1 /* 2 * Copyright 2015 Amazon.com, Inc. or its affiliates. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #ifdef CONFIG_RFS_ACCEL 36 #include <linux/cpu_rmap.h> 37 #endif /* CONFIG_RFS_ACCEL */ 38 #include <linux/ethtool.h> 39 #include <linux/if_vlan.h> 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/numa.h> 43 #include <linux/pci.h> 44 #include <linux/utsname.h> 45 #include <linux/version.h> 46 #include <linux/vmalloc.h> 47 #include <net/ip.h> 48 49 #include "ena_netdev.h" 50 #include "ena_pci_id_tbl.h" 51 52 static char version[] = DEVICE_NAME " v" DRV_MODULE_VERSION "\n"; 53 54 MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); 55 MODULE_DESCRIPTION(DEVICE_NAME); 56 MODULE_LICENSE("GPL"); 57 MODULE_VERSION(DRV_MODULE_VERSION); 58 59 /* Time in jiffies before concluding the transmitter is hung. */ 60 #define TX_TIMEOUT (5 * HZ) 61 62 #define ENA_NAPI_BUDGET 64 63 64 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \ 65 NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR) 66 static int debug = -1; 67 module_param(debug, int, 0); 68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 69 70 static struct ena_aenq_handlers aenq_handlers; 71 72 static struct workqueue_struct *ena_wq; 73 74 MODULE_DEVICE_TABLE(pci, ena_pci_tbl); 75 76 static int ena_rss_init_default(struct ena_adapter *adapter); 77 static void check_for_admin_com_state(struct ena_adapter *adapter); 78 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful); 79 static int ena_restore_device(struct ena_adapter *adapter); 80 81 static void ena_tx_timeout(struct net_device *dev) 82 { 83 struct ena_adapter *adapter = netdev_priv(dev); 84 85 /* Change the state of the device to trigger reset 86 * Check that we are not in the middle or a trigger already 87 */ 88 89 if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 90 return; 91 92 adapter->reset_reason = ENA_REGS_RESET_OS_NETDEV_WD; 93 u64_stats_update_begin(&adapter->syncp); 94 adapter->dev_stats.tx_timeout++; 95 u64_stats_update_end(&adapter->syncp); 96 97 netif_err(adapter, tx_err, dev, "Transmit time out\n"); 98 } 99 100 static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu) 101 { 102 int i; 103 104 for (i = 0; i < adapter->num_io_queues; i++) 105 adapter->rx_ring[i].mtu = mtu; 106 } 107 108 static int ena_change_mtu(struct net_device *dev, int new_mtu) 109 { 110 struct ena_adapter *adapter = netdev_priv(dev); 111 int ret; 112 113 ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); 114 if (!ret) { 115 netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu); 116 update_rx_ring_mtu(adapter, new_mtu); 117 dev->mtu = new_mtu; 118 } else { 119 netif_err(adapter, drv, dev, "Failed to set MTU to %d\n", 120 new_mtu); 121 } 122 123 return ret; 124 } 125 126 static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter) 127 { 128 #ifdef CONFIG_RFS_ACCEL 129 u32 i; 130 int rc; 131 132 adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_io_queues); 133 if (!adapter->netdev->rx_cpu_rmap) 134 return -ENOMEM; 135 for (i = 0; i < adapter->num_io_queues; i++) { 136 int irq_idx = ENA_IO_IRQ_IDX(i); 137 138 rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap, 139 pci_irq_vector(adapter->pdev, irq_idx)); 140 if (rc) { 141 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 142 adapter->netdev->rx_cpu_rmap = NULL; 143 return rc; 144 } 145 } 146 #endif /* CONFIG_RFS_ACCEL */ 147 return 0; 148 } 149 150 static void ena_init_io_rings_common(struct ena_adapter *adapter, 151 struct ena_ring *ring, u16 qid) 152 { 153 ring->qid = qid; 154 ring->pdev = adapter->pdev; 155 ring->dev = &adapter->pdev->dev; 156 ring->netdev = adapter->netdev; 157 ring->napi = &adapter->ena_napi[qid].napi; 158 ring->adapter = adapter; 159 ring->ena_dev = adapter->ena_dev; 160 ring->per_napi_packets = 0; 161 ring->cpu = 0; 162 ring->first_interrupt = false; 163 ring->no_interrupt_event_cnt = 0; 164 u64_stats_init(&ring->syncp); 165 } 166 167 static void ena_init_io_rings(struct ena_adapter *adapter) 168 { 169 struct ena_com_dev *ena_dev; 170 struct ena_ring *txr, *rxr; 171 int i; 172 173 ena_dev = adapter->ena_dev; 174 175 for (i = 0; i < adapter->num_io_queues; i++) { 176 txr = &adapter->tx_ring[i]; 177 rxr = &adapter->rx_ring[i]; 178 179 /* TX/RX common ring state */ 180 ena_init_io_rings_common(adapter, txr, i); 181 ena_init_io_rings_common(adapter, rxr, i); 182 183 /* TX specific ring state */ 184 txr->ring_size = adapter->requested_tx_ring_size; 185 txr->tx_max_header_size = ena_dev->tx_max_header_size; 186 txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; 187 txr->sgl_size = adapter->max_tx_sgl_size; 188 txr->smoothed_interval = 189 ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); 190 191 /* RX specific ring state */ 192 rxr->ring_size = adapter->requested_rx_ring_size; 193 rxr->rx_copybreak = adapter->rx_copybreak; 194 rxr->sgl_size = adapter->max_rx_sgl_size; 195 rxr->smoothed_interval = 196 ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); 197 rxr->empty_rx_queue = 0; 198 adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 199 } 200 } 201 202 /* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors) 203 * @adapter: network interface device structure 204 * @qid: queue index 205 * 206 * Return 0 on success, negative on failure 207 */ 208 static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) 209 { 210 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 211 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 212 int size, i, node; 213 214 if (tx_ring->tx_buffer_info) { 215 netif_err(adapter, ifup, 216 adapter->netdev, "tx_buffer_info info is not NULL"); 217 return -EEXIST; 218 } 219 220 size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; 221 node = cpu_to_node(ena_irq->cpu); 222 223 tx_ring->tx_buffer_info = vzalloc_node(size, node); 224 if (!tx_ring->tx_buffer_info) { 225 tx_ring->tx_buffer_info = vzalloc(size); 226 if (!tx_ring->tx_buffer_info) 227 goto err_tx_buffer_info; 228 } 229 230 size = sizeof(u16) * tx_ring->ring_size; 231 tx_ring->free_ids = vzalloc_node(size, node); 232 if (!tx_ring->free_ids) { 233 tx_ring->free_ids = vzalloc(size); 234 if (!tx_ring->free_ids) 235 goto err_tx_free_ids; 236 } 237 238 size = tx_ring->tx_max_header_size; 239 tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node); 240 if (!tx_ring->push_buf_intermediate_buf) { 241 tx_ring->push_buf_intermediate_buf = vzalloc(size); 242 if (!tx_ring->push_buf_intermediate_buf) 243 goto err_push_buf_intermediate_buf; 244 } 245 246 /* Req id ring for TX out of order completions */ 247 for (i = 0; i < tx_ring->ring_size; i++) 248 tx_ring->free_ids[i] = i; 249 250 /* Reset tx statistics */ 251 memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats)); 252 253 tx_ring->next_to_use = 0; 254 tx_ring->next_to_clean = 0; 255 tx_ring->cpu = ena_irq->cpu; 256 return 0; 257 258 err_push_buf_intermediate_buf: 259 vfree(tx_ring->free_ids); 260 tx_ring->free_ids = NULL; 261 err_tx_free_ids: 262 vfree(tx_ring->tx_buffer_info); 263 tx_ring->tx_buffer_info = NULL; 264 err_tx_buffer_info: 265 return -ENOMEM; 266 } 267 268 /* ena_free_tx_resources - Free I/O Tx Resources per Queue 269 * @adapter: network interface device structure 270 * @qid: queue index 271 * 272 * Free all transmit software resources 273 */ 274 static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) 275 { 276 struct ena_ring *tx_ring = &adapter->tx_ring[qid]; 277 278 vfree(tx_ring->tx_buffer_info); 279 tx_ring->tx_buffer_info = NULL; 280 281 vfree(tx_ring->free_ids); 282 tx_ring->free_ids = NULL; 283 284 vfree(tx_ring->push_buf_intermediate_buf); 285 tx_ring->push_buf_intermediate_buf = NULL; 286 } 287 288 /* ena_setup_all_tx_resources - allocate I/O Tx queues resources for All queues 289 * @adapter: private structure 290 * 291 * Return 0 on success, negative on failure 292 */ 293 static int ena_setup_all_tx_resources(struct ena_adapter *adapter) 294 { 295 int i, rc = 0; 296 297 for (i = 0; i < adapter->num_io_queues; i++) { 298 rc = ena_setup_tx_resources(adapter, i); 299 if (rc) 300 goto err_setup_tx; 301 } 302 303 return 0; 304 305 err_setup_tx: 306 307 netif_err(adapter, ifup, adapter->netdev, 308 "Tx queue %d: allocation failed\n", i); 309 310 /* rewind the index freeing the rings as we go */ 311 while (i--) 312 ena_free_tx_resources(adapter, i); 313 return rc; 314 } 315 316 /* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues 317 * @adapter: board private structure 318 * 319 * Free all transmit software resources 320 */ 321 static void ena_free_all_io_tx_resources(struct ena_adapter *adapter) 322 { 323 int i; 324 325 for (i = 0; i < adapter->num_io_queues; i++) 326 ena_free_tx_resources(adapter, i); 327 } 328 329 static int validate_rx_req_id(struct ena_ring *rx_ring, u16 req_id) 330 { 331 if (likely(req_id < rx_ring->ring_size)) 332 return 0; 333 334 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, 335 "Invalid rx req_id: %hu\n", req_id); 336 337 u64_stats_update_begin(&rx_ring->syncp); 338 rx_ring->rx_stats.bad_req_id++; 339 u64_stats_update_end(&rx_ring->syncp); 340 341 /* Trigger device reset */ 342 rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID; 343 set_bit(ENA_FLAG_TRIGGER_RESET, &rx_ring->adapter->flags); 344 return -EFAULT; 345 } 346 347 /* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors) 348 * @adapter: network interface device structure 349 * @qid: queue index 350 * 351 * Returns 0 on success, negative on failure 352 */ 353 static int ena_setup_rx_resources(struct ena_adapter *adapter, 354 u32 qid) 355 { 356 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 357 struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)]; 358 int size, node, i; 359 360 if (rx_ring->rx_buffer_info) { 361 netif_err(adapter, ifup, adapter->netdev, 362 "rx_buffer_info is not NULL"); 363 return -EEXIST; 364 } 365 366 /* alloc extra element so in rx path 367 * we can always prefetch rx_info + 1 368 */ 369 size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1); 370 node = cpu_to_node(ena_irq->cpu); 371 372 rx_ring->rx_buffer_info = vzalloc_node(size, node); 373 if (!rx_ring->rx_buffer_info) { 374 rx_ring->rx_buffer_info = vzalloc(size); 375 if (!rx_ring->rx_buffer_info) 376 return -ENOMEM; 377 } 378 379 size = sizeof(u16) * rx_ring->ring_size; 380 rx_ring->free_ids = vzalloc_node(size, node); 381 if (!rx_ring->free_ids) { 382 rx_ring->free_ids = vzalloc(size); 383 if (!rx_ring->free_ids) { 384 vfree(rx_ring->rx_buffer_info); 385 rx_ring->rx_buffer_info = NULL; 386 return -ENOMEM; 387 } 388 } 389 390 /* Req id ring for receiving RX pkts out of order */ 391 for (i = 0; i < rx_ring->ring_size; i++) 392 rx_ring->free_ids[i] = i; 393 394 /* Reset rx statistics */ 395 memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats)); 396 397 rx_ring->next_to_clean = 0; 398 rx_ring->next_to_use = 0; 399 rx_ring->cpu = ena_irq->cpu; 400 401 return 0; 402 } 403 404 /* ena_free_rx_resources - Free I/O Rx Resources 405 * @adapter: network interface device structure 406 * @qid: queue index 407 * 408 * Free all receive software resources 409 */ 410 static void ena_free_rx_resources(struct ena_adapter *adapter, 411 u32 qid) 412 { 413 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 414 415 vfree(rx_ring->rx_buffer_info); 416 rx_ring->rx_buffer_info = NULL; 417 418 vfree(rx_ring->free_ids); 419 rx_ring->free_ids = NULL; 420 } 421 422 /* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues 423 * @adapter: board private structure 424 * 425 * Return 0 on success, negative on failure 426 */ 427 static int ena_setup_all_rx_resources(struct ena_adapter *adapter) 428 { 429 int i, rc = 0; 430 431 for (i = 0; i < adapter->num_io_queues; i++) { 432 rc = ena_setup_rx_resources(adapter, i); 433 if (rc) 434 goto err_setup_rx; 435 } 436 437 return 0; 438 439 err_setup_rx: 440 441 netif_err(adapter, ifup, adapter->netdev, 442 "Rx queue %d: allocation failed\n", i); 443 444 /* rewind the index freeing the rings as we go */ 445 while (i--) 446 ena_free_rx_resources(adapter, i); 447 return rc; 448 } 449 450 /* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues 451 * @adapter: board private structure 452 * 453 * Free all receive software resources 454 */ 455 static void ena_free_all_io_rx_resources(struct ena_adapter *adapter) 456 { 457 int i; 458 459 for (i = 0; i < adapter->num_io_queues; i++) 460 ena_free_rx_resources(adapter, i); 461 } 462 463 static int ena_alloc_rx_page(struct ena_ring *rx_ring, 464 struct ena_rx_buffer *rx_info, gfp_t gfp) 465 { 466 struct ena_com_buf *ena_buf; 467 struct page *page; 468 dma_addr_t dma; 469 470 /* if previous allocated page is not used */ 471 if (unlikely(rx_info->page)) 472 return 0; 473 474 page = alloc_page(gfp); 475 if (unlikely(!page)) { 476 u64_stats_update_begin(&rx_ring->syncp); 477 rx_ring->rx_stats.page_alloc_fail++; 478 u64_stats_update_end(&rx_ring->syncp); 479 return -ENOMEM; 480 } 481 482 dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE, 483 DMA_FROM_DEVICE); 484 if (unlikely(dma_mapping_error(rx_ring->dev, dma))) { 485 u64_stats_update_begin(&rx_ring->syncp); 486 rx_ring->rx_stats.dma_mapping_err++; 487 u64_stats_update_end(&rx_ring->syncp); 488 489 __free_page(page); 490 return -EIO; 491 } 492 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 493 "alloc page %p, rx_info %p\n", page, rx_info); 494 495 rx_info->page = page; 496 rx_info->page_offset = 0; 497 ena_buf = &rx_info->ena_buf; 498 ena_buf->paddr = dma; 499 ena_buf->len = ENA_PAGE_SIZE; 500 501 return 0; 502 } 503 504 static void ena_free_rx_page(struct ena_ring *rx_ring, 505 struct ena_rx_buffer *rx_info) 506 { 507 struct page *page = rx_info->page; 508 struct ena_com_buf *ena_buf = &rx_info->ena_buf; 509 510 if (unlikely(!page)) { 511 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 512 "Trying to free unallocated buffer\n"); 513 return; 514 } 515 516 dma_unmap_page(rx_ring->dev, ena_buf->paddr, ENA_PAGE_SIZE, 517 DMA_FROM_DEVICE); 518 519 __free_page(page); 520 rx_info->page = NULL; 521 } 522 523 static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num) 524 { 525 u16 next_to_use, req_id; 526 u32 i; 527 int rc; 528 529 next_to_use = rx_ring->next_to_use; 530 531 for (i = 0; i < num; i++) { 532 struct ena_rx_buffer *rx_info; 533 534 req_id = rx_ring->free_ids[next_to_use]; 535 rc = validate_rx_req_id(rx_ring, req_id); 536 if (unlikely(rc < 0)) 537 break; 538 539 rx_info = &rx_ring->rx_buffer_info[req_id]; 540 541 542 rc = ena_alloc_rx_page(rx_ring, rx_info, 543 GFP_ATOMIC | __GFP_COMP); 544 if (unlikely(rc < 0)) { 545 netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev, 546 "failed to alloc buffer for rx queue %d\n", 547 rx_ring->qid); 548 break; 549 } 550 rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, 551 &rx_info->ena_buf, 552 req_id); 553 if (unlikely(rc)) { 554 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 555 "failed to add buffer for rx queue %d\n", 556 rx_ring->qid); 557 break; 558 } 559 next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, 560 rx_ring->ring_size); 561 } 562 563 if (unlikely(i < num)) { 564 u64_stats_update_begin(&rx_ring->syncp); 565 rx_ring->rx_stats.refil_partial++; 566 u64_stats_update_end(&rx_ring->syncp); 567 netdev_warn(rx_ring->netdev, 568 "refilled rx qid %d with only %d buffers (from %d)\n", 569 rx_ring->qid, i, num); 570 } 571 572 /* ena_com_write_sq_doorbell issues a wmb() */ 573 if (likely(i)) 574 ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); 575 576 rx_ring->next_to_use = next_to_use; 577 578 return i; 579 } 580 581 static void ena_free_rx_bufs(struct ena_adapter *adapter, 582 u32 qid) 583 { 584 struct ena_ring *rx_ring = &adapter->rx_ring[qid]; 585 u32 i; 586 587 for (i = 0; i < rx_ring->ring_size; i++) { 588 struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; 589 590 if (rx_info->page) 591 ena_free_rx_page(rx_ring, rx_info); 592 } 593 } 594 595 /* ena_refill_all_rx_bufs - allocate all queues Rx buffers 596 * @adapter: board private structure 597 */ 598 static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) 599 { 600 struct ena_ring *rx_ring; 601 int i, rc, bufs_num; 602 603 for (i = 0; i < adapter->num_io_queues; i++) { 604 rx_ring = &adapter->rx_ring[i]; 605 bufs_num = rx_ring->ring_size - 1; 606 rc = ena_refill_rx_bufs(rx_ring, bufs_num); 607 608 if (unlikely(rc != bufs_num)) 609 netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev, 610 "refilling Queue %d failed. allocated %d buffers from: %d\n", 611 i, rc, bufs_num); 612 } 613 } 614 615 static void ena_free_all_rx_bufs(struct ena_adapter *adapter) 616 { 617 int i; 618 619 for (i = 0; i < adapter->num_io_queues; i++) 620 ena_free_rx_bufs(adapter, i); 621 } 622 623 static void ena_unmap_tx_skb(struct ena_ring *tx_ring, 624 struct ena_tx_buffer *tx_info) 625 { 626 struct ena_com_buf *ena_buf; 627 u32 cnt; 628 int i; 629 630 ena_buf = tx_info->bufs; 631 cnt = tx_info->num_of_bufs; 632 633 if (unlikely(!cnt)) 634 return; 635 636 if (tx_info->map_linear_data) { 637 dma_unmap_single(tx_ring->dev, 638 dma_unmap_addr(ena_buf, paddr), 639 dma_unmap_len(ena_buf, len), 640 DMA_TO_DEVICE); 641 ena_buf++; 642 cnt--; 643 } 644 645 /* unmap remaining mapped pages */ 646 for (i = 0; i < cnt; i++) { 647 dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr), 648 dma_unmap_len(ena_buf, len), DMA_TO_DEVICE); 649 ena_buf++; 650 } 651 } 652 653 /* ena_free_tx_bufs - Free Tx Buffers per Queue 654 * @tx_ring: TX ring for which buffers be freed 655 */ 656 static void ena_free_tx_bufs(struct ena_ring *tx_ring) 657 { 658 bool print_once = true; 659 u32 i; 660 661 for (i = 0; i < tx_ring->ring_size; i++) { 662 struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; 663 664 if (!tx_info->skb) 665 continue; 666 667 if (print_once) { 668 netdev_notice(tx_ring->netdev, 669 "free uncompleted tx skb qid %d idx 0x%x\n", 670 tx_ring->qid, i); 671 print_once = false; 672 } else { 673 netdev_dbg(tx_ring->netdev, 674 "free uncompleted tx skb qid %d idx 0x%x\n", 675 tx_ring->qid, i); 676 } 677 678 ena_unmap_tx_skb(tx_ring, tx_info); 679 680 dev_kfree_skb_any(tx_info->skb); 681 } 682 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev, 683 tx_ring->qid)); 684 } 685 686 static void ena_free_all_tx_bufs(struct ena_adapter *adapter) 687 { 688 struct ena_ring *tx_ring; 689 int i; 690 691 for (i = 0; i < adapter->num_io_queues; i++) { 692 tx_ring = &adapter->tx_ring[i]; 693 ena_free_tx_bufs(tx_ring); 694 } 695 } 696 697 static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) 698 { 699 u16 ena_qid; 700 int i; 701 702 for (i = 0; i < adapter->num_io_queues; i++) { 703 ena_qid = ENA_IO_TXQ_IDX(i); 704 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 705 } 706 } 707 708 static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) 709 { 710 u16 ena_qid; 711 int i; 712 713 for (i = 0; i < adapter->num_io_queues; i++) { 714 ena_qid = ENA_IO_RXQ_IDX(i); 715 cancel_work_sync(&adapter->ena_napi[i].dim.work); 716 ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); 717 } 718 } 719 720 static void ena_destroy_all_io_queues(struct ena_adapter *adapter) 721 { 722 ena_destroy_all_tx_queues(adapter); 723 ena_destroy_all_rx_queues(adapter); 724 } 725 726 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id) 727 { 728 struct ena_tx_buffer *tx_info = NULL; 729 730 if (likely(req_id < tx_ring->ring_size)) { 731 tx_info = &tx_ring->tx_buffer_info[req_id]; 732 if (likely(tx_info->skb)) 733 return 0; 734 } 735 736 if (tx_info) 737 netif_err(tx_ring->adapter, tx_done, tx_ring->netdev, 738 "tx_info doesn't have valid skb\n"); 739 else 740 netif_err(tx_ring->adapter, tx_done, tx_ring->netdev, 741 "Invalid req_id: %hu\n", req_id); 742 743 u64_stats_update_begin(&tx_ring->syncp); 744 tx_ring->tx_stats.bad_req_id++; 745 u64_stats_update_end(&tx_ring->syncp); 746 747 /* Trigger device reset */ 748 tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID; 749 set_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags); 750 return -EFAULT; 751 } 752 753 static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget) 754 { 755 struct netdev_queue *txq; 756 bool above_thresh; 757 u32 tx_bytes = 0; 758 u32 total_done = 0; 759 u16 next_to_clean; 760 u16 req_id; 761 int tx_pkts = 0; 762 int rc; 763 764 next_to_clean = tx_ring->next_to_clean; 765 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid); 766 767 while (tx_pkts < budget) { 768 struct ena_tx_buffer *tx_info; 769 struct sk_buff *skb; 770 771 rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, 772 &req_id); 773 if (rc) 774 break; 775 776 rc = validate_tx_req_id(tx_ring, req_id); 777 if (rc) 778 break; 779 780 tx_info = &tx_ring->tx_buffer_info[req_id]; 781 skb = tx_info->skb; 782 783 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */ 784 prefetch(&skb->end); 785 786 tx_info->skb = NULL; 787 tx_info->last_jiffies = 0; 788 789 ena_unmap_tx_skb(tx_ring, tx_info); 790 791 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 792 "tx_poll: q %d skb %p completed\n", tx_ring->qid, 793 skb); 794 795 tx_bytes += skb->len; 796 dev_kfree_skb(skb); 797 tx_pkts++; 798 total_done += tx_info->tx_descs; 799 800 tx_ring->free_ids[next_to_clean] = req_id; 801 next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, 802 tx_ring->ring_size); 803 } 804 805 tx_ring->next_to_clean = next_to_clean; 806 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done); 807 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq); 808 809 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 810 811 netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev, 812 "tx_poll: q %d done. total pkts: %d\n", 813 tx_ring->qid, tx_pkts); 814 815 /* need to make the rings circular update visible to 816 * ena_start_xmit() before checking for netif_queue_stopped(). 817 */ 818 smp_mb(); 819 820 above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 821 ENA_TX_WAKEUP_THRESH); 822 if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) { 823 __netif_tx_lock(txq, smp_processor_id()); 824 above_thresh = 825 ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 826 ENA_TX_WAKEUP_THRESH); 827 if (netif_tx_queue_stopped(txq) && above_thresh && 828 test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) { 829 netif_tx_wake_queue(txq); 830 u64_stats_update_begin(&tx_ring->syncp); 831 tx_ring->tx_stats.queue_wakeup++; 832 u64_stats_update_end(&tx_ring->syncp); 833 } 834 __netif_tx_unlock(txq); 835 } 836 837 return tx_pkts; 838 } 839 840 static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, bool frags) 841 { 842 struct sk_buff *skb; 843 844 if (frags) 845 skb = napi_get_frags(rx_ring->napi); 846 else 847 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 848 rx_ring->rx_copybreak); 849 850 if (unlikely(!skb)) { 851 u64_stats_update_begin(&rx_ring->syncp); 852 rx_ring->rx_stats.skb_alloc_fail++; 853 u64_stats_update_end(&rx_ring->syncp); 854 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 855 "Failed to allocate skb. frags: %d\n", frags); 856 return NULL; 857 } 858 859 return skb; 860 } 861 862 static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring, 863 struct ena_com_rx_buf_info *ena_bufs, 864 u32 descs, 865 u16 *next_to_clean) 866 { 867 struct sk_buff *skb; 868 struct ena_rx_buffer *rx_info; 869 u16 len, req_id, buf = 0; 870 void *va; 871 872 len = ena_bufs[buf].len; 873 req_id = ena_bufs[buf].req_id; 874 rx_info = &rx_ring->rx_buffer_info[req_id]; 875 876 if (unlikely(!rx_info->page)) { 877 netif_err(rx_ring->adapter, rx_err, rx_ring->netdev, 878 "Page is NULL\n"); 879 return NULL; 880 } 881 882 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 883 "rx_info %p page %p\n", 884 rx_info, rx_info->page); 885 886 /* save virt address of first buffer */ 887 va = page_address(rx_info->page) + rx_info->page_offset; 888 prefetch(va + NET_IP_ALIGN); 889 890 if (len <= rx_ring->rx_copybreak) { 891 skb = ena_alloc_skb(rx_ring, false); 892 if (unlikely(!skb)) 893 return NULL; 894 895 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 896 "rx allocated small packet. len %d. data_len %d\n", 897 skb->len, skb->data_len); 898 899 /* sync this buffer for CPU use */ 900 dma_sync_single_for_cpu(rx_ring->dev, 901 dma_unmap_addr(&rx_info->ena_buf, paddr), 902 len, 903 DMA_FROM_DEVICE); 904 skb_copy_to_linear_data(skb, va, len); 905 dma_sync_single_for_device(rx_ring->dev, 906 dma_unmap_addr(&rx_info->ena_buf, paddr), 907 len, 908 DMA_FROM_DEVICE); 909 910 skb_put(skb, len); 911 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 912 rx_ring->free_ids[*next_to_clean] = req_id; 913 *next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs, 914 rx_ring->ring_size); 915 return skb; 916 } 917 918 skb = ena_alloc_skb(rx_ring, true); 919 if (unlikely(!skb)) 920 return NULL; 921 922 do { 923 dma_unmap_page(rx_ring->dev, 924 dma_unmap_addr(&rx_info->ena_buf, paddr), 925 ENA_PAGE_SIZE, DMA_FROM_DEVICE); 926 927 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page, 928 rx_info->page_offset, len, ENA_PAGE_SIZE); 929 930 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 931 "rx skb updated. len %d. data_len %d\n", 932 skb->len, skb->data_len); 933 934 rx_info->page = NULL; 935 936 rx_ring->free_ids[*next_to_clean] = req_id; 937 *next_to_clean = 938 ENA_RX_RING_IDX_NEXT(*next_to_clean, 939 rx_ring->ring_size); 940 if (likely(--descs == 0)) 941 break; 942 943 buf++; 944 len = ena_bufs[buf].len; 945 req_id = ena_bufs[buf].req_id; 946 rx_info = &rx_ring->rx_buffer_info[req_id]; 947 } while (1); 948 949 return skb; 950 } 951 952 /* ena_rx_checksum - indicate in skb if hw indicated a good cksum 953 * @adapter: structure containing adapter specific data 954 * @ena_rx_ctx: received packet context/metadata 955 * @skb: skb currently being received and modified 956 */ 957 static void ena_rx_checksum(struct ena_ring *rx_ring, 958 struct ena_com_rx_ctx *ena_rx_ctx, 959 struct sk_buff *skb) 960 { 961 /* Rx csum disabled */ 962 if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) { 963 skb->ip_summed = CHECKSUM_NONE; 964 return; 965 } 966 967 /* For fragmented packets the checksum isn't valid */ 968 if (ena_rx_ctx->frag) { 969 skb->ip_summed = CHECKSUM_NONE; 970 return; 971 } 972 973 /* if IP and error */ 974 if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) && 975 (ena_rx_ctx->l3_csum_err))) { 976 /* ipv4 checksum error */ 977 skb->ip_summed = CHECKSUM_NONE; 978 u64_stats_update_begin(&rx_ring->syncp); 979 rx_ring->rx_stats.bad_csum++; 980 u64_stats_update_end(&rx_ring->syncp); 981 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 982 "RX IPv4 header checksum error\n"); 983 return; 984 } 985 986 /* if TCP/UDP */ 987 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 988 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) { 989 if (unlikely(ena_rx_ctx->l4_csum_err)) { 990 /* TCP/UDP checksum error */ 991 u64_stats_update_begin(&rx_ring->syncp); 992 rx_ring->rx_stats.bad_csum++; 993 u64_stats_update_end(&rx_ring->syncp); 994 netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev, 995 "RX L4 checksum error\n"); 996 skb->ip_summed = CHECKSUM_NONE; 997 return; 998 } 999 1000 if (likely(ena_rx_ctx->l4_csum_checked)) { 1001 skb->ip_summed = CHECKSUM_UNNECESSARY; 1002 u64_stats_update_begin(&rx_ring->syncp); 1003 rx_ring->rx_stats.csum_good++; 1004 u64_stats_update_end(&rx_ring->syncp); 1005 } else { 1006 u64_stats_update_begin(&rx_ring->syncp); 1007 rx_ring->rx_stats.csum_unchecked++; 1008 u64_stats_update_end(&rx_ring->syncp); 1009 skb->ip_summed = CHECKSUM_NONE; 1010 } 1011 } else { 1012 skb->ip_summed = CHECKSUM_NONE; 1013 return; 1014 } 1015 1016 } 1017 1018 static void ena_set_rx_hash(struct ena_ring *rx_ring, 1019 struct ena_com_rx_ctx *ena_rx_ctx, 1020 struct sk_buff *skb) 1021 { 1022 enum pkt_hash_types hash_type; 1023 1024 if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) { 1025 if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || 1026 (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) 1027 1028 hash_type = PKT_HASH_TYPE_L4; 1029 else 1030 hash_type = PKT_HASH_TYPE_NONE; 1031 1032 /* Override hash type if the packet is fragmented */ 1033 if (ena_rx_ctx->frag) 1034 hash_type = PKT_HASH_TYPE_NONE; 1035 1036 skb_set_hash(skb, ena_rx_ctx->hash, hash_type); 1037 } 1038 } 1039 1040 /* ena_clean_rx_irq - Cleanup RX irq 1041 * @rx_ring: RX ring to clean 1042 * @napi: napi handler 1043 * @budget: how many packets driver is allowed to clean 1044 * 1045 * Returns the number of cleaned buffers. 1046 */ 1047 static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi, 1048 u32 budget) 1049 { 1050 u16 next_to_clean = rx_ring->next_to_clean; 1051 u32 res_budget, work_done; 1052 1053 struct ena_com_rx_ctx ena_rx_ctx; 1054 struct ena_adapter *adapter; 1055 struct sk_buff *skb; 1056 int refill_required; 1057 int refill_threshold; 1058 int rc = 0; 1059 int total_len = 0; 1060 int rx_copybreak_pkt = 0; 1061 int i; 1062 1063 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1064 "%s qid %d\n", __func__, rx_ring->qid); 1065 res_budget = budget; 1066 1067 do { 1068 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; 1069 ena_rx_ctx.max_bufs = rx_ring->sgl_size; 1070 ena_rx_ctx.descs = 0; 1071 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq, 1072 rx_ring->ena_com_io_sq, 1073 &ena_rx_ctx); 1074 if (unlikely(rc)) 1075 goto error; 1076 1077 if (unlikely(ena_rx_ctx.descs == 0)) 1078 break; 1079 1080 netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev, 1081 "rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n", 1082 rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, 1083 ena_rx_ctx.l4_proto, ena_rx_ctx.hash); 1084 1085 /* allocate skb and fill it */ 1086 skb = ena_rx_skb(rx_ring, rx_ring->ena_bufs, ena_rx_ctx.descs, 1087 &next_to_clean); 1088 1089 /* exit if we failed to retrieve a buffer */ 1090 if (unlikely(!skb)) { 1091 for (i = 0; i < ena_rx_ctx.descs; i++) { 1092 rx_ring->free_ids[next_to_clean] = 1093 rx_ring->ena_bufs[i].req_id; 1094 next_to_clean = 1095 ENA_RX_RING_IDX_NEXT(next_to_clean, 1096 rx_ring->ring_size); 1097 } 1098 break; 1099 } 1100 1101 ena_rx_checksum(rx_ring, &ena_rx_ctx, skb); 1102 1103 ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb); 1104 1105 skb_record_rx_queue(skb, rx_ring->qid); 1106 1107 if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) { 1108 total_len += rx_ring->ena_bufs[0].len; 1109 rx_copybreak_pkt++; 1110 napi_gro_receive(napi, skb); 1111 } else { 1112 total_len += skb->len; 1113 napi_gro_frags(napi); 1114 } 1115 1116 res_budget--; 1117 } while (likely(res_budget)); 1118 1119 work_done = budget - res_budget; 1120 rx_ring->per_napi_packets += work_done; 1121 u64_stats_update_begin(&rx_ring->syncp); 1122 rx_ring->rx_stats.bytes += total_len; 1123 rx_ring->rx_stats.cnt += work_done; 1124 rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt; 1125 u64_stats_update_end(&rx_ring->syncp); 1126 1127 rx_ring->next_to_clean = next_to_clean; 1128 1129 refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq); 1130 refill_threshold = 1131 min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER, 1132 ENA_RX_REFILL_THRESH_PACKET); 1133 1134 /* Optimization, try to batch new rx buffers */ 1135 if (refill_required > refill_threshold) { 1136 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); 1137 ena_refill_rx_bufs(rx_ring, refill_required); 1138 } 1139 1140 return work_done; 1141 1142 error: 1143 adapter = netdev_priv(rx_ring->netdev); 1144 1145 u64_stats_update_begin(&rx_ring->syncp); 1146 rx_ring->rx_stats.bad_desc_num++; 1147 u64_stats_update_end(&rx_ring->syncp); 1148 1149 /* Too many desc from the device. Trigger reset */ 1150 adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS; 1151 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 1152 1153 return 0; 1154 } 1155 1156 static void ena_dim_work(struct work_struct *w) 1157 { 1158 struct dim *dim = container_of(w, struct dim, work); 1159 struct dim_cq_moder cur_moder = 1160 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 1161 struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim); 1162 1163 ena_napi->rx_ring->smoothed_interval = cur_moder.usec; 1164 dim->state = DIM_START_MEASURE; 1165 } 1166 1167 static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi) 1168 { 1169 struct dim_sample dim_sample; 1170 struct ena_ring *rx_ring = ena_napi->rx_ring; 1171 1172 if (!rx_ring->per_napi_packets) 1173 return; 1174 1175 rx_ring->non_empty_napi_events++; 1176 1177 dim_update_sample(rx_ring->non_empty_napi_events, 1178 rx_ring->rx_stats.cnt, 1179 rx_ring->rx_stats.bytes, 1180 &dim_sample); 1181 1182 net_dim(&ena_napi->dim, dim_sample); 1183 1184 rx_ring->per_napi_packets = 0; 1185 } 1186 1187 static void ena_unmask_interrupt(struct ena_ring *tx_ring, 1188 struct ena_ring *rx_ring) 1189 { 1190 struct ena_eth_io_intr_reg intr_reg; 1191 u32 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ? 1192 rx_ring->smoothed_interval : 1193 ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev); 1194 1195 /* Update intr register: rx intr delay, 1196 * tx intr delay and interrupt unmask 1197 */ 1198 ena_com_update_intr_reg(&intr_reg, 1199 rx_interval, 1200 tx_ring->smoothed_interval, 1201 true); 1202 1203 /* It is a shared MSI-X. 1204 * Tx and Rx CQ have pointer to it. 1205 * So we use one of them to reach the intr reg 1206 */ 1207 ena_com_unmask_intr(rx_ring->ena_com_io_cq, &intr_reg); 1208 } 1209 1210 static void ena_update_ring_numa_node(struct ena_ring *tx_ring, 1211 struct ena_ring *rx_ring) 1212 { 1213 int cpu = get_cpu(); 1214 int numa_node; 1215 1216 /* Check only one ring since the 2 rings are running on the same cpu */ 1217 if (likely(tx_ring->cpu == cpu)) 1218 goto out; 1219 1220 numa_node = cpu_to_node(cpu); 1221 put_cpu(); 1222 1223 if (numa_node != NUMA_NO_NODE) { 1224 ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node); 1225 ena_com_update_numa_node(rx_ring->ena_com_io_cq, numa_node); 1226 } 1227 1228 tx_ring->cpu = cpu; 1229 rx_ring->cpu = cpu; 1230 1231 return; 1232 out: 1233 put_cpu(); 1234 } 1235 1236 static int ena_io_poll(struct napi_struct *napi, int budget) 1237 { 1238 struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi); 1239 struct ena_ring *tx_ring, *rx_ring; 1240 1241 int tx_work_done; 1242 int rx_work_done = 0; 1243 int tx_budget; 1244 int napi_comp_call = 0; 1245 int ret; 1246 1247 tx_ring = ena_napi->tx_ring; 1248 rx_ring = ena_napi->rx_ring; 1249 1250 tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER; 1251 1252 if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1253 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) { 1254 napi_complete_done(napi, 0); 1255 return 0; 1256 } 1257 1258 tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget); 1259 /* On netpoll the budget is zero and the handler should only clean the 1260 * tx completions. 1261 */ 1262 if (likely(budget)) 1263 rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget); 1264 1265 /* If the device is about to reset or down, avoid unmask 1266 * the interrupt and return 0 so NAPI won't reschedule 1267 */ 1268 if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) || 1269 test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) { 1270 napi_complete_done(napi, 0); 1271 ret = 0; 1272 1273 } else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) { 1274 napi_comp_call = 1; 1275 1276 /* Update numa and unmask the interrupt only when schedule 1277 * from the interrupt context (vs from sk_busy_loop) 1278 */ 1279 if (napi_complete_done(napi, rx_work_done)) { 1280 /* We apply adaptive moderation on Rx path only. 1281 * Tx uses static interrupt moderation. 1282 */ 1283 if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev)) 1284 ena_adjust_adaptive_rx_intr_moderation(ena_napi); 1285 1286 ena_unmask_interrupt(tx_ring, rx_ring); 1287 } 1288 1289 ena_update_ring_numa_node(tx_ring, rx_ring); 1290 1291 ret = rx_work_done; 1292 } else { 1293 ret = budget; 1294 } 1295 1296 u64_stats_update_begin(&tx_ring->syncp); 1297 tx_ring->tx_stats.napi_comp += napi_comp_call; 1298 tx_ring->tx_stats.tx_poll++; 1299 u64_stats_update_end(&tx_ring->syncp); 1300 1301 return ret; 1302 } 1303 1304 static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data) 1305 { 1306 struct ena_adapter *adapter = (struct ena_adapter *)data; 1307 1308 ena_com_admin_q_comp_intr_handler(adapter->ena_dev); 1309 1310 /* Don't call the aenq handler before probe is done */ 1311 if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))) 1312 ena_com_aenq_intr_handler(adapter->ena_dev, data); 1313 1314 return IRQ_HANDLED; 1315 } 1316 1317 /* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx 1318 * @irq: interrupt number 1319 * @data: pointer to a network interface private napi device structure 1320 */ 1321 static irqreturn_t ena_intr_msix_io(int irq, void *data) 1322 { 1323 struct ena_napi *ena_napi = data; 1324 1325 ena_napi->tx_ring->first_interrupt = true; 1326 ena_napi->rx_ring->first_interrupt = true; 1327 1328 napi_schedule_irqoff(&ena_napi->napi); 1329 1330 return IRQ_HANDLED; 1331 } 1332 1333 /* Reserve a single MSI-X vector for management (admin + aenq). 1334 * plus reserve one vector for each potential io queue. 1335 * the number of potential io queues is the minimum of what the device 1336 * supports and the number of vCPUs. 1337 */ 1338 static int ena_enable_msix(struct ena_adapter *adapter) 1339 { 1340 int msix_vecs, irq_cnt; 1341 1342 if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1343 netif_err(adapter, probe, adapter->netdev, 1344 "Error, MSI-X is already enabled\n"); 1345 return -EPERM; 1346 } 1347 1348 /* Reserved the max msix vectors we might need */ 1349 msix_vecs = ENA_MAX_MSIX_VEC(adapter->num_io_queues); 1350 netif_dbg(adapter, probe, adapter->netdev, 1351 "trying to enable MSI-X, vectors %d\n", msix_vecs); 1352 1353 irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC, 1354 msix_vecs, PCI_IRQ_MSIX); 1355 1356 if (irq_cnt < 0) { 1357 netif_err(adapter, probe, adapter->netdev, 1358 "Failed to enable MSI-X. irq_cnt %d\n", irq_cnt); 1359 return -ENOSPC; 1360 } 1361 1362 if (irq_cnt != msix_vecs) { 1363 netif_notice(adapter, probe, adapter->netdev, 1364 "enable only %d MSI-X (out of %d), reduce the number of queues\n", 1365 irq_cnt, msix_vecs); 1366 adapter->num_io_queues = irq_cnt - ENA_ADMIN_MSIX_VEC; 1367 } 1368 1369 if (ena_init_rx_cpu_rmap(adapter)) 1370 netif_warn(adapter, probe, adapter->netdev, 1371 "Failed to map IRQs to CPUs\n"); 1372 1373 adapter->msix_vecs = irq_cnt; 1374 set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags); 1375 1376 return 0; 1377 } 1378 1379 static void ena_setup_mgmnt_intr(struct ena_adapter *adapter) 1380 { 1381 u32 cpu; 1382 1383 snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name, 1384 ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s", 1385 pci_name(adapter->pdev)); 1386 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = 1387 ena_intr_msix_mgmnt; 1388 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter; 1389 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector = 1390 pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX); 1391 cpu = cpumask_first(cpu_online_mask); 1392 adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu; 1393 cpumask_set_cpu(cpu, 1394 &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask); 1395 } 1396 1397 static void ena_setup_io_intr(struct ena_adapter *adapter) 1398 { 1399 struct net_device *netdev; 1400 int irq_idx, i, cpu; 1401 1402 netdev = adapter->netdev; 1403 1404 for (i = 0; i < adapter->num_io_queues; i++) { 1405 irq_idx = ENA_IO_IRQ_IDX(i); 1406 cpu = i % num_online_cpus(); 1407 1408 snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, 1409 "%s-Tx-Rx-%d", netdev->name, i); 1410 adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io; 1411 adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i]; 1412 adapter->irq_tbl[irq_idx].vector = 1413 pci_irq_vector(adapter->pdev, irq_idx); 1414 adapter->irq_tbl[irq_idx].cpu = cpu; 1415 1416 cpumask_set_cpu(cpu, 1417 &adapter->irq_tbl[irq_idx].affinity_hint_mask); 1418 } 1419 } 1420 1421 static int ena_request_mgmnt_irq(struct ena_adapter *adapter) 1422 { 1423 unsigned long flags = 0; 1424 struct ena_irq *irq; 1425 int rc; 1426 1427 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1428 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1429 irq->data); 1430 if (rc) { 1431 netif_err(adapter, probe, adapter->netdev, 1432 "failed to request admin irq\n"); 1433 return rc; 1434 } 1435 1436 netif_dbg(adapter, probe, adapter->netdev, 1437 "set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n", 1438 irq->affinity_hint_mask.bits[0], irq->vector); 1439 1440 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1441 1442 return rc; 1443 } 1444 1445 static int ena_request_io_irq(struct ena_adapter *adapter) 1446 { 1447 unsigned long flags = 0; 1448 struct ena_irq *irq; 1449 int rc = 0, i, k; 1450 1451 if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) { 1452 netif_err(adapter, ifup, adapter->netdev, 1453 "Failed to request I/O IRQ: MSI-X is not enabled\n"); 1454 return -EINVAL; 1455 } 1456 1457 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) { 1458 irq = &adapter->irq_tbl[i]; 1459 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 1460 irq->data); 1461 if (rc) { 1462 netif_err(adapter, ifup, adapter->netdev, 1463 "Failed to request I/O IRQ. index %d rc %d\n", 1464 i, rc); 1465 goto err; 1466 } 1467 1468 netif_dbg(adapter, ifup, adapter->netdev, 1469 "set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n", 1470 i, irq->affinity_hint_mask.bits[0], irq->vector); 1471 1472 irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask); 1473 } 1474 1475 return rc; 1476 1477 err: 1478 for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) { 1479 irq = &adapter->irq_tbl[k]; 1480 free_irq(irq->vector, irq->data); 1481 } 1482 1483 return rc; 1484 } 1485 1486 static void ena_free_mgmnt_irq(struct ena_adapter *adapter) 1487 { 1488 struct ena_irq *irq; 1489 1490 irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX]; 1491 synchronize_irq(irq->vector); 1492 irq_set_affinity_hint(irq->vector, NULL); 1493 free_irq(irq->vector, irq->data); 1494 } 1495 1496 static void ena_free_io_irq(struct ena_adapter *adapter) 1497 { 1498 struct ena_irq *irq; 1499 int i; 1500 1501 #ifdef CONFIG_RFS_ACCEL 1502 if (adapter->msix_vecs >= 1) { 1503 free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap); 1504 adapter->netdev->rx_cpu_rmap = NULL; 1505 } 1506 #endif /* CONFIG_RFS_ACCEL */ 1507 1508 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) { 1509 irq = &adapter->irq_tbl[i]; 1510 irq_set_affinity_hint(irq->vector, NULL); 1511 free_irq(irq->vector, irq->data); 1512 } 1513 } 1514 1515 static void ena_disable_msix(struct ena_adapter *adapter) 1516 { 1517 if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) 1518 pci_free_irq_vectors(adapter->pdev); 1519 } 1520 1521 static void ena_disable_io_intr_sync(struct ena_adapter *adapter) 1522 { 1523 int i; 1524 1525 if (!netif_running(adapter->netdev)) 1526 return; 1527 1528 for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) 1529 synchronize_irq(adapter->irq_tbl[i].vector); 1530 } 1531 1532 static void ena_del_napi(struct ena_adapter *adapter) 1533 { 1534 int i; 1535 1536 for (i = 0; i < adapter->num_io_queues; i++) 1537 netif_napi_del(&adapter->ena_napi[i].napi); 1538 } 1539 1540 static void ena_init_napi(struct ena_adapter *adapter) 1541 { 1542 struct ena_napi *napi; 1543 int i; 1544 1545 for (i = 0; i < adapter->num_io_queues; i++) { 1546 napi = &adapter->ena_napi[i]; 1547 1548 netif_napi_add(adapter->netdev, 1549 &adapter->ena_napi[i].napi, 1550 ena_io_poll, 1551 ENA_NAPI_BUDGET); 1552 napi->rx_ring = &adapter->rx_ring[i]; 1553 napi->tx_ring = &adapter->tx_ring[i]; 1554 napi->qid = i; 1555 } 1556 } 1557 1558 static void ena_napi_disable_all(struct ena_adapter *adapter) 1559 { 1560 int i; 1561 1562 for (i = 0; i < adapter->num_io_queues; i++) 1563 napi_disable(&adapter->ena_napi[i].napi); 1564 } 1565 1566 static void ena_napi_enable_all(struct ena_adapter *adapter) 1567 { 1568 int i; 1569 1570 for (i = 0; i < adapter->num_io_queues; i++) 1571 napi_enable(&adapter->ena_napi[i].napi); 1572 } 1573 1574 /* Configure the Rx forwarding */ 1575 static int ena_rss_configure(struct ena_adapter *adapter) 1576 { 1577 struct ena_com_dev *ena_dev = adapter->ena_dev; 1578 int rc; 1579 1580 /* In case the RSS table wasn't initialized by probe */ 1581 if (!ena_dev->rss.tbl_log_size) { 1582 rc = ena_rss_init_default(adapter); 1583 if (rc && (rc != -EOPNOTSUPP)) { 1584 netif_err(adapter, ifup, adapter->netdev, 1585 "Failed to init RSS rc: %d\n", rc); 1586 return rc; 1587 } 1588 } 1589 1590 /* Set indirect table */ 1591 rc = ena_com_indirect_table_set(ena_dev); 1592 if (unlikely(rc && rc != -EOPNOTSUPP)) 1593 return rc; 1594 1595 /* Configure hash function (if supported) */ 1596 rc = ena_com_set_hash_function(ena_dev); 1597 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1598 return rc; 1599 1600 /* Configure hash inputs (if supported) */ 1601 rc = ena_com_set_hash_ctrl(ena_dev); 1602 if (unlikely(rc && (rc != -EOPNOTSUPP))) 1603 return rc; 1604 1605 return 0; 1606 } 1607 1608 static int ena_up_complete(struct ena_adapter *adapter) 1609 { 1610 int rc; 1611 1612 rc = ena_rss_configure(adapter); 1613 if (rc) 1614 return rc; 1615 1616 ena_change_mtu(adapter->netdev, adapter->netdev->mtu); 1617 1618 ena_refill_all_rx_bufs(adapter); 1619 1620 /* enable transmits */ 1621 netif_tx_start_all_queues(adapter->netdev); 1622 1623 ena_napi_enable_all(adapter); 1624 1625 return 0; 1626 } 1627 1628 static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid) 1629 { 1630 struct ena_com_create_io_ctx ctx; 1631 struct ena_com_dev *ena_dev; 1632 struct ena_ring *tx_ring; 1633 u32 msix_vector; 1634 u16 ena_qid; 1635 int rc; 1636 1637 ena_dev = adapter->ena_dev; 1638 1639 tx_ring = &adapter->tx_ring[qid]; 1640 msix_vector = ENA_IO_IRQ_IDX(qid); 1641 ena_qid = ENA_IO_TXQ_IDX(qid); 1642 1643 memset(&ctx, 0x0, sizeof(ctx)); 1644 1645 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; 1646 ctx.qid = ena_qid; 1647 ctx.mem_queue_type = ena_dev->tx_mem_queue_type; 1648 ctx.msix_vector = msix_vector; 1649 ctx.queue_size = tx_ring->ring_size; 1650 ctx.numa_node = cpu_to_node(tx_ring->cpu); 1651 1652 rc = ena_com_create_io_queue(ena_dev, &ctx); 1653 if (rc) { 1654 netif_err(adapter, ifup, adapter->netdev, 1655 "Failed to create I/O TX queue num %d rc: %d\n", 1656 qid, rc); 1657 return rc; 1658 } 1659 1660 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1661 &tx_ring->ena_com_io_sq, 1662 &tx_ring->ena_com_io_cq); 1663 if (rc) { 1664 netif_err(adapter, ifup, adapter->netdev, 1665 "Failed to get TX queue handlers. TX queue num %d rc: %d\n", 1666 qid, rc); 1667 ena_com_destroy_io_queue(ena_dev, ena_qid); 1668 return rc; 1669 } 1670 1671 ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node); 1672 return rc; 1673 } 1674 1675 static int ena_create_all_io_tx_queues(struct ena_adapter *adapter) 1676 { 1677 struct ena_com_dev *ena_dev = adapter->ena_dev; 1678 int rc, i; 1679 1680 for (i = 0; i < adapter->num_io_queues; i++) { 1681 rc = ena_create_io_tx_queue(adapter, i); 1682 if (rc) 1683 goto create_err; 1684 } 1685 1686 return 0; 1687 1688 create_err: 1689 while (i--) 1690 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); 1691 1692 return rc; 1693 } 1694 1695 static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid) 1696 { 1697 struct ena_com_dev *ena_dev; 1698 struct ena_com_create_io_ctx ctx; 1699 struct ena_ring *rx_ring; 1700 u32 msix_vector; 1701 u16 ena_qid; 1702 int rc; 1703 1704 ena_dev = adapter->ena_dev; 1705 1706 rx_ring = &adapter->rx_ring[qid]; 1707 msix_vector = ENA_IO_IRQ_IDX(qid); 1708 ena_qid = ENA_IO_RXQ_IDX(qid); 1709 1710 memset(&ctx, 0x0, sizeof(ctx)); 1711 1712 ctx.qid = ena_qid; 1713 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; 1714 ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 1715 ctx.msix_vector = msix_vector; 1716 ctx.queue_size = rx_ring->ring_size; 1717 ctx.numa_node = cpu_to_node(rx_ring->cpu); 1718 1719 rc = ena_com_create_io_queue(ena_dev, &ctx); 1720 if (rc) { 1721 netif_err(adapter, ifup, adapter->netdev, 1722 "Failed to create I/O RX queue num %d rc: %d\n", 1723 qid, rc); 1724 return rc; 1725 } 1726 1727 rc = ena_com_get_io_handlers(ena_dev, ena_qid, 1728 &rx_ring->ena_com_io_sq, 1729 &rx_ring->ena_com_io_cq); 1730 if (rc) { 1731 netif_err(adapter, ifup, adapter->netdev, 1732 "Failed to get RX queue handlers. RX queue num %d rc: %d\n", 1733 qid, rc); 1734 ena_com_destroy_io_queue(ena_dev, ena_qid); 1735 return rc; 1736 } 1737 1738 ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node); 1739 1740 return rc; 1741 } 1742 1743 static int ena_create_all_io_rx_queues(struct ena_adapter *adapter) 1744 { 1745 struct ena_com_dev *ena_dev = adapter->ena_dev; 1746 int rc, i; 1747 1748 for (i = 0; i < adapter->num_io_queues; i++) { 1749 rc = ena_create_io_rx_queue(adapter, i); 1750 if (rc) 1751 goto create_err; 1752 INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work); 1753 } 1754 1755 return 0; 1756 1757 create_err: 1758 while (i--) { 1759 cancel_work_sync(&adapter->ena_napi[i].dim.work); 1760 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); 1761 } 1762 1763 return rc; 1764 } 1765 1766 static void set_io_rings_size(struct ena_adapter *adapter, 1767 int new_tx_size, int new_rx_size) 1768 { 1769 int i; 1770 1771 for (i = 0; i < adapter->num_io_queues; i++) { 1772 adapter->tx_ring[i].ring_size = new_tx_size; 1773 adapter->rx_ring[i].ring_size = new_rx_size; 1774 } 1775 } 1776 1777 /* This function allows queue allocation to backoff when the system is 1778 * low on memory. If there is not enough memory to allocate io queues 1779 * the driver will try to allocate smaller queues. 1780 * 1781 * The backoff algorithm is as follows: 1782 * 1. Try to allocate TX and RX and if successful. 1783 * 1.1. return success 1784 * 1785 * 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same). 1786 * 1787 * 3. If TX or RX is smaller than 256 1788 * 3.1. return failure. 1789 * 4. else 1790 * 4.1. go back to 1. 1791 */ 1792 static int create_queues_with_size_backoff(struct ena_adapter *adapter) 1793 { 1794 int rc, cur_rx_ring_size, cur_tx_ring_size; 1795 int new_rx_ring_size, new_tx_ring_size; 1796 1797 /* current queue sizes might be set to smaller than the requested 1798 * ones due to past queue allocation failures. 1799 */ 1800 set_io_rings_size(adapter, adapter->requested_tx_ring_size, 1801 adapter->requested_rx_ring_size); 1802 1803 while (1) { 1804 rc = ena_setup_all_tx_resources(adapter); 1805 if (rc) 1806 goto err_setup_tx; 1807 1808 rc = ena_create_all_io_tx_queues(adapter); 1809 if (rc) 1810 goto err_create_tx_queues; 1811 1812 rc = ena_setup_all_rx_resources(adapter); 1813 if (rc) 1814 goto err_setup_rx; 1815 1816 rc = ena_create_all_io_rx_queues(adapter); 1817 if (rc) 1818 goto err_create_rx_queues; 1819 1820 return 0; 1821 1822 err_create_rx_queues: 1823 ena_free_all_io_rx_resources(adapter); 1824 err_setup_rx: 1825 ena_destroy_all_tx_queues(adapter); 1826 err_create_tx_queues: 1827 ena_free_all_io_tx_resources(adapter); 1828 err_setup_tx: 1829 if (rc != -ENOMEM) { 1830 netif_err(adapter, ifup, adapter->netdev, 1831 "Queue creation failed with error code %d\n", 1832 rc); 1833 return rc; 1834 } 1835 1836 cur_tx_ring_size = adapter->tx_ring[0].ring_size; 1837 cur_rx_ring_size = adapter->rx_ring[0].ring_size; 1838 1839 netif_err(adapter, ifup, adapter->netdev, 1840 "Not enough memory to create queues with sizes TX=%d, RX=%d\n", 1841 cur_tx_ring_size, cur_rx_ring_size); 1842 1843 new_tx_ring_size = cur_tx_ring_size; 1844 new_rx_ring_size = cur_rx_ring_size; 1845 1846 /* Decrease the size of the larger queue, or 1847 * decrease both if they are the same size. 1848 */ 1849 if (cur_rx_ring_size <= cur_tx_ring_size) 1850 new_tx_ring_size = cur_tx_ring_size / 2; 1851 if (cur_rx_ring_size >= cur_tx_ring_size) 1852 new_rx_ring_size = cur_rx_ring_size / 2; 1853 1854 if (new_tx_ring_size < ENA_MIN_RING_SIZE || 1855 new_rx_ring_size < ENA_MIN_RING_SIZE) { 1856 netif_err(adapter, ifup, adapter->netdev, 1857 "Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n", 1858 ENA_MIN_RING_SIZE); 1859 return rc; 1860 } 1861 1862 netif_err(adapter, ifup, adapter->netdev, 1863 "Retrying queue creation with sizes TX=%d, RX=%d\n", 1864 new_tx_ring_size, 1865 new_rx_ring_size); 1866 1867 set_io_rings_size(adapter, new_tx_ring_size, 1868 new_rx_ring_size); 1869 } 1870 } 1871 1872 static int ena_up(struct ena_adapter *adapter) 1873 { 1874 int rc, i; 1875 1876 netdev_dbg(adapter->netdev, "%s\n", __func__); 1877 1878 ena_setup_io_intr(adapter); 1879 1880 /* napi poll functions should be initialized before running 1881 * request_irq(), to handle a rare condition where there is a pending 1882 * interrupt, causing the ISR to fire immediately while the poll 1883 * function wasn't set yet, causing a null dereference 1884 */ 1885 ena_init_napi(adapter); 1886 1887 rc = ena_request_io_irq(adapter); 1888 if (rc) 1889 goto err_req_irq; 1890 1891 rc = create_queues_with_size_backoff(adapter); 1892 if (rc) 1893 goto err_create_queues_with_backoff; 1894 1895 rc = ena_up_complete(adapter); 1896 if (rc) 1897 goto err_up; 1898 1899 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 1900 netif_carrier_on(adapter->netdev); 1901 1902 u64_stats_update_begin(&adapter->syncp); 1903 adapter->dev_stats.interface_up++; 1904 u64_stats_update_end(&adapter->syncp); 1905 1906 set_bit(ENA_FLAG_DEV_UP, &adapter->flags); 1907 1908 /* Enable completion queues interrupt */ 1909 for (i = 0; i < adapter->num_io_queues; i++) 1910 ena_unmask_interrupt(&adapter->tx_ring[i], 1911 &adapter->rx_ring[i]); 1912 1913 /* schedule napi in case we had pending packets 1914 * from the last time we disable napi 1915 */ 1916 for (i = 0; i < adapter->num_io_queues; i++) 1917 napi_schedule(&adapter->ena_napi[i].napi); 1918 1919 return rc; 1920 1921 err_up: 1922 ena_destroy_all_tx_queues(adapter); 1923 ena_free_all_io_tx_resources(adapter); 1924 ena_destroy_all_rx_queues(adapter); 1925 ena_free_all_io_rx_resources(adapter); 1926 err_create_queues_with_backoff: 1927 ena_free_io_irq(adapter); 1928 err_req_irq: 1929 ena_del_napi(adapter); 1930 1931 return rc; 1932 } 1933 1934 static void ena_down(struct ena_adapter *adapter) 1935 { 1936 netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__); 1937 1938 clear_bit(ENA_FLAG_DEV_UP, &adapter->flags); 1939 1940 u64_stats_update_begin(&adapter->syncp); 1941 adapter->dev_stats.interface_down++; 1942 u64_stats_update_end(&adapter->syncp); 1943 1944 netif_carrier_off(adapter->netdev); 1945 netif_tx_disable(adapter->netdev); 1946 1947 /* After this point the napi handler won't enable the tx queue */ 1948 ena_napi_disable_all(adapter); 1949 1950 /* After destroy the queue there won't be any new interrupts */ 1951 1952 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) { 1953 int rc; 1954 1955 rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 1956 if (rc) 1957 dev_err(&adapter->pdev->dev, "Device reset failed\n"); 1958 /* stop submitting admin commands on a device that was reset */ 1959 ena_com_set_admin_running_state(adapter->ena_dev, false); 1960 } 1961 1962 ena_destroy_all_io_queues(adapter); 1963 1964 ena_disable_io_intr_sync(adapter); 1965 ena_free_io_irq(adapter); 1966 ena_del_napi(adapter); 1967 1968 ena_free_all_tx_bufs(adapter); 1969 ena_free_all_rx_bufs(adapter); 1970 ena_free_all_io_tx_resources(adapter); 1971 ena_free_all_io_rx_resources(adapter); 1972 } 1973 1974 /* ena_open - Called when a network interface is made active 1975 * @netdev: network interface device structure 1976 * 1977 * Returns 0 on success, negative value on failure 1978 * 1979 * The open entry point is called when a network interface is made 1980 * active by the system (IFF_UP). At this point all resources needed 1981 * for transmit and receive operations are allocated, the interrupt 1982 * handler is registered with the OS, the watchdog timer is started, 1983 * and the stack is notified that the interface is ready. 1984 */ 1985 static int ena_open(struct net_device *netdev) 1986 { 1987 struct ena_adapter *adapter = netdev_priv(netdev); 1988 int rc; 1989 1990 /* Notify the stack of the actual queue counts. */ 1991 rc = netif_set_real_num_tx_queues(netdev, adapter->num_io_queues); 1992 if (rc) { 1993 netif_err(adapter, ifup, netdev, "Can't set num tx queues\n"); 1994 return rc; 1995 } 1996 1997 rc = netif_set_real_num_rx_queues(netdev, adapter->num_io_queues); 1998 if (rc) { 1999 netif_err(adapter, ifup, netdev, "Can't set num rx queues\n"); 2000 return rc; 2001 } 2002 2003 rc = ena_up(adapter); 2004 if (rc) 2005 return rc; 2006 2007 return rc; 2008 } 2009 2010 /* ena_close - Disables a network interface 2011 * @netdev: network interface device structure 2012 * 2013 * Returns 0, this is not allowed to fail 2014 * 2015 * The close entry point is called when an interface is de-activated 2016 * by the OS. The hardware is still under the drivers control, but 2017 * needs to be disabled. A global MAC reset is issued to stop the 2018 * hardware, and all transmit and receive resources are freed. 2019 */ 2020 static int ena_close(struct net_device *netdev) 2021 { 2022 struct ena_adapter *adapter = netdev_priv(netdev); 2023 2024 netif_dbg(adapter, ifdown, netdev, "%s\n", __func__); 2025 2026 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 2027 return 0; 2028 2029 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2030 ena_down(adapter); 2031 2032 /* Check for device status and issue reset if needed*/ 2033 check_for_admin_com_state(adapter); 2034 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2035 netif_err(adapter, ifdown, adapter->netdev, 2036 "Destroy failure, restarting device\n"); 2037 ena_dump_stats_to_dmesg(adapter); 2038 /* rtnl lock already obtained in dev_ioctl() layer */ 2039 ena_destroy_device(adapter, false); 2040 ena_restore_device(adapter); 2041 } 2042 2043 return 0; 2044 } 2045 2046 int ena_update_queue_sizes(struct ena_adapter *adapter, 2047 u32 new_tx_size, 2048 u32 new_rx_size) 2049 { 2050 bool dev_was_up; 2051 2052 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2053 ena_close(adapter->netdev); 2054 adapter->requested_tx_ring_size = new_tx_size; 2055 adapter->requested_rx_ring_size = new_rx_size; 2056 ena_init_io_rings(adapter); 2057 return dev_was_up ? ena_up(adapter) : 0; 2058 } 2059 2060 int ena_update_queue_count(struct ena_adapter *adapter, u32 new_channel_count) 2061 { 2062 struct ena_com_dev *ena_dev = adapter->ena_dev; 2063 bool dev_was_up; 2064 2065 dev_was_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2066 ena_close(adapter->netdev); 2067 adapter->num_io_queues = new_channel_count; 2068 /* We need to destroy the rss table so that the indirection 2069 * table will be reinitialized by ena_up() 2070 */ 2071 ena_com_rss_destroy(ena_dev); 2072 ena_init_io_rings(adapter); 2073 return dev_was_up ? ena_open(adapter->netdev) : 0; 2074 } 2075 2076 static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct sk_buff *skb) 2077 { 2078 u32 mss = skb_shinfo(skb)->gso_size; 2079 struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta; 2080 u8 l4_protocol = 0; 2081 2082 if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) { 2083 ena_tx_ctx->l4_csum_enable = 1; 2084 if (mss) { 2085 ena_tx_ctx->tso_enable = 1; 2086 ena_meta->l4_hdr_len = tcp_hdr(skb)->doff; 2087 ena_tx_ctx->l4_csum_partial = 0; 2088 } else { 2089 ena_tx_ctx->tso_enable = 0; 2090 ena_meta->l4_hdr_len = 0; 2091 ena_tx_ctx->l4_csum_partial = 1; 2092 } 2093 2094 switch (ip_hdr(skb)->version) { 2095 case IPVERSION: 2096 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; 2097 if (ip_hdr(skb)->frag_off & htons(IP_DF)) 2098 ena_tx_ctx->df = 1; 2099 if (mss) 2100 ena_tx_ctx->l3_csum_enable = 1; 2101 l4_protocol = ip_hdr(skb)->protocol; 2102 break; 2103 case 6: 2104 ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; 2105 l4_protocol = ipv6_hdr(skb)->nexthdr; 2106 break; 2107 default: 2108 break; 2109 } 2110 2111 if (l4_protocol == IPPROTO_TCP) 2112 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; 2113 else 2114 ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; 2115 2116 ena_meta->mss = mss; 2117 ena_meta->l3_hdr_len = skb_network_header_len(skb); 2118 ena_meta->l3_hdr_offset = skb_network_offset(skb); 2119 ena_tx_ctx->meta_valid = 1; 2120 2121 } else { 2122 ena_tx_ctx->meta_valid = 0; 2123 } 2124 } 2125 2126 static int ena_check_and_linearize_skb(struct ena_ring *tx_ring, 2127 struct sk_buff *skb) 2128 { 2129 int num_frags, header_len, rc; 2130 2131 num_frags = skb_shinfo(skb)->nr_frags; 2132 header_len = skb_headlen(skb); 2133 2134 if (num_frags < tx_ring->sgl_size) 2135 return 0; 2136 2137 if ((num_frags == tx_ring->sgl_size) && 2138 (header_len < tx_ring->tx_max_header_size)) 2139 return 0; 2140 2141 u64_stats_update_begin(&tx_ring->syncp); 2142 tx_ring->tx_stats.linearize++; 2143 u64_stats_update_end(&tx_ring->syncp); 2144 2145 rc = skb_linearize(skb); 2146 if (unlikely(rc)) { 2147 u64_stats_update_begin(&tx_ring->syncp); 2148 tx_ring->tx_stats.linearize_failed++; 2149 u64_stats_update_end(&tx_ring->syncp); 2150 } 2151 2152 return rc; 2153 } 2154 2155 static int ena_tx_map_skb(struct ena_ring *tx_ring, 2156 struct ena_tx_buffer *tx_info, 2157 struct sk_buff *skb, 2158 void **push_hdr, 2159 u16 *header_len) 2160 { 2161 struct ena_adapter *adapter = tx_ring->adapter; 2162 struct ena_com_buf *ena_buf; 2163 dma_addr_t dma; 2164 u32 skb_head_len, frag_len, last_frag; 2165 u16 push_len = 0; 2166 u16 delta = 0; 2167 int i = 0; 2168 2169 skb_head_len = skb_headlen(skb); 2170 tx_info->skb = skb; 2171 ena_buf = tx_info->bufs; 2172 2173 if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) { 2174 /* When the device is LLQ mode, the driver will copy 2175 * the header into the device memory space. 2176 * the ena_com layer assume the header is in a linear 2177 * memory space. 2178 * This assumption might be wrong since part of the header 2179 * can be in the fragmented buffers. 2180 * Use skb_header_pointer to make sure the header is in a 2181 * linear memory space. 2182 */ 2183 2184 push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size); 2185 *push_hdr = skb_header_pointer(skb, 0, push_len, 2186 tx_ring->push_buf_intermediate_buf); 2187 *header_len = push_len; 2188 if (unlikely(skb->data != *push_hdr)) { 2189 u64_stats_update_begin(&tx_ring->syncp); 2190 tx_ring->tx_stats.llq_buffer_copy++; 2191 u64_stats_update_end(&tx_ring->syncp); 2192 2193 delta = push_len - skb_head_len; 2194 } 2195 } else { 2196 *push_hdr = NULL; 2197 *header_len = min_t(u32, skb_head_len, 2198 tx_ring->tx_max_header_size); 2199 } 2200 2201 netif_dbg(adapter, tx_queued, adapter->netdev, 2202 "skb: %p header_buf->vaddr: %p push_len: %d\n", skb, 2203 *push_hdr, push_len); 2204 2205 if (skb_head_len > push_len) { 2206 dma = dma_map_single(tx_ring->dev, skb->data + push_len, 2207 skb_head_len - push_len, DMA_TO_DEVICE); 2208 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2209 goto error_report_dma_error; 2210 2211 ena_buf->paddr = dma; 2212 ena_buf->len = skb_head_len - push_len; 2213 2214 ena_buf++; 2215 tx_info->num_of_bufs++; 2216 tx_info->map_linear_data = 1; 2217 } else { 2218 tx_info->map_linear_data = 0; 2219 } 2220 2221 last_frag = skb_shinfo(skb)->nr_frags; 2222 2223 for (i = 0; i < last_frag; i++) { 2224 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2225 2226 frag_len = skb_frag_size(frag); 2227 2228 if (unlikely(delta >= frag_len)) { 2229 delta -= frag_len; 2230 continue; 2231 } 2232 2233 dma = skb_frag_dma_map(tx_ring->dev, frag, delta, 2234 frag_len - delta, DMA_TO_DEVICE); 2235 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 2236 goto error_report_dma_error; 2237 2238 ena_buf->paddr = dma; 2239 ena_buf->len = frag_len - delta; 2240 ena_buf++; 2241 tx_info->num_of_bufs++; 2242 delta = 0; 2243 } 2244 2245 return 0; 2246 2247 error_report_dma_error: 2248 u64_stats_update_begin(&tx_ring->syncp); 2249 tx_ring->tx_stats.dma_mapping_err++; 2250 u64_stats_update_end(&tx_ring->syncp); 2251 netdev_warn(adapter->netdev, "failed to map skb\n"); 2252 2253 tx_info->skb = NULL; 2254 2255 tx_info->num_of_bufs += i; 2256 ena_unmap_tx_skb(tx_ring, tx_info); 2257 2258 return -EINVAL; 2259 } 2260 2261 /* Called with netif_tx_lock. */ 2262 static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev) 2263 { 2264 struct ena_adapter *adapter = netdev_priv(dev); 2265 struct ena_tx_buffer *tx_info; 2266 struct ena_com_tx_ctx ena_tx_ctx; 2267 struct ena_ring *tx_ring; 2268 struct netdev_queue *txq; 2269 void *push_hdr; 2270 u16 next_to_use, req_id, header_len; 2271 int qid, rc, nb_hw_desc; 2272 2273 netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb); 2274 /* Determine which tx ring we will be placed on */ 2275 qid = skb_get_queue_mapping(skb); 2276 tx_ring = &adapter->tx_ring[qid]; 2277 txq = netdev_get_tx_queue(dev, qid); 2278 2279 rc = ena_check_and_linearize_skb(tx_ring, skb); 2280 if (unlikely(rc)) 2281 goto error_drop_packet; 2282 2283 skb_tx_timestamp(skb); 2284 2285 next_to_use = tx_ring->next_to_use; 2286 req_id = tx_ring->free_ids[next_to_use]; 2287 tx_info = &tx_ring->tx_buffer_info[req_id]; 2288 tx_info->num_of_bufs = 0; 2289 2290 WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id); 2291 2292 rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len); 2293 if (unlikely(rc)) 2294 goto error_drop_packet; 2295 2296 memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); 2297 ena_tx_ctx.ena_bufs = tx_info->bufs; 2298 ena_tx_ctx.push_header = push_hdr; 2299 ena_tx_ctx.num_bufs = tx_info->num_of_bufs; 2300 ena_tx_ctx.req_id = req_id; 2301 ena_tx_ctx.header_len = header_len; 2302 2303 /* set flags and meta data */ 2304 ena_tx_csum(&ena_tx_ctx, skb); 2305 2306 if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx))) { 2307 netif_dbg(adapter, tx_queued, dev, 2308 "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n", 2309 qid); 2310 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); 2311 } 2312 2313 /* prepare the packet's descriptors to dma engine */ 2314 rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx, 2315 &nb_hw_desc); 2316 2317 /* ena_com_prepare_tx() can't fail due to overflow of tx queue, 2318 * since the number of free descriptors in the queue is checked 2319 * after sending the previous packet. In case there isn't enough 2320 * space in the queue for the next packet, it is stopped 2321 * until there is again enough available space in the queue. 2322 * All other failure reasons of ena_com_prepare_tx() are fatal 2323 * and therefore require a device reset. 2324 */ 2325 if (unlikely(rc)) { 2326 netif_err(adapter, tx_queued, dev, 2327 "failed to prepare tx bufs\n"); 2328 u64_stats_update_begin(&tx_ring->syncp); 2329 tx_ring->tx_stats.prepare_ctx_err++; 2330 u64_stats_update_end(&tx_ring->syncp); 2331 adapter->reset_reason = ENA_REGS_RESET_DRIVER_INVALID_STATE; 2332 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 2333 goto error_unmap_dma; 2334 } 2335 2336 netdev_tx_sent_queue(txq, skb->len); 2337 2338 u64_stats_update_begin(&tx_ring->syncp); 2339 tx_ring->tx_stats.cnt++; 2340 tx_ring->tx_stats.bytes += skb->len; 2341 u64_stats_update_end(&tx_ring->syncp); 2342 2343 tx_info->tx_descs = nb_hw_desc; 2344 tx_info->last_jiffies = jiffies; 2345 tx_info->print_once = 0; 2346 2347 tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, 2348 tx_ring->ring_size); 2349 2350 /* stop the queue when no more space available, the packet can have up 2351 * to sgl_size + 2. one for the meta descriptor and one for header 2352 * (if the header is larger than tx_max_header_size). 2353 */ 2354 if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2355 tx_ring->sgl_size + 2))) { 2356 netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n", 2357 __func__, qid); 2358 2359 netif_tx_stop_queue(txq); 2360 u64_stats_update_begin(&tx_ring->syncp); 2361 tx_ring->tx_stats.queue_stop++; 2362 u64_stats_update_end(&tx_ring->syncp); 2363 2364 /* There is a rare condition where this function decide to 2365 * stop the queue but meanwhile clean_tx_irq updates 2366 * next_to_completion and terminates. 2367 * The queue will remain stopped forever. 2368 * To solve this issue add a mb() to make sure that 2369 * netif_tx_stop_queue() write is vissible before checking if 2370 * there is additional space in the queue. 2371 */ 2372 smp_mb(); 2373 2374 if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq, 2375 ENA_TX_WAKEUP_THRESH)) { 2376 netif_tx_wake_queue(txq); 2377 u64_stats_update_begin(&tx_ring->syncp); 2378 tx_ring->tx_stats.queue_wakeup++; 2379 u64_stats_update_end(&tx_ring->syncp); 2380 } 2381 } 2382 2383 if (netif_xmit_stopped(txq) || !netdev_xmit_more()) { 2384 /* trigger the dma engine. ena_com_write_sq_doorbell() 2385 * has a mb 2386 */ 2387 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq); 2388 u64_stats_update_begin(&tx_ring->syncp); 2389 tx_ring->tx_stats.doorbells++; 2390 u64_stats_update_end(&tx_ring->syncp); 2391 } 2392 2393 return NETDEV_TX_OK; 2394 2395 error_unmap_dma: 2396 ena_unmap_tx_skb(tx_ring, tx_info); 2397 tx_info->skb = NULL; 2398 2399 error_drop_packet: 2400 dev_kfree_skb(skb); 2401 return NETDEV_TX_OK; 2402 } 2403 2404 static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb, 2405 struct net_device *sb_dev) 2406 { 2407 u16 qid; 2408 /* we suspect that this is good for in--kernel network services that 2409 * want to loop incoming skb rx to tx in normal user generated traffic, 2410 * most probably we will not get to this 2411 */ 2412 if (skb_rx_queue_recorded(skb)) 2413 qid = skb_get_rx_queue(skb); 2414 else 2415 qid = netdev_pick_tx(dev, skb, NULL); 2416 2417 return qid; 2418 } 2419 2420 static void ena_config_host_info(struct ena_com_dev *ena_dev, 2421 struct pci_dev *pdev) 2422 { 2423 struct ena_admin_host_info *host_info; 2424 int rc; 2425 2426 /* Allocate only the host info */ 2427 rc = ena_com_allocate_host_info(ena_dev); 2428 if (rc) { 2429 pr_err("Cannot allocate host info\n"); 2430 return; 2431 } 2432 2433 host_info = ena_dev->host_attr.host_info; 2434 2435 host_info->bdf = (pdev->bus->number << 8) | pdev->devfn; 2436 host_info->os_type = ENA_ADMIN_OS_LINUX; 2437 host_info->kernel_ver = LINUX_VERSION_CODE; 2438 strlcpy(host_info->kernel_ver_str, utsname()->version, 2439 sizeof(host_info->kernel_ver_str) - 1); 2440 host_info->os_dist = 0; 2441 strncpy(host_info->os_dist_str, utsname()->release, 2442 sizeof(host_info->os_dist_str) - 1); 2443 host_info->driver_version = 2444 (DRV_MODULE_VER_MAJOR) | 2445 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | 2446 (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) | 2447 ("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT); 2448 host_info->num_cpus = num_online_cpus(); 2449 2450 host_info->driver_supported_features = 2451 ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK; 2452 2453 rc = ena_com_set_host_attributes(ena_dev); 2454 if (rc) { 2455 if (rc == -EOPNOTSUPP) 2456 pr_warn("Cannot set host attributes\n"); 2457 else 2458 pr_err("Cannot set host attributes\n"); 2459 2460 goto err; 2461 } 2462 2463 return; 2464 2465 err: 2466 ena_com_delete_host_info(ena_dev); 2467 } 2468 2469 static void ena_config_debug_area(struct ena_adapter *adapter) 2470 { 2471 u32 debug_area_size; 2472 int rc, ss_count; 2473 2474 ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS); 2475 if (ss_count <= 0) { 2476 netif_err(adapter, drv, adapter->netdev, 2477 "SS count is negative\n"); 2478 return; 2479 } 2480 2481 /* allocate 32 bytes for each string and 64bit for the value */ 2482 debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count; 2483 2484 rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size); 2485 if (rc) { 2486 pr_err("Cannot allocate debug area\n"); 2487 return; 2488 } 2489 2490 rc = ena_com_set_host_attributes(adapter->ena_dev); 2491 if (rc) { 2492 if (rc == -EOPNOTSUPP) 2493 netif_warn(adapter, drv, adapter->netdev, 2494 "Cannot set host attributes\n"); 2495 else 2496 netif_err(adapter, drv, adapter->netdev, 2497 "Cannot set host attributes\n"); 2498 goto err; 2499 } 2500 2501 return; 2502 err: 2503 ena_com_delete_debug_area(adapter->ena_dev); 2504 } 2505 2506 static void ena_get_stats64(struct net_device *netdev, 2507 struct rtnl_link_stats64 *stats) 2508 { 2509 struct ena_adapter *adapter = netdev_priv(netdev); 2510 struct ena_ring *rx_ring, *tx_ring; 2511 unsigned int start; 2512 u64 rx_drops; 2513 int i; 2514 2515 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2516 return; 2517 2518 for (i = 0; i < adapter->num_io_queues; i++) { 2519 u64 bytes, packets; 2520 2521 tx_ring = &adapter->tx_ring[i]; 2522 2523 do { 2524 start = u64_stats_fetch_begin_irq(&tx_ring->syncp); 2525 packets = tx_ring->tx_stats.cnt; 2526 bytes = tx_ring->tx_stats.bytes; 2527 } while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start)); 2528 2529 stats->tx_packets += packets; 2530 stats->tx_bytes += bytes; 2531 2532 rx_ring = &adapter->rx_ring[i]; 2533 2534 do { 2535 start = u64_stats_fetch_begin_irq(&rx_ring->syncp); 2536 packets = rx_ring->rx_stats.cnt; 2537 bytes = rx_ring->rx_stats.bytes; 2538 } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start)); 2539 2540 stats->rx_packets += packets; 2541 stats->rx_bytes += bytes; 2542 } 2543 2544 do { 2545 start = u64_stats_fetch_begin_irq(&adapter->syncp); 2546 rx_drops = adapter->dev_stats.rx_drops; 2547 } while (u64_stats_fetch_retry_irq(&adapter->syncp, start)); 2548 2549 stats->rx_dropped = rx_drops; 2550 2551 stats->multicast = 0; 2552 stats->collisions = 0; 2553 2554 stats->rx_length_errors = 0; 2555 stats->rx_crc_errors = 0; 2556 stats->rx_frame_errors = 0; 2557 stats->rx_fifo_errors = 0; 2558 stats->rx_missed_errors = 0; 2559 stats->tx_window_errors = 0; 2560 2561 stats->rx_errors = 0; 2562 stats->tx_errors = 0; 2563 } 2564 2565 static const struct net_device_ops ena_netdev_ops = { 2566 .ndo_open = ena_open, 2567 .ndo_stop = ena_close, 2568 .ndo_start_xmit = ena_start_xmit, 2569 .ndo_select_queue = ena_select_queue, 2570 .ndo_get_stats64 = ena_get_stats64, 2571 .ndo_tx_timeout = ena_tx_timeout, 2572 .ndo_change_mtu = ena_change_mtu, 2573 .ndo_set_mac_address = NULL, 2574 .ndo_validate_addr = eth_validate_addr, 2575 }; 2576 2577 static int ena_device_validate_params(struct ena_adapter *adapter, 2578 struct ena_com_dev_get_features_ctx *get_feat_ctx) 2579 { 2580 struct net_device *netdev = adapter->netdev; 2581 int rc; 2582 2583 rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr, 2584 adapter->mac_addr); 2585 if (!rc) { 2586 netif_err(adapter, drv, netdev, 2587 "Error, mac address are different\n"); 2588 return -EINVAL; 2589 } 2590 2591 if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) { 2592 netif_err(adapter, drv, netdev, 2593 "Error, device max mtu is smaller than netdev MTU\n"); 2594 return -EINVAL; 2595 } 2596 2597 return 0; 2598 } 2599 2600 static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev, 2601 struct ena_com_dev_get_features_ctx *get_feat_ctx, 2602 bool *wd_state) 2603 { 2604 struct device *dev = &pdev->dev; 2605 bool readless_supported; 2606 u32 aenq_groups; 2607 int dma_width; 2608 int rc; 2609 2610 rc = ena_com_mmio_reg_read_request_init(ena_dev); 2611 if (rc) { 2612 dev_err(dev, "failed to init mmio read less\n"); 2613 return rc; 2614 } 2615 2616 /* The PCIe configuration space revision id indicate if mmio reg 2617 * read is disabled 2618 */ 2619 readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ); 2620 ena_com_set_mmio_read_mode(ena_dev, readless_supported); 2621 2622 rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); 2623 if (rc) { 2624 dev_err(dev, "Can not reset device\n"); 2625 goto err_mmio_read_less; 2626 } 2627 2628 rc = ena_com_validate_version(ena_dev); 2629 if (rc) { 2630 dev_err(dev, "device version is too low\n"); 2631 goto err_mmio_read_less; 2632 } 2633 2634 dma_width = ena_com_get_dma_width(ena_dev); 2635 if (dma_width < 0) { 2636 dev_err(dev, "Invalid dma width value %d", dma_width); 2637 rc = dma_width; 2638 goto err_mmio_read_less; 2639 } 2640 2641 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width)); 2642 if (rc) { 2643 dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc); 2644 goto err_mmio_read_less; 2645 } 2646 2647 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width)); 2648 if (rc) { 2649 dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n", 2650 rc); 2651 goto err_mmio_read_less; 2652 } 2653 2654 /* ENA admin level init */ 2655 rc = ena_com_admin_init(ena_dev, &aenq_handlers); 2656 if (rc) { 2657 dev_err(dev, 2658 "Can not initialize ena admin queue with device\n"); 2659 goto err_mmio_read_less; 2660 } 2661 2662 /* To enable the msix interrupts the driver needs to know the number 2663 * of queues. So the driver uses polling mode to retrieve this 2664 * information 2665 */ 2666 ena_com_set_admin_polling_mode(ena_dev, true); 2667 2668 ena_config_host_info(ena_dev, pdev); 2669 2670 /* Get Device Attributes*/ 2671 rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); 2672 if (rc) { 2673 dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc); 2674 goto err_admin_init; 2675 } 2676 2677 /* Try to turn all the available aenq groups */ 2678 aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | 2679 BIT(ENA_ADMIN_FATAL_ERROR) | 2680 BIT(ENA_ADMIN_WARNING) | 2681 BIT(ENA_ADMIN_NOTIFICATION) | 2682 BIT(ENA_ADMIN_KEEP_ALIVE); 2683 2684 aenq_groups &= get_feat_ctx->aenq.supported_groups; 2685 2686 rc = ena_com_set_aenq_config(ena_dev, aenq_groups); 2687 if (rc) { 2688 dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc); 2689 goto err_admin_init; 2690 } 2691 2692 *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); 2693 2694 return 0; 2695 2696 err_admin_init: 2697 ena_com_delete_host_info(ena_dev); 2698 ena_com_admin_destroy(ena_dev); 2699 err_mmio_read_less: 2700 ena_com_mmio_reg_read_request_destroy(ena_dev); 2701 2702 return rc; 2703 } 2704 2705 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter) 2706 { 2707 struct ena_com_dev *ena_dev = adapter->ena_dev; 2708 struct device *dev = &adapter->pdev->dev; 2709 int rc; 2710 2711 rc = ena_enable_msix(adapter); 2712 if (rc) { 2713 dev_err(dev, "Can not reserve msix vectors\n"); 2714 return rc; 2715 } 2716 2717 ena_setup_mgmnt_intr(adapter); 2718 2719 rc = ena_request_mgmnt_irq(adapter); 2720 if (rc) { 2721 dev_err(dev, "Can not setup management interrupts\n"); 2722 goto err_disable_msix; 2723 } 2724 2725 ena_com_set_admin_polling_mode(ena_dev, false); 2726 2727 ena_com_admin_aenq_enable(ena_dev); 2728 2729 return 0; 2730 2731 err_disable_msix: 2732 ena_disable_msix(adapter); 2733 2734 return rc; 2735 } 2736 2737 static void ena_destroy_device(struct ena_adapter *adapter, bool graceful) 2738 { 2739 struct net_device *netdev = adapter->netdev; 2740 struct ena_com_dev *ena_dev = adapter->ena_dev; 2741 bool dev_up; 2742 2743 if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)) 2744 return; 2745 2746 netif_carrier_off(netdev); 2747 2748 del_timer_sync(&adapter->timer_service); 2749 2750 dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags); 2751 adapter->dev_up_before_reset = dev_up; 2752 if (!graceful) 2753 ena_com_set_admin_running_state(ena_dev, false); 2754 2755 if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2756 ena_down(adapter); 2757 2758 /* Stop the device from sending AENQ events (in case reset flag is set 2759 * and device is up, ena_down() already reset the device. 2760 */ 2761 if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up)) 2762 ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); 2763 2764 ena_free_mgmnt_irq(adapter); 2765 2766 ena_disable_msix(adapter); 2767 2768 ena_com_abort_admin_commands(ena_dev); 2769 2770 ena_com_wait_for_abort_completion(ena_dev); 2771 2772 ena_com_admin_destroy(ena_dev); 2773 2774 ena_com_mmio_reg_read_request_destroy(ena_dev); 2775 2776 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 2777 2778 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 2779 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 2780 } 2781 2782 static int ena_restore_device(struct ena_adapter *adapter) 2783 { 2784 struct ena_com_dev_get_features_ctx get_feat_ctx; 2785 struct ena_com_dev *ena_dev = adapter->ena_dev; 2786 struct pci_dev *pdev = adapter->pdev; 2787 bool wd_state; 2788 int rc; 2789 2790 set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 2791 rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state); 2792 if (rc) { 2793 dev_err(&pdev->dev, "Can not initialize device\n"); 2794 goto err; 2795 } 2796 adapter->wd_state = wd_state; 2797 2798 rc = ena_device_validate_params(adapter, &get_feat_ctx); 2799 if (rc) { 2800 dev_err(&pdev->dev, "Validation of device parameters failed\n"); 2801 goto err_device_destroy; 2802 } 2803 2804 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 2805 if (rc) { 2806 dev_err(&pdev->dev, "Enable MSI-X failed\n"); 2807 goto err_device_destroy; 2808 } 2809 /* If the interface was up before the reset bring it up */ 2810 if (adapter->dev_up_before_reset) { 2811 rc = ena_up(adapter); 2812 if (rc) { 2813 dev_err(&pdev->dev, "Failed to create I/O queues\n"); 2814 goto err_disable_msix; 2815 } 2816 } 2817 2818 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 2819 2820 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 2821 if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags)) 2822 netif_carrier_on(adapter->netdev); 2823 2824 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 2825 dev_err(&pdev->dev, 2826 "Device reset completed successfully, Driver info: %s\n", 2827 version); 2828 2829 return rc; 2830 err_disable_msix: 2831 ena_free_mgmnt_irq(adapter); 2832 ena_disable_msix(adapter); 2833 err_device_destroy: 2834 ena_com_abort_admin_commands(ena_dev); 2835 ena_com_wait_for_abort_completion(ena_dev); 2836 ena_com_admin_destroy(ena_dev); 2837 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE); 2838 ena_com_mmio_reg_read_request_destroy(ena_dev); 2839 err: 2840 clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 2841 clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags); 2842 dev_err(&pdev->dev, 2843 "Reset attempt failed. Can not reset the device\n"); 2844 2845 return rc; 2846 } 2847 2848 static void ena_fw_reset_device(struct work_struct *work) 2849 { 2850 struct ena_adapter *adapter = 2851 container_of(work, struct ena_adapter, reset_task); 2852 struct pci_dev *pdev = adapter->pdev; 2853 2854 if (unlikely(!test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 2855 dev_err(&pdev->dev, 2856 "device reset schedule while reset bit is off\n"); 2857 return; 2858 } 2859 rtnl_lock(); 2860 ena_destroy_device(adapter, false); 2861 ena_restore_device(adapter); 2862 rtnl_unlock(); 2863 } 2864 2865 static int check_for_rx_interrupt_queue(struct ena_adapter *adapter, 2866 struct ena_ring *rx_ring) 2867 { 2868 if (likely(rx_ring->first_interrupt)) 2869 return 0; 2870 2871 if (ena_com_cq_empty(rx_ring->ena_com_io_cq)) 2872 return 0; 2873 2874 rx_ring->no_interrupt_event_cnt++; 2875 2876 if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) { 2877 netif_err(adapter, rx_err, adapter->netdev, 2878 "Potential MSIX issue on Rx side Queue = %d. Reset the device\n", 2879 rx_ring->qid); 2880 adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT; 2881 smp_mb__before_atomic(); 2882 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 2883 return -EIO; 2884 } 2885 2886 return 0; 2887 } 2888 2889 static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter, 2890 struct ena_ring *tx_ring) 2891 { 2892 struct ena_tx_buffer *tx_buf; 2893 unsigned long last_jiffies; 2894 u32 missed_tx = 0; 2895 int i, rc = 0; 2896 2897 for (i = 0; i < tx_ring->ring_size; i++) { 2898 tx_buf = &tx_ring->tx_buffer_info[i]; 2899 last_jiffies = tx_buf->last_jiffies; 2900 2901 if (last_jiffies == 0) 2902 /* no pending Tx at this location */ 2903 continue; 2904 2905 if (unlikely(!tx_ring->first_interrupt && time_is_before_jiffies(last_jiffies + 2906 2 * adapter->missing_tx_completion_to))) { 2907 /* If after graceful period interrupt is still not 2908 * received, we schedule a reset 2909 */ 2910 netif_err(adapter, tx_err, adapter->netdev, 2911 "Potential MSIX issue on Tx side Queue = %d. Reset the device\n", 2912 tx_ring->qid); 2913 adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT; 2914 smp_mb__before_atomic(); 2915 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 2916 return -EIO; 2917 } 2918 2919 if (unlikely(time_is_before_jiffies(last_jiffies + 2920 adapter->missing_tx_completion_to))) { 2921 if (!tx_buf->print_once) 2922 netif_notice(adapter, tx_err, adapter->netdev, 2923 "Found a Tx that wasn't completed on time, qid %d, index %d.\n", 2924 tx_ring->qid, i); 2925 2926 tx_buf->print_once = 1; 2927 missed_tx++; 2928 } 2929 } 2930 2931 if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) { 2932 netif_err(adapter, tx_err, adapter->netdev, 2933 "The number of lost tx completions is above the threshold (%d > %d). Reset the device\n", 2934 missed_tx, 2935 adapter->missing_tx_completion_threshold); 2936 adapter->reset_reason = 2937 ENA_REGS_RESET_MISS_TX_CMPL; 2938 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 2939 rc = -EIO; 2940 } 2941 2942 u64_stats_update_begin(&tx_ring->syncp); 2943 tx_ring->tx_stats.missed_tx = missed_tx; 2944 u64_stats_update_end(&tx_ring->syncp); 2945 2946 return rc; 2947 } 2948 2949 static void check_for_missing_completions(struct ena_adapter *adapter) 2950 { 2951 struct ena_ring *tx_ring; 2952 struct ena_ring *rx_ring; 2953 int i, budget, rc; 2954 2955 /* Make sure the driver doesn't turn the device in other process */ 2956 smp_rmb(); 2957 2958 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 2959 return; 2960 2961 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 2962 return; 2963 2964 if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT) 2965 return; 2966 2967 budget = ENA_MONITORED_TX_QUEUES; 2968 2969 for (i = adapter->last_monitored_tx_qid; i < adapter->num_io_queues; i++) { 2970 tx_ring = &adapter->tx_ring[i]; 2971 rx_ring = &adapter->rx_ring[i]; 2972 2973 rc = check_missing_comp_in_tx_queue(adapter, tx_ring); 2974 if (unlikely(rc)) 2975 return; 2976 2977 rc = check_for_rx_interrupt_queue(adapter, rx_ring); 2978 if (unlikely(rc)) 2979 return; 2980 2981 budget--; 2982 if (!budget) 2983 break; 2984 } 2985 2986 adapter->last_monitored_tx_qid = i % adapter->num_io_queues; 2987 } 2988 2989 /* trigger napi schedule after 2 consecutive detections */ 2990 #define EMPTY_RX_REFILL 2 2991 /* For the rare case where the device runs out of Rx descriptors and the 2992 * napi handler failed to refill new Rx descriptors (due to a lack of memory 2993 * for example). 2994 * This case will lead to a deadlock: 2995 * The device won't send interrupts since all the new Rx packets will be dropped 2996 * The napi handler won't allocate new Rx descriptors so the device will be 2997 * able to send new packets. 2998 * 2999 * This scenario can happen when the kernel's vm.min_free_kbytes is too small. 3000 * It is recommended to have at least 512MB, with a minimum of 128MB for 3001 * constrained environment). 3002 * 3003 * When such a situation is detected - Reschedule napi 3004 */ 3005 static void check_for_empty_rx_ring(struct ena_adapter *adapter) 3006 { 3007 struct ena_ring *rx_ring; 3008 int i, refill_required; 3009 3010 if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags)) 3011 return; 3012 3013 if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) 3014 return; 3015 3016 for (i = 0; i < adapter->num_io_queues; i++) { 3017 rx_ring = &adapter->rx_ring[i]; 3018 3019 refill_required = 3020 ena_com_free_desc(rx_ring->ena_com_io_sq); 3021 if (unlikely(refill_required == (rx_ring->ring_size - 1))) { 3022 rx_ring->empty_rx_queue++; 3023 3024 if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { 3025 u64_stats_update_begin(&rx_ring->syncp); 3026 rx_ring->rx_stats.empty_rx_ring++; 3027 u64_stats_update_end(&rx_ring->syncp); 3028 3029 netif_err(adapter, drv, adapter->netdev, 3030 "trigger refill for ring %d\n", i); 3031 3032 napi_schedule(rx_ring->napi); 3033 rx_ring->empty_rx_queue = 0; 3034 } 3035 } else { 3036 rx_ring->empty_rx_queue = 0; 3037 } 3038 } 3039 } 3040 3041 /* Check for keep alive expiration */ 3042 static void check_for_missing_keep_alive(struct ena_adapter *adapter) 3043 { 3044 unsigned long keep_alive_expired; 3045 3046 if (!adapter->wd_state) 3047 return; 3048 3049 if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3050 return; 3051 3052 keep_alive_expired = round_jiffies(adapter->last_keep_alive_jiffies + 3053 adapter->keep_alive_timeout); 3054 if (unlikely(time_is_before_jiffies(keep_alive_expired))) { 3055 netif_err(adapter, drv, adapter->netdev, 3056 "Keep alive watchdog timeout.\n"); 3057 u64_stats_update_begin(&adapter->syncp); 3058 adapter->dev_stats.wd_expired++; 3059 u64_stats_update_end(&adapter->syncp); 3060 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO; 3061 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3062 } 3063 } 3064 3065 static void check_for_admin_com_state(struct ena_adapter *adapter) 3066 { 3067 if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) { 3068 netif_err(adapter, drv, adapter->netdev, 3069 "ENA admin queue is not in running state!\n"); 3070 u64_stats_update_begin(&adapter->syncp); 3071 adapter->dev_stats.admin_q_pause++; 3072 u64_stats_update_end(&adapter->syncp); 3073 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO; 3074 set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3075 } 3076 } 3077 3078 static void ena_update_hints(struct ena_adapter *adapter, 3079 struct ena_admin_ena_hw_hints *hints) 3080 { 3081 struct net_device *netdev = adapter->netdev; 3082 3083 if (hints->admin_completion_tx_timeout) 3084 adapter->ena_dev->admin_queue.completion_timeout = 3085 hints->admin_completion_tx_timeout * 1000; 3086 3087 if (hints->mmio_read_timeout) 3088 /* convert to usec */ 3089 adapter->ena_dev->mmio_read.reg_read_to = 3090 hints->mmio_read_timeout * 1000; 3091 3092 if (hints->missed_tx_completion_count_threshold_to_reset) 3093 adapter->missing_tx_completion_threshold = 3094 hints->missed_tx_completion_count_threshold_to_reset; 3095 3096 if (hints->missing_tx_completion_timeout) { 3097 if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3098 adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT; 3099 else 3100 adapter->missing_tx_completion_to = 3101 msecs_to_jiffies(hints->missing_tx_completion_timeout); 3102 } 3103 3104 if (hints->netdev_wd_timeout) 3105 netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout); 3106 3107 if (hints->driver_watchdog_timeout) { 3108 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT) 3109 adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT; 3110 else 3111 adapter->keep_alive_timeout = 3112 msecs_to_jiffies(hints->driver_watchdog_timeout); 3113 } 3114 } 3115 3116 static void ena_update_host_info(struct ena_admin_host_info *host_info, 3117 struct net_device *netdev) 3118 { 3119 host_info->supported_network_features[0] = 3120 netdev->features & GENMASK_ULL(31, 0); 3121 host_info->supported_network_features[1] = 3122 (netdev->features & GENMASK_ULL(63, 32)) >> 32; 3123 } 3124 3125 static void ena_timer_service(struct timer_list *t) 3126 { 3127 struct ena_adapter *adapter = from_timer(adapter, t, timer_service); 3128 u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr; 3129 struct ena_admin_host_info *host_info = 3130 adapter->ena_dev->host_attr.host_info; 3131 3132 check_for_missing_keep_alive(adapter); 3133 3134 check_for_admin_com_state(adapter); 3135 3136 check_for_missing_completions(adapter); 3137 3138 check_for_empty_rx_ring(adapter); 3139 3140 if (debug_area) 3141 ena_dump_stats_to_buf(adapter, debug_area); 3142 3143 if (host_info) 3144 ena_update_host_info(host_info, adapter->netdev); 3145 3146 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3147 netif_err(adapter, drv, adapter->netdev, 3148 "Trigger reset is on\n"); 3149 ena_dump_stats_to_dmesg(adapter); 3150 queue_work(ena_wq, &adapter->reset_task); 3151 return; 3152 } 3153 3154 /* Reset the timer */ 3155 mod_timer(&adapter->timer_service, jiffies + HZ); 3156 } 3157 3158 static int ena_calc_max_io_queue_num(struct pci_dev *pdev, 3159 struct ena_com_dev *ena_dev, 3160 struct ena_com_dev_get_features_ctx *get_feat_ctx) 3161 { 3162 int io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues; 3163 3164 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 3165 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 3166 &get_feat_ctx->max_queue_ext.max_queue_ext; 3167 io_rx_num = min_t(u32, max_queue_ext->max_rx_sq_num, 3168 max_queue_ext->max_rx_cq_num); 3169 3170 io_tx_sq_num = max_queue_ext->max_tx_sq_num; 3171 io_tx_cq_num = max_queue_ext->max_tx_cq_num; 3172 } else { 3173 struct ena_admin_queue_feature_desc *max_queues = 3174 &get_feat_ctx->max_queues; 3175 io_tx_sq_num = max_queues->max_sq_num; 3176 io_tx_cq_num = max_queues->max_cq_num; 3177 io_rx_num = min_t(u32, io_tx_sq_num, io_tx_cq_num); 3178 } 3179 3180 /* In case of LLQ use the llq fields for the tx SQ/CQ */ 3181 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3182 io_tx_sq_num = get_feat_ctx->llq.max_llq_num; 3183 3184 max_num_io_queues = min_t(u32, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES); 3185 max_num_io_queues = min_t(u32, max_num_io_queues, io_rx_num); 3186 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_sq_num); 3187 max_num_io_queues = min_t(u32, max_num_io_queues, io_tx_cq_num); 3188 /* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */ 3189 max_num_io_queues = min_t(u32, max_num_io_queues, pci_msix_vec_count(pdev) - 1); 3190 if (unlikely(!max_num_io_queues)) { 3191 dev_err(&pdev->dev, "The device doesn't have io queues\n"); 3192 return -EFAULT; 3193 } 3194 3195 return max_num_io_queues; 3196 } 3197 3198 static int ena_set_queues_placement_policy(struct pci_dev *pdev, 3199 struct ena_com_dev *ena_dev, 3200 struct ena_admin_feature_llq_desc *llq, 3201 struct ena_llq_configurations *llq_default_configurations) 3202 { 3203 bool has_mem_bar; 3204 int rc; 3205 u32 llq_feature_mask; 3206 3207 llq_feature_mask = 1 << ENA_ADMIN_LLQ; 3208 if (!(ena_dev->supported_features & llq_feature_mask)) { 3209 dev_err(&pdev->dev, 3210 "LLQ is not supported Fallback to host mode policy.\n"); 3211 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3212 return 0; 3213 } 3214 3215 has_mem_bar = pci_select_bars(pdev, IORESOURCE_MEM) & BIT(ENA_MEM_BAR); 3216 3217 rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations); 3218 if (unlikely(rc)) { 3219 dev_err(&pdev->dev, 3220 "Failed to configure the device mode. Fallback to host mode policy.\n"); 3221 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3222 return 0; 3223 } 3224 3225 /* Nothing to config, exit */ 3226 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) 3227 return 0; 3228 3229 if (!has_mem_bar) { 3230 dev_err(&pdev->dev, 3231 "ENA device does not expose LLQ bar. Fallback to host mode policy.\n"); 3232 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; 3233 return 0; 3234 } 3235 3236 ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev, 3237 pci_resource_start(pdev, ENA_MEM_BAR), 3238 pci_resource_len(pdev, ENA_MEM_BAR)); 3239 3240 if (!ena_dev->mem_bar) 3241 return -EFAULT; 3242 3243 return 0; 3244 } 3245 3246 static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat, 3247 struct net_device *netdev) 3248 { 3249 netdev_features_t dev_features = 0; 3250 3251 /* Set offload features */ 3252 if (feat->offload.tx & 3253 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) 3254 dev_features |= NETIF_F_IP_CSUM; 3255 3256 if (feat->offload.tx & 3257 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK) 3258 dev_features |= NETIF_F_IPV6_CSUM; 3259 3260 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) 3261 dev_features |= NETIF_F_TSO; 3262 3263 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) 3264 dev_features |= NETIF_F_TSO6; 3265 3266 if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK) 3267 dev_features |= NETIF_F_TSO_ECN; 3268 3269 if (feat->offload.rx_supported & 3270 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) 3271 dev_features |= NETIF_F_RXCSUM; 3272 3273 if (feat->offload.rx_supported & 3274 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) 3275 dev_features |= NETIF_F_RXCSUM; 3276 3277 netdev->features = 3278 dev_features | 3279 NETIF_F_SG | 3280 NETIF_F_RXHASH | 3281 NETIF_F_HIGHDMA; 3282 3283 netdev->hw_features |= netdev->features; 3284 netdev->vlan_features |= netdev->features; 3285 } 3286 3287 static void ena_set_conf_feat_params(struct ena_adapter *adapter, 3288 struct ena_com_dev_get_features_ctx *feat) 3289 { 3290 struct net_device *netdev = adapter->netdev; 3291 3292 /* Copy mac address */ 3293 if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) { 3294 eth_hw_addr_random(netdev); 3295 ether_addr_copy(adapter->mac_addr, netdev->dev_addr); 3296 } else { 3297 ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr); 3298 ether_addr_copy(netdev->dev_addr, adapter->mac_addr); 3299 } 3300 3301 /* Set offload features */ 3302 ena_set_dev_offloads(feat, netdev); 3303 3304 adapter->max_mtu = feat->dev_attr.max_mtu; 3305 netdev->max_mtu = adapter->max_mtu; 3306 netdev->min_mtu = ENA_MIN_MTU; 3307 } 3308 3309 static int ena_rss_init_default(struct ena_adapter *adapter) 3310 { 3311 struct ena_com_dev *ena_dev = adapter->ena_dev; 3312 struct device *dev = &adapter->pdev->dev; 3313 int rc, i; 3314 u32 val; 3315 3316 rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); 3317 if (unlikely(rc)) { 3318 dev_err(dev, "Cannot init indirect table\n"); 3319 goto err_rss_init; 3320 } 3321 3322 for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { 3323 val = ethtool_rxfh_indir_default(i, adapter->num_io_queues); 3324 rc = ena_com_indirect_table_fill_entry(ena_dev, i, 3325 ENA_IO_RXQ_IDX(val)); 3326 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3327 dev_err(dev, "Cannot fill indirect table\n"); 3328 goto err_fill_indir; 3329 } 3330 } 3331 3332 rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL, 3333 ENA_HASH_KEY_SIZE, 0xFFFFFFFF); 3334 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3335 dev_err(dev, "Cannot fill hash function\n"); 3336 goto err_fill_indir; 3337 } 3338 3339 rc = ena_com_set_default_hash_ctrl(ena_dev); 3340 if (unlikely(rc && (rc != -EOPNOTSUPP))) { 3341 dev_err(dev, "Cannot fill hash control\n"); 3342 goto err_fill_indir; 3343 } 3344 3345 return 0; 3346 3347 err_fill_indir: 3348 ena_com_rss_destroy(ena_dev); 3349 err_rss_init: 3350 3351 return rc; 3352 } 3353 3354 static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev) 3355 { 3356 int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3357 3358 pci_release_selected_regions(pdev, release_bars); 3359 } 3360 3361 static void set_default_llq_configurations(struct ena_llq_configurations *llq_config) 3362 { 3363 llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER; 3364 llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B; 3365 llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY; 3366 llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2; 3367 llq_config->llq_ring_entry_size_value = 128; 3368 } 3369 3370 static int ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx) 3371 { 3372 struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq; 3373 struct ena_com_dev *ena_dev = ctx->ena_dev; 3374 u32 tx_queue_size = ENA_DEFAULT_RING_SIZE; 3375 u32 rx_queue_size = ENA_DEFAULT_RING_SIZE; 3376 u32 max_tx_queue_size; 3377 u32 max_rx_queue_size; 3378 3379 if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) { 3380 struct ena_admin_queue_ext_feature_fields *max_queue_ext = 3381 &ctx->get_feat_ctx->max_queue_ext.max_queue_ext; 3382 max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth, 3383 max_queue_ext->max_rx_sq_depth); 3384 max_tx_queue_size = max_queue_ext->max_tx_cq_depth; 3385 3386 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3387 max_tx_queue_size = min_t(u32, max_tx_queue_size, 3388 llq->max_llq_depth); 3389 else 3390 max_tx_queue_size = min_t(u32, max_tx_queue_size, 3391 max_queue_ext->max_tx_sq_depth); 3392 3393 ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 3394 max_queue_ext->max_per_packet_tx_descs); 3395 ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 3396 max_queue_ext->max_per_packet_rx_descs); 3397 } else { 3398 struct ena_admin_queue_feature_desc *max_queues = 3399 &ctx->get_feat_ctx->max_queues; 3400 max_rx_queue_size = min_t(u32, max_queues->max_cq_depth, 3401 max_queues->max_sq_depth); 3402 max_tx_queue_size = max_queues->max_cq_depth; 3403 3404 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) 3405 max_tx_queue_size = min_t(u32, max_tx_queue_size, 3406 llq->max_llq_depth); 3407 else 3408 max_tx_queue_size = min_t(u32, max_tx_queue_size, 3409 max_queues->max_sq_depth); 3410 3411 ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 3412 max_queues->max_packet_tx_descs); 3413 ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS, 3414 max_queues->max_packet_rx_descs); 3415 } 3416 3417 max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size); 3418 max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size); 3419 3420 tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE, 3421 max_tx_queue_size); 3422 rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE, 3423 max_rx_queue_size); 3424 3425 tx_queue_size = rounddown_pow_of_two(tx_queue_size); 3426 rx_queue_size = rounddown_pow_of_two(rx_queue_size); 3427 3428 ctx->max_tx_queue_size = max_tx_queue_size; 3429 ctx->max_rx_queue_size = max_rx_queue_size; 3430 ctx->tx_queue_size = tx_queue_size; 3431 ctx->rx_queue_size = rx_queue_size; 3432 3433 return 0; 3434 } 3435 3436 /* ena_probe - Device Initialization Routine 3437 * @pdev: PCI device information struct 3438 * @ent: entry in ena_pci_tbl 3439 * 3440 * Returns 0 on success, negative on failure 3441 * 3442 * ena_probe initializes an adapter identified by a pci_dev structure. 3443 * The OS initialization, configuring of the adapter private structure, 3444 * and a hardware reset occur. 3445 */ 3446 static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3447 { 3448 struct ena_com_dev_get_features_ctx get_feat_ctx; 3449 struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 }; 3450 struct ena_llq_configurations llq_config; 3451 struct ena_com_dev *ena_dev = NULL; 3452 struct ena_adapter *adapter; 3453 struct net_device *netdev; 3454 static int adapters_found; 3455 u32 max_num_io_queues; 3456 char *queue_type_str; 3457 bool wd_state; 3458 int bars, rc; 3459 3460 dev_dbg(&pdev->dev, "%s\n", __func__); 3461 3462 dev_info_once(&pdev->dev, "%s", version); 3463 3464 rc = pci_enable_device_mem(pdev); 3465 if (rc) { 3466 dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n"); 3467 return rc; 3468 } 3469 3470 pci_set_master(pdev); 3471 3472 ena_dev = vzalloc(sizeof(*ena_dev)); 3473 if (!ena_dev) { 3474 rc = -ENOMEM; 3475 goto err_disable_device; 3476 } 3477 3478 bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK; 3479 rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME); 3480 if (rc) { 3481 dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n", 3482 rc); 3483 goto err_free_ena_dev; 3484 } 3485 3486 ena_dev->reg_bar = devm_ioremap(&pdev->dev, 3487 pci_resource_start(pdev, ENA_REG_BAR), 3488 pci_resource_len(pdev, ENA_REG_BAR)); 3489 if (!ena_dev->reg_bar) { 3490 dev_err(&pdev->dev, "failed to remap regs bar\n"); 3491 rc = -EFAULT; 3492 goto err_free_region; 3493 } 3494 3495 ena_dev->dmadev = &pdev->dev; 3496 3497 rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state); 3498 if (rc) { 3499 dev_err(&pdev->dev, "ena device init failed\n"); 3500 if (rc == -ETIME) 3501 rc = -EPROBE_DEFER; 3502 goto err_free_region; 3503 } 3504 3505 set_default_llq_configurations(&llq_config); 3506 3507 rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx.llq, 3508 &llq_config); 3509 if (rc) { 3510 dev_err(&pdev->dev, "ena device init failed\n"); 3511 goto err_device_destroy; 3512 } 3513 3514 calc_queue_ctx.ena_dev = ena_dev; 3515 calc_queue_ctx.get_feat_ctx = &get_feat_ctx; 3516 calc_queue_ctx.pdev = pdev; 3517 3518 /* Initial Tx and RX interrupt delay. Assumes 1 usec granularity. 3519 * Updated during device initialization with the real granularity 3520 */ 3521 ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS; 3522 ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS; 3523 ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION; 3524 max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev, &get_feat_ctx); 3525 rc = ena_calc_io_queue_size(&calc_queue_ctx); 3526 if (rc || !max_num_io_queues) { 3527 rc = -EFAULT; 3528 goto err_device_destroy; 3529 } 3530 3531 /* dev zeroed in init_etherdev */ 3532 netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), max_num_io_queues); 3533 if (!netdev) { 3534 dev_err(&pdev->dev, "alloc_etherdev_mq failed\n"); 3535 rc = -ENOMEM; 3536 goto err_device_destroy; 3537 } 3538 3539 SET_NETDEV_DEV(netdev, &pdev->dev); 3540 3541 adapter = netdev_priv(netdev); 3542 pci_set_drvdata(pdev, adapter); 3543 3544 adapter->ena_dev = ena_dev; 3545 adapter->netdev = netdev; 3546 adapter->pdev = pdev; 3547 3548 ena_set_conf_feat_params(adapter, &get_feat_ctx); 3549 3550 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 3551 adapter->reset_reason = ENA_REGS_RESET_NORMAL; 3552 3553 adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size; 3554 adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size; 3555 adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size; 3556 adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size; 3557 adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size; 3558 adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size; 3559 3560 adapter->num_io_queues = max_num_io_queues; 3561 adapter->max_num_io_queues = max_num_io_queues; 3562 3563 adapter->last_monitored_tx_qid = 0; 3564 3565 adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK; 3566 adapter->wd_state = wd_state; 3567 3568 snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found); 3569 3570 rc = ena_com_init_interrupt_moderation(adapter->ena_dev); 3571 if (rc) { 3572 dev_err(&pdev->dev, 3573 "Failed to query interrupt moderation feature\n"); 3574 goto err_netdev_destroy; 3575 } 3576 ena_init_io_rings(adapter); 3577 3578 netdev->netdev_ops = &ena_netdev_ops; 3579 netdev->watchdog_timeo = TX_TIMEOUT; 3580 ena_set_ethtool_ops(netdev); 3581 3582 netdev->priv_flags |= IFF_UNICAST_FLT; 3583 3584 u64_stats_init(&adapter->syncp); 3585 3586 rc = ena_enable_msix_and_set_admin_interrupts(adapter); 3587 if (rc) { 3588 dev_err(&pdev->dev, 3589 "Failed to enable and set the admin interrupts\n"); 3590 goto err_worker_destroy; 3591 } 3592 rc = ena_rss_init_default(adapter); 3593 if (rc && (rc != -EOPNOTSUPP)) { 3594 dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc); 3595 goto err_free_msix; 3596 } 3597 3598 ena_config_debug_area(adapter); 3599 3600 memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len); 3601 3602 netif_carrier_off(netdev); 3603 3604 rc = register_netdev(netdev); 3605 if (rc) { 3606 dev_err(&pdev->dev, "Cannot register net device\n"); 3607 goto err_rss; 3608 } 3609 3610 INIT_WORK(&adapter->reset_task, ena_fw_reset_device); 3611 3612 adapter->last_keep_alive_jiffies = jiffies; 3613 adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT; 3614 adapter->missing_tx_completion_to = TX_TIMEOUT; 3615 adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS; 3616 3617 ena_update_hints(adapter, &get_feat_ctx.hw_hints); 3618 3619 timer_setup(&adapter->timer_service, ena_timer_service, 0); 3620 mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ)); 3621 3622 if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST) 3623 queue_type_str = "Regular"; 3624 else 3625 queue_type_str = "Low Latency"; 3626 3627 dev_info(&pdev->dev, 3628 "%s found at mem %lx, mac addr %pM, Placement policy: %s\n", 3629 DEVICE_NAME, (long)pci_resource_start(pdev, 0), 3630 netdev->dev_addr, queue_type_str); 3631 3632 set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags); 3633 3634 adapters_found++; 3635 3636 return 0; 3637 3638 err_rss: 3639 ena_com_delete_debug_area(ena_dev); 3640 ena_com_rss_destroy(ena_dev); 3641 err_free_msix: 3642 ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR); 3643 /* stop submitting admin commands on a device that was reset */ 3644 ena_com_set_admin_running_state(ena_dev, false); 3645 ena_free_mgmnt_irq(adapter); 3646 ena_disable_msix(adapter); 3647 err_worker_destroy: 3648 del_timer(&adapter->timer_service); 3649 err_netdev_destroy: 3650 free_netdev(netdev); 3651 err_device_destroy: 3652 ena_com_delete_host_info(ena_dev); 3653 ena_com_admin_destroy(ena_dev); 3654 err_free_region: 3655 ena_release_bars(ena_dev, pdev); 3656 err_free_ena_dev: 3657 vfree(ena_dev); 3658 err_disable_device: 3659 pci_disable_device(pdev); 3660 return rc; 3661 } 3662 3663 /*****************************************************************************/ 3664 3665 /* ena_remove - Device Removal Routine 3666 * @pdev: PCI device information struct 3667 * 3668 * ena_remove is called by the PCI subsystem to alert the driver 3669 * that it should release a PCI device. 3670 */ 3671 static void ena_remove(struct pci_dev *pdev) 3672 { 3673 struct ena_adapter *adapter = pci_get_drvdata(pdev); 3674 struct ena_com_dev *ena_dev; 3675 struct net_device *netdev; 3676 3677 ena_dev = adapter->ena_dev; 3678 netdev = adapter->netdev; 3679 3680 #ifdef CONFIG_RFS_ACCEL 3681 if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) { 3682 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 3683 netdev->rx_cpu_rmap = NULL; 3684 } 3685 #endif /* CONFIG_RFS_ACCEL */ 3686 del_timer_sync(&adapter->timer_service); 3687 3688 cancel_work_sync(&adapter->reset_task); 3689 3690 rtnl_lock(); 3691 ena_destroy_device(adapter, true); 3692 rtnl_unlock(); 3693 3694 unregister_netdev(netdev); 3695 3696 free_netdev(netdev); 3697 3698 ena_com_rss_destroy(ena_dev); 3699 3700 ena_com_delete_debug_area(ena_dev); 3701 3702 ena_com_delete_host_info(ena_dev); 3703 3704 ena_release_bars(ena_dev, pdev); 3705 3706 pci_disable_device(pdev); 3707 3708 vfree(ena_dev); 3709 } 3710 3711 #ifdef CONFIG_PM 3712 /* ena_suspend - PM suspend callback 3713 * @pdev: PCI device information struct 3714 * @state:power state 3715 */ 3716 static int ena_suspend(struct pci_dev *pdev, pm_message_t state) 3717 { 3718 struct ena_adapter *adapter = pci_get_drvdata(pdev); 3719 3720 u64_stats_update_begin(&adapter->syncp); 3721 adapter->dev_stats.suspend++; 3722 u64_stats_update_end(&adapter->syncp); 3723 3724 rtnl_lock(); 3725 if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) { 3726 dev_err(&pdev->dev, 3727 "ignoring device reset request as the device is being suspended\n"); 3728 clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags); 3729 } 3730 ena_destroy_device(adapter, true); 3731 rtnl_unlock(); 3732 return 0; 3733 } 3734 3735 /* ena_resume - PM resume callback 3736 * @pdev: PCI device information struct 3737 * 3738 */ 3739 static int ena_resume(struct pci_dev *pdev) 3740 { 3741 struct ena_adapter *adapter = pci_get_drvdata(pdev); 3742 int rc; 3743 3744 u64_stats_update_begin(&adapter->syncp); 3745 adapter->dev_stats.resume++; 3746 u64_stats_update_end(&adapter->syncp); 3747 3748 rtnl_lock(); 3749 rc = ena_restore_device(adapter); 3750 rtnl_unlock(); 3751 return rc; 3752 } 3753 #endif 3754 3755 static struct pci_driver ena_pci_driver = { 3756 .name = DRV_MODULE_NAME, 3757 .id_table = ena_pci_tbl, 3758 .probe = ena_probe, 3759 .remove = ena_remove, 3760 #ifdef CONFIG_PM 3761 .suspend = ena_suspend, 3762 .resume = ena_resume, 3763 #endif 3764 .sriov_configure = pci_sriov_configure_simple, 3765 }; 3766 3767 static int __init ena_init(void) 3768 { 3769 pr_info("%s", version); 3770 3771 ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME); 3772 if (!ena_wq) { 3773 pr_err("Failed to create workqueue\n"); 3774 return -ENOMEM; 3775 } 3776 3777 return pci_register_driver(&ena_pci_driver); 3778 } 3779 3780 static void __exit ena_cleanup(void) 3781 { 3782 pci_unregister_driver(&ena_pci_driver); 3783 3784 if (ena_wq) { 3785 destroy_workqueue(ena_wq); 3786 ena_wq = NULL; 3787 } 3788 } 3789 3790 /****************************************************************************** 3791 ******************************** AENQ Handlers ******************************* 3792 *****************************************************************************/ 3793 /* ena_update_on_link_change: 3794 * Notify the network interface about the change in link status 3795 */ 3796 static void ena_update_on_link_change(void *adapter_data, 3797 struct ena_admin_aenq_entry *aenq_e) 3798 { 3799 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 3800 struct ena_admin_aenq_link_change_desc *aenq_desc = 3801 (struct ena_admin_aenq_link_change_desc *)aenq_e; 3802 int status = aenq_desc->flags & 3803 ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; 3804 3805 if (status) { 3806 netdev_dbg(adapter->netdev, "%s\n", __func__); 3807 set_bit(ENA_FLAG_LINK_UP, &adapter->flags); 3808 if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags)) 3809 netif_carrier_on(adapter->netdev); 3810 } else { 3811 clear_bit(ENA_FLAG_LINK_UP, &adapter->flags); 3812 netif_carrier_off(adapter->netdev); 3813 } 3814 } 3815 3816 static void ena_keep_alive_wd(void *adapter_data, 3817 struct ena_admin_aenq_entry *aenq_e) 3818 { 3819 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 3820 struct ena_admin_aenq_keep_alive_desc *desc; 3821 u64 rx_drops; 3822 3823 desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; 3824 adapter->last_keep_alive_jiffies = jiffies; 3825 3826 rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low; 3827 3828 u64_stats_update_begin(&adapter->syncp); 3829 adapter->dev_stats.rx_drops = rx_drops; 3830 u64_stats_update_end(&adapter->syncp); 3831 } 3832 3833 static void ena_notification(void *adapter_data, 3834 struct ena_admin_aenq_entry *aenq_e) 3835 { 3836 struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; 3837 struct ena_admin_ena_hw_hints *hints; 3838 3839 WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, 3840 "Invalid group(%x) expected %x\n", 3841 aenq_e->aenq_common_desc.group, 3842 ENA_ADMIN_NOTIFICATION); 3843 3844 switch (aenq_e->aenq_common_desc.syndrom) { 3845 case ENA_ADMIN_UPDATE_HINTS: 3846 hints = (struct ena_admin_ena_hw_hints *) 3847 (&aenq_e->inline_data_w4); 3848 ena_update_hints(adapter, hints); 3849 break; 3850 default: 3851 netif_err(adapter, drv, adapter->netdev, 3852 "Invalid aenq notification link state %d\n", 3853 aenq_e->aenq_common_desc.syndrom); 3854 } 3855 } 3856 3857 /* This handler will called for unknown event group or unimplemented handlers*/ 3858 static void unimplemented_aenq_handler(void *data, 3859 struct ena_admin_aenq_entry *aenq_e) 3860 { 3861 struct ena_adapter *adapter = (struct ena_adapter *)data; 3862 3863 netif_err(adapter, drv, adapter->netdev, 3864 "Unknown event was received or event with unimplemented handler\n"); 3865 } 3866 3867 static struct ena_aenq_handlers aenq_handlers = { 3868 .handlers = { 3869 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, 3870 [ENA_ADMIN_NOTIFICATION] = ena_notification, 3871 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, 3872 }, 3873 .unimplemented_handler = unimplemented_aenq_handler 3874 }; 3875 3876 module_init(ena_init); 3877 module_exit(ena_cleanup); 3878