9867 			kfree(bp->ctx);
9868 			bp->ctx = NULL;
9869 			bnxt_dcb_free(bp);
9870 			rc = bnxt_fw_init_one(bp);
9871 			if (rc) {
9872 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9873 				set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
9874 				return rc;
9875 			}
9876 			bnxt_clear_int_mode(bp);
9877 			rc = bnxt_init_int_mode(bp);
9878 			if (rc) {
9879 				clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
9880 				netdev_err(bp->dev, "init int mode failed\n");
9881 				return rc;
9882 			}
9883 		}
9884 		rc = bnxt_cancel_reservations(bp, fw_reset);
9885 	}
9886 	return rc;
9887 }
9888 
9889 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp)
9890 {
9891 	struct hwrm_port_led_qcaps_output *resp;
9892 	struct hwrm_port_led_qcaps_input *req;
9893 	struct bnxt_pf_info *pf = &bp->pf;
9894 	int rc;
9895 
9896 	bp->num_leds = 0;
9897 	if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601)
9898 		return 0;
9899 
9900 	rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS);
9901 	if (rc)
9902 		return rc;
9903 
9904 	req->port_id = cpu_to_le16(pf->port_id);
9905 	resp = hwrm_req_hold(bp, req);
9906 	rc = hwrm_req_send(bp, req);
9907 	if (rc) {
9908 		hwrm_req_drop(bp, req);
9909 		return rc;
9910 	}
9911 	if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) {
9912 		int i;
9913 
9914 		bp->num_leds = resp->num_leds;
9915 		memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) *
9916 						 bp->num_leds);
9917 		for (i = 0; i < bp->num_leds; i++) {
9918 			struct bnxt_led_info *led = &bp->leds[i];
9919 			__le16 caps = led->led_state_caps;
9920 
9921 			if (!led->led_group_id ||
9922 			    !BNXT_LED_ALT_BLINK_CAP(caps)) {
9923 				bp->num_leds = 0;
9924 				break;
9925 			}
9926 		}
9927 	}
9928 	hwrm_req_drop(bp, req);
9929 	return 0;
9930 }
9931 
9932 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp)
9933 {
9934 	struct hwrm_wol_filter_alloc_output *resp;
9935 	struct hwrm_wol_filter_alloc_input *req;
9936 	int rc;
9937 
9938 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC);
9939 	if (rc)
9940 		return rc;
9941 
9942 	req->port_id = cpu_to_le16(bp->pf.port_id);
9943 	req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT;
9944 	req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS);
9945 	memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN);
9946 
9947 	resp = hwrm_req_hold(bp, req);
9948 	rc = hwrm_req_send(bp, req);
9949 	if (!rc)
9950 		bp->wol_filter_id = resp->wol_filter_id;
9951 	hwrm_req_drop(bp, req);
9952 	return rc;
9953 }
9954 
9955 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp)
9956 {
9957 	struct hwrm_wol_filter_free_input *req;
9958 	int rc;
9959 
9960 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE);
9961 	if (rc)
9962 		return rc;
9963 
9964 	req->port_id = cpu_to_le16(bp->pf.port_id);
9965 	req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID);
9966 	req->wol_filter_id = bp->wol_filter_id;
9967 
9968 	return hwrm_req_send(bp, req);
9969 }
9970 
9971 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle)
9972 {
9973 	struct hwrm_wol_filter_qcfg_output *resp;
9974 	struct hwrm_wol_filter_qcfg_input *req;
9975 	u16 next_handle = 0;
9976 	int rc;
9977 
9978 	rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG);
9979 	if (rc)
9980 		return rc;
9981 
9982 	req->port_id = cpu_to_le16(bp->pf.port_id);
9983 	req->handle = cpu_to_le16(handle);
9984 	resp = hwrm_req_hold(bp, req);
9985 	rc = hwrm_req_send(bp, req);
9986 	if (!rc) {
9987 		next_handle = le16_to_cpu(resp->next_handle);
9988 		if (next_handle != 0) {
9989 			if (resp->wol_type ==
9990 			    WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) {
9991 				bp->wol = 1;
9992 				bp->wol_filter_id = resp->wol_filter_id;
9993 			}
9994 		}
9995 	}
9996 	hwrm_req_drop(bp, req);
9997 	return next_handle;
9998 }
9999 
10000 static void bnxt_get_wol_settings(struct bnxt *bp)
10001 {
10002 	u16 handle = 0;
10003 
10004 	bp->wol = 0;
10005 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP))
10006 		return;
10007 
10008 	do {
10009 		handle = bnxt_hwrm_get_wol_fltrs(bp, handle);
10010 	} while (handle && handle != 0xffff);
10011 }
10012 
10013 #ifdef CONFIG_BNXT_HWMON
10014 static ssize_t bnxt_show_temp(struct device *dev,
10015 			      struct device_attribute *devattr, char *buf)
10016 {
10017 	struct hwrm_temp_monitor_query_output *resp;
10018 	struct hwrm_temp_monitor_query_input *req;
10019 	struct bnxt *bp = dev_get_drvdata(dev);
10020 	u32 len = 0;
10021 	int rc;
10022 
10023 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10024 	if (rc)
10025 		return rc;
10026 	resp = hwrm_req_hold(bp, req);
10027 	rc = hwrm_req_send(bp, req);
10028 	if (!rc)
10029 		len = sprintf(buf, "%u\n", resp->temp * 1000); /* display millidegree */
10030 	hwrm_req_drop(bp, req);
10031 	if (rc)
10032 		return rc;
10033 	return len;
10034 }
10035 static SENSOR_DEVICE_ATTR(temp1_input, 0444, bnxt_show_temp, NULL, 0);
10036 
10037 static struct attribute *bnxt_attrs[] = {
10038 	&sensor_dev_attr_temp1_input.dev_attr.attr,
10039 	NULL
10040 };
10041 ATTRIBUTE_GROUPS(bnxt);
10042 
10043 static void bnxt_hwmon_close(struct bnxt *bp)
10044 {
10045 	if (bp->hwmon_dev) {
10046 		hwmon_device_unregister(bp->hwmon_dev);
10047 		bp->hwmon_dev = NULL;
10048 	}
10049 }
10050 
10051 static void bnxt_hwmon_open(struct bnxt *bp)
10052 {
10053 	struct hwrm_temp_monitor_query_input *req;
10054 	struct pci_dev *pdev = bp->pdev;
10055 	int rc;
10056 
10057 	rc = hwrm_req_init(bp, req, HWRM_TEMP_MONITOR_QUERY);
10058 	if (!rc)
10059 		rc = hwrm_req_send_silent(bp, req);
10060 	if (rc == -EACCES || rc == -EOPNOTSUPP) {
10061 		bnxt_hwmon_close(bp);
10062 		return;
10063 	}
10064 
10065 	if (bp->hwmon_dev)
10066 		return;
10067 
10068 	bp->hwmon_dev = hwmon_device_register_with_groups(&pdev->dev,
10069 							  DRV_MODULE_NAME, bp,
10070 							  bnxt_groups);
10071 	if (IS_ERR(bp->hwmon_dev)) {
10072 		bp->hwmon_dev = NULL;
10073 		dev_warn(&pdev->dev, "Cannot register hwmon device\n");
10074 	}
10075 }
10076 #else
10077 static void bnxt_hwmon_close(struct bnxt *bp)
10078 {
10079 }
10080 
10081 static void bnxt_hwmon_open(struct bnxt *bp)
10082 {
10083 }
10084 #endif
10085 
10086 static bool bnxt_eee_config_ok(struct bnxt *bp)
10087 {
10088 	struct ethtool_eee *eee = &bp->eee;
10089 	struct bnxt_link_info *link_info = &bp->link_info;
10090 
10091 	if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP))
10092 		return true;
10093 
10094 	if (eee->eee_enabled) {
10095 		u32 advertising =
10096 			_bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
10097 
10098 		if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10099 			eee->eee_enabled = 0;
10100 			return false;
10101 		}
10102 		if (eee->advertised & ~advertising) {
10103 			eee->advertised = advertising & eee->supported;
10104 			return false;
10105 		}
10106 	}
10107 	return true;
10108 }
10109 
10110 static int bnxt_update_phy_setting(struct bnxt *bp)
10111 {
10112 	int rc;
10113 	bool update_link = false;
10114 	bool update_pause = false;
10115 	bool update_eee = false;
10116 	struct bnxt_link_info *link_info = &bp->link_info;
10117 
10118 	rc = bnxt_update_link(bp, true);
10119 	if (rc) {
10120 		netdev_err(bp->dev, "failed to update link (rc: %x)\n",
10121 			   rc);
10122 		return rc;
10123 	}
10124 	if (!BNXT_SINGLE_PF(bp))
10125 		return 0;
10126 
10127 	if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10128 	    (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
10129 	    link_info->req_flow_ctrl)
10130 		update_pause = true;
10131 	if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
10132 	    link_info->force_pause_setting != link_info->req_flow_ctrl)
10133 		update_pause = true;
10134 	if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
10135 		if (BNXT_AUTO_MODE(link_info->auto_mode))
10136 			update_link = true;
10137 		if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ &&
10138 		    link_info->req_link_speed != link_info->force_link_speed)
10139 			update_link = true;
10140 		else if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 &&
10141 			 link_info->req_link_speed != link_info->force_pam4_link_speed)
10142 			update_link = true;
10143 		if (link_info->req_duplex != link_info->duplex_setting)
10144 			update_link = true;
10145 	} else {
10146 		if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
10147 			update_link = true;
10148 		if (link_info->advertising != link_info->auto_link_speeds ||
10149 		    link_info->advertising_pam4 != link_info->auto_pam4_link_speeds)
10150 			update_link = true;
10151 	}
10152 
10153 	/* The last close may have shutdown the link, so need to call
10154 	 * PHY_CFG to bring it back up.
10155 	 */
10156 	if (!bp->link_info.link_up)
10157 		update_link = true;
10158 
10159 	if (!bnxt_eee_config_ok(bp))
10160 		update_eee = true;
10161 
10162 	if (update_link)
10163 		rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
10164 	else if (update_pause)
10165 		rc = bnxt_hwrm_set_pause(bp);
10166 	if (rc) {
10167 		netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
10168 			   rc);
10169 		return rc;
10170 	}
10171 
10172 	return rc;
10173 }
10174 
10175 /* Common routine to pre-map certain register block to different GRC window.
10176  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
10177  * in PF and 3 windows in VF that can be customized to map in different
10178  * register blocks.
10179  */
10180 static void bnxt_preset_reg_win(struct bnxt *bp)
10181 {
10182 	if (BNXT_PF(bp)) {
10183 		/* CAG registers map to GRC window #4 */
10184 		writel(BNXT_CAG_REG_BASE,
10185 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
10186 	}
10187 }
10188 
10189 static int bnxt_init_dflt_ring_mode(struct bnxt *bp);
10190 
10191 static int bnxt_reinit_after_abort(struct bnxt *bp)
10192 {
10193 	int rc;
10194 
10195 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
10196 		return -EBUSY;
10197 
10198 	if (bp->dev->reg_state == NETREG_UNREGISTERED)
10199 		return -ENODEV;
10200 
10201 	rc = bnxt_fw_init_one(bp);
10202 	if (!rc) {
10203 		bnxt_clear_int_mode(bp);
10204 		rc = bnxt_init_int_mode(bp);
10205 		if (!rc) {
10206 			clear_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10207 			set_bit(BNXT_STATE_FW_RESET_DET, &bp->state);
10208 		}
10209 	}
10210 	return rc;
10211 }
10212 
10213 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10214 {
10215 	int rc = 0;
10216 
10217 	bnxt_preset_reg_win(bp);
10218 	netif_carrier_off(bp->dev);
10219 	if (irq_re_init) {
10220 		/* Reserve rings now if none were reserved at driver probe. */
10221 		rc = bnxt_init_dflt_ring_mode(bp);
10222 		if (rc) {
10223 			netdev_err(bp->dev, "Failed to reserve default rings at open\n");
10224 			return rc;
10225 		}
10226 	}
10227 	rc = bnxt_reserve_rings(bp, irq_re_init);
10228 	if (rc)
10229 		return rc;
10230 	if ((bp->flags & BNXT_FLAG_RFS) &&
10231 	    !(bp->flags & BNXT_FLAG_USING_MSIX)) {
10232 		/* disable RFS if falling back to INTA */
10233 		bp->dev->hw_features &= ~NETIF_F_NTUPLE;
10234 		bp->flags &= ~BNXT_FLAG_RFS;
10235 	}
10236 
10237 	rc = bnxt_alloc_mem(bp, irq_re_init);
10238 	if (rc) {
10239 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10240 		goto open_err_free_mem;
10241 	}
10242 
10243 	if (irq_re_init) {
10244 		bnxt_init_napi(bp);
10245 		rc = bnxt_request_irq(bp);
10246 		if (rc) {
10247 			netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
10248 			goto open_err_irq;
10249 		}
10250 	}
10251 
10252 	rc = bnxt_init_nic(bp, irq_re_init);
10253 	if (rc) {
10254 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10255 		goto open_err_irq;
10256 	}
10257 
10258 	bnxt_enable_napi(bp);
10259 	bnxt_debug_dev_init(bp);
10260 
10261 	if (link_re_init) {
10262 		mutex_lock(&bp->link_lock);
10263 		rc = bnxt_update_phy_setting(bp);
10264 		mutex_unlock(&bp->link_lock);
10265 		if (rc) {
10266 			netdev_warn(bp->dev, "failed to update phy settings\n");
10267 			if (BNXT_SINGLE_PF(bp)) {
10268 				bp->link_info.phy_retry = true;
10269 				bp->link_info.phy_retry_expires =
10270 					jiffies + 5 * HZ;
10271 			}
10272 		}
10273 	}
10274 
10275 	if (irq_re_init)
10276 		udp_tunnel_nic_reset_ntf(bp->dev);
10277 
10278 	set_bit(BNXT_STATE_OPEN, &bp->state);
10279 	bnxt_enable_int(bp);
10280 	/* Enable TX queues */
10281 	bnxt_tx_enable(bp);
10282 	mod_timer(&bp->timer, jiffies + bp->current_interval);
10283 	/* Poll link status and check for SFP+ module status */
10284 	mutex_lock(&bp->link_lock);
10285 	bnxt_get_port_module_status(bp);
10286 	mutex_unlock(&bp->link_lock);
10287 
10288 	/* VF-reps may need to be re-opened after the PF is re-opened */
10289 	if (BNXT_PF(bp))
10290 		bnxt_vf_reps_open(bp);
10291 	return 0;
10292 
10293 open_err_irq:
10294 	bnxt_del_napi(bp);
10295 
10296 open_err_free_mem:
10297 	bnxt_free_skbs(bp);
10298 	bnxt_free_irq(bp);
10299 	bnxt_free_mem(bp, true);
10300 	return rc;
10301 }
10302 
10303 /* rtnl_lock held */
10304 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10305 {
10306 	int rc = 0;
10307 
10308 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state))
10309 		rc = -EIO;
10310 	if (!rc)
10311 		rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
10312 	if (rc) {
10313 		netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
10314 		dev_close(bp->dev);
10315 	}
10316 	return rc;
10317 }
10318 
10319 /* rtnl_lock held, open the NIC half way by allocating all resources, but
10320  * NAPI, IRQ, and TX are not enabled.  This is mainly used for offline
10321  * self tests.
10322  */
10323 int bnxt_half_open_nic(struct bnxt *bp)
10324 {
10325 	int rc = 0;
10326 
10327 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10328 		netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n");
10329 		rc = -ENODEV;
10330 		goto half_open_err;
10331 	}
10332 
10333 	rc = bnxt_alloc_mem(bp, false);
10334 	if (rc) {
10335 		netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
10336 		goto half_open_err;
10337 	}
10338 	rc = bnxt_init_nic(bp, false);
10339 	if (rc) {
10340 		netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
10341 		goto half_open_err;
10342 	}
10343 	return 0;
10344 
10345 half_open_err:
10346 	bnxt_free_skbs(bp);
10347 	bnxt_free_mem(bp, false);
10348 	dev_close(bp->dev);
10349 	return rc;
10350 }
10351 
10352 /* rtnl_lock held, this call can only be made after a previous successful
10353  * call to bnxt_half_open_nic().
10354  */
10355 void bnxt_half_close_nic(struct bnxt *bp)
10356 {
10357 	bnxt_hwrm_resource_free(bp, false, false);
10358 	bnxt_free_skbs(bp);
10359 	bnxt_free_mem(bp, false);
10360 }
10361 
10362 void bnxt_reenable_sriov(struct bnxt *bp)
10363 {
10364 	if (BNXT_PF(bp)) {
10365 		struct bnxt_pf_info *pf = &bp->pf;
10366 		int n = pf->active_vfs;
10367 
10368 		if (n)
10369 			bnxt_cfg_hw_sriov(bp, &n, true);
10370 	}
10371 }
10372 
10373 static int bnxt_open(struct net_device *dev)
10374 {
10375 	struct bnxt *bp = netdev_priv(dev);
10376 	int rc;
10377 
10378 	if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
10379 		rc = bnxt_reinit_after_abort(bp);
10380 		if (rc) {
10381 			if (rc == -EBUSY)
10382 				netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n");
10383 			else
10384 				netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n");
10385 			return -ENODEV;
10386 		}
10387 	}
10388 
10389 	rc = bnxt_hwrm_if_change(bp, true);
10390 	if (rc)
10391 		return rc;
10392 
10393 	rc = __bnxt_open_nic(bp, true, true);
10394 	if (rc) {
10395 		bnxt_hwrm_if_change(bp, false);
10396 	} else {
10397 		if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) {
10398 			if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10399 				bnxt_ulp_start(bp, 0);
10400 				bnxt_reenable_sriov(bp);
10401 			}
10402 		}
10403 		bnxt_hwmon_open(bp);
10404 	}
10405 
10406 	return rc;
10407 }
10408 
10409 static bool bnxt_drv_busy(struct bnxt *bp)
10410 {
10411 	return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) ||
10412 		test_bit(BNXT_STATE_READ_STATS, &bp->state));
10413 }
10414 
10415 static void bnxt_get_ring_stats(struct bnxt *bp,
10416 				struct rtnl_link_stats64 *stats);
10417 
10418 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init,
10419 			     bool link_re_init)
10420 {
10421 	/* Close the VF-reps before closing PF */
10422 	if (BNXT_PF(bp))
10423 		bnxt_vf_reps_close(bp);
10424 
10425 	/* Change device state to avoid TX queue wake up's */
10426 	bnxt_tx_disable(bp);
10427 
10428 	clear_bit(BNXT_STATE_OPEN, &bp->state);
10429 	smp_mb__after_atomic();
10430 	while (bnxt_drv_busy(bp))
10431 		msleep(20);
10432 
10433 	/* Flush rings and and disable interrupts */
10434 	bnxt_shutdown_nic(bp, irq_re_init);
10435 
10436 	/* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
10437 
10438 	bnxt_debug_dev_exit(bp);
10439 	bnxt_disable_napi(bp);
10440 	del_timer_sync(&bp->timer);
10441 	bnxt_free_skbs(bp);
10442 
10443 	/* Save ring stats before shutdown */
10444 	if (bp->bnapi && irq_re_init)
10445 		bnxt_get_ring_stats(bp, &bp->net_stats_prev);
10446 	if (irq_re_init) {
10447 		bnxt_free_irq(bp);
10448 		bnxt_del_napi(bp);
10449 	}
10450 	bnxt_free_mem(bp, irq_re_init);
10451 }
10452 
10453 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
10454 {
10455 	int rc = 0;
10456 
10457 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
10458 		/* If we get here, it means firmware reset is in progress
10459 		 * while we are trying to close.  We can safely proceed with
10460 		 * the close because we are holding rtnl_lock().  Some firmware
10461 		 * messages may fail as we proceed to close.  We set the
10462 		 * ABORT_ERR flag here so that the FW reset thread will later
10463 		 * abort when it gets the rtnl_lock() and sees the flag.
10464 		 */
10465 		netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n");
10466 		set_bit(BNXT_STATE_ABORT_ERR, &bp->state);
10467 	}
10468 
10469 #ifdef CONFIG_BNXT_SRIOV
10470 	if (bp->sriov_cfg) {
10471 		rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
10472 						      !bp->sriov_cfg,
10473 						      BNXT_SRIOV_CFG_WAIT_TMO);
10474 		if (rc)
10475 			netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
10476 	}
10477 #endif
10478 	__bnxt_close_nic(bp, irq_re_init, link_re_init);
10479 	return rc;
10480 }
10481 
10482 static int bnxt_close(struct net_device *dev)
10483 {
10484 	struct bnxt *bp = netdev_priv(dev);
10485 
10486 	bnxt_hwmon_close(bp);
10487 	bnxt_close_nic(bp, true, true);
10488 	bnxt_hwrm_shutdown_link(bp);
10489 	bnxt_hwrm_if_change(bp, false);
10490 	return 0;
10491 }
10492 
10493 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg,
10494 				   u16 *val)
10495 {
10496 	struct hwrm_port_phy_mdio_read_output *resp;
10497 	struct hwrm_port_phy_mdio_read_input *req;
10498 	int rc;
10499 
10500 	if (bp->hwrm_spec_code < 0x10a00)
10501 		return -EOPNOTSUPP;
10502 
10503 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ);
10504 	if (rc)
10505 		return rc;
10506 
10507 	req->port_id = cpu_to_le16(bp->pf.port_id);
10508 	req->phy_addr = phy_addr;
10509 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10510 	if (mdio_phy_id_is_c45(phy_addr)) {
10511 		req->cl45_mdio = 1;
10512 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10513 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10514 		req->reg_addr = cpu_to_le16(reg);
10515 	}
10516 
10517 	resp = hwrm_req_hold(bp, req);
10518 	rc = hwrm_req_send(bp, req);
10519 	if (!rc)
10520 		*val = le16_to_cpu(resp->reg_data);
10521 	hwrm_req_drop(bp, req);
10522 	return rc;
10523 }
10524 
10525 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg,
10526 				    u16 val)
10527 {
10528 	struct hwrm_port_phy_mdio_write_input *req;
10529 	int rc;
10530 
10531 	if (bp->hwrm_spec_code < 0x10a00)
10532 		return -EOPNOTSUPP;
10533 
10534 	rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE);
10535 	if (rc)
10536 		return rc;
10537 
10538 	req->port_id = cpu_to_le16(bp->pf.port_id);
10539 	req->phy_addr = phy_addr;
10540 	req->reg_addr = cpu_to_le16(reg & 0x1f);
10541 	if (mdio_phy_id_is_c45(phy_addr)) {
10542 		req->cl45_mdio = 1;
10543 		req->phy_addr = mdio_phy_id_prtad(phy_addr);
10544 		req->dev_addr = mdio_phy_id_devad(phy_addr);
10545 		req->reg_addr = cpu_to_le16(reg);
10546 	}
10547 	req->reg_data = cpu_to_le16(val);
10548 
10549 	return hwrm_req_send(bp, req);
10550 }
10551 
10552 /* rtnl_lock held */
10553 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10554 {
10555 	struct mii_ioctl_data *mdio = if_mii(ifr);
10556 	struct bnxt *bp = netdev_priv(dev);
10557 	int rc;
10558 
10559 	switch (cmd) {
10560 	case SIOCGMIIPHY:
10561 		mdio->phy_id = bp->link_info.phy_addr;
10562 
10563 		fallthrough;
10564 	case SIOCGMIIREG: {
10565 		u16 mii_regval = 0;
10566 
10567 		if (!netif_running(dev))
10568 			return -EAGAIN;
10569 
10570 		rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num,
10571 					     &mii_regval);
10572 		mdio->val_out = mii_regval;
10573 		return rc;
10574 	}
10575 
10576 	case SIOCSMIIREG:
10577 		if (!netif_running(dev))
10578 			return -EAGAIN;
10579 
10580 		return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num,
10581 						mdio->val_in);
10582 
10583 	case SIOCSHWTSTAMP:
10584 		return bnxt_hwtstamp_set(dev, ifr);
10585 
10586 	case SIOCGHWTSTAMP:
10587 		return bnxt_hwtstamp_get(dev, ifr);
10588 
10589 	default:
10590 		/* do nothing */
10591 		break;
10592 	}
10593 	return -EOPNOTSUPP;
10594 }
10595 
10596 static void bnxt_get_ring_stats(struct bnxt *bp,
10597 				struct rtnl_link_stats64 *stats)
10598 {
10599 	int i;
10600 
10601 	for (i = 0; i < bp->cp_nr_rings; i++) {
10602 		struct bnxt_napi *bnapi = bp->bnapi[i];
10603 		struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
10604 		u64 *sw = cpr->stats.sw_stats;
10605 
10606 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts);
10607 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10608 		stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts);
10609 
10610 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts);
10611 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts);
10612 		stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts);
10613 
10614 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes);
10615 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes);
10616 		stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes);
10617 
10618 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes);
10619 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes);
10620 		stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes);
10621 
10622 		stats->rx_missed_errors +=
10623 			BNXT_GET_RING_STATS64(sw, rx_discard_pkts);
10624 
10625 		stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts);
10626 
10627 		stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts);
10628 
10629 		stats->rx_dropped +=
10630 			cpr->sw_stats.rx.rx_netpoll_discards +
10631 			cpr->sw_stats.rx.rx_oom_discards;
10632 	}
10633 }
10634 
10635 static void bnxt_add_prev_stats(struct bnxt *bp,
10636 				struct rtnl_link_stats64 *stats)
10637 {
10638 	struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev;
10639 
10640 	stats->rx_packets += prev_stats->rx_packets;
10641 	stats->tx_packets += prev_stats->tx_packets;
10642 	stats->rx_bytes += prev_stats->rx_bytes;
10643 	stats->tx_bytes += prev_stats->tx_bytes;
10644 	stats->rx_missed_errors += prev_stats->rx_missed_errors;
10645 	stats->multicast += prev_stats->multicast;
10646 	stats->rx_dropped += prev_stats->rx_dropped;
10647 	stats->tx_dropped += prev_stats->tx_dropped;
10648 }
10649 
10650 static void
10651 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
10652 {
10653 	struct bnxt *bp = netdev_priv(dev);
10654 
10655 	set_bit(BNXT_STATE_READ_STATS, &bp->state);
10656 	/* Make sure bnxt_close_nic() sees that we are reading stats before
10657 	 * we check the BNXT_STATE_OPEN flag.
10658 	 */
10659 	smp_mb__after_atomic();
10660 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
10661 		clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10662 		*stats = bp->net_stats_prev;
10663 		return;
10664 	}
10665 
10666 	bnxt_get_ring_stats(bp, stats);
10667 	bnxt_add_prev_stats(bp, stats);
10668 
10669 	if (bp->flags & BNXT_FLAG_PORT_STATS) {
10670 		u64 *rx = bp->port_stats.sw_stats;
10671 		u64 *tx = bp->port_stats.sw_stats +
10672 			  BNXT_TX_PORT_STATS_BYTE_OFFSET / 8;
10673 
10674 		stats->rx_crc_errors =
10675 			BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames);
10676 		stats->rx_frame_errors =
10677 			BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames);
10678 		stats->rx_length_errors =
10679 			BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) +
10680 			BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) +
10681 			BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames);
10682 		stats->rx_errors =
10683 			BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) +
10684 			BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames);
10685 		stats->collisions =
10686 			BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions);
10687 		stats->tx_fifo_errors =
10688 			BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns);
10689 		stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err);
10690 	}
10691 	clear_bit(BNXT_STATE_READ_STATS, &bp->state);
10692 }
10693 
10694 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
10695 {
10696 	struct net_device *dev = bp->dev;
10697 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10698 	struct netdev_hw_addr *ha;
10699 	u8 *haddr;
10700 	int mc_count = 0;
10701 	bool update = false;
10702 	int off = 0;
10703 
10704 	netdev_for_each_mc_addr(ha, dev) {
10705 		if (mc_count >= BNXT_MAX_MC_ADDRS) {
10706 			*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10707 			vnic->mc_list_count = 0;
10708 			return false;
10709 		}
10710 		haddr = ha->addr;
10711 		if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
10712 			memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
10713 			update = true;
10714 		}
10715 		off += ETH_ALEN;
10716 		mc_count++;
10717 	}
10718 	if (mc_count)
10719 		*rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
10720 
10721 	if (mc_count != vnic->mc_list_count) {
10722 		vnic->mc_list_count = mc_count;
10723 		update = true;
10724 	}
10725 	return update;
10726 }
10727 
10728 static bool bnxt_uc_list_updated(struct bnxt *bp)
10729 {
10730 	struct net_device *dev = bp->dev;
10731 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10732 	struct netdev_hw_addr *ha;
10733 	int off = 0;
10734 
10735 	if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
10736 		return true;
10737 
10738 	netdev_for_each_uc_addr(ha, dev) {
10739 		if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
10740 			return true;
10741 
10742 		off += ETH_ALEN;
10743 	}
10744 	return false;
10745 }
10746 
10747 static void bnxt_set_rx_mode(struct net_device *dev)
10748 {
10749 	struct bnxt *bp = netdev_priv(dev);
10750 	struct bnxt_vnic_info *vnic;
10751 	bool mc_update = false;
10752 	bool uc_update;
10753 	u32 mask;
10754 
10755 	if (!test_bit(BNXT_STATE_OPEN, &bp->state))
10756 		return;
10757 
10758 	vnic = &bp->vnic_info[0];
10759 	mask = vnic->rx_mask;
10760 	mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
10761 		  CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
10762 		  CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST |
10763 		  CFA_L2_SET_RX_MASK_REQ_MASK_BCAST);
10764 
10765 	if (dev->flags & IFF_PROMISC)
10766 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10767 
10768 	uc_update = bnxt_uc_list_updated(bp);
10769 
10770 	if (dev->flags & IFF_BROADCAST)
10771 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
10772 	if (dev->flags & IFF_ALLMULTI) {
10773 		mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10774 		vnic->mc_list_count = 0;
10775 	} else {
10776 		mc_update = bnxt_mc_list_updated(bp, &mask);
10777 	}
10778 
10779 	if (mask != vnic->rx_mask || uc_update || mc_update) {
10780 		vnic->rx_mask = mask;
10781 
10782 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
10783 		bnxt_queue_sp_work(bp);
10784 	}
10785 }
10786 
10787 static int bnxt_cfg_rx_mode(struct bnxt *bp)
10788 {
10789 	struct net_device *dev = bp->dev;
10790 	struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
10791 	struct hwrm_cfa_l2_filter_free_input *req;
10792 	struct netdev_hw_addr *ha;
10793 	int i, off = 0, rc;
10794 	bool uc_update;
10795 
10796 	netif_addr_lock_bh(dev);
10797 	uc_update = bnxt_uc_list_updated(bp);
10798 	netif_addr_unlock_bh(dev);
10799 
10800 	if (!uc_update)
10801 		goto skip_uc;
10802 
10803 	rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE);
10804 	if (rc)
10805 		return rc;
10806 	hwrm_req_hold(bp, req);
10807 	for (i = 1; i < vnic->uc_filter_count; i++) {
10808 		req->l2_filter_id = vnic->fw_l2_filter_id[i];
10809 
10810 		rc = hwrm_req_send(bp, req);
10811 	}
10812 	hwrm_req_drop(bp, req);
10813 
10814 	vnic->uc_filter_count = 1;
10815 
10816 	netif_addr_lock_bh(dev);
10817 	if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
10818 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10819 	} else {
10820 		netdev_for_each_uc_addr(ha, dev) {
10821 			memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
10822 			off += ETH_ALEN;
10823 			vnic->uc_filter_count++;
10824 		}
10825 	}
10826 	netif_addr_unlock_bh(dev);
10827 
10828 	for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
10829 		rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
10830 		if (rc) {
10831 			if (BNXT_VF(bp) && rc == -ENODEV) {
10832 				if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
10833 					netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n");
10834 				else
10835 					netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n");
10836 				rc = 0;
10837 			} else {
10838 				netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
10839 			}
10840 			vnic->uc_filter_count = i;
10841 			return rc;
10842 		}
10843 	}
10844 	if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state))
10845 		netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n");
10846 
10847 skip_uc:
10848 	if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) &&
10849 	    !bnxt_promisc_ok(bp))
10850 		vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
10851 	rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10852 	if (rc && vnic->mc_list_count) {
10853 		netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n",
10854 			    rc);
10855 		vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
10856 		vnic->mc_list_count = 0;
10857 		rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
10858 	}
10859 	if (rc)
10860 		netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n",
10861 			   rc);
10862 
10863 	return rc;
10864 }
10865 
10866 static bool bnxt_can_reserve_rings(struct bnxt *bp)
10867 {
10868 #ifdef CONFIG_BNXT_SRIOV
10869 	if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) {
10870 		struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
10871 
10872 		/* No minimum rings were provisioned by the PF.  Don't
10873 		 * reserve rings by default when device is down.
10874 		 */
10875 		if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings)
10876 			return true;
10877 
10878 		if (!netif_running(bp->dev))
10879 			return false;
10880 	}
10881 #endif
10882 	return true;
10883 }
10884 
10885 /* If the chip and firmware supports RFS */
10886 static bool bnxt_rfs_supported(struct bnxt *bp)
10887 {
10888 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
10889 		if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2)
10890 			return true;
10891 		return false;
10892 	}
10893 	/* 212 firmware is broken for aRFS */
10894 	if (BNXT_FW_MAJ(bp) == 212)
10895 		return false;
10896 	if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
10897 		return true;
10898 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10899 		return true;
10900 	return false;
10901 }
10902 
10903 /* If runtime conditions support RFS */
10904 static bool bnxt_rfs_capable(struct bnxt *bp)
10905 {
10906 #ifdef CONFIG_RFS_ACCEL
10907 	int vnics, max_vnics, max_rss_ctxs;
10908 
10909 	if (bp->flags & BNXT_FLAG_CHIP_P5)
10910 		return bnxt_rfs_supported(bp);
10911 	if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp))
10912 		return false;
10913 
10914 	vnics = 1 + bp->rx_nr_rings;
10915 	max_vnics = bnxt_get_max_func_vnics(bp);
10916 	max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp);
10917 
10918 	/* RSS contexts not a limiting factor */
10919 	if (bp->flags & BNXT_FLAG_NEW_RSS_CAP)
10920 		max_rss_ctxs = max_vnics;
10921 	if (vnics > max_vnics || vnics > max_rss_ctxs) {
10922 		if (bp->rx_nr_rings > 1)
10923 			netdev_warn(bp->dev,
10924 				    "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
10925 				    min(max_rss_ctxs - 1, max_vnics - 1));
10926 		return false;
10927 	}
10928 
10929 	if (!BNXT_NEW_RM(bp))
10930 		return true;
10931 
10932 	if (vnics == bp->hw_resc.resv_vnics)
10933 		return true;
10934 
10935 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, vnics);
10936 	if (vnics <= bp->hw_resc.resv_vnics)
10937 		return true;
10938 
10939 	netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n");
10940 	bnxt_hwrm_reserve_rings(bp, 0, 0, 0, 0, 0, 1);
10941 	return false;
10942 #else
10943 	return false;
10944 #endif
10945 }
10946 
10947 static netdev_features_t bnxt_fix_features(struct net_device *dev,
10948 					   netdev_features_t features)
10949 {
10950 	struct bnxt *bp = netdev_priv(dev);
10951 	netdev_features_t vlan_features;
10952 
10953 	if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
10954 		features &= ~NETIF_F_NTUPLE;
10955 
10956 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10957 		features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
10958 
10959 	if (!(features & NETIF_F_GRO))
10960 		features &= ~NETIF_F_GRO_HW;
10961 
10962 	if (features & NETIF_F_GRO_HW)
10963 		features &= ~NETIF_F_LRO;
10964 
10965 	/* Both CTAG and STAG VLAN accelaration on the RX side have to be
10966 	 * turned on or off together.
10967 	 */
10968 	vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX;
10969 	if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) {
10970 		if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)
10971 			features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10972 		else if (vlan_features)
10973 			features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
10974 	}
10975 #ifdef CONFIG_BNXT_SRIOV
10976 	if (BNXT_VF(bp) && bp->vf.vlan)
10977 		features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX;
10978 #endif
10979 	return features;
10980 }
10981 
10982 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
10983 {
10984 	struct bnxt *bp = netdev_priv(dev);
10985 	u32 flags = bp->flags;
10986 	u32 changes;
10987 	int rc = 0;
10988 	bool re_init = false;
10989 	bool update_tpa = false;
10990 
10991 	flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
10992 	if (features & NETIF_F_GRO_HW)
10993 		flags |= BNXT_FLAG_GRO;
10994 	else if (features & NETIF_F_LRO)
10995 		flags |= BNXT_FLAG_LRO;
10996 
10997 	if (bp->flags & BNXT_FLAG_NO_AGG_RINGS)
10998 		flags &= ~BNXT_FLAG_TPA;
10999 
11000 	if (features & BNXT_HW_FEATURE_VLAN_ALL_RX)
11001 		flags |= BNXT_FLAG_STRIP_VLAN;
11002 
11003 	if (features & NETIF_F_NTUPLE)
11004 		flags |= BNXT_FLAG_RFS;
11005 
11006 	changes = flags ^ bp->flags;
11007 	if (changes & BNXT_FLAG_TPA) {
11008 		update_tpa = true;
11009 		if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
11010 		    (flags & BNXT_FLAG_TPA) == 0 ||
11011 		    (bp->flags & BNXT_FLAG_CHIP_P5))
11012 			re_init = true;
11013 	}
11014 
11015 	if (changes & ~BNXT_FLAG_TPA)
11016 		re_init = true;
11017 
11018 	if (flags != bp->flags) {
11019 		u32 old_flags = bp->flags;
11020 
11021 		if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11022 			bp->flags = flags;
11023 			if (update_tpa)
11024 				bnxt_set_ring_params(bp);
11025 			return rc;
11026 		}
11027 
11028 		if (re_init) {
11029 			bnxt_close_nic(bp, false, false);
11030 			bp->flags = flags;
11031 			if (update_tpa)
11032 				bnxt_set_ring_params(bp);
11033 
11034 			return bnxt_open_nic(bp, false, false);
11035 		}
11036 		if (update_tpa) {
11037 			bp->flags = flags;
11038 			rc = bnxt_set_tpa(bp,
11039 					  (flags & BNXT_FLAG_TPA) ?
11040 					  true : false);
11041 			if (rc)
11042 				bp->flags = old_flags;
11043 		}
11044 	}
11045 	return rc;
11046 }
11047 
11048 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off,
11049 			      u8 **nextp)
11050 {
11051 	struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off);
11052 	int hdr_count = 0;
11053 	u8 *nexthdr;
11054 	int start;
11055 
11056 	/* Check that there are at most 2 IPv6 extension headers, no
11057 	 * fragment header, and each is <= 64 bytes.
11058 	 */
11059 	start = nw_off + sizeof(*ip6h);
11060 	nexthdr = &ip6h->nexthdr;
11061 	while (ipv6_ext_hdr(*nexthdr)) {
11062 		struct ipv6_opt_hdr *hp;
11063 		int hdrlen;
11064 
11065 		if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE ||
11066 		    *nexthdr == NEXTHDR_FRAGMENT)
11067 			return false;
11068 		hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data,
11069 					  skb_headlen(skb), NULL);
11070 		if (!hp)
11071 			return false;
11072 		if (*nexthdr == NEXTHDR_AUTH)
11073 			hdrlen = ipv6_authlen(hp);
11074 		else
11075 			hdrlen = ipv6_optlen(hp);
11076 
11077 		if (hdrlen > 64)
11078 			return false;
11079 		nexthdr = &hp->nexthdr;
11080 		start += hdrlen;
11081 		hdr_count++;
11082 	}
11083 	if (nextp) {
11084 		/* Caller will check inner protocol */
11085 		if (skb->encapsulation) {
11086 			*nextp = nexthdr;
11087 			return true;
11088 		}
11089 		*nextp = NULL;
11090 	}
11091 	/* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */
11092 	return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP;
11093 }
11094 
11095 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */
11096 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb)
11097 {
11098 	struct udphdr *uh = udp_hdr(skb);
11099 	__be16 udp_port = uh->dest;
11100 
11101 	if (udp_port != bp->vxlan_port && udp_port != bp->nge_port)
11102 		return false;
11103 	if (skb->inner_protocol_type == ENCAP_TYPE_ETHER) {
11104 		struct ethhdr *eh = inner_eth_hdr(skb);
11105 
11106 		switch (eh->h_proto) {
11107 		case htons(ETH_P_IP):
11108 			return true;
11109 		case htons(ETH_P_IPV6):
11110 			return bnxt_exthdr_check(bp, skb,
11111 						 skb_inner_network_offset(skb),
11112 						 NULL);
11113 		}
11114 	}
11115 	return false;
11116 }
11117 
11118 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto)
11119 {
11120 	switch (l4_proto) {
11121 	case IPPROTO_UDP:
11122 		return bnxt_udp_tunl_check(bp, skb);
11123 	case IPPROTO_IPIP:
11124 		return true;
11125 	case IPPROTO_GRE: {
11126 		switch (skb->inner_protocol) {
11127 		default:
11128 			return false;
11129 		case htons(ETH_P_IP):
11130 			return true;
11131 		case htons(ETH_P_IPV6):
11132 			fallthrough;
11133 		}
11134 	}
11135 	case IPPROTO_IPV6:
11136 		/* Check ext headers of inner ipv6 */
11137 		return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb),
11138 					 NULL);
11139 	}
11140 	return false;
11141 }
11142 
11143 static netdev_features_t bnxt_features_check(struct sk_buff *skb,
11144 					     struct net_device *dev,
11145 					     netdev_features_t features)
11146 {
11147 	struct bnxt *bp = netdev_priv(dev);
11148 	u8 *l4_proto;
11149 
11150 	features = vlan_features_check(skb, features);
11151 	switch (vlan_get_protocol(skb)) {
11152 	case htons(ETH_P_IP):
11153 		if (!skb->encapsulation)
11154 			return features;
11155 		l4_proto = &ip_hdr(skb)->protocol;
11156 		if (bnxt_tunl_check(bp, skb, *l4_proto))
11157 			return features;
11158 		break;
11159 	case htons(ETH_P_IPV6):
11160 		if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb),
11161 				       &l4_proto))
11162 			break;
11163 		if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto))
11164 			return features;
11165 		break;
11166 	}
11167 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11168 }
11169 
11170 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words,
11171 			 u32 *reg_buf)
11172 {
11173 	struct hwrm_dbg_read_direct_output *resp;
11174 	struct hwrm_dbg_read_direct_input *req;
11175 	__le32 *dbg_reg_buf;
11176 	dma_addr_t mapping;
11177 	int rc, i;
11178 
11179 	rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT);
11180 	if (rc)
11181 		return rc;
11182 
11183 	dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4,
11184 					 &mapping);
11185 	if (!dbg_reg_buf) {
11186 		rc = -ENOMEM;
11187 		goto dbg_rd_reg_exit;
11188 	}
11189 
11190 	req->host_dest_addr = cpu_to_le64(mapping);
11191 
11192 	resp = hwrm_req_hold(bp, req);
11193 	req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR);
11194 	req->read_len32 = cpu_to_le32(num_words);
11195 
11196 	rc = hwrm_req_send(bp, req);
11197 	if (rc || resp->error_code) {
11198 		rc = -EIO;
11199 		goto dbg_rd_reg_exit;
11200 	}
11201 	for (i = 0; i < num_words; i++)
11202 		reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]);
11203 
11204 dbg_rd_reg_exit:
11205 	hwrm_req_drop(bp, req);
11206 	return rc;
11207 }
11208 
11209 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type,
11210 				       u32 ring_id, u32 *prod, u32 *cons)
11211 {
11212 	struct hwrm_dbg_ring_info_get_output *resp;
11213 	struct hwrm_dbg_ring_info_get_input *req;
11214 	int rc;
11215 
11216 	rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET);
11217 	if (rc)
11218 		return rc;
11219 
11220 	req->ring_type = ring_type;
11221 	req->fw_ring_id = cpu_to_le32(ring_id);
11222 	resp = hwrm_req_hold(bp, req);
11223 	rc = hwrm_req_send(bp, req);
11224 	if (!rc) {
11225 		*prod = le32_to_cpu(resp->producer_index);
11226 		*cons = le32_to_cpu(resp->consumer_index);
11227 	}
11228 	hwrm_req_drop(bp, req);
11229 	return rc;
11230 }
11231 
11232 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
11233 {
11234 	struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
11235 	int i = bnapi->index;
11236 
11237 	if (!txr)
11238 		return;
11239 
11240 	netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
11241 		    i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
11242 		    txr->tx_cons);
11243 }
11244 
11245 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
11246 {
11247 	struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
11248 	int i = bnapi->index;
11249 
11250 	if (!rxr)
11251 		return;
11252 
11253 	netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
11254 		    i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
11255 		    rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
11256 		    rxr->rx_sw_agg_prod);
11257 }
11258 
11259 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
11260 {
11261 	struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
11262 	int i = bnapi->index;
11263 
11264 	netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
11265 		    i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
11266 }
11267 
11268 static void bnxt_dbg_dump_states(struct bnxt *bp)
11269 {
11270 	int i;
11271 	struct bnxt_napi *bnapi;
11272 
11273 	for (i = 0; i < bp->cp_nr_rings; i++) {
11274 		bnapi = bp->bnapi[i];
11275 		if (netif_msg_drv(bp)) {
11276 			bnxt_dump_tx_sw_state(bnapi);
11277 			bnxt_dump_rx_sw_state(bnapi);
11278 			bnxt_dump_cp_sw_state(bnapi);
11279 		}
11280 	}
11281 }
11282 
11283 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr)
11284 {
11285 	struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr];
11286 	struct hwrm_ring_reset_input *req;
11287 	struct bnxt_napi *bnapi = rxr->bnapi;
11288 	struct bnxt_cp_ring_info *cpr;
11289 	u16 cp_ring_id;
11290 	int rc;
11291 
11292 	rc = hwrm_req_init(bp, req, HWRM_RING_RESET);
11293 	if (rc)
11294 		return rc;
11295 
11296 	cpr = &bnapi->cp_ring;
11297 	cp_ring_id = cpr->cp_ring_struct.fw_ring_id;
11298 	req->cmpl_ring = cpu_to_le16(cp_ring_id);
11299 	req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP;
11300 	req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id);
11301 	return hwrm_req_send_silent(bp, req);
11302 }
11303 
11304 static void bnxt_reset_task(struct bnxt *bp, bool silent)
11305 {
11306 	if (!silent)
11307 		bnxt_dbg_dump_states(bp);
11308 	if (netif_running(bp->dev)) {
11309 		int rc;
11310 
11311 		if (silent) {
11312 			bnxt_close_nic(bp, false, false);
11313 			bnxt_open_nic(bp, false, false);
11314 		} else {
11315 			bnxt_ulp_stop(bp);
11316 			bnxt_close_nic(bp, true, false);
11317 			rc = bnxt_open_nic(bp, true, false);
11318 			bnxt_ulp_start(bp, rc);
11319 		}
11320 	}
11321 }
11322 
11323 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue)
11324 {
11325 	struct bnxt *bp = netdev_priv(dev);
11326 
11327 	netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
11328 	set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
11329 	bnxt_queue_sp_work(bp);
11330 }
11331 
11332 static void bnxt_fw_health_check(struct bnxt *bp)
11333 {
11334 	struct bnxt_fw_health *fw_health = bp->fw_health;
11335 	u32 val;
11336 
11337 	if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11338 		return;
11339 
11340 	/* Make sure it is enabled before checking the tmr_counter. */
11341 	smp_rmb();
11342 	if (fw_health->tmr_counter) {
11343 		fw_health->tmr_counter--;
11344 		return;
11345 	}
11346 
11347 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11348 	if (val == fw_health->last_fw_heartbeat) {
11349 		fw_health->arrests++;
11350 		goto fw_reset;
11351 	}
11352 
11353 	fw_health->last_fw_heartbeat = val;
11354 
11355 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11356 	if (val != fw_health->last_fw_reset_cnt) {
11357 		fw_health->discoveries++;
11358 		goto fw_reset;
11359 	}
11360 
11361 	fw_health->tmr_counter = fw_health->tmr_multiplier;
11362 	return;
11363 
11364 fw_reset:
11365 	set_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event);
11366 	bnxt_queue_sp_work(bp);
11367 }
11368 
11369 static void bnxt_timer(struct timer_list *t)
11370 {
11371 	struct bnxt *bp = from_timer(bp, t, timer);
11372 	struct net_device *dev = bp->dev;
11373 
11374 	if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state))
11375 		return;
11376 
11377 	if (atomic_read(&bp->intr_sem) != 0)
11378 		goto bnxt_restart_timer;
11379 
11380 	if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)
11381 		bnxt_fw_health_check(bp);
11382 
11383 	if (bp->link_info.link_up && bp->stats_coal_ticks) {
11384 		set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
11385 		bnxt_queue_sp_work(bp);
11386 	}
11387 
11388 	if (bnxt_tc_flower_enabled(bp)) {
11389 		set_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event);
11390 		bnxt_queue_sp_work(bp);
11391 	}
11392 
11393 #ifdef CONFIG_RFS_ACCEL
11394 	if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) {
11395 		set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
11396 		bnxt_queue_sp_work(bp);
11397 	}
11398 #endif /*CONFIG_RFS_ACCEL*/
11399 
11400 	if (bp->link_info.phy_retry) {
11401 		if (time_after(jiffies, bp->link_info.phy_retry_expires)) {
11402 			bp->link_info.phy_retry = false;
11403 			netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n");
11404 		} else {
11405 			set_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event);
11406 			bnxt_queue_sp_work(bp);
11407 		}
11408 	}
11409 
11410 	if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) {
11411 		set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
11412 		bnxt_queue_sp_work(bp);
11413 	}
11414 
11415 	if ((bp->flags & BNXT_FLAG_CHIP_P5) && !bp->chip_rev &&
11416 	    netif_carrier_ok(dev)) {
11417 		set_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event);
11418 		bnxt_queue_sp_work(bp);
11419 	}
11420 bnxt_restart_timer:
11421 	mod_timer(&bp->timer, jiffies + bp->current_interval);
11422 }
11423 
11424 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
11425 {
11426 	/* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
11427 	 * set.  If the device is being closed, bnxt_close() may be holding
11428 	 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
11429 	 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
11430 	 */
11431 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11432 	rtnl_lock();
11433 }
11434 
11435 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
11436 {
11437 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11438 	rtnl_unlock();
11439 }
11440 
11441 /* Only called from bnxt_sp_task() */
11442 static void bnxt_reset(struct bnxt *bp, bool silent)
11443 {
11444 	bnxt_rtnl_lock_sp(bp);
11445 	if (test_bit(BNXT_STATE_OPEN, &bp->state))
11446 		bnxt_reset_task(bp, silent);
11447 	bnxt_rtnl_unlock_sp(bp);
11448 }
11449 
11450 /* Only called from bnxt_sp_task() */
11451 static void bnxt_rx_ring_reset(struct bnxt *bp)
11452 {
11453 	int i;
11454 
11455 	bnxt_rtnl_lock_sp(bp);
11456 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11457 		bnxt_rtnl_unlock_sp(bp);
11458 		return;
11459 	}
11460 	/* Disable and flush TPA before resetting the RX ring */
11461 	if (bp->flags & BNXT_FLAG_TPA)
11462 		bnxt_set_tpa(bp, false);
11463 	for (i = 0; i < bp->rx_nr_rings; i++) {
11464 		struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
11465 		struct bnxt_cp_ring_info *cpr;
11466 		int rc;
11467 
11468 		if (!rxr->bnapi->in_reset)
11469 			continue;
11470 
11471 		rc = bnxt_hwrm_rx_ring_reset(bp, i);
11472 		if (rc) {
11473 			if (rc == -EINVAL || rc == -EOPNOTSUPP)
11474 				netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n");
11475 			else
11476 				netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n",
11477 					    rc);
11478 			bnxt_reset_task(bp, true);
11479 			break;
11480 		}
11481 		bnxt_free_one_rx_ring_skbs(bp, i);
11482 		rxr->rx_prod = 0;
11483 		rxr->rx_agg_prod = 0;
11484 		rxr->rx_sw_agg_prod = 0;
11485 		rxr->rx_next_cons = 0;
11486 		rxr->bnapi->in_reset = false;
11487 		bnxt_alloc_one_rx_ring(bp, i);
11488 		cpr = &rxr->bnapi->cp_ring;
11489 		cpr->sw_stats.rx.rx_resets++;
11490 		if (bp->flags & BNXT_FLAG_AGG_RINGS)
11491 			bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod);
11492 		bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod);
11493 	}
11494 	if (bp->flags & BNXT_FLAG_TPA)
11495 		bnxt_set_tpa(bp, true);
11496 	bnxt_rtnl_unlock_sp(bp);
11497 }
11498 
11499 static void bnxt_fw_reset_close(struct bnxt *bp)
11500 {
11501 	bnxt_ulp_stop(bp);
11502 	/* When firmware is in fatal state, quiesce device and disable
11503 	 * bus master to prevent any potential bad DMAs before freeing
11504 	 * kernel memory.
11505 	 */
11506 	if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) {
11507 		u16 val = 0;
11508 
11509 		pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
11510 		if (val == 0xffff)
11511 			bp->fw_reset_min_dsecs = 0;
11512 		bnxt_tx_disable(bp);
11513 		bnxt_disable_napi(bp);
11514 		bnxt_disable_int_sync(bp);
11515 		bnxt_free_irq(bp);
11516 		bnxt_clear_int_mode(bp);
11517 		pci_disable_device(bp->pdev);
11518 	}
11519 	__bnxt_close_nic(bp, true, false);
11520 	bnxt_vf_reps_free(bp);
11521 	bnxt_clear_int_mode(bp);
11522 	bnxt_hwrm_func_drv_unrgtr(bp);
11523 	if (pci_is_enabled(bp->pdev))
11524 		pci_disable_device(bp->pdev);
11525 	bnxt_free_ctx_mem(bp);
11526 	kfree(bp->ctx);
11527 	bp->ctx = NULL;
11528 }
11529 
11530 static bool is_bnxt_fw_ok(struct bnxt *bp)
11531 {
11532 	struct bnxt_fw_health *fw_health = bp->fw_health;
11533 	bool no_heartbeat = false, has_reset = false;
11534 	u32 val;
11535 
11536 	val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG);
11537 	if (val == fw_health->last_fw_heartbeat)
11538 		no_heartbeat = true;
11539 
11540 	val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
11541 	if (val != fw_health->last_fw_reset_cnt)
11542 		has_reset = true;
11543 
11544 	if (!no_heartbeat && has_reset)
11545 		return true;
11546 
11547 	return false;
11548 }
11549 
11550 /* rtnl_lock is acquired before calling this function */
11551 static void bnxt_force_fw_reset(struct bnxt *bp)
11552 {
11553 	struct bnxt_fw_health *fw_health = bp->fw_health;
11554 	struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11555 	u32 wait_dsecs;
11556 
11557 	if (!test_bit(BNXT_STATE_OPEN, &bp->state) ||
11558 	    test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))
11559 		return;
11560 
11561 	if (ptp) {
11562 		spin_lock_bh(&ptp->ptp_lock);
11563 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11564 		spin_unlock_bh(&ptp->ptp_lock);
11565 	} else {
11566 		set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11567 	}
11568 	bnxt_fw_reset_close(bp);
11569 	wait_dsecs = fw_health->master_func_wait_dsecs;
11570 	if (fw_health->primary) {
11571 		if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU)
11572 			wait_dsecs = 0;
11573 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
11574 	} else {
11575 		bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10;
11576 		wait_dsecs = fw_health->normal_func_wait_dsecs;
11577 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11578 	}
11579 
11580 	bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs;
11581 	bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs;
11582 	bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
11583 }
11584 
11585 void bnxt_fw_exception(struct bnxt *bp)
11586 {
11587 	netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n");
11588 	set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
11589 	bnxt_rtnl_lock_sp(bp);
11590 	bnxt_force_fw_reset(bp);
11591 	bnxt_rtnl_unlock_sp(bp);
11592 }
11593 
11594 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or
11595  * < 0 on error.
11596  */
11597 static int bnxt_get_registered_vfs(struct bnxt *bp)
11598 {
11599 #ifdef CONFIG_BNXT_SRIOV
11600 	int rc;
11601 
11602 	if (!BNXT_PF(bp))
11603 		return 0;
11604 
11605 	rc = bnxt_hwrm_func_qcfg(bp);
11606 	if (rc) {
11607 		netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc);
11608 		return rc;
11609 	}
11610 	if (bp->pf.registered_vfs)
11611 		return bp->pf.registered_vfs;
11612 	if (bp->sriov_cfg)
11613 		return 1;
11614 #endif
11615 	return 0;
11616 }
11617 
11618 void bnxt_fw_reset(struct bnxt *bp)
11619 {
11620 	bnxt_rtnl_lock_sp(bp);
11621 	if (test_bit(BNXT_STATE_OPEN, &bp->state) &&
11622 	    !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
11623 		struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
11624 		int n = 0, tmo;
11625 
11626 		if (ptp) {
11627 			spin_lock_bh(&ptp->ptp_lock);
11628 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11629 			spin_unlock_bh(&ptp->ptp_lock);
11630 		} else {
11631 			set_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11632 		}
11633 		if (bp->pf.active_vfs &&
11634 		    !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))
11635 			n = bnxt_get_registered_vfs(bp);
11636 		if (n < 0) {
11637 			netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n",
11638 				   n);
11639 			clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
11640 			dev_close(bp->dev);
11641 			goto fw_reset_exit;
11642 		} else if (n > 0) {
11643 			u16 vf_tmo_dsecs = n * 10;
11644 
11645 			if (bp->fw_reset_max_dsecs < vf_tmo_dsecs)
11646 				bp->fw_reset_max_dsecs = vf_tmo_dsecs;
11647 			bp->fw_reset_state =
11648 				BNXT_FW_RESET_STATE_POLL_VF;
11649 			bnxt_queue_fw_reset_work(bp, HZ / 10);
11650 			goto fw_reset_exit;
11651 		}
11652 		bnxt_fw_reset_close(bp);
11653 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
11654 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
11655 			tmo = HZ / 10;
11656 		} else {
11657 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
11658 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
11659 		}
11660 		bnxt_queue_fw_reset_work(bp, tmo);
11661 	}
11662 fw_reset_exit:
11663 	bnxt_rtnl_unlock_sp(bp);
11664 }
11665 
11666 static void bnxt_chk_missed_irq(struct bnxt *bp)
11667 {
11668 	int i;
11669 
11670 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
11671 		return;
11672 
11673 	for (i = 0; i < bp->cp_nr_rings; i++) {
11674 		struct bnxt_napi *bnapi = bp->bnapi[i];
11675 		struct bnxt_cp_ring_info *cpr;
11676 		u32 fw_ring_id;
11677 		int j;
11678 
11679 		if (!bnapi)
11680 			continue;
11681 
11682 		cpr = &bnapi->cp_ring;
11683 		for (j = 0; j < 2; j++) {
11684 			struct bnxt_cp_ring_info *cpr2 = cpr->cp_ring_arr[j];
11685 			u32 val[2];
11686 
11687 			if (!cpr2 || cpr2->has_more_work ||
11688 			    !bnxt_has_work(bp, cpr2))
11689 				continue;
11690 
11691 			if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) {
11692 				cpr2->last_cp_raw_cons = cpr2->cp_raw_cons;
11693 				continue;
11694 			}
11695 			fw_ring_id = cpr2->cp_ring_struct.fw_ring_id;
11696 			bnxt_dbg_hwrm_ring_info_get(bp,
11697 				DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL,
11698 				fw_ring_id, &val[0], &val[1]);
11699 			cpr->sw_stats.cmn.missed_irqs++;
11700 		}
11701 	}
11702 }
11703 
11704 static void bnxt_cfg_ntp_filters(struct bnxt *);
11705 
11706 static void bnxt_init_ethtool_link_settings(struct bnxt *bp)
11707 {
11708 	struct bnxt_link_info *link_info = &bp->link_info;
11709 
11710 	if (BNXT_AUTO_MODE(link_info->auto_mode)) {
11711 		link_info->autoneg = BNXT_AUTONEG_SPEED;
11712 		if (bp->hwrm_spec_code >= 0x10201) {
11713 			if (link_info->auto_pause_setting &
11714 			    PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
11715 				link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11716 		} else {
11717 			link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
11718 		}
11719 		link_info->advertising = link_info->auto_link_speeds;
11720 		link_info->advertising_pam4 = link_info->auto_pam4_link_speeds;
11721 	} else {
11722 		link_info->req_link_speed = link_info->force_link_speed;
11723 		link_info->req_signal_mode = BNXT_SIG_MODE_NRZ;
11724 		if (link_info->force_pam4_link_speed) {
11725 			link_info->req_link_speed =
11726 				link_info->force_pam4_link_speed;
11727 			link_info->req_signal_mode = BNXT_SIG_MODE_PAM4;
11728 		}
11729 		link_info->req_duplex = link_info->duplex_setting;
11730 	}
11731 	if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
11732 		link_info->req_flow_ctrl =
11733 			link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
11734 	else
11735 		link_info->req_flow_ctrl = link_info->force_pause_setting;
11736 }
11737 
11738 static void bnxt_fw_echo_reply(struct bnxt *bp)
11739 {
11740 	struct bnxt_fw_health *fw_health = bp->fw_health;
11741 	struct hwrm_func_echo_response_input *req;
11742 	int rc;
11743 
11744 	rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE);
11745 	if (rc)
11746 		return;
11747 	req->event_data1 = cpu_to_le32(fw_health->echo_req_data1);
11748 	req->event_data2 = cpu_to_le32(fw_health->echo_req_data2);
11749 	hwrm_req_send(bp, req);
11750 }
11751 
11752 static void bnxt_sp_task(struct work_struct *work)
11753 {
11754 	struct bnxt *bp = container_of(work, struct bnxt, sp_task);
11755 
11756 	set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11757 	smp_mb__after_atomic();
11758 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
11759 		clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11760 		return;
11761 	}
11762 
11763 	if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
11764 		bnxt_cfg_rx_mode(bp);
11765 
11766 	if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
11767 		bnxt_cfg_ntp_filters(bp);
11768 	if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
11769 		bnxt_hwrm_exec_fwd_req(bp);
11770 	if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) {
11771 		bnxt_hwrm_port_qstats(bp, 0);
11772 		bnxt_hwrm_port_qstats_ext(bp, 0);
11773 		bnxt_accumulate_all_stats(bp);
11774 	}
11775 
11776 	if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
11777 		int rc;
11778 
11779 		mutex_lock(&bp->link_lock);
11780 		if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
11781 				       &bp->sp_event))
11782 			bnxt_hwrm_phy_qcaps(bp);
11783 
11784 		rc = bnxt_update_link(bp, true);
11785 		if (rc)
11786 			netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
11787 				   rc);
11788 
11789 		if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT,
11790 				       &bp->sp_event))
11791 			bnxt_init_ethtool_link_settings(bp);
11792 		mutex_unlock(&bp->link_lock);
11793 	}
11794 	if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) {
11795 		int rc;
11796 
11797 		mutex_lock(&bp->link_lock);
11798 		rc = bnxt_update_phy_setting(bp);
11799 		mutex_unlock(&bp->link_lock);
11800 		if (rc) {
11801 			netdev_warn(bp->dev, "update phy settings retry failed\n");
11802 		} else {
11803 			bp->link_info.phy_retry = false;
11804 			netdev_info(bp->dev, "update phy settings retry succeeded\n");
11805 		}
11806 	}
11807 	if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
11808 		mutex_lock(&bp->link_lock);
11809 		bnxt_get_port_module_status(bp);
11810 		mutex_unlock(&bp->link_lock);
11811 	}
11812 
11813 	if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event))
11814 		bnxt_tc_flow_stats_work(bp);
11815 
11816 	if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event))
11817 		bnxt_chk_missed_irq(bp);
11818 
11819 	if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event))
11820 		bnxt_fw_echo_reply(bp);
11821 
11822 	/* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
11823 	 * must be the last functions to be called before exiting.
11824 	 */
11825 	if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
11826 		bnxt_reset(bp, false);
11827 
11828 	if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
11829 		bnxt_reset(bp, true);
11830 
11831 	if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event))
11832 		bnxt_rx_ring_reset(bp);
11833 
11834 	if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) {
11835 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) ||
11836 		    test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state))
11837 			bnxt_devlink_health_fw_report(bp);
11838 		else
11839 			bnxt_fw_reset(bp);
11840 	}
11841 
11842 	if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) {
11843 		if (!is_bnxt_fw_ok(bp))
11844 			bnxt_devlink_health_fw_report(bp);
11845 	}
11846 
11847 	smp_mb__before_atomic();
11848 	clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
11849 }
11850 
11851 /* Under rtnl_lock */
11852 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs,
11853 		     int tx_xdp)
11854 {
11855 	int max_rx, max_tx, tx_sets = 1;
11856 	int tx_rings_needed, stats;
11857 	int rx_rings = rx;
11858 	int cp, vnics, rc;
11859 
11860 	if (tcs)
11861 		tx_sets = tcs;
11862 
11863 	rc = bnxt_get_max_rings(bp, &max_rx, &max_tx, sh);
11864 	if (rc)
11865 		return rc;
11866 
11867 	if (max_rx < rx)
11868 		return -ENOMEM;
11869 
11870 	tx_rings_needed = tx * tx_sets + tx_xdp;
11871 	if (max_tx < tx_rings_needed)
11872 		return -ENOMEM;
11873 
11874 	vnics = 1;
11875 	if ((bp->flags & (BNXT_FLAG_RFS | BNXT_FLAG_CHIP_P5)) == BNXT_FLAG_RFS)
11876 		vnics += rx_rings;
11877 
11878 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
11879 		rx_rings <<= 1;
11880 	cp = sh ? max_t(int, tx_rings_needed, rx) : tx_rings_needed + rx;
11881 	stats = cp;
11882 	if (BNXT_NEW_RM(bp)) {
11883 		cp += bnxt_get_ulp_msix_num(bp);
11884 		stats += bnxt_get_ulp_stat_ctxs(bp);
11885 	}
11886 	return bnxt_hwrm_check_rings(bp, tx_rings_needed, rx_rings, rx, cp,
11887 				     stats, vnics);
11888 }
11889 
11890 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev)
11891 {
11892 	if (bp->bar2) {
11893 		pci_iounmap(pdev, bp->bar2);
11894 		bp->bar2 = NULL;
11895 	}
11896 
11897 	if (bp->bar1) {
11898 		pci_iounmap(pdev, bp->bar1);
11899 		bp->bar1 = NULL;
11900 	}
11901 
11902 	if (bp->bar0) {
11903 		pci_iounmap(pdev, bp->bar0);
11904 		bp->bar0 = NULL;
11905 	}
11906 }
11907 
11908 static void bnxt_cleanup_pci(struct bnxt *bp)
11909 {
11910 	bnxt_unmap_bars(bp, bp->pdev);
11911 	pci_release_regions(bp->pdev);
11912 	if (pci_is_enabled(bp->pdev))
11913 		pci_disable_device(bp->pdev);
11914 }
11915 
11916 static void bnxt_init_dflt_coal(struct bnxt *bp)
11917 {
11918 	struct bnxt_coal_cap *coal_cap = &bp->coal_cap;
11919 	struct bnxt_coal *coal;
11920 	u16 flags = 0;
11921 
11922 	if (coal_cap->cmpl_params &
11923 	    RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET)
11924 		flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
11925 
11926 	/* Tick values in micro seconds.
11927 	 * 1 coal_buf x bufs_per_record = 1 completion record.
11928 	 */
11929 	coal = &bp->rx_coal;
11930 	coal->coal_ticks = 10;
11931 	coal->coal_bufs = 30;
11932 	coal->coal_ticks_irq = 1;
11933 	coal->coal_bufs_irq = 2;
11934 	coal->idle_thresh = 50;
11935 	coal->bufs_per_record = 2;
11936 	coal->budget = 64;		/* NAPI budget */
11937 	coal->flags = flags;
11938 
11939 	coal = &bp->tx_coal;
11940 	coal->coal_ticks = 28;
11941 	coal->coal_bufs = 30;
11942 	coal->coal_ticks_irq = 2;
11943 	coal->coal_bufs_irq = 2;
11944 	coal->bufs_per_record = 1;
11945 	coal->flags = flags;
11946 
11947 	bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
11948 }
11949 
11950 static int bnxt_fw_init_one_p1(struct bnxt *bp)
11951 {
11952 	int rc;
11953 
11954 	bp->fw_cap = 0;
11955 	rc = bnxt_hwrm_ver_get(bp);
11956 	bnxt_try_map_fw_health_reg(bp);
11957 	if (rc) {
11958 		rc = bnxt_try_recover_fw(bp);
11959 		if (rc)
11960 			return rc;
11961 		rc = bnxt_hwrm_ver_get(bp);
11962 		if (rc)
11963 			return rc;
11964 	}
11965 
11966 	bnxt_nvm_cfg_ver_get(bp);
11967 
11968 	rc = bnxt_hwrm_func_reset(bp);
11969 	if (rc)
11970 		return -ENODEV;
11971 
11972 	bnxt_hwrm_fw_set_time(bp);
11973 	return 0;
11974 }
11975 
11976 static int bnxt_fw_init_one_p2(struct bnxt *bp)
11977 {
11978 	int rc;
11979 
11980 	/* Get the MAX capabilities for this function */
11981 	rc = bnxt_hwrm_func_qcaps(bp);
11982 	if (rc) {
11983 		netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
11984 			   rc);
11985 		return -ENODEV;
11986 	}
11987 
11988 	rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp);
11989 	if (rc)
11990 		netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n",
11991 			    rc);
11992 
11993 	if (bnxt_alloc_fw_health(bp)) {
11994 		netdev_warn(bp->dev, "no memory for firmware error recovery\n");
11995 	} else {
11996 		rc = bnxt_hwrm_error_recovery_qcfg(bp);
11997 		if (rc)
11998 			netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n",
11999 				    rc);
12000 	}
12001 
12002 	rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false);
12003 	if (rc)
12004 		return -ENODEV;
12005 
12006 	bnxt_hwrm_func_qcfg(bp);
12007 	bnxt_hwrm_vnic_qcaps(bp);
12008 	bnxt_hwrm_port_led_qcaps(bp);
12009 	bnxt_ethtool_init(bp);
12010 	bnxt_dcb_init(bp);
12011 	return 0;
12012 }
12013 
12014 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp)
12015 {
12016 	bp->flags &= ~BNXT_FLAG_UDP_RSS_CAP;
12017 	bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
12018 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
12019 			   VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
12020 			   VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
12021 	if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) {
12022 		bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
12023 		bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
12024 				    VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
12025 	}
12026 }
12027 
12028 static void bnxt_set_dflt_rfs(struct bnxt *bp)
12029 {
12030 	struct net_device *dev = bp->dev;
12031 
12032 	dev->hw_features &= ~NETIF_F_NTUPLE;
12033 	dev->features &= ~NETIF_F_NTUPLE;
12034 	bp->flags &= ~BNXT_FLAG_RFS;
12035 	if (bnxt_rfs_supported(bp)) {
12036 		dev->hw_features |= NETIF_F_NTUPLE;
12037 		if (bnxt_rfs_capable(bp)) {
12038 			bp->flags |= BNXT_FLAG_RFS;
12039 			dev->features |= NETIF_F_NTUPLE;
12040 		}
12041 	}
12042 }
12043 
12044 static void bnxt_fw_init_one_p3(struct bnxt *bp)
12045 {
12046 	struct pci_dev *pdev = bp->pdev;
12047 
12048 	bnxt_set_dflt_rss_hash_type(bp);
12049 	bnxt_set_dflt_rfs(bp);
12050 
12051 	bnxt_get_wol_settings(bp);
12052 	if (bp->flags & BNXT_FLAG_WOL_CAP)
12053 		device_set_wakeup_enable(&pdev->dev, bp->wol);
12054 	else
12055 		device_set_wakeup_capable(&pdev->dev, false);
12056 
12057 	bnxt_hwrm_set_cache_line_size(bp, cache_line_size());
12058 	bnxt_hwrm_coal_params_qcaps(bp);
12059 }
12060 
12061 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt);
12062 
12063 int bnxt_fw_init_one(struct bnxt *bp)
12064 {
12065 	int rc;
12066 
12067 	rc = bnxt_fw_init_one_p1(bp);
12068 	if (rc) {
12069 		netdev_err(bp->dev, "Firmware init phase 1 failed\n");
12070 		return rc;
12071 	}
12072 	rc = bnxt_fw_init_one_p2(bp);
12073 	if (rc) {
12074 		netdev_err(bp->dev, "Firmware init phase 2 failed\n");
12075 		return rc;
12076 	}
12077 	rc = bnxt_probe_phy(bp, false);
12078 	if (rc)
12079 		return rc;
12080 	rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false);
12081 	if (rc)
12082 		return rc;
12083 
12084 	/* In case fw capabilities have changed, destroy the unneeded
12085 	 * reporters and create newly capable ones.
12086 	 */
12087 	bnxt_dl_fw_reporters_destroy(bp, false);
12088 	bnxt_dl_fw_reporters_create(bp);
12089 	bnxt_fw_init_one_p3(bp);
12090 	return 0;
12091 }
12092 
12093 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx)
12094 {
12095 	struct bnxt_fw_health *fw_health = bp->fw_health;
12096 	u32 reg = fw_health->fw_reset_seq_regs[reg_idx];
12097 	u32 val = fw_health->fw_reset_seq_vals[reg_idx];
12098 	u32 reg_type, reg_off, delay_msecs;
12099 
12100 	delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx];
12101 	reg_type = BNXT_FW_HEALTH_REG_TYPE(reg);
12102 	reg_off = BNXT_FW_HEALTH_REG_OFF(reg);
12103 	switch (reg_type) {
12104 	case BNXT_FW_HEALTH_REG_TYPE_CFG:
12105 		pci_write_config_dword(bp->pdev, reg_off, val);
12106 		break;
12107 	case BNXT_FW_HEALTH_REG_TYPE_GRC:
12108 		writel(reg_off & BNXT_GRC_BASE_MASK,
12109 		       bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4);
12110 		reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000;
12111 		fallthrough;
12112 	case BNXT_FW_HEALTH_REG_TYPE_BAR0:
12113 		writel(val, bp->bar0 + reg_off);
12114 		break;
12115 	case BNXT_FW_HEALTH_REG_TYPE_BAR1:
12116 		writel(val, bp->bar1 + reg_off);
12117 		break;
12118 	}
12119 	if (delay_msecs) {
12120 		pci_read_config_dword(bp->pdev, 0, &val);
12121 		msleep(delay_msecs);
12122 	}
12123 }
12124 
12125 bool bnxt_hwrm_reset_permitted(struct bnxt *bp)
12126 {
12127 	struct hwrm_func_qcfg_output *resp;
12128 	struct hwrm_func_qcfg_input *req;
12129 	bool result = true; /* firmware will enforce if unknown */
12130 
12131 	if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF)
12132 		return result;
12133 
12134 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG))
12135 		return result;
12136 
12137 	req->fid = cpu_to_le16(0xffff);
12138 	resp = hwrm_req_hold(bp, req);
12139 	if (!hwrm_req_send(bp, req))
12140 		result = !!(le16_to_cpu(resp->flags) &
12141 			    FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED);
12142 	hwrm_req_drop(bp, req);
12143 	return result;
12144 }
12145 
12146 static void bnxt_reset_all(struct bnxt *bp)
12147 {
12148 	struct bnxt_fw_health *fw_health = bp->fw_health;
12149 	int i, rc;
12150 
12151 	if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12152 		bnxt_fw_reset_via_optee(bp);
12153 		bp->fw_reset_timestamp = jiffies;
12154 		return;
12155 	}
12156 
12157 	if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) {
12158 		for (i = 0; i < fw_health->fw_reset_seq_cnt; i++)
12159 			bnxt_fw_reset_writel(bp, i);
12160 	} else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) {
12161 		struct hwrm_fw_reset_input *req;
12162 
12163 		rc = hwrm_req_init(bp, req, HWRM_FW_RESET);
12164 		if (!rc) {
12165 			req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG);
12166 			req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP;
12167 			req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP;
12168 			req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL;
12169 			rc = hwrm_req_send(bp, req);
12170 		}
12171 		if (rc != -ENODEV)
12172 			netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc);
12173 	}
12174 	bp->fw_reset_timestamp = jiffies;
12175 }
12176 
12177 static bool bnxt_fw_reset_timeout(struct bnxt *bp)
12178 {
12179 	return time_after(jiffies, bp->fw_reset_timestamp +
12180 			  (bp->fw_reset_max_dsecs * HZ / 10));
12181 }
12182 
12183 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc)
12184 {
12185 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12186 	if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) {
12187 		bnxt_ulp_start(bp, rc);
12188 		bnxt_dl_health_fw_status_update(bp, false);
12189 	}
12190 	bp->fw_reset_state = 0;
12191 	dev_close(bp->dev);
12192 }
12193 
12194 static void bnxt_fw_reset_task(struct work_struct *work)
12195 {
12196 	struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work);
12197 	int rc = 0;
12198 
12199 	if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
12200 		netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n");
12201 		return;
12202 	}
12203 
12204 	switch (bp->fw_reset_state) {
12205 	case BNXT_FW_RESET_STATE_POLL_VF: {
12206 		int n = bnxt_get_registered_vfs(bp);
12207 		int tmo;
12208 
12209 		if (n < 0) {
12210 			netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n",
12211 				   n, jiffies_to_msecs(jiffies -
12212 				   bp->fw_reset_timestamp));
12213 			goto fw_reset_abort;
12214 		} else if (n > 0) {
12215 			if (bnxt_fw_reset_timeout(bp)) {
12216 				clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12217 				bp->fw_reset_state = 0;
12218 				netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n",
12219 					   n);
12220 				return;
12221 			}
12222 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12223 			return;
12224 		}
12225 		bp->fw_reset_timestamp = jiffies;
12226 		rtnl_lock();
12227 		if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) {
12228 			bnxt_fw_reset_abort(bp, rc);
12229 			rtnl_unlock();
12230 			return;
12231 		}
12232 		bnxt_fw_reset_close(bp);
12233 		if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) {
12234 			bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN;
12235 			tmo = HZ / 10;
12236 		} else {
12237 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12238 			tmo = bp->fw_reset_min_dsecs * HZ / 10;
12239 		}
12240 		rtnl_unlock();
12241 		bnxt_queue_fw_reset_work(bp, tmo);
12242 		return;
12243 	}
12244 	case BNXT_FW_RESET_STATE_POLL_FW_DOWN: {
12245 		u32 val;
12246 
12247 		val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12248 		if (!(val & BNXT_FW_STATUS_SHUTDOWN) &&
12249 		    !bnxt_fw_reset_timeout(bp)) {
12250 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12251 			return;
12252 		}
12253 
12254 		if (!bp->fw_health->primary) {
12255 			u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs;
12256 
12257 			bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12258 			bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10);
12259 			return;
12260 		}
12261 		bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW;
12262 	}
12263 		fallthrough;
12264 	case BNXT_FW_RESET_STATE_RESET_FW:
12265 		bnxt_reset_all(bp);
12266 		bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV;
12267 		bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10);
12268 		return;
12269 	case BNXT_FW_RESET_STATE_ENABLE_DEV:
12270 		bnxt_inv_fw_health_reg(bp);
12271 		if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) &&
12272 		    !bp->fw_reset_min_dsecs) {
12273 			u16 val;
12274 
12275 			pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val);
12276 			if (val == 0xffff) {
12277 				if (bnxt_fw_reset_timeout(bp)) {
12278 					netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n");
12279 					rc = -ETIMEDOUT;
12280 					goto fw_reset_abort;
12281 				}
12282 				bnxt_queue_fw_reset_work(bp, HZ / 1000);
12283 				return;
12284 			}
12285 		}
12286 		clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state);
12287 		clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state);
12288 		if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) &&
12289 		    !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state))
12290 			bnxt_dl_remote_reload(bp);
12291 		if (pci_enable_device(bp->pdev)) {
12292 			netdev_err(bp->dev, "Cannot re-enable PCI device\n");
12293 			rc = -ENODEV;
12294 			goto fw_reset_abort;
12295 		}
12296 		pci_set_master(bp->pdev);
12297 		bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW;
12298 		fallthrough;
12299 	case BNXT_FW_RESET_STATE_POLL_FW:
12300 		bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT;
12301 		rc = bnxt_hwrm_poll(bp);
12302 		if (rc) {
12303 			if (bnxt_fw_reset_timeout(bp)) {
12304 				netdev_err(bp->dev, "Firmware reset aborted\n");
12305 				goto fw_reset_abort_status;
12306 			}
12307 			bnxt_queue_fw_reset_work(bp, HZ / 5);
12308 			return;
12309 		}
12310 		bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
12311 		bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING;
12312 		fallthrough;
12313 	case BNXT_FW_RESET_STATE_OPENING:
12314 		while (!rtnl_trylock()) {
12315 			bnxt_queue_fw_reset_work(bp, HZ / 10);
12316 			return;
12317 		}
12318 		rc = bnxt_open(bp->dev);
12319 		if (rc) {
12320 			netdev_err(bp->dev, "bnxt_open() failed during FW reset\n");
12321 			bnxt_fw_reset_abort(bp, rc);
12322 			rtnl_unlock();
12323 			return;
12324 		}
12325 
12326 		if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) &&
12327 		    bp->fw_health->enabled) {
12328 			bp->fw_health->last_fw_reset_cnt =
12329 				bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG);
12330 		}
12331 		bp->fw_reset_state = 0;
12332 		/* Make sure fw_reset_state is 0 before clearing the flag */
12333 		smp_mb__before_atomic();
12334 		clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12335 		bnxt_ulp_start(bp, 0);
12336 		bnxt_reenable_sriov(bp);
12337 		bnxt_vf_reps_alloc(bp);
12338 		bnxt_vf_reps_open(bp);
12339 		bnxt_ptp_reapply_pps(bp);
12340 		clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state);
12341 		if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) {
12342 			bnxt_dl_health_fw_recovery_done(bp);
12343 			bnxt_dl_health_fw_status_update(bp, true);
12344 		}
12345 		rtnl_unlock();
12346 		break;
12347 	}
12348 	return;
12349 
12350 fw_reset_abort_status:
12351 	if (bp->fw_health->status_reliable ||
12352 	    (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) {
12353 		u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG);
12354 
12355 		netdev_err(bp->dev, "fw_health_status 0x%x\n", sts);
12356 	}
12357 fw_reset_abort:
12358 	rtnl_lock();
12359 	bnxt_fw_reset_abort(bp, rc);
12360 	rtnl_unlock();
12361 }
12362 
12363 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
12364 {
12365 	int rc;
12366 	struct bnxt *bp = netdev_priv(dev);
12367 
12368 	SET_NETDEV_DEV(dev, &pdev->dev);
12369 
12370 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
12371 	rc = pci_enable_device(pdev);
12372 	if (rc) {
12373 		dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
12374 		goto init_err;
12375 	}
12376 
12377 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12378 		dev_err(&pdev->dev,
12379 			"Cannot find PCI device base address, aborting\n");
12380 		rc = -ENODEV;
12381 		goto init_err_disable;
12382 	}
12383 
12384 	rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12385 	if (rc) {
12386 		dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
12387 		goto init_err_disable;
12388 	}
12389 
12390 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
12391 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
12392 		dev_err(&pdev->dev, "System does not support DMA, aborting\n");
12393 		rc = -EIO;
12394 		goto init_err_release;
12395 	}
12396 
12397 	pci_set_master(pdev);
12398 
12399 	bp->dev = dev;
12400 	bp->pdev = pdev;
12401 
12402 	/* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2()
12403 	 * determines the BAR size.
12404 	 */
12405 	bp->bar0 = pci_ioremap_bar(pdev, 0);
12406 	if (!bp->bar0) {
12407 		dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
12408 		rc = -ENOMEM;
12409 		goto init_err_release;
12410 	}
12411 
12412 	bp->bar2 = pci_ioremap_bar(pdev, 4);
12413 	if (!bp->bar2) {
12414 		dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
12415 		rc = -ENOMEM;
12416 		goto init_err_release;
12417 	}
12418 
12419 	pci_enable_pcie_error_reporting(pdev);
12420 
12421 	INIT_WORK(&bp->sp_task, bnxt_sp_task);
12422 	INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task);
12423 
12424 	spin_lock_init(&bp->ntp_fltr_lock);
12425 #if BITS_PER_LONG == 32
12426 	spin_lock_init(&bp->db_lock);
12427 #endif
12428 
12429 	bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
12430 	bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
12431 
12432 	timer_setup(&bp->timer, bnxt_timer, 0);
12433 	bp->current_interval = BNXT_TIMER_INTERVAL;
12434 
12435 	bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID;
12436 	bp->nge_fw_dst_port_id = INVALID_HW_RING_ID;
12437 
12438 	clear_bit(BNXT_STATE_OPEN, &bp->state);
12439 	return 0;
12440 
12441 init_err_release:
12442 	bnxt_unmap_bars(bp, pdev);
12443 	pci_release_regions(pdev);
12444 
12445 init_err_disable:
12446 	pci_disable_device(pdev);
12447 
12448 init_err:
12449 	return rc;
12450 }
12451 
12452 /* rtnl_lock held */
12453 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
12454 {
12455 	struct sockaddr *addr = p;
12456 	struct bnxt *bp = netdev_priv(dev);
12457 	int rc = 0;
12458 
12459 	if (!is_valid_ether_addr(addr->sa_data))
12460 		return -EADDRNOTAVAIL;
12461 
12462 	if (ether_addr_equal(addr->sa_data, dev->dev_addr))
12463 		return 0;
12464 
12465 	rc = bnxt_approve_mac(bp, addr->sa_data, true);
12466 	if (rc)
12467 		return rc;
12468 
12469 	eth_hw_addr_set(dev, addr->sa_data);
12470 	if (netif_running(dev)) {
12471 		bnxt_close_nic(bp, false, false);
12472 		rc = bnxt_open_nic(bp, false, false);
12473 	}
12474 
12475 	return rc;
12476 }
12477 
12478 /* rtnl_lock held */
12479 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
12480 {
12481 	struct bnxt *bp = netdev_priv(dev);
12482 
12483 	if (netif_running(dev))
12484 		bnxt_close_nic(bp, true, false);
12485 
12486 	dev->mtu = new_mtu;
12487 	bnxt_set_ring_params(bp);
12488 
12489 	if (netif_running(dev))
12490 		return bnxt_open_nic(bp, true, false);
12491 
12492 	return 0;
12493 }
12494 
12495 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
12496 {
12497 	struct bnxt *bp = netdev_priv(dev);
12498 	bool sh = false;
12499 	int rc;
12500 
12501 	if (tc > bp->max_tc) {
12502 		netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n",
12503 			   tc, bp->max_tc);
12504 		return -EINVAL;
12505 	}
12506 
12507 	if (netdev_get_num_tc(dev) == tc)
12508 		return 0;
12509 
12510 	if (bp->flags & BNXT_FLAG_SHARED_RINGS)
12511 		sh = true;
12512 
12513 	rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings,
12514 			      sh, tc, bp->tx_nr_rings_xdp);
12515 	if (rc)
12516 		return rc;
12517 
12518 	/* Needs to close the device and do hw resource re-allocations */
12519 	if (netif_running(bp->dev))
12520 		bnxt_close_nic(bp, true, false);
12521 
12522 	if (tc) {
12523 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
12524 		netdev_set_num_tc(dev, tc);
12525 	} else {
12526 		bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
12527 		netdev_reset_tc(dev);
12528 	}
12529 	bp->tx_nr_rings += bp->tx_nr_rings_xdp;
12530 	bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
12531 			       bp->tx_nr_rings + bp->rx_nr_rings;
12532 
12533 	if (netif_running(bp->dev))
12534 		return bnxt_open_nic(bp, true, false);
12535 
12536 	return 0;
12537 }
12538 
12539 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
12540 				  void *cb_priv)
12541 {
12542 	struct bnxt *bp = cb_priv;
12543 
12544 	if (!bnxt_tc_flower_enabled(bp) ||
12545 	    !tc_cls_can_offload_and_chain0(bp->dev, type_data))
12546 		return -EOPNOTSUPP;
12547 
12548 	switch (type) {
12549 	case TC_SETUP_CLSFLOWER:
12550 		return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data);
12551 	default:
12552 		return -EOPNOTSUPP;
12553 	}
12554 }
12555 
12556 LIST_HEAD(bnxt_block_cb_list);
12557 
12558 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type,
12559 			 void *type_data)
12560 {
12561 	struct bnxt *bp = netdev_priv(dev);
12562 
12563 	switch (type) {
12564 	case TC_SETUP_BLOCK:
12565 		return flow_block_cb_setup_simple(type_data,
12566 						  &bnxt_block_cb_list,
12567 						  bnxt_setup_tc_block_cb,
12568 						  bp, bp, true);
12569 	case TC_SETUP_QDISC_MQPRIO: {
12570 		struct tc_mqprio_qopt *mqprio = type_data;
12571 
12572 		mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
12573 
12574 		return bnxt_setup_mq_tc(dev, mqprio->num_tc);
12575 	}
12576 	default:
12577 		return -EOPNOTSUPP;
12578 	}
12579 }
12580 
12581 #ifdef CONFIG_RFS_ACCEL
12582 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
12583 			    struct bnxt_ntuple_filter *f2)
12584 {
12585 	struct flow_keys *keys1 = &f1->fkeys;
12586 	struct flow_keys *keys2 = &f2->fkeys;
12587 
12588 	if (keys1->basic.n_proto != keys2->basic.n_proto ||
12589 	    keys1->basic.ip_proto != keys2->basic.ip_proto)
12590 		return false;
12591 
12592 	if (keys1->basic.n_proto == htons(ETH_P_IP)) {
12593 		if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src ||
12594 		    keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst)
12595 			return false;
12596 	} else {
12597 		if (memcmp(&keys1->addrs.v6addrs.src, &keys2->addrs.v6addrs.src,
12598 			   sizeof(keys1->addrs.v6addrs.src)) ||
12599 		    memcmp(&keys1->addrs.v6addrs.dst, &keys2->addrs.v6addrs.dst,
12600 			   sizeof(keys1->addrs.v6addrs.dst)))
12601 			return false;
12602 	}
12603 
12604 	if (keys1->ports.ports == keys2->ports.ports &&
12605 	    keys1->control.flags == keys2->control.flags &&
12606 	    ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
12607 	    ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
12608 		return true;
12609 
12610 	return false;
12611 }
12612 
12613 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
12614 			      u16 rxq_index, u32 flow_id)
12615 {
12616 	struct bnxt *bp = netdev_priv(dev);
12617 	struct bnxt_ntuple_filter *fltr, *new_fltr;
12618 	struct flow_keys *fkeys;
12619 	struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
12620 	int rc = 0, idx, bit_id, l2_idx = 0;
12621 	struct hlist_head *head;
12622 	u32 flags;
12623 
12624 	if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
12625 		struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
12626 		int off = 0, j;
12627 
12628 		netif_addr_lock_bh(dev);
12629 		for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
12630 			if (ether_addr_equal(eth->h_dest,
12631 					     vnic->uc_list + off)) {
12632 				l2_idx = j + 1;
12633 				break;
12634 			}
12635 		}
12636 		netif_addr_unlock_bh(dev);
12637 		if (!l2_idx)
12638 			return -EINVAL;
12639 	}
12640 	new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
12641 	if (!new_fltr)
12642 		return -ENOMEM;
12643 
12644 	fkeys = &new_fltr->fkeys;
12645 	if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
12646 		rc = -EPROTONOSUPPORT;
12647 		goto err_free;
12648 	}
12649 
12650 	if ((fkeys->basic.n_proto != htons(ETH_P_IP) &&
12651 	     fkeys->basic.n_proto != htons(ETH_P_IPV6)) ||
12652 	    ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
12653 	     (fkeys->basic.ip_proto != IPPROTO_UDP))) {
12654 		rc = -EPROTONOSUPPORT;
12655 		goto err_free;
12656 	}
12657 	if (fkeys->basic.n_proto == htons(ETH_P_IPV6) &&
12658 	    bp->hwrm_spec_code < 0x10601) {
12659 		rc = -EPROTONOSUPPORT;
12660 		goto err_free;
12661 	}
12662 	flags = fkeys->control.flags;
12663 	if (((flags & FLOW_DIS_ENCAPSULATION) &&
12664 	     bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) {
12665 		rc = -EPROTONOSUPPORT;
12666 		goto err_free;
12667 	}
12668 
12669 	memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
12670 	memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
12671 
12672 	idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
12673 	head = &bp->ntp_fltr_hash_tbl[idx];
12674 	rcu_read_lock();
12675 	hlist_for_each_entry_rcu(fltr, head, hash) {
12676 		if (bnxt_fltr_match(fltr, new_fltr)) {
12677 			rcu_read_unlock();
12678 			rc = 0;
12679 			goto err_free;
12680 		}
12681 	}
12682 	rcu_read_unlock();
12683 
12684 	spin_lock_bh(&bp->ntp_fltr_lock);
12685 	bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
12686 					 BNXT_NTP_FLTR_MAX_FLTR, 0);
12687 	if (bit_id < 0) {
12688 		spin_unlock_bh(&bp->ntp_fltr_lock);
12689 		rc = -ENOMEM;
12690 		goto err_free;
12691 	}
12692 
12693 	new_fltr->sw_id = (u16)bit_id;
12694 	new_fltr->flow_id = flow_id;
12695 	new_fltr->l2_fltr_idx = l2_idx;
12696 	new_fltr->rxq = rxq_index;
12697 	hlist_add_head_rcu(&new_fltr->hash, head);
12698 	bp->ntp_fltr_count++;
12699 	spin_unlock_bh(&bp->ntp_fltr_lock);
12700 
12701 	set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
12702 	bnxt_queue_sp_work(bp);
12703 
12704 	return new_fltr->sw_id;
12705 
12706 err_free:
12707 	kfree(new_fltr);
12708 	return rc;
12709 }
12710 
12711 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12712 {
12713 	int i;
12714 
12715 	for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
12716 		struct hlist_head *head;
12717 		struct hlist_node *tmp;
12718 		struct bnxt_ntuple_filter *fltr;
12719 		int rc;
12720 
12721 		head = &bp->ntp_fltr_hash_tbl[i];
12722 		hlist_for_each_entry_safe(fltr, tmp, head, hash) {
12723 			bool del = false;
12724 
12725 			if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
12726 				if (rps_may_expire_flow(bp->dev, fltr->rxq,
12727 							fltr->flow_id,
12728 							fltr->sw_id)) {
12729 					bnxt_hwrm_cfa_ntuple_filter_free(bp,
12730 									 fltr);
12731 					del = true;
12732 				}
12733 			} else {
12734 				rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
12735 								       fltr);
12736 				if (rc)
12737 					del = true;
12738 				else
12739 					set_bit(BNXT_FLTR_VALID, &fltr->state);
12740 			}
12741 
12742 			if (del) {
12743 				spin_lock_bh(&bp->ntp_fltr_lock);
12744 				hlist_del_rcu(&fltr->hash);
12745 				bp->ntp_fltr_count--;
12746 				spin_unlock_bh(&bp->ntp_fltr_lock);
12747 				synchronize_rcu();
12748 				clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
12749 				kfree(fltr);
12750 			}
12751 		}
12752 	}
12753 	if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
12754 		netdev_info(bp->dev, "Receive PF driver unload event!\n");
12755 }
12756 
12757 #else
12758 
12759 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
12760 {
12761 }
12762 
12763 #endif /* CONFIG_RFS_ACCEL */
12764 
12765 static int bnxt_udp_tunnel_sync(struct net_device *netdev, unsigned int table)
12766 {
12767 	struct bnxt *bp = netdev_priv(netdev);
12768 	struct udp_tunnel_info ti;
12769 	unsigned int cmd;
12770 
12771 	udp_tunnel_nic_get_port(netdev, table, 0, &ti);
12772 	if (ti.type == UDP_TUNNEL_TYPE_VXLAN)
12773 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN;
12774 	else
12775 		cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE;
12776 
12777 	if (ti.port)
12778 		return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti.port, cmd);
12779 
12780 	return bnxt_hwrm_tunnel_dst_port_free(bp, cmd);
12781 }
12782 
12783 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = {
12784 	.sync_table	= bnxt_udp_tunnel_sync,
12785 	.flags		= UDP_TUNNEL_NIC_INFO_MAY_SLEEP |
12786 			  UDP_TUNNEL_NIC_INFO_OPEN_ONLY,
12787 	.tables		= {
12788 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN,  },
12789 		{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
12790 	},
12791 };
12792 
12793 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
12794 			       struct net_device *dev, u32 filter_mask,
12795 			       int nlflags)
12796 {
12797 	struct bnxt *bp = netdev_priv(dev);
12798 
12799 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0,
12800 				       nlflags, filter_mask, NULL);
12801 }
12802 
12803 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
12804 			       u16 flags, struct netlink_ext_ack *extack)
12805 {
12806 	struct bnxt *bp = netdev_priv(dev);
12807 	struct nlattr *attr, *br_spec;
12808 	int rem, rc = 0;
12809 
12810 	if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp))
12811 		return -EOPNOTSUPP;
12812 
12813 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
12814 	if (!br_spec)
12815 		return -EINVAL;
12816 
12817 	nla_for_each_nested(attr, br_spec, rem) {
12818 		u16 mode;
12819 
12820 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
12821 			continue;
12822 
12823 		if (nla_len(attr) < sizeof(mode))
12824 			return -EINVAL;
12825 
12826 		mode = nla_get_u16(attr);
12827 		if (mode == bp->br_mode)
12828 			break;
12829 
12830 		rc = bnxt_hwrm_set_br_mode(bp, mode);
12831 		if (!rc)
12832 			bp->br_mode = mode;
12833 		break;
12834 	}
12835 	return rc;
12836 }
12837 
12838 int bnxt_get_port_parent_id(struct net_device *dev,
12839 			    struct netdev_phys_item_id *ppid)
12840 {
12841 	struct bnxt *bp = netdev_priv(dev);
12842 
12843 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
12844 		return -EOPNOTSUPP;
12845 
12846 	/* The PF and it's VF-reps only support the switchdev framework */
12847 	if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID))
12848 		return -EOPNOTSUPP;
12849 
12850 	ppid->id_len = sizeof(bp->dsn);
12851 	memcpy(ppid->id, bp->dsn, ppid->id_len);
12852 
12853 	return 0;
12854 }
12855 
12856 static struct devlink_port *bnxt_get_devlink_port(struct net_device *dev)
12857 {
12858 	struct bnxt *bp = netdev_priv(dev);
12859 
12860 	return &bp->dl_port;
12861 }
12862 
12863 static const struct net_device_ops bnxt_netdev_ops = {
12864 	.ndo_open		= bnxt_open,
12865 	.ndo_start_xmit		= bnxt_start_xmit,
12866 	.ndo_stop		= bnxt_close,
12867 	.ndo_get_stats64	= bnxt_get_stats64,
12868 	.ndo_set_rx_mode	= bnxt_set_rx_mode,
12869 	.ndo_eth_ioctl		= bnxt_ioctl,
12870 	.ndo_validate_addr	= eth_validate_addr,
12871 	.ndo_set_mac_address	= bnxt_change_mac_addr,
12872 	.ndo_change_mtu		= bnxt_change_mtu,
12873 	.ndo_fix_features	= bnxt_fix_features,
12874 	.ndo_set_features	= bnxt_set_features,
12875 	.ndo_features_check	= bnxt_features_check,
12876 	.ndo_tx_timeout		= bnxt_tx_timeout,
12877 #ifdef CONFIG_BNXT_SRIOV
12878 	.ndo_get_vf_config	= bnxt_get_vf_config,
12879 	.ndo_set_vf_mac		= bnxt_set_vf_mac,
12880 	.ndo_set_vf_vlan	= bnxt_set_vf_vlan,
12881 	.ndo_set_vf_rate	= bnxt_set_vf_bw,
12882 	.ndo_set_vf_link_state	= bnxt_set_vf_link_state,
12883 	.ndo_set_vf_spoofchk	= bnxt_set_vf_spoofchk,
12884 	.ndo_set_vf_trust	= bnxt_set_vf_trust,
12885 #endif
12886 	.ndo_setup_tc           = bnxt_setup_tc,
12887 #ifdef CONFIG_RFS_ACCEL
12888 	.ndo_rx_flow_steer	= bnxt_rx_flow_steer,
12889 #endif
12890 	.ndo_bpf		= bnxt_xdp,
12891 	.ndo_xdp_xmit		= bnxt_xdp_xmit,
12892 	.ndo_bridge_getlink	= bnxt_bridge_getlink,
12893 	.ndo_bridge_setlink	= bnxt_bridge_setlink,
12894 	.ndo_get_devlink_port	= bnxt_get_devlink_port,
12895 };
12896 
12897 static void bnxt_remove_one(struct pci_dev *pdev)
12898 {
12899 	struct net_device *dev = pci_get_drvdata(pdev);
12900 	struct bnxt *bp = netdev_priv(dev);
12901 
12902 	if (BNXT_PF(bp))
12903 		bnxt_sriov_disable(bp);
12904 
12905 	if (BNXT_PF(bp))
12906 		devlink_port_type_clear(&bp->dl_port);
12907 
12908 	bnxt_ptp_clear(bp);
12909 	pci_disable_pcie_error_reporting(pdev);
12910 	unregister_netdev(dev);
12911 	clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state);
12912 	/* Flush any pending tasks */
12913 	cancel_work_sync(&bp->sp_task);
12914 	cancel_delayed_work_sync(&bp->fw_reset_task);
12915 	bp->sp_event = 0;
12916 
12917 	bnxt_dl_fw_reporters_destroy(bp, true);
12918 	bnxt_dl_unregister(bp);
12919 	bnxt_shutdown_tc(bp);
12920 
12921 	bnxt_clear_int_mode(bp);
12922 	bnxt_hwrm_func_drv_unrgtr(bp);
12923 	bnxt_free_hwrm_resources(bp);
12924 	bnxt_ethtool_free(bp);
12925 	bnxt_dcb_free(bp);
12926 	kfree(bp->edev);
12927 	bp->edev = NULL;
12928 	kfree(bp->ptp_cfg);
12929 	bp->ptp_cfg = NULL;
12930 	kfree(bp->fw_health);
12931 	bp->fw_health = NULL;
12932 	bnxt_cleanup_pci(bp);
12933 	bnxt_free_ctx_mem(bp);
12934 	kfree(bp->ctx);
12935 	bp->ctx = NULL;
12936 	kfree(bp->rss_indir_tbl);
12937 	bp->rss_indir_tbl = NULL;
12938 	bnxt_free_port_stats(bp);
12939 	free_netdev(dev);
12940 }
12941 
12942 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt)
12943 {
12944 	int rc = 0;
12945 	struct bnxt_link_info *link_info = &bp->link_info;
12946 
12947 	bp->phy_flags = 0;
12948 	rc = bnxt_hwrm_phy_qcaps(bp);
12949 	if (rc) {
12950 		netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
12951 			   rc);
12952 		return rc;
12953 	}
12954 	if (bp->phy_flags & BNXT_PHY_FL_NO_FCS)
12955 		bp->dev->priv_flags |= IFF_SUPP_NOFCS;
12956 	else
12957 		bp->dev->priv_flags &= ~IFF_SUPP_NOFCS;
12958 	if (!fw_dflt)
12959 		return 0;
12960 
12961 	mutex_lock(&bp->link_lock);
12962 	rc = bnxt_update_link(bp, false);
12963 	if (rc) {
12964 		mutex_unlock(&bp->link_lock);
12965 		netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
12966 			   rc);
12967 		return rc;
12968 	}
12969 
12970 	/* Older firmware does not have supported_auto_speeds, so assume
12971 	 * that all supported speeds can be autonegotiated.
12972 	 */
12973 	if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
12974 		link_info->support_auto_speeds = link_info->support_speeds;
12975 
12976 	bnxt_init_ethtool_link_settings(bp);
12977 	mutex_unlock(&bp->link_lock);
12978 	return 0;
12979 }
12980 
12981 static int bnxt_get_max_irq(struct pci_dev *pdev)
12982 {
12983 	u16 ctrl;
12984 
12985 	if (!pdev->msix_cap)
12986 		return 1;
12987 
12988 	pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
12989 	return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
12990 }
12991 
12992 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
12993 				int *max_cp)
12994 {
12995 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
12996 	int max_ring_grps = 0, max_irq;
12997 
12998 	*max_tx = hw_resc->max_tx_rings;
12999 	*max_rx = hw_resc->max_rx_rings;
13000 	*max_cp = bnxt_get_max_func_cp_rings_for_en(bp);
13001 	max_irq = min_t(int, bnxt_get_max_func_irqs(bp) -
13002 			bnxt_get_ulp_msix_num(bp),
13003 			hw_resc->max_stat_ctxs - bnxt_get_ulp_stat_ctxs(bp));
13004 	if (!(bp->flags & BNXT_FLAG_CHIP_P5))
13005 		*max_cp = min_t(int, *max_cp, max_irq);
13006 	max_ring_grps = hw_resc->max_hw_ring_grps;
13007 	if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
13008 		*max_cp -= 1;
13009 		*max_rx -= 2;
13010 	}
13011 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
13012 		*max_rx >>= 1;
13013 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
13014 		bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false);
13015 		/* On P5 chips, max_cp output param should be available NQs */
13016 		*max_cp = max_irq;
13017 	}
13018 	*max_rx = min_t(int, *max_rx, max_ring_grps);
13019 }
13020 
13021 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
13022 {
13023 	int rx, tx, cp;
13024 
13025 	_bnxt_get_max_rings(bp, &rx, &tx, &cp);
13026 	*max_rx = rx;
13027 	*max_tx = tx;
13028 	if (!rx || !tx || !cp)
13029 		return -ENOMEM;
13030 
13031 	return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
13032 }
13033 
13034 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
13035 			       bool shared)
13036 {
13037 	int rc;
13038 
13039 	rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13040 	if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) {
13041 		/* Not enough rings, try disabling agg rings. */
13042 		bp->flags &= ~BNXT_FLAG_AGG_RINGS;
13043 		rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
13044 		if (rc) {
13045 			/* set BNXT_FLAG_AGG_RINGS back for consistency */
13046 			bp->flags |= BNXT_FLAG_AGG_RINGS;
13047 			return rc;
13048 		}
13049 		bp->flags |= BNXT_FLAG_NO_AGG_RINGS;
13050 		bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13051 		bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
13052 		bnxt_set_ring_params(bp);
13053 	}
13054 
13055 	if (bp->flags & BNXT_FLAG_ROCE_CAP) {
13056 		int max_cp, max_stat, max_irq;
13057 
13058 		/* Reserve minimum resources for RoCE */
13059 		max_cp = bnxt_get_max_func_cp_rings(bp);
13060 		max_stat = bnxt_get_max_func_stat_ctxs(bp);
13061 		max_irq = bnxt_get_max_func_irqs(bp);
13062 		if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
13063 		    max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
13064 		    max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
13065 			return 0;
13066 
13067 		max_cp -= BNXT_MIN_ROCE_CP_RINGS;
13068 		max_irq -= BNXT_MIN_ROCE_CP_RINGS;
13069 		max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
13070 		max_cp = min_t(int, max_cp, max_irq);
13071 		max_cp = min_t(int, max_cp, max_stat);
13072 		rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
13073 		if (rc)
13074 			rc = 0;
13075 	}
13076 	return rc;
13077 }
13078 
13079 /* In initial default shared ring setting, each shared ring must have a
13080  * RX/TX ring pair.
13081  */
13082 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp)
13083 {
13084 	bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings);
13085 	bp->rx_nr_rings = bp->cp_nr_rings;
13086 	bp->tx_nr_rings_per_tc = bp->cp_nr_rings;
13087 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13088 }
13089 
13090 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh)
13091 {
13092 	int dflt_rings, max_rx_rings, max_tx_rings, rc;
13093 
13094 	if (!bnxt_can_reserve_rings(bp))
13095 		return 0;
13096 
13097 	if (sh)
13098 		bp->flags |= BNXT_FLAG_SHARED_RINGS;
13099 	dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues();
13100 	/* Reduce default rings on multi-port cards so that total default
13101 	 * rings do not exceed CPU count.
13102 	 */
13103 	if (bp->port_count > 1) {
13104 		int max_rings =
13105 			max_t(int, num_online_cpus() / bp->port_count, 1);
13106 
13107 		dflt_rings = min_t(int, dflt_rings, max_rings);
13108 	}
13109 	rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
13110 	if (rc)
13111 		return rc;
13112 	bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
13113 	bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
13114 	if (sh)
13115 		bnxt_trim_dflt_sh_rings(bp);
13116 	else
13117 		bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings;
13118 	bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
13119 
13120 	rc = __bnxt_reserve_rings(bp);
13121 	if (rc && rc != -ENODEV)
13122 		netdev_warn(bp->dev, "Unable to reserve tx rings\n");
13123 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13124 	if (sh)
13125 		bnxt_trim_dflt_sh_rings(bp);
13126 
13127 	/* Rings may have been trimmed, re-reserve the trimmed rings. */
13128 	if (bnxt_need_reserve_rings(bp)) {
13129 		rc = __bnxt_reserve_rings(bp);
13130 		if (rc && rc != -ENODEV)
13131 			netdev_warn(bp->dev, "2nd rings reservation failed.\n");
13132 		bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13133 	}
13134 	if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
13135 		bp->rx_nr_rings++;
13136 		bp->cp_nr_rings++;
13137 	}
13138 	if (rc) {
13139 		bp->tx_nr_rings = 0;
13140 		bp->rx_nr_rings = 0;
13141 	}
13142 	return rc;
13143 }
13144 
13145 static int bnxt_init_dflt_ring_mode(struct bnxt *bp)
13146 {
13147 	int rc;
13148 
13149 	if (bp->tx_nr_rings)
13150 		return 0;
13151 
13152 	bnxt_ulp_irq_stop(bp);
13153 	bnxt_clear_int_mode(bp);
13154 	rc = bnxt_set_dflt_rings(bp, true);
13155 	if (rc) {
13156 		if (BNXT_VF(bp) && rc == -ENODEV)
13157 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13158 		else
13159 			netdev_err(bp->dev, "Not enough rings available.\n");
13160 		goto init_dflt_ring_err;
13161 	}
13162 	rc = bnxt_init_int_mode(bp);
13163 	if (rc)
13164 		goto init_dflt_ring_err;
13165 
13166 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13167 	if (bnxt_rfs_supported(bp) && bnxt_rfs_capable(bp)) {
13168 		bp->flags |= BNXT_FLAG_RFS;
13169 		bp->dev->features |= NETIF_F_NTUPLE;
13170 	}
13171 init_dflt_ring_err:
13172 	bnxt_ulp_irq_restart(bp, rc);
13173 	return rc;
13174 }
13175 
13176 int bnxt_restore_pf_fw_resources(struct bnxt *bp)
13177 {
13178 	int rc;
13179 
13180 	ASSERT_RTNL();
13181 	bnxt_hwrm_func_qcaps(bp);
13182 
13183 	if (netif_running(bp->dev))
13184 		__bnxt_close_nic(bp, true, false);
13185 
13186 	bnxt_ulp_irq_stop(bp);
13187 	bnxt_clear_int_mode(bp);
13188 	rc = bnxt_init_int_mode(bp);
13189 	bnxt_ulp_irq_restart(bp, rc);
13190 
13191 	if (netif_running(bp->dev)) {
13192 		if (rc)
13193 			dev_close(bp->dev);
13194 		else
13195 			rc = bnxt_open_nic(bp, true, false);
13196 	}
13197 
13198 	return rc;
13199 }
13200 
13201 static int bnxt_init_mac_addr(struct bnxt *bp)
13202 {
13203 	int rc = 0;
13204 
13205 	if (BNXT_PF(bp)) {
13206 		eth_hw_addr_set(bp->dev, bp->pf.mac_addr);
13207 	} else {
13208 #ifdef CONFIG_BNXT_SRIOV
13209 		struct bnxt_vf_info *vf = &bp->vf;
13210 		bool strict_approval = true;
13211 
13212 		if (is_valid_ether_addr(vf->mac_addr)) {
13213 			/* overwrite netdev dev_addr with admin VF MAC */
13214 			eth_hw_addr_set(bp->dev, vf->mac_addr);
13215 			/* Older PF driver or firmware may not approve this
13216 			 * correctly.
13217 			 */
13218 			strict_approval = false;
13219 		} else {
13220 			eth_hw_addr_random(bp->dev);
13221 		}
13222 		rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval);
13223 #endif
13224 	}
13225 	return rc;
13226 }
13227 
13228 static void bnxt_vpd_read_info(struct bnxt *bp)
13229 {
13230 	struct pci_dev *pdev = bp->pdev;
13231 	unsigned int vpd_size, kw_len;
13232 	int pos, size;
13233 	u8 *vpd_data;
13234 
13235 	vpd_data = pci_vpd_alloc(pdev, &vpd_size);
13236 	if (IS_ERR(vpd_data)) {
13237 		pci_warn(pdev, "Unable to read VPD\n");
13238 		return;
13239 	}
13240 
13241 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13242 					   PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
13243 	if (pos < 0)
13244 		goto read_sn;
13245 
13246 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13247 	memcpy(bp->board_partno, &vpd_data[pos], size);
13248 
13249 read_sn:
13250 	pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
13251 					   PCI_VPD_RO_KEYWORD_SERIALNO,
13252 					   &kw_len);
13253 	if (pos < 0)
13254 		goto exit;
13255 
13256 	size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1);
13257 	memcpy(bp->board_serialno, &vpd_data[pos], size);
13258 exit:
13259 	kfree(vpd_data);
13260 }
13261 
13262 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[])
13263 {
13264 	struct pci_dev *pdev = bp->pdev;
13265 	u64 qword;
13266 
13267 	qword = pci_get_dsn(pdev);
13268 	if (!qword) {
13269 		netdev_info(bp->dev, "Unable to read adapter's DSN\n");
13270 		return -EOPNOTSUPP;
13271 	}
13272 
13273 	put_unaligned_le64(qword, dsn);
13274 
13275 	bp->flags |= BNXT_FLAG_DSN_VALID;
13276 	return 0;
13277 }
13278 
13279 static int bnxt_map_db_bar(struct bnxt *bp)
13280 {
13281 	if (!bp->db_size)
13282 		return -ENODEV;
13283 	bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size);
13284 	if (!bp->bar1)
13285 		return -ENOMEM;
13286 	return 0;
13287 }
13288 
13289 void bnxt_print_device_info(struct bnxt *bp)
13290 {
13291 	netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n",
13292 		    board_info[bp->board_idx].name,
13293 		    (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr);
13294 
13295 	pcie_print_link_status(bp->pdev);
13296 }
13297 
13298 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
13299 {
13300 	struct net_device *dev;
13301 	struct bnxt *bp;
13302 	int rc, max_irqs;
13303 
13304 	if (pci_is_bridge(pdev))
13305 		return -ENODEV;
13306 
13307 	/* Clear any pending DMA transactions from crash kernel
13308 	 * while loading driver in capture kernel.
13309 	 */
13310 	if (is_kdump_kernel()) {
13311 		pci_clear_master(pdev);
13312 		pcie_flr(pdev);
13313 	}
13314 
13315 	max_irqs = bnxt_get_max_irq(pdev);
13316 	dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
13317 	if (!dev)
13318 		return -ENOMEM;
13319 
13320 	bp = netdev_priv(dev);
13321 	bp->board_idx = ent->driver_data;
13322 	bp->msg_enable = BNXT_DEF_MSG_ENABLE;
13323 	bnxt_set_max_func_irqs(bp, max_irqs);
13324 
13325 	if (bnxt_vf_pciid(bp->board_idx))
13326 		bp->flags |= BNXT_FLAG_VF;
13327 
13328 	if (pdev->msix_cap)
13329 		bp->flags |= BNXT_FLAG_MSIX_CAP;
13330 
13331 	rc = bnxt_init_board(pdev, dev);
13332 	if (rc < 0)
13333 		goto init_err_free;
13334 
13335 	dev->netdev_ops = &bnxt_netdev_ops;
13336 	dev->watchdog_timeo = BNXT_TX_TIMEOUT;
13337 	dev->ethtool_ops = &bnxt_ethtool_ops;
13338 	pci_set_drvdata(pdev, dev);
13339 
13340 	rc = bnxt_alloc_hwrm_resources(bp);
13341 	if (rc)
13342 		goto init_err_pci_clean;
13343 
13344 	mutex_init(&bp->hwrm_cmd_lock);
13345 	mutex_init(&bp->link_lock);
13346 
13347 	rc = bnxt_fw_init_one_p1(bp);
13348 	if (rc)
13349 		goto init_err_pci_clean;
13350 
13351 	if (BNXT_PF(bp))
13352 		bnxt_vpd_read_info(bp);
13353 
13354 	if (BNXT_CHIP_P5(bp)) {
13355 		bp->flags |= BNXT_FLAG_CHIP_P5;
13356 		if (BNXT_CHIP_SR2(bp))
13357 			bp->flags |= BNXT_FLAG_CHIP_SR2;
13358 	}
13359 
13360 	rc = bnxt_alloc_rss_indir_tbl(bp);
13361 	if (rc)
13362 		goto init_err_pci_clean;
13363 
13364 	rc = bnxt_fw_init_one_p2(bp);
13365 	if (rc)
13366 		goto init_err_pci_clean;
13367 
13368 	rc = bnxt_map_db_bar(bp);
13369 	if (rc) {
13370 		dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n",
13371 			rc);
13372 		goto init_err_pci_clean;
13373 	}
13374 
13375 	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13376 			   NETIF_F_TSO | NETIF_F_TSO6 |
13377 			   NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13378 			   NETIF_F_GSO_IPXIP4 |
13379 			   NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13380 			   NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
13381 			   NETIF_F_RXCSUM | NETIF_F_GRO;
13382 
13383 	if (BNXT_SUPPORTS_TPA(bp))
13384 		dev->hw_features |= NETIF_F_LRO;
13385 
13386 	dev->hw_enc_features =
13387 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13388 			NETIF_F_TSO | NETIF_F_TSO6 |
13389 			NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
13390 			NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
13391 			NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
13392 	dev->udp_tunnel_nic_info = &bnxt_udp_tunnels;
13393 
13394 	dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
13395 				    NETIF_F_GSO_GRE_CSUM;
13396 	dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
13397 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP)
13398 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX;
13399 	if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT)
13400 		dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX;
13401 	if (BNXT_SUPPORTS_TPA(bp))
13402 		dev->hw_features |= NETIF_F_GRO_HW;
13403 	dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
13404 	if (dev->features & NETIF_F_GRO_HW)
13405 		dev->features &= ~NETIF_F_LRO;
13406 	dev->priv_flags |= IFF_UNICAST_FLT;
13407 
13408 #ifdef CONFIG_BNXT_SRIOV
13409 	init_waitqueue_head(&bp->sriov_cfg_wait);
13410 	mutex_init(&bp->sriov_lock);
13411 #endif
13412 	if (BNXT_SUPPORTS_TPA(bp)) {
13413 		bp->gro_func = bnxt_gro_func_5730x;
13414 		if (BNXT_CHIP_P4(bp))
13415 			bp->gro_func = bnxt_gro_func_5731x;
13416 		else if (BNXT_CHIP_P5(bp))
13417 			bp->gro_func = bnxt_gro_func_5750x;
13418 	}
13419 	if (!BNXT_CHIP_P4_PLUS(bp))
13420 		bp->flags |= BNXT_FLAG_DOUBLE_DB;
13421 
13422 	rc = bnxt_init_mac_addr(bp);
13423 	if (rc) {
13424 		dev_err(&pdev->dev, "Unable to initialize mac address.\n");
13425 		rc = -EADDRNOTAVAIL;
13426 		goto init_err_pci_clean;
13427 	}
13428 
13429 	if (BNXT_PF(bp)) {
13430 		/* Read the adapter's DSN to use as the eswitch switch_id */
13431 		rc = bnxt_pcie_dsn_get(bp, bp->dsn);
13432 	}
13433 
13434 	/* MTU range: 60 - FW defined max */
13435 	dev->min_mtu = ETH_ZLEN;
13436 	dev->max_mtu = bp->max_mtu;
13437 
13438 	rc = bnxt_probe_phy(bp, true);
13439 	if (rc)
13440 		goto init_err_pci_clean;
13441 
13442 	bnxt_set_rx_skb_mode(bp, false);
13443 	bnxt_set_tpa_flags(bp);
13444 	bnxt_set_ring_params(bp);
13445 	rc = bnxt_set_dflt_rings(bp, true);
13446 	if (rc) {
13447 		if (BNXT_VF(bp) && rc == -ENODEV) {
13448 			netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n");
13449 		} else {
13450 			netdev_err(bp->dev, "Not enough rings available.\n");
13451 			rc = -ENOMEM;
13452 		}
13453 		goto init_err_pci_clean;
13454 	}
13455 
13456 	bnxt_fw_init_one_p3(bp);
13457 
13458 	bnxt_init_dflt_coal(bp);
13459 
13460 	if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX)
13461 		bp->flags |= BNXT_FLAG_STRIP_VLAN;
13462 
13463 	rc = bnxt_init_int_mode(bp);
13464 	if (rc)
13465 		goto init_err_pci_clean;
13466 
13467 	/* No TC has been set yet and rings may have been trimmed due to
13468 	 * limited MSIX, so we re-initialize the TX rings per TC.
13469 	 */
13470 	bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
13471 
13472 	if (BNXT_PF(bp)) {
13473 		if (!bnxt_pf_wq) {
13474 			bnxt_pf_wq =
13475 				create_singlethread_workqueue("bnxt_pf_wq");
13476 			if (!bnxt_pf_wq) {
13477 				dev_err(&pdev->dev, "Unable to create workqueue.\n");
13478 				rc = -ENOMEM;
13479 				goto init_err_pci_clean;
13480 			}
13481 		}
13482 		rc = bnxt_init_tc(bp);
13483 		if (rc)
13484 			netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n",
13485 				   rc);
13486 	}
13487 
13488 	bnxt_inv_fw_health_reg(bp);
13489 	rc = bnxt_dl_register(bp);
13490 	if (rc)
13491 		goto init_err_dl;
13492 
13493 	rc = register_netdev(dev);
13494 	if (rc)
13495 		goto init_err_cleanup;
13496 
13497 	if (BNXT_PF(bp))
13498 		devlink_port_type_eth_set(&bp->dl_port, bp->dev);
13499 	bnxt_dl_fw_reporters_create(bp);
13500 
13501 	bnxt_print_device_info(bp);
13502 
13503 	pci_save_state(pdev);
13504 	return 0;
13505 
13506 init_err_cleanup:
13507 	bnxt_dl_unregister(bp);
13508 init_err_dl:
13509 	bnxt_shutdown_tc(bp);
13510 	bnxt_clear_int_mode(bp);
13511 
13512 init_err_pci_clean:
13513 	bnxt_hwrm_func_drv_unrgtr(bp);
13514 	bnxt_free_hwrm_resources(bp);
13515 	bnxt_ethtool_free(bp);
13516 	bnxt_ptp_clear(bp);
13517 	kfree(bp->ptp_cfg);
13518 	bp->ptp_cfg = NULL;
13519 	kfree(bp->fw_health);
13520 	bp->fw_health = NULL;
13521 	bnxt_cleanup_pci(bp);
13522 	bnxt_free_ctx_mem(bp);
13523 	kfree(bp->ctx);
13524 	bp->ctx = NULL;
13525 	kfree(bp->rss_indir_tbl);
13526 	bp->rss_indir_tbl = NULL;
13527 
13528 init_err_free:
13529 	free_netdev(dev);
13530 	return rc;
13531 }
13532 
13533 static void bnxt_shutdown(struct pci_dev *pdev)
13534 {
13535 	struct net_device *dev = pci_get_drvdata(pdev);
13536 	struct bnxt *bp;
13537 
13538 	if (!dev)
13539 		return;
13540 
13541 	rtnl_lock();
13542 	bp = netdev_priv(dev);
13543 	if (!bp)
13544 		goto shutdown_exit;
13545 
13546 	if (netif_running(dev))
13547 		dev_close(dev);
13548 
13549 	bnxt_ulp_shutdown(bp);
13550 	bnxt_clear_int_mode(bp);
13551 	pci_disable_device(pdev);
13552 
13553 	if (system_state == SYSTEM_POWER_OFF) {
13554 		pci_wake_from_d3(pdev, bp->wol);
13555 		pci_set_power_state(pdev, PCI_D3hot);
13556 	}
13557 
13558 shutdown_exit:
13559 	rtnl_unlock();
13560 }
13561 
13562 #ifdef CONFIG_PM_SLEEP
13563 static int bnxt_suspend(struct device *device)
13564 {
13565 	struct net_device *dev = dev_get_drvdata(device);
13566 	struct bnxt *bp = netdev_priv(dev);
13567 	int rc = 0;
13568 
13569 	rtnl_lock();
13570 	bnxt_ulp_stop(bp);
13571 	if (netif_running(dev)) {
13572 		netif_device_detach(dev);
13573 		rc = bnxt_close(dev);
13574 	}
13575 	bnxt_hwrm_func_drv_unrgtr(bp);
13576 	pci_disable_device(bp->pdev);
13577 	bnxt_free_ctx_mem(bp);
13578 	kfree(bp->ctx);
13579 	bp->ctx = NULL;
13580 	rtnl_unlock();
13581 	return rc;
13582 }
13583 
13584 static int bnxt_resume(struct device *device)
13585 {
13586 	struct net_device *dev = dev_get_drvdata(device);
13587 	struct bnxt *bp = netdev_priv(dev);
13588 	int rc = 0;
13589 
13590 	rtnl_lock();
13591 	rc = pci_enable_device(bp->pdev);
13592 	if (rc) {
13593 		netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n",
13594 			   rc);
13595 		goto resume_exit;
13596 	}
13597 	pci_set_master(bp->pdev);
13598 	if (bnxt_hwrm_ver_get(bp)) {
13599 		rc = -ENODEV;
13600 		goto resume_exit;
13601 	}
13602 	rc = bnxt_hwrm_func_reset(bp);
13603 	if (rc) {
13604 		rc = -EBUSY;
13605 		goto resume_exit;
13606 	}
13607 
13608 	rc = bnxt_hwrm_func_qcaps(bp);
13609 	if (rc)
13610 		goto resume_exit;
13611 
13612 	if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) {
13613 		rc = -ENODEV;
13614 		goto resume_exit;
13615 	}
13616 
13617 	bnxt_get_wol_settings(bp);
13618 	if (netif_running(dev)) {
13619 		rc = bnxt_open(dev);
13620 		if (!rc)
13621 			netif_device_attach(dev);
13622 	}
13623 
13624 resume_exit:
13625 	bnxt_ulp_start(bp, rc);
13626 	if (!rc)
13627 		bnxt_reenable_sriov(bp);
13628 	rtnl_unlock();
13629 	return rc;
13630 }
13631 
13632 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume);
13633 #define BNXT_PM_OPS (&bnxt_pm_ops)
13634 
13635 #else
13636 
13637 #define BNXT_PM_OPS NULL
13638 
13639 #endif /* CONFIG_PM_SLEEP */
13640 
13641 /**
13642  * bnxt_io_error_detected - called when PCI error is detected
13643  * @pdev: Pointer to PCI device
13644  * @state: The current pci connection state
13645  *
13646  * This function is called after a PCI bus error affecting
13647  * this device has been detected.
13648  */
13649 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
13650 					       pci_channel_state_t state)
13651 {
13652 	struct net_device *netdev = pci_get_drvdata(pdev);
13653 	struct bnxt *bp = netdev_priv(netdev);
13654 
13655 	netdev_info(netdev, "PCI I/O error detected\n");
13656 
13657 	rtnl_lock();
13658 	netif_device_detach(netdev);
13659 
13660 	bnxt_ulp_stop(bp);
13661 
13662 	if (state == pci_channel_io_perm_failure) {
13663 		rtnl_unlock();
13664 		return PCI_ERS_RESULT_DISCONNECT;
13665 	}
13666 
13667 	if (state == pci_channel_io_frozen)
13668 		set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state);
13669 
13670 	if (netif_running(netdev))
13671 		bnxt_close(netdev);
13672 
13673 	if (pci_is_enabled(pdev))
13674 		pci_disable_device(pdev);
13675 	bnxt_free_ctx_mem(bp);
13676 	kfree(bp->ctx);
13677 	bp->ctx = NULL;
13678 	rtnl_unlock();
13679 
13680 	/* Request a slot slot reset. */
13681 	return PCI_ERS_RESULT_NEED_RESET;
13682 }
13683 
13684 /**
13685  * bnxt_io_slot_reset - called after the pci bus has been reset.
13686  * @pdev: Pointer to PCI device
13687  *
13688  * Restart the card from scratch, as if from a cold-boot.
13689  * At this point, the card has exprienced a hard reset,
13690  * followed by fixups by BIOS, and has its config space
13691  * set up identically to what it was at cold boot.
13692  */
13693 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
13694 {
13695 	pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
13696 	struct net_device *netdev = pci_get_drvdata(pdev);
13697 	struct bnxt *bp = netdev_priv(netdev);
13698 	int err = 0, off;
13699 
13700 	netdev_info(bp->dev, "PCI Slot Reset\n");
13701 
13702 	rtnl_lock();
13703 
13704 	if (pci_enable_device(pdev)) {
13705 		dev_err(&pdev->dev,
13706 			"Cannot re-enable PCI device after reset.\n");
13707 	} else {
13708 		pci_set_master(pdev);
13709 		/* Upon fatal error, our device internal logic that latches to
13710 		 * BAR value is getting reset and will restore only upon
13711 		 * rewritting the BARs.
13712 		 *
13713 		 * As pci_restore_state() does not re-write the BARs if the
13714 		 * value is same as saved value earlier, driver needs to
13715 		 * write the BARs to 0 to force restore, in case of fatal error.
13716 		 */
13717 		if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN,
13718 				       &bp->state)) {
13719 			for (off = PCI_BASE_ADDRESS_0;
13720 			     off <= PCI_BASE_ADDRESS_5; off += 4)
13721 				pci_write_config_dword(bp->pdev, off, 0);
13722 		}
13723 		pci_restore_state(pdev);
13724 		pci_save_state(pdev);
13725 
13726 		err = bnxt_hwrm_func_reset(bp);
13727 		if (!err)
13728 			result = PCI_ERS_RESULT_RECOVERED;
13729 	}
13730 
13731 	rtnl_unlock();
13732 
13733 	return result;
13734 }
13735 
13736 /**
13737  * bnxt_io_resume - called when traffic can start flowing again.
13738  * @pdev: Pointer to PCI device
13739  *
13740  * This callback is called when the error recovery driver tells
13741  * us that its OK to resume normal operation.
13742  */
13743 static void bnxt_io_resume(struct pci_dev *pdev)
13744 {
13745 	struct net_device *netdev = pci_get_drvdata(pdev);
13746 	struct bnxt *bp = netdev_priv(netdev);
13747 	int err;
13748 
13749 	netdev_info(bp->dev, "PCI Slot Resume\n");
13750 	rtnl_lock();
13751 
13752 	err = bnxt_hwrm_func_qcaps(bp);
13753 	if (!err && netif_running(netdev))
13754 		err = bnxt_open(netdev);
13755 
13756 	bnxt_ulp_start(bp, err);
13757 	if (!err) {
13758 		bnxt_reenable_sriov(bp);
13759 		netif_device_attach(netdev);
13760 	}
13761 
13762 	rtnl_unlock();
13763 }
13764 
13765 static const struct pci_error_handlers bnxt_err_handler = {
13766 	.error_detected	= bnxt_io_error_detected,
13767 	.slot_reset	= bnxt_io_slot_reset,
13768 	.resume		= bnxt_io_resume
13769 };
13770 
13771 static struct pci_driver bnxt_pci_driver = {
13772 	.name		= DRV_MODULE_NAME,
13773 	.id_table	= bnxt_pci_tbl,
13774 	.probe		= bnxt_init_one,
13775 	.remove		= bnxt_remove_one,
13776 	.shutdown	= bnxt_shutdown,
13777 	.driver.pm	= BNXT_PM_OPS,
13778 	.err_handler	= &bnxt_err_handler,
13779 #if defined(CONFIG_BNXT_SRIOV)
13780 	.sriov_configure = bnxt_sriov_configure,
13781 #endif
13782 };
13783 
13784 static int __init bnxt_init(void)
13785 {
13786 	bnxt_debug_init();
13787 	return pci_register_driver(&bnxt_pci_driver);
13788 }
13789 
13790 static void __exit bnxt_exit(void)
13791 {
13792 	pci_unregister_driver(&bnxt_pci_driver);
13793 	if (bnxt_pf_wq)
13794 		destroy_workqueue(bnxt_pf_wq);
13795 	bnxt_debug_exit();
13796 }
13797 
13798 module_init(bnxt_init);
13799 module_exit(bnxt_exit);
13800