xref: /openbmc/linux/drivers/net/ethernet/atheros/atl1e/atl1e_main.c (revision 077e5f4f5528777ab72f4dc336569207504dc876)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright(c) 2007 Atheros Corporation. All rights reserved.
4  *
5  * Derived from Intel e1000 driver
6  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
7  */
8 
9 #include "atl1e.h"
10 
11 char atl1e_driver_name[] = "ATL1E";
12 #define PCI_DEVICE_ID_ATTANSIC_L1E      0x1026
13 /*
14  * atl1e_pci_tbl - PCI Device ID Table
15  *
16  * Wildcard entries (PCI_ANY_ID) should come last
17  * Last entry must be all 0s
18  *
19  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
20  *   Class, Class Mask, private data (not used) }
21  */
22 static const struct pci_device_id atl1e_pci_tbl[] = {
23 	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1E)},
24 	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, 0x1066)},
25 	/* required last entry */
26 	{ 0 }
27 };
28 MODULE_DEVICE_TABLE(pci, atl1e_pci_tbl);
29 
30 MODULE_AUTHOR("Atheros Corporation, <xiong.huang@atheros.com>, Jie Yang <jie.yang@atheros.com>");
31 MODULE_DESCRIPTION("Atheros 1000M Ethernet Network Driver");
32 MODULE_LICENSE("GPL");
33 
34 static void atl1e_setup_mac_ctrl(struct atl1e_adapter *adapter);
35 
36 static const u16
37 atl1e_rx_page_vld_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] =
38 {
39 	{REG_HOST_RXF0_PAGE0_VLD, REG_HOST_RXF0_PAGE1_VLD},
40 	{REG_HOST_RXF1_PAGE0_VLD, REG_HOST_RXF1_PAGE1_VLD},
41 	{REG_HOST_RXF2_PAGE0_VLD, REG_HOST_RXF2_PAGE1_VLD},
42 	{REG_HOST_RXF3_PAGE0_VLD, REG_HOST_RXF3_PAGE1_VLD}
43 };
44 
45 static const u16 atl1e_rx_page_hi_addr_regs[AT_MAX_RECEIVE_QUEUE] =
46 {
47 	REG_RXF0_BASE_ADDR_HI,
48 	REG_RXF1_BASE_ADDR_HI,
49 	REG_RXF2_BASE_ADDR_HI,
50 	REG_RXF3_BASE_ADDR_HI
51 };
52 
53 static const u16
54 atl1e_rx_page_lo_addr_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] =
55 {
56 	{REG_HOST_RXF0_PAGE0_LO, REG_HOST_RXF0_PAGE1_LO},
57 	{REG_HOST_RXF1_PAGE0_LO, REG_HOST_RXF1_PAGE1_LO},
58 	{REG_HOST_RXF2_PAGE0_LO, REG_HOST_RXF2_PAGE1_LO},
59 	{REG_HOST_RXF3_PAGE0_LO, REG_HOST_RXF3_PAGE1_LO}
60 };
61 
62 static const u16
63 atl1e_rx_page_write_offset_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] =
64 {
65 	{REG_HOST_RXF0_MB0_LO,  REG_HOST_RXF0_MB1_LO},
66 	{REG_HOST_RXF1_MB0_LO,  REG_HOST_RXF1_MB1_LO},
67 	{REG_HOST_RXF2_MB0_LO,  REG_HOST_RXF2_MB1_LO},
68 	{REG_HOST_RXF3_MB0_LO,  REG_HOST_RXF3_MB1_LO}
69 };
70 
71 static const u16 atl1e_pay_load_size[] = {
72 	128, 256, 512, 1024, 2048, 4096,
73 };
74 
75 /**
76  * atl1e_irq_enable - Enable default interrupt generation settings
77  * @adapter: board private structure
78  */
79 static inline void atl1e_irq_enable(struct atl1e_adapter *adapter)
80 {
81 	if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
82 		AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
83 		AT_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK);
84 		AT_WRITE_FLUSH(&adapter->hw);
85 	}
86 }
87 
88 /**
89  * atl1e_irq_disable - Mask off interrupt generation on the NIC
90  * @adapter: board private structure
91  */
92 static inline void atl1e_irq_disable(struct atl1e_adapter *adapter)
93 {
94 	atomic_inc(&adapter->irq_sem);
95 	AT_WRITE_REG(&adapter->hw, REG_IMR, 0);
96 	AT_WRITE_FLUSH(&adapter->hw);
97 	synchronize_irq(adapter->pdev->irq);
98 }
99 
100 /**
101  * atl1e_irq_reset - reset interrupt confiure on the NIC
102  * @adapter: board private structure
103  */
104 static inline void atl1e_irq_reset(struct atl1e_adapter *adapter)
105 {
106 	atomic_set(&adapter->irq_sem, 0);
107 	AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
108 	AT_WRITE_REG(&adapter->hw, REG_IMR, 0);
109 	AT_WRITE_FLUSH(&adapter->hw);
110 }
111 
112 /**
113  * atl1e_phy_config - Timer Call-back
114  * @t: timer list containing pointer to netdev cast into an unsigned long
115  */
116 static void atl1e_phy_config(struct timer_list *t)
117 {
118 	struct atl1e_adapter *adapter = from_timer(adapter, t,
119 						   phy_config_timer);
120 	struct atl1e_hw *hw = &adapter->hw;
121 	unsigned long flags;
122 
123 	spin_lock_irqsave(&adapter->mdio_lock, flags);
124 	atl1e_restart_autoneg(hw);
125 	spin_unlock_irqrestore(&adapter->mdio_lock, flags);
126 }
127 
128 void atl1e_reinit_locked(struct atl1e_adapter *adapter)
129 {
130 	while (test_and_set_bit(__AT_RESETTING, &adapter->flags))
131 		msleep(1);
132 	atl1e_down(adapter);
133 	atl1e_up(adapter);
134 	clear_bit(__AT_RESETTING, &adapter->flags);
135 }
136 
137 static void atl1e_reset_task(struct work_struct *work)
138 {
139 	struct atl1e_adapter *adapter;
140 	adapter = container_of(work, struct atl1e_adapter, reset_task);
141 
142 	atl1e_reinit_locked(adapter);
143 }
144 
145 static int atl1e_check_link(struct atl1e_adapter *adapter)
146 {
147 	struct atl1e_hw *hw = &adapter->hw;
148 	struct net_device *netdev = adapter->netdev;
149 	int err = 0;
150 	u16 speed, duplex, phy_data;
151 
152 	/* MII_BMSR must read twice */
153 	atl1e_read_phy_reg(hw, MII_BMSR, &phy_data);
154 	atl1e_read_phy_reg(hw, MII_BMSR, &phy_data);
155 	if ((phy_data & BMSR_LSTATUS) == 0) {
156 		/* link down */
157 		if (netif_carrier_ok(netdev)) { /* old link state: Up */
158 			u32 value;
159 			/* disable rx */
160 			value = AT_READ_REG(hw, REG_MAC_CTRL);
161 			value &= ~MAC_CTRL_RX_EN;
162 			AT_WRITE_REG(hw, REG_MAC_CTRL, value);
163 			adapter->link_speed = SPEED_0;
164 			netif_carrier_off(netdev);
165 			netif_stop_queue(netdev);
166 		}
167 	} else {
168 		/* Link Up */
169 		err = atl1e_get_speed_and_duplex(hw, &speed, &duplex);
170 		if (unlikely(err))
171 			return err;
172 
173 		/* link result is our setting */
174 		if (adapter->link_speed != speed ||
175 		    adapter->link_duplex != duplex) {
176 			adapter->link_speed  = speed;
177 			adapter->link_duplex = duplex;
178 			atl1e_setup_mac_ctrl(adapter);
179 			netdev_info(netdev,
180 				    "NIC Link is Up <%d Mbps %s Duplex>\n",
181 				    adapter->link_speed,
182 				    adapter->link_duplex == FULL_DUPLEX ?
183 				    "Full" : "Half");
184 		}
185 
186 		if (!netif_carrier_ok(netdev)) {
187 			/* Link down -> Up */
188 			netif_carrier_on(netdev);
189 			netif_wake_queue(netdev);
190 		}
191 	}
192 	return 0;
193 }
194 
195 /**
196  * atl1e_link_chg_task - deal with link change event Out of interrupt context
197  * @work: work struct with driver info
198  */
199 static void atl1e_link_chg_task(struct work_struct *work)
200 {
201 	struct atl1e_adapter *adapter;
202 	unsigned long flags;
203 
204 	adapter = container_of(work, struct atl1e_adapter, link_chg_task);
205 	spin_lock_irqsave(&adapter->mdio_lock, flags);
206 	atl1e_check_link(adapter);
207 	spin_unlock_irqrestore(&adapter->mdio_lock, flags);
208 }
209 
210 static void atl1e_link_chg_event(struct atl1e_adapter *adapter)
211 {
212 	struct net_device *netdev = adapter->netdev;
213 	u16 phy_data = 0;
214 	u16 link_up = 0;
215 
216 	spin_lock(&adapter->mdio_lock);
217 	atl1e_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
218 	atl1e_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
219 	spin_unlock(&adapter->mdio_lock);
220 	link_up = phy_data & BMSR_LSTATUS;
221 	/* notify upper layer link down ASAP */
222 	if (!link_up) {
223 		if (netif_carrier_ok(netdev)) {
224 			/* old link state: Up */
225 			netdev_info(netdev, "NIC Link is Down\n");
226 			adapter->link_speed = SPEED_0;
227 			netif_stop_queue(netdev);
228 		}
229 	}
230 	schedule_work(&adapter->link_chg_task);
231 }
232 
233 static void atl1e_del_timer(struct atl1e_adapter *adapter)
234 {
235 	del_timer_sync(&adapter->phy_config_timer);
236 }
237 
238 static void atl1e_cancel_work(struct atl1e_adapter *adapter)
239 {
240 	cancel_work_sync(&adapter->reset_task);
241 	cancel_work_sync(&adapter->link_chg_task);
242 }
243 
244 /**
245  * atl1e_tx_timeout - Respond to a Tx Hang
246  * @netdev: network interface device structure
247  * @txqueue: the index of the hanging queue
248  */
249 static void atl1e_tx_timeout(struct net_device *netdev, unsigned int txqueue)
250 {
251 	struct atl1e_adapter *adapter = netdev_priv(netdev);
252 
253 	/* Do the reset outside of interrupt context */
254 	schedule_work(&adapter->reset_task);
255 }
256 
257 /**
258  * atl1e_set_multi - Multicast and Promiscuous mode set
259  * @netdev: network interface device structure
260  *
261  * The set_multi entry point is called whenever the multicast address
262  * list or the network interface flags are updated.  This routine is
263  * responsible for configuring the hardware for proper multicast,
264  * promiscuous mode, and all-multi behavior.
265  */
266 static void atl1e_set_multi(struct net_device *netdev)
267 {
268 	struct atl1e_adapter *adapter = netdev_priv(netdev);
269 	struct atl1e_hw *hw = &adapter->hw;
270 	struct netdev_hw_addr *ha;
271 	u32 mac_ctrl_data = 0;
272 	u32 hash_value;
273 
274 	/* Check for Promiscuous and All Multicast modes */
275 	mac_ctrl_data = AT_READ_REG(hw, REG_MAC_CTRL);
276 
277 	if (netdev->flags & IFF_PROMISC) {
278 		mac_ctrl_data |= MAC_CTRL_PROMIS_EN;
279 	} else if (netdev->flags & IFF_ALLMULTI) {
280 		mac_ctrl_data |= MAC_CTRL_MC_ALL_EN;
281 		mac_ctrl_data &= ~MAC_CTRL_PROMIS_EN;
282 	} else {
283 		mac_ctrl_data &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
284 	}
285 
286 	AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);
287 
288 	/* clear the old settings from the multicast hash table */
289 	AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
290 	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
291 
292 	/* comoute mc addresses' hash value ,and put it into hash table */
293 	netdev_for_each_mc_addr(ha, netdev) {
294 		hash_value = atl1e_hash_mc_addr(hw, ha->addr);
295 		atl1e_hash_set(hw, hash_value);
296 	}
297 }
298 
299 static void __atl1e_rx_mode(netdev_features_t features, u32 *mac_ctrl_data)
300 {
301 
302 	if (features & NETIF_F_RXALL) {
303 		/* enable RX of ALL frames */
304 		*mac_ctrl_data |= MAC_CTRL_DBG;
305 	} else {
306 		/* disable RX of ALL frames */
307 		*mac_ctrl_data &= ~MAC_CTRL_DBG;
308 	}
309 }
310 
311 static void atl1e_rx_mode(struct net_device *netdev,
312 	netdev_features_t features)
313 {
314 	struct atl1e_adapter *adapter = netdev_priv(netdev);
315 	u32 mac_ctrl_data = 0;
316 
317 	netdev_dbg(adapter->netdev, "%s\n", __func__);
318 
319 	atl1e_irq_disable(adapter);
320 	mac_ctrl_data = AT_READ_REG(&adapter->hw, REG_MAC_CTRL);
321 	__atl1e_rx_mode(features, &mac_ctrl_data);
322 	AT_WRITE_REG(&adapter->hw, REG_MAC_CTRL, mac_ctrl_data);
323 	atl1e_irq_enable(adapter);
324 }
325 
326 
327 static void __atl1e_vlan_mode(netdev_features_t features, u32 *mac_ctrl_data)
328 {
329 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
330 		/* enable VLAN tag insert/strip */
331 		*mac_ctrl_data |= MAC_CTRL_RMV_VLAN;
332 	} else {
333 		/* disable VLAN tag insert/strip */
334 		*mac_ctrl_data &= ~MAC_CTRL_RMV_VLAN;
335 	}
336 }
337 
338 static void atl1e_vlan_mode(struct net_device *netdev,
339 	netdev_features_t features)
340 {
341 	struct atl1e_adapter *adapter = netdev_priv(netdev);
342 	u32 mac_ctrl_data = 0;
343 
344 	netdev_dbg(adapter->netdev, "%s\n", __func__);
345 
346 	atl1e_irq_disable(adapter);
347 	mac_ctrl_data = AT_READ_REG(&adapter->hw, REG_MAC_CTRL);
348 	__atl1e_vlan_mode(features, &mac_ctrl_data);
349 	AT_WRITE_REG(&adapter->hw, REG_MAC_CTRL, mac_ctrl_data);
350 	atl1e_irq_enable(adapter);
351 }
352 
353 static void atl1e_restore_vlan(struct atl1e_adapter *adapter)
354 {
355 	netdev_dbg(adapter->netdev, "%s\n", __func__);
356 	atl1e_vlan_mode(adapter->netdev, adapter->netdev->features);
357 }
358 
359 /**
360  * atl1e_set_mac_addr - Change the Ethernet Address of the NIC
361  * @netdev: network interface device structure
362  * @p: pointer to an address structure
363  *
364  * Returns 0 on success, negative on failure
365  */
366 static int atl1e_set_mac_addr(struct net_device *netdev, void *p)
367 {
368 	struct atl1e_adapter *adapter = netdev_priv(netdev);
369 	struct sockaddr *addr = p;
370 
371 	if (!is_valid_ether_addr(addr->sa_data))
372 		return -EADDRNOTAVAIL;
373 
374 	if (netif_running(netdev))
375 		return -EBUSY;
376 
377 	eth_hw_addr_set(netdev, addr->sa_data);
378 	memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
379 
380 	atl1e_hw_set_mac_addr(&adapter->hw);
381 
382 	return 0;
383 }
384 
385 static netdev_features_t atl1e_fix_features(struct net_device *netdev,
386 	netdev_features_t features)
387 {
388 	/*
389 	 * Since there is no support for separate rx/tx vlan accel
390 	 * enable/disable make sure tx flag is always in same state as rx.
391 	 */
392 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
393 		features |= NETIF_F_HW_VLAN_CTAG_TX;
394 	else
395 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
396 
397 	return features;
398 }
399 
400 static int atl1e_set_features(struct net_device *netdev,
401 	netdev_features_t features)
402 {
403 	netdev_features_t changed = netdev->features ^ features;
404 
405 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
406 		atl1e_vlan_mode(netdev, features);
407 
408 	if (changed & NETIF_F_RXALL)
409 		atl1e_rx_mode(netdev, features);
410 
411 
412 	return 0;
413 }
414 
415 /**
416  * atl1e_change_mtu - Change the Maximum Transfer Unit
417  * @netdev: network interface device structure
418  * @new_mtu: new value for maximum frame size
419  *
420  * Returns 0 on success, negative on failure
421  */
422 static int atl1e_change_mtu(struct net_device *netdev, int new_mtu)
423 {
424 	struct atl1e_adapter *adapter = netdev_priv(netdev);
425 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
426 
427 	/* set MTU */
428 	if (netif_running(netdev)) {
429 		while (test_and_set_bit(__AT_RESETTING, &adapter->flags))
430 			msleep(1);
431 		netdev->mtu = new_mtu;
432 		adapter->hw.max_frame_size = new_mtu;
433 		adapter->hw.rx_jumbo_th = (max_frame + 7) >> 3;
434 		atl1e_down(adapter);
435 		atl1e_up(adapter);
436 		clear_bit(__AT_RESETTING, &adapter->flags);
437 	}
438 	return 0;
439 }
440 
441 /*
442  *  caller should hold mdio_lock
443  */
444 static int atl1e_mdio_read(struct net_device *netdev, int phy_id, int reg_num)
445 {
446 	struct atl1e_adapter *adapter = netdev_priv(netdev);
447 	u16 result;
448 
449 	atl1e_read_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, &result);
450 	return result;
451 }
452 
453 static void atl1e_mdio_write(struct net_device *netdev, int phy_id,
454 			     int reg_num, int val)
455 {
456 	struct atl1e_adapter *adapter = netdev_priv(netdev);
457 
458 	if (atl1e_write_phy_reg(&adapter->hw,
459 				reg_num & MDIO_REG_ADDR_MASK, val))
460 		netdev_err(netdev, "write phy register failed\n");
461 }
462 
463 static int atl1e_mii_ioctl(struct net_device *netdev,
464 			   struct ifreq *ifr, int cmd)
465 {
466 	struct atl1e_adapter *adapter = netdev_priv(netdev);
467 	struct mii_ioctl_data *data = if_mii(ifr);
468 	unsigned long flags;
469 	int retval = 0;
470 
471 	if (!netif_running(netdev))
472 		return -EINVAL;
473 
474 	spin_lock_irqsave(&adapter->mdio_lock, flags);
475 	switch (cmd) {
476 	case SIOCGMIIPHY:
477 		data->phy_id = 0;
478 		break;
479 
480 	case SIOCGMIIREG:
481 		if (atl1e_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
482 				    &data->val_out)) {
483 			retval = -EIO;
484 			goto out;
485 		}
486 		break;
487 
488 	case SIOCSMIIREG:
489 		if (data->reg_num & ~(0x1F)) {
490 			retval = -EFAULT;
491 			goto out;
492 		}
493 
494 		netdev_dbg(adapter->netdev, "<atl1e_mii_ioctl> write %x %x\n",
495 			   data->reg_num, data->val_in);
496 		if (atl1e_write_phy_reg(&adapter->hw,
497 				     data->reg_num, data->val_in)) {
498 			retval = -EIO;
499 			goto out;
500 		}
501 		break;
502 
503 	default:
504 		retval = -EOPNOTSUPP;
505 		break;
506 	}
507 out:
508 	spin_unlock_irqrestore(&adapter->mdio_lock, flags);
509 	return retval;
510 
511 }
512 
513 static int atl1e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
514 {
515 	switch (cmd) {
516 	case SIOCGMIIPHY:
517 	case SIOCGMIIREG:
518 	case SIOCSMIIREG:
519 		return atl1e_mii_ioctl(netdev, ifr, cmd);
520 	default:
521 		return -EOPNOTSUPP;
522 	}
523 }
524 
525 static void atl1e_setup_pcicmd(struct pci_dev *pdev)
526 {
527 	u16 cmd;
528 
529 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
530 	cmd &= ~(PCI_COMMAND_INTX_DISABLE | PCI_COMMAND_IO);
531 	cmd |=  (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
532 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
533 
534 	/*
535 	 * some motherboards BIOS(PXE/EFI) driver may set PME
536 	 * while they transfer control to OS (Windows/Linux)
537 	 * so we should clear this bit before NIC work normally
538 	 */
539 	pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0);
540 	msleep(1);
541 }
542 
543 /**
544  * atl1e_alloc_queues - Allocate memory for all rings
545  * @adapter: board private structure to initialize
546  *
547  */
548 static int atl1e_alloc_queues(struct atl1e_adapter *adapter)
549 {
550 	return 0;
551 }
552 
553 /**
554  * atl1e_sw_init - Initialize general software structures (struct atl1e_adapter)
555  * @adapter: board private structure to initialize
556  *
557  * atl1e_sw_init initializes the Adapter private data structure.
558  * Fields are initialized based on PCI device information and
559  * OS network device settings (MTU size).
560  */
561 static int atl1e_sw_init(struct atl1e_adapter *adapter)
562 {
563 	struct atl1e_hw *hw   = &adapter->hw;
564 	struct pci_dev	*pdev = adapter->pdev;
565 	u32 phy_status_data = 0;
566 
567 	adapter->wol = 0;
568 	adapter->link_speed = SPEED_0;   /* hardware init */
569 	adapter->link_duplex = FULL_DUPLEX;
570 	adapter->num_rx_queues = 1;
571 
572 	/* PCI config space info */
573 	hw->vendor_id = pdev->vendor;
574 	hw->device_id = pdev->device;
575 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
576 	hw->subsystem_id = pdev->subsystem_device;
577 	hw->revision_id  = pdev->revision;
578 
579 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
580 
581 	phy_status_data = AT_READ_REG(hw, REG_PHY_STATUS);
582 	/* nic type */
583 	if (hw->revision_id >= 0xF0) {
584 		hw->nic_type = athr_l2e_revB;
585 	} else {
586 		if (phy_status_data & PHY_STATUS_100M)
587 			hw->nic_type = athr_l1e;
588 		else
589 			hw->nic_type = athr_l2e_revA;
590 	}
591 
592 	phy_status_data = AT_READ_REG(hw, REG_PHY_STATUS);
593 
594 	if (phy_status_data & PHY_STATUS_EMI_CA)
595 		hw->emi_ca = true;
596 	else
597 		hw->emi_ca = false;
598 
599 	hw->phy_configured = false;
600 	hw->preamble_len = 7;
601 	hw->max_frame_size = adapter->netdev->mtu;
602 	hw->rx_jumbo_th = (hw->max_frame_size + ETH_HLEN +
603 				VLAN_HLEN + ETH_FCS_LEN + 7) >> 3;
604 
605 	hw->rrs_type = atl1e_rrs_disable;
606 	hw->indirect_tab = 0;
607 	hw->base_cpu = 0;
608 
609 	/* need confirm */
610 
611 	hw->ict = 50000;                 /* 100ms */
612 	hw->smb_timer = 200000;          /* 200ms  */
613 	hw->tpd_burst = 5;
614 	hw->rrd_thresh = 1;
615 	hw->tpd_thresh = adapter->tx_ring.count / 2;
616 	hw->rx_count_down = 4;  /* 2us resolution */
617 	hw->tx_count_down = hw->imt * 4 / 3;
618 	hw->dmar_block = atl1e_dma_req_1024;
619 	hw->dmaw_block = atl1e_dma_req_1024;
620 	hw->dmar_dly_cnt = 15;
621 	hw->dmaw_dly_cnt = 4;
622 
623 	if (atl1e_alloc_queues(adapter)) {
624 		netdev_err(adapter->netdev, "Unable to allocate memory for queues\n");
625 		return -ENOMEM;
626 	}
627 
628 	atomic_set(&adapter->irq_sem, 1);
629 	spin_lock_init(&adapter->mdio_lock);
630 
631 	set_bit(__AT_DOWN, &adapter->flags);
632 
633 	return 0;
634 }
635 
636 /**
637  * atl1e_clean_tx_ring - Free Tx-skb
638  * @adapter: board private structure
639  */
640 static void atl1e_clean_tx_ring(struct atl1e_adapter *adapter)
641 {
642 	struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
643 	struct atl1e_tx_buffer *tx_buffer = NULL;
644 	struct pci_dev *pdev = adapter->pdev;
645 	u16 index, ring_count;
646 
647 	if (tx_ring->desc == NULL || tx_ring->tx_buffer == NULL)
648 		return;
649 
650 	ring_count = tx_ring->count;
651 	/* first unmmap dma */
652 	for (index = 0; index < ring_count; index++) {
653 		tx_buffer = &tx_ring->tx_buffer[index];
654 		if (tx_buffer->dma) {
655 			if (tx_buffer->flags & ATL1E_TX_PCIMAP_SINGLE)
656 				dma_unmap_single(&pdev->dev, tx_buffer->dma,
657 						 tx_buffer->length,
658 						 DMA_TO_DEVICE);
659 			else if (tx_buffer->flags & ATL1E_TX_PCIMAP_PAGE)
660 				dma_unmap_page(&pdev->dev, tx_buffer->dma,
661 					       tx_buffer->length,
662 					       DMA_TO_DEVICE);
663 			tx_buffer->dma = 0;
664 		}
665 	}
666 	/* second free skb */
667 	for (index = 0; index < ring_count; index++) {
668 		tx_buffer = &tx_ring->tx_buffer[index];
669 		if (tx_buffer->skb) {
670 			dev_kfree_skb_any(tx_buffer->skb);
671 			tx_buffer->skb = NULL;
672 		}
673 	}
674 	/* Zero out Tx-buffers */
675 	memset(tx_ring->desc, 0, sizeof(struct atl1e_tpd_desc) *
676 				ring_count);
677 	memset(tx_ring->tx_buffer, 0, sizeof(struct atl1e_tx_buffer) *
678 				ring_count);
679 }
680 
681 /**
682  * atl1e_clean_rx_ring - Free rx-reservation skbs
683  * @adapter: board private structure
684  */
685 static void atl1e_clean_rx_ring(struct atl1e_adapter *adapter)
686 {
687 	struct atl1e_rx_ring *rx_ring =
688 		&adapter->rx_ring;
689 	struct atl1e_rx_page_desc *rx_page_desc = rx_ring->rx_page_desc;
690 	u16 i, j;
691 
692 
693 	if (adapter->ring_vir_addr == NULL)
694 		return;
695 	/* Zero out the descriptor ring */
696 	for (i = 0; i < adapter->num_rx_queues; i++) {
697 		for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
698 			if (rx_page_desc[i].rx_page[j].addr != NULL) {
699 				memset(rx_page_desc[i].rx_page[j].addr, 0,
700 						rx_ring->real_page_size);
701 			}
702 		}
703 	}
704 }
705 
706 static void atl1e_cal_ring_size(struct atl1e_adapter *adapter, u32 *ring_size)
707 {
708 	*ring_size = ((u32)(adapter->tx_ring.count *
709 		     sizeof(struct atl1e_tpd_desc) + 7
710 			/* tx ring, qword align */
711 		     + adapter->rx_ring.real_page_size * AT_PAGE_NUM_PER_QUEUE *
712 			adapter->num_rx_queues + 31
713 			/* rx ring,  32 bytes align */
714 		     + (1 + AT_PAGE_NUM_PER_QUEUE * adapter->num_rx_queues) *
715 			sizeof(u32) + 3));
716 			/* tx, rx cmd, dword align   */
717 }
718 
719 static void atl1e_init_ring_resources(struct atl1e_adapter *adapter)
720 {
721 	struct atl1e_rx_ring *rx_ring = NULL;
722 
723 	rx_ring = &adapter->rx_ring;
724 
725 	rx_ring->real_page_size = adapter->rx_ring.page_size
726 				 + adapter->hw.max_frame_size
727 				 + ETH_HLEN + VLAN_HLEN
728 				 + ETH_FCS_LEN;
729 	rx_ring->real_page_size = roundup(rx_ring->real_page_size, 32);
730 	atl1e_cal_ring_size(adapter, &adapter->ring_size);
731 
732 	adapter->ring_vir_addr = NULL;
733 	adapter->rx_ring.desc = NULL;
734 	rwlock_init(&adapter->tx_ring.tx_lock);
735 }
736 
737 /*
738  * Read / Write Ptr Initialize:
739  */
740 static void atl1e_init_ring_ptrs(struct atl1e_adapter *adapter)
741 {
742 	struct atl1e_tx_ring *tx_ring = NULL;
743 	struct atl1e_rx_ring *rx_ring = NULL;
744 	struct atl1e_rx_page_desc *rx_page_desc = NULL;
745 	int i, j;
746 
747 	tx_ring = &adapter->tx_ring;
748 	rx_ring = &adapter->rx_ring;
749 	rx_page_desc = rx_ring->rx_page_desc;
750 
751 	tx_ring->next_to_use = 0;
752 	atomic_set(&tx_ring->next_to_clean, 0);
753 
754 	for (i = 0; i < adapter->num_rx_queues; i++) {
755 		rx_page_desc[i].rx_using  = 0;
756 		rx_page_desc[i].rx_nxseq = 0;
757 		for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
758 			*rx_page_desc[i].rx_page[j].write_offset_addr = 0;
759 			rx_page_desc[i].rx_page[j].read_offset = 0;
760 		}
761 	}
762 }
763 
764 /**
765  * atl1e_free_ring_resources - Free Tx / RX descriptor Resources
766  * @adapter: board private structure
767  *
768  * Free all transmit software resources
769  */
770 static void atl1e_free_ring_resources(struct atl1e_adapter *adapter)
771 {
772 	struct pci_dev *pdev = adapter->pdev;
773 
774 	atl1e_clean_tx_ring(adapter);
775 	atl1e_clean_rx_ring(adapter);
776 
777 	if (adapter->ring_vir_addr) {
778 		dma_free_coherent(&pdev->dev, adapter->ring_size,
779 				  adapter->ring_vir_addr, adapter->ring_dma);
780 		adapter->ring_vir_addr = NULL;
781 	}
782 
783 	if (adapter->tx_ring.tx_buffer) {
784 		kfree(adapter->tx_ring.tx_buffer);
785 		adapter->tx_ring.tx_buffer = NULL;
786 	}
787 }
788 
789 /**
790  * atl1e_setup_ring_resources - allocate Tx / RX descriptor resources
791  * @adapter: board private structure
792  *
793  * Return 0 on success, negative on failure
794  */
795 static int atl1e_setup_ring_resources(struct atl1e_adapter *adapter)
796 {
797 	struct pci_dev *pdev = adapter->pdev;
798 	struct atl1e_tx_ring *tx_ring;
799 	struct atl1e_rx_ring *rx_ring;
800 	struct atl1e_rx_page_desc  *rx_page_desc;
801 	int size, i, j;
802 	u32 offset = 0;
803 	int err = 0;
804 
805 	if (adapter->ring_vir_addr != NULL)
806 		return 0; /* alloced already */
807 
808 	tx_ring = &adapter->tx_ring;
809 	rx_ring = &adapter->rx_ring;
810 
811 	/* real ring DMA buffer */
812 
813 	size = adapter->ring_size;
814 	adapter->ring_vir_addr = dma_alloc_coherent(&pdev->dev,
815 						    adapter->ring_size,
816 						    &adapter->ring_dma, GFP_KERNEL);
817 	if (adapter->ring_vir_addr == NULL) {
818 		netdev_err(adapter->netdev,
819 			   "dma_alloc_coherent failed, size = D%d\n", size);
820 		return -ENOMEM;
821 	}
822 
823 	rx_page_desc = rx_ring->rx_page_desc;
824 
825 	/* Init TPD Ring */
826 	tx_ring->dma = roundup(adapter->ring_dma, 8);
827 	offset = tx_ring->dma - adapter->ring_dma;
828 	tx_ring->desc = adapter->ring_vir_addr + offset;
829 	size = sizeof(struct atl1e_tx_buffer) * (tx_ring->count);
830 	tx_ring->tx_buffer = kzalloc(size, GFP_KERNEL);
831 	if (tx_ring->tx_buffer == NULL) {
832 		err = -ENOMEM;
833 		goto failed;
834 	}
835 
836 	/* Init RXF-Pages */
837 	offset += (sizeof(struct atl1e_tpd_desc) * tx_ring->count);
838 	offset = roundup(offset, 32);
839 
840 	for (i = 0; i < adapter->num_rx_queues; i++) {
841 		for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
842 			rx_page_desc[i].rx_page[j].dma =
843 				adapter->ring_dma + offset;
844 			rx_page_desc[i].rx_page[j].addr =
845 				adapter->ring_vir_addr + offset;
846 			offset += rx_ring->real_page_size;
847 		}
848 	}
849 
850 	/* Init CMB dma address */
851 	tx_ring->cmb_dma = adapter->ring_dma + offset;
852 	tx_ring->cmb = adapter->ring_vir_addr + offset;
853 	offset += sizeof(u32);
854 
855 	for (i = 0; i < adapter->num_rx_queues; i++) {
856 		for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
857 			rx_page_desc[i].rx_page[j].write_offset_dma =
858 				adapter->ring_dma + offset;
859 			rx_page_desc[i].rx_page[j].write_offset_addr =
860 				adapter->ring_vir_addr + offset;
861 			offset += sizeof(u32);
862 		}
863 	}
864 
865 	if (unlikely(offset > adapter->ring_size)) {
866 		netdev_err(adapter->netdev, "offset(%d) > ring size(%d) !!\n",
867 			   offset, adapter->ring_size);
868 		err = -1;
869 		goto failed;
870 	}
871 
872 	return 0;
873 failed:
874 	if (adapter->ring_vir_addr != NULL) {
875 		dma_free_coherent(&pdev->dev, adapter->ring_size,
876 				  adapter->ring_vir_addr, adapter->ring_dma);
877 		adapter->ring_vir_addr = NULL;
878 	}
879 	return err;
880 }
881 
882 static inline void atl1e_configure_des_ring(struct atl1e_adapter *adapter)
883 {
884 
885 	struct atl1e_hw *hw = &adapter->hw;
886 	struct atl1e_rx_ring *rx_ring = &adapter->rx_ring;
887 	struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
888 	struct atl1e_rx_page_desc *rx_page_desc = NULL;
889 	int i, j;
890 
891 	AT_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI,
892 			(u32)((adapter->ring_dma & AT_DMA_HI_ADDR_MASK) >> 32));
893 	AT_WRITE_REG(hw, REG_TPD_BASE_ADDR_LO,
894 			(u32)((tx_ring->dma) & AT_DMA_LO_ADDR_MASK));
895 	AT_WRITE_REG(hw, REG_TPD_RING_SIZE, (u16)(tx_ring->count));
896 	AT_WRITE_REG(hw, REG_HOST_TX_CMB_LO,
897 			(u32)((tx_ring->cmb_dma) & AT_DMA_LO_ADDR_MASK));
898 
899 	rx_page_desc = rx_ring->rx_page_desc;
900 	/* RXF Page Physical address / Page Length */
901 	for (i = 0; i < AT_MAX_RECEIVE_QUEUE; i++) {
902 		AT_WRITE_REG(hw, atl1e_rx_page_hi_addr_regs[i],
903 				 (u32)((adapter->ring_dma &
904 				 AT_DMA_HI_ADDR_MASK) >> 32));
905 		for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) {
906 			u32 page_phy_addr;
907 			u32 offset_phy_addr;
908 
909 			page_phy_addr = rx_page_desc[i].rx_page[j].dma;
910 			offset_phy_addr =
911 				   rx_page_desc[i].rx_page[j].write_offset_dma;
912 
913 			AT_WRITE_REG(hw, atl1e_rx_page_lo_addr_regs[i][j],
914 					page_phy_addr & AT_DMA_LO_ADDR_MASK);
915 			AT_WRITE_REG(hw, atl1e_rx_page_write_offset_regs[i][j],
916 					offset_phy_addr & AT_DMA_LO_ADDR_MASK);
917 			AT_WRITE_REGB(hw, atl1e_rx_page_vld_regs[i][j], 1);
918 		}
919 	}
920 	/* Page Length */
921 	AT_WRITE_REG(hw, REG_HOST_RXFPAGE_SIZE, rx_ring->page_size);
922 	/* Load all of base address above */
923 	AT_WRITE_REG(hw, REG_LOAD_PTR, 1);
924 }
925 
926 static inline void atl1e_configure_tx(struct atl1e_adapter *adapter)
927 {
928 	struct atl1e_hw *hw = &adapter->hw;
929 	u32 dev_ctrl_data = 0;
930 	u32 max_pay_load = 0;
931 	u32 jumbo_thresh = 0;
932 	u32 extra_size = 0;     /* Jumbo frame threshold in QWORD unit */
933 
934 	/* configure TXQ param */
935 	if (hw->nic_type != athr_l2e_revB) {
936 		extra_size = ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN;
937 		if (hw->max_frame_size <= 1500) {
938 			jumbo_thresh = hw->max_frame_size + extra_size;
939 		} else if (hw->max_frame_size < 6*1024) {
940 			jumbo_thresh =
941 				(hw->max_frame_size + extra_size) * 2 / 3;
942 		} else {
943 			jumbo_thresh = (hw->max_frame_size + extra_size) / 2;
944 		}
945 		AT_WRITE_REG(hw, REG_TX_EARLY_TH, (jumbo_thresh + 7) >> 3);
946 	}
947 
948 	dev_ctrl_data = AT_READ_REG(hw, REG_DEVICE_CTRL);
949 
950 	max_pay_load  = ((dev_ctrl_data >> DEVICE_CTRL_MAX_PAYLOAD_SHIFT)) &
951 			DEVICE_CTRL_MAX_PAYLOAD_MASK;
952 
953 	hw->dmaw_block = min_t(u32, max_pay_load, hw->dmaw_block);
954 
955 	max_pay_load  = ((dev_ctrl_data >> DEVICE_CTRL_MAX_RREQ_SZ_SHIFT)) &
956 			DEVICE_CTRL_MAX_RREQ_SZ_MASK;
957 	hw->dmar_block = min_t(u32, max_pay_load, hw->dmar_block);
958 
959 	if (hw->nic_type != athr_l2e_revB)
960 		AT_WRITE_REGW(hw, REG_TXQ_CTRL + 2,
961 			      atl1e_pay_load_size[hw->dmar_block]);
962 	/* enable TXQ */
963 	AT_WRITE_REGW(hw, REG_TXQ_CTRL,
964 			(((u16)hw->tpd_burst & TXQ_CTRL_NUM_TPD_BURST_MASK)
965 			 << TXQ_CTRL_NUM_TPD_BURST_SHIFT)
966 			| TXQ_CTRL_ENH_MODE | TXQ_CTRL_EN);
967 }
968 
969 static inline void atl1e_configure_rx(struct atl1e_adapter *adapter)
970 {
971 	struct atl1e_hw *hw = &adapter->hw;
972 	u32 rxf_len  = 0;
973 	u32 rxf_low  = 0;
974 	u32 rxf_high = 0;
975 	u32 rxf_thresh_data = 0;
976 	u32 rxq_ctrl_data = 0;
977 
978 	if (hw->nic_type != athr_l2e_revB) {
979 		AT_WRITE_REGW(hw, REG_RXQ_JMBOSZ_RRDTIM,
980 			      (u16)((hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK) <<
981 			      RXQ_JMBOSZ_TH_SHIFT |
982 			      (1 & RXQ_JMBO_LKAH_MASK) <<
983 			      RXQ_JMBO_LKAH_SHIFT));
984 
985 		rxf_len  = AT_READ_REG(hw, REG_SRAM_RXF_LEN);
986 		rxf_high = rxf_len * 4 / 5;
987 		rxf_low  = rxf_len / 5;
988 		rxf_thresh_data = ((rxf_high  & RXQ_RXF_PAUSE_TH_HI_MASK)
989 				  << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
990 				  ((rxf_low & RXQ_RXF_PAUSE_TH_LO_MASK)
991 				  << RXQ_RXF_PAUSE_TH_LO_SHIFT);
992 
993 		AT_WRITE_REG(hw, REG_RXQ_RXF_PAUSE_THRESH, rxf_thresh_data);
994 	}
995 
996 	/* RRS */
997 	AT_WRITE_REG(hw, REG_IDT_TABLE, hw->indirect_tab);
998 	AT_WRITE_REG(hw, REG_BASE_CPU_NUMBER, hw->base_cpu);
999 
1000 	if (hw->rrs_type & atl1e_rrs_ipv4)
1001 		rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV4;
1002 
1003 	if (hw->rrs_type & atl1e_rrs_ipv4_tcp)
1004 		rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV4_TCP;
1005 
1006 	if (hw->rrs_type & atl1e_rrs_ipv6)
1007 		rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV6;
1008 
1009 	if (hw->rrs_type & atl1e_rrs_ipv6_tcp)
1010 		rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV6_TCP;
1011 
1012 	if (hw->rrs_type != atl1e_rrs_disable)
1013 		rxq_ctrl_data |=
1014 			(RXQ_CTRL_HASH_ENABLE | RXQ_CTRL_RSS_MODE_MQUESINT);
1015 
1016 	rxq_ctrl_data |= RXQ_CTRL_IPV6_XSUM_VERIFY_EN | RXQ_CTRL_PBA_ALIGN_32 |
1017 			 RXQ_CTRL_CUT_THRU_EN | RXQ_CTRL_EN;
1018 
1019 	AT_WRITE_REG(hw, REG_RXQ_CTRL, rxq_ctrl_data);
1020 }
1021 
1022 static inline void atl1e_configure_dma(struct atl1e_adapter *adapter)
1023 {
1024 	struct atl1e_hw *hw = &adapter->hw;
1025 	u32 dma_ctrl_data = 0;
1026 
1027 	dma_ctrl_data = DMA_CTRL_RXCMB_EN;
1028 	dma_ctrl_data |= (((u32)hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1029 		<< DMA_CTRL_DMAR_BURST_LEN_SHIFT;
1030 	dma_ctrl_data |= (((u32)hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1031 		<< DMA_CTRL_DMAW_BURST_LEN_SHIFT;
1032 	dma_ctrl_data |= DMA_CTRL_DMAR_REQ_PRI | DMA_CTRL_DMAR_OUT_ORDER;
1033 	dma_ctrl_data |= (((u32)hw->dmar_dly_cnt) & DMA_CTRL_DMAR_DLY_CNT_MASK)
1034 		<< DMA_CTRL_DMAR_DLY_CNT_SHIFT;
1035 	dma_ctrl_data |= (((u32)hw->dmaw_dly_cnt) & DMA_CTRL_DMAW_DLY_CNT_MASK)
1036 		<< DMA_CTRL_DMAW_DLY_CNT_SHIFT;
1037 
1038 	AT_WRITE_REG(hw, REG_DMA_CTRL, dma_ctrl_data);
1039 }
1040 
1041 static void atl1e_setup_mac_ctrl(struct atl1e_adapter *adapter)
1042 {
1043 	u32 value;
1044 	struct atl1e_hw *hw = &adapter->hw;
1045 	struct net_device *netdev = adapter->netdev;
1046 
1047 	/* Config MAC CTRL Register */
1048 	value = MAC_CTRL_TX_EN |
1049 		MAC_CTRL_RX_EN ;
1050 
1051 	if (FULL_DUPLEX == adapter->link_duplex)
1052 		value |= MAC_CTRL_DUPLX;
1053 
1054 	value |= ((u32)((SPEED_1000 == adapter->link_speed) ?
1055 			  MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1056 			  MAC_CTRL_SPEED_SHIFT);
1057 	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1058 
1059 	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1060 	value |= (((u32)adapter->hw.preamble_len &
1061 		  MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1062 
1063 	__atl1e_vlan_mode(netdev->features, &value);
1064 
1065 	value |= MAC_CTRL_BC_EN;
1066 	if (netdev->flags & IFF_PROMISC)
1067 		value |= MAC_CTRL_PROMIS_EN;
1068 	if (netdev->flags & IFF_ALLMULTI)
1069 		value |= MAC_CTRL_MC_ALL_EN;
1070 	if (netdev->features & NETIF_F_RXALL)
1071 		value |= MAC_CTRL_DBG;
1072 	AT_WRITE_REG(hw, REG_MAC_CTRL, value);
1073 }
1074 
1075 /**
1076  * atl1e_configure - Configure Transmit&Receive Unit after Reset
1077  * @adapter: board private structure
1078  *
1079  * Configure the Tx /Rx unit of the MAC after a reset.
1080  */
1081 static int atl1e_configure(struct atl1e_adapter *adapter)
1082 {
1083 	struct atl1e_hw *hw = &adapter->hw;
1084 
1085 	u32 intr_status_data = 0;
1086 
1087 	/* clear interrupt status */
1088 	AT_WRITE_REG(hw, REG_ISR, ~0);
1089 
1090 	/* 1. set MAC Address */
1091 	atl1e_hw_set_mac_addr(hw);
1092 
1093 	/* 2. Init the Multicast HASH table done by set_muti */
1094 
1095 	/* 3. Clear any WOL status */
1096 	AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
1097 
1098 	/* 4. Descripter Ring BaseMem/Length/Read ptr/Write ptr
1099 	 *    TPD Ring/SMB/RXF0 Page CMBs, they use the same
1100 	 *    High 32bits memory */
1101 	atl1e_configure_des_ring(adapter);
1102 
1103 	/* 5. set Interrupt Moderator Timer */
1104 	AT_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, hw->imt);
1105 	AT_WRITE_REGW(hw, REG_IRQ_MODU_TIMER2_INIT, hw->imt);
1106 	AT_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_LED_MODE |
1107 			MASTER_CTRL_ITIMER_EN | MASTER_CTRL_ITIMER2_EN);
1108 
1109 	/* 6. rx/tx threshold to trig interrupt */
1110 	AT_WRITE_REGW(hw, REG_TRIG_RRD_THRESH, hw->rrd_thresh);
1111 	AT_WRITE_REGW(hw, REG_TRIG_TPD_THRESH, hw->tpd_thresh);
1112 	AT_WRITE_REGW(hw, REG_TRIG_RXTIMER, hw->rx_count_down);
1113 	AT_WRITE_REGW(hw, REG_TRIG_TXTIMER, hw->tx_count_down);
1114 
1115 	/* 7. set Interrupt Clear Timer */
1116 	AT_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, hw->ict);
1117 
1118 	/* 8. set MTU */
1119 	AT_WRITE_REG(hw, REG_MTU, hw->max_frame_size + ETH_HLEN +
1120 			VLAN_HLEN + ETH_FCS_LEN);
1121 
1122 	/* 9. config TXQ early tx threshold */
1123 	atl1e_configure_tx(adapter);
1124 
1125 	/* 10. config RXQ */
1126 	atl1e_configure_rx(adapter);
1127 
1128 	/* 11. config  DMA Engine */
1129 	atl1e_configure_dma(adapter);
1130 
1131 	/* 12. smb timer to trig interrupt */
1132 	AT_WRITE_REG(hw, REG_SMB_STAT_TIMER, hw->smb_timer);
1133 
1134 	intr_status_data = AT_READ_REG(hw, REG_ISR);
1135 	if (unlikely((intr_status_data & ISR_PHY_LINKDOWN) != 0)) {
1136 		netdev_err(adapter->netdev,
1137 			   "atl1e_configure failed, PCIE phy link down\n");
1138 		return -1;
1139 	}
1140 
1141 	AT_WRITE_REG(hw, REG_ISR, 0x7fffffff);
1142 	return 0;
1143 }
1144 
1145 /**
1146  * atl1e_get_stats - Get System Network Statistics
1147  * @netdev: network interface device structure
1148  *
1149  * Returns the address of the device statistics structure.
1150  * The statistics are actually updated from the timer callback.
1151  */
1152 static struct net_device_stats *atl1e_get_stats(struct net_device *netdev)
1153 {
1154 	struct atl1e_adapter *adapter = netdev_priv(netdev);
1155 	struct atl1e_hw_stats  *hw_stats = &adapter->hw_stats;
1156 	struct net_device_stats *net_stats = &netdev->stats;
1157 
1158 	net_stats->rx_bytes   = hw_stats->rx_byte_cnt;
1159 	net_stats->tx_bytes   = hw_stats->tx_byte_cnt;
1160 	net_stats->multicast  = hw_stats->rx_mcast;
1161 	net_stats->collisions = hw_stats->tx_1_col +
1162 				hw_stats->tx_2_col +
1163 				hw_stats->tx_late_col +
1164 				hw_stats->tx_abort_col;
1165 
1166 	net_stats->rx_errors  = hw_stats->rx_frag +
1167 				hw_stats->rx_fcs_err +
1168 				hw_stats->rx_len_err +
1169 				hw_stats->rx_sz_ov +
1170 				hw_stats->rx_rrd_ov +
1171 				hw_stats->rx_align_err +
1172 				hw_stats->rx_rxf_ov;
1173 
1174 	net_stats->rx_fifo_errors   = hw_stats->rx_rxf_ov;
1175 	net_stats->rx_length_errors = hw_stats->rx_len_err;
1176 	net_stats->rx_crc_errors    = hw_stats->rx_fcs_err;
1177 	net_stats->rx_frame_errors  = hw_stats->rx_align_err;
1178 	net_stats->rx_dropped       = hw_stats->rx_rrd_ov;
1179 
1180 	net_stats->tx_errors = hw_stats->tx_late_col +
1181 			       hw_stats->tx_abort_col +
1182 			       hw_stats->tx_underrun +
1183 			       hw_stats->tx_trunc;
1184 
1185 	net_stats->tx_fifo_errors    = hw_stats->tx_underrun;
1186 	net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
1187 	net_stats->tx_window_errors  = hw_stats->tx_late_col;
1188 
1189 	net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors;
1190 	net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors;
1191 
1192 	return net_stats;
1193 }
1194 
1195 static void atl1e_update_hw_stats(struct atl1e_adapter *adapter)
1196 {
1197 	u16 hw_reg_addr = 0;
1198 	unsigned long *stats_item = NULL;
1199 
1200 	/* update rx status */
1201 	hw_reg_addr = REG_MAC_RX_STATUS_BIN;
1202 	stats_item  = &adapter->hw_stats.rx_ok;
1203 	while (hw_reg_addr <= REG_MAC_RX_STATUS_END) {
1204 		*stats_item += AT_READ_REG(&adapter->hw, hw_reg_addr);
1205 		stats_item++;
1206 		hw_reg_addr += 4;
1207 	}
1208 	/* update tx status */
1209 	hw_reg_addr = REG_MAC_TX_STATUS_BIN;
1210 	stats_item  = &adapter->hw_stats.tx_ok;
1211 	while (hw_reg_addr <= REG_MAC_TX_STATUS_END) {
1212 		*stats_item += AT_READ_REG(&adapter->hw, hw_reg_addr);
1213 		stats_item++;
1214 		hw_reg_addr += 4;
1215 	}
1216 }
1217 
1218 static inline void atl1e_clear_phy_int(struct atl1e_adapter *adapter)
1219 {
1220 	u16 phy_data;
1221 
1222 	spin_lock(&adapter->mdio_lock);
1223 	atl1e_read_phy_reg(&adapter->hw, MII_INT_STATUS, &phy_data);
1224 	spin_unlock(&adapter->mdio_lock);
1225 }
1226 
1227 static bool atl1e_clean_tx_irq(struct atl1e_adapter *adapter)
1228 {
1229 	struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
1230 	struct atl1e_tx_buffer *tx_buffer = NULL;
1231 	u16 hw_next_to_clean = AT_READ_REGW(&adapter->hw, REG_TPD_CONS_IDX);
1232 	u16 next_to_clean = atomic_read(&tx_ring->next_to_clean);
1233 
1234 	while (next_to_clean != hw_next_to_clean) {
1235 		tx_buffer = &tx_ring->tx_buffer[next_to_clean];
1236 		if (tx_buffer->dma) {
1237 			if (tx_buffer->flags & ATL1E_TX_PCIMAP_SINGLE)
1238 				dma_unmap_single(&adapter->pdev->dev,
1239 						 tx_buffer->dma,
1240 						 tx_buffer->length,
1241 						 DMA_TO_DEVICE);
1242 			else if (tx_buffer->flags & ATL1E_TX_PCIMAP_PAGE)
1243 				dma_unmap_page(&adapter->pdev->dev,
1244 					       tx_buffer->dma,
1245 					       tx_buffer->length,
1246 					       DMA_TO_DEVICE);
1247 			tx_buffer->dma = 0;
1248 		}
1249 
1250 		if (tx_buffer->skb) {
1251 			dev_consume_skb_irq(tx_buffer->skb);
1252 			tx_buffer->skb = NULL;
1253 		}
1254 
1255 		if (++next_to_clean == tx_ring->count)
1256 			next_to_clean = 0;
1257 	}
1258 
1259 	atomic_set(&tx_ring->next_to_clean, next_to_clean);
1260 
1261 	if (netif_queue_stopped(adapter->netdev) &&
1262 			netif_carrier_ok(adapter->netdev)) {
1263 		netif_wake_queue(adapter->netdev);
1264 	}
1265 
1266 	return true;
1267 }
1268 
1269 /**
1270  * atl1e_intr - Interrupt Handler
1271  * @irq: interrupt number
1272  * @data: pointer to a network interface device structure
1273  */
1274 static irqreturn_t atl1e_intr(int irq, void *data)
1275 {
1276 	struct net_device *netdev  = data;
1277 	struct atl1e_adapter *adapter = netdev_priv(netdev);
1278 	struct atl1e_hw *hw = &adapter->hw;
1279 	int max_ints = AT_MAX_INT_WORK;
1280 	int handled = IRQ_NONE;
1281 	u32 status;
1282 
1283 	do {
1284 		status = AT_READ_REG(hw, REG_ISR);
1285 		if ((status & IMR_NORMAL_MASK) == 0 ||
1286 				(status & ISR_DIS_INT) != 0) {
1287 			if (max_ints != AT_MAX_INT_WORK)
1288 				handled = IRQ_HANDLED;
1289 			break;
1290 		}
1291 		/* link event */
1292 		if (status & ISR_GPHY)
1293 			atl1e_clear_phy_int(adapter);
1294 		/* Ack ISR */
1295 		AT_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
1296 
1297 		handled = IRQ_HANDLED;
1298 		/* check if PCIE PHY Link down */
1299 		if (status & ISR_PHY_LINKDOWN) {
1300 			netdev_err(adapter->netdev,
1301 				   "pcie phy linkdown %x\n", status);
1302 			if (netif_running(adapter->netdev)) {
1303 				/* reset MAC */
1304 				atl1e_irq_reset(adapter);
1305 				schedule_work(&adapter->reset_task);
1306 				break;
1307 			}
1308 		}
1309 
1310 		/* check if DMA read/write error */
1311 		if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
1312 			netdev_err(adapter->netdev,
1313 				   "PCIE DMA RW error (status = 0x%x)\n",
1314 				   status);
1315 			atl1e_irq_reset(adapter);
1316 			schedule_work(&adapter->reset_task);
1317 			break;
1318 		}
1319 
1320 		if (status & ISR_SMB)
1321 			atl1e_update_hw_stats(adapter);
1322 
1323 		/* link event */
1324 		if (status & (ISR_GPHY | ISR_MANUAL)) {
1325 			netdev->stats.tx_carrier_errors++;
1326 			atl1e_link_chg_event(adapter);
1327 			break;
1328 		}
1329 
1330 		/* transmit event */
1331 		if (status & ISR_TX_EVENT)
1332 			atl1e_clean_tx_irq(adapter);
1333 
1334 		if (status & ISR_RX_EVENT) {
1335 			/*
1336 			 * disable rx interrupts, without
1337 			 * the synchronize_irq bit
1338 			 */
1339 			AT_WRITE_REG(hw, REG_IMR,
1340 				     IMR_NORMAL_MASK & ~ISR_RX_EVENT);
1341 			AT_WRITE_FLUSH(hw);
1342 			if (likely(napi_schedule_prep(
1343 				   &adapter->napi)))
1344 				__napi_schedule(&adapter->napi);
1345 		}
1346 	} while (--max_ints > 0);
1347 	/* re-enable Interrupt*/
1348 	AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
1349 
1350 	return handled;
1351 }
1352 
1353 static inline void atl1e_rx_checksum(struct atl1e_adapter *adapter,
1354 		  struct sk_buff *skb, struct atl1e_recv_ret_status *prrs)
1355 {
1356 	u8 *packet = (u8 *)(prrs + 1);
1357 	struct iphdr *iph;
1358 	u16 head_len = ETH_HLEN;
1359 	u16 pkt_flags;
1360 	u16 err_flags;
1361 
1362 	skb_checksum_none_assert(skb);
1363 	pkt_flags = prrs->pkt_flag;
1364 	err_flags = prrs->err_flag;
1365 	if (((pkt_flags & RRS_IS_IPV4) || (pkt_flags & RRS_IS_IPV6)) &&
1366 		((pkt_flags & RRS_IS_TCP) || (pkt_flags & RRS_IS_UDP))) {
1367 		if (pkt_flags & RRS_IS_IPV4) {
1368 			if (pkt_flags & RRS_IS_802_3)
1369 				head_len += 8;
1370 			iph = (struct iphdr *) (packet + head_len);
1371 			if (iph->frag_off != 0 && !(pkt_flags & RRS_IS_IP_DF))
1372 				goto hw_xsum;
1373 		}
1374 		if (!(err_flags & (RRS_ERR_IP_CSUM | RRS_ERR_L4_CSUM))) {
1375 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1376 			return;
1377 		}
1378 	}
1379 
1380 hw_xsum :
1381 	return;
1382 }
1383 
1384 static struct atl1e_rx_page *atl1e_get_rx_page(struct atl1e_adapter *adapter,
1385 					       u8 que)
1386 {
1387 	struct atl1e_rx_page_desc *rx_page_desc =
1388 		(struct atl1e_rx_page_desc *) adapter->rx_ring.rx_page_desc;
1389 	u8 rx_using = rx_page_desc[que].rx_using;
1390 
1391 	return &(rx_page_desc[que].rx_page[rx_using]);
1392 }
1393 
1394 static void atl1e_clean_rx_irq(struct atl1e_adapter *adapter, u8 que,
1395 		   int *work_done, int work_to_do)
1396 {
1397 	struct net_device *netdev  = adapter->netdev;
1398 	struct atl1e_rx_ring *rx_ring = &adapter->rx_ring;
1399 	struct atl1e_rx_page_desc *rx_page_desc =
1400 		(struct atl1e_rx_page_desc *) rx_ring->rx_page_desc;
1401 	struct sk_buff *skb = NULL;
1402 	struct atl1e_rx_page *rx_page = atl1e_get_rx_page(adapter, que);
1403 	u32 packet_size, write_offset;
1404 	struct atl1e_recv_ret_status *prrs;
1405 
1406 	write_offset = *(rx_page->write_offset_addr);
1407 	if (likely(rx_page->read_offset < write_offset)) {
1408 		do {
1409 			if (*work_done >= work_to_do)
1410 				break;
1411 			(*work_done)++;
1412 			/* get new packet's  rrs */
1413 			prrs = (struct atl1e_recv_ret_status *) (rx_page->addr +
1414 						 rx_page->read_offset);
1415 			/* check sequence number */
1416 			if (prrs->seq_num != rx_page_desc[que].rx_nxseq) {
1417 				netdev_err(netdev,
1418 					   "rx sequence number error (rx=%d) (expect=%d)\n",
1419 					   prrs->seq_num,
1420 					   rx_page_desc[que].rx_nxseq);
1421 				rx_page_desc[que].rx_nxseq++;
1422 				/* just for debug use */
1423 				AT_WRITE_REG(&adapter->hw, REG_DEBUG_DATA0,
1424 					     (((u32)prrs->seq_num) << 16) |
1425 					     rx_page_desc[que].rx_nxseq);
1426 				goto fatal_err;
1427 			}
1428 			rx_page_desc[que].rx_nxseq++;
1429 
1430 			/* error packet */
1431 			if ((prrs->pkt_flag & RRS_IS_ERR_FRAME) &&
1432 			    !(netdev->features & NETIF_F_RXALL)) {
1433 				if (prrs->err_flag & (RRS_ERR_BAD_CRC |
1434 					RRS_ERR_DRIBBLE | RRS_ERR_CODE |
1435 					RRS_ERR_TRUNC)) {
1436 				/* hardware error, discard this packet*/
1437 					netdev_err(netdev,
1438 						   "rx packet desc error %x\n",
1439 						   *((u32 *)prrs + 1));
1440 					goto skip_pkt;
1441 				}
1442 			}
1443 
1444 			packet_size = ((prrs->word1 >> RRS_PKT_SIZE_SHIFT) &
1445 					RRS_PKT_SIZE_MASK);
1446 			if (likely(!(netdev->features & NETIF_F_RXFCS)))
1447 				packet_size -= 4; /* CRC */
1448 
1449 			skb = netdev_alloc_skb_ip_align(netdev, packet_size);
1450 			if (skb == NULL)
1451 				goto skip_pkt;
1452 
1453 			memcpy(skb->data, (u8 *)(prrs + 1), packet_size);
1454 			skb_put(skb, packet_size);
1455 			skb->protocol = eth_type_trans(skb, netdev);
1456 			atl1e_rx_checksum(adapter, skb, prrs);
1457 
1458 			if (prrs->pkt_flag & RRS_IS_VLAN_TAG) {
1459 				u16 vlan_tag = (prrs->vtag >> 4) |
1460 					       ((prrs->vtag & 7) << 13) |
1461 					       ((prrs->vtag & 8) << 9);
1462 				netdev_dbg(netdev,
1463 					   "RXD VLAN TAG<RRD>=0x%04x\n",
1464 					   prrs->vtag);
1465 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1466 			}
1467 			napi_gro_receive(&adapter->napi, skb);
1468 
1469 skip_pkt:
1470 	/* skip current packet whether it's ok or not. */
1471 			rx_page->read_offset +=
1472 				(((u32)((prrs->word1 >> RRS_PKT_SIZE_SHIFT) &
1473 				RRS_PKT_SIZE_MASK) +
1474 				sizeof(struct atl1e_recv_ret_status) + 31) &
1475 						0xFFFFFFE0);
1476 
1477 			if (rx_page->read_offset >= rx_ring->page_size) {
1478 				/* mark this page clean */
1479 				u16 reg_addr;
1480 				u8  rx_using;
1481 
1482 				rx_page->read_offset =
1483 					*(rx_page->write_offset_addr) = 0;
1484 				rx_using = rx_page_desc[que].rx_using;
1485 				reg_addr =
1486 					atl1e_rx_page_vld_regs[que][rx_using];
1487 				AT_WRITE_REGB(&adapter->hw, reg_addr, 1);
1488 				rx_page_desc[que].rx_using ^= 1;
1489 				rx_page = atl1e_get_rx_page(adapter, que);
1490 			}
1491 			write_offset = *(rx_page->write_offset_addr);
1492 		} while (rx_page->read_offset < write_offset);
1493 	}
1494 
1495 	return;
1496 
1497 fatal_err:
1498 	if (!test_bit(__AT_DOWN, &adapter->flags))
1499 		schedule_work(&adapter->reset_task);
1500 }
1501 
1502 /**
1503  * atl1e_clean - NAPI Rx polling callback
1504  * @napi: napi info
1505  * @budget: number of packets to clean
1506  */
1507 static int atl1e_clean(struct napi_struct *napi, int budget)
1508 {
1509 	struct atl1e_adapter *adapter =
1510 			container_of(napi, struct atl1e_adapter, napi);
1511 	u32 imr_data;
1512 	int work_done = 0;
1513 
1514 	/* Keep link state information with original netdev */
1515 	if (!netif_carrier_ok(adapter->netdev))
1516 		goto quit_polling;
1517 
1518 	atl1e_clean_rx_irq(adapter, 0, &work_done, budget);
1519 
1520 	/* If no Tx and not enough Rx work done, exit the polling mode */
1521 	if (work_done < budget) {
1522 quit_polling:
1523 		napi_complete_done(napi, work_done);
1524 		imr_data = AT_READ_REG(&adapter->hw, REG_IMR);
1525 		AT_WRITE_REG(&adapter->hw, REG_IMR, imr_data | ISR_RX_EVENT);
1526 		/* test debug */
1527 		if (test_bit(__AT_DOWN, &adapter->flags)) {
1528 			atomic_dec(&adapter->irq_sem);
1529 			netdev_err(adapter->netdev,
1530 				   "atl1e_clean is called when AT_DOWN\n");
1531 		}
1532 		/* reenable RX intr */
1533 		/*atl1e_irq_enable(adapter); */
1534 
1535 	}
1536 	return work_done;
1537 }
1538 
1539 #ifdef CONFIG_NET_POLL_CONTROLLER
1540 
1541 /*
1542  * Polling 'interrupt' - used by things like netconsole to send skbs
1543  * without having to re-enable interrupts. It's not called while
1544  * the interrupt routine is executing.
1545  */
1546 static void atl1e_netpoll(struct net_device *netdev)
1547 {
1548 	struct atl1e_adapter *adapter = netdev_priv(netdev);
1549 
1550 	disable_irq(adapter->pdev->irq);
1551 	atl1e_intr(adapter->pdev->irq, netdev);
1552 	enable_irq(adapter->pdev->irq);
1553 }
1554 #endif
1555 
1556 static inline u16 atl1e_tpd_avail(struct atl1e_adapter *adapter)
1557 {
1558 	struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
1559 	u16 next_to_use = 0;
1560 	u16 next_to_clean = 0;
1561 
1562 	next_to_clean = atomic_read(&tx_ring->next_to_clean);
1563 	next_to_use   = tx_ring->next_to_use;
1564 
1565 	return (u16)(next_to_clean > next_to_use) ?
1566 		(next_to_clean - next_to_use - 1) :
1567 		(tx_ring->count + next_to_clean - next_to_use - 1);
1568 }
1569 
1570 /*
1571  * get next usable tpd
1572  * Note: should call atl1e_tdp_avail to make sure
1573  * there is enough tpd to use
1574  */
1575 static struct atl1e_tpd_desc *atl1e_get_tpd(struct atl1e_adapter *adapter)
1576 {
1577 	struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
1578 	u16 next_to_use = 0;
1579 
1580 	next_to_use = tx_ring->next_to_use;
1581 	if (++tx_ring->next_to_use == tx_ring->count)
1582 		tx_ring->next_to_use = 0;
1583 
1584 	memset(&tx_ring->desc[next_to_use], 0, sizeof(struct atl1e_tpd_desc));
1585 	return &tx_ring->desc[next_to_use];
1586 }
1587 
1588 static struct atl1e_tx_buffer *
1589 atl1e_get_tx_buffer(struct atl1e_adapter *adapter, struct atl1e_tpd_desc *tpd)
1590 {
1591 	struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
1592 
1593 	return &tx_ring->tx_buffer[tpd - tx_ring->desc];
1594 }
1595 
1596 /* Calculate the transmit packet descript needed*/
1597 static u16 atl1e_cal_tdp_req(const struct sk_buff *skb)
1598 {
1599 	int i = 0;
1600 	u16 tpd_req = 1;
1601 	u16 fg_size = 0;
1602 	u16 proto_hdr_len = 0;
1603 
1604 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1605 		fg_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1606 		tpd_req += ((fg_size + MAX_TX_BUF_LEN - 1) >> MAX_TX_BUF_SHIFT);
1607 	}
1608 
1609 	if (skb_is_gso(skb)) {
1610 		if (skb->protocol == htons(ETH_P_IP) ||
1611 		   (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6)) {
1612 			proto_hdr_len = skb_tcp_all_headers(skb);
1613 			if (proto_hdr_len < skb_headlen(skb)) {
1614 				tpd_req += ((skb_headlen(skb) - proto_hdr_len +
1615 					   MAX_TX_BUF_LEN - 1) >>
1616 					   MAX_TX_BUF_SHIFT);
1617 			}
1618 		}
1619 
1620 	}
1621 	return tpd_req;
1622 }
1623 
1624 static int atl1e_tso_csum(struct atl1e_adapter *adapter,
1625 		       struct sk_buff *skb, struct atl1e_tpd_desc *tpd)
1626 {
1627 	unsigned short offload_type;
1628 	u8 hdr_len;
1629 	u32 real_len;
1630 
1631 	if (skb_is_gso(skb)) {
1632 		int err;
1633 
1634 		err = skb_cow_head(skb, 0);
1635 		if (err < 0)
1636 			return err;
1637 
1638 		offload_type = skb_shinfo(skb)->gso_type;
1639 
1640 		if (offload_type & SKB_GSO_TCPV4) {
1641 			real_len = (((unsigned char *)ip_hdr(skb) - skb->data)
1642 					+ ntohs(ip_hdr(skb)->tot_len));
1643 
1644 			if (real_len < skb->len)
1645 				pskb_trim(skb, real_len);
1646 
1647 			hdr_len = skb_tcp_all_headers(skb);
1648 			if (unlikely(skb->len == hdr_len)) {
1649 				/* only xsum need */
1650 				netdev_warn(adapter->netdev,
1651 					    "IPV4 tso with zero data??\n");
1652 				goto check_sum;
1653 			} else {
1654 				ip_hdr(skb)->check = 0;
1655 				ip_hdr(skb)->tot_len = 0;
1656 				tcp_hdr(skb)->check = ~csum_tcpudp_magic(
1657 							ip_hdr(skb)->saddr,
1658 							ip_hdr(skb)->daddr,
1659 							0, IPPROTO_TCP, 0);
1660 				tpd->word3 |= (ip_hdr(skb)->ihl &
1661 					TDP_V4_IPHL_MASK) <<
1662 					TPD_V4_IPHL_SHIFT;
1663 				tpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
1664 					TPD_TCPHDRLEN_MASK) <<
1665 					TPD_TCPHDRLEN_SHIFT;
1666 				tpd->word3 |= ((skb_shinfo(skb)->gso_size) &
1667 					TPD_MSS_MASK) << TPD_MSS_SHIFT;
1668 				tpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
1669 			}
1670 			return 0;
1671 		}
1672 	}
1673 
1674 check_sum:
1675 	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
1676 		u8 css, cso;
1677 
1678 		cso = skb_checksum_start_offset(skb);
1679 		if (unlikely(cso & 0x1)) {
1680 			netdev_err(adapter->netdev,
1681 				   "payload offset should not ant event number\n");
1682 			return -1;
1683 		} else {
1684 			css = cso + skb->csum_offset;
1685 			tpd->word3 |= (cso & TPD_PLOADOFFSET_MASK) <<
1686 					TPD_PLOADOFFSET_SHIFT;
1687 			tpd->word3 |= (css & TPD_CCSUMOFFSET_MASK) <<
1688 					TPD_CCSUMOFFSET_SHIFT;
1689 			tpd->word3 |= 1 << TPD_CC_SEGMENT_EN_SHIFT;
1690 		}
1691 	}
1692 
1693 	return 0;
1694 }
1695 
1696 static int atl1e_tx_map(struct atl1e_adapter *adapter,
1697 			struct sk_buff *skb, struct atl1e_tpd_desc *tpd)
1698 {
1699 	struct atl1e_tpd_desc *use_tpd = NULL;
1700 	struct atl1e_tx_buffer *tx_buffer = NULL;
1701 	u16 buf_len = skb_headlen(skb);
1702 	u16 map_len = 0;
1703 	u16 mapped_len = 0;
1704 	u16 hdr_len = 0;
1705 	u16 nr_frags;
1706 	u16 f;
1707 	int segment;
1708 	int ring_start = adapter->tx_ring.next_to_use;
1709 	int ring_end;
1710 
1711 	nr_frags = skb_shinfo(skb)->nr_frags;
1712 	segment = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
1713 	if (segment) {
1714 		/* TSO */
1715 		hdr_len = skb_tcp_all_headers(skb);
1716 		map_len = hdr_len;
1717 		use_tpd = tpd;
1718 
1719 		tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd);
1720 		tx_buffer->length = map_len;
1721 		tx_buffer->dma = dma_map_single(&adapter->pdev->dev,
1722 						skb->data, hdr_len,
1723 						DMA_TO_DEVICE);
1724 		if (dma_mapping_error(&adapter->pdev->dev, tx_buffer->dma))
1725 			return -ENOSPC;
1726 
1727 		ATL1E_SET_PCIMAP_TYPE(tx_buffer, ATL1E_TX_PCIMAP_SINGLE);
1728 		mapped_len += map_len;
1729 		use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma);
1730 		use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) |
1731 			((cpu_to_le32(tx_buffer->length) &
1732 			TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT);
1733 	}
1734 
1735 	while (mapped_len < buf_len) {
1736 		/* mapped_len == 0, means we should use the first tpd,
1737 		   which is given by caller  */
1738 		if (mapped_len == 0) {
1739 			use_tpd = tpd;
1740 		} else {
1741 			use_tpd = atl1e_get_tpd(adapter);
1742 			memcpy(use_tpd, tpd, sizeof(struct atl1e_tpd_desc));
1743 		}
1744 		tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd);
1745 		tx_buffer->skb = NULL;
1746 
1747 		tx_buffer->length = map_len =
1748 			((buf_len - mapped_len) >= MAX_TX_BUF_LEN) ?
1749 			MAX_TX_BUF_LEN : (buf_len - mapped_len);
1750 		tx_buffer->dma =
1751 			dma_map_single(&adapter->pdev->dev,
1752 				       skb->data + mapped_len, map_len,
1753 				       DMA_TO_DEVICE);
1754 
1755 		if (dma_mapping_error(&adapter->pdev->dev, tx_buffer->dma)) {
1756 			/* We need to unwind the mappings we've done */
1757 			ring_end = adapter->tx_ring.next_to_use;
1758 			adapter->tx_ring.next_to_use = ring_start;
1759 			while (adapter->tx_ring.next_to_use != ring_end) {
1760 				tpd = atl1e_get_tpd(adapter);
1761 				tx_buffer = atl1e_get_tx_buffer(adapter, tpd);
1762 				dma_unmap_single(&adapter->pdev->dev,
1763 						 tx_buffer->dma,
1764 						 tx_buffer->length,
1765 						 DMA_TO_DEVICE);
1766 			}
1767 			/* Reset the tx rings next pointer */
1768 			adapter->tx_ring.next_to_use = ring_start;
1769 			return -ENOSPC;
1770 		}
1771 
1772 		ATL1E_SET_PCIMAP_TYPE(tx_buffer, ATL1E_TX_PCIMAP_SINGLE);
1773 		mapped_len  += map_len;
1774 		use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma);
1775 		use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) |
1776 			((cpu_to_le32(tx_buffer->length) &
1777 			TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT);
1778 	}
1779 
1780 	for (f = 0; f < nr_frags; f++) {
1781 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1782 		u16 i;
1783 		u16 seg_num;
1784 
1785 		buf_len = skb_frag_size(frag);
1786 
1787 		seg_num = (buf_len + MAX_TX_BUF_LEN - 1) / MAX_TX_BUF_LEN;
1788 		for (i = 0; i < seg_num; i++) {
1789 			use_tpd = atl1e_get_tpd(adapter);
1790 			memcpy(use_tpd, tpd, sizeof(struct atl1e_tpd_desc));
1791 
1792 			tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd);
1793 			BUG_ON(tx_buffer->skb);
1794 
1795 			tx_buffer->skb = NULL;
1796 			tx_buffer->length =
1797 				(buf_len > MAX_TX_BUF_LEN) ?
1798 				MAX_TX_BUF_LEN : buf_len;
1799 			buf_len -= tx_buffer->length;
1800 
1801 			tx_buffer->dma = skb_frag_dma_map(&adapter->pdev->dev,
1802 							  frag,
1803 							  (i * MAX_TX_BUF_LEN),
1804 							  tx_buffer->length,
1805 							  DMA_TO_DEVICE);
1806 
1807 			if (dma_mapping_error(&adapter->pdev->dev, tx_buffer->dma)) {
1808 				/* We need to unwind the mappings we've done */
1809 				ring_end = adapter->tx_ring.next_to_use;
1810 				adapter->tx_ring.next_to_use = ring_start;
1811 				while (adapter->tx_ring.next_to_use != ring_end) {
1812 					tpd = atl1e_get_tpd(adapter);
1813 					tx_buffer = atl1e_get_tx_buffer(adapter, tpd);
1814 					dma_unmap_page(&adapter->pdev->dev, tx_buffer->dma,
1815 						       tx_buffer->length, DMA_TO_DEVICE);
1816 				}
1817 
1818 				/* Reset the ring next to use pointer */
1819 				adapter->tx_ring.next_to_use = ring_start;
1820 				return -ENOSPC;
1821 			}
1822 
1823 			ATL1E_SET_PCIMAP_TYPE(tx_buffer, ATL1E_TX_PCIMAP_PAGE);
1824 			use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma);
1825 			use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) |
1826 					((cpu_to_le32(tx_buffer->length) &
1827 					TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT);
1828 		}
1829 	}
1830 
1831 	if ((tpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK)
1832 		/* note this one is a tcp header */
1833 		tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
1834 	/* The last tpd */
1835 
1836 	use_tpd->word3 |= 1 << TPD_EOP_SHIFT;
1837 	/* The last buffer info contain the skb address,
1838 	   so it will be free after unmap */
1839 	tx_buffer->skb = skb;
1840 	return 0;
1841 }
1842 
1843 static void atl1e_tx_queue(struct atl1e_adapter *adapter, u16 count,
1844 			   struct atl1e_tpd_desc *tpd)
1845 {
1846 	struct atl1e_tx_ring *tx_ring = &adapter->tx_ring;
1847 	/* Force memory writes to complete before letting h/w
1848 	 * know there are new descriptors to fetch.  (Only
1849 	 * applicable for weak-ordered memory model archs,
1850 	 * such as IA-64). */
1851 	wmb();
1852 	AT_WRITE_REG(&adapter->hw, REG_MB_TPD_PROD_IDX, tx_ring->next_to_use);
1853 }
1854 
1855 static netdev_tx_t atl1e_xmit_frame(struct sk_buff *skb,
1856 					  struct net_device *netdev)
1857 {
1858 	struct atl1e_adapter *adapter = netdev_priv(netdev);
1859 	u16 tpd_req = 1;
1860 	struct atl1e_tpd_desc *tpd;
1861 
1862 	if (test_bit(__AT_DOWN, &adapter->flags)) {
1863 		dev_kfree_skb_any(skb);
1864 		return NETDEV_TX_OK;
1865 	}
1866 
1867 	if (unlikely(skb->len <= 0)) {
1868 		dev_kfree_skb_any(skb);
1869 		return NETDEV_TX_OK;
1870 	}
1871 	tpd_req = atl1e_cal_tdp_req(skb);
1872 
1873 	if (atl1e_tpd_avail(adapter) < tpd_req) {
1874 		/* no enough descriptor, just stop queue */
1875 		netif_stop_queue(netdev);
1876 		return NETDEV_TX_BUSY;
1877 	}
1878 
1879 	tpd = atl1e_get_tpd(adapter);
1880 
1881 	if (skb_vlan_tag_present(skb)) {
1882 		u16 vlan_tag = skb_vlan_tag_get(skb);
1883 		u16 atl1e_vlan_tag;
1884 
1885 		tpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
1886 		AT_VLAN_TAG_TO_TPD_TAG(vlan_tag, atl1e_vlan_tag);
1887 		tpd->word2 |= (atl1e_vlan_tag & TPD_VLANTAG_MASK) <<
1888 				TPD_VLAN_SHIFT;
1889 	}
1890 
1891 	if (skb->protocol == htons(ETH_P_8021Q))
1892 		tpd->word3 |= 1 << TPD_VL_TAGGED_SHIFT;
1893 
1894 	if (skb_network_offset(skb) != ETH_HLEN)
1895 		tpd->word3 |= 1 << TPD_ETHTYPE_SHIFT; /* 802.3 frame */
1896 
1897 	/* do TSO and check sum */
1898 	if (atl1e_tso_csum(adapter, skb, tpd) != 0) {
1899 		dev_kfree_skb_any(skb);
1900 		return NETDEV_TX_OK;
1901 	}
1902 
1903 	if (atl1e_tx_map(adapter, skb, tpd)) {
1904 		dev_kfree_skb_any(skb);
1905 		goto out;
1906 	}
1907 
1908 	atl1e_tx_queue(adapter, tpd_req, tpd);
1909 out:
1910 	return NETDEV_TX_OK;
1911 }
1912 
1913 static void atl1e_free_irq(struct atl1e_adapter *adapter)
1914 {
1915 	struct net_device *netdev = adapter->netdev;
1916 
1917 	free_irq(adapter->pdev->irq, netdev);
1918 }
1919 
1920 static int atl1e_request_irq(struct atl1e_adapter *adapter)
1921 {
1922 	struct pci_dev    *pdev   = adapter->pdev;
1923 	struct net_device *netdev = adapter->netdev;
1924 	int err = 0;
1925 
1926 	err = request_irq(pdev->irq, atl1e_intr, IRQF_SHARED, netdev->name,
1927 			  netdev);
1928 	if (err) {
1929 		netdev_dbg(adapter->netdev,
1930 			   "Unable to allocate interrupt Error: %d\n", err);
1931 		return err;
1932 	}
1933 	netdev_dbg(netdev, "atl1e_request_irq OK\n");
1934 	return err;
1935 }
1936 
1937 int atl1e_up(struct atl1e_adapter *adapter)
1938 {
1939 	struct net_device *netdev = adapter->netdev;
1940 	int err = 0;
1941 	u32 val;
1942 
1943 	/* hardware has been reset, we need to reload some things */
1944 	err = atl1e_init_hw(&adapter->hw);
1945 	if (err) {
1946 		err = -EIO;
1947 		return err;
1948 	}
1949 	atl1e_init_ring_ptrs(adapter);
1950 	atl1e_set_multi(netdev);
1951 	atl1e_restore_vlan(adapter);
1952 
1953 	if (atl1e_configure(adapter)) {
1954 		err = -EIO;
1955 		goto err_up;
1956 	}
1957 
1958 	clear_bit(__AT_DOWN, &adapter->flags);
1959 	napi_enable(&adapter->napi);
1960 	atl1e_irq_enable(adapter);
1961 	val = AT_READ_REG(&adapter->hw, REG_MASTER_CTRL);
1962 	AT_WRITE_REG(&adapter->hw, REG_MASTER_CTRL,
1963 		      val | MASTER_CTRL_MANUAL_INT);
1964 
1965 err_up:
1966 	return err;
1967 }
1968 
1969 void atl1e_down(struct atl1e_adapter *adapter)
1970 {
1971 	struct net_device *netdev = adapter->netdev;
1972 
1973 	/* signal that we're down so the interrupt handler does not
1974 	 * reschedule our watchdog timer */
1975 	set_bit(__AT_DOWN, &adapter->flags);
1976 
1977 	netif_stop_queue(netdev);
1978 
1979 	/* reset MAC to disable all RX/TX */
1980 	atl1e_reset_hw(&adapter->hw);
1981 	msleep(1);
1982 
1983 	napi_disable(&adapter->napi);
1984 	atl1e_del_timer(adapter);
1985 	atl1e_irq_disable(adapter);
1986 
1987 	netif_carrier_off(netdev);
1988 	adapter->link_speed = SPEED_0;
1989 	adapter->link_duplex = -1;
1990 	atl1e_clean_tx_ring(adapter);
1991 	atl1e_clean_rx_ring(adapter);
1992 }
1993 
1994 /**
1995  * atl1e_open - Called when a network interface is made active
1996  * @netdev: network interface device structure
1997  *
1998  * Returns 0 on success, negative value on failure
1999  *
2000  * The open entry point is called when a network interface is made
2001  * active by the system (IFF_UP).  At this point all resources needed
2002  * for transmit and receive operations are allocated, the interrupt
2003  * handler is registered with the OS, the watchdog timer is started,
2004  * and the stack is notified that the interface is ready.
2005  */
2006 static int atl1e_open(struct net_device *netdev)
2007 {
2008 	struct atl1e_adapter *adapter = netdev_priv(netdev);
2009 	int err;
2010 
2011 	/* disallow open during test */
2012 	if (test_bit(__AT_TESTING, &adapter->flags))
2013 		return -EBUSY;
2014 
2015 	/* allocate rx/tx dma buffer & descriptors */
2016 	atl1e_init_ring_resources(adapter);
2017 	err = atl1e_setup_ring_resources(adapter);
2018 	if (unlikely(err))
2019 		return err;
2020 
2021 	err = atl1e_request_irq(adapter);
2022 	if (unlikely(err))
2023 		goto err_req_irq;
2024 
2025 	err = atl1e_up(adapter);
2026 	if (unlikely(err))
2027 		goto err_up;
2028 
2029 	return 0;
2030 
2031 err_up:
2032 	atl1e_free_irq(adapter);
2033 err_req_irq:
2034 	atl1e_free_ring_resources(adapter);
2035 	atl1e_reset_hw(&adapter->hw);
2036 
2037 	return err;
2038 }
2039 
2040 /**
2041  * atl1e_close - Disables a network interface
2042  * @netdev: network interface device structure
2043  *
2044  * Returns 0, this is not allowed to fail
2045  *
2046  * The close entry point is called when an interface is de-activated
2047  * by the OS.  The hardware is still under the drivers control, but
2048  * needs to be disabled.  A global MAC reset is issued to stop the
2049  * hardware, and all transmit and receive resources are freed.
2050  */
2051 static int atl1e_close(struct net_device *netdev)
2052 {
2053 	struct atl1e_adapter *adapter = netdev_priv(netdev);
2054 
2055 	WARN_ON(test_bit(__AT_RESETTING, &adapter->flags));
2056 	atl1e_down(adapter);
2057 	atl1e_free_irq(adapter);
2058 	atl1e_free_ring_resources(adapter);
2059 
2060 	return 0;
2061 }
2062 
2063 static int atl1e_suspend(struct pci_dev *pdev, pm_message_t state)
2064 {
2065 	struct net_device *netdev = pci_get_drvdata(pdev);
2066 	struct atl1e_adapter *adapter = netdev_priv(netdev);
2067 	struct atl1e_hw *hw = &adapter->hw;
2068 	u32 ctrl = 0;
2069 	u32 mac_ctrl_data = 0;
2070 	u32 wol_ctrl_data = 0;
2071 	u16 mii_advertise_data = 0;
2072 	u16 mii_bmsr_data = 0;
2073 	u16 mii_intr_status_data = 0;
2074 	u32 wufc = adapter->wol;
2075 	u32 i;
2076 #ifdef CONFIG_PM
2077 	int retval = 0;
2078 #endif
2079 
2080 	if (netif_running(netdev)) {
2081 		WARN_ON(test_bit(__AT_RESETTING, &adapter->flags));
2082 		atl1e_down(adapter);
2083 	}
2084 	netif_device_detach(netdev);
2085 
2086 #ifdef CONFIG_PM
2087 	retval = pci_save_state(pdev);
2088 	if (retval)
2089 		return retval;
2090 #endif
2091 
2092 	if (wufc) {
2093 		/* get link status */
2094 		atl1e_read_phy_reg(hw, MII_BMSR, &mii_bmsr_data);
2095 		atl1e_read_phy_reg(hw, MII_BMSR, &mii_bmsr_data);
2096 
2097 		mii_advertise_data = ADVERTISE_10HALF;
2098 
2099 		if ((atl1e_write_phy_reg(hw, MII_CTRL1000, 0) != 0) ||
2100 		    (atl1e_write_phy_reg(hw,
2101 			   MII_ADVERTISE, mii_advertise_data) != 0) ||
2102 		    (atl1e_phy_commit(hw)) != 0) {
2103 			netdev_dbg(adapter->netdev, "set phy register failed\n");
2104 			goto wol_dis;
2105 		}
2106 
2107 		hw->phy_configured = false; /* re-init PHY when resume */
2108 
2109 		/* turn on magic packet wol */
2110 		if (wufc & AT_WUFC_MAG)
2111 			wol_ctrl_data |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
2112 
2113 		if (wufc & AT_WUFC_LNKC) {
2114 		/* if orignal link status is link, just wait for retrive link */
2115 			if (mii_bmsr_data & BMSR_LSTATUS) {
2116 				for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
2117 					msleep(100);
2118 					atl1e_read_phy_reg(hw, MII_BMSR,
2119 							&mii_bmsr_data);
2120 					if (mii_bmsr_data & BMSR_LSTATUS)
2121 						break;
2122 				}
2123 
2124 				if ((mii_bmsr_data & BMSR_LSTATUS) == 0)
2125 					netdev_dbg(adapter->netdev,
2126 						   "Link may change when suspend\n");
2127 			}
2128 			wol_ctrl_data |=  WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN;
2129 			/* only link up can wake up */
2130 			if (atl1e_write_phy_reg(hw, MII_INT_CTRL, 0x400) != 0) {
2131 				netdev_dbg(adapter->netdev,
2132 					   "read write phy register failed\n");
2133 				goto wol_dis;
2134 			}
2135 		}
2136 		/* clear phy interrupt */
2137 		atl1e_read_phy_reg(hw, MII_INT_STATUS, &mii_intr_status_data);
2138 		/* Config MAC Ctrl register */
2139 		mac_ctrl_data = MAC_CTRL_RX_EN;
2140 		/* set to 10/100M halt duplex */
2141 		mac_ctrl_data |= MAC_CTRL_SPEED_10_100 << MAC_CTRL_SPEED_SHIFT;
2142 		mac_ctrl_data |= (((u32)adapter->hw.preamble_len &
2143 				 MAC_CTRL_PRMLEN_MASK) <<
2144 				 MAC_CTRL_PRMLEN_SHIFT);
2145 
2146 		__atl1e_vlan_mode(netdev->features, &mac_ctrl_data);
2147 
2148 		/* magic packet maybe Broadcast&multicast&Unicast frame */
2149 		if (wufc & AT_WUFC_MAG)
2150 			mac_ctrl_data |= MAC_CTRL_BC_EN;
2151 
2152 		netdev_dbg(adapter->netdev, "suspend MAC=0x%x\n",
2153 			   mac_ctrl_data);
2154 
2155 		AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl_data);
2156 		AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);
2157 		/* pcie patch */
2158 		ctrl = AT_READ_REG(hw, REG_PCIE_PHYMISC);
2159 		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2160 		AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
2161 		pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
2162 		goto suspend_exit;
2163 	}
2164 wol_dis:
2165 
2166 	/* WOL disabled */
2167 	AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
2168 
2169 	/* pcie patch */
2170 	ctrl = AT_READ_REG(hw, REG_PCIE_PHYMISC);
2171 	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2172 	AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
2173 
2174 	atl1e_force_ps(hw);
2175 	hw->phy_configured = false; /* re-init PHY when resume */
2176 
2177 	pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
2178 
2179 suspend_exit:
2180 
2181 	if (netif_running(netdev))
2182 		atl1e_free_irq(adapter);
2183 
2184 	pci_disable_device(pdev);
2185 
2186 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2187 
2188 	return 0;
2189 }
2190 
2191 #ifdef CONFIG_PM
2192 static int atl1e_resume(struct pci_dev *pdev)
2193 {
2194 	struct net_device *netdev = pci_get_drvdata(pdev);
2195 	struct atl1e_adapter *adapter = netdev_priv(netdev);
2196 	u32 err;
2197 
2198 	pci_set_power_state(pdev, PCI_D0);
2199 	pci_restore_state(pdev);
2200 
2201 	err = pci_enable_device(pdev);
2202 	if (err) {
2203 		netdev_err(adapter->netdev,
2204 			   "Cannot enable PCI device from suspend\n");
2205 		return err;
2206 	}
2207 
2208 	pci_set_master(pdev);
2209 
2210 	AT_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */
2211 
2212 	pci_enable_wake(pdev, PCI_D3hot, 0);
2213 	pci_enable_wake(pdev, PCI_D3cold, 0);
2214 
2215 	AT_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
2216 
2217 	if (netif_running(netdev)) {
2218 		err = atl1e_request_irq(adapter);
2219 		if (err)
2220 			return err;
2221 	}
2222 
2223 	atl1e_reset_hw(&adapter->hw);
2224 
2225 	if (netif_running(netdev))
2226 		atl1e_up(adapter);
2227 
2228 	netif_device_attach(netdev);
2229 
2230 	return 0;
2231 }
2232 #endif
2233 
2234 static void atl1e_shutdown(struct pci_dev *pdev)
2235 {
2236 	atl1e_suspend(pdev, PMSG_SUSPEND);
2237 }
2238 
2239 static const struct net_device_ops atl1e_netdev_ops = {
2240 	.ndo_open		= atl1e_open,
2241 	.ndo_stop		= atl1e_close,
2242 	.ndo_start_xmit		= atl1e_xmit_frame,
2243 	.ndo_get_stats		= atl1e_get_stats,
2244 	.ndo_set_rx_mode	= atl1e_set_multi,
2245 	.ndo_validate_addr	= eth_validate_addr,
2246 	.ndo_set_mac_address	= atl1e_set_mac_addr,
2247 	.ndo_fix_features	= atl1e_fix_features,
2248 	.ndo_set_features	= atl1e_set_features,
2249 	.ndo_change_mtu		= atl1e_change_mtu,
2250 	.ndo_eth_ioctl		= atl1e_ioctl,
2251 	.ndo_tx_timeout		= atl1e_tx_timeout,
2252 #ifdef CONFIG_NET_POLL_CONTROLLER
2253 	.ndo_poll_controller	= atl1e_netpoll,
2254 #endif
2255 
2256 };
2257 
2258 static int atl1e_init_netdev(struct net_device *netdev, struct pci_dev *pdev)
2259 {
2260 	SET_NETDEV_DEV(netdev, &pdev->dev);
2261 	pci_set_drvdata(pdev, netdev);
2262 
2263 	netdev->netdev_ops = &atl1e_netdev_ops;
2264 
2265 	netdev->watchdog_timeo = AT_TX_WATCHDOG;
2266 	/* MTU range: 42 - 8170 */
2267 	netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN);
2268 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE -
2269 			  (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2270 	atl1e_set_ethtool_ops(netdev);
2271 
2272 	netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_TSO |
2273 			      NETIF_F_HW_VLAN_CTAG_RX;
2274 	netdev->features = netdev->hw_features | NETIF_F_HW_VLAN_CTAG_TX;
2275 	/* not enabled by default */
2276 	netdev->hw_features |= NETIF_F_RXALL | NETIF_F_RXFCS;
2277 	return 0;
2278 }
2279 
2280 /**
2281  * atl1e_probe - Device Initialization Routine
2282  * @pdev: PCI device information struct
2283  * @ent: entry in atl1e_pci_tbl
2284  *
2285  * Returns 0 on success, negative on failure
2286  *
2287  * atl1e_probe initializes an adapter identified by a pci_dev structure.
2288  * The OS initialization, configuring of the adapter private structure,
2289  * and a hardware reset occur.
2290  */
2291 static int atl1e_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2292 {
2293 	struct net_device *netdev;
2294 	struct atl1e_adapter *adapter = NULL;
2295 	static int cards_found;
2296 
2297 	int err = 0;
2298 
2299 	err = pci_enable_device(pdev);
2300 	if (err)
2301 		return dev_err_probe(&pdev->dev, err, "cannot enable PCI device\n");
2302 
2303 	/*
2304 	 * The atl1e chip can DMA to 64-bit addresses, but it uses a single
2305 	 * shared register for the high 32 bits, so only a single, aligned,
2306 	 * 4 GB physical address range can be used at a time.
2307 	 *
2308 	 * Supporting 64-bit DMA on this hardware is more trouble than it's
2309 	 * worth.  It is far easier to limit to 32-bit DMA than update
2310 	 * various kernel subsystems to support the mechanics required by a
2311 	 * fixed-high-32-bit system.
2312 	 */
2313 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2314 	if (err) {
2315 		dev_err(&pdev->dev, "No usable DMA configuration,aborting\n");
2316 		goto err_dma;
2317 	}
2318 
2319 	err = pci_request_regions(pdev, atl1e_driver_name);
2320 	if (err) {
2321 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2322 		goto err_pci_reg;
2323 	}
2324 
2325 	pci_set_master(pdev);
2326 
2327 	netdev = alloc_etherdev(sizeof(struct atl1e_adapter));
2328 	if (netdev == NULL) {
2329 		err = -ENOMEM;
2330 		goto err_alloc_etherdev;
2331 	}
2332 
2333 	err = atl1e_init_netdev(netdev, pdev);
2334 	if (err) {
2335 		netdev_err(netdev, "init netdevice failed\n");
2336 		goto err_init_netdev;
2337 	}
2338 	adapter = netdev_priv(netdev);
2339 	adapter->bd_number = cards_found;
2340 	adapter->netdev = netdev;
2341 	adapter->pdev = pdev;
2342 	adapter->hw.adapter = adapter;
2343 	adapter->hw.hw_addr = pci_iomap(pdev, BAR_0, 0);
2344 	if (!adapter->hw.hw_addr) {
2345 		err = -EIO;
2346 		netdev_err(netdev, "cannot map device registers\n");
2347 		goto err_ioremap;
2348 	}
2349 
2350 	/* init mii data */
2351 	adapter->mii.dev = netdev;
2352 	adapter->mii.mdio_read  = atl1e_mdio_read;
2353 	adapter->mii.mdio_write = atl1e_mdio_write;
2354 	adapter->mii.phy_id_mask = 0x1f;
2355 	adapter->mii.reg_num_mask = MDIO_REG_ADDR_MASK;
2356 
2357 	netif_napi_add(netdev, &adapter->napi, atl1e_clean);
2358 
2359 	timer_setup(&adapter->phy_config_timer, atl1e_phy_config, 0);
2360 
2361 	/* get user settings */
2362 	atl1e_check_options(adapter);
2363 	/*
2364 	 * Mark all PCI regions associated with PCI device
2365 	 * pdev as being reserved by owner atl1e_driver_name
2366 	 * Enables bus-mastering on the device and calls
2367 	 * pcibios_set_master to do the needed arch specific settings
2368 	 */
2369 	atl1e_setup_pcicmd(pdev);
2370 	/* setup the private structure */
2371 	err = atl1e_sw_init(adapter);
2372 	if (err) {
2373 		netdev_err(netdev, "net device private data init failed\n");
2374 		goto err_sw_init;
2375 	}
2376 
2377 	/* Init GPHY as early as possible due to power saving issue  */
2378 	atl1e_phy_init(&adapter->hw);
2379 	/* reset the controller to
2380 	 * put the device in a known good starting state */
2381 	err = atl1e_reset_hw(&adapter->hw);
2382 	if (err) {
2383 		err = -EIO;
2384 		goto err_reset;
2385 	}
2386 
2387 	if (atl1e_read_mac_addr(&adapter->hw) != 0) {
2388 		err = -EIO;
2389 		netdev_err(netdev, "get mac address failed\n");
2390 		goto err_eeprom;
2391 	}
2392 
2393 	eth_hw_addr_set(netdev, adapter->hw.mac_addr);
2394 	netdev_dbg(netdev, "mac address : %pM\n", adapter->hw.mac_addr);
2395 
2396 	INIT_WORK(&adapter->reset_task, atl1e_reset_task);
2397 	INIT_WORK(&adapter->link_chg_task, atl1e_link_chg_task);
2398 	netif_set_tso_max_size(netdev, MAX_TSO_SEG_SIZE);
2399 	err = register_netdev(netdev);
2400 	if (err) {
2401 		netdev_err(netdev, "register netdevice failed\n");
2402 		goto err_register;
2403 	}
2404 
2405 	/* assume we have no link for now */
2406 	netif_stop_queue(netdev);
2407 	netif_carrier_off(netdev);
2408 
2409 	cards_found++;
2410 
2411 	return 0;
2412 
2413 err_reset:
2414 err_register:
2415 err_sw_init:
2416 err_eeprom:
2417 	pci_iounmap(pdev, adapter->hw.hw_addr);
2418 err_init_netdev:
2419 err_ioremap:
2420 	free_netdev(netdev);
2421 err_alloc_etherdev:
2422 	pci_release_regions(pdev);
2423 err_pci_reg:
2424 err_dma:
2425 	pci_disable_device(pdev);
2426 	return err;
2427 }
2428 
2429 /**
2430  * atl1e_remove - Device Removal Routine
2431  * @pdev: PCI device information struct
2432  *
2433  * atl1e_remove is called by the PCI subsystem to alert the driver
2434  * that it should release a PCI device.  The could be caused by a
2435  * Hot-Plug event, or because the driver is going to be removed from
2436  * memory.
2437  */
2438 static void atl1e_remove(struct pci_dev *pdev)
2439 {
2440 	struct net_device *netdev = pci_get_drvdata(pdev);
2441 	struct atl1e_adapter *adapter = netdev_priv(netdev);
2442 
2443 	/*
2444 	 * flush_scheduled work may reschedule our watchdog task, so
2445 	 * explicitly disable watchdog tasks from being rescheduled
2446 	 */
2447 	set_bit(__AT_DOWN, &adapter->flags);
2448 
2449 	atl1e_del_timer(adapter);
2450 	atl1e_cancel_work(adapter);
2451 
2452 	unregister_netdev(netdev);
2453 	atl1e_free_ring_resources(adapter);
2454 	atl1e_force_ps(&adapter->hw);
2455 	pci_iounmap(pdev, adapter->hw.hw_addr);
2456 	pci_release_regions(pdev);
2457 	free_netdev(netdev);
2458 	pci_disable_device(pdev);
2459 }
2460 
2461 /**
2462  * atl1e_io_error_detected - called when PCI error is detected
2463  * @pdev: Pointer to PCI device
2464  * @state: The current pci connection state
2465  *
2466  * This function is called after a PCI bus error affecting
2467  * this device has been detected.
2468  */
2469 static pci_ers_result_t
2470 atl1e_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2471 {
2472 	struct net_device *netdev = pci_get_drvdata(pdev);
2473 	struct atl1e_adapter *adapter = netdev_priv(netdev);
2474 
2475 	netif_device_detach(netdev);
2476 
2477 	if (state == pci_channel_io_perm_failure)
2478 		return PCI_ERS_RESULT_DISCONNECT;
2479 
2480 	if (netif_running(netdev))
2481 		atl1e_down(adapter);
2482 
2483 	pci_disable_device(pdev);
2484 
2485 	/* Request a slot reset. */
2486 	return PCI_ERS_RESULT_NEED_RESET;
2487 }
2488 
2489 /**
2490  * atl1e_io_slot_reset - called after the pci bus has been reset.
2491  * @pdev: Pointer to PCI device
2492  *
2493  * Restart the card from scratch, as if from a cold-boot. Implementation
2494  * resembles the first-half of the e1000_resume routine.
2495  */
2496 static pci_ers_result_t atl1e_io_slot_reset(struct pci_dev *pdev)
2497 {
2498 	struct net_device *netdev = pci_get_drvdata(pdev);
2499 	struct atl1e_adapter *adapter = netdev_priv(netdev);
2500 
2501 	if (pci_enable_device(pdev)) {
2502 		netdev_err(adapter->netdev,
2503 			   "Cannot re-enable PCI device after reset\n");
2504 		return PCI_ERS_RESULT_DISCONNECT;
2505 	}
2506 	pci_set_master(pdev);
2507 
2508 	pci_enable_wake(pdev, PCI_D3hot, 0);
2509 	pci_enable_wake(pdev, PCI_D3cold, 0);
2510 
2511 	atl1e_reset_hw(&adapter->hw);
2512 
2513 	return PCI_ERS_RESULT_RECOVERED;
2514 }
2515 
2516 /**
2517  * atl1e_io_resume - called when traffic can start flowing again.
2518  * @pdev: Pointer to PCI device
2519  *
2520  * This callback is called when the error recovery driver tells us that
2521  * its OK to resume normal operation. Implementation resembles the
2522  * second-half of the atl1e_resume routine.
2523  */
2524 static void atl1e_io_resume(struct pci_dev *pdev)
2525 {
2526 	struct net_device *netdev = pci_get_drvdata(pdev);
2527 	struct atl1e_adapter *adapter = netdev_priv(netdev);
2528 
2529 	if (netif_running(netdev)) {
2530 		if (atl1e_up(adapter)) {
2531 			netdev_err(adapter->netdev,
2532 				   "can't bring device back up after reset\n");
2533 			return;
2534 		}
2535 	}
2536 
2537 	netif_device_attach(netdev);
2538 }
2539 
2540 static const struct pci_error_handlers atl1e_err_handler = {
2541 	.error_detected = atl1e_io_error_detected,
2542 	.slot_reset = atl1e_io_slot_reset,
2543 	.resume = atl1e_io_resume,
2544 };
2545 
2546 static struct pci_driver atl1e_driver = {
2547 	.name     = atl1e_driver_name,
2548 	.id_table = atl1e_pci_tbl,
2549 	.probe    = atl1e_probe,
2550 	.remove   = atl1e_remove,
2551 	/* Power Management Hooks */
2552 #ifdef CONFIG_PM
2553 	.suspend  = atl1e_suspend,
2554 	.resume   = atl1e_resume,
2555 #endif
2556 	.shutdown = atl1e_shutdown,
2557 	.err_handler = &atl1e_err_handler
2558 };
2559 
2560 module_pci_driver(atl1e_driver);
2561