xref: /openbmc/linux/drivers/net/dsa/mv88e6xxx/chip.c (revision 2bbb33be037361882527c9c762cb9fc928ab0ff7)
1 /*
2  * Marvell 88e6xxx Ethernet switch single-chip support
3  *
4  * Copyright (c) 2008 Marvell Semiconductor
5  *
6  * Copyright (c) 2015 CMC Electronics, Inc.
7  *	Added support for VLAN Table Unit operations
8  *
9  * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 #include <linux/delay.h>
18 #include <linux/etherdevice.h>
19 #include <linux/ethtool.h>
20 #include <linux/if_bridge.h>
21 #include <linux/jiffies.h>
22 #include <linux/list.h>
23 #include <linux/mdio.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/of_mdio.h>
27 #include <linux/netdevice.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/phy.h>
30 #include <net/dsa.h>
31 #include <net/switchdev.h>
32 #include "mv88e6xxx.h"
33 
34 static void assert_reg_lock(struct mv88e6xxx_chip *chip)
35 {
36 	if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
37 		dev_err(chip->dev, "Switch registers lock not held!\n");
38 		dump_stack();
39 	}
40 }
41 
42 /* The switch ADDR[4:1] configuration pins define the chip SMI device address
43  * (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
44  *
45  * When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
46  * is the only device connected to the SMI master. In this mode it responds to
47  * all 32 possible SMI addresses, and thus maps directly the internal devices.
48  *
49  * When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
50  * multiple devices to share the SMI interface. In this mode it responds to only
51  * 2 registers, used to indirectly access the internal SMI devices.
52  */
53 
54 static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
55 			      int addr, int reg, u16 *val)
56 {
57 	if (!chip->smi_ops)
58 		return -EOPNOTSUPP;
59 
60 	return chip->smi_ops->read(chip, addr, reg, val);
61 }
62 
63 static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
64 			       int addr, int reg, u16 val)
65 {
66 	if (!chip->smi_ops)
67 		return -EOPNOTSUPP;
68 
69 	return chip->smi_ops->write(chip, addr, reg, val);
70 }
71 
72 static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
73 					  int addr, int reg, u16 *val)
74 {
75 	int ret;
76 
77 	ret = mdiobus_read_nested(chip->bus, addr, reg);
78 	if (ret < 0)
79 		return ret;
80 
81 	*val = ret & 0xffff;
82 
83 	return 0;
84 }
85 
86 static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
87 					   int addr, int reg, u16 val)
88 {
89 	int ret;
90 
91 	ret = mdiobus_write_nested(chip->bus, addr, reg, val);
92 	if (ret < 0)
93 		return ret;
94 
95 	return 0;
96 }
97 
98 static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
99 	.read = mv88e6xxx_smi_single_chip_read,
100 	.write = mv88e6xxx_smi_single_chip_write,
101 };
102 
103 static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
104 {
105 	int ret;
106 	int i;
107 
108 	for (i = 0; i < 16; i++) {
109 		ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
110 		if (ret < 0)
111 			return ret;
112 
113 		if ((ret & SMI_CMD_BUSY) == 0)
114 			return 0;
115 	}
116 
117 	return -ETIMEDOUT;
118 }
119 
120 static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
121 					 int addr, int reg, u16 *val)
122 {
123 	int ret;
124 
125 	/* Wait for the bus to become free. */
126 	ret = mv88e6xxx_smi_multi_chip_wait(chip);
127 	if (ret < 0)
128 		return ret;
129 
130 	/* Transmit the read command. */
131 	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
132 				   SMI_CMD_OP_22_READ | (addr << 5) | reg);
133 	if (ret < 0)
134 		return ret;
135 
136 	/* Wait for the read command to complete. */
137 	ret = mv88e6xxx_smi_multi_chip_wait(chip);
138 	if (ret < 0)
139 		return ret;
140 
141 	/* Read the data. */
142 	ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
143 	if (ret < 0)
144 		return ret;
145 
146 	*val = ret & 0xffff;
147 
148 	return 0;
149 }
150 
151 static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
152 					  int addr, int reg, u16 val)
153 {
154 	int ret;
155 
156 	/* Wait for the bus to become free. */
157 	ret = mv88e6xxx_smi_multi_chip_wait(chip);
158 	if (ret < 0)
159 		return ret;
160 
161 	/* Transmit the data to write. */
162 	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
163 	if (ret < 0)
164 		return ret;
165 
166 	/* Transmit the write command. */
167 	ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
168 				   SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
169 	if (ret < 0)
170 		return ret;
171 
172 	/* Wait for the write command to complete. */
173 	ret = mv88e6xxx_smi_multi_chip_wait(chip);
174 	if (ret < 0)
175 		return ret;
176 
177 	return 0;
178 }
179 
180 static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
181 	.read = mv88e6xxx_smi_multi_chip_read,
182 	.write = mv88e6xxx_smi_multi_chip_write,
183 };
184 
185 static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
186 			  int addr, int reg, u16 *val)
187 {
188 	int err;
189 
190 	assert_reg_lock(chip);
191 
192 	err = mv88e6xxx_smi_read(chip, addr, reg, val);
193 	if (err)
194 		return err;
195 
196 	dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
197 		addr, reg, *val);
198 
199 	return 0;
200 }
201 
202 static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
203 			   int addr, int reg, u16 val)
204 {
205 	int err;
206 
207 	assert_reg_lock(chip);
208 
209 	err = mv88e6xxx_smi_write(chip, addr, reg, val);
210 	if (err)
211 		return err;
212 
213 	dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
214 		addr, reg, val);
215 
216 	return 0;
217 }
218 
219 static int mv88e6xxx_phy_read(struct mv88e6xxx_chip *chip, int phy,
220 			      int reg, u16 *val)
221 {
222 	int addr = phy; /* PHY devices addresses start at 0x0 */
223 
224 	if (!chip->phy_ops)
225 		return -EOPNOTSUPP;
226 
227 	return chip->phy_ops->read(chip, addr, reg, val);
228 }
229 
230 static int mv88e6xxx_phy_write(struct mv88e6xxx_chip *chip, int phy,
231 			       int reg, u16 val)
232 {
233 	int addr = phy; /* PHY devices addresses start at 0x0 */
234 
235 	if (!chip->phy_ops)
236 		return -EOPNOTSUPP;
237 
238 	return chip->phy_ops->write(chip, addr, reg, val);
239 }
240 
241 static int mv88e6xxx_phy_page_get(struct mv88e6xxx_chip *chip, int phy, u8 page)
242 {
243 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_PHY_PAGE))
244 		return -EOPNOTSUPP;
245 
246 	return mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
247 }
248 
249 static void mv88e6xxx_phy_page_put(struct mv88e6xxx_chip *chip, int phy)
250 {
251 	int err;
252 
253 	/* Restore PHY page Copper 0x0 for access via the registered MDIO bus */
254 	err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, PHY_PAGE_COPPER);
255 	if (unlikely(err)) {
256 		dev_err(chip->dev, "failed to restore PHY %d page Copper (%d)\n",
257 			phy, err);
258 	}
259 }
260 
261 static int mv88e6xxx_phy_page_read(struct mv88e6xxx_chip *chip, int phy,
262 				   u8 page, int reg, u16 *val)
263 {
264 	int err;
265 
266 	/* There is no paging for registers 22 */
267 	if (reg == PHY_PAGE)
268 		return -EINVAL;
269 
270 	err = mv88e6xxx_phy_page_get(chip, phy, page);
271 	if (!err) {
272 		err = mv88e6xxx_phy_read(chip, phy, reg, val);
273 		mv88e6xxx_phy_page_put(chip, phy);
274 	}
275 
276 	return err;
277 }
278 
279 static int mv88e6xxx_phy_page_write(struct mv88e6xxx_chip *chip, int phy,
280 				    u8 page, int reg, u16 val)
281 {
282 	int err;
283 
284 	/* There is no paging for registers 22 */
285 	if (reg == PHY_PAGE)
286 		return -EINVAL;
287 
288 	err = mv88e6xxx_phy_page_get(chip, phy, page);
289 	if (!err) {
290 		err = mv88e6xxx_phy_write(chip, phy, PHY_PAGE, page);
291 		mv88e6xxx_phy_page_put(chip, phy);
292 	}
293 
294 	return err;
295 }
296 
297 static int mv88e6xxx_serdes_read(struct mv88e6xxx_chip *chip, int reg, u16 *val)
298 {
299 	return mv88e6xxx_phy_page_read(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
300 				       reg, val);
301 }
302 
303 static int mv88e6xxx_serdes_write(struct mv88e6xxx_chip *chip, int reg, u16 val)
304 {
305 	return mv88e6xxx_phy_page_write(chip, ADDR_SERDES, SERDES_PAGE_FIBER,
306 					reg, val);
307 }
308 
309 static int mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int addr, int reg,
310 			  u16 mask)
311 {
312 	int i;
313 
314 	for (i = 0; i < 16; i++) {
315 		u16 val;
316 		int err;
317 
318 		err = mv88e6xxx_read(chip, addr, reg, &val);
319 		if (err)
320 			return err;
321 
322 		if (!(val & mask))
323 			return 0;
324 
325 		usleep_range(1000, 2000);
326 	}
327 
328 	dev_err(chip->dev, "Timeout while waiting for switch\n");
329 	return -ETIMEDOUT;
330 }
331 
332 /* Indirect write to single pointer-data register with an Update bit */
333 static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
334 			    u16 update)
335 {
336 	u16 val;
337 	int err;
338 
339 	/* Wait until the previous operation is completed */
340 	err = mv88e6xxx_wait(chip, addr, reg, BIT(15));
341 	if (err)
342 		return err;
343 
344 	/* Set the Update bit to trigger a write operation */
345 	val = BIT(15) | update;
346 
347 	return mv88e6xxx_write(chip, addr, reg, val);
348 }
349 
350 static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
351 {
352 	u16 val;
353 	int err;
354 
355 	err = mv88e6xxx_read(chip, addr, reg, &val);
356 	if (err)
357 		return err;
358 
359 	return val;
360 }
361 
362 static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
363 				int reg, u16 val)
364 {
365 	return mv88e6xxx_write(chip, addr, reg, val);
366 }
367 
368 static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
369 {
370 	int ret;
371 	int i;
372 
373 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
374 	if (ret < 0)
375 		return ret;
376 
377 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
378 				   ret & ~GLOBAL_CONTROL_PPU_ENABLE);
379 	if (ret)
380 		return ret;
381 
382 	for (i = 0; i < 16; i++) {
383 		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
384 		if (ret < 0)
385 			return ret;
386 
387 		usleep_range(1000, 2000);
388 		if ((ret & GLOBAL_STATUS_PPU_MASK) !=
389 		    GLOBAL_STATUS_PPU_POLLING)
390 			return 0;
391 	}
392 
393 	return -ETIMEDOUT;
394 }
395 
396 static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
397 {
398 	int ret, err, i;
399 
400 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
401 	if (ret < 0)
402 		return ret;
403 
404 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
405 				   ret | GLOBAL_CONTROL_PPU_ENABLE);
406 	if (err)
407 		return err;
408 
409 	for (i = 0; i < 16; i++) {
410 		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
411 		if (ret < 0)
412 			return ret;
413 
414 		usleep_range(1000, 2000);
415 		if ((ret & GLOBAL_STATUS_PPU_MASK) ==
416 		    GLOBAL_STATUS_PPU_POLLING)
417 			return 0;
418 	}
419 
420 	return -ETIMEDOUT;
421 }
422 
423 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
424 {
425 	struct mv88e6xxx_chip *chip;
426 
427 	chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
428 
429 	mutex_lock(&chip->reg_lock);
430 
431 	if (mutex_trylock(&chip->ppu_mutex)) {
432 		if (mv88e6xxx_ppu_enable(chip) == 0)
433 			chip->ppu_disabled = 0;
434 		mutex_unlock(&chip->ppu_mutex);
435 	}
436 
437 	mutex_unlock(&chip->reg_lock);
438 }
439 
440 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
441 {
442 	struct mv88e6xxx_chip *chip = (void *)_ps;
443 
444 	schedule_work(&chip->ppu_work);
445 }
446 
447 static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
448 {
449 	int ret;
450 
451 	mutex_lock(&chip->ppu_mutex);
452 
453 	/* If the PHY polling unit is enabled, disable it so that
454 	 * we can access the PHY registers.  If it was already
455 	 * disabled, cancel the timer that is going to re-enable
456 	 * it.
457 	 */
458 	if (!chip->ppu_disabled) {
459 		ret = mv88e6xxx_ppu_disable(chip);
460 		if (ret < 0) {
461 			mutex_unlock(&chip->ppu_mutex);
462 			return ret;
463 		}
464 		chip->ppu_disabled = 1;
465 	} else {
466 		del_timer(&chip->ppu_timer);
467 		ret = 0;
468 	}
469 
470 	return ret;
471 }
472 
473 static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
474 {
475 	/* Schedule a timer to re-enable the PHY polling unit. */
476 	mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
477 	mutex_unlock(&chip->ppu_mutex);
478 }
479 
480 static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
481 {
482 	mutex_init(&chip->ppu_mutex);
483 	INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
484 	init_timer(&chip->ppu_timer);
485 	chip->ppu_timer.data = (unsigned long)chip;
486 	chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
487 }
488 
489 static int mv88e6xxx_phy_ppu_read(struct mv88e6xxx_chip *chip, int addr,
490 				  int reg, u16 *val)
491 {
492 	int err;
493 
494 	err = mv88e6xxx_ppu_access_get(chip);
495 	if (!err) {
496 		err = mv88e6xxx_read(chip, addr, reg, val);
497 		mv88e6xxx_ppu_access_put(chip);
498 	}
499 
500 	return err;
501 }
502 
503 static int mv88e6xxx_phy_ppu_write(struct mv88e6xxx_chip *chip, int addr,
504 				   int reg, u16 val)
505 {
506 	int err;
507 
508 	err = mv88e6xxx_ppu_access_get(chip);
509 	if (!err) {
510 		err = mv88e6xxx_write(chip, addr, reg, val);
511 		mv88e6xxx_ppu_access_put(chip);
512 	}
513 
514 	return err;
515 }
516 
517 static const struct mv88e6xxx_ops mv88e6xxx_phy_ppu_ops = {
518 	.read = mv88e6xxx_phy_ppu_read,
519 	.write = mv88e6xxx_phy_ppu_write,
520 };
521 
522 static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
523 {
524 	return chip->info->family == MV88E6XXX_FAMILY_6065;
525 }
526 
527 static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
528 {
529 	return chip->info->family == MV88E6XXX_FAMILY_6095;
530 }
531 
532 static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
533 {
534 	return chip->info->family == MV88E6XXX_FAMILY_6097;
535 }
536 
537 static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
538 {
539 	return chip->info->family == MV88E6XXX_FAMILY_6165;
540 }
541 
542 static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
543 {
544 	return chip->info->family == MV88E6XXX_FAMILY_6185;
545 }
546 
547 static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
548 {
549 	return chip->info->family == MV88E6XXX_FAMILY_6320;
550 }
551 
552 static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
553 {
554 	return chip->info->family == MV88E6XXX_FAMILY_6351;
555 }
556 
557 static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
558 {
559 	return chip->info->family == MV88E6XXX_FAMILY_6352;
560 }
561 
562 static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
563 {
564 	return chip->info->num_databases;
565 }
566 
567 static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
568 {
569 	/* Does the device have dedicated FID registers for ATU and VTU ops? */
570 	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
571 	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
572 		return true;
573 
574 	return false;
575 }
576 
577 /* We expect the switch to perform auto negotiation if there is a real
578  * phy. However, in the case of a fixed link phy, we force the port
579  * settings from the fixed link settings.
580  */
581 static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
582 				  struct phy_device *phydev)
583 {
584 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
585 	u32 reg;
586 	int ret;
587 
588 	if (!phy_is_pseudo_fixed_link(phydev))
589 		return;
590 
591 	mutex_lock(&chip->reg_lock);
592 
593 	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
594 	if (ret < 0)
595 		goto out;
596 
597 	reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
598 		      PORT_PCS_CTRL_FORCE_LINK |
599 		      PORT_PCS_CTRL_DUPLEX_FULL |
600 		      PORT_PCS_CTRL_FORCE_DUPLEX |
601 		      PORT_PCS_CTRL_UNFORCED);
602 
603 	reg |= PORT_PCS_CTRL_FORCE_LINK;
604 	if (phydev->link)
605 		reg |= PORT_PCS_CTRL_LINK_UP;
606 
607 	if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
608 		goto out;
609 
610 	switch (phydev->speed) {
611 	case SPEED_1000:
612 		reg |= PORT_PCS_CTRL_1000;
613 		break;
614 	case SPEED_100:
615 		reg |= PORT_PCS_CTRL_100;
616 		break;
617 	case SPEED_10:
618 		reg |= PORT_PCS_CTRL_10;
619 		break;
620 	default:
621 		pr_info("Unknown speed");
622 		goto out;
623 	}
624 
625 	reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
626 	if (phydev->duplex == DUPLEX_FULL)
627 		reg |= PORT_PCS_CTRL_DUPLEX_FULL;
628 
629 	if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
630 	    (port >= chip->info->num_ports - 2)) {
631 		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
632 			reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
633 		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
634 			reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
635 		if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
636 			reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
637 				PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
638 	}
639 	_mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
640 
641 out:
642 	mutex_unlock(&chip->reg_lock);
643 }
644 
645 static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
646 {
647 	int ret;
648 	int i;
649 
650 	for (i = 0; i < 10; i++) {
651 		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
652 		if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
653 			return 0;
654 	}
655 
656 	return -ETIMEDOUT;
657 }
658 
659 static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
660 {
661 	int ret;
662 
663 	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
664 		port = (port + 1) << 5;
665 
666 	/* Snapshot the hardware statistics counters for this port. */
667 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
668 				   GLOBAL_STATS_OP_CAPTURE_PORT |
669 				   GLOBAL_STATS_OP_HIST_RX_TX | port);
670 	if (ret < 0)
671 		return ret;
672 
673 	/* Wait for the snapshotting to complete. */
674 	ret = _mv88e6xxx_stats_wait(chip);
675 	if (ret < 0)
676 		return ret;
677 
678 	return 0;
679 }
680 
681 static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
682 				  int stat, u32 *val)
683 {
684 	u32 _val;
685 	int ret;
686 
687 	*val = 0;
688 
689 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
690 				   GLOBAL_STATS_OP_READ_CAPTURED |
691 				   GLOBAL_STATS_OP_HIST_RX_TX | stat);
692 	if (ret < 0)
693 		return;
694 
695 	ret = _mv88e6xxx_stats_wait(chip);
696 	if (ret < 0)
697 		return;
698 
699 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
700 	if (ret < 0)
701 		return;
702 
703 	_val = ret << 16;
704 
705 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
706 	if (ret < 0)
707 		return;
708 
709 	*val = _val | ret;
710 }
711 
712 static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
713 	{ "in_good_octets",	8, 0x00, BANK0, },
714 	{ "in_bad_octets",	4, 0x02, BANK0, },
715 	{ "in_unicast",		4, 0x04, BANK0, },
716 	{ "in_broadcasts",	4, 0x06, BANK0, },
717 	{ "in_multicasts",	4, 0x07, BANK0, },
718 	{ "in_pause",		4, 0x16, BANK0, },
719 	{ "in_undersize",	4, 0x18, BANK0, },
720 	{ "in_fragments",	4, 0x19, BANK0, },
721 	{ "in_oversize",	4, 0x1a, BANK0, },
722 	{ "in_jabber",		4, 0x1b, BANK0, },
723 	{ "in_rx_error",	4, 0x1c, BANK0, },
724 	{ "in_fcs_error",	4, 0x1d, BANK0, },
725 	{ "out_octets",		8, 0x0e, BANK0, },
726 	{ "out_unicast",	4, 0x10, BANK0, },
727 	{ "out_broadcasts",	4, 0x13, BANK0, },
728 	{ "out_multicasts",	4, 0x12, BANK0, },
729 	{ "out_pause",		4, 0x15, BANK0, },
730 	{ "excessive",		4, 0x11, BANK0, },
731 	{ "collisions",		4, 0x1e, BANK0, },
732 	{ "deferred",		4, 0x05, BANK0, },
733 	{ "single",		4, 0x14, BANK0, },
734 	{ "multiple",		4, 0x17, BANK0, },
735 	{ "out_fcs_error",	4, 0x03, BANK0, },
736 	{ "late",		4, 0x1f, BANK0, },
737 	{ "hist_64bytes",	4, 0x08, BANK0, },
738 	{ "hist_65_127bytes",	4, 0x09, BANK0, },
739 	{ "hist_128_255bytes",	4, 0x0a, BANK0, },
740 	{ "hist_256_511bytes",	4, 0x0b, BANK0, },
741 	{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
742 	{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
743 	{ "sw_in_discards",	4, 0x10, PORT, },
744 	{ "sw_in_filtered",	2, 0x12, PORT, },
745 	{ "sw_out_filtered",	2, 0x13, PORT, },
746 	{ "in_discards",	4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
747 	{ "in_filtered",	4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
748 	{ "in_accepted",	4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
749 	{ "in_bad_accepted",	4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
750 	{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
751 	{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
752 	{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
753 	{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
754 	{ "tcam_counter_0",	4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
755 	{ "tcam_counter_1",	4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
756 	{ "tcam_counter_2",	4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
757 	{ "tcam_counter_3",	4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
758 	{ "in_da_unknown",	4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
759 	{ "in_management",	4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
760 	{ "out_queue_0",	4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
761 	{ "out_queue_1",	4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
762 	{ "out_queue_2",	4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
763 	{ "out_queue_3",	4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
764 	{ "out_queue_4",	4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
765 	{ "out_queue_5",	4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
766 	{ "out_queue_6",	4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
767 	{ "out_queue_7",	4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
768 	{ "out_cut_through",	4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
769 	{ "out_octets_a",	4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
770 	{ "out_octets_b",	4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
771 	{ "out_management",	4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
772 };
773 
774 static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
775 			       struct mv88e6xxx_hw_stat *stat)
776 {
777 	switch (stat->type) {
778 	case BANK0:
779 		return true;
780 	case BANK1:
781 		return mv88e6xxx_6320_family(chip);
782 	case PORT:
783 		return mv88e6xxx_6095_family(chip) ||
784 			mv88e6xxx_6185_family(chip) ||
785 			mv88e6xxx_6097_family(chip) ||
786 			mv88e6xxx_6165_family(chip) ||
787 			mv88e6xxx_6351_family(chip) ||
788 			mv88e6xxx_6352_family(chip);
789 	}
790 	return false;
791 }
792 
793 static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
794 					    struct mv88e6xxx_hw_stat *s,
795 					    int port)
796 {
797 	u32 low;
798 	u32 high = 0;
799 	int ret;
800 	u64 value;
801 
802 	switch (s->type) {
803 	case PORT:
804 		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
805 		if (ret < 0)
806 			return UINT64_MAX;
807 
808 		low = ret;
809 		if (s->sizeof_stat == 4) {
810 			ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
811 						  s->reg + 1);
812 			if (ret < 0)
813 				return UINT64_MAX;
814 			high = ret;
815 		}
816 		break;
817 	case BANK0:
818 	case BANK1:
819 		_mv88e6xxx_stats_read(chip, s->reg, &low);
820 		if (s->sizeof_stat == 8)
821 			_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
822 	}
823 	value = (((u64)high) << 16) | low;
824 	return value;
825 }
826 
827 static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
828 				  uint8_t *data)
829 {
830 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
831 	struct mv88e6xxx_hw_stat *stat;
832 	int i, j;
833 
834 	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
835 		stat = &mv88e6xxx_hw_stats[i];
836 		if (mv88e6xxx_has_stat(chip, stat)) {
837 			memcpy(data + j * ETH_GSTRING_LEN, stat->string,
838 			       ETH_GSTRING_LEN);
839 			j++;
840 		}
841 	}
842 }
843 
844 static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
845 {
846 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
847 	struct mv88e6xxx_hw_stat *stat;
848 	int i, j;
849 
850 	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
851 		stat = &mv88e6xxx_hw_stats[i];
852 		if (mv88e6xxx_has_stat(chip, stat))
853 			j++;
854 	}
855 	return j;
856 }
857 
858 static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
859 					uint64_t *data)
860 {
861 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
862 	struct mv88e6xxx_hw_stat *stat;
863 	int ret;
864 	int i, j;
865 
866 	mutex_lock(&chip->reg_lock);
867 
868 	ret = _mv88e6xxx_stats_snapshot(chip, port);
869 	if (ret < 0) {
870 		mutex_unlock(&chip->reg_lock);
871 		return;
872 	}
873 	for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
874 		stat = &mv88e6xxx_hw_stats[i];
875 		if (mv88e6xxx_has_stat(chip, stat)) {
876 			data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
877 			j++;
878 		}
879 	}
880 
881 	mutex_unlock(&chip->reg_lock);
882 }
883 
884 static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
885 {
886 	return 32 * sizeof(u16);
887 }
888 
889 static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
890 			       struct ethtool_regs *regs, void *_p)
891 {
892 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
893 	u16 *p = _p;
894 	int i;
895 
896 	regs->version = 0;
897 
898 	memset(p, 0xff, 32 * sizeof(u16));
899 
900 	mutex_lock(&chip->reg_lock);
901 
902 	for (i = 0; i < 32; i++) {
903 		int ret;
904 
905 		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
906 		if (ret >= 0)
907 			p[i] = ret;
908 	}
909 
910 	mutex_unlock(&chip->reg_lock);
911 }
912 
913 static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
914 {
915 	return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
916 			      GLOBAL_ATU_OP_BUSY);
917 }
918 
919 static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
920 			     struct ethtool_eee *e)
921 {
922 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
923 	u16 reg;
924 	int err;
925 
926 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
927 		return -EOPNOTSUPP;
928 
929 	mutex_lock(&chip->reg_lock);
930 
931 	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
932 	if (err)
933 		goto out;
934 
935 	e->eee_enabled = !!(reg & 0x0200);
936 	e->tx_lpi_enabled = !!(reg & 0x0100);
937 
938 	err = mv88e6xxx_read(chip, REG_PORT(port), PORT_STATUS, &reg);
939 	if (err)
940 		goto out;
941 
942 	e->eee_active = !!(reg & PORT_STATUS_EEE);
943 out:
944 	mutex_unlock(&chip->reg_lock);
945 
946 	return err;
947 }
948 
949 static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
950 			     struct phy_device *phydev, struct ethtool_eee *e)
951 {
952 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
953 	u16 reg;
954 	int err;
955 
956 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
957 		return -EOPNOTSUPP;
958 
959 	mutex_lock(&chip->reg_lock);
960 
961 	err = mv88e6xxx_phy_read(chip, port, 16, &reg);
962 	if (err)
963 		goto out;
964 
965 	reg &= ~0x0300;
966 	if (e->eee_enabled)
967 		reg |= 0x0200;
968 	if (e->tx_lpi_enabled)
969 		reg |= 0x0100;
970 
971 	err = mv88e6xxx_phy_write(chip, port, 16, reg);
972 out:
973 	mutex_unlock(&chip->reg_lock);
974 
975 	return err;
976 }
977 
978 static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
979 {
980 	int ret;
981 
982 	if (mv88e6xxx_has_fid_reg(chip)) {
983 		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
984 					   fid);
985 		if (ret < 0)
986 			return ret;
987 	} else if (mv88e6xxx_num_databases(chip) == 256) {
988 		/* ATU DBNum[7:4] are located in ATU Control 15:12 */
989 		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
990 		if (ret < 0)
991 			return ret;
992 
993 		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
994 					   (ret & 0xfff) |
995 					   ((fid << 8) & 0xf000));
996 		if (ret < 0)
997 			return ret;
998 
999 		/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
1000 		cmd |= fid & 0xf;
1001 	}
1002 
1003 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
1004 	if (ret < 0)
1005 		return ret;
1006 
1007 	return _mv88e6xxx_atu_wait(chip);
1008 }
1009 
1010 static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
1011 				     struct mv88e6xxx_atu_entry *entry)
1012 {
1013 	u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
1014 
1015 	if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
1016 		unsigned int mask, shift;
1017 
1018 		if (entry->trunk) {
1019 			data |= GLOBAL_ATU_DATA_TRUNK;
1020 			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
1021 			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
1022 		} else {
1023 			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
1024 			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
1025 		}
1026 
1027 		data |= (entry->portv_trunkid << shift) & mask;
1028 	}
1029 
1030 	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
1031 }
1032 
1033 static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
1034 				     struct mv88e6xxx_atu_entry *entry,
1035 				     bool static_too)
1036 {
1037 	int op;
1038 	int err;
1039 
1040 	err = _mv88e6xxx_atu_wait(chip);
1041 	if (err)
1042 		return err;
1043 
1044 	err = _mv88e6xxx_atu_data_write(chip, entry);
1045 	if (err)
1046 		return err;
1047 
1048 	if (entry->fid) {
1049 		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
1050 			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
1051 	} else {
1052 		op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
1053 			GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
1054 	}
1055 
1056 	return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
1057 }
1058 
1059 static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
1060 				u16 fid, bool static_too)
1061 {
1062 	struct mv88e6xxx_atu_entry entry = {
1063 		.fid = fid,
1064 		.state = 0, /* EntryState bits must be 0 */
1065 	};
1066 
1067 	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1068 }
1069 
1070 static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
1071 			       int from_port, int to_port, bool static_too)
1072 {
1073 	struct mv88e6xxx_atu_entry entry = {
1074 		.trunk = false,
1075 		.fid = fid,
1076 	};
1077 
1078 	/* EntryState bits must be 0xF */
1079 	entry.state = GLOBAL_ATU_DATA_STATE_MASK;
1080 
1081 	/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
1082 	entry.portv_trunkid = (to_port & 0x0f) << 4;
1083 	entry.portv_trunkid |= from_port & 0x0f;
1084 
1085 	return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
1086 }
1087 
1088 static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
1089 				 int port, bool static_too)
1090 {
1091 	/* Destination port 0xF means remove the entries */
1092 	return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
1093 }
1094 
1095 static const char * const mv88e6xxx_port_state_names[] = {
1096 	[PORT_CONTROL_STATE_DISABLED] = "Disabled",
1097 	[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
1098 	[PORT_CONTROL_STATE_LEARNING] = "Learning",
1099 	[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
1100 };
1101 
1102 static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
1103 				 u8 state)
1104 {
1105 	struct dsa_switch *ds = chip->ds;
1106 	int reg, ret = 0;
1107 	u8 oldstate;
1108 
1109 	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
1110 	if (reg < 0)
1111 		return reg;
1112 
1113 	oldstate = reg & PORT_CONTROL_STATE_MASK;
1114 
1115 	if (oldstate != state) {
1116 		/* Flush forwarding database if we're moving a port
1117 		 * from Learning or Forwarding state to Disabled or
1118 		 * Blocking or Listening state.
1119 		 */
1120 		if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
1121 		     oldstate == PORT_CONTROL_STATE_FORWARDING) &&
1122 		    (state == PORT_CONTROL_STATE_DISABLED ||
1123 		     state == PORT_CONTROL_STATE_BLOCKING)) {
1124 			ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
1125 			if (ret)
1126 				return ret;
1127 		}
1128 
1129 		reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
1130 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
1131 					   reg);
1132 		if (ret)
1133 			return ret;
1134 
1135 		netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
1136 			   mv88e6xxx_port_state_names[state],
1137 			   mv88e6xxx_port_state_names[oldstate]);
1138 	}
1139 
1140 	return ret;
1141 }
1142 
1143 static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
1144 {
1145 	struct net_device *bridge = chip->ports[port].bridge_dev;
1146 	const u16 mask = (1 << chip->info->num_ports) - 1;
1147 	struct dsa_switch *ds = chip->ds;
1148 	u16 output_ports = 0;
1149 	int reg;
1150 	int i;
1151 
1152 	/* allow CPU port or DSA link(s) to send frames to every port */
1153 	if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
1154 		output_ports = mask;
1155 	} else {
1156 		for (i = 0; i < chip->info->num_ports; ++i) {
1157 			/* allow sending frames to every group member */
1158 			if (bridge && chip->ports[i].bridge_dev == bridge)
1159 				output_ports |= BIT(i);
1160 
1161 			/* allow sending frames to CPU port and DSA link(s) */
1162 			if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1163 				output_ports |= BIT(i);
1164 		}
1165 	}
1166 
1167 	/* prevent frames from going back out of the port they came in on */
1168 	output_ports &= ~BIT(port);
1169 
1170 	reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1171 	if (reg < 0)
1172 		return reg;
1173 
1174 	reg &= ~mask;
1175 	reg |= output_ports & mask;
1176 
1177 	return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
1178 }
1179 
1180 static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
1181 					 u8 state)
1182 {
1183 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1184 	int stp_state;
1185 	int err;
1186 
1187 	switch (state) {
1188 	case BR_STATE_DISABLED:
1189 		stp_state = PORT_CONTROL_STATE_DISABLED;
1190 		break;
1191 	case BR_STATE_BLOCKING:
1192 	case BR_STATE_LISTENING:
1193 		stp_state = PORT_CONTROL_STATE_BLOCKING;
1194 		break;
1195 	case BR_STATE_LEARNING:
1196 		stp_state = PORT_CONTROL_STATE_LEARNING;
1197 		break;
1198 	case BR_STATE_FORWARDING:
1199 	default:
1200 		stp_state = PORT_CONTROL_STATE_FORWARDING;
1201 		break;
1202 	}
1203 
1204 	mutex_lock(&chip->reg_lock);
1205 	err = _mv88e6xxx_port_state(chip, port, stp_state);
1206 	mutex_unlock(&chip->reg_lock);
1207 
1208 	if (err)
1209 		netdev_err(ds->ports[port].netdev,
1210 			   "failed to update state to %s\n",
1211 			   mv88e6xxx_port_state_names[stp_state]);
1212 }
1213 
1214 static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
1215 				u16 *new, u16 *old)
1216 {
1217 	struct dsa_switch *ds = chip->ds;
1218 	u16 pvid;
1219 	int ret;
1220 
1221 	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
1222 	if (ret < 0)
1223 		return ret;
1224 
1225 	pvid = ret & PORT_DEFAULT_VLAN_MASK;
1226 
1227 	if (new) {
1228 		ret &= ~PORT_DEFAULT_VLAN_MASK;
1229 		ret |= *new & PORT_DEFAULT_VLAN_MASK;
1230 
1231 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
1232 					   PORT_DEFAULT_VLAN, ret);
1233 		if (ret < 0)
1234 			return ret;
1235 
1236 		netdev_dbg(ds->ports[port].netdev,
1237 			   "DefaultVID %d (was %d)\n", *new, pvid);
1238 	}
1239 
1240 	if (old)
1241 		*old = pvid;
1242 
1243 	return 0;
1244 }
1245 
1246 static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
1247 				    int port, u16 *pvid)
1248 {
1249 	return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
1250 }
1251 
1252 static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
1253 				    int port, u16 pvid)
1254 {
1255 	return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
1256 }
1257 
1258 static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
1259 {
1260 	return mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
1261 			      GLOBAL_VTU_OP_BUSY);
1262 }
1263 
1264 static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
1265 {
1266 	int ret;
1267 
1268 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
1269 	if (ret < 0)
1270 		return ret;
1271 
1272 	return _mv88e6xxx_vtu_wait(chip);
1273 }
1274 
1275 static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
1276 {
1277 	int ret;
1278 
1279 	ret = _mv88e6xxx_vtu_wait(chip);
1280 	if (ret < 0)
1281 		return ret;
1282 
1283 	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
1284 }
1285 
1286 static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
1287 					struct mv88e6xxx_vtu_stu_entry *entry,
1288 					unsigned int nibble_offset)
1289 {
1290 	u16 regs[3];
1291 	int i;
1292 	int ret;
1293 
1294 	for (i = 0; i < 3; ++i) {
1295 		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1296 					  GLOBAL_VTU_DATA_0_3 + i);
1297 		if (ret < 0)
1298 			return ret;
1299 
1300 		regs[i] = ret;
1301 	}
1302 
1303 	for (i = 0; i < chip->info->num_ports; ++i) {
1304 		unsigned int shift = (i % 4) * 4 + nibble_offset;
1305 		u16 reg = regs[i / 4];
1306 
1307 		entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
1314 				   struct mv88e6xxx_vtu_stu_entry *entry)
1315 {
1316 	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
1317 }
1318 
1319 static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
1320 				   struct mv88e6xxx_vtu_stu_entry *entry)
1321 {
1322 	return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
1323 }
1324 
1325 static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
1326 					 struct mv88e6xxx_vtu_stu_entry *entry,
1327 					 unsigned int nibble_offset)
1328 {
1329 	u16 regs[3] = { 0 };
1330 	int i;
1331 	int ret;
1332 
1333 	for (i = 0; i < chip->info->num_ports; ++i) {
1334 		unsigned int shift = (i % 4) * 4 + nibble_offset;
1335 		u8 data = entry->data[i];
1336 
1337 		regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
1338 	}
1339 
1340 	for (i = 0; i < 3; ++i) {
1341 		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
1342 					   GLOBAL_VTU_DATA_0_3 + i, regs[i]);
1343 		if (ret < 0)
1344 			return ret;
1345 	}
1346 
1347 	return 0;
1348 }
1349 
1350 static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
1351 				    struct mv88e6xxx_vtu_stu_entry *entry)
1352 {
1353 	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
1354 }
1355 
1356 static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
1357 				    struct mv88e6xxx_vtu_stu_entry *entry)
1358 {
1359 	return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
1360 }
1361 
1362 static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
1363 {
1364 	return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
1365 				    vid & GLOBAL_VTU_VID_MASK);
1366 }
1367 
1368 static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
1369 				  struct mv88e6xxx_vtu_stu_entry *entry)
1370 {
1371 	struct mv88e6xxx_vtu_stu_entry next = { 0 };
1372 	int ret;
1373 
1374 	ret = _mv88e6xxx_vtu_wait(chip);
1375 	if (ret < 0)
1376 		return ret;
1377 
1378 	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
1379 	if (ret < 0)
1380 		return ret;
1381 
1382 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1383 	if (ret < 0)
1384 		return ret;
1385 
1386 	next.vid = ret & GLOBAL_VTU_VID_MASK;
1387 	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1388 
1389 	if (next.valid) {
1390 		ret = mv88e6xxx_vtu_data_read(chip, &next);
1391 		if (ret < 0)
1392 			return ret;
1393 
1394 		if (mv88e6xxx_has_fid_reg(chip)) {
1395 			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1396 						  GLOBAL_VTU_FID);
1397 			if (ret < 0)
1398 				return ret;
1399 
1400 			next.fid = ret & GLOBAL_VTU_FID_MASK;
1401 		} else if (mv88e6xxx_num_databases(chip) == 256) {
1402 			/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
1403 			 * VTU DBNum[3:0] are located in VTU Operation 3:0
1404 			 */
1405 			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1406 						  GLOBAL_VTU_OP);
1407 			if (ret < 0)
1408 				return ret;
1409 
1410 			next.fid = (ret & 0xf00) >> 4;
1411 			next.fid |= ret & 0xf;
1412 		}
1413 
1414 		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1415 			ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
1416 						  GLOBAL_VTU_SID);
1417 			if (ret < 0)
1418 				return ret;
1419 
1420 			next.sid = ret & GLOBAL_VTU_SID_MASK;
1421 		}
1422 	}
1423 
1424 	*entry = next;
1425 	return 0;
1426 }
1427 
1428 static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
1429 				    struct switchdev_obj_port_vlan *vlan,
1430 				    int (*cb)(struct switchdev_obj *obj))
1431 {
1432 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1433 	struct mv88e6xxx_vtu_stu_entry next;
1434 	u16 pvid;
1435 	int err;
1436 
1437 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1438 		return -EOPNOTSUPP;
1439 
1440 	mutex_lock(&chip->reg_lock);
1441 
1442 	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
1443 	if (err)
1444 		goto unlock;
1445 
1446 	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1447 	if (err)
1448 		goto unlock;
1449 
1450 	do {
1451 		err = _mv88e6xxx_vtu_getnext(chip, &next);
1452 		if (err)
1453 			break;
1454 
1455 		if (!next.valid)
1456 			break;
1457 
1458 		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1459 			continue;
1460 
1461 		/* reinit and dump this VLAN obj */
1462 		vlan->vid_begin = next.vid;
1463 		vlan->vid_end = next.vid;
1464 		vlan->flags = 0;
1465 
1466 		if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
1467 			vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
1468 
1469 		if (next.vid == pvid)
1470 			vlan->flags |= BRIDGE_VLAN_INFO_PVID;
1471 
1472 		err = cb(&vlan->obj);
1473 		if (err)
1474 			break;
1475 	} while (next.vid < GLOBAL_VTU_VID_MASK);
1476 
1477 unlock:
1478 	mutex_unlock(&chip->reg_lock);
1479 
1480 	return err;
1481 }
1482 
1483 static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
1484 				    struct mv88e6xxx_vtu_stu_entry *entry)
1485 {
1486 	u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
1487 	u16 reg = 0;
1488 	int ret;
1489 
1490 	ret = _mv88e6xxx_vtu_wait(chip);
1491 	if (ret < 0)
1492 		return ret;
1493 
1494 	if (!entry->valid)
1495 		goto loadpurge;
1496 
1497 	/* Write port member tags */
1498 	ret = mv88e6xxx_vtu_data_write(chip, entry);
1499 	if (ret < 0)
1500 		return ret;
1501 
1502 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
1503 		reg = entry->sid & GLOBAL_VTU_SID_MASK;
1504 		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1505 					   reg);
1506 		if (ret < 0)
1507 			return ret;
1508 	}
1509 
1510 	if (mv88e6xxx_has_fid_reg(chip)) {
1511 		reg = entry->fid & GLOBAL_VTU_FID_MASK;
1512 		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
1513 					   reg);
1514 		if (ret < 0)
1515 			return ret;
1516 	} else if (mv88e6xxx_num_databases(chip) == 256) {
1517 		/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
1518 		 * VTU DBNum[3:0] are located in VTU Operation 3:0
1519 		 */
1520 		op |= (entry->fid & 0xf0) << 8;
1521 		op |= entry->fid & 0xf;
1522 	}
1523 
1524 	reg = GLOBAL_VTU_VID_VALID;
1525 loadpurge:
1526 	reg |= entry->vid & GLOBAL_VTU_VID_MASK;
1527 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1528 	if (ret < 0)
1529 		return ret;
1530 
1531 	return _mv88e6xxx_vtu_cmd(chip, op);
1532 }
1533 
1534 static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
1535 				  struct mv88e6xxx_vtu_stu_entry *entry)
1536 {
1537 	struct mv88e6xxx_vtu_stu_entry next = { 0 };
1538 	int ret;
1539 
1540 	ret = _mv88e6xxx_vtu_wait(chip);
1541 	if (ret < 0)
1542 		return ret;
1543 
1544 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
1545 				   sid & GLOBAL_VTU_SID_MASK);
1546 	if (ret < 0)
1547 		return ret;
1548 
1549 	ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
1550 	if (ret < 0)
1551 		return ret;
1552 
1553 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
1554 	if (ret < 0)
1555 		return ret;
1556 
1557 	next.sid = ret & GLOBAL_VTU_SID_MASK;
1558 
1559 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
1560 	if (ret < 0)
1561 		return ret;
1562 
1563 	next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
1564 
1565 	if (next.valid) {
1566 		ret = mv88e6xxx_stu_data_read(chip, &next);
1567 		if (ret < 0)
1568 			return ret;
1569 	}
1570 
1571 	*entry = next;
1572 	return 0;
1573 }
1574 
1575 static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
1576 				    struct mv88e6xxx_vtu_stu_entry *entry)
1577 {
1578 	u16 reg = 0;
1579 	int ret;
1580 
1581 	ret = _mv88e6xxx_vtu_wait(chip);
1582 	if (ret < 0)
1583 		return ret;
1584 
1585 	if (!entry->valid)
1586 		goto loadpurge;
1587 
1588 	/* Write port states */
1589 	ret = mv88e6xxx_stu_data_write(chip, entry);
1590 	if (ret < 0)
1591 		return ret;
1592 
1593 	reg = GLOBAL_VTU_VID_VALID;
1594 loadpurge:
1595 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
1596 	if (ret < 0)
1597 		return ret;
1598 
1599 	reg = entry->sid & GLOBAL_VTU_SID_MASK;
1600 	ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
1601 	if (ret < 0)
1602 		return ret;
1603 
1604 	return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
1605 }
1606 
1607 static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
1608 			       u16 *new, u16 *old)
1609 {
1610 	struct dsa_switch *ds = chip->ds;
1611 	u16 upper_mask;
1612 	u16 fid;
1613 	int ret;
1614 
1615 	if (mv88e6xxx_num_databases(chip) == 4096)
1616 		upper_mask = 0xff;
1617 	else if (mv88e6xxx_num_databases(chip) == 256)
1618 		upper_mask = 0xf;
1619 	else
1620 		return -EOPNOTSUPP;
1621 
1622 	/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
1623 	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
1624 	if (ret < 0)
1625 		return ret;
1626 
1627 	fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;
1628 
1629 	if (new) {
1630 		ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
1631 		ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;
1632 
1633 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
1634 					   ret);
1635 		if (ret < 0)
1636 			return ret;
1637 	}
1638 
1639 	/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
1640 	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
1641 	if (ret < 0)
1642 		return ret;
1643 
1644 	fid |= (ret & upper_mask) << 4;
1645 
1646 	if (new) {
1647 		ret &= ~upper_mask;
1648 		ret |= (*new >> 4) & upper_mask;
1649 
1650 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
1651 					   ret);
1652 		if (ret < 0)
1653 			return ret;
1654 
1655 		netdev_dbg(ds->ports[port].netdev,
1656 			   "FID %d (was %d)\n", *new, fid);
1657 	}
1658 
1659 	if (old)
1660 		*old = fid;
1661 
1662 	return 0;
1663 }
1664 
1665 static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
1666 				   int port, u16 *fid)
1667 {
1668 	return _mv88e6xxx_port_fid(chip, port, NULL, fid);
1669 }
1670 
1671 static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
1672 				   int port, u16 fid)
1673 {
1674 	return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
1675 }
1676 
1677 static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
1678 {
1679 	DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
1680 	struct mv88e6xxx_vtu_stu_entry vlan;
1681 	int i, err;
1682 
1683 	bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);
1684 
1685 	/* Set every FID bit used by the (un)bridged ports */
1686 	for (i = 0; i < chip->info->num_ports; ++i) {
1687 		err = _mv88e6xxx_port_fid_get(chip, i, fid);
1688 		if (err)
1689 			return err;
1690 
1691 		set_bit(*fid, fid_bitmap);
1692 	}
1693 
1694 	/* Set every FID bit used by the VLAN entries */
1695 	err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
1696 	if (err)
1697 		return err;
1698 
1699 	do {
1700 		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1701 		if (err)
1702 			return err;
1703 
1704 		if (!vlan.valid)
1705 			break;
1706 
1707 		set_bit(vlan.fid, fid_bitmap);
1708 	} while (vlan.vid < GLOBAL_VTU_VID_MASK);
1709 
1710 	/* The reset value 0x000 is used to indicate that multiple address
1711 	 * databases are not needed. Return the next positive available.
1712 	 */
1713 	*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
1714 	if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
1715 		return -ENOSPC;
1716 
1717 	/* Clear the database */
1718 	return _mv88e6xxx_atu_flush(chip, *fid, true);
1719 }
1720 
1721 static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
1722 			      struct mv88e6xxx_vtu_stu_entry *entry)
1723 {
1724 	struct dsa_switch *ds = chip->ds;
1725 	struct mv88e6xxx_vtu_stu_entry vlan = {
1726 		.valid = true,
1727 		.vid = vid,
1728 	};
1729 	int i, err;
1730 
1731 	err = _mv88e6xxx_fid_new(chip, &vlan.fid);
1732 	if (err)
1733 		return err;
1734 
1735 	/* exclude all ports except the CPU and DSA ports */
1736 	for (i = 0; i < chip->info->num_ports; ++i)
1737 		vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
1738 			? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
1739 			: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1740 
1741 	if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
1742 	    mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
1743 		struct mv88e6xxx_vtu_stu_entry vstp;
1744 
1745 		/* Adding a VTU entry requires a valid STU entry. As VSTP is not
1746 		 * implemented, only one STU entry is needed to cover all VTU
1747 		 * entries. Thus, validate the SID 0.
1748 		 */
1749 		vlan.sid = 0;
1750 		err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
1751 		if (err)
1752 			return err;
1753 
1754 		if (vstp.sid != vlan.sid || !vstp.valid) {
1755 			memset(&vstp, 0, sizeof(vstp));
1756 			vstp.valid = true;
1757 			vstp.sid = vlan.sid;
1758 
1759 			err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
1760 			if (err)
1761 				return err;
1762 		}
1763 	}
1764 
1765 	*entry = vlan;
1766 	return 0;
1767 }
1768 
1769 static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
1770 			      struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
1771 {
1772 	int err;
1773 
1774 	if (!vid)
1775 		return -EINVAL;
1776 
1777 	err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
1778 	if (err)
1779 		return err;
1780 
1781 	err = _mv88e6xxx_vtu_getnext(chip, entry);
1782 	if (err)
1783 		return err;
1784 
1785 	if (entry->vid != vid || !entry->valid) {
1786 		if (!creat)
1787 			return -EOPNOTSUPP;
1788 		/* -ENOENT would've been more appropriate, but switchdev expects
1789 		 * -EOPNOTSUPP to inform bridge about an eventual software VLAN.
1790 		 */
1791 
1792 		err = _mv88e6xxx_vtu_new(chip, vid, entry);
1793 	}
1794 
1795 	return err;
1796 }
1797 
1798 static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
1799 					u16 vid_begin, u16 vid_end)
1800 {
1801 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1802 	struct mv88e6xxx_vtu_stu_entry vlan;
1803 	int i, err;
1804 
1805 	if (!vid_begin)
1806 		return -EOPNOTSUPP;
1807 
1808 	mutex_lock(&chip->reg_lock);
1809 
1810 	err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
1811 	if (err)
1812 		goto unlock;
1813 
1814 	do {
1815 		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
1816 		if (err)
1817 			goto unlock;
1818 
1819 		if (!vlan.valid)
1820 			break;
1821 
1822 		if (vlan.vid > vid_end)
1823 			break;
1824 
1825 		for (i = 0; i < chip->info->num_ports; ++i) {
1826 			if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
1827 				continue;
1828 
1829 			if (vlan.data[i] ==
1830 			    GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1831 				continue;
1832 
1833 			if (chip->ports[i].bridge_dev ==
1834 			    chip->ports[port].bridge_dev)
1835 				break; /* same bridge, check next VLAN */
1836 
1837 			netdev_warn(ds->ports[port].netdev,
1838 				    "hardware VLAN %d already used by %s\n",
1839 				    vlan.vid,
1840 				    netdev_name(chip->ports[i].bridge_dev));
1841 			err = -EOPNOTSUPP;
1842 			goto unlock;
1843 		}
1844 	} while (vlan.vid < vid_end);
1845 
1846 unlock:
1847 	mutex_unlock(&chip->reg_lock);
1848 
1849 	return err;
1850 }
1851 
1852 static const char * const mv88e6xxx_port_8021q_mode_names[] = {
1853 	[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
1854 	[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
1855 	[PORT_CONTROL_2_8021Q_CHECK] = "Check",
1856 	[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
1857 };
1858 
1859 static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
1860 					 bool vlan_filtering)
1861 {
1862 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1863 	u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
1864 		PORT_CONTROL_2_8021Q_DISABLED;
1865 	int ret;
1866 
1867 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1868 		return -EOPNOTSUPP;
1869 
1870 	mutex_lock(&chip->reg_lock);
1871 
1872 	ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
1873 	if (ret < 0)
1874 		goto unlock;
1875 
1876 	old = ret & PORT_CONTROL_2_8021Q_MASK;
1877 
1878 	if (new != old) {
1879 		ret &= ~PORT_CONTROL_2_8021Q_MASK;
1880 		ret |= new & PORT_CONTROL_2_8021Q_MASK;
1881 
1882 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
1883 					   ret);
1884 		if (ret < 0)
1885 			goto unlock;
1886 
1887 		netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
1888 			   mv88e6xxx_port_8021q_mode_names[new],
1889 			   mv88e6xxx_port_8021q_mode_names[old]);
1890 	}
1891 
1892 	ret = 0;
1893 unlock:
1894 	mutex_unlock(&chip->reg_lock);
1895 
1896 	return ret;
1897 }
1898 
1899 static int
1900 mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
1901 			    const struct switchdev_obj_port_vlan *vlan,
1902 			    struct switchdev_trans *trans)
1903 {
1904 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1905 	int err;
1906 
1907 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1908 		return -EOPNOTSUPP;
1909 
1910 	/* If the requested port doesn't belong to the same bridge as the VLAN
1911 	 * members, do not support it (yet) and fallback to software VLAN.
1912 	 */
1913 	err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
1914 					   vlan->vid_end);
1915 	if (err)
1916 		return err;
1917 
1918 	/* We don't need any dynamic resource from the kernel (yet),
1919 	 * so skip the prepare phase.
1920 	 */
1921 	return 0;
1922 }
1923 
1924 static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
1925 				    u16 vid, bool untagged)
1926 {
1927 	struct mv88e6xxx_vtu_stu_entry vlan;
1928 	int err;
1929 
1930 	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
1931 	if (err)
1932 		return err;
1933 
1934 	vlan.data[port] = untagged ?
1935 		GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
1936 		GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
1937 
1938 	return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1939 }
1940 
1941 static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
1942 				    const struct switchdev_obj_port_vlan *vlan,
1943 				    struct switchdev_trans *trans)
1944 {
1945 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
1946 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1947 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1948 	u16 vid;
1949 
1950 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
1951 		return;
1952 
1953 	mutex_lock(&chip->reg_lock);
1954 
1955 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1956 		if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
1957 			netdev_err(ds->ports[port].netdev,
1958 				   "failed to add VLAN %d%c\n",
1959 				   vid, untagged ? 'u' : 't');
1960 
1961 	if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
1962 		netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
1963 			   vlan->vid_end);
1964 
1965 	mutex_unlock(&chip->reg_lock);
1966 }
1967 
1968 static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
1969 				    int port, u16 vid)
1970 {
1971 	struct dsa_switch *ds = chip->ds;
1972 	struct mv88e6xxx_vtu_stu_entry vlan;
1973 	int i, err;
1974 
1975 	err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
1976 	if (err)
1977 		return err;
1978 
1979 	/* Tell switchdev if this VLAN is handled in software */
1980 	if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
1981 		return -EOPNOTSUPP;
1982 
1983 	vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
1984 
1985 	/* keep the VLAN unless all ports are excluded */
1986 	vlan.valid = false;
1987 	for (i = 0; i < chip->info->num_ports; ++i) {
1988 		if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
1989 			continue;
1990 
1991 		if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
1992 			vlan.valid = true;
1993 			break;
1994 		}
1995 	}
1996 
1997 	err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
1998 	if (err)
1999 		return err;
2000 
2001 	return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
2002 }
2003 
2004 static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
2005 				   const struct switchdev_obj_port_vlan *vlan)
2006 {
2007 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2008 	u16 pvid, vid;
2009 	int err = 0;
2010 
2011 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
2012 		return -EOPNOTSUPP;
2013 
2014 	mutex_lock(&chip->reg_lock);
2015 
2016 	err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
2017 	if (err)
2018 		goto unlock;
2019 
2020 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
2021 		err = _mv88e6xxx_port_vlan_del(chip, port, vid);
2022 		if (err)
2023 			goto unlock;
2024 
2025 		if (vid == pvid) {
2026 			err = _mv88e6xxx_port_pvid_set(chip, port, 0);
2027 			if (err)
2028 				goto unlock;
2029 		}
2030 	}
2031 
2032 unlock:
2033 	mutex_unlock(&chip->reg_lock);
2034 
2035 	return err;
2036 }
2037 
2038 static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
2039 				    const unsigned char *addr)
2040 {
2041 	int i, ret;
2042 
2043 	for (i = 0; i < 3; i++) {
2044 		ret = _mv88e6xxx_reg_write(
2045 			chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
2046 			(addr[i * 2] << 8) | addr[i * 2 + 1]);
2047 		if (ret < 0)
2048 			return ret;
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
2055 				   unsigned char *addr)
2056 {
2057 	int i, ret;
2058 
2059 	for (i = 0; i < 3; i++) {
2060 		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
2061 					  GLOBAL_ATU_MAC_01 + i);
2062 		if (ret < 0)
2063 			return ret;
2064 		addr[i * 2] = ret >> 8;
2065 		addr[i * 2 + 1] = ret & 0xff;
2066 	}
2067 
2068 	return 0;
2069 }
2070 
2071 static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
2072 			       struct mv88e6xxx_atu_entry *entry)
2073 {
2074 	int ret;
2075 
2076 	ret = _mv88e6xxx_atu_wait(chip);
2077 	if (ret < 0)
2078 		return ret;
2079 
2080 	ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
2081 	if (ret < 0)
2082 		return ret;
2083 
2084 	ret = _mv88e6xxx_atu_data_write(chip, entry);
2085 	if (ret < 0)
2086 		return ret;
2087 
2088 	return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
2089 }
2090 
2091 static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port,
2092 				    const unsigned char *addr, u16 vid,
2093 				    u8 state)
2094 {
2095 	struct mv88e6xxx_atu_entry entry = { 0 };
2096 	struct mv88e6xxx_vtu_stu_entry vlan;
2097 	int err;
2098 
2099 	/* Null VLAN ID corresponds to the port private database */
2100 	if (vid == 0)
2101 		err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
2102 	else
2103 		err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
2104 	if (err)
2105 		return err;
2106 
2107 	entry.fid = vlan.fid;
2108 	entry.state = state;
2109 	ether_addr_copy(entry.mac, addr);
2110 	if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
2111 		entry.trunk = false;
2112 		entry.portv_trunkid = BIT(port);
2113 	}
2114 
2115 	return _mv88e6xxx_atu_load(chip, &entry);
2116 }
2117 
2118 static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
2119 				      const struct switchdev_obj_port_fdb *fdb,
2120 				      struct switchdev_trans *trans)
2121 {
2122 	/* We don't need any dynamic resource from the kernel (yet),
2123 	 * so skip the prepare phase.
2124 	 */
2125 	return 0;
2126 }
2127 
2128 static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
2129 				   const struct switchdev_obj_port_fdb *fdb,
2130 				   struct switchdev_trans *trans)
2131 {
2132 	int state = is_multicast_ether_addr(fdb->addr) ?
2133 		GLOBAL_ATU_DATA_STATE_MC_STATIC :
2134 		GLOBAL_ATU_DATA_STATE_UC_STATIC;
2135 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2136 
2137 	mutex_lock(&chip->reg_lock);
2138 	if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state))
2139 		netdev_err(ds->ports[port].netdev,
2140 			   "failed to load MAC address\n");
2141 	mutex_unlock(&chip->reg_lock);
2142 }
2143 
2144 static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
2145 				  const struct switchdev_obj_port_fdb *fdb)
2146 {
2147 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2148 	int ret;
2149 
2150 	mutex_lock(&chip->reg_lock);
2151 	ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid,
2152 				       GLOBAL_ATU_DATA_STATE_UNUSED);
2153 	mutex_unlock(&chip->reg_lock);
2154 
2155 	return ret;
2156 }
2157 
2158 static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
2159 				  struct mv88e6xxx_atu_entry *entry)
2160 {
2161 	struct mv88e6xxx_atu_entry next = { 0 };
2162 	int ret;
2163 
2164 	next.fid = fid;
2165 
2166 	ret = _mv88e6xxx_atu_wait(chip);
2167 	if (ret < 0)
2168 		return ret;
2169 
2170 	ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
2171 	if (ret < 0)
2172 		return ret;
2173 
2174 	ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
2175 	if (ret < 0)
2176 		return ret;
2177 
2178 	ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
2179 	if (ret < 0)
2180 		return ret;
2181 
2182 	next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
2183 	if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
2184 		unsigned int mask, shift;
2185 
2186 		if (ret & GLOBAL_ATU_DATA_TRUNK) {
2187 			next.trunk = true;
2188 			mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
2189 			shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
2190 		} else {
2191 			next.trunk = false;
2192 			mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
2193 			shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
2194 		}
2195 
2196 		next.portv_trunkid = (ret & mask) >> shift;
2197 	}
2198 
2199 	*entry = next;
2200 	return 0;
2201 }
2202 
2203 static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip,
2204 					u16 fid, u16 vid, int port,
2205 					struct switchdev_obj_port_fdb *fdb,
2206 					int (*cb)(struct switchdev_obj *obj))
2207 {
2208 	struct mv88e6xxx_atu_entry addr = {
2209 		.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
2210 	};
2211 	int err;
2212 
2213 	err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
2214 	if (err)
2215 		return err;
2216 
2217 	do {
2218 		err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
2219 		if (err)
2220 			break;
2221 
2222 		if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
2223 			break;
2224 
2225 		if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
2226 			bool is_static = addr.state ==
2227 				(is_multicast_ether_addr(addr.mac) ?
2228 				 GLOBAL_ATU_DATA_STATE_MC_STATIC :
2229 				 GLOBAL_ATU_DATA_STATE_UC_STATIC);
2230 
2231 			fdb->vid = vid;
2232 			ether_addr_copy(fdb->addr, addr.mac);
2233 			fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;
2234 
2235 			err = cb(&fdb->obj);
2236 			if (err)
2237 				break;
2238 		}
2239 	} while (!is_broadcast_ether_addr(addr.mac));
2240 
2241 	return err;
2242 }
2243 
2244 static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
2245 				   struct switchdev_obj_port_fdb *fdb,
2246 				   int (*cb)(struct switchdev_obj *obj))
2247 {
2248 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2249 	struct mv88e6xxx_vtu_stu_entry vlan = {
2250 		.vid = GLOBAL_VTU_VID_MASK, /* all ones */
2251 	};
2252 	u16 fid;
2253 	int err;
2254 
2255 	mutex_lock(&chip->reg_lock);
2256 
2257 	/* Dump port's default Filtering Information Database (VLAN ID 0) */
2258 	err = _mv88e6xxx_port_fid_get(chip, port, &fid);
2259 	if (err)
2260 		goto unlock;
2261 
2262 	err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb);
2263 	if (err)
2264 		goto unlock;
2265 
2266 	/* Dump VLANs' Filtering Information Databases */
2267 	err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
2268 	if (err)
2269 		goto unlock;
2270 
2271 	do {
2272 		err = _mv88e6xxx_vtu_getnext(chip, &vlan);
2273 		if (err)
2274 			break;
2275 
2276 		if (!vlan.valid)
2277 			break;
2278 
2279 		err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid,
2280 						   port, fdb, cb);
2281 		if (err)
2282 			break;
2283 	} while (vlan.vid < GLOBAL_VTU_VID_MASK);
2284 
2285 unlock:
2286 	mutex_unlock(&chip->reg_lock);
2287 
2288 	return err;
2289 }
2290 
2291 static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
2292 				      struct net_device *bridge)
2293 {
2294 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2295 	int i, err = 0;
2296 
2297 	mutex_lock(&chip->reg_lock);
2298 
2299 	/* Assign the bridge and remap each port's VLANTable */
2300 	chip->ports[port].bridge_dev = bridge;
2301 
2302 	for (i = 0; i < chip->info->num_ports; ++i) {
2303 		if (chip->ports[i].bridge_dev == bridge) {
2304 			err = _mv88e6xxx_port_based_vlan_map(chip, i);
2305 			if (err)
2306 				break;
2307 		}
2308 	}
2309 
2310 	mutex_unlock(&chip->reg_lock);
2311 
2312 	return err;
2313 }
2314 
2315 static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
2316 {
2317 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2318 	struct net_device *bridge = chip->ports[port].bridge_dev;
2319 	int i;
2320 
2321 	mutex_lock(&chip->reg_lock);
2322 
2323 	/* Unassign the bridge and remap each port's VLANTable */
2324 	chip->ports[port].bridge_dev = NULL;
2325 
2326 	for (i = 0; i < chip->info->num_ports; ++i)
2327 		if (i == port || chip->ports[i].bridge_dev == bridge)
2328 			if (_mv88e6xxx_port_based_vlan_map(chip, i))
2329 				netdev_warn(ds->ports[i].netdev,
2330 					    "failed to remap\n");
2331 
2332 	mutex_unlock(&chip->reg_lock);
2333 }
2334 
2335 static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
2336 {
2337 	bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
2338 	u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
2339 	struct gpio_desc *gpiod = chip->reset;
2340 	unsigned long timeout;
2341 	int ret;
2342 	int i;
2343 
2344 	/* Set all ports to the disabled state. */
2345 	for (i = 0; i < chip->info->num_ports; i++) {
2346 		ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
2347 		if (ret < 0)
2348 			return ret;
2349 
2350 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
2351 					   ret & 0xfffc);
2352 		if (ret)
2353 			return ret;
2354 	}
2355 
2356 	/* Wait for transmit queues to drain. */
2357 	usleep_range(2000, 4000);
2358 
2359 	/* If there is a gpio connected to the reset pin, toggle it */
2360 	if (gpiod) {
2361 		gpiod_set_value_cansleep(gpiod, 1);
2362 		usleep_range(10000, 20000);
2363 		gpiod_set_value_cansleep(gpiod, 0);
2364 		usleep_range(10000, 20000);
2365 	}
2366 
2367 	/* Reset the switch. Keep the PPU active if requested. The PPU
2368 	 * needs to be active to support indirect phy register access
2369 	 * through global registers 0x18 and 0x19.
2370 	 */
2371 	if (ppu_active)
2372 		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
2373 	else
2374 		ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
2375 	if (ret)
2376 		return ret;
2377 
2378 	/* Wait up to one second for reset to complete. */
2379 	timeout = jiffies + 1 * HZ;
2380 	while (time_before(jiffies, timeout)) {
2381 		ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
2382 		if (ret < 0)
2383 			return ret;
2384 
2385 		if ((ret & is_reset) == is_reset)
2386 			break;
2387 		usleep_range(1000, 2000);
2388 	}
2389 	if (time_after(jiffies, timeout))
2390 		ret = -ETIMEDOUT;
2391 	else
2392 		ret = 0;
2393 
2394 	return ret;
2395 }
2396 
2397 static int mv88e6xxx_serdes_power_on(struct mv88e6xxx_chip *chip)
2398 {
2399 	u16 val;
2400 	int err;
2401 
2402 	/* Clear Power Down bit */
2403 	err = mv88e6xxx_serdes_read(chip, MII_BMCR, &val);
2404 	if (err)
2405 		return err;
2406 
2407 	if (val & BMCR_PDOWN) {
2408 		val &= ~BMCR_PDOWN;
2409 		err = mv88e6xxx_serdes_write(chip, MII_BMCR, val);
2410 	}
2411 
2412 	return err;
2413 }
2414 
2415 static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port,
2416 			       int reg, u16 *val)
2417 {
2418 	int addr = chip->info->port_base_addr + port;
2419 
2420 	if (port >= chip->info->num_ports)
2421 		return -EINVAL;
2422 
2423 	return mv88e6xxx_read(chip, addr, reg, val);
2424 }
2425 
2426 static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
2427 {
2428 	struct dsa_switch *ds = chip->ds;
2429 	int ret;
2430 	u16 reg;
2431 
2432 	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2433 	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2434 	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
2435 	    mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
2436 		/* MAC Forcing register: don't force link, speed,
2437 		 * duplex or flow control state to any particular
2438 		 * values on physical ports, but force the CPU port
2439 		 * and all DSA ports to their maximum bandwidth and
2440 		 * full duplex.
2441 		 */
2442 		reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
2443 		if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
2444 			reg &= ~PORT_PCS_CTRL_UNFORCED;
2445 			reg |= PORT_PCS_CTRL_FORCE_LINK |
2446 				PORT_PCS_CTRL_LINK_UP |
2447 				PORT_PCS_CTRL_DUPLEX_FULL |
2448 				PORT_PCS_CTRL_FORCE_DUPLEX;
2449 			if (mv88e6xxx_6065_family(chip))
2450 				reg |= PORT_PCS_CTRL_100;
2451 			else
2452 				reg |= PORT_PCS_CTRL_1000;
2453 		} else {
2454 			reg |= PORT_PCS_CTRL_UNFORCED;
2455 		}
2456 
2457 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2458 					   PORT_PCS_CTRL, reg);
2459 		if (ret)
2460 			return ret;
2461 	}
2462 
2463 	/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
2464 	 * disable Header mode, enable IGMP/MLD snooping, disable VLAN
2465 	 * tunneling, determine priority by looking at 802.1p and IP
2466 	 * priority fields (IP prio has precedence), and set STP state
2467 	 * to Forwarding.
2468 	 *
2469 	 * If this is the CPU link, use DSA or EDSA tagging depending
2470 	 * on which tagging mode was configured.
2471 	 *
2472 	 * If this is a link to another switch, use DSA tagging mode.
2473 	 *
2474 	 * If this is the upstream port for this switch, enable
2475 	 * forwarding of unknown unicasts and multicasts.
2476 	 */
2477 	reg = 0;
2478 	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2479 	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2480 	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
2481 	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
2482 		reg = PORT_CONTROL_IGMP_MLD_SNOOP |
2483 		PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
2484 		PORT_CONTROL_STATE_FORWARDING;
2485 	if (dsa_is_cpu_port(ds, port)) {
2486 		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
2487 			reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
2488 				PORT_CONTROL_FORWARD_UNKNOWN |
2489 				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2490 		else
2491 			reg |= PORT_CONTROL_DSA_TAG;
2492 		reg |= PORT_CONTROL_EGRESS_ADD_TAG;
2493 	}
2494 	if (dsa_is_dsa_port(ds, port)) {
2495 		if (mv88e6xxx_6095_family(chip) ||
2496 		    mv88e6xxx_6185_family(chip))
2497 			reg |= PORT_CONTROL_DSA_TAG;
2498 		if (mv88e6xxx_6352_family(chip) ||
2499 		    mv88e6xxx_6351_family(chip) ||
2500 		    mv88e6xxx_6165_family(chip) ||
2501 		    mv88e6xxx_6097_family(chip) ||
2502 		    mv88e6xxx_6320_family(chip)) {
2503 			reg |= PORT_CONTROL_FRAME_MODE_DSA;
2504 		}
2505 
2506 		if (port == dsa_upstream_port(ds))
2507 			reg |= PORT_CONTROL_FORWARD_UNKNOWN |
2508 				PORT_CONTROL_FORWARD_UNKNOWN_MC;
2509 	}
2510 	if (reg) {
2511 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2512 					   PORT_CONTROL, reg);
2513 		if (ret)
2514 			return ret;
2515 	}
2516 
2517 	/* If this port is connected to a SerDes, make sure the SerDes is not
2518 	 * powered down.
2519 	 */
2520 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SERDES)) {
2521 		ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
2522 		if (ret < 0)
2523 			return ret;
2524 		ret &= PORT_STATUS_CMODE_MASK;
2525 		if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
2526 		    (ret == PORT_STATUS_CMODE_1000BASE_X) ||
2527 		    (ret == PORT_STATUS_CMODE_SGMII)) {
2528 			ret = mv88e6xxx_serdes_power_on(chip);
2529 			if (ret < 0)
2530 				return ret;
2531 		}
2532 	}
2533 
2534 	/* Port Control 2: don't force a good FCS, set the maximum frame size to
2535 	 * 10240 bytes, disable 802.1q tags checking, don't discard tagged or
2536 	 * untagged frames on this port, do a destination address lookup on all
2537 	 * received packets as usual, disable ARP mirroring and don't send a
2538 	 * copy of all transmitted/received frames on this port to the CPU.
2539 	 */
2540 	reg = 0;
2541 	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2542 	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2543 	    mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
2544 	    mv88e6xxx_6185_family(chip))
2545 		reg = PORT_CONTROL_2_MAP_DA;
2546 
2547 	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2548 	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
2549 		reg |= PORT_CONTROL_2_JUMBO_10240;
2550 
2551 	if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
2552 		/* Set the upstream port this port should use */
2553 		reg |= dsa_upstream_port(ds);
2554 		/* enable forwarding of unknown multicast addresses to
2555 		 * the upstream port
2556 		 */
2557 		if (port == dsa_upstream_port(ds))
2558 			reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
2559 	}
2560 
2561 	reg |= PORT_CONTROL_2_8021Q_DISABLED;
2562 
2563 	if (reg) {
2564 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2565 					   PORT_CONTROL_2, reg);
2566 		if (ret)
2567 			return ret;
2568 	}
2569 
2570 	/* Port Association Vector: when learning source addresses
2571 	 * of packets, add the address to the address database using
2572 	 * a port bitmap that has only the bit for this port set and
2573 	 * the other bits clear.
2574 	 */
2575 	reg = 1 << port;
2576 	/* Disable learning for CPU port */
2577 	if (dsa_is_cpu_port(ds, port))
2578 		reg = 0;
2579 
2580 	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
2581 				   reg);
2582 	if (ret)
2583 		return ret;
2584 
2585 	/* Egress rate control 2: disable egress rate control. */
2586 	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
2587 				   0x0000);
2588 	if (ret)
2589 		return ret;
2590 
2591 	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2592 	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2593 	    mv88e6xxx_6320_family(chip)) {
2594 		/* Do not limit the period of time that this port can
2595 		 * be paused for by the remote end or the period of
2596 		 * time that this port can pause the remote end.
2597 		 */
2598 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2599 					   PORT_PAUSE_CTRL, 0x0000);
2600 		if (ret)
2601 			return ret;
2602 
2603 		/* Port ATU control: disable limiting the number of
2604 		 * address database entries that this port is allowed
2605 		 * to use.
2606 		 */
2607 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2608 					   PORT_ATU_CONTROL, 0x0000);
2609 		/* Priority Override: disable DA, SA and VTU priority
2610 		 * override.
2611 		 */
2612 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2613 					   PORT_PRI_OVERRIDE, 0x0000);
2614 		if (ret)
2615 			return ret;
2616 
2617 		/* Port Ethertype: use the Ethertype DSA Ethertype
2618 		 * value.
2619 		 */
2620 		if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA)) {
2621 			ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2622 						   PORT_ETH_TYPE, ETH_P_EDSA);
2623 			if (ret)
2624 				return ret;
2625 		}
2626 
2627 		/* Tag Remap: use an identity 802.1p prio -> switch
2628 		 * prio mapping.
2629 		 */
2630 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2631 					   PORT_TAG_REGMAP_0123, 0x3210);
2632 		if (ret)
2633 			return ret;
2634 
2635 		/* Tag Remap 2: use an identity 802.1p prio -> switch
2636 		 * prio mapping.
2637 		 */
2638 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2639 					   PORT_TAG_REGMAP_4567, 0x7654);
2640 		if (ret)
2641 			return ret;
2642 	}
2643 
2644 	if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
2645 	    mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
2646 	    mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
2647 	    mv88e6xxx_6320_family(chip)) {
2648 		/* Rate Control: disable ingress rate limiting. */
2649 		ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
2650 					   PORT_RATE_CONTROL, 0x0001);
2651 		if (ret)
2652 			return ret;
2653 	}
2654 
2655 	/* Port Control 1: disable trunking, disable sending
2656 	 * learning messages to this port.
2657 	 */
2658 	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
2659 				   0x0000);
2660 	if (ret)
2661 		return ret;
2662 
2663 	/* Port based VLAN map: give each port the same default address
2664 	 * database, and allow bidirectional communication between the
2665 	 * CPU and DSA port(s), and the other ports.
2666 	 */
2667 	ret = _mv88e6xxx_port_fid_set(chip, port, 0);
2668 	if (ret)
2669 		return ret;
2670 
2671 	ret = _mv88e6xxx_port_based_vlan_map(chip, port);
2672 	if (ret)
2673 		return ret;
2674 
2675 	/* Default VLAN ID and priority: don't set a default VLAN
2676 	 * ID, and set the default packet priority to zero.
2677 	 */
2678 	ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
2679 				   0x0000);
2680 	if (ret)
2681 		return ret;
2682 
2683 	return 0;
2684 }
2685 
2686 static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2687 {
2688 	int err;
2689 
2690 	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
2691 			      (addr[0] << 8) | addr[1]);
2692 	if (err)
2693 		return err;
2694 
2695 	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
2696 			      (addr[2] << 8) | addr[3]);
2697 	if (err)
2698 		return err;
2699 
2700 	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
2701 			       (addr[4] << 8) | addr[5]);
2702 }
2703 
2704 static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
2705 				     unsigned int msecs)
2706 {
2707 	const unsigned int coeff = chip->info->age_time_coeff;
2708 	const unsigned int min = 0x01 * coeff;
2709 	const unsigned int max = 0xff * coeff;
2710 	u8 age_time;
2711 	u16 val;
2712 	int err;
2713 
2714 	if (msecs < min || msecs > max)
2715 		return -ERANGE;
2716 
2717 	/* Round to nearest multiple of coeff */
2718 	age_time = (msecs + coeff / 2) / coeff;
2719 
2720 	err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
2721 	if (err)
2722 		return err;
2723 
2724 	/* AgeTime is 11:4 bits */
2725 	val &= ~0xff0;
2726 	val |= age_time << 4;
2727 
2728 	return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
2729 }
2730 
2731 static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
2732 				     unsigned int ageing_time)
2733 {
2734 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
2735 	int err;
2736 
2737 	mutex_lock(&chip->reg_lock);
2738 	err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
2739 	mutex_unlock(&chip->reg_lock);
2740 
2741 	return err;
2742 }
2743 
2744 static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
2745 {
2746 	struct dsa_switch *ds = chip->ds;
2747 	u32 upstream_port = dsa_upstream_port(ds);
2748 	u16 reg;
2749 	int err;
2750 
2751 	/* Enable the PHY Polling Unit if present, don't discard any packets,
2752 	 * and mask all interrupt sources.
2753 	 */
2754 	reg = 0;
2755 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
2756 	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
2757 		reg |= GLOBAL_CONTROL_PPU_ENABLE;
2758 
2759 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
2760 	if (err)
2761 		return err;
2762 
2763 	/* Configure the upstream port, and configure it as the port to which
2764 	 * ingress and egress and ARP monitor frames are to be sent.
2765 	 */
2766 	reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
2767 		upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
2768 		upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
2769 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
2770 				   reg);
2771 	if (err)
2772 		return err;
2773 
2774 	/* Disable remote management, and set the switch's DSA device number. */
2775 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
2776 				   GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
2777 				   (ds->index & 0x1f));
2778 	if (err)
2779 		return err;
2780 
2781 	/* Clear all the VTU and STU entries */
2782 	err = _mv88e6xxx_vtu_stu_flush(chip);
2783 	if (err < 0)
2784 		return err;
2785 
2786 	/* Set the default address aging time to 5 minutes, and
2787 	 * enable address learn messages to be sent to all message
2788 	 * ports.
2789 	 */
2790 	err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
2791 			      GLOBAL_ATU_CONTROL_LEARN2ALL);
2792 	if (err)
2793 		return err;
2794 
2795 	err = mv88e6xxx_g1_set_age_time(chip, 300000);
2796 	if (err)
2797 		return err;
2798 
2799 	/* Clear all ATU entries */
2800 	err = _mv88e6xxx_atu_flush(chip, 0, true);
2801 	if (err)
2802 		return err;
2803 
2804 	/* Configure the IP ToS mapping registers. */
2805 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
2806 	if (err)
2807 		return err;
2808 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
2809 	if (err)
2810 		return err;
2811 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
2812 	if (err)
2813 		return err;
2814 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
2815 	if (err)
2816 		return err;
2817 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
2818 	if (err)
2819 		return err;
2820 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
2821 	if (err)
2822 		return err;
2823 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
2824 	if (err)
2825 		return err;
2826 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
2827 	if (err)
2828 		return err;
2829 
2830 	/* Configure the IEEE 802.1p priority mapping register. */
2831 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
2832 	if (err)
2833 		return err;
2834 
2835 	/* Clear the statistics counters for all ports */
2836 	err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
2837 				   GLOBAL_STATS_OP_FLUSH_ALL);
2838 	if (err)
2839 		return err;
2840 
2841 	/* Wait for the flush to complete. */
2842 	err = _mv88e6xxx_stats_wait(chip);
2843 	if (err)
2844 		return err;
2845 
2846 	return 0;
2847 }
2848 
2849 static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
2850 					     int target, int port)
2851 {
2852 	u16 val = (target << 8) | (port & 0xf);
2853 
2854 	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
2855 }
2856 
2857 static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
2858 {
2859 	int target, port;
2860 	int err;
2861 
2862 	/* Initialize the routing port to the 32 possible target devices */
2863 	for (target = 0; target < 32; ++target) {
2864 		port = 0xf;
2865 
2866 		if (target < DSA_MAX_SWITCHES) {
2867 			port = chip->ds->rtable[target];
2868 			if (port == DSA_RTABLE_NONE)
2869 				port = 0xf;
2870 		}
2871 
2872 		err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
2873 		if (err)
2874 			break;
2875 	}
2876 
2877 	return err;
2878 }
2879 
2880 static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
2881 					 bool hask, u16 mask)
2882 {
2883 	const u16 port_mask = BIT(chip->info->num_ports) - 1;
2884 	u16 val = (num << 12) | (mask & port_mask);
2885 
2886 	if (hask)
2887 		val |= GLOBAL2_TRUNK_MASK_HASK;
2888 
2889 	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
2890 }
2891 
2892 static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
2893 					    u16 map)
2894 {
2895 	const u16 port_mask = BIT(chip->info->num_ports) - 1;
2896 	u16 val = (id << 11) | (map & port_mask);
2897 
2898 	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
2899 }
2900 
2901 static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
2902 {
2903 	const u16 port_mask = BIT(chip->info->num_ports) - 1;
2904 	int i, err;
2905 
2906 	/* Clear all eight possible Trunk Mask vectors */
2907 	for (i = 0; i < 8; ++i) {
2908 		err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
2909 		if (err)
2910 			return err;
2911 	}
2912 
2913 	/* Clear all sixteen possible Trunk ID routing vectors */
2914 	for (i = 0; i < 16; ++i) {
2915 		err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
2916 		if (err)
2917 			return err;
2918 	}
2919 
2920 	return 0;
2921 }
2922 
2923 static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
2924 {
2925 	int port, err;
2926 
2927 	/* Init all Ingress Rate Limit resources of all ports */
2928 	for (port = 0; port < chip->info->num_ports; ++port) {
2929 		/* XXX newer chips (like 88E6390) have different 2-bit ops */
2930 		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
2931 				      GLOBAL2_IRL_CMD_OP_INIT_ALL |
2932 				      (port << 8));
2933 		if (err)
2934 			break;
2935 
2936 		/* Wait for the operation to complete */
2937 		err = mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
2938 				     GLOBAL2_IRL_CMD_BUSY);
2939 		if (err)
2940 			break;
2941 	}
2942 
2943 	return err;
2944 }
2945 
2946 /* Indirect write to the Switch MAC/WoL/WoF register */
2947 static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
2948 					 unsigned int pointer, u8 data)
2949 {
2950 	u16 val = (pointer << 8) | data;
2951 
2952 	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
2953 }
2954 
2955 static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
2956 {
2957 	int i, err;
2958 
2959 	for (i = 0; i < 6; i++) {
2960 		err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
2961 		if (err)
2962 			break;
2963 	}
2964 
2965 	return err;
2966 }
2967 
2968 static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
2969 				  u8 data)
2970 {
2971 	u16 val = (pointer << 8) | (data & 0x7);
2972 
2973 	return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
2974 }
2975 
2976 static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
2977 {
2978 	int i, err;
2979 
2980 	/* Clear all sixteen possible Priority Override entries */
2981 	for (i = 0; i < 16; i++) {
2982 		err = mv88e6xxx_g2_pot_write(chip, i, 0);
2983 		if (err)
2984 			break;
2985 	}
2986 
2987 	return err;
2988 }
2989 
2990 static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
2991 {
2992 	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD,
2993 			      GLOBAL2_EEPROM_CMD_BUSY |
2994 			      GLOBAL2_EEPROM_CMD_RUNNING);
2995 }
2996 
2997 static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
2998 {
2999 	int err;
3000 
3001 	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd);
3002 	if (err)
3003 		return err;
3004 
3005 	return mv88e6xxx_g2_eeprom_wait(chip);
3006 }
3007 
3008 static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
3009 				      u8 addr, u16 *data)
3010 {
3011 	u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
3012 	int err;
3013 
3014 	err = mv88e6xxx_g2_eeprom_wait(chip);
3015 	if (err)
3016 		return err;
3017 
3018 	err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
3019 	if (err)
3020 		return err;
3021 
3022 	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
3023 }
3024 
3025 static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
3026 				       u8 addr, u16 data)
3027 {
3028 	u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
3029 	int err;
3030 
3031 	err = mv88e6xxx_g2_eeprom_wait(chip);
3032 	if (err)
3033 		return err;
3034 
3035 	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
3036 	if (err)
3037 		return err;
3038 
3039 	return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
3040 }
3041 
3042 static int mv88e6xxx_g2_smi_phy_wait(struct mv88e6xxx_chip *chip)
3043 {
3044 	return mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD,
3045 			      GLOBAL2_SMI_PHY_CMD_BUSY);
3046 }
3047 
3048 static int mv88e6xxx_g2_smi_phy_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
3049 {
3050 	int err;
3051 
3052 	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_CMD, cmd);
3053 	if (err)
3054 		return err;
3055 
3056 	return mv88e6xxx_g2_smi_phy_wait(chip);
3057 }
3058 
3059 static int mv88e6xxx_g2_smi_phy_read(struct mv88e6xxx_chip *chip, int addr,
3060 				     int reg, u16 *val)
3061 {
3062 	u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_READ_DATA | (addr << 5) | reg;
3063 	int err;
3064 
3065 	err = mv88e6xxx_g2_smi_phy_wait(chip);
3066 	if (err)
3067 		return err;
3068 
3069 	err = mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
3070 	if (err)
3071 		return err;
3072 
3073 	return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
3074 }
3075 
3076 static int mv88e6xxx_g2_smi_phy_write(struct mv88e6xxx_chip *chip, int addr,
3077 				      int reg, u16 val)
3078 {
3079 	u16 cmd = GLOBAL2_SMI_PHY_CMD_OP_22_WRITE_DATA | (addr << 5) | reg;
3080 	int err;
3081 
3082 	err = mv88e6xxx_g2_smi_phy_wait(chip);
3083 	if (err)
3084 		return err;
3085 
3086 	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SMI_PHY_DATA, val);
3087 	if (err)
3088 		return err;
3089 
3090 	return mv88e6xxx_g2_smi_phy_cmd(chip, cmd);
3091 }
3092 
3093 static const struct mv88e6xxx_ops mv88e6xxx_g2_smi_phy_ops = {
3094 	.read = mv88e6xxx_g2_smi_phy_read,
3095 	.write = mv88e6xxx_g2_smi_phy_write,
3096 };
3097 
3098 static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
3099 {
3100 	u16 reg;
3101 	int err;
3102 
3103 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
3104 		/* Consider the frames with reserved multicast destination
3105 		 * addresses matching 01:80:c2:00:00:2x as MGMT.
3106 		 */
3107 		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
3108 				      0xffff);
3109 		if (err)
3110 			return err;
3111 	}
3112 
3113 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
3114 		/* Consider the frames with reserved multicast destination
3115 		 * addresses matching 01:80:c2:00:00:0x as MGMT.
3116 		 */
3117 		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
3118 				      0xffff);
3119 		if (err)
3120 			return err;
3121 	}
3122 
3123 	/* Ignore removed tag data on doubly tagged packets, disable
3124 	 * flow control messages, force flow control priority to the
3125 	 * highest, and send all special multicast frames to the CPU
3126 	 * port at the highest priority.
3127 	 */
3128 	reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
3129 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
3130 	    mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
3131 		reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
3132 	err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
3133 	if (err)
3134 		return err;
3135 
3136 	/* Program the DSA routing table. */
3137 	err = mv88e6xxx_g2_set_device_mapping(chip);
3138 	if (err)
3139 		return err;
3140 
3141 	/* Clear all trunk masks and mapping. */
3142 	err = mv88e6xxx_g2_clear_trunk(chip);
3143 	if (err)
3144 		return err;
3145 
3146 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
3147 		/* Disable ingress rate limiting by resetting all per port
3148 		 * ingress rate limit resources to their initial state.
3149 		 */
3150 		err = mv88e6xxx_g2_clear_irl(chip);
3151 			if (err)
3152 				return err;
3153 	}
3154 
3155 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
3156 		/* Initialize Cross-chip Port VLAN Table to reset defaults */
3157 		err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
3158 				      GLOBAL2_PVT_ADDR_OP_INIT_ONES);
3159 		if (err)
3160 			return err;
3161 	}
3162 
3163 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
3164 		/* Clear the priority override table. */
3165 		err = mv88e6xxx_g2_clear_pot(chip);
3166 		if (err)
3167 			return err;
3168 	}
3169 
3170 	return 0;
3171 }
3172 
3173 static int mv88e6xxx_setup(struct dsa_switch *ds)
3174 {
3175 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3176 	int err;
3177 	int i;
3178 
3179 	chip->ds = ds;
3180 	ds->slave_mii_bus = chip->mdio_bus;
3181 
3182 	mutex_lock(&chip->reg_lock);
3183 
3184 	err = mv88e6xxx_switch_reset(chip);
3185 	if (err)
3186 		goto unlock;
3187 
3188 	/* Setup Switch Port Registers */
3189 	for (i = 0; i < chip->info->num_ports; i++) {
3190 		err = mv88e6xxx_setup_port(chip, i);
3191 		if (err)
3192 			goto unlock;
3193 	}
3194 
3195 	/* Setup Switch Global 1 Registers */
3196 	err = mv88e6xxx_g1_setup(chip);
3197 	if (err)
3198 		goto unlock;
3199 
3200 	/* Setup Switch Global 2 Registers */
3201 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
3202 		err = mv88e6xxx_g2_setup(chip);
3203 		if (err)
3204 			goto unlock;
3205 	}
3206 
3207 unlock:
3208 	mutex_unlock(&chip->reg_lock);
3209 
3210 	return err;
3211 }
3212 
3213 static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
3214 {
3215 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3216 	int err;
3217 
3218 	mutex_lock(&chip->reg_lock);
3219 
3220 	/* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
3221 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
3222 		err = mv88e6xxx_g2_set_switch_mac(chip, addr);
3223 	else
3224 		err = mv88e6xxx_g1_set_switch_mac(chip, addr);
3225 
3226 	mutex_unlock(&chip->reg_lock);
3227 
3228 	return err;
3229 }
3230 
3231 static int mv88e6xxx_mdio_read(struct mii_bus *bus, int phy, int reg)
3232 {
3233 	struct mv88e6xxx_chip *chip = bus->priv;
3234 	u16 val;
3235 	int err;
3236 
3237 	if (phy >= chip->info->num_ports)
3238 		return 0xffff;
3239 
3240 	mutex_lock(&chip->reg_lock);
3241 	err = mv88e6xxx_phy_read(chip, phy, reg, &val);
3242 	mutex_unlock(&chip->reg_lock);
3243 
3244 	return err ? err : val;
3245 }
3246 
3247 static int mv88e6xxx_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
3248 {
3249 	struct mv88e6xxx_chip *chip = bus->priv;
3250 	int err;
3251 
3252 	if (phy >= chip->info->num_ports)
3253 		return 0xffff;
3254 
3255 	mutex_lock(&chip->reg_lock);
3256 	err = mv88e6xxx_phy_write(chip, phy, reg, val);
3257 	mutex_unlock(&chip->reg_lock);
3258 
3259 	return err;
3260 }
3261 
3262 static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
3263 				   struct device_node *np)
3264 {
3265 	static int index;
3266 	struct mii_bus *bus;
3267 	int err;
3268 
3269 	if (np)
3270 		chip->mdio_np = of_get_child_by_name(np, "mdio");
3271 
3272 	bus = devm_mdiobus_alloc(chip->dev);
3273 	if (!bus)
3274 		return -ENOMEM;
3275 
3276 	bus->priv = (void *)chip;
3277 	if (np) {
3278 		bus->name = np->full_name;
3279 		snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
3280 	} else {
3281 		bus->name = "mv88e6xxx SMI";
3282 		snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
3283 	}
3284 
3285 	bus->read = mv88e6xxx_mdio_read;
3286 	bus->write = mv88e6xxx_mdio_write;
3287 	bus->parent = chip->dev;
3288 
3289 	if (chip->mdio_np)
3290 		err = of_mdiobus_register(bus, chip->mdio_np);
3291 	else
3292 		err = mdiobus_register(bus);
3293 	if (err) {
3294 		dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
3295 		goto out;
3296 	}
3297 	chip->mdio_bus = bus;
3298 
3299 	return 0;
3300 
3301 out:
3302 	if (chip->mdio_np)
3303 		of_node_put(chip->mdio_np);
3304 
3305 	return err;
3306 }
3307 
3308 static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
3309 
3310 {
3311 	struct mii_bus *bus = chip->mdio_bus;
3312 
3313 	mdiobus_unregister(bus);
3314 
3315 	if (chip->mdio_np)
3316 		of_node_put(chip->mdio_np);
3317 }
3318 
3319 #ifdef CONFIG_NET_DSA_HWMON
3320 
3321 static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
3322 {
3323 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3324 	u16 val;
3325 	int ret;
3326 
3327 	*temp = 0;
3328 
3329 	mutex_lock(&chip->reg_lock);
3330 
3331 	ret = mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x6);
3332 	if (ret < 0)
3333 		goto error;
3334 
3335 	/* Enable temperature sensor */
3336 	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
3337 	if (ret < 0)
3338 		goto error;
3339 
3340 	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val | (1 << 5));
3341 	if (ret < 0)
3342 		goto error;
3343 
3344 	/* Wait for temperature to stabilize */
3345 	usleep_range(10000, 12000);
3346 
3347 	ret = mv88e6xxx_phy_read(chip, 0x0, 0x1a, &val);
3348 	if (ret < 0)
3349 		goto error;
3350 
3351 	/* Disable temperature sensor */
3352 	ret = mv88e6xxx_phy_write(chip, 0x0, 0x1a, val & ~(1 << 5));
3353 	if (ret < 0)
3354 		goto error;
3355 
3356 	*temp = ((val & 0x1f) - 5) * 5;
3357 
3358 error:
3359 	mv88e6xxx_phy_write(chip, 0x0, 0x16, 0x0);
3360 	mutex_unlock(&chip->reg_lock);
3361 	return ret;
3362 }
3363 
3364 static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
3365 {
3366 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3367 	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3368 	u16 val;
3369 	int ret;
3370 
3371 	*temp = 0;
3372 
3373 	mutex_lock(&chip->reg_lock);
3374 	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 27, &val);
3375 	mutex_unlock(&chip->reg_lock);
3376 	if (ret < 0)
3377 		return ret;
3378 
3379 	*temp = (val & 0xff) - 25;
3380 
3381 	return 0;
3382 }
3383 
3384 static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
3385 {
3386 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3387 
3388 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
3389 		return -EOPNOTSUPP;
3390 
3391 	if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
3392 		return mv88e63xx_get_temp(ds, temp);
3393 
3394 	return mv88e61xx_get_temp(ds, temp);
3395 }
3396 
3397 static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
3398 {
3399 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3400 	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3401 	u16 val;
3402 	int ret;
3403 
3404 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3405 		return -EOPNOTSUPP;
3406 
3407 	*temp = 0;
3408 
3409 	mutex_lock(&chip->reg_lock);
3410 	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
3411 	mutex_unlock(&chip->reg_lock);
3412 	if (ret < 0)
3413 		return ret;
3414 
3415 	*temp = (((val >> 8) & 0x1f) * 5) - 25;
3416 
3417 	return 0;
3418 }
3419 
3420 static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
3421 {
3422 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3423 	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3424 	u16 val;
3425 	int err;
3426 
3427 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3428 		return -EOPNOTSUPP;
3429 
3430 	mutex_lock(&chip->reg_lock);
3431 	err = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
3432 	if (err)
3433 		goto unlock;
3434 	temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
3435 	err = mv88e6xxx_phy_page_write(chip, phy, 6, 26,
3436 				       (val & 0xe0ff) | (temp << 8));
3437 unlock:
3438 	mutex_unlock(&chip->reg_lock);
3439 
3440 	return err;
3441 }
3442 
3443 static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
3444 {
3445 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3446 	int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
3447 	u16 val;
3448 	int ret;
3449 
3450 	if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
3451 		return -EOPNOTSUPP;
3452 
3453 	*alarm = false;
3454 
3455 	mutex_lock(&chip->reg_lock);
3456 	ret = mv88e6xxx_phy_page_read(chip, phy, 6, 26, &val);
3457 	mutex_unlock(&chip->reg_lock);
3458 	if (ret < 0)
3459 		return ret;
3460 
3461 	*alarm = !!(val & 0x40);
3462 
3463 	return 0;
3464 }
3465 #endif /* CONFIG_NET_DSA_HWMON */
3466 
3467 static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
3468 {
3469 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3470 
3471 	return chip->eeprom_len;
3472 }
3473 
3474 static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip,
3475 				  struct ethtool_eeprom *eeprom, u8 *data)
3476 {
3477 	unsigned int offset = eeprom->offset;
3478 	unsigned int len = eeprom->len;
3479 	u16 val;
3480 	int err;
3481 
3482 	eeprom->len = 0;
3483 
3484 	if (offset & 1) {
3485 		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3486 		if (err)
3487 			return err;
3488 
3489 		*data++ = (val >> 8) & 0xff;
3490 
3491 		offset++;
3492 		len--;
3493 		eeprom->len++;
3494 	}
3495 
3496 	while (len >= 2) {
3497 		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3498 		if (err)
3499 			return err;
3500 
3501 		*data++ = val & 0xff;
3502 		*data++ = (val >> 8) & 0xff;
3503 
3504 		offset += 2;
3505 		len -= 2;
3506 		eeprom->len += 2;
3507 	}
3508 
3509 	if (len) {
3510 		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3511 		if (err)
3512 			return err;
3513 
3514 		*data++ = val & 0xff;
3515 
3516 		offset++;
3517 		len--;
3518 		eeprom->len++;
3519 	}
3520 
3521 	return 0;
3522 }
3523 
3524 static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
3525 				struct ethtool_eeprom *eeprom, u8 *data)
3526 {
3527 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3528 	int err;
3529 
3530 	mutex_lock(&chip->reg_lock);
3531 
3532 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3533 		err = mv88e6xxx_get_eeprom16(chip, eeprom, data);
3534 	else
3535 		err = -EOPNOTSUPP;
3536 
3537 	mutex_unlock(&chip->reg_lock);
3538 
3539 	if (err)
3540 		return err;
3541 
3542 	eeprom->magic = 0xc3ec4951;
3543 
3544 	return 0;
3545 }
3546 
3547 static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip,
3548 				  struct ethtool_eeprom *eeprom, u8 *data)
3549 {
3550 	unsigned int offset = eeprom->offset;
3551 	unsigned int len = eeprom->len;
3552 	u16 val;
3553 	int err;
3554 
3555 	/* Ensure the RO WriteEn bit is set */
3556 	err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val);
3557 	if (err)
3558 		return err;
3559 
3560 	if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
3561 		return -EROFS;
3562 
3563 	eeprom->len = 0;
3564 
3565 	if (offset & 1) {
3566 		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3567 		if (err)
3568 			return err;
3569 
3570 		val = (*data++ << 8) | (val & 0xff);
3571 
3572 		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3573 		if (err)
3574 			return err;
3575 
3576 		offset++;
3577 		len--;
3578 		eeprom->len++;
3579 	}
3580 
3581 	while (len >= 2) {
3582 		val = *data++;
3583 		val |= *data++ << 8;
3584 
3585 		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3586 		if (err)
3587 			return err;
3588 
3589 		offset += 2;
3590 		len -= 2;
3591 		eeprom->len += 2;
3592 	}
3593 
3594 	if (len) {
3595 		err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
3596 		if (err)
3597 			return err;
3598 
3599 		val = (val & 0xff00) | *data++;
3600 
3601 		err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
3602 		if (err)
3603 			return err;
3604 
3605 		offset++;
3606 		len--;
3607 		eeprom->len++;
3608 	}
3609 
3610 	return 0;
3611 }
3612 
3613 static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
3614 				struct ethtool_eeprom *eeprom, u8 *data)
3615 {
3616 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3617 	int err;
3618 
3619 	if (eeprom->magic != 0xc3ec4951)
3620 		return -EINVAL;
3621 
3622 	mutex_lock(&chip->reg_lock);
3623 
3624 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
3625 		err = mv88e6xxx_set_eeprom16(chip, eeprom, data);
3626 	else
3627 		err = -EOPNOTSUPP;
3628 
3629 	mutex_unlock(&chip->reg_lock);
3630 
3631 	return err;
3632 }
3633 
3634 static const struct mv88e6xxx_info mv88e6xxx_table[] = {
3635 	[MV88E6085] = {
3636 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
3637 		.family = MV88E6XXX_FAMILY_6097,
3638 		.name = "Marvell 88E6085",
3639 		.num_databases = 4096,
3640 		.num_ports = 10,
3641 		.port_base_addr = 0x10,
3642 		.age_time_coeff = 15000,
3643 		.flags = MV88E6XXX_FLAGS_FAMILY_6097,
3644 	},
3645 
3646 	[MV88E6095] = {
3647 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
3648 		.family = MV88E6XXX_FAMILY_6095,
3649 		.name = "Marvell 88E6095/88E6095F",
3650 		.num_databases = 256,
3651 		.num_ports = 11,
3652 		.port_base_addr = 0x10,
3653 		.age_time_coeff = 15000,
3654 		.flags = MV88E6XXX_FLAGS_FAMILY_6095,
3655 	},
3656 
3657 	[MV88E6123] = {
3658 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
3659 		.family = MV88E6XXX_FAMILY_6165,
3660 		.name = "Marvell 88E6123",
3661 		.num_databases = 4096,
3662 		.num_ports = 3,
3663 		.port_base_addr = 0x10,
3664 		.age_time_coeff = 15000,
3665 		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3666 	},
3667 
3668 	[MV88E6131] = {
3669 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
3670 		.family = MV88E6XXX_FAMILY_6185,
3671 		.name = "Marvell 88E6131",
3672 		.num_databases = 256,
3673 		.num_ports = 8,
3674 		.port_base_addr = 0x10,
3675 		.age_time_coeff = 15000,
3676 		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3677 	},
3678 
3679 	[MV88E6161] = {
3680 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
3681 		.family = MV88E6XXX_FAMILY_6165,
3682 		.name = "Marvell 88E6161",
3683 		.num_databases = 4096,
3684 		.num_ports = 6,
3685 		.port_base_addr = 0x10,
3686 		.age_time_coeff = 15000,
3687 		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3688 	},
3689 
3690 	[MV88E6165] = {
3691 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
3692 		.family = MV88E6XXX_FAMILY_6165,
3693 		.name = "Marvell 88E6165",
3694 		.num_databases = 4096,
3695 		.num_ports = 6,
3696 		.port_base_addr = 0x10,
3697 		.age_time_coeff = 15000,
3698 		.flags = MV88E6XXX_FLAGS_FAMILY_6165,
3699 	},
3700 
3701 	[MV88E6171] = {
3702 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
3703 		.family = MV88E6XXX_FAMILY_6351,
3704 		.name = "Marvell 88E6171",
3705 		.num_databases = 4096,
3706 		.num_ports = 7,
3707 		.port_base_addr = 0x10,
3708 		.age_time_coeff = 15000,
3709 		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3710 	},
3711 
3712 	[MV88E6172] = {
3713 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
3714 		.family = MV88E6XXX_FAMILY_6352,
3715 		.name = "Marvell 88E6172",
3716 		.num_databases = 4096,
3717 		.num_ports = 7,
3718 		.port_base_addr = 0x10,
3719 		.age_time_coeff = 15000,
3720 		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3721 	},
3722 
3723 	[MV88E6175] = {
3724 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
3725 		.family = MV88E6XXX_FAMILY_6351,
3726 		.name = "Marvell 88E6175",
3727 		.num_databases = 4096,
3728 		.num_ports = 7,
3729 		.port_base_addr = 0x10,
3730 		.age_time_coeff = 15000,
3731 		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3732 	},
3733 
3734 	[MV88E6176] = {
3735 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
3736 		.family = MV88E6XXX_FAMILY_6352,
3737 		.name = "Marvell 88E6176",
3738 		.num_databases = 4096,
3739 		.num_ports = 7,
3740 		.port_base_addr = 0x10,
3741 		.age_time_coeff = 15000,
3742 		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3743 	},
3744 
3745 	[MV88E6185] = {
3746 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
3747 		.family = MV88E6XXX_FAMILY_6185,
3748 		.name = "Marvell 88E6185",
3749 		.num_databases = 256,
3750 		.num_ports = 10,
3751 		.port_base_addr = 0x10,
3752 		.age_time_coeff = 15000,
3753 		.flags = MV88E6XXX_FLAGS_FAMILY_6185,
3754 	},
3755 
3756 	[MV88E6240] = {
3757 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
3758 		.family = MV88E6XXX_FAMILY_6352,
3759 		.name = "Marvell 88E6240",
3760 		.num_databases = 4096,
3761 		.num_ports = 7,
3762 		.port_base_addr = 0x10,
3763 		.age_time_coeff = 15000,
3764 		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3765 	},
3766 
3767 	[MV88E6320] = {
3768 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
3769 		.family = MV88E6XXX_FAMILY_6320,
3770 		.name = "Marvell 88E6320",
3771 		.num_databases = 4096,
3772 		.num_ports = 7,
3773 		.port_base_addr = 0x10,
3774 		.age_time_coeff = 15000,
3775 		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3776 	},
3777 
3778 	[MV88E6321] = {
3779 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
3780 		.family = MV88E6XXX_FAMILY_6320,
3781 		.name = "Marvell 88E6321",
3782 		.num_databases = 4096,
3783 		.num_ports = 7,
3784 		.port_base_addr = 0x10,
3785 		.age_time_coeff = 15000,
3786 		.flags = MV88E6XXX_FLAGS_FAMILY_6320,
3787 	},
3788 
3789 	[MV88E6350] = {
3790 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
3791 		.family = MV88E6XXX_FAMILY_6351,
3792 		.name = "Marvell 88E6350",
3793 		.num_databases = 4096,
3794 		.num_ports = 7,
3795 		.port_base_addr = 0x10,
3796 		.age_time_coeff = 15000,
3797 		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3798 	},
3799 
3800 	[MV88E6351] = {
3801 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
3802 		.family = MV88E6XXX_FAMILY_6351,
3803 		.name = "Marvell 88E6351",
3804 		.num_databases = 4096,
3805 		.num_ports = 7,
3806 		.port_base_addr = 0x10,
3807 		.age_time_coeff = 15000,
3808 		.flags = MV88E6XXX_FLAGS_FAMILY_6351,
3809 	},
3810 
3811 	[MV88E6352] = {
3812 		.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
3813 		.family = MV88E6XXX_FAMILY_6352,
3814 		.name = "Marvell 88E6352",
3815 		.num_databases = 4096,
3816 		.num_ports = 7,
3817 		.port_base_addr = 0x10,
3818 		.age_time_coeff = 15000,
3819 		.flags = MV88E6XXX_FLAGS_FAMILY_6352,
3820 	},
3821 };
3822 
3823 static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
3824 {
3825 	int i;
3826 
3827 	for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
3828 		if (mv88e6xxx_table[i].prod_num == prod_num)
3829 			return &mv88e6xxx_table[i];
3830 
3831 	return NULL;
3832 }
3833 
3834 static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
3835 {
3836 	const struct mv88e6xxx_info *info;
3837 	unsigned int prod_num, rev;
3838 	u16 id;
3839 	int err;
3840 
3841 	mutex_lock(&chip->reg_lock);
3842 	err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
3843 	mutex_unlock(&chip->reg_lock);
3844 	if (err)
3845 		return err;
3846 
3847 	prod_num = (id & 0xfff0) >> 4;
3848 	rev = id & 0x000f;
3849 
3850 	info = mv88e6xxx_lookup_info(prod_num);
3851 	if (!info)
3852 		return -ENODEV;
3853 
3854 	/* Update the compatible info with the probed one */
3855 	chip->info = info;
3856 
3857 	dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
3858 		 chip->info->prod_num, chip->info->name, rev);
3859 
3860 	return 0;
3861 }
3862 
3863 static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
3864 {
3865 	struct mv88e6xxx_chip *chip;
3866 
3867 	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
3868 	if (!chip)
3869 		return NULL;
3870 
3871 	chip->dev = dev;
3872 
3873 	mutex_init(&chip->reg_lock);
3874 
3875 	return chip;
3876 }
3877 
3878 static const struct mv88e6xxx_ops mv88e6xxx_phy_ops = {
3879 	.read = mv88e6xxx_read,
3880 	.write = mv88e6xxx_write,
3881 };
3882 
3883 static void mv88e6xxx_phy_init(struct mv88e6xxx_chip *chip)
3884 {
3885 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_SMI_PHY)) {
3886 		chip->phy_ops = &mv88e6xxx_g2_smi_phy_ops;
3887 	} else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU)) {
3888 		chip->phy_ops = &mv88e6xxx_phy_ppu_ops;
3889 		mv88e6xxx_ppu_state_init(chip);
3890 	} else {
3891 		chip->phy_ops = &mv88e6xxx_phy_ops;
3892 	}
3893 }
3894 
3895 static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
3896 			      struct mii_bus *bus, int sw_addr)
3897 {
3898 	/* ADDR[0] pin is unavailable externally and considered zero */
3899 	if (sw_addr & 0x1)
3900 		return -EINVAL;
3901 
3902 	if (sw_addr == 0)
3903 		chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
3904 	else if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_MULTI_CHIP))
3905 		chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
3906 	else
3907 		return -EINVAL;
3908 
3909 	chip->bus = bus;
3910 	chip->sw_addr = sw_addr;
3911 
3912 	return 0;
3913 }
3914 
3915 static enum dsa_tag_protocol mv88e6xxx_get_tag_protocol(struct dsa_switch *ds)
3916 {
3917 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
3918 
3919 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_EDSA))
3920 		return DSA_TAG_PROTO_EDSA;
3921 
3922 	return DSA_TAG_PROTO_DSA;
3923 }
3924 
3925 static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
3926 				       struct device *host_dev, int sw_addr,
3927 				       void **priv)
3928 {
3929 	struct mv88e6xxx_chip *chip;
3930 	struct mii_bus *bus;
3931 	int err;
3932 
3933 	bus = dsa_host_dev_to_mii_bus(host_dev);
3934 	if (!bus)
3935 		return NULL;
3936 
3937 	chip = mv88e6xxx_alloc_chip(dsa_dev);
3938 	if (!chip)
3939 		return NULL;
3940 
3941 	/* Legacy SMI probing will only support chips similar to 88E6085 */
3942 	chip->info = &mv88e6xxx_table[MV88E6085];
3943 
3944 	err = mv88e6xxx_smi_init(chip, bus, sw_addr);
3945 	if (err)
3946 		goto free;
3947 
3948 	err = mv88e6xxx_detect(chip);
3949 	if (err)
3950 		goto free;
3951 
3952 	mv88e6xxx_phy_init(chip);
3953 
3954 	err = mv88e6xxx_mdio_register(chip, NULL);
3955 	if (err)
3956 		goto free;
3957 
3958 	*priv = chip;
3959 
3960 	return chip->info->name;
3961 free:
3962 	devm_kfree(dsa_dev, chip);
3963 
3964 	return NULL;
3965 }
3966 
3967 static struct dsa_switch_driver mv88e6xxx_switch_driver = {
3968 	.probe			= mv88e6xxx_drv_probe,
3969 	.get_tag_protocol	= mv88e6xxx_get_tag_protocol,
3970 	.setup			= mv88e6xxx_setup,
3971 	.set_addr		= mv88e6xxx_set_addr,
3972 	.adjust_link		= mv88e6xxx_adjust_link,
3973 	.get_strings		= mv88e6xxx_get_strings,
3974 	.get_ethtool_stats	= mv88e6xxx_get_ethtool_stats,
3975 	.get_sset_count		= mv88e6xxx_get_sset_count,
3976 	.set_eee		= mv88e6xxx_set_eee,
3977 	.get_eee		= mv88e6xxx_get_eee,
3978 #ifdef CONFIG_NET_DSA_HWMON
3979 	.get_temp		= mv88e6xxx_get_temp,
3980 	.get_temp_limit		= mv88e6xxx_get_temp_limit,
3981 	.set_temp_limit		= mv88e6xxx_set_temp_limit,
3982 	.get_temp_alarm		= mv88e6xxx_get_temp_alarm,
3983 #endif
3984 	.get_eeprom_len		= mv88e6xxx_get_eeprom_len,
3985 	.get_eeprom		= mv88e6xxx_get_eeprom,
3986 	.set_eeprom		= mv88e6xxx_set_eeprom,
3987 	.get_regs_len		= mv88e6xxx_get_regs_len,
3988 	.get_regs		= mv88e6xxx_get_regs,
3989 	.set_ageing_time	= mv88e6xxx_set_ageing_time,
3990 	.port_bridge_join	= mv88e6xxx_port_bridge_join,
3991 	.port_bridge_leave	= mv88e6xxx_port_bridge_leave,
3992 	.port_stp_state_set	= mv88e6xxx_port_stp_state_set,
3993 	.port_vlan_filtering	= mv88e6xxx_port_vlan_filtering,
3994 	.port_vlan_prepare	= mv88e6xxx_port_vlan_prepare,
3995 	.port_vlan_add		= mv88e6xxx_port_vlan_add,
3996 	.port_vlan_del		= mv88e6xxx_port_vlan_del,
3997 	.port_vlan_dump		= mv88e6xxx_port_vlan_dump,
3998 	.port_fdb_prepare       = mv88e6xxx_port_fdb_prepare,
3999 	.port_fdb_add           = mv88e6xxx_port_fdb_add,
4000 	.port_fdb_del           = mv88e6xxx_port_fdb_del,
4001 	.port_fdb_dump          = mv88e6xxx_port_fdb_dump,
4002 };
4003 
4004 static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
4005 				     struct device_node *np)
4006 {
4007 	struct device *dev = chip->dev;
4008 	struct dsa_switch *ds;
4009 
4010 	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
4011 	if (!ds)
4012 		return -ENOMEM;
4013 
4014 	ds->dev = dev;
4015 	ds->priv = chip;
4016 	ds->drv = &mv88e6xxx_switch_driver;
4017 
4018 	dev_set_drvdata(dev, ds);
4019 
4020 	return dsa_register_switch(ds, np);
4021 }
4022 
4023 static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
4024 {
4025 	dsa_unregister_switch(chip->ds);
4026 }
4027 
4028 static int mv88e6xxx_probe(struct mdio_device *mdiodev)
4029 {
4030 	struct device *dev = &mdiodev->dev;
4031 	struct device_node *np = dev->of_node;
4032 	const struct mv88e6xxx_info *compat_info;
4033 	struct mv88e6xxx_chip *chip;
4034 	u32 eeprom_len;
4035 	int err;
4036 
4037 	compat_info = of_device_get_match_data(dev);
4038 	if (!compat_info)
4039 		return -EINVAL;
4040 
4041 	chip = mv88e6xxx_alloc_chip(dev);
4042 	if (!chip)
4043 		return -ENOMEM;
4044 
4045 	chip->info = compat_info;
4046 
4047 	err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
4048 	if (err)
4049 		return err;
4050 
4051 	err = mv88e6xxx_detect(chip);
4052 	if (err)
4053 		return err;
4054 
4055 	mv88e6xxx_phy_init(chip);
4056 
4057 	chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
4058 	if (IS_ERR(chip->reset))
4059 		return PTR_ERR(chip->reset);
4060 
4061 	if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
4062 	    !of_property_read_u32(np, "eeprom-length", &eeprom_len))
4063 		chip->eeprom_len = eeprom_len;
4064 
4065 	err = mv88e6xxx_mdio_register(chip, np);
4066 	if (err)
4067 		return err;
4068 
4069 	err = mv88e6xxx_register_switch(chip, np);
4070 	if (err) {
4071 		mv88e6xxx_mdio_unregister(chip);
4072 		return err;
4073 	}
4074 
4075 	return 0;
4076 }
4077 
4078 static void mv88e6xxx_remove(struct mdio_device *mdiodev)
4079 {
4080 	struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
4081 	struct mv88e6xxx_chip *chip = ds_to_priv(ds);
4082 
4083 	mv88e6xxx_unregister_switch(chip);
4084 	mv88e6xxx_mdio_unregister(chip);
4085 }
4086 
4087 static const struct of_device_id mv88e6xxx_of_match[] = {
4088 	{
4089 		.compatible = "marvell,mv88e6085",
4090 		.data = &mv88e6xxx_table[MV88E6085],
4091 	},
4092 	{ /* sentinel */ },
4093 };
4094 
4095 MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);
4096 
4097 static struct mdio_driver mv88e6xxx_driver = {
4098 	.probe	= mv88e6xxx_probe,
4099 	.remove = mv88e6xxx_remove,
4100 	.mdiodrv.driver = {
4101 		.name = "mv88e6085",
4102 		.of_match_table = mv88e6xxx_of_match,
4103 	},
4104 };
4105 
4106 static int __init mv88e6xxx_init(void)
4107 {
4108 	register_switch_driver(&mv88e6xxx_switch_driver);
4109 	return mdio_driver_register(&mv88e6xxx_driver);
4110 }
4111 module_init(mv88e6xxx_init);
4112 
4113 static void __exit mv88e6xxx_cleanup(void)
4114 {
4115 	mdio_driver_unregister(&mv88e6xxx_driver);
4116 	unregister_switch_driver(&mv88e6xxx_switch_driver);
4117 }
4118 module_exit(mv88e6xxx_cleanup);
4119 
4120 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
4121 MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
4122 MODULE_LICENSE("GPL");
4123