xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision c1b2093dce23158e758818443e059e3fcd54633e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 mt7530_mutex_lock(struct mt7530_priv *priv)
146 {
147 	if (priv->bus)
148 		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149 }
150 
151 static void
152 mt7530_mutex_unlock(struct mt7530_priv *priv)
153 {
154 	if (priv->bus)
155 		mutex_unlock(&priv->bus->mdio_lock);
156 }
157 
158 static void
159 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160 {
161 	mt7530_mutex_lock(priv);
162 
163 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164 
165 	mt7530_mutex_unlock(priv);
166 }
167 
168 static void
169 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170 {
171 	u32 val;
172 
173 	mt7530_mutex_lock(priv);
174 
175 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176 	val &= ~mask;
177 	val |= set;
178 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179 
180 	mt7530_mutex_unlock(priv);
181 }
182 
183 static void
184 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 	core_rmw(priv, reg, 0, val);
187 }
188 
189 static void
190 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191 {
192 	core_rmw(priv, reg, val, 0);
193 }
194 
195 static int
196 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197 {
198 	int ret;
199 
200 	ret = regmap_write(priv->regmap, reg, val);
201 
202 	if (ret < 0)
203 		dev_err(priv->dev,
204 			"failed to write mt7530 register\n");
205 
206 	return ret;
207 }
208 
209 static u32
210 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211 {
212 	int ret;
213 	u32 val;
214 
215 	ret = regmap_read(priv->regmap, reg, &val);
216 	if (ret) {
217 		WARN_ON_ONCE(1);
218 		dev_err(priv->dev,
219 			"failed to read mt7530 register\n");
220 		return 0;
221 	}
222 
223 	return val;
224 }
225 
226 static void
227 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 	mt7530_mutex_lock(priv);
230 
231 	mt7530_mii_write(priv, reg, val);
232 
233 	mt7530_mutex_unlock(priv);
234 }
235 
236 static u32
237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 	return mt7530_mii_read(p->priv, p->reg);
240 }
241 
242 static u32
243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 	u32 val;
246 
247 	mt7530_mutex_lock(p->priv);
248 
249 	val = mt7530_mii_read(p->priv, p->reg);
250 
251 	mt7530_mutex_unlock(p->priv);
252 
253 	return val;
254 }
255 
256 static u32
257 mt7530_read(struct mt7530_priv *priv, u32 reg)
258 {
259 	struct mt7530_dummy_poll p;
260 
261 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262 	return _mt7530_read(&p);
263 }
264 
265 static void
266 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 	   u32 mask, u32 set)
268 {
269 	mt7530_mutex_lock(priv);
270 
271 	regmap_update_bits(priv->regmap, reg, mask, set);
272 
273 	mt7530_mutex_unlock(priv);
274 }
275 
276 static void
277 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 	mt7530_rmw(priv, reg, val, val);
280 }
281 
282 static void
283 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284 {
285 	mt7530_rmw(priv, reg, val, 0);
286 }
287 
288 static int
289 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290 {
291 	u32 val;
292 	int ret;
293 	struct mt7530_dummy_poll p;
294 
295 	/* Set the command operating upon the MAC address entries */
296 	val = ATC_BUSY | ATC_MAT(0) | cmd;
297 	mt7530_write(priv, MT7530_ATC, val);
298 
299 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300 	ret = readx_poll_timeout(_mt7530_read, &p, val,
301 				 !(val & ATC_BUSY), 20, 20000);
302 	if (ret < 0) {
303 		dev_err(priv->dev, "reset timeout\n");
304 		return ret;
305 	}
306 
307 	/* Additional sanity for read command if the specified
308 	 * entry is invalid
309 	 */
310 	val = mt7530_read(priv, MT7530_ATC);
311 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 		return -EINVAL;
313 
314 	if (rsp)
315 		*rsp = val;
316 
317 	return 0;
318 }
319 
320 static void
321 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322 {
323 	u32 reg[3];
324 	int i;
325 
326 	/* Read from ARL table into an array */
327 	for (i = 0; i < 3; i++) {
328 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329 
330 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 			__func__, __LINE__, i, reg[i]);
332 	}
333 
334 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344 }
345 
346 static void
347 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 		 u8 port_mask, const u8 *mac,
349 		 u8 aging, u8 type)
350 {
351 	u32 reg[3] = { 0 };
352 	int i;
353 
354 	reg[1] |= vid & CVID_MASK;
355 	reg[1] |= ATA2_IVL;
356 	reg[1] |= ATA2_FID(FID_BRIDGED);
357 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 	/* STATIC_ENT indicate that entry is static wouldn't
360 	 * be aged out and STATIC_EMP specified as erasing an
361 	 * entry
362 	 */
363 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 	reg[1] |= mac[5] << MAC_BYTE_5;
365 	reg[1] |= mac[4] << MAC_BYTE_4;
366 	reg[0] |= mac[3] << MAC_BYTE_3;
367 	reg[0] |= mac[2] << MAC_BYTE_2;
368 	reg[0] |= mac[1] << MAC_BYTE_1;
369 	reg[0] |= mac[0] << MAC_BYTE_0;
370 
371 	/* Write array into the ARL table */
372 	for (i = 0; i < 3; i++)
373 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374 }
375 
376 /* Set up switch core clock for MT7530 */
377 static void mt7530_pll_setup(struct mt7530_priv *priv)
378 {
379 	/* Disable core clock */
380 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381 
382 	/* Disable PLL */
383 	core_write(priv, CORE_GSWPLL_GRP1, 0);
384 
385 	/* Set core clock into 500Mhz */
386 	core_write(priv, CORE_GSWPLL_GRP2,
387 		   RG_GSWPLL_POSDIV_500M(1) |
388 		   RG_GSWPLL_FBKDIV_500M(25));
389 
390 	/* Enable PLL */
391 	core_write(priv, CORE_GSWPLL_GRP1,
392 		   RG_GSWPLL_EN_PRE |
393 		   RG_GSWPLL_POSDIV_200M(2) |
394 		   RG_GSWPLL_FBKDIV_200M(32));
395 
396 	udelay(20);
397 
398 	/* Enable core clock */
399 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400 }
401 
402 /* Setup port 6 interface mode and TRGMII TX circuit */
403 static int
404 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
405 {
406 	struct mt7530_priv *priv = ds->priv;
407 	u32 ncpo1, ssc_delta, trgint, xtal;
408 
409 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
410 
411 	if (xtal == HWTRAP_XTAL_20MHZ) {
412 		dev_err(priv->dev,
413 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
414 			__func__);
415 		return -EINVAL;
416 	}
417 
418 	switch (interface) {
419 	case PHY_INTERFACE_MODE_RGMII:
420 		trgint = 0;
421 		break;
422 	case PHY_INTERFACE_MODE_TRGMII:
423 		trgint = 1;
424 		if (xtal == HWTRAP_XTAL_25MHZ)
425 			ssc_delta = 0x57;
426 		else
427 			ssc_delta = 0x87;
428 		if (priv->id == ID_MT7621) {
429 			/* PLL frequency: 125MHz: 1.0GBit */
430 			if (xtal == HWTRAP_XTAL_40MHZ)
431 				ncpo1 = 0x0640;
432 			if (xtal == HWTRAP_XTAL_25MHZ)
433 				ncpo1 = 0x0a00;
434 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
435 			if (xtal == HWTRAP_XTAL_40MHZ)
436 				ncpo1 = 0x0c80;
437 			if (xtal == HWTRAP_XTAL_25MHZ)
438 				ncpo1 = 0x1400;
439 		}
440 		break;
441 	default:
442 		dev_err(priv->dev, "xMII interface %d not supported\n",
443 			interface);
444 		return -EINVAL;
445 	}
446 
447 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
448 		   P6_INTF_MODE(trgint));
449 
450 	if (trgint) {
451 		/* Disable the MT7530 TRGMII clocks */
452 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
453 
454 		/* Setup the MT7530 TRGMII Tx Clock */
455 		core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
456 		core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
457 		core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
458 		core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
459 		core_write(priv, CORE_PLL_GROUP4,
460 			   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
461 			   RG_SYSPLL_BIAS_LPF_EN);
462 		core_write(priv, CORE_PLL_GROUP2,
463 			   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
464 			   RG_SYSPLL_POSDIV(1));
465 		core_write(priv, CORE_PLL_GROUP7,
466 			   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
467 			   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
468 
469 		/* Enable the MT7530 TRGMII clocks */
470 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
471 	}
472 
473 	return 0;
474 }
475 
476 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
477 {
478 	u32 val;
479 
480 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
481 
482 	return (val & PAD_DUAL_SGMII_EN) != 0;
483 }
484 
485 static int
486 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
487 {
488 	return 0;
489 }
490 
491 static void
492 mt7531_pll_setup(struct mt7530_priv *priv)
493 {
494 	u32 top_sig;
495 	u32 hwstrap;
496 	u32 xtal;
497 	u32 val;
498 
499 	if (mt7531_dual_sgmii_supported(priv))
500 		return;
501 
502 	val = mt7530_read(priv, MT7531_CREV);
503 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
504 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
505 	if ((val & CHIP_REV_M) > 0)
506 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
507 						    HWTRAP_XTAL_FSEL_25MHZ;
508 	else
509 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
510 
511 	/* Step 1 : Disable MT7531 COREPLL */
512 	val = mt7530_read(priv, MT7531_PLLGP_EN);
513 	val &= ~EN_COREPLL;
514 	mt7530_write(priv, MT7531_PLLGP_EN, val);
515 
516 	/* Step 2: switch to XTAL output */
517 	val = mt7530_read(priv, MT7531_PLLGP_EN);
518 	val |= SW_CLKSW;
519 	mt7530_write(priv, MT7531_PLLGP_EN, val);
520 
521 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
522 	val &= ~RG_COREPLL_EN;
523 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
524 
525 	/* Step 3: disable PLLGP and enable program PLLGP */
526 	val = mt7530_read(priv, MT7531_PLLGP_EN);
527 	val |= SW_PLLGP;
528 	mt7530_write(priv, MT7531_PLLGP_EN, val);
529 
530 	/* Step 4: program COREPLL output frequency to 500MHz */
531 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
532 	val &= ~RG_COREPLL_POSDIV_M;
533 	val |= 2 << RG_COREPLL_POSDIV_S;
534 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
535 	usleep_range(25, 35);
536 
537 	switch (xtal) {
538 	case HWTRAP_XTAL_FSEL_25MHZ:
539 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
540 		val &= ~RG_COREPLL_SDM_PCW_M;
541 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
542 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
543 		break;
544 	case HWTRAP_XTAL_FSEL_40MHZ:
545 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
546 		val &= ~RG_COREPLL_SDM_PCW_M;
547 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
548 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
549 		break;
550 	}
551 
552 	/* Set feedback divide ratio update signal to high */
553 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
554 	val |= RG_COREPLL_SDM_PCW_CHG;
555 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
556 	/* Wait for at least 16 XTAL clocks */
557 	usleep_range(10, 20);
558 
559 	/* Step 5: set feedback divide ratio update signal to low */
560 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
561 	val &= ~RG_COREPLL_SDM_PCW_CHG;
562 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
563 
564 	/* Enable 325M clock for SGMII */
565 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
566 
567 	/* Enable 250SSC clock for RGMII */
568 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
569 
570 	/* Step 6: Enable MT7531 PLL */
571 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
572 	val |= RG_COREPLL_EN;
573 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
574 
575 	val = mt7530_read(priv, MT7531_PLLGP_EN);
576 	val |= EN_COREPLL;
577 	mt7530_write(priv, MT7531_PLLGP_EN, val);
578 	usleep_range(25, 35);
579 }
580 
581 static void
582 mt7530_mib_reset(struct dsa_switch *ds)
583 {
584 	struct mt7530_priv *priv = ds->priv;
585 
586 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
587 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
588 }
589 
590 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
591 {
592 	return mdiobus_read_nested(priv->bus, port, regnum);
593 }
594 
595 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
596 				u16 val)
597 {
598 	return mdiobus_write_nested(priv->bus, port, regnum, val);
599 }
600 
601 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
602 			       int devad, int regnum)
603 {
604 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
605 }
606 
607 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
608 				int regnum, u16 val)
609 {
610 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
611 }
612 
613 static int
614 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
615 			int regnum)
616 {
617 	struct mt7530_dummy_poll p;
618 	u32 reg, val;
619 	int ret;
620 
621 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
622 
623 	mt7530_mutex_lock(priv);
624 
625 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
626 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
627 	if (ret < 0) {
628 		dev_err(priv->dev, "poll timeout\n");
629 		goto out;
630 	}
631 
632 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
633 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
634 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
635 
636 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
637 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
638 	if (ret < 0) {
639 		dev_err(priv->dev, "poll timeout\n");
640 		goto out;
641 	}
642 
643 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
644 	      MT7531_MDIO_DEV_ADDR(devad);
645 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
646 
647 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
648 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
649 	if (ret < 0) {
650 		dev_err(priv->dev, "poll timeout\n");
651 		goto out;
652 	}
653 
654 	ret = val & MT7531_MDIO_RW_DATA_MASK;
655 out:
656 	mt7530_mutex_unlock(priv);
657 
658 	return ret;
659 }
660 
661 static int
662 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
663 			 int regnum, u16 data)
664 {
665 	struct mt7530_dummy_poll p;
666 	u32 val, reg;
667 	int ret;
668 
669 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
670 
671 	mt7530_mutex_lock(priv);
672 
673 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
674 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
675 	if (ret < 0) {
676 		dev_err(priv->dev, "poll timeout\n");
677 		goto out;
678 	}
679 
680 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
681 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
682 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
683 
684 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
685 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
686 	if (ret < 0) {
687 		dev_err(priv->dev, "poll timeout\n");
688 		goto out;
689 	}
690 
691 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
692 	      MT7531_MDIO_DEV_ADDR(devad) | data;
693 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
694 
695 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
696 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
697 	if (ret < 0) {
698 		dev_err(priv->dev, "poll timeout\n");
699 		goto out;
700 	}
701 
702 out:
703 	mt7530_mutex_unlock(priv);
704 
705 	return ret;
706 }
707 
708 static int
709 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
710 {
711 	struct mt7530_dummy_poll p;
712 	int ret;
713 	u32 val;
714 
715 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
716 
717 	mt7530_mutex_lock(priv);
718 
719 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
720 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
721 	if (ret < 0) {
722 		dev_err(priv->dev, "poll timeout\n");
723 		goto out;
724 	}
725 
726 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
727 	      MT7531_MDIO_REG_ADDR(regnum);
728 
729 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
730 
731 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
732 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
733 	if (ret < 0) {
734 		dev_err(priv->dev, "poll timeout\n");
735 		goto out;
736 	}
737 
738 	ret = val & MT7531_MDIO_RW_DATA_MASK;
739 out:
740 	mt7530_mutex_unlock(priv);
741 
742 	return ret;
743 }
744 
745 static int
746 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
747 			 u16 data)
748 {
749 	struct mt7530_dummy_poll p;
750 	int ret;
751 	u32 reg;
752 
753 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
754 
755 	mt7530_mutex_lock(priv);
756 
757 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
758 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
759 	if (ret < 0) {
760 		dev_err(priv->dev, "poll timeout\n");
761 		goto out;
762 	}
763 
764 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
765 	      MT7531_MDIO_REG_ADDR(regnum) | data;
766 
767 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
768 
769 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
770 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
771 	if (ret < 0) {
772 		dev_err(priv->dev, "poll timeout\n");
773 		goto out;
774 	}
775 
776 out:
777 	mt7530_mutex_unlock(priv);
778 
779 	return ret;
780 }
781 
782 static int
783 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
784 {
785 	struct mt7530_priv *priv = bus->priv;
786 
787 	return priv->info->phy_read_c22(priv, port, regnum);
788 }
789 
790 static int
791 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
792 {
793 	struct mt7530_priv *priv = bus->priv;
794 
795 	return priv->info->phy_read_c45(priv, port, devad, regnum);
796 }
797 
798 static int
799 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
800 {
801 	struct mt7530_priv *priv = bus->priv;
802 
803 	return priv->info->phy_write_c22(priv, port, regnum, val);
804 }
805 
806 static int
807 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
808 		     u16 val)
809 {
810 	struct mt7530_priv *priv = bus->priv;
811 
812 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
813 }
814 
815 static void
816 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
817 		   uint8_t *data)
818 {
819 	int i;
820 
821 	if (stringset != ETH_SS_STATS)
822 		return;
823 
824 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
825 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
826 			ETH_GSTRING_LEN);
827 }
828 
829 static void
830 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
831 			 uint64_t *data)
832 {
833 	struct mt7530_priv *priv = ds->priv;
834 	const struct mt7530_mib_desc *mib;
835 	u32 reg, i;
836 	u64 hi;
837 
838 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
839 		mib = &mt7530_mib[i];
840 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
841 
842 		data[i] = mt7530_read(priv, reg);
843 		if (mib->size == 2) {
844 			hi = mt7530_read(priv, reg + 4);
845 			data[i] |= hi << 32;
846 		}
847 	}
848 }
849 
850 static int
851 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
852 {
853 	if (sset != ETH_SS_STATS)
854 		return 0;
855 
856 	return ARRAY_SIZE(mt7530_mib);
857 }
858 
859 static int
860 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
861 {
862 	struct mt7530_priv *priv = ds->priv;
863 	unsigned int secs = msecs / 1000;
864 	unsigned int tmp_age_count;
865 	unsigned int error = -1;
866 	unsigned int age_count;
867 	unsigned int age_unit;
868 
869 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
870 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
871 		return -ERANGE;
872 
873 	/* iterate through all possible age_count to find the closest pair */
874 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
875 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
876 
877 		if (tmp_age_unit <= AGE_UNIT_MAX) {
878 			unsigned int tmp_error = secs -
879 				(tmp_age_count + 1) * (tmp_age_unit + 1);
880 
881 			/* found a closer pair */
882 			if (error > tmp_error) {
883 				error = tmp_error;
884 				age_count = tmp_age_count;
885 				age_unit = tmp_age_unit;
886 			}
887 
888 			/* found the exact match, so break the loop */
889 			if (!error)
890 				break;
891 		}
892 	}
893 
894 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
895 
896 	return 0;
897 }
898 
899 static const char *p5_intf_modes(unsigned int p5_interface)
900 {
901 	switch (p5_interface) {
902 	case P5_DISABLED:
903 		return "DISABLED";
904 	case P5_INTF_SEL_PHY_P0:
905 		return "PHY P0";
906 	case P5_INTF_SEL_PHY_P4:
907 		return "PHY P4";
908 	case P5_INTF_SEL_GMAC5:
909 		return "GMAC5";
910 	case P5_INTF_SEL_GMAC5_SGMII:
911 		return "GMAC5_SGMII";
912 	default:
913 		return "unknown";
914 	}
915 }
916 
917 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
918 {
919 	struct mt7530_priv *priv = ds->priv;
920 	u8 tx_delay = 0;
921 	int val;
922 
923 	mutex_lock(&priv->reg_mutex);
924 
925 	val = mt7530_read(priv, MT7530_MHWTRAP);
926 
927 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
928 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
929 
930 	switch (priv->p5_intf_sel) {
931 	case P5_INTF_SEL_PHY_P0:
932 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
933 		val |= MHWTRAP_PHY0_SEL;
934 		fallthrough;
935 	case P5_INTF_SEL_PHY_P4:
936 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
937 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
938 
939 		/* Setup the MAC by default for the cpu port */
940 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
941 		break;
942 	case P5_INTF_SEL_GMAC5:
943 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
944 		val &= ~MHWTRAP_P5_DIS;
945 		break;
946 	case P5_DISABLED:
947 		interface = PHY_INTERFACE_MODE_NA;
948 		break;
949 	default:
950 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
951 			priv->p5_intf_sel);
952 		goto unlock_exit;
953 	}
954 
955 	/* Setup RGMII settings */
956 	if (phy_interface_mode_is_rgmii(interface)) {
957 		val |= MHWTRAP_P5_RGMII_MODE;
958 
959 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
960 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
961 
962 		/* Don't set delay in DSA mode */
963 		if (!dsa_is_dsa_port(priv->ds, 5) &&
964 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
965 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
966 			tx_delay = 4; /* n * 0.5 ns */
967 
968 		/* P5 RGMII TX Clock Control: delay x */
969 		mt7530_write(priv, MT7530_P5RGMIITXCR,
970 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
971 
972 		/* reduce P5 RGMII Tx driving, 8mA */
973 		mt7530_write(priv, MT7530_IO_DRV_CR,
974 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
975 	}
976 
977 	mt7530_write(priv, MT7530_MHWTRAP, val);
978 
979 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
980 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
981 
982 	priv->p5_interface = interface;
983 
984 unlock_exit:
985 	mutex_unlock(&priv->reg_mutex);
986 }
987 
988 static int
989 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
990 {
991 	struct mt7530_priv *priv = ds->priv;
992 	int ret;
993 
994 	/* Setup max capability of CPU port at first */
995 	if (priv->info->cpu_port_config) {
996 		ret = priv->info->cpu_port_config(ds, port);
997 		if (ret)
998 			return ret;
999 	}
1000 
1001 	/* Enable Mediatek header mode on the cpu port */
1002 	mt7530_write(priv, MT7530_PVC_P(port),
1003 		     PORT_SPEC_TAG);
1004 
1005 	/* Enable flooding on the CPU port */
1006 	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1007 		   UNU_FFP(BIT(port)));
1008 
1009 	/* Set CPU port number */
1010 	if (priv->id == ID_MT7621)
1011 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1012 
1013 	/* CPU port gets connected to all user ports of
1014 	 * the switch.
1015 	 */
1016 	mt7530_write(priv, MT7530_PCR_P(port),
1017 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1018 
1019 	/* Set to fallback mode for independent VLAN learning */
1020 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1021 		   MT7530_PORT_FALLBACK_MODE);
1022 
1023 	return 0;
1024 }
1025 
1026 static int
1027 mt7530_port_enable(struct dsa_switch *ds, int port,
1028 		   struct phy_device *phy)
1029 {
1030 	struct dsa_port *dp = dsa_to_port(ds, port);
1031 	struct mt7530_priv *priv = ds->priv;
1032 
1033 	mutex_lock(&priv->reg_mutex);
1034 
1035 	/* Allow the user port gets connected to the cpu port and also
1036 	 * restore the port matrix if the port is the member of a certain
1037 	 * bridge.
1038 	 */
1039 	if (dsa_port_is_user(dp)) {
1040 		struct dsa_port *cpu_dp = dp->cpu_dp;
1041 
1042 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1043 	}
1044 	priv->ports[port].enable = true;
1045 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1046 		   priv->ports[port].pm);
1047 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1048 
1049 	mutex_unlock(&priv->reg_mutex);
1050 
1051 	return 0;
1052 }
1053 
1054 static void
1055 mt7530_port_disable(struct dsa_switch *ds, int port)
1056 {
1057 	struct mt7530_priv *priv = ds->priv;
1058 
1059 	mutex_lock(&priv->reg_mutex);
1060 
1061 	/* Clear up all port matrix which could be restored in the next
1062 	 * enablement for the port.
1063 	 */
1064 	priv->ports[port].enable = false;
1065 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1066 		   PCR_MATRIX_CLR);
1067 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1068 
1069 	mutex_unlock(&priv->reg_mutex);
1070 }
1071 
1072 static int
1073 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1074 {
1075 	struct mt7530_priv *priv = ds->priv;
1076 	int length;
1077 	u32 val;
1078 
1079 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1080 	 * largest MTU of the slave ports. Because the switch only has a global
1081 	 * RX length register, only allowing CPU port here is enough.
1082 	 */
1083 	if (!dsa_is_cpu_port(ds, port))
1084 		return 0;
1085 
1086 	mt7530_mutex_lock(priv);
1087 
1088 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1089 	val &= ~MAX_RX_PKT_LEN_MASK;
1090 
1091 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1092 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1093 	if (length <= 1522) {
1094 		val |= MAX_RX_PKT_LEN_1522;
1095 	} else if (length <= 1536) {
1096 		val |= MAX_RX_PKT_LEN_1536;
1097 	} else if (length <= 1552) {
1098 		val |= MAX_RX_PKT_LEN_1552;
1099 	} else {
1100 		val &= ~MAX_RX_JUMBO_MASK;
1101 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1102 		val |= MAX_RX_PKT_LEN_JUMBO;
1103 	}
1104 
1105 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1106 
1107 	mt7530_mutex_unlock(priv);
1108 
1109 	return 0;
1110 }
1111 
1112 static int
1113 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1114 {
1115 	return MT7530_MAX_MTU;
1116 }
1117 
1118 static void
1119 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1120 {
1121 	struct mt7530_priv *priv = ds->priv;
1122 	u32 stp_state;
1123 
1124 	switch (state) {
1125 	case BR_STATE_DISABLED:
1126 		stp_state = MT7530_STP_DISABLED;
1127 		break;
1128 	case BR_STATE_BLOCKING:
1129 		stp_state = MT7530_STP_BLOCKING;
1130 		break;
1131 	case BR_STATE_LISTENING:
1132 		stp_state = MT7530_STP_LISTENING;
1133 		break;
1134 	case BR_STATE_LEARNING:
1135 		stp_state = MT7530_STP_LEARNING;
1136 		break;
1137 	case BR_STATE_FORWARDING:
1138 	default:
1139 		stp_state = MT7530_STP_FORWARDING;
1140 		break;
1141 	}
1142 
1143 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1144 		   FID_PST(FID_BRIDGED, stp_state));
1145 }
1146 
1147 static int
1148 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1149 			     struct switchdev_brport_flags flags,
1150 			     struct netlink_ext_ack *extack)
1151 {
1152 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1153 			   BR_BCAST_FLOOD))
1154 		return -EINVAL;
1155 
1156 	return 0;
1157 }
1158 
1159 static int
1160 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1161 			 struct switchdev_brport_flags flags,
1162 			 struct netlink_ext_ack *extack)
1163 {
1164 	struct mt7530_priv *priv = ds->priv;
1165 
1166 	if (flags.mask & BR_LEARNING)
1167 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1168 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1169 
1170 	if (flags.mask & BR_FLOOD)
1171 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1172 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1173 
1174 	if (flags.mask & BR_MCAST_FLOOD)
1175 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1176 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1177 
1178 	if (flags.mask & BR_BCAST_FLOOD)
1179 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1180 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1181 
1182 	return 0;
1183 }
1184 
1185 static int
1186 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1187 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1188 			struct netlink_ext_ack *extack)
1189 {
1190 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1191 	struct dsa_port *cpu_dp = dp->cpu_dp;
1192 	u32 port_bitmap = BIT(cpu_dp->index);
1193 	struct mt7530_priv *priv = ds->priv;
1194 
1195 	mutex_lock(&priv->reg_mutex);
1196 
1197 	dsa_switch_for_each_user_port(other_dp, ds) {
1198 		int other_port = other_dp->index;
1199 
1200 		if (dp == other_dp)
1201 			continue;
1202 
1203 		/* Add this port to the port matrix of the other ports in the
1204 		 * same bridge. If the port is disabled, port matrix is kept
1205 		 * and not being setup until the port becomes enabled.
1206 		 */
1207 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1208 			continue;
1209 
1210 		if (priv->ports[other_port].enable)
1211 			mt7530_set(priv, MT7530_PCR_P(other_port),
1212 				   PCR_MATRIX(BIT(port)));
1213 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1214 
1215 		port_bitmap |= BIT(other_port);
1216 	}
1217 
1218 	/* Add the all other ports to this port matrix. */
1219 	if (priv->ports[port].enable)
1220 		mt7530_rmw(priv, MT7530_PCR_P(port),
1221 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1222 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1223 
1224 	/* Set to fallback mode for independent VLAN learning */
1225 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1226 		   MT7530_PORT_FALLBACK_MODE);
1227 
1228 	mutex_unlock(&priv->reg_mutex);
1229 
1230 	return 0;
1231 }
1232 
1233 static void
1234 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1235 {
1236 	struct mt7530_priv *priv = ds->priv;
1237 	bool all_user_ports_removed = true;
1238 	int i;
1239 
1240 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1241 	 * bridge. Don't set standalone ports to fallback mode.
1242 	 */
1243 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1244 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1245 			   MT7530_PORT_FALLBACK_MODE);
1246 
1247 	mt7530_rmw(priv, MT7530_PVC_P(port),
1248 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1249 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1250 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1251 		   MT7530_VLAN_ACC_ALL);
1252 
1253 	/* Set PVID to 0 */
1254 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1255 		   G0_PORT_VID_DEF);
1256 
1257 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1258 		if (dsa_is_user_port(ds, i) &&
1259 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1260 			all_user_ports_removed = false;
1261 			break;
1262 		}
1263 	}
1264 
1265 	/* CPU port also does the same thing until all user ports belonging to
1266 	 * the CPU port get out of VLAN filtering mode.
1267 	 */
1268 	if (all_user_ports_removed) {
1269 		struct dsa_port *dp = dsa_to_port(ds, port);
1270 		struct dsa_port *cpu_dp = dp->cpu_dp;
1271 
1272 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1273 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1274 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1275 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1276 	}
1277 }
1278 
1279 static void
1280 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1281 {
1282 	struct mt7530_priv *priv = ds->priv;
1283 
1284 	/* Trapped into security mode allows packet forwarding through VLAN
1285 	 * table lookup.
1286 	 */
1287 	if (dsa_is_user_port(ds, port)) {
1288 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1289 			   MT7530_PORT_SECURITY_MODE);
1290 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1291 			   G0_PORT_VID(priv->ports[port].pvid));
1292 
1293 		/* Only accept tagged frames if PVID is not set */
1294 		if (!priv->ports[port].pvid)
1295 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1296 				   MT7530_VLAN_ACC_TAGGED);
1297 
1298 		/* Set the port as a user port which is to be able to recognize
1299 		 * VID from incoming packets before fetching entry within the
1300 		 * VLAN table.
1301 		 */
1302 		mt7530_rmw(priv, MT7530_PVC_P(port),
1303 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1304 			   VLAN_ATTR(MT7530_VLAN_USER) |
1305 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1306 	} else {
1307 		/* Also set CPU ports to the "user" VLAN port attribute, to
1308 		 * allow VLAN classification, but keep the EG_TAG attribute as
1309 		 * "consistent" (i.o.w. don't change its value) for packets
1310 		 * received by the switch from the CPU, so that tagged packets
1311 		 * are forwarded to user ports as tagged, and untagged as
1312 		 * untagged.
1313 		 */
1314 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1315 			   VLAN_ATTR(MT7530_VLAN_USER));
1316 	}
1317 }
1318 
1319 static void
1320 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1321 			 struct dsa_bridge bridge)
1322 {
1323 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1324 	struct dsa_port *cpu_dp = dp->cpu_dp;
1325 	struct mt7530_priv *priv = ds->priv;
1326 
1327 	mutex_lock(&priv->reg_mutex);
1328 
1329 	dsa_switch_for_each_user_port(other_dp, ds) {
1330 		int other_port = other_dp->index;
1331 
1332 		if (dp == other_dp)
1333 			continue;
1334 
1335 		/* Remove this port from the port matrix of the other ports
1336 		 * in the same bridge. If the port is disabled, port matrix
1337 		 * is kept and not being setup until the port becomes enabled.
1338 		 */
1339 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1340 			continue;
1341 
1342 		if (priv->ports[other_port].enable)
1343 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1344 				     PCR_MATRIX(BIT(port)));
1345 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1346 	}
1347 
1348 	/* Set the cpu port to be the only one in the port matrix of
1349 	 * this port.
1350 	 */
1351 	if (priv->ports[port].enable)
1352 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1353 			   PCR_MATRIX(BIT(cpu_dp->index)));
1354 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1355 
1356 	/* When a port is removed from the bridge, the port would be set up
1357 	 * back to the default as is at initial boot which is a VLAN-unaware
1358 	 * port.
1359 	 */
1360 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1361 		   MT7530_PORT_MATRIX_MODE);
1362 
1363 	mutex_unlock(&priv->reg_mutex);
1364 }
1365 
1366 static int
1367 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1368 		    const unsigned char *addr, u16 vid,
1369 		    struct dsa_db db)
1370 {
1371 	struct mt7530_priv *priv = ds->priv;
1372 	int ret;
1373 	u8 port_mask = BIT(port);
1374 
1375 	mutex_lock(&priv->reg_mutex);
1376 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1377 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1378 	mutex_unlock(&priv->reg_mutex);
1379 
1380 	return ret;
1381 }
1382 
1383 static int
1384 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1385 		    const unsigned char *addr, u16 vid,
1386 		    struct dsa_db db)
1387 {
1388 	struct mt7530_priv *priv = ds->priv;
1389 	int ret;
1390 	u8 port_mask = BIT(port);
1391 
1392 	mutex_lock(&priv->reg_mutex);
1393 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1394 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1395 	mutex_unlock(&priv->reg_mutex);
1396 
1397 	return ret;
1398 }
1399 
1400 static int
1401 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1402 		     dsa_fdb_dump_cb_t *cb, void *data)
1403 {
1404 	struct mt7530_priv *priv = ds->priv;
1405 	struct mt7530_fdb _fdb = { 0 };
1406 	int cnt = MT7530_NUM_FDB_RECORDS;
1407 	int ret = 0;
1408 	u32 rsp = 0;
1409 
1410 	mutex_lock(&priv->reg_mutex);
1411 
1412 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1413 	if (ret < 0)
1414 		goto err;
1415 
1416 	do {
1417 		if (rsp & ATC_SRCH_HIT) {
1418 			mt7530_fdb_read(priv, &_fdb);
1419 			if (_fdb.port_mask & BIT(port)) {
1420 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1421 					 data);
1422 				if (ret < 0)
1423 					break;
1424 			}
1425 		}
1426 	} while (--cnt &&
1427 		 !(rsp & ATC_SRCH_END) &&
1428 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1429 err:
1430 	mutex_unlock(&priv->reg_mutex);
1431 
1432 	return 0;
1433 }
1434 
1435 static int
1436 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1437 		    const struct switchdev_obj_port_mdb *mdb,
1438 		    struct dsa_db db)
1439 {
1440 	struct mt7530_priv *priv = ds->priv;
1441 	const u8 *addr = mdb->addr;
1442 	u16 vid = mdb->vid;
1443 	u8 port_mask = 0;
1444 	int ret;
1445 
1446 	mutex_lock(&priv->reg_mutex);
1447 
1448 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1449 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1450 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1451 			    & PORT_MAP_MASK;
1452 
1453 	port_mask |= BIT(port);
1454 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1455 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1456 
1457 	mutex_unlock(&priv->reg_mutex);
1458 
1459 	return ret;
1460 }
1461 
1462 static int
1463 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1464 		    const struct switchdev_obj_port_mdb *mdb,
1465 		    struct dsa_db db)
1466 {
1467 	struct mt7530_priv *priv = ds->priv;
1468 	const u8 *addr = mdb->addr;
1469 	u16 vid = mdb->vid;
1470 	u8 port_mask = 0;
1471 	int ret;
1472 
1473 	mutex_lock(&priv->reg_mutex);
1474 
1475 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1476 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1477 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1478 			    & PORT_MAP_MASK;
1479 
1480 	port_mask &= ~BIT(port);
1481 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1482 			 port_mask ? STATIC_ENT : STATIC_EMP);
1483 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1484 
1485 	mutex_unlock(&priv->reg_mutex);
1486 
1487 	return ret;
1488 }
1489 
1490 static int
1491 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1492 {
1493 	struct mt7530_dummy_poll p;
1494 	u32 val;
1495 	int ret;
1496 
1497 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1498 	mt7530_write(priv, MT7530_VTCR, val);
1499 
1500 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1501 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1502 				 !(val & VTCR_BUSY), 20, 20000);
1503 	if (ret < 0) {
1504 		dev_err(priv->dev, "poll timeout\n");
1505 		return ret;
1506 	}
1507 
1508 	val = mt7530_read(priv, MT7530_VTCR);
1509 	if (val & VTCR_INVALID) {
1510 		dev_err(priv->dev, "read VTCR invalid\n");
1511 		return -EINVAL;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 static int
1518 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1519 			   struct netlink_ext_ack *extack)
1520 {
1521 	struct dsa_port *dp = dsa_to_port(ds, port);
1522 	struct dsa_port *cpu_dp = dp->cpu_dp;
1523 
1524 	if (vlan_filtering) {
1525 		/* The port is being kept as VLAN-unaware port when bridge is
1526 		 * set up with vlan_filtering not being set, Otherwise, the
1527 		 * port and the corresponding CPU port is required the setup
1528 		 * for becoming a VLAN-aware port.
1529 		 */
1530 		mt7530_port_set_vlan_aware(ds, port);
1531 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1532 	} else {
1533 		mt7530_port_set_vlan_unaware(ds, port);
1534 	}
1535 
1536 	return 0;
1537 }
1538 
1539 static void
1540 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1541 		   struct mt7530_hw_vlan_entry *entry)
1542 {
1543 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1544 	u8 new_members;
1545 	u32 val;
1546 
1547 	new_members = entry->old_members | BIT(entry->port);
1548 
1549 	/* Validate the entry with independent learning, create egress tag per
1550 	 * VLAN and joining the port as one of the port members.
1551 	 */
1552 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1553 	      VLAN_VALID;
1554 	mt7530_write(priv, MT7530_VAWD1, val);
1555 
1556 	/* Decide whether adding tag or not for those outgoing packets from the
1557 	 * port inside the VLAN.
1558 	 * CPU port is always taken as a tagged port for serving more than one
1559 	 * VLANs across and also being applied with egress type stack mode for
1560 	 * that VLAN tags would be appended after hardware special tag used as
1561 	 * DSA tag.
1562 	 */
1563 	if (dsa_port_is_cpu(dp))
1564 		val = MT7530_VLAN_EGRESS_STACK;
1565 	else if (entry->untagged)
1566 		val = MT7530_VLAN_EGRESS_UNTAG;
1567 	else
1568 		val = MT7530_VLAN_EGRESS_TAG;
1569 	mt7530_rmw(priv, MT7530_VAWD2,
1570 		   ETAG_CTRL_P_MASK(entry->port),
1571 		   ETAG_CTRL_P(entry->port, val));
1572 }
1573 
1574 static void
1575 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1576 		   struct mt7530_hw_vlan_entry *entry)
1577 {
1578 	u8 new_members;
1579 	u32 val;
1580 
1581 	new_members = entry->old_members & ~BIT(entry->port);
1582 
1583 	val = mt7530_read(priv, MT7530_VAWD1);
1584 	if (!(val & VLAN_VALID)) {
1585 		dev_err(priv->dev,
1586 			"Cannot be deleted due to invalid entry\n");
1587 		return;
1588 	}
1589 
1590 	if (new_members) {
1591 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1592 		      VLAN_VALID;
1593 		mt7530_write(priv, MT7530_VAWD1, val);
1594 	} else {
1595 		mt7530_write(priv, MT7530_VAWD1, 0);
1596 		mt7530_write(priv, MT7530_VAWD2, 0);
1597 	}
1598 }
1599 
1600 static void
1601 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1602 		      struct mt7530_hw_vlan_entry *entry,
1603 		      mt7530_vlan_op vlan_op)
1604 {
1605 	u32 val;
1606 
1607 	/* Fetch entry */
1608 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1609 
1610 	val = mt7530_read(priv, MT7530_VAWD1);
1611 
1612 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1613 
1614 	/* Manipulate entry */
1615 	vlan_op(priv, entry);
1616 
1617 	/* Flush result to hardware */
1618 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1619 }
1620 
1621 static int
1622 mt7530_setup_vlan0(struct mt7530_priv *priv)
1623 {
1624 	u32 val;
1625 
1626 	/* Validate the entry with independent learning, keep the original
1627 	 * ingress tag attribute.
1628 	 */
1629 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1630 	      VLAN_VALID;
1631 	mt7530_write(priv, MT7530_VAWD1, val);
1632 
1633 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1634 }
1635 
1636 static int
1637 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1638 		     const struct switchdev_obj_port_vlan *vlan,
1639 		     struct netlink_ext_ack *extack)
1640 {
1641 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1642 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1643 	struct mt7530_hw_vlan_entry new_entry;
1644 	struct mt7530_priv *priv = ds->priv;
1645 
1646 	mutex_lock(&priv->reg_mutex);
1647 
1648 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1649 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1650 
1651 	if (pvid) {
1652 		priv->ports[port].pvid = vlan->vid;
1653 
1654 		/* Accept all frames if PVID is set */
1655 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1656 			   MT7530_VLAN_ACC_ALL);
1657 
1658 		/* Only configure PVID if VLAN filtering is enabled */
1659 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1660 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1661 				   G0_PORT_VID_MASK,
1662 				   G0_PORT_VID(vlan->vid));
1663 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1664 		/* This VLAN is overwritten without PVID, so unset it */
1665 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1666 
1667 		/* Only accept tagged frames if the port is VLAN-aware */
1668 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1669 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1670 				   MT7530_VLAN_ACC_TAGGED);
1671 
1672 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1673 			   G0_PORT_VID_DEF);
1674 	}
1675 
1676 	mutex_unlock(&priv->reg_mutex);
1677 
1678 	return 0;
1679 }
1680 
1681 static int
1682 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1683 		     const struct switchdev_obj_port_vlan *vlan)
1684 {
1685 	struct mt7530_hw_vlan_entry target_entry;
1686 	struct mt7530_priv *priv = ds->priv;
1687 
1688 	mutex_lock(&priv->reg_mutex);
1689 
1690 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1691 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1692 			      mt7530_hw_vlan_del);
1693 
1694 	/* PVID is being restored to the default whenever the PVID port
1695 	 * is being removed from the VLAN.
1696 	 */
1697 	if (priv->ports[port].pvid == vlan->vid) {
1698 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1699 
1700 		/* Only accept tagged frames if the port is VLAN-aware */
1701 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1702 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1703 				   MT7530_VLAN_ACC_TAGGED);
1704 
1705 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1706 			   G0_PORT_VID_DEF);
1707 	}
1708 
1709 
1710 	mutex_unlock(&priv->reg_mutex);
1711 
1712 	return 0;
1713 }
1714 
1715 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1716 {
1717 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1718 				   MIRROR_PORT(val);
1719 }
1720 
1721 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1722 {
1723 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1724 				   MIRROR_PORT(val);
1725 }
1726 
1727 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1728 				  struct dsa_mall_mirror_tc_entry *mirror,
1729 				  bool ingress, struct netlink_ext_ack *extack)
1730 {
1731 	struct mt7530_priv *priv = ds->priv;
1732 	int monitor_port;
1733 	u32 val;
1734 
1735 	/* Check for existent entry */
1736 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1737 		return -EEXIST;
1738 
1739 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1740 
1741 	/* MT7530 only supports one monitor port */
1742 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1743 	if (val & MT753X_MIRROR_EN(priv->id) &&
1744 	    monitor_port != mirror->to_local_port)
1745 		return -EEXIST;
1746 
1747 	val |= MT753X_MIRROR_EN(priv->id);
1748 	val &= ~MT753X_MIRROR_MASK(priv->id);
1749 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1750 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1751 
1752 	val = mt7530_read(priv, MT7530_PCR_P(port));
1753 	if (ingress) {
1754 		val |= PORT_RX_MIR;
1755 		priv->mirror_rx |= BIT(port);
1756 	} else {
1757 		val |= PORT_TX_MIR;
1758 		priv->mirror_tx |= BIT(port);
1759 	}
1760 	mt7530_write(priv, MT7530_PCR_P(port), val);
1761 
1762 	return 0;
1763 }
1764 
1765 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1766 				   struct dsa_mall_mirror_tc_entry *mirror)
1767 {
1768 	struct mt7530_priv *priv = ds->priv;
1769 	u32 val;
1770 
1771 	val = mt7530_read(priv, MT7530_PCR_P(port));
1772 	if (mirror->ingress) {
1773 		val &= ~PORT_RX_MIR;
1774 		priv->mirror_rx &= ~BIT(port);
1775 	} else {
1776 		val &= ~PORT_TX_MIR;
1777 		priv->mirror_tx &= ~BIT(port);
1778 	}
1779 	mt7530_write(priv, MT7530_PCR_P(port), val);
1780 
1781 	if (!priv->mirror_rx && !priv->mirror_tx) {
1782 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1783 		val &= ~MT753X_MIRROR_EN(priv->id);
1784 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1785 	}
1786 }
1787 
1788 static enum dsa_tag_protocol
1789 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1790 		     enum dsa_tag_protocol mp)
1791 {
1792 	return DSA_TAG_PROTO_MTK;
1793 }
1794 
1795 #ifdef CONFIG_GPIOLIB
1796 static inline u32
1797 mt7530_gpio_to_bit(unsigned int offset)
1798 {
1799 	/* Map GPIO offset to register bit
1800 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1801 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1802 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1803 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1804 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1805 	 */
1806 	return BIT(offset + offset / 3);
1807 }
1808 
1809 static int
1810 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1811 {
1812 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1813 	u32 bit = mt7530_gpio_to_bit(offset);
1814 
1815 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1816 }
1817 
1818 static void
1819 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1820 {
1821 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1822 	u32 bit = mt7530_gpio_to_bit(offset);
1823 
1824 	if (value)
1825 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1826 	else
1827 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1828 }
1829 
1830 static int
1831 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1832 {
1833 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1834 	u32 bit = mt7530_gpio_to_bit(offset);
1835 
1836 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1837 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1838 }
1839 
1840 static int
1841 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1842 {
1843 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1844 	u32 bit = mt7530_gpio_to_bit(offset);
1845 
1846 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1847 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1848 
1849 	return 0;
1850 }
1851 
1852 static int
1853 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1854 {
1855 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1856 	u32 bit = mt7530_gpio_to_bit(offset);
1857 
1858 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1859 
1860 	if (value)
1861 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1862 	else
1863 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1864 
1865 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1866 
1867 	return 0;
1868 }
1869 
1870 static int
1871 mt7530_setup_gpio(struct mt7530_priv *priv)
1872 {
1873 	struct device *dev = priv->dev;
1874 	struct gpio_chip *gc;
1875 
1876 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1877 	if (!gc)
1878 		return -ENOMEM;
1879 
1880 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1881 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1882 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1883 
1884 	gc->label = "mt7530";
1885 	gc->parent = dev;
1886 	gc->owner = THIS_MODULE;
1887 	gc->get_direction = mt7530_gpio_get_direction;
1888 	gc->direction_input = mt7530_gpio_direction_input;
1889 	gc->direction_output = mt7530_gpio_direction_output;
1890 	gc->get = mt7530_gpio_get;
1891 	gc->set = mt7530_gpio_set;
1892 	gc->base = -1;
1893 	gc->ngpio = 15;
1894 	gc->can_sleep = true;
1895 
1896 	return devm_gpiochip_add_data(dev, gc, priv);
1897 }
1898 #endif /* CONFIG_GPIOLIB */
1899 
1900 static irqreturn_t
1901 mt7530_irq_thread_fn(int irq, void *dev_id)
1902 {
1903 	struct mt7530_priv *priv = dev_id;
1904 	bool handled = false;
1905 	u32 val;
1906 	int p;
1907 
1908 	mt7530_mutex_lock(priv);
1909 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1910 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1911 	mt7530_mutex_unlock(priv);
1912 
1913 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1914 		if (BIT(p) & val) {
1915 			unsigned int irq;
1916 
1917 			irq = irq_find_mapping(priv->irq_domain, p);
1918 			handle_nested_irq(irq);
1919 			handled = true;
1920 		}
1921 	}
1922 
1923 	return IRQ_RETVAL(handled);
1924 }
1925 
1926 static void
1927 mt7530_irq_mask(struct irq_data *d)
1928 {
1929 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1930 
1931 	priv->irq_enable &= ~BIT(d->hwirq);
1932 }
1933 
1934 static void
1935 mt7530_irq_unmask(struct irq_data *d)
1936 {
1937 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1938 
1939 	priv->irq_enable |= BIT(d->hwirq);
1940 }
1941 
1942 static void
1943 mt7530_irq_bus_lock(struct irq_data *d)
1944 {
1945 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1946 
1947 	mt7530_mutex_lock(priv);
1948 }
1949 
1950 static void
1951 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1952 {
1953 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1954 
1955 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1956 	mt7530_mutex_unlock(priv);
1957 }
1958 
1959 static struct irq_chip mt7530_irq_chip = {
1960 	.name = KBUILD_MODNAME,
1961 	.irq_mask = mt7530_irq_mask,
1962 	.irq_unmask = mt7530_irq_unmask,
1963 	.irq_bus_lock = mt7530_irq_bus_lock,
1964 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1965 };
1966 
1967 static int
1968 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1969 	       irq_hw_number_t hwirq)
1970 {
1971 	irq_set_chip_data(irq, domain->host_data);
1972 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1973 	irq_set_nested_thread(irq, true);
1974 	irq_set_noprobe(irq);
1975 
1976 	return 0;
1977 }
1978 
1979 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1980 	.map = mt7530_irq_map,
1981 	.xlate = irq_domain_xlate_onecell,
1982 };
1983 
1984 static void
1985 mt7988_irq_mask(struct irq_data *d)
1986 {
1987 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1988 
1989 	priv->irq_enable &= ~BIT(d->hwirq);
1990 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1991 }
1992 
1993 static void
1994 mt7988_irq_unmask(struct irq_data *d)
1995 {
1996 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1997 
1998 	priv->irq_enable |= BIT(d->hwirq);
1999 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2000 }
2001 
2002 static struct irq_chip mt7988_irq_chip = {
2003 	.name = KBUILD_MODNAME,
2004 	.irq_mask = mt7988_irq_mask,
2005 	.irq_unmask = mt7988_irq_unmask,
2006 };
2007 
2008 static int
2009 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2010 	       irq_hw_number_t hwirq)
2011 {
2012 	irq_set_chip_data(irq, domain->host_data);
2013 	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2014 	irq_set_nested_thread(irq, true);
2015 	irq_set_noprobe(irq);
2016 
2017 	return 0;
2018 }
2019 
2020 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2021 	.map = mt7988_irq_map,
2022 	.xlate = irq_domain_xlate_onecell,
2023 };
2024 
2025 static void
2026 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2027 {
2028 	struct dsa_switch *ds = priv->ds;
2029 	int p;
2030 
2031 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2032 		if (BIT(p) & ds->phys_mii_mask) {
2033 			unsigned int irq;
2034 
2035 			irq = irq_create_mapping(priv->irq_domain, p);
2036 			ds->slave_mii_bus->irq[p] = irq;
2037 		}
2038 	}
2039 }
2040 
2041 static int
2042 mt7530_setup_irq(struct mt7530_priv *priv)
2043 {
2044 	struct device *dev = priv->dev;
2045 	struct device_node *np = dev->of_node;
2046 	int ret;
2047 
2048 	if (!of_property_read_bool(np, "interrupt-controller")) {
2049 		dev_info(dev, "no interrupt support\n");
2050 		return 0;
2051 	}
2052 
2053 	priv->irq = of_irq_get(np, 0);
2054 	if (priv->irq <= 0) {
2055 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2056 		return priv->irq ? : -EINVAL;
2057 	}
2058 
2059 	if (priv->id == ID_MT7988)
2060 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2061 							 &mt7988_irq_domain_ops,
2062 							 priv);
2063 	else
2064 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2065 							 &mt7530_irq_domain_ops,
2066 							 priv);
2067 
2068 	if (!priv->irq_domain) {
2069 		dev_err(dev, "failed to create IRQ domain\n");
2070 		return -ENOMEM;
2071 	}
2072 
2073 	/* This register must be set for MT7530 to properly fire interrupts */
2074 	if (priv->id != ID_MT7531)
2075 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2076 
2077 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2078 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2079 	if (ret) {
2080 		irq_domain_remove(priv->irq_domain);
2081 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2082 		return ret;
2083 	}
2084 
2085 	return 0;
2086 }
2087 
2088 static void
2089 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2090 {
2091 	int p;
2092 
2093 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2094 		if (BIT(p) & priv->ds->phys_mii_mask) {
2095 			unsigned int irq;
2096 
2097 			irq = irq_find_mapping(priv->irq_domain, p);
2098 			irq_dispose_mapping(irq);
2099 		}
2100 	}
2101 }
2102 
2103 static void
2104 mt7530_free_irq_common(struct mt7530_priv *priv)
2105 {
2106 	free_irq(priv->irq, priv);
2107 	irq_domain_remove(priv->irq_domain);
2108 }
2109 
2110 static void
2111 mt7530_free_irq(struct mt7530_priv *priv)
2112 {
2113 	mt7530_free_mdio_irq(priv);
2114 	mt7530_free_irq_common(priv);
2115 }
2116 
2117 static int
2118 mt7530_setup_mdio(struct mt7530_priv *priv)
2119 {
2120 	struct dsa_switch *ds = priv->ds;
2121 	struct device *dev = priv->dev;
2122 	struct mii_bus *bus;
2123 	static int idx;
2124 	int ret;
2125 
2126 	bus = devm_mdiobus_alloc(dev);
2127 	if (!bus)
2128 		return -ENOMEM;
2129 
2130 	ds->slave_mii_bus = bus;
2131 	bus->priv = priv;
2132 	bus->name = KBUILD_MODNAME "-mii";
2133 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2134 	bus->read = mt753x_phy_read_c22;
2135 	bus->write = mt753x_phy_write_c22;
2136 	bus->read_c45 = mt753x_phy_read_c45;
2137 	bus->write_c45 = mt753x_phy_write_c45;
2138 	bus->parent = dev;
2139 	bus->phy_mask = ~ds->phys_mii_mask;
2140 
2141 	if (priv->irq)
2142 		mt7530_setup_mdio_irq(priv);
2143 
2144 	ret = devm_mdiobus_register(dev, bus);
2145 	if (ret) {
2146 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2147 		if (priv->irq)
2148 			mt7530_free_mdio_irq(priv);
2149 	}
2150 
2151 	return ret;
2152 }
2153 
2154 static int
2155 mt7530_setup(struct dsa_switch *ds)
2156 {
2157 	struct mt7530_priv *priv = ds->priv;
2158 	struct device_node *dn = NULL;
2159 	struct device_node *phy_node;
2160 	struct device_node *mac_np;
2161 	struct mt7530_dummy_poll p;
2162 	phy_interface_t interface;
2163 	struct dsa_port *cpu_dp;
2164 	u32 id, val;
2165 	int ret, i;
2166 
2167 	/* The parent node of master netdev which holds the common system
2168 	 * controller also is the container for two GMACs nodes representing
2169 	 * as two netdev instances.
2170 	 */
2171 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2172 		dn = cpu_dp->master->dev.of_node->parent;
2173 		/* It doesn't matter which CPU port is found first,
2174 		 * their masters should share the same parent OF node
2175 		 */
2176 		break;
2177 	}
2178 
2179 	if (!dn) {
2180 		dev_err(ds->dev, "parent OF node of DSA master not found");
2181 		return -EINVAL;
2182 	}
2183 
2184 	ds->assisted_learning_on_cpu_port = true;
2185 	ds->mtu_enforcement_ingress = true;
2186 
2187 	if (priv->id == ID_MT7530) {
2188 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2189 		ret = regulator_enable(priv->core_pwr);
2190 		if (ret < 0) {
2191 			dev_err(priv->dev,
2192 				"Failed to enable core power: %d\n", ret);
2193 			return ret;
2194 		}
2195 
2196 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2197 		ret = regulator_enable(priv->io_pwr);
2198 		if (ret < 0) {
2199 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2200 				ret);
2201 			return ret;
2202 		}
2203 	}
2204 
2205 	/* Reset whole chip through gpio pin or memory-mapped registers for
2206 	 * different type of hardware
2207 	 */
2208 	if (priv->mcm) {
2209 		reset_control_assert(priv->rstc);
2210 		usleep_range(1000, 1100);
2211 		reset_control_deassert(priv->rstc);
2212 	} else {
2213 		gpiod_set_value_cansleep(priv->reset, 0);
2214 		usleep_range(1000, 1100);
2215 		gpiod_set_value_cansleep(priv->reset, 1);
2216 	}
2217 
2218 	/* Waiting for MT7530 got to stable */
2219 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2220 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2221 				 20, 1000000);
2222 	if (ret < 0) {
2223 		dev_err(priv->dev, "reset timeout\n");
2224 		return ret;
2225 	}
2226 
2227 	id = mt7530_read(priv, MT7530_CREV);
2228 	id >>= CHIP_NAME_SHIFT;
2229 	if (id != MT7530_ID) {
2230 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2231 		return -ENODEV;
2232 	}
2233 
2234 	/* Reset the switch through internal reset */
2235 	mt7530_write(priv, MT7530_SYS_CTRL,
2236 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2237 		     SYS_CTRL_REG_RST);
2238 
2239 	mt7530_pll_setup(priv);
2240 
2241 	/* Lower Tx driving for TRGMII path */
2242 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2243 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2244 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2245 
2246 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2247 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2248 			   RD_TAP_MASK, RD_TAP(16));
2249 
2250 	/* Enable port 6 */
2251 	val = mt7530_read(priv, MT7530_MHWTRAP);
2252 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2253 	val |= MHWTRAP_MANUAL;
2254 	mt7530_write(priv, MT7530_MHWTRAP, val);
2255 
2256 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2257 
2258 	/* Enable and reset MIB counters */
2259 	mt7530_mib_reset(ds);
2260 
2261 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2262 		/* Disable forwarding by default on all ports */
2263 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2264 			   PCR_MATRIX_CLR);
2265 
2266 		/* Disable learning by default on all ports */
2267 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2268 
2269 		if (dsa_is_cpu_port(ds, i)) {
2270 			ret = mt753x_cpu_port_enable(ds, i);
2271 			if (ret)
2272 				return ret;
2273 		} else {
2274 			mt7530_port_disable(ds, i);
2275 
2276 			/* Set default PVID to 0 on all user ports */
2277 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2278 				   G0_PORT_VID_DEF);
2279 		}
2280 		/* Enable consistent egress tag */
2281 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2282 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2283 	}
2284 
2285 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2286 	ret = mt7530_setup_vlan0(priv);
2287 	if (ret)
2288 		return ret;
2289 
2290 	/* Setup port 5 */
2291 	priv->p5_intf_sel = P5_DISABLED;
2292 	interface = PHY_INTERFACE_MODE_NA;
2293 
2294 	if (!dsa_is_unused_port(ds, 5)) {
2295 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2296 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2297 		if (ret && ret != -ENODEV)
2298 			return ret;
2299 	} else {
2300 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2301 		for_each_child_of_node(dn, mac_np) {
2302 			if (!of_device_is_compatible(mac_np,
2303 						     "mediatek,eth-mac"))
2304 				continue;
2305 
2306 			ret = of_property_read_u32(mac_np, "reg", &id);
2307 			if (ret < 0 || id != 1)
2308 				continue;
2309 
2310 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2311 			if (!phy_node)
2312 				continue;
2313 
2314 			if (phy_node->parent == priv->dev->of_node->parent) {
2315 				ret = of_get_phy_mode(mac_np, &interface);
2316 				if (ret && ret != -ENODEV) {
2317 					of_node_put(mac_np);
2318 					of_node_put(phy_node);
2319 					return ret;
2320 				}
2321 				id = of_mdio_parse_addr(ds->dev, phy_node);
2322 				if (id == 0)
2323 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2324 				if (id == 4)
2325 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2326 			}
2327 			of_node_put(mac_np);
2328 			of_node_put(phy_node);
2329 			break;
2330 		}
2331 	}
2332 
2333 #ifdef CONFIG_GPIOLIB
2334 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2335 		ret = mt7530_setup_gpio(priv);
2336 		if (ret)
2337 			return ret;
2338 	}
2339 #endif /* CONFIG_GPIOLIB */
2340 
2341 	mt7530_setup_port5(ds, interface);
2342 
2343 	/* Flush the FDB table */
2344 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2345 	if (ret < 0)
2346 		return ret;
2347 
2348 	return 0;
2349 }
2350 
2351 static int
2352 mt7531_setup_common(struct dsa_switch *ds)
2353 {
2354 	struct mt7530_priv *priv = ds->priv;
2355 	struct dsa_port *cpu_dp;
2356 	int ret, i;
2357 
2358 	/* BPDU to CPU port */
2359 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2360 		mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2361 			   BIT(cpu_dp->index));
2362 		break;
2363 	}
2364 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2365 		   MT753X_BPDU_CPU_ONLY);
2366 
2367 	/* Enable and reset MIB counters */
2368 	mt7530_mib_reset(ds);
2369 
2370 	/* Disable flooding on all ports */
2371 	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2372 		     UNU_FFP_MASK);
2373 
2374 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2375 		/* Disable forwarding by default on all ports */
2376 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2377 			   PCR_MATRIX_CLR);
2378 
2379 		/* Disable learning by default on all ports */
2380 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2381 
2382 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2383 
2384 		if (dsa_is_cpu_port(ds, i)) {
2385 			ret = mt753x_cpu_port_enable(ds, i);
2386 			if (ret)
2387 				return ret;
2388 		} else {
2389 			mt7530_port_disable(ds, i);
2390 
2391 			/* Set default PVID to 0 on all user ports */
2392 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2393 				   G0_PORT_VID_DEF);
2394 		}
2395 
2396 		/* Enable consistent egress tag */
2397 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2398 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2399 	}
2400 
2401 	/* Flush the FDB table */
2402 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2403 	if (ret < 0)
2404 		return ret;
2405 
2406 	return 0;
2407 }
2408 
2409 static int
2410 mt7531_setup(struct dsa_switch *ds)
2411 {
2412 	struct mt7530_priv *priv = ds->priv;
2413 	struct mt7530_dummy_poll p;
2414 	u32 val, id;
2415 	int ret, i;
2416 
2417 	/* Reset whole chip through gpio pin or memory-mapped registers for
2418 	 * different type of hardware
2419 	 */
2420 	if (priv->mcm) {
2421 		reset_control_assert(priv->rstc);
2422 		usleep_range(1000, 1100);
2423 		reset_control_deassert(priv->rstc);
2424 	} else {
2425 		gpiod_set_value_cansleep(priv->reset, 0);
2426 		usleep_range(1000, 1100);
2427 		gpiod_set_value_cansleep(priv->reset, 1);
2428 	}
2429 
2430 	/* Waiting for MT7530 got to stable */
2431 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2432 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2433 				 20, 1000000);
2434 	if (ret < 0) {
2435 		dev_err(priv->dev, "reset timeout\n");
2436 		return ret;
2437 	}
2438 
2439 	id = mt7530_read(priv, MT7531_CREV);
2440 	id >>= CHIP_NAME_SHIFT;
2441 
2442 	if (id != MT7531_ID) {
2443 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2444 		return -ENODEV;
2445 	}
2446 
2447 	/* all MACs must be forced link-down before sw reset */
2448 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2449 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2450 
2451 	/* Reset the switch through internal reset */
2452 	mt7530_write(priv, MT7530_SYS_CTRL,
2453 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2454 		     SYS_CTRL_REG_RST);
2455 
2456 	mt7531_pll_setup(priv);
2457 
2458 	if (mt7531_dual_sgmii_supported(priv)) {
2459 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2460 
2461 		/* Let ds->slave_mii_bus be able to access external phy. */
2462 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2463 			   MT7531_EXT_P_MDC_11);
2464 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2465 			   MT7531_EXT_P_MDIO_12);
2466 	} else {
2467 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2468 	}
2469 	dev_dbg(ds->dev, "P5 support %s interface\n",
2470 		p5_intf_modes(priv->p5_intf_sel));
2471 
2472 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2473 		   MT7531_GPIO0_INTERRUPT);
2474 
2475 	/* Let phylink decide the interface later. */
2476 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2477 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2478 
2479 	/* Enable PHY core PLL, since phy_device has not yet been created
2480 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2481 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2482 	 * function.
2483 	 */
2484 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2485 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2486 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2487 	val &= ~MT7531_PHY_PLL_OFF;
2488 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2489 				 CORE_PLL_GROUP4, val);
2490 
2491 	mt7531_setup_common(ds);
2492 
2493 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2494 	ret = mt7530_setup_vlan0(priv);
2495 	if (ret)
2496 		return ret;
2497 
2498 	ds->assisted_learning_on_cpu_port = true;
2499 	ds->mtu_enforcement_ingress = true;
2500 
2501 	return 0;
2502 }
2503 
2504 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2505 				     struct phylink_config *config)
2506 {
2507 	switch (port) {
2508 	case 0 ... 4: /* Internal phy */
2509 		__set_bit(PHY_INTERFACE_MODE_GMII,
2510 			  config->supported_interfaces);
2511 		break;
2512 
2513 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2514 		phy_interface_set_rgmii(config->supported_interfaces);
2515 		__set_bit(PHY_INTERFACE_MODE_MII,
2516 			  config->supported_interfaces);
2517 		__set_bit(PHY_INTERFACE_MODE_GMII,
2518 			  config->supported_interfaces);
2519 		break;
2520 
2521 	case 6: /* 1st cpu port */
2522 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2523 			  config->supported_interfaces);
2524 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2525 			  config->supported_interfaces);
2526 		break;
2527 	}
2528 }
2529 
2530 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2531 {
2532 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2533 }
2534 
2535 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2536 				     struct phylink_config *config)
2537 {
2538 	struct mt7530_priv *priv = ds->priv;
2539 
2540 	switch (port) {
2541 	case 0 ... 4: /* Internal phy */
2542 		__set_bit(PHY_INTERFACE_MODE_GMII,
2543 			  config->supported_interfaces);
2544 		break;
2545 
2546 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2547 		if (mt7531_is_rgmii_port(priv, port)) {
2548 			phy_interface_set_rgmii(config->supported_interfaces);
2549 			break;
2550 		}
2551 		fallthrough;
2552 
2553 	case 6: /* 1st cpu port supports sgmii/8023z only */
2554 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2555 			  config->supported_interfaces);
2556 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2557 			  config->supported_interfaces);
2558 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2559 			  config->supported_interfaces);
2560 
2561 		config->mac_capabilities |= MAC_2500FD;
2562 		break;
2563 	}
2564 }
2565 
2566 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2567 				     struct phylink_config *config)
2568 {
2569 	phy_interface_zero(config->supported_interfaces);
2570 
2571 	switch (port) {
2572 	case 0 ... 4: /* Internal phy */
2573 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2574 			  config->supported_interfaces);
2575 		break;
2576 
2577 	case 6:
2578 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2579 			  config->supported_interfaces);
2580 		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2581 					   MAC_10000FD;
2582 	}
2583 }
2584 
2585 static int
2586 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2587 {
2588 	struct mt7530_priv *priv = ds->priv;
2589 
2590 	return priv->info->pad_setup(ds, state->interface);
2591 }
2592 
2593 static int
2594 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2595 		  phy_interface_t interface)
2596 {
2597 	struct mt7530_priv *priv = ds->priv;
2598 
2599 	/* Only need to setup port5. */
2600 	if (port != 5)
2601 		return 0;
2602 
2603 	mt7530_setup_port5(priv->ds, interface);
2604 
2605 	return 0;
2606 }
2607 
2608 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2609 			      phy_interface_t interface,
2610 			      struct phy_device *phydev)
2611 {
2612 	u32 val;
2613 
2614 	if (!mt7531_is_rgmii_port(priv, port)) {
2615 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2616 			port);
2617 		return -EINVAL;
2618 	}
2619 
2620 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2621 	val |= GP_CLK_EN;
2622 	val &= ~GP_MODE_MASK;
2623 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2624 	val &= ~CLK_SKEW_IN_MASK;
2625 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2626 	val &= ~CLK_SKEW_OUT_MASK;
2627 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2628 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2629 
2630 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2631 	if (!phydev || phy_driver_is_genphy(phydev)) {
2632 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2633 		switch (interface) {
2634 		case PHY_INTERFACE_MODE_RGMII:
2635 			val |= TXCLK_NO_REVERSE;
2636 			val |= RXCLK_NO_DELAY;
2637 			break;
2638 		case PHY_INTERFACE_MODE_RGMII_RXID:
2639 			val |= TXCLK_NO_REVERSE;
2640 			break;
2641 		case PHY_INTERFACE_MODE_RGMII_TXID:
2642 			val |= RXCLK_NO_DELAY;
2643 			break;
2644 		case PHY_INTERFACE_MODE_RGMII_ID:
2645 			break;
2646 		default:
2647 			return -EINVAL;
2648 		}
2649 	}
2650 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2651 
2652 	return 0;
2653 }
2654 
2655 static bool mt753x_is_mac_port(u32 port)
2656 {
2657 	return (port == 5 || port == 6);
2658 }
2659 
2660 static int
2661 mt7988_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2662 		  phy_interface_t interface)
2663 {
2664 	if (dsa_is_cpu_port(ds, port) &&
2665 	    interface == PHY_INTERFACE_MODE_INTERNAL)
2666 		return 0;
2667 
2668 	return -EINVAL;
2669 }
2670 
2671 static int
2672 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2673 		  phy_interface_t interface)
2674 {
2675 	struct mt7530_priv *priv = ds->priv;
2676 	struct phy_device *phydev;
2677 	struct dsa_port *dp;
2678 
2679 	if (!mt753x_is_mac_port(port)) {
2680 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2681 		return -EINVAL;
2682 	}
2683 
2684 	switch (interface) {
2685 	case PHY_INTERFACE_MODE_RGMII:
2686 	case PHY_INTERFACE_MODE_RGMII_ID:
2687 	case PHY_INTERFACE_MODE_RGMII_RXID:
2688 	case PHY_INTERFACE_MODE_RGMII_TXID:
2689 		dp = dsa_to_port(ds, port);
2690 		phydev = dp->slave->phydev;
2691 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2692 	case PHY_INTERFACE_MODE_SGMII:
2693 	case PHY_INTERFACE_MODE_NA:
2694 	case PHY_INTERFACE_MODE_1000BASEX:
2695 	case PHY_INTERFACE_MODE_2500BASEX:
2696 		/* handled in SGMII PCS driver */
2697 		return 0;
2698 	default:
2699 		return -EINVAL;
2700 	}
2701 
2702 	return -EINVAL;
2703 }
2704 
2705 static int
2706 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2707 		  const struct phylink_link_state *state)
2708 {
2709 	struct mt7530_priv *priv = ds->priv;
2710 
2711 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2712 }
2713 
2714 static struct phylink_pcs *
2715 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2716 			      phy_interface_t interface)
2717 {
2718 	struct mt7530_priv *priv = ds->priv;
2719 
2720 	switch (interface) {
2721 	case PHY_INTERFACE_MODE_TRGMII:
2722 		return &priv->pcs[port].pcs;
2723 	case PHY_INTERFACE_MODE_SGMII:
2724 	case PHY_INTERFACE_MODE_1000BASEX:
2725 	case PHY_INTERFACE_MODE_2500BASEX:
2726 		return priv->ports[port].sgmii_pcs;
2727 	default:
2728 		return NULL;
2729 	}
2730 }
2731 
2732 static void
2733 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2734 			  const struct phylink_link_state *state)
2735 {
2736 	struct mt7530_priv *priv = ds->priv;
2737 	u32 mcr_cur, mcr_new;
2738 
2739 	switch (port) {
2740 	case 0 ... 4: /* Internal phy */
2741 		if (state->interface != PHY_INTERFACE_MODE_GMII &&
2742 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
2743 			goto unsupported;
2744 		break;
2745 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2746 		if (priv->p5_interface == state->interface)
2747 			break;
2748 
2749 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2750 			goto unsupported;
2751 
2752 		if (priv->p5_intf_sel != P5_DISABLED)
2753 			priv->p5_interface = state->interface;
2754 		break;
2755 	case 6: /* 1st cpu port */
2756 		if (priv->p6_interface == state->interface)
2757 			break;
2758 
2759 		mt753x_pad_setup(ds, state);
2760 
2761 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2762 			goto unsupported;
2763 
2764 		priv->p6_interface = state->interface;
2765 		break;
2766 	default:
2767 unsupported:
2768 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2769 			__func__, phy_modes(state->interface), port);
2770 		return;
2771 	}
2772 
2773 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2774 	mcr_new = mcr_cur;
2775 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2776 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2777 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2778 
2779 	/* Are we connected to external phy */
2780 	if (port == 5 && dsa_is_user_port(ds, 5))
2781 		mcr_new |= PMCR_EXT_PHY;
2782 
2783 	if (mcr_new != mcr_cur)
2784 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2785 }
2786 
2787 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2788 					 unsigned int mode,
2789 					 phy_interface_t interface)
2790 {
2791 	struct mt7530_priv *priv = ds->priv;
2792 
2793 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2794 }
2795 
2796 static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
2797 				       unsigned int mode,
2798 				       phy_interface_t interface,
2799 				       int speed, int duplex)
2800 {
2801 	if (pcs->ops->pcs_link_up)
2802 		pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
2803 }
2804 
2805 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2806 				       unsigned int mode,
2807 				       phy_interface_t interface,
2808 				       struct phy_device *phydev,
2809 				       int speed, int duplex,
2810 				       bool tx_pause, bool rx_pause)
2811 {
2812 	struct mt7530_priv *priv = ds->priv;
2813 	u32 mcr;
2814 
2815 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2816 
2817 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2818 	 * variants.
2819 	 */
2820 	if (interface == PHY_INTERFACE_MODE_INTERNAL ||
2821 	    interface == PHY_INTERFACE_MODE_TRGMII ||
2822 	    (phy_interface_mode_is_8023z(interface))) {
2823 		speed = SPEED_1000;
2824 		duplex = DUPLEX_FULL;
2825 	}
2826 
2827 	switch (speed) {
2828 	case SPEED_1000:
2829 		mcr |= PMCR_FORCE_SPEED_1000;
2830 		break;
2831 	case SPEED_100:
2832 		mcr |= PMCR_FORCE_SPEED_100;
2833 		break;
2834 	}
2835 	if (duplex == DUPLEX_FULL) {
2836 		mcr |= PMCR_FORCE_FDX;
2837 		if (tx_pause)
2838 			mcr |= PMCR_TX_FC_EN;
2839 		if (rx_pause)
2840 			mcr |= PMCR_RX_FC_EN;
2841 	}
2842 
2843 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2844 		switch (speed) {
2845 		case SPEED_1000:
2846 			mcr |= PMCR_FORCE_EEE1G;
2847 			break;
2848 		case SPEED_100:
2849 			mcr |= PMCR_FORCE_EEE100;
2850 			break;
2851 		}
2852 	}
2853 
2854 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2855 }
2856 
2857 static int
2858 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2859 {
2860 	struct mt7530_priv *priv = ds->priv;
2861 	phy_interface_t interface;
2862 	int speed;
2863 	int ret;
2864 
2865 	switch (port) {
2866 	case 5:
2867 		if (mt7531_is_rgmii_port(priv, port))
2868 			interface = PHY_INTERFACE_MODE_RGMII;
2869 		else
2870 			interface = PHY_INTERFACE_MODE_2500BASEX;
2871 
2872 		priv->p5_interface = interface;
2873 		break;
2874 	case 6:
2875 		interface = PHY_INTERFACE_MODE_2500BASEX;
2876 
2877 		priv->p6_interface = interface;
2878 		break;
2879 	default:
2880 		return -EINVAL;
2881 	}
2882 
2883 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2884 		speed = SPEED_2500;
2885 	else
2886 		speed = SPEED_1000;
2887 
2888 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2889 	if (ret)
2890 		return ret;
2891 	mt7530_write(priv, MT7530_PMCR_P(port),
2892 		     PMCR_CPU_PORT_SETTING(priv->id));
2893 	mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
2894 				   interface, speed, DUPLEX_FULL);
2895 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2896 				   speed, DUPLEX_FULL, true, true);
2897 
2898 	return 0;
2899 }
2900 
2901 static int
2902 mt7988_cpu_port_config(struct dsa_switch *ds, int port)
2903 {
2904 	struct mt7530_priv *priv = ds->priv;
2905 
2906 	mt7530_write(priv, MT7530_PMCR_P(port),
2907 		     PMCR_CPU_PORT_SETTING(priv->id));
2908 
2909 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED,
2910 				   PHY_INTERFACE_MODE_INTERNAL, NULL,
2911 				   SPEED_10000, DUPLEX_FULL, true, true);
2912 
2913 	return 0;
2914 }
2915 
2916 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2917 				    struct phylink_config *config)
2918 {
2919 	struct mt7530_priv *priv = ds->priv;
2920 
2921 	/* This switch only supports full-duplex at 1Gbps */
2922 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2923 				   MAC_10 | MAC_100 | MAC_1000FD;
2924 
2925 	/* This driver does not make use of the speed, duplex, pause or the
2926 	 * advertisement in its mac_config, so it is safe to mark this driver
2927 	 * as non-legacy.
2928 	 */
2929 	config->legacy_pre_march2020 = false;
2930 
2931 	priv->info->mac_port_get_caps(ds, port, config);
2932 }
2933 
2934 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2935 			       unsigned long *supported,
2936 			       const struct phylink_link_state *state)
2937 {
2938 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2939 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2940 	    phy_interface_mode_is_8023z(state->interface))
2941 		phylink_clear(supported, Autoneg);
2942 
2943 	return 0;
2944 }
2945 
2946 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2947 				 struct phylink_link_state *state)
2948 {
2949 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2950 	int port = pcs_to_mt753x_pcs(pcs)->port;
2951 	u32 pmsr;
2952 
2953 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2954 
2955 	state->link = (pmsr & PMSR_LINK);
2956 	state->an_complete = state->link;
2957 	state->duplex = !!(pmsr & PMSR_DPX);
2958 
2959 	switch (pmsr & PMSR_SPEED_MASK) {
2960 	case PMSR_SPEED_10:
2961 		state->speed = SPEED_10;
2962 		break;
2963 	case PMSR_SPEED_100:
2964 		state->speed = SPEED_100;
2965 		break;
2966 	case PMSR_SPEED_1000:
2967 		state->speed = SPEED_1000;
2968 		break;
2969 	default:
2970 		state->speed = SPEED_UNKNOWN;
2971 		break;
2972 	}
2973 
2974 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2975 	if (pmsr & PMSR_RX_FC)
2976 		state->pause |= MLO_PAUSE_RX;
2977 	if (pmsr & PMSR_TX_FC)
2978 		state->pause |= MLO_PAUSE_TX;
2979 }
2980 
2981 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
2982 			     phy_interface_t interface,
2983 			     const unsigned long *advertising,
2984 			     bool permit_pause_to_mac)
2985 {
2986 	return 0;
2987 }
2988 
2989 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
2990 {
2991 }
2992 
2993 static const struct phylink_pcs_ops mt7530_pcs_ops = {
2994 	.pcs_validate = mt753x_pcs_validate,
2995 	.pcs_get_state = mt7530_pcs_get_state,
2996 	.pcs_config = mt753x_pcs_config,
2997 	.pcs_an_restart = mt7530_pcs_an_restart,
2998 };
2999 
3000 static int
3001 mt753x_setup(struct dsa_switch *ds)
3002 {
3003 	struct mt7530_priv *priv = ds->priv;
3004 	int i, ret;
3005 
3006 	/* Initialise the PCS devices */
3007 	for (i = 0; i < priv->ds->num_ports; i++) {
3008 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3009 		priv->pcs[i].priv = priv;
3010 		priv->pcs[i].port = i;
3011 	}
3012 
3013 	ret = priv->info->sw_setup(ds);
3014 	if (ret)
3015 		return ret;
3016 
3017 	ret = mt7530_setup_irq(priv);
3018 	if (ret)
3019 		return ret;
3020 
3021 	ret = mt7530_setup_mdio(priv);
3022 	if (ret && priv->irq)
3023 		mt7530_free_irq_common(priv);
3024 
3025 	if (priv->create_sgmii) {
3026 		ret = priv->create_sgmii(priv, mt7531_dual_sgmii_supported(priv));
3027 		if (ret && priv->irq)
3028 			mt7530_free_irq(priv);
3029 	}
3030 
3031 	return ret;
3032 }
3033 
3034 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3035 			      struct ethtool_eee *e)
3036 {
3037 	struct mt7530_priv *priv = ds->priv;
3038 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3039 
3040 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3041 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3042 
3043 	return 0;
3044 }
3045 
3046 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3047 			      struct ethtool_eee *e)
3048 {
3049 	struct mt7530_priv *priv = ds->priv;
3050 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3051 
3052 	if (e->tx_lpi_timer > 0xFFF)
3053 		return -EINVAL;
3054 
3055 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3056 	if (!e->tx_lpi_enabled)
3057 		/* Force LPI Mode without a delay */
3058 		set |= LPI_MODE_EN;
3059 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3060 
3061 	return 0;
3062 }
3063 
3064 static int mt7988_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
3065 {
3066 	return 0;
3067 }
3068 
3069 static int mt7988_setup(struct dsa_switch *ds)
3070 {
3071 	struct mt7530_priv *priv = ds->priv;
3072 
3073 	/* Reset the switch */
3074 	reset_control_assert(priv->rstc);
3075 	usleep_range(20, 50);
3076 	reset_control_deassert(priv->rstc);
3077 	usleep_range(20, 50);
3078 
3079 	/* Reset the switch PHYs */
3080 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3081 
3082 	return mt7531_setup_common(ds);
3083 }
3084 
3085 const struct dsa_switch_ops mt7530_switch_ops = {
3086 	.get_tag_protocol	= mtk_get_tag_protocol,
3087 	.setup			= mt753x_setup,
3088 	.get_strings		= mt7530_get_strings,
3089 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3090 	.get_sset_count		= mt7530_get_sset_count,
3091 	.set_ageing_time	= mt7530_set_ageing_time,
3092 	.port_enable		= mt7530_port_enable,
3093 	.port_disable		= mt7530_port_disable,
3094 	.port_change_mtu	= mt7530_port_change_mtu,
3095 	.port_max_mtu		= mt7530_port_max_mtu,
3096 	.port_stp_state_set	= mt7530_stp_state_set,
3097 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3098 	.port_bridge_flags	= mt7530_port_bridge_flags,
3099 	.port_bridge_join	= mt7530_port_bridge_join,
3100 	.port_bridge_leave	= mt7530_port_bridge_leave,
3101 	.port_fdb_add		= mt7530_port_fdb_add,
3102 	.port_fdb_del		= mt7530_port_fdb_del,
3103 	.port_fdb_dump		= mt7530_port_fdb_dump,
3104 	.port_mdb_add		= mt7530_port_mdb_add,
3105 	.port_mdb_del		= mt7530_port_mdb_del,
3106 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3107 	.port_vlan_add		= mt7530_port_vlan_add,
3108 	.port_vlan_del		= mt7530_port_vlan_del,
3109 	.port_mirror_add	= mt753x_port_mirror_add,
3110 	.port_mirror_del	= mt753x_port_mirror_del,
3111 	.phylink_get_caps	= mt753x_phylink_get_caps,
3112 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3113 	.phylink_mac_config	= mt753x_phylink_mac_config,
3114 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3115 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3116 	.get_mac_eee		= mt753x_get_mac_eee,
3117 	.set_mac_eee		= mt753x_set_mac_eee,
3118 };
3119 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3120 
3121 const struct mt753x_info mt753x_table[] = {
3122 	[ID_MT7621] = {
3123 		.id = ID_MT7621,
3124 		.pcs_ops = &mt7530_pcs_ops,
3125 		.sw_setup = mt7530_setup,
3126 		.phy_read_c22 = mt7530_phy_read_c22,
3127 		.phy_write_c22 = mt7530_phy_write_c22,
3128 		.phy_read_c45 = mt7530_phy_read_c45,
3129 		.phy_write_c45 = mt7530_phy_write_c45,
3130 		.pad_setup = mt7530_pad_clk_setup,
3131 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3132 		.mac_port_config = mt7530_mac_config,
3133 	},
3134 	[ID_MT7530] = {
3135 		.id = ID_MT7530,
3136 		.pcs_ops = &mt7530_pcs_ops,
3137 		.sw_setup = mt7530_setup,
3138 		.phy_read_c22 = mt7530_phy_read_c22,
3139 		.phy_write_c22 = mt7530_phy_write_c22,
3140 		.phy_read_c45 = mt7530_phy_read_c45,
3141 		.phy_write_c45 = mt7530_phy_write_c45,
3142 		.pad_setup = mt7530_pad_clk_setup,
3143 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3144 		.mac_port_config = mt7530_mac_config,
3145 	},
3146 	[ID_MT7531] = {
3147 		.id = ID_MT7531,
3148 		.pcs_ops = &mt7530_pcs_ops,
3149 		.sw_setup = mt7531_setup,
3150 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3151 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3152 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3153 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3154 		.pad_setup = mt7531_pad_setup,
3155 		.cpu_port_config = mt7531_cpu_port_config,
3156 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3157 		.mac_port_config = mt7531_mac_config,
3158 	},
3159 	[ID_MT7988] = {
3160 		.id = ID_MT7988,
3161 		.pcs_ops = &mt7530_pcs_ops,
3162 		.sw_setup = mt7988_setup,
3163 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3164 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3165 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3166 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3167 		.pad_setup = mt7988_pad_setup,
3168 		.cpu_port_config = mt7988_cpu_port_config,
3169 		.mac_port_get_caps = mt7988_mac_port_get_caps,
3170 		.mac_port_config = mt7988_mac_config,
3171 	},
3172 };
3173 EXPORT_SYMBOL_GPL(mt753x_table);
3174 
3175 int
3176 mt7530_probe_common(struct mt7530_priv *priv)
3177 {
3178 	struct device *dev = priv->dev;
3179 
3180 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3181 	if (!priv->ds)
3182 		return -ENOMEM;
3183 
3184 	priv->ds->dev = dev;
3185 	priv->ds->num_ports = MT7530_NUM_PORTS;
3186 
3187 	/* Get the hardware identifier from the devicetree node.
3188 	 * We will need it for some of the clock and regulator setup.
3189 	 */
3190 	priv->info = of_device_get_match_data(dev);
3191 	if (!priv->info)
3192 		return -EINVAL;
3193 
3194 	/* Sanity check if these required device operations are filled
3195 	 * properly.
3196 	 */
3197 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3198 	    !priv->info->phy_read_c22 || !priv->info->phy_write_c22 ||
3199 	    !priv->info->mac_port_get_caps ||
3200 	    !priv->info->mac_port_config)
3201 		return -EINVAL;
3202 
3203 	priv->id = priv->info->id;
3204 	priv->dev = dev;
3205 	priv->ds->priv = priv;
3206 	priv->ds->ops = &mt7530_switch_ops;
3207 	mutex_init(&priv->reg_mutex);
3208 	dev_set_drvdata(dev, priv);
3209 
3210 	return 0;
3211 }
3212 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3213 
3214 void
3215 mt7530_remove_common(struct mt7530_priv *priv)
3216 {
3217 	if (priv->irq)
3218 		mt7530_free_irq(priv);
3219 
3220 	dsa_unregister_switch(priv->ds);
3221 
3222 	mutex_destroy(&priv->reg_mutex);
3223 }
3224 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3225 
3226 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3227 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3228 MODULE_LICENSE("GPL");
3229