xref: /openbmc/linux/drivers/net/ethernet/broadcom/bcm63xx_enet.c (revision 26a9630c72ebac7c564db305a6aee54a8edde70e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for BCM963xx builtin Ethernet mac
4  *
5  * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
6  */
7 #include <linux/init.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/clk.h>
11 #include <linux/etherdevice.h>
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/ethtool.h>
15 #include <linux/crc32.h>
16 #include <linux/err.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/platform_device.h>
19 #include <linux/if_vlan.h>
20 
21 #include <bcm63xx_dev_enet.h>
22 #include "bcm63xx_enet.h"
23 
24 static char bcm_enet_driver_name[] = "bcm63xx_enet";
25 
26 static int copybreak __read_mostly = 128;
27 module_param(copybreak, int, 0);
28 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
29 
30 /* io registers memory shared between all devices */
31 static void __iomem *bcm_enet_shared_base[3];
32 
33 /*
34  * io helpers to access mac registers
35  */
36 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
37 {
38 	return bcm_readl(priv->base + off);
39 }
40 
41 static inline void enet_writel(struct bcm_enet_priv *priv,
42 			       u32 val, u32 off)
43 {
44 	bcm_writel(val, priv->base + off);
45 }
46 
47 /*
48  * io helpers to access switch registers
49  */
50 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 	return bcm_readl(priv->base + off);
53 }
54 
55 static inline void enetsw_writel(struct bcm_enet_priv *priv,
56 				 u32 val, u32 off)
57 {
58 	bcm_writel(val, priv->base + off);
59 }
60 
61 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
62 {
63 	return bcm_readw(priv->base + off);
64 }
65 
66 static inline void enetsw_writew(struct bcm_enet_priv *priv,
67 				 u16 val, u32 off)
68 {
69 	bcm_writew(val, priv->base + off);
70 }
71 
72 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
73 {
74 	return bcm_readb(priv->base + off);
75 }
76 
77 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
78 				 u8 val, u32 off)
79 {
80 	bcm_writeb(val, priv->base + off);
81 }
82 
83 
84 /* io helpers to access shared registers */
85 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
86 {
87 	return bcm_readl(bcm_enet_shared_base[0] + off);
88 }
89 
90 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
91 				       u32 val, u32 off)
92 {
93 	bcm_writel(val, bcm_enet_shared_base[0] + off);
94 }
95 
96 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
97 {
98 	return bcm_readl(bcm_enet_shared_base[1] +
99 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
100 }
101 
102 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
103 				       u32 val, u32 off, int chan)
104 {
105 	bcm_writel(val, bcm_enet_shared_base[1] +
106 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
107 }
108 
109 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
110 {
111 	return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
112 }
113 
114 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
115 				       u32 val, u32 off, int chan)
116 {
117 	bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
118 }
119 
120 /*
121  * write given data into mii register and wait for transfer to end
122  * with timeout (average measured transfer time is 25us)
123  */
124 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
125 {
126 	int limit;
127 
128 	/* make sure mii interrupt status is cleared */
129 	enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
130 
131 	enet_writel(priv, data, ENET_MIIDATA_REG);
132 	wmb();
133 
134 	/* busy wait on mii interrupt bit, with timeout */
135 	limit = 1000;
136 	do {
137 		if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
138 			break;
139 		udelay(1);
140 	} while (limit-- > 0);
141 
142 	return (limit < 0) ? 1 : 0;
143 }
144 
145 /*
146  * MII internal read callback
147  */
148 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
149 			      int regnum)
150 {
151 	u32 tmp, val;
152 
153 	tmp = regnum << ENET_MIIDATA_REG_SHIFT;
154 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
155 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
156 	tmp |= ENET_MIIDATA_OP_READ_MASK;
157 
158 	if (do_mdio_op(priv, tmp))
159 		return -1;
160 
161 	val = enet_readl(priv, ENET_MIIDATA_REG);
162 	val &= 0xffff;
163 	return val;
164 }
165 
166 /*
167  * MII internal write callback
168  */
169 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
170 			       int regnum, u16 value)
171 {
172 	u32 tmp;
173 
174 	tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
175 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
176 	tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
177 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
178 	tmp |= ENET_MIIDATA_OP_WRITE_MASK;
179 
180 	(void)do_mdio_op(priv, tmp);
181 	return 0;
182 }
183 
184 /*
185  * MII read callback from phylib
186  */
187 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
188 				     int regnum)
189 {
190 	return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
191 }
192 
193 /*
194  * MII write callback from phylib
195  */
196 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
197 				      int regnum, u16 value)
198 {
199 	return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
200 }
201 
202 /*
203  * MII read callback from mii core
204  */
205 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
206 				  int regnum)
207 {
208 	return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
209 }
210 
211 /*
212  * MII write callback from mii core
213  */
214 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
215 				    int regnum, int value)
216 {
217 	bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
218 }
219 
220 /*
221  * refill rx queue
222  */
223 static int bcm_enet_refill_rx(struct net_device *dev, bool napi_mode)
224 {
225 	struct bcm_enet_priv *priv;
226 
227 	priv = netdev_priv(dev);
228 
229 	while (priv->rx_desc_count < priv->rx_ring_size) {
230 		struct bcm_enet_desc *desc;
231 		int desc_idx;
232 		u32 len_stat;
233 
234 		desc_idx = priv->rx_dirty_desc;
235 		desc = &priv->rx_desc_cpu[desc_idx];
236 
237 		if (!priv->rx_buf[desc_idx]) {
238 			void *buf;
239 
240 			if (likely(napi_mode))
241 				buf = napi_alloc_frag(priv->rx_frag_size);
242 			else
243 				buf = netdev_alloc_frag(priv->rx_frag_size);
244 			if (unlikely(!buf))
245 				break;
246 			priv->rx_buf[desc_idx] = buf;
247 			desc->address = dma_map_single(&priv->pdev->dev,
248 						       buf + priv->rx_buf_offset,
249 						       priv->rx_buf_size,
250 						       DMA_FROM_DEVICE);
251 		}
252 
253 		len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT;
254 		len_stat |= DMADESC_OWNER_MASK;
255 		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
256 			len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
257 			priv->rx_dirty_desc = 0;
258 		} else {
259 			priv->rx_dirty_desc++;
260 		}
261 		wmb();
262 		desc->len_stat = len_stat;
263 
264 		priv->rx_desc_count++;
265 
266 		/* tell dma engine we allocated one buffer */
267 		if (priv->dma_has_sram)
268 			enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
269 		else
270 			enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
271 	}
272 
273 	/* If rx ring is still empty, set a timer to try allocating
274 	 * again at a later time. */
275 	if (priv->rx_desc_count == 0 && netif_running(dev)) {
276 		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
277 		priv->rx_timeout.expires = jiffies + HZ;
278 		add_timer(&priv->rx_timeout);
279 	}
280 
281 	return 0;
282 }
283 
284 /*
285  * timer callback to defer refill rx queue in case we're OOM
286  */
287 static void bcm_enet_refill_rx_timer(struct timer_list *t)
288 {
289 	struct bcm_enet_priv *priv = from_timer(priv, t, rx_timeout);
290 	struct net_device *dev = priv->net_dev;
291 
292 	spin_lock(&priv->rx_lock);
293 	bcm_enet_refill_rx(dev, false);
294 	spin_unlock(&priv->rx_lock);
295 }
296 
297 /*
298  * extract packet from rx queue
299  */
300 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
301 {
302 	struct bcm_enet_priv *priv;
303 	struct list_head rx_list;
304 	struct device *kdev;
305 	int processed;
306 
307 	priv = netdev_priv(dev);
308 	INIT_LIST_HEAD(&rx_list);
309 	kdev = &priv->pdev->dev;
310 	processed = 0;
311 
312 	/* don't scan ring further than number of refilled
313 	 * descriptor */
314 	if (budget > priv->rx_desc_count)
315 		budget = priv->rx_desc_count;
316 
317 	do {
318 		struct bcm_enet_desc *desc;
319 		struct sk_buff *skb;
320 		int desc_idx;
321 		u32 len_stat;
322 		unsigned int len;
323 		void *buf;
324 
325 		desc_idx = priv->rx_curr_desc;
326 		desc = &priv->rx_desc_cpu[desc_idx];
327 
328 		/* make sure we actually read the descriptor status at
329 		 * each loop */
330 		rmb();
331 
332 		len_stat = desc->len_stat;
333 
334 		/* break if dma ownership belongs to hw */
335 		if (len_stat & DMADESC_OWNER_MASK)
336 			break;
337 
338 		processed++;
339 		priv->rx_curr_desc++;
340 		if (priv->rx_curr_desc == priv->rx_ring_size)
341 			priv->rx_curr_desc = 0;
342 
343 		/* if the packet does not have start of packet _and_
344 		 * end of packet flag set, then just recycle it */
345 		if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
346 			(DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
347 			dev->stats.rx_dropped++;
348 			continue;
349 		}
350 
351 		/* recycle packet if it's marked as bad */
352 		if (!priv->enet_is_sw &&
353 		    unlikely(len_stat & DMADESC_ERR_MASK)) {
354 			dev->stats.rx_errors++;
355 
356 			if (len_stat & DMADESC_OVSIZE_MASK)
357 				dev->stats.rx_length_errors++;
358 			if (len_stat & DMADESC_CRC_MASK)
359 				dev->stats.rx_crc_errors++;
360 			if (len_stat & DMADESC_UNDER_MASK)
361 				dev->stats.rx_frame_errors++;
362 			if (len_stat & DMADESC_OV_MASK)
363 				dev->stats.rx_fifo_errors++;
364 			continue;
365 		}
366 
367 		/* valid packet */
368 		buf = priv->rx_buf[desc_idx];
369 		len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
370 		/* don't include FCS */
371 		len -= 4;
372 
373 		if (len < copybreak) {
374 			skb = napi_alloc_skb(&priv->napi, len);
375 			if (unlikely(!skb)) {
376 				/* forget packet, just rearm desc */
377 				dev->stats.rx_dropped++;
378 				continue;
379 			}
380 
381 			dma_sync_single_for_cpu(kdev, desc->address,
382 						len, DMA_FROM_DEVICE);
383 			memcpy(skb->data, buf + priv->rx_buf_offset, len);
384 			dma_sync_single_for_device(kdev, desc->address,
385 						   len, DMA_FROM_DEVICE);
386 		} else {
387 			dma_unmap_single(kdev, desc->address,
388 					 priv->rx_buf_size, DMA_FROM_DEVICE);
389 			priv->rx_buf[desc_idx] = NULL;
390 
391 			skb = build_skb(buf, priv->rx_frag_size);
392 			if (unlikely(!skb)) {
393 				skb_free_frag(buf);
394 				dev->stats.rx_dropped++;
395 				continue;
396 			}
397 			skb_reserve(skb, priv->rx_buf_offset);
398 		}
399 
400 		skb_put(skb, len);
401 		skb->protocol = eth_type_trans(skb, dev);
402 		dev->stats.rx_packets++;
403 		dev->stats.rx_bytes += len;
404 		list_add_tail(&skb->list, &rx_list);
405 
406 	} while (processed < budget);
407 
408 	netif_receive_skb_list(&rx_list);
409 	priv->rx_desc_count -= processed;
410 
411 	if (processed || !priv->rx_desc_count) {
412 		bcm_enet_refill_rx(dev, true);
413 
414 		/* kick rx dma */
415 		enet_dmac_writel(priv, priv->dma_chan_en_mask,
416 					 ENETDMAC_CHANCFG, priv->rx_chan);
417 	}
418 
419 	return processed;
420 }
421 
422 
423 /*
424  * try to or force reclaim of transmitted buffers
425  */
426 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
427 {
428 	struct bcm_enet_priv *priv;
429 	unsigned int bytes;
430 	int released;
431 
432 	priv = netdev_priv(dev);
433 	bytes = 0;
434 	released = 0;
435 
436 	while (priv->tx_desc_count < priv->tx_ring_size) {
437 		struct bcm_enet_desc *desc;
438 		struct sk_buff *skb;
439 
440 		/* We run in a bh and fight against start_xmit, which
441 		 * is called with bh disabled  */
442 		spin_lock(&priv->tx_lock);
443 
444 		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
445 
446 		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
447 			spin_unlock(&priv->tx_lock);
448 			break;
449 		}
450 
451 		/* ensure other field of the descriptor were not read
452 		 * before we checked ownership */
453 		rmb();
454 
455 		skb = priv->tx_skb[priv->tx_dirty_desc];
456 		priv->tx_skb[priv->tx_dirty_desc] = NULL;
457 		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
458 				 DMA_TO_DEVICE);
459 
460 		priv->tx_dirty_desc++;
461 		if (priv->tx_dirty_desc == priv->tx_ring_size)
462 			priv->tx_dirty_desc = 0;
463 		priv->tx_desc_count++;
464 
465 		spin_unlock(&priv->tx_lock);
466 
467 		if (desc->len_stat & DMADESC_UNDER_MASK)
468 			dev->stats.tx_errors++;
469 
470 		bytes += skb->len;
471 		dev_kfree_skb(skb);
472 		released++;
473 	}
474 
475 	netdev_completed_queue(dev, released, bytes);
476 
477 	if (netif_queue_stopped(dev) && released)
478 		netif_wake_queue(dev);
479 
480 	return released;
481 }
482 
483 /*
484  * poll func, called by network core
485  */
486 static int bcm_enet_poll(struct napi_struct *napi, int budget)
487 {
488 	struct bcm_enet_priv *priv;
489 	struct net_device *dev;
490 	int rx_work_done;
491 
492 	priv = container_of(napi, struct bcm_enet_priv, napi);
493 	dev = priv->net_dev;
494 
495 	/* ack interrupts */
496 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
497 			 ENETDMAC_IR, priv->rx_chan);
498 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
499 			 ENETDMAC_IR, priv->tx_chan);
500 
501 	/* reclaim sent skb */
502 	bcm_enet_tx_reclaim(dev, 0);
503 
504 	spin_lock(&priv->rx_lock);
505 	rx_work_done = bcm_enet_receive_queue(dev, budget);
506 	spin_unlock(&priv->rx_lock);
507 
508 	if (rx_work_done >= budget) {
509 		/* rx queue is not yet empty/clean */
510 		return rx_work_done;
511 	}
512 
513 	/* no more packet in rx/tx queue, remove device from poll
514 	 * queue */
515 	napi_complete_done(napi, rx_work_done);
516 
517 	/* restore rx/tx interrupt */
518 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
519 			 ENETDMAC_IRMASK, priv->rx_chan);
520 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
521 			 ENETDMAC_IRMASK, priv->tx_chan);
522 
523 	return rx_work_done;
524 }
525 
526 /*
527  * mac interrupt handler
528  */
529 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
530 {
531 	struct net_device *dev;
532 	struct bcm_enet_priv *priv;
533 	u32 stat;
534 
535 	dev = dev_id;
536 	priv = netdev_priv(dev);
537 
538 	stat = enet_readl(priv, ENET_IR_REG);
539 	if (!(stat & ENET_IR_MIB))
540 		return IRQ_NONE;
541 
542 	/* clear & mask interrupt */
543 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
544 	enet_writel(priv, 0, ENET_IRMASK_REG);
545 
546 	/* read mib registers in workqueue */
547 	schedule_work(&priv->mib_update_task);
548 
549 	return IRQ_HANDLED;
550 }
551 
552 /*
553  * rx/tx dma interrupt handler
554  */
555 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
556 {
557 	struct net_device *dev;
558 	struct bcm_enet_priv *priv;
559 
560 	dev = dev_id;
561 	priv = netdev_priv(dev);
562 
563 	/* mask rx/tx interrupts */
564 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
565 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
566 
567 	napi_schedule(&priv->napi);
568 
569 	return IRQ_HANDLED;
570 }
571 
572 /*
573  * tx request callback
574  */
575 static netdev_tx_t
576 bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
577 {
578 	struct bcm_enet_priv *priv;
579 	struct bcm_enet_desc *desc;
580 	u32 len_stat;
581 	netdev_tx_t ret;
582 
583 	priv = netdev_priv(dev);
584 
585 	/* lock against tx reclaim */
586 	spin_lock(&priv->tx_lock);
587 
588 	/* make sure  the tx hw queue  is not full,  should not happen
589 	 * since we stop queue before it's the case */
590 	if (unlikely(!priv->tx_desc_count)) {
591 		netif_stop_queue(dev);
592 		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
593 			"available?\n");
594 		ret = NETDEV_TX_BUSY;
595 		goto out_unlock;
596 	}
597 
598 	/* pad small packets sent on a switch device */
599 	if (priv->enet_is_sw && skb->len < 64) {
600 		int needed = 64 - skb->len;
601 		char *data;
602 
603 		if (unlikely(skb_tailroom(skb) < needed)) {
604 			struct sk_buff *nskb;
605 
606 			nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
607 			if (!nskb) {
608 				ret = NETDEV_TX_BUSY;
609 				goto out_unlock;
610 			}
611 			dev_kfree_skb(skb);
612 			skb = nskb;
613 		}
614 		data = skb_put_zero(skb, needed);
615 	}
616 
617 	/* point to the next available desc */
618 	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
619 	priv->tx_skb[priv->tx_curr_desc] = skb;
620 
621 	/* fill descriptor */
622 	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
623 				       DMA_TO_DEVICE);
624 
625 	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
626 	len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
627 		DMADESC_APPEND_CRC |
628 		DMADESC_OWNER_MASK;
629 
630 	priv->tx_curr_desc++;
631 	if (priv->tx_curr_desc == priv->tx_ring_size) {
632 		priv->tx_curr_desc = 0;
633 		len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
634 	}
635 	priv->tx_desc_count--;
636 
637 	/* dma might be already polling, make sure we update desc
638 	 * fields in correct order */
639 	wmb();
640 	desc->len_stat = len_stat;
641 	wmb();
642 
643 	netdev_sent_queue(dev, skb->len);
644 
645 	/* kick tx dma */
646 	if (!netdev_xmit_more() || !priv->tx_desc_count)
647 		enet_dmac_writel(priv, priv->dma_chan_en_mask,
648 				 ENETDMAC_CHANCFG, priv->tx_chan);
649 
650 	/* stop queue if no more desc available */
651 	if (!priv->tx_desc_count)
652 		netif_stop_queue(dev);
653 
654 	dev->stats.tx_bytes += skb->len;
655 	dev->stats.tx_packets++;
656 	ret = NETDEV_TX_OK;
657 
658 out_unlock:
659 	spin_unlock(&priv->tx_lock);
660 	return ret;
661 }
662 
663 /*
664  * Change the interface's mac address.
665  */
666 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
667 {
668 	struct bcm_enet_priv *priv;
669 	struct sockaddr *addr = p;
670 	u32 val;
671 
672 	priv = netdev_priv(dev);
673 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
674 
675 	/* use perfect match register 0 to store my mac address */
676 	val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
677 		(dev->dev_addr[4] << 8) | dev->dev_addr[5];
678 	enet_writel(priv, val, ENET_PML_REG(0));
679 
680 	val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
681 	val |= ENET_PMH_DATAVALID_MASK;
682 	enet_writel(priv, val, ENET_PMH_REG(0));
683 
684 	return 0;
685 }
686 
687 /*
688  * Change rx mode (promiscuous/allmulti) and update multicast list
689  */
690 static void bcm_enet_set_multicast_list(struct net_device *dev)
691 {
692 	struct bcm_enet_priv *priv;
693 	struct netdev_hw_addr *ha;
694 	u32 val;
695 	int i;
696 
697 	priv = netdev_priv(dev);
698 
699 	val = enet_readl(priv, ENET_RXCFG_REG);
700 
701 	if (dev->flags & IFF_PROMISC)
702 		val |= ENET_RXCFG_PROMISC_MASK;
703 	else
704 		val &= ~ENET_RXCFG_PROMISC_MASK;
705 
706 	/* only 3 perfect match registers left, first one is used for
707 	 * own mac address */
708 	if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
709 		val |= ENET_RXCFG_ALLMCAST_MASK;
710 	else
711 		val &= ~ENET_RXCFG_ALLMCAST_MASK;
712 
713 	/* no need to set perfect match registers if we catch all
714 	 * multicast */
715 	if (val & ENET_RXCFG_ALLMCAST_MASK) {
716 		enet_writel(priv, val, ENET_RXCFG_REG);
717 		return;
718 	}
719 
720 	i = 0;
721 	netdev_for_each_mc_addr(ha, dev) {
722 		u8 *dmi_addr;
723 		u32 tmp;
724 
725 		if (i == 3)
726 			break;
727 		/* update perfect match registers */
728 		dmi_addr = ha->addr;
729 		tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
730 			(dmi_addr[4] << 8) | dmi_addr[5];
731 		enet_writel(priv, tmp, ENET_PML_REG(i + 1));
732 
733 		tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
734 		tmp |= ENET_PMH_DATAVALID_MASK;
735 		enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
736 	}
737 
738 	for (; i < 3; i++) {
739 		enet_writel(priv, 0, ENET_PML_REG(i + 1));
740 		enet_writel(priv, 0, ENET_PMH_REG(i + 1));
741 	}
742 
743 	enet_writel(priv, val, ENET_RXCFG_REG);
744 }
745 
746 /*
747  * set mac duplex parameters
748  */
749 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
750 {
751 	u32 val;
752 
753 	val = enet_readl(priv, ENET_TXCTL_REG);
754 	if (fullduplex)
755 		val |= ENET_TXCTL_FD_MASK;
756 	else
757 		val &= ~ENET_TXCTL_FD_MASK;
758 	enet_writel(priv, val, ENET_TXCTL_REG);
759 }
760 
761 /*
762  * set mac flow control parameters
763  */
764 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
765 {
766 	u32 val;
767 
768 	/* rx flow control (pause frame handling) */
769 	val = enet_readl(priv, ENET_RXCFG_REG);
770 	if (rx_en)
771 		val |= ENET_RXCFG_ENFLOW_MASK;
772 	else
773 		val &= ~ENET_RXCFG_ENFLOW_MASK;
774 	enet_writel(priv, val, ENET_RXCFG_REG);
775 
776 	if (!priv->dma_has_sram)
777 		return;
778 
779 	/* tx flow control (pause frame generation) */
780 	val = enet_dma_readl(priv, ENETDMA_CFG_REG);
781 	if (tx_en)
782 		val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
783 	else
784 		val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
785 	enet_dma_writel(priv, val, ENETDMA_CFG_REG);
786 }
787 
788 /*
789  * link changed callback (from phylib)
790  */
791 static void bcm_enet_adjust_phy_link(struct net_device *dev)
792 {
793 	struct bcm_enet_priv *priv;
794 	struct phy_device *phydev;
795 	int status_changed;
796 
797 	priv = netdev_priv(dev);
798 	phydev = dev->phydev;
799 	status_changed = 0;
800 
801 	if (priv->old_link != phydev->link) {
802 		status_changed = 1;
803 		priv->old_link = phydev->link;
804 	}
805 
806 	/* reflect duplex change in mac configuration */
807 	if (phydev->link && phydev->duplex != priv->old_duplex) {
808 		bcm_enet_set_duplex(priv,
809 				    (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
810 		status_changed = 1;
811 		priv->old_duplex = phydev->duplex;
812 	}
813 
814 	/* enable flow control if remote advertise it (trust phylib to
815 	 * check that duplex is full */
816 	if (phydev->link && phydev->pause != priv->old_pause) {
817 		int rx_pause_en, tx_pause_en;
818 
819 		if (phydev->pause) {
820 			/* pause was advertised by lpa and us */
821 			rx_pause_en = 1;
822 			tx_pause_en = 1;
823 		} else if (!priv->pause_auto) {
824 			/* pause setting overridden by user */
825 			rx_pause_en = priv->pause_rx;
826 			tx_pause_en = priv->pause_tx;
827 		} else {
828 			rx_pause_en = 0;
829 			tx_pause_en = 0;
830 		}
831 
832 		bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
833 		status_changed = 1;
834 		priv->old_pause = phydev->pause;
835 	}
836 
837 	if (status_changed) {
838 		pr_info("%s: link %s", dev->name, phydev->link ?
839 			"UP" : "DOWN");
840 		if (phydev->link)
841 			pr_cont(" - %d/%s - flow control %s", phydev->speed,
842 			       DUPLEX_FULL == phydev->duplex ? "full" : "half",
843 			       phydev->pause == 1 ? "rx&tx" : "off");
844 
845 		pr_cont("\n");
846 	}
847 }
848 
849 /*
850  * link changed callback (if phylib is not used)
851  */
852 static void bcm_enet_adjust_link(struct net_device *dev)
853 {
854 	struct bcm_enet_priv *priv;
855 
856 	priv = netdev_priv(dev);
857 	bcm_enet_set_duplex(priv, priv->force_duplex_full);
858 	bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
859 	netif_carrier_on(dev);
860 
861 	pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
862 		dev->name,
863 		priv->force_speed_100 ? 100 : 10,
864 		priv->force_duplex_full ? "full" : "half",
865 		priv->pause_rx ? "rx" : "off",
866 		priv->pause_tx ? "tx" : "off");
867 }
868 
869 static void bcm_enet_free_rx_buf_ring(struct device *kdev, struct bcm_enet_priv *priv)
870 {
871 	int i;
872 
873 	for (i = 0; i < priv->rx_ring_size; i++) {
874 		struct bcm_enet_desc *desc;
875 
876 		if (!priv->rx_buf[i])
877 			continue;
878 
879 		desc = &priv->rx_desc_cpu[i];
880 		dma_unmap_single(kdev, desc->address, priv->rx_buf_size,
881 				 DMA_FROM_DEVICE);
882 		skb_free_frag(priv->rx_buf[i]);
883 	}
884 	kfree(priv->rx_buf);
885 }
886 
887 /*
888  * open callback, allocate dma rings & buffers and start rx operation
889  */
890 static int bcm_enet_open(struct net_device *dev)
891 {
892 	struct bcm_enet_priv *priv;
893 	struct sockaddr addr;
894 	struct device *kdev;
895 	struct phy_device *phydev;
896 	int i, ret;
897 	unsigned int size;
898 	char phy_id[MII_BUS_ID_SIZE + 3];
899 	void *p;
900 	u32 val;
901 
902 	priv = netdev_priv(dev);
903 	kdev = &priv->pdev->dev;
904 
905 	if (priv->has_phy) {
906 		/* connect to PHY */
907 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
908 			 priv->mii_bus->id, priv->phy_id);
909 
910 		phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
911 				     PHY_INTERFACE_MODE_MII);
912 
913 		if (IS_ERR(phydev)) {
914 			dev_err(kdev, "could not attach to PHY\n");
915 			return PTR_ERR(phydev);
916 		}
917 
918 		/* mask with MAC supported features */
919 		phy_support_sym_pause(phydev);
920 		phy_set_max_speed(phydev, SPEED_100);
921 		phy_set_sym_pause(phydev, priv->pause_rx, priv->pause_rx,
922 				  priv->pause_auto);
923 
924 		phy_attached_info(phydev);
925 
926 		priv->old_link = 0;
927 		priv->old_duplex = -1;
928 		priv->old_pause = -1;
929 	} else {
930 		phydev = NULL;
931 	}
932 
933 	/* mask all interrupts and request them */
934 	enet_writel(priv, 0, ENET_IRMASK_REG);
935 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
936 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
937 
938 	ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
939 	if (ret)
940 		goto out_phy_disconnect;
941 
942 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
943 			  dev->name, dev);
944 	if (ret)
945 		goto out_freeirq;
946 
947 	ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
948 			  0, dev->name, dev);
949 	if (ret)
950 		goto out_freeirq_rx;
951 
952 	/* initialize perfect match registers */
953 	for (i = 0; i < 4; i++) {
954 		enet_writel(priv, 0, ENET_PML_REG(i));
955 		enet_writel(priv, 0, ENET_PMH_REG(i));
956 	}
957 
958 	/* write device mac address */
959 	memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
960 	bcm_enet_set_mac_address(dev, &addr);
961 
962 	/* allocate rx dma ring */
963 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
964 	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
965 	if (!p) {
966 		ret = -ENOMEM;
967 		goto out_freeirq_tx;
968 	}
969 
970 	priv->rx_desc_alloc_size = size;
971 	priv->rx_desc_cpu = p;
972 
973 	/* allocate tx dma ring */
974 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
975 	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
976 	if (!p) {
977 		ret = -ENOMEM;
978 		goto out_free_rx_ring;
979 	}
980 
981 	priv->tx_desc_alloc_size = size;
982 	priv->tx_desc_cpu = p;
983 
984 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
985 			       GFP_KERNEL);
986 	if (!priv->tx_skb) {
987 		ret = -ENOMEM;
988 		goto out_free_tx_ring;
989 	}
990 
991 	priv->tx_desc_count = priv->tx_ring_size;
992 	priv->tx_dirty_desc = 0;
993 	priv->tx_curr_desc = 0;
994 	spin_lock_init(&priv->tx_lock);
995 
996 	/* init & fill rx ring with buffers */
997 	priv->rx_buf = kcalloc(priv->rx_ring_size, sizeof(void *),
998 			       GFP_KERNEL);
999 	if (!priv->rx_buf) {
1000 		ret = -ENOMEM;
1001 		goto out_free_tx_skb;
1002 	}
1003 
1004 	priv->rx_desc_count = 0;
1005 	priv->rx_dirty_desc = 0;
1006 	priv->rx_curr_desc = 0;
1007 
1008 	/* initialize flow control buffer allocation */
1009 	if (priv->dma_has_sram)
1010 		enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
1011 				ENETDMA_BUFALLOC_REG(priv->rx_chan));
1012 	else
1013 		enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
1014 				ENETDMAC_BUFALLOC, priv->rx_chan);
1015 
1016 	if (bcm_enet_refill_rx(dev, false)) {
1017 		dev_err(kdev, "cannot allocate rx buffer queue\n");
1018 		ret = -ENOMEM;
1019 		goto out;
1020 	}
1021 
1022 	/* write rx & tx ring addresses */
1023 	if (priv->dma_has_sram) {
1024 		enet_dmas_writel(priv, priv->rx_desc_dma,
1025 				 ENETDMAS_RSTART_REG, priv->rx_chan);
1026 		enet_dmas_writel(priv, priv->tx_desc_dma,
1027 			 ENETDMAS_RSTART_REG, priv->tx_chan);
1028 	} else {
1029 		enet_dmac_writel(priv, priv->rx_desc_dma,
1030 				ENETDMAC_RSTART, priv->rx_chan);
1031 		enet_dmac_writel(priv, priv->tx_desc_dma,
1032 				ENETDMAC_RSTART, priv->tx_chan);
1033 	}
1034 
1035 	/* clear remaining state ram for rx & tx channel */
1036 	if (priv->dma_has_sram) {
1037 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1038 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1039 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1040 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1041 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1042 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1043 	} else {
1044 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1045 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1046 	}
1047 
1048 	/* set max rx/tx length */
1049 	enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1050 	enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1051 
1052 	/* set dma maximum burst len */
1053 	enet_dmac_writel(priv, priv->dma_maxburst,
1054 			 ENETDMAC_MAXBURST, priv->rx_chan);
1055 	enet_dmac_writel(priv, priv->dma_maxburst,
1056 			 ENETDMAC_MAXBURST, priv->tx_chan);
1057 
1058 	/* set correct transmit fifo watermark */
1059 	enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1060 
1061 	/* set flow control low/high threshold to 1/3 / 2/3 */
1062 	if (priv->dma_has_sram) {
1063 		val = priv->rx_ring_size / 3;
1064 		enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1065 		val = (priv->rx_ring_size * 2) / 3;
1066 		enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1067 	} else {
1068 		enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1069 		enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1070 		enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1071 	}
1072 
1073 	/* all set, enable mac and interrupts, start dma engine and
1074 	 * kick rx dma channel */
1075 	wmb();
1076 	val = enet_readl(priv, ENET_CTL_REG);
1077 	val |= ENET_CTL_ENABLE_MASK;
1078 	enet_writel(priv, val, ENET_CTL_REG);
1079 	if (priv->dma_has_sram)
1080 		enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1081 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
1082 			 ENETDMAC_CHANCFG, priv->rx_chan);
1083 
1084 	/* watch "mib counters about to overflow" interrupt */
1085 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1086 	enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1087 
1088 	/* watch "packet transferred" interrupt in rx and tx */
1089 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1090 			 ENETDMAC_IR, priv->rx_chan);
1091 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1092 			 ENETDMAC_IR, priv->tx_chan);
1093 
1094 	/* make sure we enable napi before rx interrupt  */
1095 	napi_enable(&priv->napi);
1096 
1097 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1098 			 ENETDMAC_IRMASK, priv->rx_chan);
1099 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1100 			 ENETDMAC_IRMASK, priv->tx_chan);
1101 
1102 	if (phydev)
1103 		phy_start(phydev);
1104 	else
1105 		bcm_enet_adjust_link(dev);
1106 
1107 	netif_start_queue(dev);
1108 	return 0;
1109 
1110 out:
1111 	bcm_enet_free_rx_buf_ring(kdev, priv);
1112 
1113 out_free_tx_skb:
1114 	kfree(priv->tx_skb);
1115 
1116 out_free_tx_ring:
1117 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1118 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1119 
1120 out_free_rx_ring:
1121 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1122 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1123 
1124 out_freeirq_tx:
1125 	free_irq(priv->irq_tx, dev);
1126 
1127 out_freeirq_rx:
1128 	free_irq(priv->irq_rx, dev);
1129 
1130 out_freeirq:
1131 	free_irq(dev->irq, dev);
1132 
1133 out_phy_disconnect:
1134 	if (phydev)
1135 		phy_disconnect(phydev);
1136 
1137 	return ret;
1138 }
1139 
1140 /*
1141  * disable mac
1142  */
1143 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1144 {
1145 	int limit;
1146 	u32 val;
1147 
1148 	val = enet_readl(priv, ENET_CTL_REG);
1149 	val |= ENET_CTL_DISABLE_MASK;
1150 	enet_writel(priv, val, ENET_CTL_REG);
1151 
1152 	limit = 1000;
1153 	do {
1154 		u32 val;
1155 
1156 		val = enet_readl(priv, ENET_CTL_REG);
1157 		if (!(val & ENET_CTL_DISABLE_MASK))
1158 			break;
1159 		udelay(1);
1160 	} while (limit--);
1161 }
1162 
1163 /*
1164  * disable dma in given channel
1165  */
1166 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1167 {
1168 	int limit;
1169 
1170 	enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1171 
1172 	limit = 1000;
1173 	do {
1174 		u32 val;
1175 
1176 		val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1177 		if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1178 			break;
1179 		udelay(1);
1180 	} while (limit--);
1181 }
1182 
1183 /*
1184  * stop callback
1185  */
1186 static int bcm_enet_stop(struct net_device *dev)
1187 {
1188 	struct bcm_enet_priv *priv;
1189 	struct device *kdev;
1190 
1191 	priv = netdev_priv(dev);
1192 	kdev = &priv->pdev->dev;
1193 
1194 	netif_stop_queue(dev);
1195 	netdev_reset_queue(dev);
1196 	napi_disable(&priv->napi);
1197 	if (priv->has_phy)
1198 		phy_stop(dev->phydev);
1199 	del_timer_sync(&priv->rx_timeout);
1200 
1201 	/* mask all interrupts */
1202 	enet_writel(priv, 0, ENET_IRMASK_REG);
1203 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1204 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1205 
1206 	/* make sure no mib update is scheduled */
1207 	cancel_work_sync(&priv->mib_update_task);
1208 
1209 	/* disable dma & mac */
1210 	bcm_enet_disable_dma(priv, priv->tx_chan);
1211 	bcm_enet_disable_dma(priv, priv->rx_chan);
1212 	bcm_enet_disable_mac(priv);
1213 
1214 	/* force reclaim of all tx buffers */
1215 	bcm_enet_tx_reclaim(dev, 1);
1216 
1217 	/* free the rx buffer ring */
1218 	bcm_enet_free_rx_buf_ring(kdev, priv);
1219 
1220 	/* free remaining allocated memory */
1221 	kfree(priv->tx_skb);
1222 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1223 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1224 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1225 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1226 	free_irq(priv->irq_tx, dev);
1227 	free_irq(priv->irq_rx, dev);
1228 	free_irq(dev->irq, dev);
1229 
1230 	/* release phy */
1231 	if (priv->has_phy)
1232 		phy_disconnect(dev->phydev);
1233 
1234 	return 0;
1235 }
1236 
1237 /*
1238  * ethtool callbacks
1239  */
1240 struct bcm_enet_stats {
1241 	char stat_string[ETH_GSTRING_LEN];
1242 	int sizeof_stat;
1243 	int stat_offset;
1244 	int mib_reg;
1245 };
1246 
1247 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),		\
1248 		     offsetof(struct bcm_enet_priv, m)
1249 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),		\
1250 		     offsetof(struct net_device_stats, m)
1251 
1252 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1253 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
1254 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
1255 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
1256 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
1257 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
1258 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
1259 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
1260 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
1261 
1262 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1263 	{ "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1264 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1265 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1266 	{ "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1267 	{ "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1268 	{ "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1269 	{ "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1270 	{ "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1271 	{ "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1272 	{ "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1273 	{ "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1274 	{ "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1275 	{ "rx_dropped",	GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1276 	{ "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1277 	{ "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1278 	{ "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1279 	{ "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1280 	{ "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1281 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1282 	{ "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1283 
1284 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1285 	{ "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1286 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1287 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1288 	{ "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1289 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1290 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1291 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1292 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1293 	{ "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1294 	{ "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1295 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1296 	{ "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1297 	{ "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1298 	{ "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1299 	{ "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1300 	{ "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1301 	{ "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1302 	{ "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1303 	{ "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1304 	{ "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1305 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1306 
1307 };
1308 
1309 #define BCM_ENET_STATS_LEN	ARRAY_SIZE(bcm_enet_gstrings_stats)
1310 
1311 static const u32 unused_mib_regs[] = {
1312 	ETH_MIB_TX_ALL_OCTETS,
1313 	ETH_MIB_TX_ALL_PKTS,
1314 	ETH_MIB_RX_ALL_OCTETS,
1315 	ETH_MIB_RX_ALL_PKTS,
1316 };
1317 
1318 
1319 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1320 				 struct ethtool_drvinfo *drvinfo)
1321 {
1322 	strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1323 	strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1324 }
1325 
1326 static int bcm_enet_get_sset_count(struct net_device *netdev,
1327 					int string_set)
1328 {
1329 	switch (string_set) {
1330 	case ETH_SS_STATS:
1331 		return BCM_ENET_STATS_LEN;
1332 	default:
1333 		return -EINVAL;
1334 	}
1335 }
1336 
1337 static void bcm_enet_get_strings(struct net_device *netdev,
1338 				 u32 stringset, u8 *data)
1339 {
1340 	int i;
1341 
1342 	switch (stringset) {
1343 	case ETH_SS_STATS:
1344 		for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1345 			memcpy(data + i * ETH_GSTRING_LEN,
1346 			       bcm_enet_gstrings_stats[i].stat_string,
1347 			       ETH_GSTRING_LEN);
1348 		}
1349 		break;
1350 	}
1351 }
1352 
1353 static void update_mib_counters(struct bcm_enet_priv *priv)
1354 {
1355 	int i;
1356 
1357 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1358 		const struct bcm_enet_stats *s;
1359 		u32 val;
1360 		char *p;
1361 
1362 		s = &bcm_enet_gstrings_stats[i];
1363 		if (s->mib_reg == -1)
1364 			continue;
1365 
1366 		val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1367 		p = (char *)priv + s->stat_offset;
1368 
1369 		if (s->sizeof_stat == sizeof(u64))
1370 			*(u64 *)p += val;
1371 		else
1372 			*(u32 *)p += val;
1373 	}
1374 
1375 	/* also empty unused mib counters to make sure mib counter
1376 	 * overflow interrupt is cleared */
1377 	for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1378 		(void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1379 }
1380 
1381 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1382 {
1383 	struct bcm_enet_priv *priv;
1384 
1385 	priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1386 	mutex_lock(&priv->mib_update_lock);
1387 	update_mib_counters(priv);
1388 	mutex_unlock(&priv->mib_update_lock);
1389 
1390 	/* reenable mib interrupt */
1391 	if (netif_running(priv->net_dev))
1392 		enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1393 }
1394 
1395 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1396 				       struct ethtool_stats *stats,
1397 				       u64 *data)
1398 {
1399 	struct bcm_enet_priv *priv;
1400 	int i;
1401 
1402 	priv = netdev_priv(netdev);
1403 
1404 	mutex_lock(&priv->mib_update_lock);
1405 	update_mib_counters(priv);
1406 
1407 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1408 		const struct bcm_enet_stats *s;
1409 		char *p;
1410 
1411 		s = &bcm_enet_gstrings_stats[i];
1412 		if (s->mib_reg == -1)
1413 			p = (char *)&netdev->stats;
1414 		else
1415 			p = (char *)priv;
1416 		p += s->stat_offset;
1417 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
1418 			*(u64 *)p : *(u32 *)p;
1419 	}
1420 	mutex_unlock(&priv->mib_update_lock);
1421 }
1422 
1423 static int bcm_enet_nway_reset(struct net_device *dev)
1424 {
1425 	struct bcm_enet_priv *priv;
1426 
1427 	priv = netdev_priv(dev);
1428 	if (priv->has_phy)
1429 		return phy_ethtool_nway_reset(dev);
1430 
1431 	return -EOPNOTSUPP;
1432 }
1433 
1434 static int bcm_enet_get_link_ksettings(struct net_device *dev,
1435 				       struct ethtool_link_ksettings *cmd)
1436 {
1437 	struct bcm_enet_priv *priv;
1438 	u32 supported, advertising;
1439 
1440 	priv = netdev_priv(dev);
1441 
1442 	if (priv->has_phy) {
1443 		if (!dev->phydev)
1444 			return -ENODEV;
1445 
1446 		phy_ethtool_ksettings_get(dev->phydev, cmd);
1447 
1448 		return 0;
1449 	} else {
1450 		cmd->base.autoneg = 0;
1451 		cmd->base.speed = (priv->force_speed_100) ?
1452 			SPEED_100 : SPEED_10;
1453 		cmd->base.duplex = (priv->force_duplex_full) ?
1454 			DUPLEX_FULL : DUPLEX_HALF;
1455 		supported = ADVERTISED_10baseT_Half |
1456 			ADVERTISED_10baseT_Full |
1457 			ADVERTISED_100baseT_Half |
1458 			ADVERTISED_100baseT_Full;
1459 		advertising = 0;
1460 		ethtool_convert_legacy_u32_to_link_mode(
1461 			cmd->link_modes.supported, supported);
1462 		ethtool_convert_legacy_u32_to_link_mode(
1463 			cmd->link_modes.advertising, advertising);
1464 		cmd->base.port = PORT_MII;
1465 	}
1466 	return 0;
1467 }
1468 
1469 static int bcm_enet_set_link_ksettings(struct net_device *dev,
1470 				       const struct ethtool_link_ksettings *cmd)
1471 {
1472 	struct bcm_enet_priv *priv;
1473 
1474 	priv = netdev_priv(dev);
1475 	if (priv->has_phy) {
1476 		if (!dev->phydev)
1477 			return -ENODEV;
1478 		return phy_ethtool_ksettings_set(dev->phydev, cmd);
1479 	} else {
1480 
1481 		if (cmd->base.autoneg ||
1482 		    (cmd->base.speed != SPEED_100 &&
1483 		     cmd->base.speed != SPEED_10) ||
1484 		    cmd->base.port != PORT_MII)
1485 			return -EINVAL;
1486 
1487 		priv->force_speed_100 =
1488 			(cmd->base.speed == SPEED_100) ? 1 : 0;
1489 		priv->force_duplex_full =
1490 			(cmd->base.duplex == DUPLEX_FULL) ? 1 : 0;
1491 
1492 		if (netif_running(dev))
1493 			bcm_enet_adjust_link(dev);
1494 		return 0;
1495 	}
1496 }
1497 
1498 static void bcm_enet_get_ringparam(struct net_device *dev,
1499 				   struct ethtool_ringparam *ering)
1500 {
1501 	struct bcm_enet_priv *priv;
1502 
1503 	priv = netdev_priv(dev);
1504 
1505 	/* rx/tx ring is actually only limited by memory */
1506 	ering->rx_max_pending = 8192;
1507 	ering->tx_max_pending = 8192;
1508 	ering->rx_pending = priv->rx_ring_size;
1509 	ering->tx_pending = priv->tx_ring_size;
1510 }
1511 
1512 static int bcm_enet_set_ringparam(struct net_device *dev,
1513 				  struct ethtool_ringparam *ering)
1514 {
1515 	struct bcm_enet_priv *priv;
1516 	int was_running;
1517 
1518 	priv = netdev_priv(dev);
1519 
1520 	was_running = 0;
1521 	if (netif_running(dev)) {
1522 		bcm_enet_stop(dev);
1523 		was_running = 1;
1524 	}
1525 
1526 	priv->rx_ring_size = ering->rx_pending;
1527 	priv->tx_ring_size = ering->tx_pending;
1528 
1529 	if (was_running) {
1530 		int err;
1531 
1532 		err = bcm_enet_open(dev);
1533 		if (err)
1534 			dev_close(dev);
1535 		else
1536 			bcm_enet_set_multicast_list(dev);
1537 	}
1538 	return 0;
1539 }
1540 
1541 static void bcm_enet_get_pauseparam(struct net_device *dev,
1542 				    struct ethtool_pauseparam *ecmd)
1543 {
1544 	struct bcm_enet_priv *priv;
1545 
1546 	priv = netdev_priv(dev);
1547 	ecmd->autoneg = priv->pause_auto;
1548 	ecmd->rx_pause = priv->pause_rx;
1549 	ecmd->tx_pause = priv->pause_tx;
1550 }
1551 
1552 static int bcm_enet_set_pauseparam(struct net_device *dev,
1553 				   struct ethtool_pauseparam *ecmd)
1554 {
1555 	struct bcm_enet_priv *priv;
1556 
1557 	priv = netdev_priv(dev);
1558 
1559 	if (priv->has_phy) {
1560 		if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1561 			/* asymetric pause mode not supported,
1562 			 * actually possible but integrated PHY has RO
1563 			 * asym_pause bit */
1564 			return -EINVAL;
1565 		}
1566 	} else {
1567 		/* no pause autoneg on direct mii connection */
1568 		if (ecmd->autoneg)
1569 			return -EINVAL;
1570 	}
1571 
1572 	priv->pause_auto = ecmd->autoneg;
1573 	priv->pause_rx = ecmd->rx_pause;
1574 	priv->pause_tx = ecmd->tx_pause;
1575 
1576 	return 0;
1577 }
1578 
1579 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1580 	.get_strings		= bcm_enet_get_strings,
1581 	.get_sset_count		= bcm_enet_get_sset_count,
1582 	.get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1583 	.nway_reset		= bcm_enet_nway_reset,
1584 	.get_drvinfo		= bcm_enet_get_drvinfo,
1585 	.get_link		= ethtool_op_get_link,
1586 	.get_ringparam		= bcm_enet_get_ringparam,
1587 	.set_ringparam		= bcm_enet_set_ringparam,
1588 	.get_pauseparam		= bcm_enet_get_pauseparam,
1589 	.set_pauseparam		= bcm_enet_set_pauseparam,
1590 	.get_link_ksettings	= bcm_enet_get_link_ksettings,
1591 	.set_link_ksettings	= bcm_enet_set_link_ksettings,
1592 };
1593 
1594 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1595 {
1596 	struct bcm_enet_priv *priv;
1597 
1598 	priv = netdev_priv(dev);
1599 	if (priv->has_phy) {
1600 		if (!dev->phydev)
1601 			return -ENODEV;
1602 		return phy_mii_ioctl(dev->phydev, rq, cmd);
1603 	} else {
1604 		struct mii_if_info mii;
1605 
1606 		mii.dev = dev;
1607 		mii.mdio_read = bcm_enet_mdio_read_mii;
1608 		mii.mdio_write = bcm_enet_mdio_write_mii;
1609 		mii.phy_id = 0;
1610 		mii.phy_id_mask = 0x3f;
1611 		mii.reg_num_mask = 0x1f;
1612 		return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1613 	}
1614 }
1615 
1616 /*
1617  * adjust mtu, can't be called while device is running
1618  */
1619 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1620 {
1621 	struct bcm_enet_priv *priv = netdev_priv(dev);
1622 	int actual_mtu = new_mtu;
1623 
1624 	if (netif_running(dev))
1625 		return -EBUSY;
1626 
1627 	/* add ethernet header + vlan tag size */
1628 	actual_mtu += VLAN_ETH_HLEN;
1629 
1630 	/*
1631 	 * setup maximum size before we get overflow mark in
1632 	 * descriptor, note that this will not prevent reception of
1633 	 * big frames, they will be split into multiple buffers
1634 	 * anyway
1635 	 */
1636 	priv->hw_mtu = actual_mtu;
1637 
1638 	/*
1639 	 * align rx buffer size to dma burst len, account FCS since
1640 	 * it's appended
1641 	 */
1642 	priv->rx_buf_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1643 				  priv->dma_maxburst * 4);
1644 
1645 	priv->rx_frag_size = SKB_DATA_ALIGN(priv->rx_buf_offset + priv->rx_buf_size) +
1646 					    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1647 
1648 	dev->mtu = new_mtu;
1649 	return 0;
1650 }
1651 
1652 /*
1653  * preinit hardware to allow mii operation while device is down
1654  */
1655 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1656 {
1657 	u32 val;
1658 	int limit;
1659 
1660 	/* make sure mac is disabled */
1661 	bcm_enet_disable_mac(priv);
1662 
1663 	/* soft reset mac */
1664 	val = ENET_CTL_SRESET_MASK;
1665 	enet_writel(priv, val, ENET_CTL_REG);
1666 	wmb();
1667 
1668 	limit = 1000;
1669 	do {
1670 		val = enet_readl(priv, ENET_CTL_REG);
1671 		if (!(val & ENET_CTL_SRESET_MASK))
1672 			break;
1673 		udelay(1);
1674 	} while (limit--);
1675 
1676 	/* select correct mii interface */
1677 	val = enet_readl(priv, ENET_CTL_REG);
1678 	if (priv->use_external_mii)
1679 		val |= ENET_CTL_EPHYSEL_MASK;
1680 	else
1681 		val &= ~ENET_CTL_EPHYSEL_MASK;
1682 	enet_writel(priv, val, ENET_CTL_REG);
1683 
1684 	/* turn on mdc clock */
1685 	enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1686 		    ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1687 
1688 	/* set mib counters to self-clear when read */
1689 	val = enet_readl(priv, ENET_MIBCTL_REG);
1690 	val |= ENET_MIBCTL_RDCLEAR_MASK;
1691 	enet_writel(priv, val, ENET_MIBCTL_REG);
1692 }
1693 
1694 static const struct net_device_ops bcm_enet_ops = {
1695 	.ndo_open		= bcm_enet_open,
1696 	.ndo_stop		= bcm_enet_stop,
1697 	.ndo_start_xmit		= bcm_enet_start_xmit,
1698 	.ndo_set_mac_address	= bcm_enet_set_mac_address,
1699 	.ndo_set_rx_mode	= bcm_enet_set_multicast_list,
1700 	.ndo_do_ioctl		= bcm_enet_ioctl,
1701 	.ndo_change_mtu		= bcm_enet_change_mtu,
1702 };
1703 
1704 /*
1705  * allocate netdevice, request register memory and register device.
1706  */
1707 static int bcm_enet_probe(struct platform_device *pdev)
1708 {
1709 	struct bcm_enet_priv *priv;
1710 	struct net_device *dev;
1711 	struct bcm63xx_enet_platform_data *pd;
1712 	struct resource *res_irq, *res_irq_rx, *res_irq_tx;
1713 	struct mii_bus *bus;
1714 	int i, ret;
1715 
1716 	if (!bcm_enet_shared_base[0])
1717 		return -EPROBE_DEFER;
1718 
1719 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1720 	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1721 	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1722 	if (!res_irq || !res_irq_rx || !res_irq_tx)
1723 		return -ENODEV;
1724 
1725 	dev = alloc_etherdev(sizeof(*priv));
1726 	if (!dev)
1727 		return -ENOMEM;
1728 	priv = netdev_priv(dev);
1729 
1730 	priv->enet_is_sw = false;
1731 	priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1732 	priv->rx_buf_offset = NET_SKB_PAD;
1733 
1734 	ret = bcm_enet_change_mtu(dev, dev->mtu);
1735 	if (ret)
1736 		goto out;
1737 
1738 	priv->base = devm_platform_ioremap_resource(pdev, 0);
1739 	if (IS_ERR(priv->base)) {
1740 		ret = PTR_ERR(priv->base);
1741 		goto out;
1742 	}
1743 
1744 	dev->irq = priv->irq = res_irq->start;
1745 	priv->irq_rx = res_irq_rx->start;
1746 	priv->irq_tx = res_irq_tx->start;
1747 
1748 	priv->mac_clk = devm_clk_get(&pdev->dev, "enet");
1749 	if (IS_ERR(priv->mac_clk)) {
1750 		ret = PTR_ERR(priv->mac_clk);
1751 		goto out;
1752 	}
1753 	ret = clk_prepare_enable(priv->mac_clk);
1754 	if (ret)
1755 		goto out;
1756 
1757 	/* initialize default and fetch platform data */
1758 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1759 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1760 
1761 	pd = dev_get_platdata(&pdev->dev);
1762 	if (pd) {
1763 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1764 		priv->has_phy = pd->has_phy;
1765 		priv->phy_id = pd->phy_id;
1766 		priv->has_phy_interrupt = pd->has_phy_interrupt;
1767 		priv->phy_interrupt = pd->phy_interrupt;
1768 		priv->use_external_mii = !pd->use_internal_phy;
1769 		priv->pause_auto = pd->pause_auto;
1770 		priv->pause_rx = pd->pause_rx;
1771 		priv->pause_tx = pd->pause_tx;
1772 		priv->force_duplex_full = pd->force_duplex_full;
1773 		priv->force_speed_100 = pd->force_speed_100;
1774 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1775 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1776 		priv->dma_chan_width = pd->dma_chan_width;
1777 		priv->dma_has_sram = pd->dma_has_sram;
1778 		priv->dma_desc_shift = pd->dma_desc_shift;
1779 		priv->rx_chan = pd->rx_chan;
1780 		priv->tx_chan = pd->tx_chan;
1781 	}
1782 
1783 	if (priv->has_phy && !priv->use_external_mii) {
1784 		/* using internal PHY, enable clock */
1785 		priv->phy_clk = devm_clk_get(&pdev->dev, "ephy");
1786 		if (IS_ERR(priv->phy_clk)) {
1787 			ret = PTR_ERR(priv->phy_clk);
1788 			priv->phy_clk = NULL;
1789 			goto out_disable_clk_mac;
1790 		}
1791 		ret = clk_prepare_enable(priv->phy_clk);
1792 		if (ret)
1793 			goto out_disable_clk_mac;
1794 	}
1795 
1796 	/* do minimal hardware init to be able to probe mii bus */
1797 	bcm_enet_hw_preinit(priv);
1798 
1799 	/* MII bus registration */
1800 	if (priv->has_phy) {
1801 
1802 		priv->mii_bus = mdiobus_alloc();
1803 		if (!priv->mii_bus) {
1804 			ret = -ENOMEM;
1805 			goto out_uninit_hw;
1806 		}
1807 
1808 		bus = priv->mii_bus;
1809 		bus->name = "bcm63xx_enet MII bus";
1810 		bus->parent = &pdev->dev;
1811 		bus->priv = priv;
1812 		bus->read = bcm_enet_mdio_read_phylib;
1813 		bus->write = bcm_enet_mdio_write_phylib;
1814 		sprintf(bus->id, "%s-%d", pdev->name, pdev->id);
1815 
1816 		/* only probe bus where we think the PHY is, because
1817 		 * the mdio read operation return 0 instead of 0xffff
1818 		 * if a slave is not present on hw */
1819 		bus->phy_mask = ~(1 << priv->phy_id);
1820 
1821 		if (priv->has_phy_interrupt)
1822 			bus->irq[priv->phy_id] = priv->phy_interrupt;
1823 
1824 		ret = mdiobus_register(bus);
1825 		if (ret) {
1826 			dev_err(&pdev->dev, "unable to register mdio bus\n");
1827 			goto out_free_mdio;
1828 		}
1829 	} else {
1830 
1831 		/* run platform code to initialize PHY device */
1832 		if (pd && pd->mii_config &&
1833 		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1834 				   bcm_enet_mdio_write_mii)) {
1835 			dev_err(&pdev->dev, "unable to configure mdio bus\n");
1836 			goto out_uninit_hw;
1837 		}
1838 	}
1839 
1840 	spin_lock_init(&priv->rx_lock);
1841 
1842 	/* init rx timeout (used for oom) */
1843 	timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0);
1844 
1845 	/* init the mib update lock&work */
1846 	mutex_init(&priv->mib_update_lock);
1847 	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1848 
1849 	/* zero mib counters */
1850 	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1851 		enet_writel(priv, 0, ENET_MIB_REG(i));
1852 
1853 	/* register netdevice */
1854 	dev->netdev_ops = &bcm_enet_ops;
1855 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1856 
1857 	dev->ethtool_ops = &bcm_enet_ethtool_ops;
1858 	/* MTU range: 46 - 2028 */
1859 	dev->min_mtu = ETH_ZLEN - ETH_HLEN;
1860 	dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN;
1861 	SET_NETDEV_DEV(dev, &pdev->dev);
1862 
1863 	ret = register_netdev(dev);
1864 	if (ret)
1865 		goto out_unregister_mdio;
1866 
1867 	netif_carrier_off(dev);
1868 	platform_set_drvdata(pdev, dev);
1869 	priv->pdev = pdev;
1870 	priv->net_dev = dev;
1871 
1872 	return 0;
1873 
1874 out_unregister_mdio:
1875 	if (priv->mii_bus)
1876 		mdiobus_unregister(priv->mii_bus);
1877 
1878 out_free_mdio:
1879 	if (priv->mii_bus)
1880 		mdiobus_free(priv->mii_bus);
1881 
1882 out_uninit_hw:
1883 	/* turn off mdc clock */
1884 	enet_writel(priv, 0, ENET_MIISC_REG);
1885 	clk_disable_unprepare(priv->phy_clk);
1886 
1887 out_disable_clk_mac:
1888 	clk_disable_unprepare(priv->mac_clk);
1889 out:
1890 	free_netdev(dev);
1891 	return ret;
1892 }
1893 
1894 
1895 /*
1896  * exit func, stops hardware and unregisters netdevice
1897  */
1898 static int bcm_enet_remove(struct platform_device *pdev)
1899 {
1900 	struct bcm_enet_priv *priv;
1901 	struct net_device *dev;
1902 
1903 	/* stop netdevice */
1904 	dev = platform_get_drvdata(pdev);
1905 	priv = netdev_priv(dev);
1906 	unregister_netdev(dev);
1907 
1908 	/* turn off mdc clock */
1909 	enet_writel(priv, 0, ENET_MIISC_REG);
1910 
1911 	if (priv->has_phy) {
1912 		mdiobus_unregister(priv->mii_bus);
1913 		mdiobus_free(priv->mii_bus);
1914 	} else {
1915 		struct bcm63xx_enet_platform_data *pd;
1916 
1917 		pd = dev_get_platdata(&pdev->dev);
1918 		if (pd && pd->mii_config)
1919 			pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1920 				       bcm_enet_mdio_write_mii);
1921 	}
1922 
1923 	/* disable hw block clocks */
1924 	clk_disable_unprepare(priv->phy_clk);
1925 	clk_disable_unprepare(priv->mac_clk);
1926 
1927 	free_netdev(dev);
1928 	return 0;
1929 }
1930 
1931 struct platform_driver bcm63xx_enet_driver = {
1932 	.probe	= bcm_enet_probe,
1933 	.remove	= bcm_enet_remove,
1934 	.driver	= {
1935 		.name	= "bcm63xx_enet",
1936 		.owner  = THIS_MODULE,
1937 	},
1938 };
1939 
1940 /*
1941  * switch mii access callbacks
1942  */
1943 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1944 				int ext, int phy_id, int location)
1945 {
1946 	u32 reg;
1947 	int ret;
1948 
1949 	spin_lock_bh(&priv->enetsw_mdio_lock);
1950 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1951 
1952 	reg = ENETSW_MDIOC_RD_MASK |
1953 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1954 		(location << ENETSW_MDIOC_REG_SHIFT);
1955 
1956 	if (ext)
1957 		reg |= ENETSW_MDIOC_EXT_MASK;
1958 
1959 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1960 	udelay(50);
1961 	ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
1962 	spin_unlock_bh(&priv->enetsw_mdio_lock);
1963 	return ret;
1964 }
1965 
1966 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
1967 				 int ext, int phy_id, int location,
1968 				 uint16_t data)
1969 {
1970 	u32 reg;
1971 
1972 	spin_lock_bh(&priv->enetsw_mdio_lock);
1973 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1974 
1975 	reg = ENETSW_MDIOC_WR_MASK |
1976 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1977 		(location << ENETSW_MDIOC_REG_SHIFT);
1978 
1979 	if (ext)
1980 		reg |= ENETSW_MDIOC_EXT_MASK;
1981 
1982 	reg |= data;
1983 
1984 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1985 	udelay(50);
1986 	spin_unlock_bh(&priv->enetsw_mdio_lock);
1987 }
1988 
1989 static inline int bcm_enet_port_is_rgmii(int portid)
1990 {
1991 	return portid >= ENETSW_RGMII_PORT0;
1992 }
1993 
1994 /*
1995  * enet sw PHY polling
1996  */
1997 static void swphy_poll_timer(struct timer_list *t)
1998 {
1999 	struct bcm_enet_priv *priv = from_timer(priv, t, swphy_poll);
2000 	unsigned int i;
2001 
2002 	for (i = 0; i < priv->num_ports; i++) {
2003 		struct bcm63xx_enetsw_port *port;
2004 		int val, j, up, advertise, lpa, speed, duplex, media;
2005 		int external_phy = bcm_enet_port_is_rgmii(i);
2006 		u8 override;
2007 
2008 		port = &priv->used_ports[i];
2009 		if (!port->used)
2010 			continue;
2011 
2012 		if (port->bypass_link)
2013 			continue;
2014 
2015 		/* dummy read to clear */
2016 		for (j = 0; j < 2; j++)
2017 			val = bcmenet_sw_mdio_read(priv, external_phy,
2018 						   port->phy_id, MII_BMSR);
2019 
2020 		if (val == 0xffff)
2021 			continue;
2022 
2023 		up = (val & BMSR_LSTATUS) ? 1 : 0;
2024 		if (!(up ^ priv->sw_port_link[i]))
2025 			continue;
2026 
2027 		priv->sw_port_link[i] = up;
2028 
2029 		/* link changed */
2030 		if (!up) {
2031 			dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2032 				 port->name);
2033 			enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2034 				      ENETSW_PORTOV_REG(i));
2035 			enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2036 				      ENETSW_PTCTRL_TXDIS_MASK,
2037 				      ENETSW_PTCTRL_REG(i));
2038 			continue;
2039 		}
2040 
2041 		advertise = bcmenet_sw_mdio_read(priv, external_phy,
2042 						 port->phy_id, MII_ADVERTISE);
2043 
2044 		lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2045 					   MII_LPA);
2046 
2047 		/* figure out media and duplex from advertise and LPA values */
2048 		media = mii_nway_result(lpa & advertise);
2049 		duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2050 
2051 		if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2052 			speed = 100;
2053 		else
2054 			speed = 10;
2055 
2056 		if (val & BMSR_ESTATEN) {
2057 			advertise = bcmenet_sw_mdio_read(priv, external_phy,
2058 						port->phy_id, MII_CTRL1000);
2059 
2060 			lpa = bcmenet_sw_mdio_read(priv, external_phy,
2061 						port->phy_id, MII_STAT1000);
2062 
2063 			if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2064 					&& lpa & (LPA_1000FULL | LPA_1000HALF)) {
2065 				speed = 1000;
2066 				duplex = (lpa & LPA_1000FULL);
2067 			}
2068 		}
2069 
2070 		dev_info(&priv->pdev->dev,
2071 			 "link UP on %s, %dMbps, %s-duplex\n",
2072 			 port->name, speed, duplex ? "full" : "half");
2073 
2074 		override = ENETSW_PORTOV_ENABLE_MASK |
2075 			ENETSW_PORTOV_LINKUP_MASK;
2076 
2077 		if (speed == 1000)
2078 			override |= ENETSW_IMPOV_1000_MASK;
2079 		else if (speed == 100)
2080 			override |= ENETSW_IMPOV_100_MASK;
2081 		if (duplex)
2082 			override |= ENETSW_IMPOV_FDX_MASK;
2083 
2084 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2085 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2086 	}
2087 
2088 	priv->swphy_poll.expires = jiffies + HZ;
2089 	add_timer(&priv->swphy_poll);
2090 }
2091 
2092 /*
2093  * open callback, allocate dma rings & buffers and start rx operation
2094  */
2095 static int bcm_enetsw_open(struct net_device *dev)
2096 {
2097 	struct bcm_enet_priv *priv;
2098 	struct device *kdev;
2099 	int i, ret;
2100 	unsigned int size;
2101 	void *p;
2102 	u32 val;
2103 
2104 	priv = netdev_priv(dev);
2105 	kdev = &priv->pdev->dev;
2106 
2107 	/* mask all interrupts and request them */
2108 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2109 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2110 
2111 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2112 			  0, dev->name, dev);
2113 	if (ret)
2114 		goto out_freeirq;
2115 
2116 	if (priv->irq_tx != -1) {
2117 		ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2118 				  0, dev->name, dev);
2119 		if (ret)
2120 			goto out_freeirq_rx;
2121 	}
2122 
2123 	/* allocate rx dma ring */
2124 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2125 	p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2126 	if (!p) {
2127 		dev_err(kdev, "cannot allocate rx ring %u\n", size);
2128 		ret = -ENOMEM;
2129 		goto out_freeirq_tx;
2130 	}
2131 
2132 	priv->rx_desc_alloc_size = size;
2133 	priv->rx_desc_cpu = p;
2134 
2135 	/* allocate tx dma ring */
2136 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2137 	p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2138 	if (!p) {
2139 		dev_err(kdev, "cannot allocate tx ring\n");
2140 		ret = -ENOMEM;
2141 		goto out_free_rx_ring;
2142 	}
2143 
2144 	priv->tx_desc_alloc_size = size;
2145 	priv->tx_desc_cpu = p;
2146 
2147 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
2148 			       GFP_KERNEL);
2149 	if (!priv->tx_skb) {
2150 		dev_err(kdev, "cannot allocate tx skb queue\n");
2151 		ret = -ENOMEM;
2152 		goto out_free_tx_ring;
2153 	}
2154 
2155 	priv->tx_desc_count = priv->tx_ring_size;
2156 	priv->tx_dirty_desc = 0;
2157 	priv->tx_curr_desc = 0;
2158 	spin_lock_init(&priv->tx_lock);
2159 
2160 	/* init & fill rx ring with buffers */
2161 	priv->rx_buf = kcalloc(priv->rx_ring_size, sizeof(void *),
2162 			       GFP_KERNEL);
2163 	if (!priv->rx_buf) {
2164 		dev_err(kdev, "cannot allocate rx buffer queue\n");
2165 		ret = -ENOMEM;
2166 		goto out_free_tx_skb;
2167 	}
2168 
2169 	priv->rx_desc_count = 0;
2170 	priv->rx_dirty_desc = 0;
2171 	priv->rx_curr_desc = 0;
2172 
2173 	/* disable all ports */
2174 	for (i = 0; i < priv->num_ports; i++) {
2175 		enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2176 			      ENETSW_PORTOV_REG(i));
2177 		enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2178 			      ENETSW_PTCTRL_TXDIS_MASK,
2179 			      ENETSW_PTCTRL_REG(i));
2180 
2181 		priv->sw_port_link[i] = 0;
2182 	}
2183 
2184 	/* reset mib */
2185 	val = enetsw_readb(priv, ENETSW_GMCR_REG);
2186 	val |= ENETSW_GMCR_RST_MIB_MASK;
2187 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2188 	mdelay(1);
2189 	val &= ~ENETSW_GMCR_RST_MIB_MASK;
2190 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2191 	mdelay(1);
2192 
2193 	/* force CPU port state */
2194 	val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2195 	val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2196 	enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2197 
2198 	/* enable switch forward engine */
2199 	val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2200 	val |= ENETSW_SWMODE_FWD_EN_MASK;
2201 	enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2202 
2203 	/* enable jumbo on all ports */
2204 	enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2205 	enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2206 
2207 	/* initialize flow control buffer allocation */
2208 	enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2209 			ENETDMA_BUFALLOC_REG(priv->rx_chan));
2210 
2211 	if (bcm_enet_refill_rx(dev, false)) {
2212 		dev_err(kdev, "cannot allocate rx buffer queue\n");
2213 		ret = -ENOMEM;
2214 		goto out;
2215 	}
2216 
2217 	/* write rx & tx ring addresses */
2218 	enet_dmas_writel(priv, priv->rx_desc_dma,
2219 			 ENETDMAS_RSTART_REG, priv->rx_chan);
2220 	enet_dmas_writel(priv, priv->tx_desc_dma,
2221 			 ENETDMAS_RSTART_REG, priv->tx_chan);
2222 
2223 	/* clear remaining state ram for rx & tx channel */
2224 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2225 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2226 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2227 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2228 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2229 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2230 
2231 	/* set dma maximum burst len */
2232 	enet_dmac_writel(priv, priv->dma_maxburst,
2233 			 ENETDMAC_MAXBURST, priv->rx_chan);
2234 	enet_dmac_writel(priv, priv->dma_maxburst,
2235 			 ENETDMAC_MAXBURST, priv->tx_chan);
2236 
2237 	/* set flow control low/high threshold to 1/3 / 2/3 */
2238 	val = priv->rx_ring_size / 3;
2239 	enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2240 	val = (priv->rx_ring_size * 2) / 3;
2241 	enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2242 
2243 	/* all set, enable mac and interrupts, start dma engine and
2244 	 * kick rx dma channel
2245 	 */
2246 	wmb();
2247 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2248 	enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2249 			 ENETDMAC_CHANCFG, priv->rx_chan);
2250 
2251 	/* watch "packet transferred" interrupt in rx and tx */
2252 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2253 			 ENETDMAC_IR, priv->rx_chan);
2254 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2255 			 ENETDMAC_IR, priv->tx_chan);
2256 
2257 	/* make sure we enable napi before rx interrupt  */
2258 	napi_enable(&priv->napi);
2259 
2260 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2261 			 ENETDMAC_IRMASK, priv->rx_chan);
2262 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2263 			 ENETDMAC_IRMASK, priv->tx_chan);
2264 
2265 	netif_carrier_on(dev);
2266 	netif_start_queue(dev);
2267 
2268 	/* apply override config for bypass_link ports here. */
2269 	for (i = 0; i < priv->num_ports; i++) {
2270 		struct bcm63xx_enetsw_port *port;
2271 		u8 override;
2272 		port = &priv->used_ports[i];
2273 		if (!port->used)
2274 			continue;
2275 
2276 		if (!port->bypass_link)
2277 			continue;
2278 
2279 		override = ENETSW_PORTOV_ENABLE_MASK |
2280 			ENETSW_PORTOV_LINKUP_MASK;
2281 
2282 		switch (port->force_speed) {
2283 		case 1000:
2284 			override |= ENETSW_IMPOV_1000_MASK;
2285 			break;
2286 		case 100:
2287 			override |= ENETSW_IMPOV_100_MASK;
2288 			break;
2289 		case 10:
2290 			break;
2291 		default:
2292 			pr_warn("invalid forced speed on port %s: assume 10\n",
2293 			       port->name);
2294 			break;
2295 		}
2296 
2297 		if (port->force_duplex_full)
2298 			override |= ENETSW_IMPOV_FDX_MASK;
2299 
2300 
2301 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2302 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2303 	}
2304 
2305 	/* start phy polling timer */
2306 	timer_setup(&priv->swphy_poll, swphy_poll_timer, 0);
2307 	mod_timer(&priv->swphy_poll, jiffies);
2308 	return 0;
2309 
2310 out:
2311 	bcm_enet_free_rx_buf_ring(kdev, priv);
2312 
2313 out_free_tx_skb:
2314 	kfree(priv->tx_skb);
2315 
2316 out_free_tx_ring:
2317 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2318 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2319 
2320 out_free_rx_ring:
2321 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2322 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2323 
2324 out_freeirq_tx:
2325 	if (priv->irq_tx != -1)
2326 		free_irq(priv->irq_tx, dev);
2327 
2328 out_freeirq_rx:
2329 	free_irq(priv->irq_rx, dev);
2330 
2331 out_freeirq:
2332 	return ret;
2333 }
2334 
2335 /* stop callback */
2336 static int bcm_enetsw_stop(struct net_device *dev)
2337 {
2338 	struct bcm_enet_priv *priv;
2339 	struct device *kdev;
2340 
2341 	priv = netdev_priv(dev);
2342 	kdev = &priv->pdev->dev;
2343 
2344 	del_timer_sync(&priv->swphy_poll);
2345 	netif_stop_queue(dev);
2346 	netdev_reset_queue(dev);
2347 	napi_disable(&priv->napi);
2348 	del_timer_sync(&priv->rx_timeout);
2349 
2350 	/* mask all interrupts */
2351 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2352 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2353 
2354 	/* disable dma & mac */
2355 	bcm_enet_disable_dma(priv, priv->tx_chan);
2356 	bcm_enet_disable_dma(priv, priv->rx_chan);
2357 
2358 	/* force reclaim of all tx buffers */
2359 	bcm_enet_tx_reclaim(dev, 1);
2360 
2361 	/* free the rx buffer ring */
2362 	bcm_enet_free_rx_buf_ring(kdev, priv);
2363 
2364 	/* free remaining allocated memory */
2365 	kfree(priv->tx_skb);
2366 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2367 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2368 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2369 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2370 	if (priv->irq_tx != -1)
2371 		free_irq(priv->irq_tx, dev);
2372 	free_irq(priv->irq_rx, dev);
2373 
2374 	return 0;
2375 }
2376 
2377 /* try to sort out phy external status by walking the used_port field
2378  * in the bcm_enet_priv structure. in case the phy address is not
2379  * assigned to any physical port on the switch, assume it is external
2380  * (and yell at the user).
2381  */
2382 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2383 {
2384 	int i;
2385 
2386 	for (i = 0; i < priv->num_ports; ++i) {
2387 		if (!priv->used_ports[i].used)
2388 			continue;
2389 		if (priv->used_ports[i].phy_id == phy_id)
2390 			return bcm_enet_port_is_rgmii(i);
2391 	}
2392 
2393 	printk_once(KERN_WARNING  "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2394 		    phy_id);
2395 	return 1;
2396 }
2397 
2398 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2399  * external/internal status of the given phy_id first.
2400  */
2401 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2402 				    int location)
2403 {
2404 	struct bcm_enet_priv *priv;
2405 
2406 	priv = netdev_priv(dev);
2407 	return bcmenet_sw_mdio_read(priv,
2408 				    bcm_enetsw_phy_is_external(priv, phy_id),
2409 				    phy_id, location);
2410 }
2411 
2412 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2413  * external/internal status of the given phy_id first.
2414  */
2415 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2416 				      int location,
2417 				      int val)
2418 {
2419 	struct bcm_enet_priv *priv;
2420 
2421 	priv = netdev_priv(dev);
2422 	bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2423 			      phy_id, location, val);
2424 }
2425 
2426 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2427 {
2428 	struct mii_if_info mii;
2429 
2430 	mii.dev = dev;
2431 	mii.mdio_read = bcm_enetsw_mii_mdio_read;
2432 	mii.mdio_write = bcm_enetsw_mii_mdio_write;
2433 	mii.phy_id = 0;
2434 	mii.phy_id_mask = 0x3f;
2435 	mii.reg_num_mask = 0x1f;
2436 	return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2437 
2438 }
2439 
2440 static const struct net_device_ops bcm_enetsw_ops = {
2441 	.ndo_open		= bcm_enetsw_open,
2442 	.ndo_stop		= bcm_enetsw_stop,
2443 	.ndo_start_xmit		= bcm_enet_start_xmit,
2444 	.ndo_change_mtu		= bcm_enet_change_mtu,
2445 	.ndo_do_ioctl		= bcm_enetsw_ioctl,
2446 };
2447 
2448 
2449 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2450 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
2451 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
2452 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
2453 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
2454 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
2455 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
2456 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
2457 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
2458 
2459 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2460 	{ "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2461 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2462 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2463 	{ "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2464 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2465 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2466 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2467 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2468 	{ "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2469 	  ETHSW_MIB_RX_1024_1522 },
2470 	{ "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2471 	  ETHSW_MIB_RX_1523_2047 },
2472 	{ "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2473 	  ETHSW_MIB_RX_2048_4095 },
2474 	{ "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2475 	  ETHSW_MIB_RX_4096_8191 },
2476 	{ "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2477 	  ETHSW_MIB_RX_8192_9728 },
2478 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2479 	{ "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2480 	{ "tx_dropped",	GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2481 	{ "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2482 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2483 
2484 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2485 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2486 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2487 	{ "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2488 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2489 	{ "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2490 
2491 };
2492 
2493 #define BCM_ENETSW_STATS_LEN	\
2494 	(sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2495 
2496 static void bcm_enetsw_get_strings(struct net_device *netdev,
2497 				   u32 stringset, u8 *data)
2498 {
2499 	int i;
2500 
2501 	switch (stringset) {
2502 	case ETH_SS_STATS:
2503 		for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2504 			memcpy(data + i * ETH_GSTRING_LEN,
2505 			       bcm_enetsw_gstrings_stats[i].stat_string,
2506 			       ETH_GSTRING_LEN);
2507 		}
2508 		break;
2509 	}
2510 }
2511 
2512 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2513 				     int string_set)
2514 {
2515 	switch (string_set) {
2516 	case ETH_SS_STATS:
2517 		return BCM_ENETSW_STATS_LEN;
2518 	default:
2519 		return -EINVAL;
2520 	}
2521 }
2522 
2523 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2524 				   struct ethtool_drvinfo *drvinfo)
2525 {
2526 	strncpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
2527 	strncpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
2528 }
2529 
2530 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2531 					 struct ethtool_stats *stats,
2532 					 u64 *data)
2533 {
2534 	struct bcm_enet_priv *priv;
2535 	int i;
2536 
2537 	priv = netdev_priv(netdev);
2538 
2539 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2540 		const struct bcm_enet_stats *s;
2541 		u32 lo, hi;
2542 		char *p;
2543 		int reg;
2544 
2545 		s = &bcm_enetsw_gstrings_stats[i];
2546 
2547 		reg = s->mib_reg;
2548 		if (reg == -1)
2549 			continue;
2550 
2551 		lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2552 		p = (char *)priv + s->stat_offset;
2553 
2554 		if (s->sizeof_stat == sizeof(u64)) {
2555 			hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2556 			*(u64 *)p = ((u64)hi << 32 | lo);
2557 		} else {
2558 			*(u32 *)p = lo;
2559 		}
2560 	}
2561 
2562 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2563 		const struct bcm_enet_stats *s;
2564 		char *p;
2565 
2566 		s = &bcm_enetsw_gstrings_stats[i];
2567 
2568 		if (s->mib_reg == -1)
2569 			p = (char *)&netdev->stats + s->stat_offset;
2570 		else
2571 			p = (char *)priv + s->stat_offset;
2572 
2573 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
2574 			*(u64 *)p : *(u32 *)p;
2575 	}
2576 }
2577 
2578 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2579 				     struct ethtool_ringparam *ering)
2580 {
2581 	struct bcm_enet_priv *priv;
2582 
2583 	priv = netdev_priv(dev);
2584 
2585 	/* rx/tx ring is actually only limited by memory */
2586 	ering->rx_max_pending = 8192;
2587 	ering->tx_max_pending = 8192;
2588 	ering->rx_mini_max_pending = 0;
2589 	ering->rx_jumbo_max_pending = 0;
2590 	ering->rx_pending = priv->rx_ring_size;
2591 	ering->tx_pending = priv->tx_ring_size;
2592 }
2593 
2594 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2595 				    struct ethtool_ringparam *ering)
2596 {
2597 	struct bcm_enet_priv *priv;
2598 	int was_running;
2599 
2600 	priv = netdev_priv(dev);
2601 
2602 	was_running = 0;
2603 	if (netif_running(dev)) {
2604 		bcm_enetsw_stop(dev);
2605 		was_running = 1;
2606 	}
2607 
2608 	priv->rx_ring_size = ering->rx_pending;
2609 	priv->tx_ring_size = ering->tx_pending;
2610 
2611 	if (was_running) {
2612 		int err;
2613 
2614 		err = bcm_enetsw_open(dev);
2615 		if (err)
2616 			dev_close(dev);
2617 	}
2618 	return 0;
2619 }
2620 
2621 static const struct ethtool_ops bcm_enetsw_ethtool_ops = {
2622 	.get_strings		= bcm_enetsw_get_strings,
2623 	.get_sset_count		= bcm_enetsw_get_sset_count,
2624 	.get_ethtool_stats      = bcm_enetsw_get_ethtool_stats,
2625 	.get_drvinfo		= bcm_enetsw_get_drvinfo,
2626 	.get_ringparam		= bcm_enetsw_get_ringparam,
2627 	.set_ringparam		= bcm_enetsw_set_ringparam,
2628 };
2629 
2630 /* allocate netdevice, request register memory and register device. */
2631 static int bcm_enetsw_probe(struct platform_device *pdev)
2632 {
2633 	struct bcm_enet_priv *priv;
2634 	struct net_device *dev;
2635 	struct bcm63xx_enetsw_platform_data *pd;
2636 	struct resource *res_mem;
2637 	int ret, irq_rx, irq_tx;
2638 
2639 	if (!bcm_enet_shared_base[0])
2640 		return -EPROBE_DEFER;
2641 
2642 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2643 	irq_rx = platform_get_irq(pdev, 0);
2644 	irq_tx = platform_get_irq(pdev, 1);
2645 	if (!res_mem || irq_rx < 0)
2646 		return -ENODEV;
2647 
2648 	ret = 0;
2649 	dev = alloc_etherdev(sizeof(*priv));
2650 	if (!dev)
2651 		return -ENOMEM;
2652 	priv = netdev_priv(dev);
2653 
2654 	/* initialize default and fetch platform data */
2655 	priv->enet_is_sw = true;
2656 	priv->irq_rx = irq_rx;
2657 	priv->irq_tx = irq_tx;
2658 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2659 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2660 	priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2661 	priv->rx_buf_offset = NET_SKB_PAD + NET_IP_ALIGN;
2662 
2663 	pd = dev_get_platdata(&pdev->dev);
2664 	if (pd) {
2665 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2666 		memcpy(priv->used_ports, pd->used_ports,
2667 		       sizeof(pd->used_ports));
2668 		priv->num_ports = pd->num_ports;
2669 		priv->dma_has_sram = pd->dma_has_sram;
2670 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2671 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2672 		priv->dma_chan_width = pd->dma_chan_width;
2673 	}
2674 
2675 	ret = bcm_enet_change_mtu(dev, dev->mtu);
2676 	if (ret)
2677 		goto out;
2678 
2679 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
2680 	if (IS_ERR(priv->base)) {
2681 		ret = PTR_ERR(priv->base);
2682 		goto out;
2683 	}
2684 
2685 	priv->mac_clk = devm_clk_get(&pdev->dev, "enetsw");
2686 	if (IS_ERR(priv->mac_clk)) {
2687 		ret = PTR_ERR(priv->mac_clk);
2688 		goto out;
2689 	}
2690 	ret = clk_prepare_enable(priv->mac_clk);
2691 	if (ret)
2692 		goto out;
2693 
2694 	priv->rx_chan = 0;
2695 	priv->tx_chan = 1;
2696 	spin_lock_init(&priv->rx_lock);
2697 
2698 	/* init rx timeout (used for oom) */
2699 	timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0);
2700 
2701 	/* register netdevice */
2702 	dev->netdev_ops = &bcm_enetsw_ops;
2703 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2704 	dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2705 	SET_NETDEV_DEV(dev, &pdev->dev);
2706 
2707 	spin_lock_init(&priv->enetsw_mdio_lock);
2708 
2709 	ret = register_netdev(dev);
2710 	if (ret)
2711 		goto out_disable_clk;
2712 
2713 	netif_carrier_off(dev);
2714 	platform_set_drvdata(pdev, dev);
2715 	priv->pdev = pdev;
2716 	priv->net_dev = dev;
2717 
2718 	return 0;
2719 
2720 out_disable_clk:
2721 	clk_disable_unprepare(priv->mac_clk);
2722 out:
2723 	free_netdev(dev);
2724 	return ret;
2725 }
2726 
2727 
2728 /* exit func, stops hardware and unregisters netdevice */
2729 static int bcm_enetsw_remove(struct platform_device *pdev)
2730 {
2731 	struct bcm_enet_priv *priv;
2732 	struct net_device *dev;
2733 
2734 	/* stop netdevice */
2735 	dev = platform_get_drvdata(pdev);
2736 	priv = netdev_priv(dev);
2737 	unregister_netdev(dev);
2738 
2739 	clk_disable_unprepare(priv->mac_clk);
2740 
2741 	free_netdev(dev);
2742 	return 0;
2743 }
2744 
2745 struct platform_driver bcm63xx_enetsw_driver = {
2746 	.probe	= bcm_enetsw_probe,
2747 	.remove	= bcm_enetsw_remove,
2748 	.driver	= {
2749 		.name	= "bcm63xx_enetsw",
2750 		.owner  = THIS_MODULE,
2751 	},
2752 };
2753 
2754 /* reserve & remap memory space shared between all macs */
2755 static int bcm_enet_shared_probe(struct platform_device *pdev)
2756 {
2757 	void __iomem *p[3];
2758 	unsigned int i;
2759 
2760 	memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2761 
2762 	for (i = 0; i < 3; i++) {
2763 		p[i] = devm_platform_ioremap_resource(pdev, i);
2764 		if (IS_ERR(p[i]))
2765 			return PTR_ERR(p[i]);
2766 	}
2767 
2768 	memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2769 
2770 	return 0;
2771 }
2772 
2773 static int bcm_enet_shared_remove(struct platform_device *pdev)
2774 {
2775 	return 0;
2776 }
2777 
2778 /* this "shared" driver is needed because both macs share a single
2779  * address space
2780  */
2781 struct platform_driver bcm63xx_enet_shared_driver = {
2782 	.probe	= bcm_enet_shared_probe,
2783 	.remove	= bcm_enet_shared_remove,
2784 	.driver	= {
2785 		.name	= "bcm63xx_enet_shared",
2786 		.owner  = THIS_MODULE,
2787 	},
2788 };
2789 
2790 static struct platform_driver * const drivers[] = {
2791 	&bcm63xx_enet_shared_driver,
2792 	&bcm63xx_enet_driver,
2793 	&bcm63xx_enetsw_driver,
2794 };
2795 
2796 /* entry point */
2797 static int __init bcm_enet_init(void)
2798 {
2799 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2800 }
2801 
2802 static void __exit bcm_enet_exit(void)
2803 {
2804 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2805 }
2806 
2807 
2808 module_init(bcm_enet_init);
2809 module_exit(bcm_enet_exit);
2810 
2811 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2812 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2813 MODULE_LICENSE("GPL");
2814