xref: /openbmc/linux/drivers/net/dsa/microchip/ksz9477.c (revision 68f436a80fc89faa474134edfe442d95528be17a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <linux/if_vlan.h>
15 #include <net/dsa.h>
16 #include <net/switchdev.h>
17 
18 #include "ksz9477_reg.h"
19 #include "ksz_common.h"
20 #include "ksz9477.h"
21 
22 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
23 {
24 	regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
25 }
26 
27 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
28 			 bool set)
29 {
30 	regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
31 			   bits, set ? bits : 0);
32 }
33 
34 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
35 {
36 	regmap_update_bits(ksz_regmap_32(dev), addr, bits, set ? bits : 0);
37 }
38 
39 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
40 			       u32 bits, bool set)
41 {
42 	regmap_update_bits(ksz_regmap_32(dev), PORT_CTRL_ADDR(port, offset),
43 			   bits, set ? bits : 0);
44 }
45 
46 int ksz9477_change_mtu(struct ksz_device *dev, int port, int mtu)
47 {
48 	u16 frame_size;
49 
50 	if (!dsa_is_cpu_port(dev->ds, port))
51 		return 0;
52 
53 	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
54 
55 	return regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2,
56 				  REG_SW_MTU_MASK, frame_size);
57 }
58 
59 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
60 {
61 	unsigned int val;
62 
63 	return regmap_read_poll_timeout(ksz_regmap_8(dev), REG_SW_VLAN_CTRL,
64 					val, !(val & VLAN_START), 10, 1000);
65 }
66 
67 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
68 				  u32 *vlan_table)
69 {
70 	int ret;
71 
72 	mutex_lock(&dev->vlan_mutex);
73 
74 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
75 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
76 
77 	/* wait to be cleared */
78 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
79 	if (ret) {
80 		dev_dbg(dev->dev, "Failed to read vlan table\n");
81 		goto exit;
82 	}
83 
84 	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
85 	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
86 	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
87 
88 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
89 
90 exit:
91 	mutex_unlock(&dev->vlan_mutex);
92 
93 	return ret;
94 }
95 
96 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
97 				  u32 *vlan_table)
98 {
99 	int ret;
100 
101 	mutex_lock(&dev->vlan_mutex);
102 
103 	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
104 	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
105 	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
106 
107 	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
108 	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
109 
110 	/* wait to be cleared */
111 	ret = ksz9477_wait_vlan_ctrl_ready(dev);
112 	if (ret) {
113 		dev_dbg(dev->dev, "Failed to write vlan table\n");
114 		goto exit;
115 	}
116 
117 	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
118 
119 	/* update vlan cache table */
120 	dev->vlan_cache[vid].table[0] = vlan_table[0];
121 	dev->vlan_cache[vid].table[1] = vlan_table[1];
122 	dev->vlan_cache[vid].table[2] = vlan_table[2];
123 
124 exit:
125 	mutex_unlock(&dev->vlan_mutex);
126 
127 	return ret;
128 }
129 
130 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
131 {
132 	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
133 	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
134 	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
135 	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
136 }
137 
138 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
139 {
140 	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
141 	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
142 	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
143 	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
144 }
145 
146 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
147 {
148 	unsigned int val;
149 
150 	return regmap_read_poll_timeout(ksz_regmap_32(dev), REG_SW_ALU_CTRL__4,
151 					val, !(val & ALU_START), 10, 1000);
152 }
153 
154 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
155 {
156 	unsigned int val;
157 
158 	return regmap_read_poll_timeout(ksz_regmap_32(dev),
159 					REG_SW_ALU_STAT_CTRL__4,
160 					val, !(val & ALU_STAT_START),
161 					10, 1000);
162 }
163 
164 int ksz9477_reset_switch(struct ksz_device *dev)
165 {
166 	u8 data8;
167 	u32 data32;
168 
169 	/* reset switch */
170 	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
171 
172 	/* turn off SPI DO Edge select */
173 	regmap_update_bits(ksz_regmap_8(dev), REG_SW_GLOBAL_SERIAL_CTRL_0,
174 			   SPI_AUTO_EDGE_DETECTION, 0);
175 
176 	/* default configuration */
177 	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
178 	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
179 	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
180 	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
181 
182 	/* disable interrupts */
183 	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
184 	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
185 	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
186 
187 	/* KSZ9893 compatible chips do not support refclk configuration */
188 	if (dev->chip_id == KSZ9893_CHIP_ID ||
189 	    dev->chip_id == KSZ8563_CHIP_ID ||
190 	    dev->chip_id == KSZ9563_CHIP_ID)
191 		return 0;
192 
193 	data8 = SW_ENABLE_REFCLKO;
194 	if (dev->synclko_disable)
195 		data8 = 0;
196 	else if (dev->synclko_125)
197 		data8 = SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ;
198 	ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, data8);
199 
200 	return 0;
201 }
202 
203 void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
204 {
205 	struct ksz_port *p = &dev->ports[port];
206 	unsigned int val;
207 	u32 data;
208 	int ret;
209 
210 	/* retain the flush/freeze bit */
211 	data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
212 	data |= MIB_COUNTER_READ;
213 	data |= (addr << MIB_COUNTER_INDEX_S);
214 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
215 
216 	ret = regmap_read_poll_timeout(ksz_regmap_32(dev),
217 			PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
218 			val, !(val & MIB_COUNTER_READ), 10, 1000);
219 	/* failed to read MIB. get out of loop */
220 	if (ret) {
221 		dev_dbg(dev->dev, "Failed to get MIB\n");
222 		return;
223 	}
224 
225 	/* count resets upon read */
226 	ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
227 	*cnt += data;
228 }
229 
230 void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
231 		       u64 *dropped, u64 *cnt)
232 {
233 	addr = dev->info->mib_names[addr].index;
234 	ksz9477_r_mib_cnt(dev, port, addr, cnt);
235 }
236 
237 void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
238 {
239 	u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
240 	struct ksz_port *p = &dev->ports[port];
241 
242 	/* enable/disable the port for flush/freeze function */
243 	mutex_lock(&p->mib.cnt_mutex);
244 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
245 
246 	/* used by MIB counter reading code to know freeze is enabled */
247 	p->freeze = freeze;
248 	mutex_unlock(&p->mib.cnt_mutex);
249 }
250 
251 void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
252 {
253 	struct ksz_port_mib *mib = &dev->ports[port].mib;
254 
255 	/* flush all enabled port MIB counters */
256 	mutex_lock(&mib->cnt_mutex);
257 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
258 		     MIB_COUNTER_FLUSH_FREEZE);
259 	ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
260 	ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
261 	mutex_unlock(&mib->cnt_mutex);
262 }
263 
264 static void ksz9477_r_phy_quirks(struct ksz_device *dev, u16 addr, u16 reg,
265 				 u16 *data)
266 {
267 	/* KSZ8563R do not have extended registers but BMSR_ESTATEN and
268 	 * BMSR_ERCAP bits are set.
269 	 */
270 	if (dev->chip_id == KSZ8563_CHIP_ID && reg == MII_BMSR)
271 		*data &= ~(BMSR_ESTATEN | BMSR_ERCAP);
272 }
273 
274 int ksz9477_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
275 {
276 	u16 val = 0xffff;
277 	int ret;
278 
279 	/* No real PHY after this. Simulate the PHY.
280 	 * A fixed PHY can be setup in the device tree, but this function is
281 	 * still called for that port during initialization.
282 	 * For RGMII PHY there is no way to access it so the fixed PHY should
283 	 * be used.  For SGMII PHY the supporting code will be added later.
284 	 */
285 	if (!dev->info->internal_phy[addr]) {
286 		struct ksz_port *p = &dev->ports[addr];
287 
288 		switch (reg) {
289 		case MII_BMCR:
290 			val = 0x1140;
291 			break;
292 		case MII_BMSR:
293 			val = 0x796d;
294 			break;
295 		case MII_PHYSID1:
296 			val = 0x0022;
297 			break;
298 		case MII_PHYSID2:
299 			val = 0x1631;
300 			break;
301 		case MII_ADVERTISE:
302 			val = 0x05e1;
303 			break;
304 		case MII_LPA:
305 			val = 0xc5e1;
306 			break;
307 		case MII_CTRL1000:
308 			val = 0x0700;
309 			break;
310 		case MII_STAT1000:
311 			if (p->phydev.speed == SPEED_1000)
312 				val = 0x3800;
313 			else
314 				val = 0;
315 			break;
316 		}
317 	} else {
318 		ret = ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
319 		if (ret)
320 			return ret;
321 
322 		ksz9477_r_phy_quirks(dev, addr, reg, &val);
323 	}
324 
325 	*data = val;
326 
327 	return 0;
328 }
329 
330 int ksz9477_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
331 {
332 	u32 mask, val32;
333 
334 	/* No real PHY after this. */
335 	if (!dev->info->internal_phy[addr])
336 		return 0;
337 
338 	if (reg < 0x10)
339 		return ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
340 
341 	/* Errata: When using SPI, I2C, or in-band register access,
342 	 * writes to certain PHY registers should be performed as
343 	 * 32-bit writes instead of 16-bit writes.
344 	 */
345 	val32 = val;
346 	mask = 0xffff;
347 	if ((reg & 1) == 0) {
348 		val32 <<= 16;
349 		mask <<= 16;
350 	}
351 	reg &= ~1;
352 	return ksz_prmw32(dev, addr, 0x100 + (reg << 1), mask, val32);
353 }
354 
355 void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member)
356 {
357 	ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
358 }
359 
360 void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
361 {
362 	const u16 *regs = dev->info->regs;
363 	u8 data;
364 
365 	regmap_update_bits(ksz_regmap_8(dev), REG_SW_LUE_CTRL_2,
366 			   SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
367 			   SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
368 
369 	if (port < dev->info->port_cnt) {
370 		/* flush individual port */
371 		ksz_pread8(dev, port, regs[P_STP_CTRL], &data);
372 		if (!(data & PORT_LEARN_DISABLE))
373 			ksz_pwrite8(dev, port, regs[P_STP_CTRL],
374 				    data | PORT_LEARN_DISABLE);
375 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
376 		ksz_pwrite8(dev, port, regs[P_STP_CTRL], data);
377 	} else {
378 		/* flush all */
379 		ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
380 	}
381 }
382 
383 int ksz9477_port_vlan_filtering(struct ksz_device *dev, int port,
384 				bool flag, struct netlink_ext_ack *extack)
385 {
386 	if (flag) {
387 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
388 			     PORT_VLAN_LOOKUP_VID_0, true);
389 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
390 	} else {
391 		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
392 		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
393 			     PORT_VLAN_LOOKUP_VID_0, false);
394 	}
395 
396 	return 0;
397 }
398 
399 int ksz9477_port_vlan_add(struct ksz_device *dev, int port,
400 			  const struct switchdev_obj_port_vlan *vlan,
401 			  struct netlink_ext_ack *extack)
402 {
403 	u32 vlan_table[3];
404 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
405 	int err;
406 
407 	err = ksz9477_get_vlan_table(dev, vlan->vid, vlan_table);
408 	if (err) {
409 		NL_SET_ERR_MSG_MOD(extack, "Failed to get vlan table");
410 		return err;
411 	}
412 
413 	vlan_table[0] = VLAN_VALID | (vlan->vid & VLAN_FID_M);
414 	if (untagged)
415 		vlan_table[1] |= BIT(port);
416 	else
417 		vlan_table[1] &= ~BIT(port);
418 	vlan_table[1] &= ~(BIT(dev->cpu_port));
419 
420 	vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
421 
422 	err = ksz9477_set_vlan_table(dev, vlan->vid, vlan_table);
423 	if (err) {
424 		NL_SET_ERR_MSG_MOD(extack, "Failed to set vlan table");
425 		return err;
426 	}
427 
428 	/* change PVID */
429 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
430 		ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vlan->vid);
431 
432 	return 0;
433 }
434 
435 int ksz9477_port_vlan_del(struct ksz_device *dev, int port,
436 			  const struct switchdev_obj_port_vlan *vlan)
437 {
438 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
439 	u32 vlan_table[3];
440 	u16 pvid;
441 
442 	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
443 	pvid = pvid & 0xFFF;
444 
445 	if (ksz9477_get_vlan_table(dev, vlan->vid, vlan_table)) {
446 		dev_dbg(dev->dev, "Failed to get vlan table\n");
447 		return -ETIMEDOUT;
448 	}
449 
450 	vlan_table[2] &= ~BIT(port);
451 
452 	if (pvid == vlan->vid)
453 		pvid = 1;
454 
455 	if (untagged)
456 		vlan_table[1] &= ~BIT(port);
457 
458 	if (ksz9477_set_vlan_table(dev, vlan->vid, vlan_table)) {
459 		dev_dbg(dev->dev, "Failed to set vlan table\n");
460 		return -ETIMEDOUT;
461 	}
462 
463 	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
464 
465 	return 0;
466 }
467 
468 int ksz9477_fdb_add(struct ksz_device *dev, int port,
469 		    const unsigned char *addr, u16 vid, struct dsa_db db)
470 {
471 	u32 alu_table[4];
472 	u32 data;
473 	int ret = 0;
474 
475 	mutex_lock(&dev->alu_mutex);
476 
477 	/* find any entry with mac & vid */
478 	data = vid << ALU_FID_INDEX_S;
479 	data |= ((addr[0] << 8) | addr[1]);
480 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
481 
482 	data = ((addr[2] << 24) | (addr[3] << 16));
483 	data |= ((addr[4] << 8) | addr[5]);
484 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
485 
486 	/* start read operation */
487 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
488 
489 	/* wait to be finished */
490 	ret = ksz9477_wait_alu_ready(dev);
491 	if (ret) {
492 		dev_dbg(dev->dev, "Failed to read ALU\n");
493 		goto exit;
494 	}
495 
496 	/* read ALU entry */
497 	ksz9477_read_table(dev, alu_table);
498 
499 	/* update ALU entry */
500 	alu_table[0] = ALU_V_STATIC_VALID;
501 	alu_table[1] |= BIT(port);
502 	if (vid)
503 		alu_table[1] |= ALU_V_USE_FID;
504 	alu_table[2] = (vid << ALU_V_FID_S);
505 	alu_table[2] |= ((addr[0] << 8) | addr[1]);
506 	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
507 	alu_table[3] |= ((addr[4] << 8) | addr[5]);
508 
509 	ksz9477_write_table(dev, alu_table);
510 
511 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
512 
513 	/* wait to be finished */
514 	ret = ksz9477_wait_alu_ready(dev);
515 	if (ret)
516 		dev_dbg(dev->dev, "Failed to write ALU\n");
517 
518 exit:
519 	mutex_unlock(&dev->alu_mutex);
520 
521 	return ret;
522 }
523 
524 int ksz9477_fdb_del(struct ksz_device *dev, int port,
525 		    const unsigned char *addr, u16 vid, struct dsa_db db)
526 {
527 	u32 alu_table[4];
528 	u32 data;
529 	int ret = 0;
530 
531 	mutex_lock(&dev->alu_mutex);
532 
533 	/* read any entry with mac & vid */
534 	data = vid << ALU_FID_INDEX_S;
535 	data |= ((addr[0] << 8) | addr[1]);
536 	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
537 
538 	data = ((addr[2] << 24) | (addr[3] << 16));
539 	data |= ((addr[4] << 8) | addr[5]);
540 	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
541 
542 	/* start read operation */
543 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
544 
545 	/* wait to be finished */
546 	ret = ksz9477_wait_alu_ready(dev);
547 	if (ret) {
548 		dev_dbg(dev->dev, "Failed to read ALU\n");
549 		goto exit;
550 	}
551 
552 	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
553 	if (alu_table[0] & ALU_V_STATIC_VALID) {
554 		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
555 		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
556 		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
557 
558 		/* clear forwarding port */
559 		alu_table[1] &= ~BIT(port);
560 
561 		/* if there is no port to forward, clear table */
562 		if ((alu_table[1] & ALU_V_PORT_MAP) == 0) {
563 			alu_table[0] = 0;
564 			alu_table[1] = 0;
565 			alu_table[2] = 0;
566 			alu_table[3] = 0;
567 		}
568 	} else {
569 		alu_table[0] = 0;
570 		alu_table[1] = 0;
571 		alu_table[2] = 0;
572 		alu_table[3] = 0;
573 	}
574 
575 	ksz9477_write_table(dev, alu_table);
576 
577 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
578 
579 	/* wait to be finished */
580 	ret = ksz9477_wait_alu_ready(dev);
581 	if (ret)
582 		dev_dbg(dev->dev, "Failed to write ALU\n");
583 
584 exit:
585 	mutex_unlock(&dev->alu_mutex);
586 
587 	return ret;
588 }
589 
590 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
591 {
592 	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
593 	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
594 	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
595 	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
596 			ALU_V_PRIO_AGE_CNT_M;
597 	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
598 
599 	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
600 	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
601 	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
602 
603 	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
604 
605 	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
606 	alu->mac[1] = alu_table[2] & 0xFF;
607 	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
608 	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
609 	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
610 	alu->mac[5] = alu_table[3] & 0xFF;
611 }
612 
613 int ksz9477_fdb_dump(struct ksz_device *dev, int port,
614 		     dsa_fdb_dump_cb_t *cb, void *data)
615 {
616 	int ret = 0;
617 	u32 ksz_data;
618 	u32 alu_table[4];
619 	struct alu_struct alu;
620 	int timeout;
621 
622 	mutex_lock(&dev->alu_mutex);
623 
624 	/* start ALU search */
625 	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
626 
627 	do {
628 		timeout = 1000;
629 		do {
630 			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
631 			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
632 				break;
633 			usleep_range(1, 10);
634 		} while (timeout-- > 0);
635 
636 		if (!timeout) {
637 			dev_dbg(dev->dev, "Failed to search ALU\n");
638 			ret = -ETIMEDOUT;
639 			goto exit;
640 		}
641 
642 		if (!(ksz_data & ALU_VALID))
643 			continue;
644 
645 		/* read ALU table */
646 		ksz9477_read_table(dev, alu_table);
647 
648 		ksz9477_convert_alu(&alu, alu_table);
649 
650 		if (alu.port_forward & BIT(port)) {
651 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
652 			if (ret)
653 				goto exit;
654 		}
655 	} while (ksz_data & ALU_START);
656 
657 exit:
658 
659 	/* stop ALU search */
660 	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
661 
662 	mutex_unlock(&dev->alu_mutex);
663 
664 	return ret;
665 }
666 
667 int ksz9477_mdb_add(struct ksz_device *dev, int port,
668 		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
669 {
670 	u32 static_table[4];
671 	const u8 *shifts;
672 	const u32 *masks;
673 	u32 data;
674 	int index;
675 	u32 mac_hi, mac_lo;
676 	int err = 0;
677 
678 	shifts = dev->info->shifts;
679 	masks = dev->info->masks;
680 
681 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
682 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
683 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
684 
685 	mutex_lock(&dev->alu_mutex);
686 
687 	for (index = 0; index < dev->info->num_statics; index++) {
688 		/* find empty slot first */
689 		data = (index << shifts[ALU_STAT_INDEX]) |
690 			masks[ALU_STAT_READ] | ALU_STAT_START;
691 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
692 
693 		/* wait to be finished */
694 		err = ksz9477_wait_alu_sta_ready(dev);
695 		if (err) {
696 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
697 			goto exit;
698 		}
699 
700 		/* read ALU static table */
701 		ksz9477_read_table(dev, static_table);
702 
703 		if (static_table[0] & ALU_V_STATIC_VALID) {
704 			/* check this has same vid & mac address */
705 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
706 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
707 			    static_table[3] == mac_lo) {
708 				/* found matching one */
709 				break;
710 			}
711 		} else {
712 			/* found empty one */
713 			break;
714 		}
715 	}
716 
717 	/* no available entry */
718 	if (index == dev->info->num_statics) {
719 		err = -ENOSPC;
720 		goto exit;
721 	}
722 
723 	/* add entry */
724 	static_table[0] = ALU_V_STATIC_VALID;
725 	static_table[1] |= BIT(port);
726 	if (mdb->vid)
727 		static_table[1] |= ALU_V_USE_FID;
728 	static_table[2] = (mdb->vid << ALU_V_FID_S);
729 	static_table[2] |= mac_hi;
730 	static_table[3] = mac_lo;
731 
732 	ksz9477_write_table(dev, static_table);
733 
734 	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
735 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
736 
737 	/* wait to be finished */
738 	if (ksz9477_wait_alu_sta_ready(dev))
739 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
740 
741 exit:
742 	mutex_unlock(&dev->alu_mutex);
743 	return err;
744 }
745 
746 int ksz9477_mdb_del(struct ksz_device *dev, int port,
747 		    const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
748 {
749 	u32 static_table[4];
750 	const u8 *shifts;
751 	const u32 *masks;
752 	u32 data;
753 	int index;
754 	int ret = 0;
755 	u32 mac_hi, mac_lo;
756 
757 	shifts = dev->info->shifts;
758 	masks = dev->info->masks;
759 
760 	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
761 	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
762 	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
763 
764 	mutex_lock(&dev->alu_mutex);
765 
766 	for (index = 0; index < dev->info->num_statics; index++) {
767 		/* find empty slot first */
768 		data = (index << shifts[ALU_STAT_INDEX]) |
769 			masks[ALU_STAT_READ] | ALU_STAT_START;
770 		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
771 
772 		/* wait to be finished */
773 		ret = ksz9477_wait_alu_sta_ready(dev);
774 		if (ret) {
775 			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
776 			goto exit;
777 		}
778 
779 		/* read ALU static table */
780 		ksz9477_read_table(dev, static_table);
781 
782 		if (static_table[0] & ALU_V_STATIC_VALID) {
783 			/* check this has same vid & mac address */
784 
785 			if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
786 			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
787 			    static_table[3] == mac_lo) {
788 				/* found matching one */
789 				break;
790 			}
791 		}
792 	}
793 
794 	/* no available entry */
795 	if (index == dev->info->num_statics)
796 		goto exit;
797 
798 	/* clear port */
799 	static_table[1] &= ~BIT(port);
800 
801 	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
802 		/* delete entry */
803 		static_table[0] = 0;
804 		static_table[1] = 0;
805 		static_table[2] = 0;
806 		static_table[3] = 0;
807 	}
808 
809 	ksz9477_write_table(dev, static_table);
810 
811 	data = (index << shifts[ALU_STAT_INDEX]) | ALU_STAT_START;
812 	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
813 
814 	/* wait to be finished */
815 	ret = ksz9477_wait_alu_sta_ready(dev);
816 	if (ret)
817 		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
818 
819 exit:
820 	mutex_unlock(&dev->alu_mutex);
821 
822 	return ret;
823 }
824 
825 int ksz9477_port_mirror_add(struct ksz_device *dev, int port,
826 			    struct dsa_mall_mirror_tc_entry *mirror,
827 			    bool ingress, struct netlink_ext_ack *extack)
828 {
829 	u8 data;
830 	int p;
831 
832 	/* Limit to one sniffer port
833 	 * Check if any of the port is already set for sniffing
834 	 * If yes, instruct the user to remove the previous entry & exit
835 	 */
836 	for (p = 0; p < dev->info->port_cnt; p++) {
837 		/* Skip the current sniffing port */
838 		if (p == mirror->to_local_port)
839 			continue;
840 
841 		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
842 
843 		if (data & PORT_MIRROR_SNIFFER) {
844 			NL_SET_ERR_MSG_MOD(extack,
845 					   "Sniffer port is already configured, delete existing rules & retry");
846 			return -EBUSY;
847 		}
848 	}
849 
850 	if (ingress)
851 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
852 	else
853 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
854 
855 	/* configure mirror port */
856 	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
857 		     PORT_MIRROR_SNIFFER, true);
858 
859 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
860 
861 	return 0;
862 }
863 
864 void ksz9477_port_mirror_del(struct ksz_device *dev, int port,
865 			     struct dsa_mall_mirror_tc_entry *mirror)
866 {
867 	bool in_use = false;
868 	u8 data;
869 	int p;
870 
871 	if (mirror->ingress)
872 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
873 	else
874 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
875 
876 
877 	/* Check if any of the port is still referring to sniffer port */
878 	for (p = 0; p < dev->info->port_cnt; p++) {
879 		ksz_pread8(dev, p, P_MIRROR_CTRL, &data);
880 
881 		if ((data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) {
882 			in_use = true;
883 			break;
884 		}
885 	}
886 
887 	/* delete sniffing if there are no other mirroring rules */
888 	if (!in_use)
889 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
890 			     PORT_MIRROR_SNIFFER, false);
891 }
892 
893 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
894 {
895 	phy_interface_t interface;
896 	bool gbit;
897 
898 	if (dev->info->internal_phy[port])
899 		return PHY_INTERFACE_MODE_NA;
900 
901 	gbit = ksz_get_gbit(dev, port);
902 
903 	interface = ksz_get_xmii(dev, port, gbit);
904 
905 	return interface;
906 }
907 
908 void ksz9477_get_caps(struct ksz_device *dev, int port,
909 		      struct phylink_config *config)
910 {
911 	config->mac_capabilities = MAC_10 | MAC_100 | MAC_ASYM_PAUSE |
912 				   MAC_SYM_PAUSE;
913 
914 	if (dev->info->gbit_capable[port])
915 		config->mac_capabilities |= MAC_1000FD;
916 }
917 
918 int ksz9477_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
919 {
920 	u32 secs = msecs / 1000;
921 	u8 value;
922 	u8 data;
923 	int ret;
924 
925 	value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs);
926 
927 	ret = ksz_write8(dev, REG_SW_LUE_CTRL_3, value);
928 	if (ret < 0)
929 		return ret;
930 
931 	data = FIELD_GET(SW_AGE_PERIOD_10_8_M, secs);
932 
933 	ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value);
934 	if (ret < 0)
935 		return ret;
936 
937 	value &= ~SW_AGE_CNT_M;
938 	value |= FIELD_PREP(SW_AGE_CNT_M, data);
939 
940 	return ksz_write8(dev, REG_SW_LUE_CTRL_0, value);
941 }
942 
943 void ksz9477_port_queue_split(struct ksz_device *dev, int port)
944 {
945 	u8 data;
946 
947 	if (dev->info->num_tx_queues == 8)
948 		data = PORT_EIGHT_QUEUE;
949 	else if (dev->info->num_tx_queues == 4)
950 		data = PORT_FOUR_QUEUE;
951 	else if (dev->info->num_tx_queues == 2)
952 		data = PORT_TWO_QUEUE;
953 	else
954 		data = PORT_SINGLE_QUEUE;
955 
956 	ksz_prmw8(dev, port, REG_PORT_CTRL_0, PORT_QUEUE_SPLIT_MASK, data);
957 }
958 
959 void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
960 {
961 	struct dsa_switch *ds = dev->ds;
962 	u16 data16;
963 	u8 member;
964 
965 	/* enable tag tail for host port */
966 	if (cpu_port)
967 		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
968 			     true);
969 
970 	ksz9477_port_queue_split(dev, port);
971 
972 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
973 
974 	/* set back pressure */
975 	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
976 
977 	/* enable broadcast storm limit */
978 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
979 
980 	/* disable DiffServ priority */
981 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
982 
983 	/* replace priority */
984 	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
985 		     false);
986 	ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
987 			   MTI_PVID_REPLACE, false);
988 
989 	/* enable 802.1p priority */
990 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
991 
992 	/* force flow control for non-PHY ports only */
993 	ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
994 		     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
995 		     !dev->info->internal_phy[port]);
996 
997 	if (cpu_port)
998 		member = dsa_user_ports(ds);
999 	else
1000 		member = BIT(dsa_upstream_port(ds, port));
1001 
1002 	ksz9477_cfg_port_member(dev, port, member);
1003 
1004 	/* clear pending interrupts */
1005 	if (dev->info->internal_phy[port])
1006 		ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1007 }
1008 
1009 void ksz9477_config_cpu_port(struct dsa_switch *ds)
1010 {
1011 	struct ksz_device *dev = ds->priv;
1012 	struct ksz_port *p;
1013 	int i;
1014 
1015 	for (i = 0; i < dev->info->port_cnt; i++) {
1016 		if (dsa_is_cpu_port(ds, i) &&
1017 		    (dev->info->cpu_ports & (1 << i))) {
1018 			phy_interface_t interface;
1019 			const char *prev_msg;
1020 			const char *prev_mode;
1021 
1022 			dev->cpu_port = i;
1023 			p = &dev->ports[i];
1024 
1025 			/* Read from XMII register to determine host port
1026 			 * interface.  If set specifically in device tree
1027 			 * note the difference to help debugging.
1028 			 */
1029 			interface = ksz9477_get_interface(dev, i);
1030 			if (!p->interface) {
1031 				if (dev->compat_interface) {
1032 					dev_warn(dev->dev,
1033 						 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1034 						 "Please update your device tree.\n",
1035 						 i);
1036 					p->interface = dev->compat_interface;
1037 				} else {
1038 					p->interface = interface;
1039 				}
1040 			}
1041 			if (interface && interface != p->interface) {
1042 				prev_msg = " instead of ";
1043 				prev_mode = phy_modes(interface);
1044 			} else {
1045 				prev_msg = "";
1046 				prev_mode = "";
1047 			}
1048 			dev_info(dev->dev,
1049 				 "Port%d: using phy mode %s%s%s\n",
1050 				 i,
1051 				 phy_modes(p->interface),
1052 				 prev_msg,
1053 				 prev_mode);
1054 
1055 			/* enable cpu port */
1056 			ksz9477_port_setup(dev, i, true);
1057 		}
1058 	}
1059 
1060 	for (i = 0; i < dev->info->port_cnt; i++) {
1061 		if (i == dev->cpu_port)
1062 			continue;
1063 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1064 	}
1065 }
1066 
1067 int ksz9477_enable_stp_addr(struct ksz_device *dev)
1068 {
1069 	const u32 *masks;
1070 	u32 data;
1071 	int ret;
1072 
1073 	masks = dev->info->masks;
1074 
1075 	/* Enable Reserved multicast table */
1076 	ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_RESV_MCAST_ENABLE, true);
1077 
1078 	/* Set the Override bit for forwarding BPDU packet to CPU */
1079 	ret = ksz_write32(dev, REG_SW_ALU_VAL_B,
1080 			  ALU_V_OVERRIDE | BIT(dev->cpu_port));
1081 	if (ret < 0)
1082 		return ret;
1083 
1084 	data = ALU_STAT_START | ALU_RESV_MCAST_ADDR | masks[ALU_STAT_WRITE];
1085 
1086 	ret = ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1087 	if (ret < 0)
1088 		return ret;
1089 
1090 	/* wait to be finished */
1091 	ret = ksz9477_wait_alu_sta_ready(dev);
1092 	if (ret < 0) {
1093 		dev_err(dev->dev, "Failed to update Reserved Multicast table\n");
1094 		return ret;
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 int ksz9477_setup(struct dsa_switch *ds)
1101 {
1102 	struct ksz_device *dev = ds->priv;
1103 	int ret = 0;
1104 
1105 	ds->mtu_enforcement_ingress = true;
1106 
1107 	/* Required for port partitioning. */
1108 	ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1109 		      true);
1110 
1111 	/* Do not work correctly with tail tagging. */
1112 	ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1113 
1114 	/* Enable REG_SW_MTU__2 reg by setting SW_JUMBO_PACKET */
1115 	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_JUMBO_PACKET, true);
1116 
1117 	/* Now we can configure default MTU value */
1118 	ret = regmap_update_bits(ksz_regmap_16(dev), REG_SW_MTU__2, REG_SW_MTU_MASK,
1119 				 VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1120 	if (ret)
1121 		return ret;
1122 
1123 	/* queue based egress rate limit */
1124 	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1125 
1126 	/* enable global MIB counter freeze function */
1127 	ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1128 
1129 	return 0;
1130 }
1131 
1132 u32 ksz9477_get_port_addr(int port, int offset)
1133 {
1134 	return PORT_CTRL_ADDR(port, offset);
1135 }
1136 
1137 int ksz9477_tc_cbs_set_cinc(struct ksz_device *dev, int port, u32 val)
1138 {
1139 	val = val >> 8;
1140 
1141 	return ksz_pwrite16(dev, port, REG_PORT_MTI_CREDIT_INCREMENT, val);
1142 }
1143 
1144 int ksz9477_switch_init(struct ksz_device *dev)
1145 {
1146 	u8 data8;
1147 	int ret;
1148 
1149 	dev->port_mask = (1 << dev->info->port_cnt) - 1;
1150 
1151 	/* turn off SPI DO Edge select */
1152 	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1153 	if (ret)
1154 		return ret;
1155 
1156 	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1157 	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1158 	if (ret)
1159 		return ret;
1160 
1161 	return 0;
1162 }
1163 
1164 void ksz9477_switch_exit(struct ksz_device *dev)
1165 {
1166 	ksz9477_reset_switch(dev);
1167 }
1168 
1169 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1170 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1171 MODULE_LICENSE("GPL");
1172