xref: /openbmc/linux/drivers/net/dsa/microchip/ksz8795.c (revision 7fcb820c7609f207cd2e5b49bff96a5b55167cf3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24 
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28 
29 static const u8 ksz8795_regs[] = {
30 	[REG_IND_CTRL_0]		= 0x6E,
31 	[REG_IND_DATA_8]		= 0x70,
32 	[REG_IND_DATA_CHECK]		= 0x72,
33 	[REG_IND_DATA_HI]		= 0x71,
34 	[REG_IND_DATA_LO]		= 0x75,
35 	[REG_IND_MIB_CHECK]		= 0x74,
36 	[REG_IND_BYTE]			= 0xA0,
37 	[P_FORCE_CTRL]			= 0x0C,
38 	[P_LINK_STATUS]			= 0x0E,
39 	[P_LOCAL_CTRL]			= 0x07,
40 	[P_NEG_RESTART_CTRL]		= 0x0D,
41 	[P_REMOTE_STATUS]		= 0x08,
42 	[P_SPEED_STATUS]		= 0x09,
43 	[S_TAIL_TAG_CTRL]		= 0x0C,
44 };
45 
46 static const u32 ksz8795_masks[] = {
47 	[PORT_802_1P_REMAPPING]		= BIT(7),
48 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
49 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
50 	[MIB_COUNTER_VALID]		= BIT(5),
51 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
52 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
53 	[VLAN_TABLE_VALID]		= BIT(12),
54 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
55 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
56 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
57 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(26),
58 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(24, 20),
59 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
60 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(8),
61 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
62 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
63 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(26, 20),
64 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
65 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
66 };
67 
68 static const u8 ksz8795_shifts[] = {
69 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
70 	[VLAN_TABLE]			= 16,
71 	[STATIC_MAC_FWD_PORTS]		= 16,
72 	[STATIC_MAC_FID]		= 24,
73 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
74 	[DYNAMIC_MAC_ENTRIES]		= 29,
75 	[DYNAMIC_MAC_FID]		= 16,
76 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
77 	[DYNAMIC_MAC_SRC_PORT]		= 24,
78 };
79 
80 static const u8 ksz8863_regs[] = {
81 	[REG_IND_CTRL_0]		= 0x79,
82 	[REG_IND_DATA_8]		= 0x7B,
83 	[REG_IND_DATA_CHECK]		= 0x7B,
84 	[REG_IND_DATA_HI]		= 0x7C,
85 	[REG_IND_DATA_LO]		= 0x80,
86 	[REG_IND_MIB_CHECK]		= 0x80,
87 	[P_FORCE_CTRL]			= 0x0C,
88 	[P_LINK_STATUS]			= 0x0E,
89 	[P_LOCAL_CTRL]			= 0x0C,
90 	[P_NEG_RESTART_CTRL]		= 0x0D,
91 	[P_REMOTE_STATUS]		= 0x0E,
92 	[P_SPEED_STATUS]		= 0x0F,
93 	[S_TAIL_TAG_CTRL]		= 0x03,
94 };
95 
96 static const u32 ksz8863_masks[] = {
97 	[PORT_802_1P_REMAPPING]		= BIT(3),
98 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
99 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
100 	[MIB_COUNTER_VALID]		= BIT(6),
101 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
102 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
103 	[VLAN_TABLE_VALID]		= BIT(19),
104 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
105 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
106 	[STATIC_MAC_TABLE_FID]		= GENMASK(29, 26),
107 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
108 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
109 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(5, 0),
110 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
111 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
112 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 28),
113 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
114 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
115 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
116 };
117 
118 static u8 ksz8863_shifts[] = {
119 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
120 	[STATIC_MAC_FWD_PORTS]		= 16,
121 	[STATIC_MAC_FID]		= 22,
122 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
123 	[DYNAMIC_MAC_ENTRIES]		= 24,
124 	[DYNAMIC_MAC_FID]		= 16,
125 	[DYNAMIC_MAC_TIMESTAMP]		= 24,
126 	[DYNAMIC_MAC_SRC_PORT]		= 20,
127 };
128 
129 static bool ksz_is_ksz88x3(struct ksz_device *dev)
130 {
131 	return dev->chip_id == 0x8830;
132 }
133 
134 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
135 {
136 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
137 }
138 
139 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
140 			 bool set)
141 {
142 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
143 			   bits, set ? bits : 0);
144 }
145 
146 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
147 {
148 	struct ksz8 *ksz8 = dev->priv;
149 	const u8 *regs = ksz8->regs;
150 	u16 ctrl_addr;
151 	int ret = 0;
152 
153 	mutex_lock(&dev->alu_mutex);
154 
155 	ctrl_addr = IND_ACC_TABLE(table) | addr;
156 	ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
157 	if (!ret)
158 		ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
159 
160 	mutex_unlock(&dev->alu_mutex);
161 
162 	return ret;
163 }
164 
165 int ksz8_reset_switch(struct ksz_device *dev)
166 {
167 	if (ksz_is_ksz88x3(dev)) {
168 		/* reset switch */
169 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
170 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
171 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
172 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
173 	} else {
174 		/* reset switch */
175 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
176 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
177 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
178 	}
179 
180 	return 0;
181 }
182 
183 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
184 {
185 	u8 hi, lo;
186 
187 	/* Number of queues can only be 1, 2, or 4. */
188 	switch (queue) {
189 	case 4:
190 	case 3:
191 		queue = PORT_QUEUE_SPLIT_4;
192 		break;
193 	case 2:
194 		queue = PORT_QUEUE_SPLIT_2;
195 		break;
196 	default:
197 		queue = PORT_QUEUE_SPLIT_1;
198 	}
199 	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
200 	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
201 	lo &= ~PORT_QUEUE_SPLIT_L;
202 	if (queue & PORT_QUEUE_SPLIT_2)
203 		lo |= PORT_QUEUE_SPLIT_L;
204 	hi &= ~PORT_QUEUE_SPLIT_H;
205 	if (queue & PORT_QUEUE_SPLIT_4)
206 		hi |= PORT_QUEUE_SPLIT_H;
207 	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
208 	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
209 
210 	/* Default is port based for egress rate limit. */
211 	if (queue != PORT_QUEUE_SPLIT_1)
212 		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
213 			true);
214 }
215 
216 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
217 {
218 	struct ksz8 *ksz8 = dev->priv;
219 	const u32 *masks;
220 	const u8 *regs;
221 	u16 ctrl_addr;
222 	u32 data;
223 	u8 check;
224 	int loop;
225 
226 	masks = ksz8->masks;
227 	regs = ksz8->regs;
228 
229 	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
230 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
231 
232 	mutex_lock(&dev->alu_mutex);
233 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
234 
235 	/* It is almost guaranteed to always read the valid bit because of
236 	 * slow SPI speed.
237 	 */
238 	for (loop = 2; loop > 0; loop--) {
239 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
240 
241 		if (check & masks[MIB_COUNTER_VALID]) {
242 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
243 			if (check & masks[MIB_COUNTER_OVERFLOW])
244 				*cnt += MIB_COUNTER_VALUE + 1;
245 			*cnt += data & MIB_COUNTER_VALUE;
246 			break;
247 		}
248 	}
249 	mutex_unlock(&dev->alu_mutex);
250 }
251 
252 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
253 			      u64 *dropped, u64 *cnt)
254 {
255 	struct ksz8 *ksz8 = dev->priv;
256 	const u32 *masks;
257 	const u8 *regs;
258 	u16 ctrl_addr;
259 	u32 data;
260 	u8 check;
261 	int loop;
262 
263 	masks = ksz8->masks;
264 	regs = ksz8->regs;
265 
266 	addr -= dev->info->reg_mib_cnt;
267 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
268 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
269 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
270 
271 	mutex_lock(&dev->alu_mutex);
272 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
273 
274 	/* It is almost guaranteed to always read the valid bit because of
275 	 * slow SPI speed.
276 	 */
277 	for (loop = 2; loop > 0; loop--) {
278 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
279 
280 		if (check & masks[MIB_COUNTER_VALID]) {
281 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
282 			if (addr < 2) {
283 				u64 total;
284 
285 				total = check & MIB_TOTAL_BYTES_H;
286 				total <<= 32;
287 				*cnt += total;
288 				*cnt += data;
289 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
290 					total = MIB_TOTAL_BYTES_H + 1;
291 					total <<= 32;
292 					*cnt += total;
293 				}
294 			} else {
295 				if (check & masks[MIB_COUNTER_OVERFLOW])
296 					*cnt += MIB_PACKET_DROPPED + 1;
297 				*cnt += data & MIB_PACKET_DROPPED;
298 			}
299 			break;
300 		}
301 	}
302 	mutex_unlock(&dev->alu_mutex);
303 }
304 
305 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
306 			      u64 *dropped, u64 *cnt)
307 {
308 	struct ksz8 *ksz8 = dev->priv;
309 	const u8 *regs = ksz8->regs;
310 	u32 *last = (u32 *)dropped;
311 	u16 ctrl_addr;
312 	u32 data;
313 	u32 cur;
314 
315 	addr -= dev->info->reg_mib_cnt;
316 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
317 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
318 	ctrl_addr += port;
319 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
320 
321 	mutex_lock(&dev->alu_mutex);
322 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
323 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
324 	mutex_unlock(&dev->alu_mutex);
325 
326 	data &= MIB_PACKET_DROPPED;
327 	cur = last[addr];
328 	if (data != cur) {
329 		last[addr] = data;
330 		if (data < cur)
331 			data += MIB_PACKET_DROPPED + 1;
332 		data -= cur;
333 		*cnt += data;
334 	}
335 }
336 
337 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
338 		    u64 *dropped, u64 *cnt)
339 {
340 	if (ksz_is_ksz88x3(dev))
341 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
342 	else
343 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
344 }
345 
346 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
347 {
348 	if (ksz_is_ksz88x3(dev))
349 		return;
350 
351 	/* enable the port for flush/freeze function */
352 	if (freeze)
353 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
354 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
355 
356 	/* disable the port after freeze is done */
357 	if (!freeze)
358 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
359 }
360 
361 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
362 {
363 	struct ksz_port_mib *mib = &dev->ports[port].mib;
364 	u64 *dropped;
365 
366 	if (!ksz_is_ksz88x3(dev)) {
367 		/* flush all enabled port MIB counters */
368 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
369 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
370 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
371 	}
372 
373 	mib->cnt_ptr = 0;
374 
375 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
376 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
377 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
378 					&mib->counters[mib->cnt_ptr]);
379 		++mib->cnt_ptr;
380 	}
381 
382 	/* last one in storage */
383 	dropped = &mib->counters[dev->info->mib_cnt];
384 
385 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
386 	while (mib->cnt_ptr < dev->info->mib_cnt) {
387 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
388 					dropped, &mib->counters[mib->cnt_ptr]);
389 		++mib->cnt_ptr;
390 	}
391 }
392 
393 static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
394 {
395 	struct ksz8 *ksz8 = dev->priv;
396 	const u8 *regs = ksz8->regs;
397 	u16 ctrl_addr;
398 
399 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
400 
401 	mutex_lock(&dev->alu_mutex);
402 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
403 	ksz_read64(dev, regs[REG_IND_DATA_HI], data);
404 	mutex_unlock(&dev->alu_mutex);
405 }
406 
407 static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
408 {
409 	struct ksz8 *ksz8 = dev->priv;
410 	const u8 *regs = ksz8->regs;
411 	u16 ctrl_addr;
412 
413 	ctrl_addr = IND_ACC_TABLE(table) | addr;
414 
415 	mutex_lock(&dev->alu_mutex);
416 	ksz_write64(dev, regs[REG_IND_DATA_HI], data);
417 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
418 	mutex_unlock(&dev->alu_mutex);
419 }
420 
421 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
422 {
423 	struct ksz8 *ksz8 = dev->priv;
424 	int timeout = 100;
425 	const u32 *masks;
426 	const u8 *regs;
427 
428 	masks = ksz8->masks;
429 	regs = ksz8->regs;
430 
431 	do {
432 		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
433 		timeout--;
434 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
435 
436 	/* Entry is not ready for accessing. */
437 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
438 		return -EAGAIN;
439 	/* Entry is ready for accessing. */
440 	} else {
441 		ksz_read8(dev, regs[REG_IND_DATA_8], data);
442 
443 		/* There is no valid entry in the table. */
444 		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
445 			return -ENXIO;
446 	}
447 	return 0;
448 }
449 
450 int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
451 			 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
452 {
453 	struct ksz8 *ksz8 = dev->priv;
454 	u32 data_hi, data_lo;
455 	const u8 *shifts;
456 	const u32 *masks;
457 	const u8 *regs;
458 	u16 ctrl_addr;
459 	u8 data;
460 	int rc;
461 
462 	shifts = ksz8->shifts;
463 	masks = ksz8->masks;
464 	regs = ksz8->regs;
465 
466 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
467 
468 	mutex_lock(&dev->alu_mutex);
469 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
470 
471 	rc = ksz8_valid_dyn_entry(dev, &data);
472 	if (rc == -EAGAIN) {
473 		if (addr == 0)
474 			*entries = 0;
475 	} else if (rc == -ENXIO) {
476 		*entries = 0;
477 	/* At least one valid entry in the table. */
478 	} else {
479 		u64 buf = 0;
480 		int cnt;
481 
482 		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
483 		data_hi = (u32)(buf >> 32);
484 		data_lo = (u32)buf;
485 
486 		/* Check out how many valid entry in the table. */
487 		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
488 		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
489 		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
490 			shifts[DYNAMIC_MAC_ENTRIES];
491 		*entries = cnt + 1;
492 
493 		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
494 			shifts[DYNAMIC_MAC_FID];
495 		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
496 			shifts[DYNAMIC_MAC_SRC_PORT];
497 		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
498 			shifts[DYNAMIC_MAC_TIMESTAMP];
499 
500 		mac_addr[5] = (u8)data_lo;
501 		mac_addr[4] = (u8)(data_lo >> 8);
502 		mac_addr[3] = (u8)(data_lo >> 16);
503 		mac_addr[2] = (u8)(data_lo >> 24);
504 
505 		mac_addr[1] = (u8)data_hi;
506 		mac_addr[0] = (u8)(data_hi >> 8);
507 		rc = 0;
508 	}
509 	mutex_unlock(&dev->alu_mutex);
510 
511 	return rc;
512 }
513 
514 int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
515 			 struct alu_struct *alu)
516 {
517 	struct ksz8 *ksz8 = dev->priv;
518 	u32 data_hi, data_lo;
519 	const u8 *shifts;
520 	const u32 *masks;
521 	u64 data;
522 
523 	shifts = ksz8->shifts;
524 	masks = ksz8->masks;
525 
526 	ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
527 	data_hi = data >> 32;
528 	data_lo = (u32)data;
529 	if (data_hi & (masks[STATIC_MAC_TABLE_VALID] |
530 			masks[STATIC_MAC_TABLE_OVERRIDE])) {
531 		alu->mac[5] = (u8)data_lo;
532 		alu->mac[4] = (u8)(data_lo >> 8);
533 		alu->mac[3] = (u8)(data_lo >> 16);
534 		alu->mac[2] = (u8)(data_lo >> 24);
535 		alu->mac[1] = (u8)data_hi;
536 		alu->mac[0] = (u8)(data_hi >> 8);
537 		alu->port_forward =
538 			(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
539 				shifts[STATIC_MAC_FWD_PORTS];
540 		alu->is_override =
541 			(data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
542 		data_hi >>= 1;
543 		alu->is_static = true;
544 		alu->is_use_fid =
545 			(data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
546 		alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
547 				shifts[STATIC_MAC_FID];
548 		return 0;
549 	}
550 	return -ENXIO;
551 }
552 
553 void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
554 			  struct alu_struct *alu)
555 {
556 	struct ksz8 *ksz8 = dev->priv;
557 	u32 data_hi, data_lo;
558 	const u8 *shifts;
559 	const u32 *masks;
560 	u64 data;
561 
562 	shifts = ksz8->shifts;
563 	masks = ksz8->masks;
564 
565 	data_lo = ((u32)alu->mac[2] << 24) |
566 		((u32)alu->mac[3] << 16) |
567 		((u32)alu->mac[4] << 8) | alu->mac[5];
568 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
569 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
570 
571 	if (alu->is_override)
572 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
573 	if (alu->is_use_fid) {
574 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
575 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
576 	}
577 	if (alu->is_static)
578 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
579 	else
580 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
581 
582 	data = (u64)data_hi << 32 | data_lo;
583 	ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
584 }
585 
586 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
587 			   u8 *member, u8 *valid)
588 {
589 	struct ksz8 *ksz8 = dev->priv;
590 	const u8 *shifts;
591 	const u32 *masks;
592 
593 	shifts = ksz8->shifts;
594 	masks = ksz8->masks;
595 
596 	*fid = vlan & masks[VLAN_TABLE_FID];
597 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
598 			shifts[VLAN_TABLE_MEMBERSHIP_S];
599 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
600 }
601 
602 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
603 			 u16 *vlan)
604 {
605 	struct ksz8 *ksz8 = dev->priv;
606 	const u8 *shifts;
607 	const u32 *masks;
608 
609 	shifts = ksz8->shifts;
610 	masks = ksz8->masks;
611 
612 	*vlan = fid;
613 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
614 	if (valid)
615 		*vlan |= masks[VLAN_TABLE_VALID];
616 }
617 
618 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
619 {
620 	struct ksz8 *ksz8 = dev->priv;
621 	const u8 *shifts;
622 	u64 data;
623 	int i;
624 
625 	shifts = ksz8->shifts;
626 
627 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
628 	addr *= 4;
629 	for (i = 0; i < 4; i++) {
630 		dev->vlan_cache[addr + i].table[0] = (u16)data;
631 		data >>= shifts[VLAN_TABLE];
632 	}
633 }
634 
635 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
636 {
637 	int index;
638 	u16 *data;
639 	u16 addr;
640 	u64 buf;
641 
642 	data = (u16 *)&buf;
643 	addr = vid / 4;
644 	index = vid & 3;
645 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
646 	*vlan = data[index];
647 }
648 
649 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
650 {
651 	int index;
652 	u16 *data;
653 	u16 addr;
654 	u64 buf;
655 
656 	data = (u16 *)&buf;
657 	addr = vid / 4;
658 	index = vid & 3;
659 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
660 	data[index] = vlan;
661 	dev->vlan_cache[vid].table[0] = vlan;
662 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
663 }
664 
665 void ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
666 {
667 	struct ksz8 *ksz8 = dev->priv;
668 	u8 restart, speed, ctrl, link;
669 	const u8 *regs = ksz8->regs;
670 	int processed = true;
671 	u8 val1, val2;
672 	u16 data = 0;
673 	u8 p = phy;
674 
675 	switch (reg) {
676 	case MII_BMCR:
677 		ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
678 		ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
679 		ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
680 		if (restart & PORT_PHY_LOOPBACK)
681 			data |= BMCR_LOOPBACK;
682 		if (ctrl & PORT_FORCE_100_MBIT)
683 			data |= BMCR_SPEED100;
684 		if (ksz_is_ksz88x3(dev)) {
685 			if ((ctrl & PORT_AUTO_NEG_ENABLE))
686 				data |= BMCR_ANENABLE;
687 		} else {
688 			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
689 				data |= BMCR_ANENABLE;
690 		}
691 		if (restart & PORT_POWER_DOWN)
692 			data |= BMCR_PDOWN;
693 		if (restart & PORT_AUTO_NEG_RESTART)
694 			data |= BMCR_ANRESTART;
695 		if (ctrl & PORT_FORCE_FULL_DUPLEX)
696 			data |= BMCR_FULLDPLX;
697 		if (speed & PORT_HP_MDIX)
698 			data |= KSZ886X_BMCR_HP_MDIX;
699 		if (restart & PORT_FORCE_MDIX)
700 			data |= KSZ886X_BMCR_FORCE_MDI;
701 		if (restart & PORT_AUTO_MDIX_DISABLE)
702 			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
703 		if (restart & PORT_TX_DISABLE)
704 			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
705 		if (restart & PORT_LED_OFF)
706 			data |= KSZ886X_BMCR_DISABLE_LED;
707 		break;
708 	case MII_BMSR:
709 		ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
710 		data = BMSR_100FULL |
711 		       BMSR_100HALF |
712 		       BMSR_10FULL |
713 		       BMSR_10HALF |
714 		       BMSR_ANEGCAPABLE;
715 		if (link & PORT_AUTO_NEG_COMPLETE)
716 			data |= BMSR_ANEGCOMPLETE;
717 		if (link & PORT_STAT_LINK_GOOD)
718 			data |= BMSR_LSTATUS;
719 		break;
720 	case MII_PHYSID1:
721 		data = KSZ8795_ID_HI;
722 		break;
723 	case MII_PHYSID2:
724 		if (ksz_is_ksz88x3(dev))
725 			data = KSZ8863_ID_LO;
726 		else
727 			data = KSZ8795_ID_LO;
728 		break;
729 	case MII_ADVERTISE:
730 		ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
731 		data = ADVERTISE_CSMA;
732 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
733 			data |= ADVERTISE_PAUSE_CAP;
734 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
735 			data |= ADVERTISE_100FULL;
736 		if (ctrl & PORT_AUTO_NEG_100BTX)
737 			data |= ADVERTISE_100HALF;
738 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
739 			data |= ADVERTISE_10FULL;
740 		if (ctrl & PORT_AUTO_NEG_10BT)
741 			data |= ADVERTISE_10HALF;
742 		break;
743 	case MII_LPA:
744 		ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
745 		data = LPA_SLCT;
746 		if (link & PORT_REMOTE_SYM_PAUSE)
747 			data |= LPA_PAUSE_CAP;
748 		if (link & PORT_REMOTE_100BTX_FD)
749 			data |= LPA_100FULL;
750 		if (link & PORT_REMOTE_100BTX)
751 			data |= LPA_100HALF;
752 		if (link & PORT_REMOTE_10BT_FD)
753 			data |= LPA_10FULL;
754 		if (link & PORT_REMOTE_10BT)
755 			data |= LPA_10HALF;
756 		if (data & ~LPA_SLCT)
757 			data |= LPA_LPACK;
758 		break;
759 	case PHY_REG_LINK_MD:
760 		ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
761 		ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
762 		if (val1 & PORT_START_CABLE_DIAG)
763 			data |= PHY_START_CABLE_DIAG;
764 
765 		if (val1 & PORT_CABLE_10M_SHORT)
766 			data |= PHY_CABLE_10M_SHORT;
767 
768 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
769 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
770 
771 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
772 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
773 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
774 		break;
775 	case PHY_REG_PHY_CTRL:
776 		ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
777 		if (link & PORT_MDIX_STATUS)
778 			data |= KSZ886X_CTRL_MDIX_STAT;
779 		break;
780 	default:
781 		processed = false;
782 		break;
783 	}
784 	if (processed)
785 		*val = data;
786 }
787 
788 void ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
789 {
790 	struct ksz8 *ksz8 = dev->priv;
791 	u8 restart, speed, ctrl, data;
792 	const u8 *regs = ksz8->regs;
793 	u8 p = phy;
794 
795 	switch (reg) {
796 	case MII_BMCR:
797 
798 		/* Do not support PHY reset function. */
799 		if (val & BMCR_RESET)
800 			break;
801 		ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
802 		data = speed;
803 		if (val & KSZ886X_BMCR_HP_MDIX)
804 			data |= PORT_HP_MDIX;
805 		else
806 			data &= ~PORT_HP_MDIX;
807 		if (data != speed)
808 			ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
809 		ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
810 		data = ctrl;
811 		if (ksz_is_ksz88x3(dev)) {
812 			if ((val & BMCR_ANENABLE))
813 				data |= PORT_AUTO_NEG_ENABLE;
814 			else
815 				data &= ~PORT_AUTO_NEG_ENABLE;
816 		} else {
817 			if (!(val & BMCR_ANENABLE))
818 				data |= PORT_AUTO_NEG_DISABLE;
819 			else
820 				data &= ~PORT_AUTO_NEG_DISABLE;
821 
822 			/* Fiber port does not support auto-negotiation. */
823 			if (dev->ports[p].fiber)
824 				data |= PORT_AUTO_NEG_DISABLE;
825 		}
826 
827 		if (val & BMCR_SPEED100)
828 			data |= PORT_FORCE_100_MBIT;
829 		else
830 			data &= ~PORT_FORCE_100_MBIT;
831 		if (val & BMCR_FULLDPLX)
832 			data |= PORT_FORCE_FULL_DUPLEX;
833 		else
834 			data &= ~PORT_FORCE_FULL_DUPLEX;
835 		if (data != ctrl)
836 			ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
837 		ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
838 		data = restart;
839 		if (val & KSZ886X_BMCR_DISABLE_LED)
840 			data |= PORT_LED_OFF;
841 		else
842 			data &= ~PORT_LED_OFF;
843 		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
844 			data |= PORT_TX_DISABLE;
845 		else
846 			data &= ~PORT_TX_DISABLE;
847 		if (val & BMCR_ANRESTART)
848 			data |= PORT_AUTO_NEG_RESTART;
849 		else
850 			data &= ~(PORT_AUTO_NEG_RESTART);
851 		if (val & BMCR_PDOWN)
852 			data |= PORT_POWER_DOWN;
853 		else
854 			data &= ~PORT_POWER_DOWN;
855 		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
856 			data |= PORT_AUTO_MDIX_DISABLE;
857 		else
858 			data &= ~PORT_AUTO_MDIX_DISABLE;
859 		if (val & KSZ886X_BMCR_FORCE_MDI)
860 			data |= PORT_FORCE_MDIX;
861 		else
862 			data &= ~PORT_FORCE_MDIX;
863 		if (val & BMCR_LOOPBACK)
864 			data |= PORT_PHY_LOOPBACK;
865 		else
866 			data &= ~PORT_PHY_LOOPBACK;
867 		if (data != restart)
868 			ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL], data);
869 		break;
870 	case MII_ADVERTISE:
871 		ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
872 		data = ctrl;
873 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
874 			  PORT_AUTO_NEG_100BTX_FD |
875 			  PORT_AUTO_NEG_100BTX |
876 			  PORT_AUTO_NEG_10BT_FD |
877 			  PORT_AUTO_NEG_10BT);
878 		if (val & ADVERTISE_PAUSE_CAP)
879 			data |= PORT_AUTO_NEG_SYM_PAUSE;
880 		if (val & ADVERTISE_100FULL)
881 			data |= PORT_AUTO_NEG_100BTX_FD;
882 		if (val & ADVERTISE_100HALF)
883 			data |= PORT_AUTO_NEG_100BTX;
884 		if (val & ADVERTISE_10FULL)
885 			data |= PORT_AUTO_NEG_10BT_FD;
886 		if (val & ADVERTISE_10HALF)
887 			data |= PORT_AUTO_NEG_10BT;
888 		if (data != ctrl)
889 			ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
890 		break;
891 	case PHY_REG_LINK_MD:
892 		if (val & PHY_START_CABLE_DIAG)
893 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
894 		break;
895 	default:
896 		break;
897 	}
898 }
899 
900 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
901 {
902 	u8 data;
903 
904 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
905 	data &= ~PORT_VLAN_MEMBERSHIP;
906 	data |= (member & dev->port_mask);
907 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
908 }
909 
910 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
911 {
912 	u8 learn[DSA_MAX_PORTS];
913 	int first, index, cnt;
914 	struct ksz_port *p;
915 
916 	if ((uint)port < dev->info->port_cnt) {
917 		first = port;
918 		cnt = port + 1;
919 	} else {
920 		/* Flush all ports. */
921 		first = 0;
922 		cnt = dev->info->port_cnt;
923 	}
924 	for (index = first; index < cnt; index++) {
925 		p = &dev->ports[index];
926 		if (!p->on)
927 			continue;
928 		ksz_pread8(dev, index, P_STP_CTRL, &learn[index]);
929 		if (!(learn[index] & PORT_LEARN_DISABLE))
930 			ksz_pwrite8(dev, index, P_STP_CTRL,
931 				    learn[index] | PORT_LEARN_DISABLE);
932 	}
933 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
934 	for (index = first; index < cnt; index++) {
935 		p = &dev->ports[index];
936 		if (!p->on)
937 			continue;
938 		if (!(learn[index] & PORT_LEARN_DISABLE))
939 			ksz_pwrite8(dev, index, P_STP_CTRL, learn[index]);
940 	}
941 }
942 
943 int ksz8_fdb_dump(struct ksz_device *dev, int port,
944 		  dsa_fdb_dump_cb_t *cb, void *data)
945 {
946 	int ret = 0;
947 	u16 i = 0;
948 	u16 entries = 0;
949 	u8 timestamp = 0;
950 	u8 fid;
951 	u8 member;
952 	struct alu_struct alu;
953 
954 	do {
955 		alu.is_static = false;
956 		ret = ksz8_r_dyn_mac_table(dev, i, alu.mac, &fid, &member,
957 					   &timestamp, &entries);
958 		if (!ret && (member & BIT(port))) {
959 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
960 			if (ret)
961 				break;
962 		}
963 		i++;
964 	} while (i < entries);
965 	if (i >= entries)
966 		ret = 0;
967 
968 	return ret;
969 }
970 
971 int ksz8_mdb_add(struct ksz_device *dev, int port,
972 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
973 {
974 	struct alu_struct alu;
975 	int index;
976 	int empty = 0;
977 
978 	alu.port_forward = 0;
979 	for (index = 0; index < dev->info->num_statics; index++) {
980 		if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
981 			/* Found one already in static MAC table. */
982 			if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
983 			    alu.fid == mdb->vid)
984 				break;
985 		/* Remember the first empty entry. */
986 		} else if (!empty) {
987 			empty = index + 1;
988 		}
989 	}
990 
991 	/* no available entry */
992 	if (index == dev->info->num_statics && !empty)
993 		return -ENOSPC;
994 
995 	/* add entry */
996 	if (index == dev->info->num_statics) {
997 		index = empty - 1;
998 		memset(&alu, 0, sizeof(alu));
999 		memcpy(alu.mac, mdb->addr, ETH_ALEN);
1000 		alu.is_static = true;
1001 	}
1002 	alu.port_forward |= BIT(port);
1003 	if (mdb->vid) {
1004 		alu.is_use_fid = true;
1005 
1006 		/* Need a way to map VID to FID. */
1007 		alu.fid = mdb->vid;
1008 	}
1009 	ksz8_w_sta_mac_table(dev, index, &alu);
1010 
1011 	return 0;
1012 }
1013 
1014 int ksz8_mdb_del(struct ksz_device *dev, int port,
1015 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1016 {
1017 	struct alu_struct alu;
1018 	int index;
1019 
1020 	for (index = 0; index < dev->info->num_statics; index++) {
1021 		if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
1022 			/* Found one already in static MAC table. */
1023 			if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
1024 			    alu.fid == mdb->vid)
1025 				break;
1026 		}
1027 	}
1028 
1029 	/* no available entry */
1030 	if (index == dev->info->num_statics)
1031 		goto exit;
1032 
1033 	/* clear port */
1034 	alu.port_forward &= ~BIT(port);
1035 	if (!alu.port_forward)
1036 		alu.is_static = false;
1037 	ksz8_w_sta_mac_table(dev, index, &alu);
1038 
1039 exit:
1040 	return 0;
1041 }
1042 
1043 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1044 			     struct netlink_ext_ack *extack)
1045 {
1046 	if (ksz_is_ksz88x3(dev))
1047 		return -ENOTSUPP;
1048 
1049 	/* Discard packets with VID not enabled on the switch */
1050 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1051 
1052 	/* Discard packets with VID not enabled on the ingress port */
1053 	for (port = 0; port < dev->phy_port_cnt; ++port)
1054 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1055 			     flag);
1056 
1057 	return 0;
1058 }
1059 
1060 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1061 {
1062 	if (ksz_is_ksz88x3(dev)) {
1063 		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1064 			0x03 << (4 - 2 * port), state);
1065 	} else {
1066 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1067 	}
1068 }
1069 
1070 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1071 		       const struct switchdev_obj_port_vlan *vlan,
1072 		       struct netlink_ext_ack *extack)
1073 {
1074 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1075 	struct ksz_port *p = &dev->ports[port];
1076 	u16 data, new_pvid = 0;
1077 	u8 fid, member, valid;
1078 
1079 	if (ksz_is_ksz88x3(dev))
1080 		return -ENOTSUPP;
1081 
1082 	/* If a VLAN is added with untagged flag different from the
1083 	 * port's Remove Tag flag, we need to change the latter.
1084 	 * Ignore VID 0, which is always untagged.
1085 	 * Ignore CPU port, which will always be tagged.
1086 	 */
1087 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1088 	    port != dev->cpu_port) {
1089 		unsigned int vid;
1090 
1091 		/* Reject attempts to add a VLAN that requires the
1092 		 * Remove Tag flag to be changed, unless there are no
1093 		 * other VLANs currently configured.
1094 		 */
1095 		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1096 			/* Skip the VID we are going to add or reconfigure */
1097 			if (vid == vlan->vid)
1098 				continue;
1099 
1100 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1101 				       &fid, &member, &valid);
1102 			if (valid && (member & BIT(port)))
1103 				return -EINVAL;
1104 		}
1105 
1106 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1107 		p->remove_tag = untagged;
1108 	}
1109 
1110 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1111 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1112 
1113 	/* First time to setup the VLAN entry. */
1114 	if (!valid) {
1115 		/* Need to find a way to map VID to FID. */
1116 		fid = 1;
1117 		valid = 1;
1118 	}
1119 	member |= BIT(port);
1120 
1121 	ksz8_to_vlan(dev, fid, member, valid, &data);
1122 	ksz8_w_vlan_table(dev, vlan->vid, data);
1123 
1124 	/* change PVID */
1125 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1126 		new_pvid = vlan->vid;
1127 
1128 	if (new_pvid) {
1129 		u16 vid;
1130 
1131 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1132 		vid &= ~VLAN_VID_MASK;
1133 		vid |= new_pvid;
1134 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1135 
1136 		ksz8_port_enable_pvid(dev, port, true);
1137 	}
1138 
1139 	return 0;
1140 }
1141 
1142 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1143 		       const struct switchdev_obj_port_vlan *vlan)
1144 {
1145 	u16 data, pvid;
1146 	u8 fid, member, valid;
1147 
1148 	if (ksz_is_ksz88x3(dev))
1149 		return -ENOTSUPP;
1150 
1151 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1152 	pvid = pvid & 0xFFF;
1153 
1154 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1155 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1156 
1157 	member &= ~BIT(port);
1158 
1159 	/* Invalidate the entry if no more member. */
1160 	if (!member) {
1161 		fid = 0;
1162 		valid = 0;
1163 	}
1164 
1165 	ksz8_to_vlan(dev, fid, member, valid, &data);
1166 	ksz8_w_vlan_table(dev, vlan->vid, data);
1167 
1168 	if (pvid == vlan->vid)
1169 		ksz8_port_enable_pvid(dev, port, false);
1170 
1171 	return 0;
1172 }
1173 
1174 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1175 			 struct dsa_mall_mirror_tc_entry *mirror,
1176 			 bool ingress, struct netlink_ext_ack *extack)
1177 {
1178 	if (ingress) {
1179 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1180 		dev->mirror_rx |= BIT(port);
1181 	} else {
1182 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1183 		dev->mirror_tx |= BIT(port);
1184 	}
1185 
1186 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1187 
1188 	/* configure mirror port */
1189 	if (dev->mirror_rx || dev->mirror_tx)
1190 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1191 			     PORT_MIRROR_SNIFFER, true);
1192 
1193 	return 0;
1194 }
1195 
1196 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1197 			  struct dsa_mall_mirror_tc_entry *mirror)
1198 {
1199 	u8 data;
1200 
1201 	if (mirror->ingress) {
1202 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1203 		dev->mirror_rx &= ~BIT(port);
1204 	} else {
1205 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1206 		dev->mirror_tx &= ~BIT(port);
1207 	}
1208 
1209 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1210 
1211 	if (!dev->mirror_rx && !dev->mirror_tx)
1212 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1213 			     PORT_MIRROR_SNIFFER, false);
1214 }
1215 
1216 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1217 {
1218 	struct ksz_port *p = &dev->ports[port];
1219 	u8 data8;
1220 
1221 	if (!p->interface && dev->compat_interface) {
1222 		dev_warn(dev->dev,
1223 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1224 			 "Please update your device tree.\n",
1225 			 port);
1226 		p->interface = dev->compat_interface;
1227 	}
1228 
1229 	/* Configure MII interface for proper network communication. */
1230 	ksz_read8(dev, REG_PORT_5_CTRL_6, &data8);
1231 	data8 &= ~PORT_INTERFACE_TYPE;
1232 	data8 &= ~PORT_GMII_1GPS_MODE;
1233 	switch (p->interface) {
1234 	case PHY_INTERFACE_MODE_MII:
1235 		p->phydev.speed = SPEED_100;
1236 		break;
1237 	case PHY_INTERFACE_MODE_RMII:
1238 		data8 |= PORT_INTERFACE_RMII;
1239 		p->phydev.speed = SPEED_100;
1240 		break;
1241 	case PHY_INTERFACE_MODE_GMII:
1242 		data8 |= PORT_GMII_1GPS_MODE;
1243 		data8 |= PORT_INTERFACE_GMII;
1244 		p->phydev.speed = SPEED_1000;
1245 		break;
1246 	default:
1247 		data8 &= ~PORT_RGMII_ID_IN_ENABLE;
1248 		data8 &= ~PORT_RGMII_ID_OUT_ENABLE;
1249 		if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1250 		    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1251 			data8 |= PORT_RGMII_ID_IN_ENABLE;
1252 		if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1253 		    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1254 			data8 |= PORT_RGMII_ID_OUT_ENABLE;
1255 		data8 |= PORT_GMII_1GPS_MODE;
1256 		data8 |= PORT_INTERFACE_RGMII;
1257 		p->phydev.speed = SPEED_1000;
1258 		break;
1259 	}
1260 	ksz_write8(dev, REG_PORT_5_CTRL_6, data8);
1261 	p->phydev.duplex = 1;
1262 }
1263 
1264 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1265 {
1266 	struct dsa_switch *ds = dev->ds;
1267 	struct ksz8 *ksz8 = dev->priv;
1268 	const u32 *masks;
1269 	u8 member;
1270 
1271 	masks = ksz8->masks;
1272 
1273 	/* enable broadcast storm limit */
1274 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1275 
1276 	if (!ksz_is_ksz88x3(dev))
1277 		ksz8795_set_prio_queue(dev, port, 4);
1278 
1279 	/* disable DiffServ priority */
1280 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1281 
1282 	/* replace priority */
1283 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1284 		     masks[PORT_802_1P_REMAPPING], false);
1285 
1286 	/* enable 802.1p priority */
1287 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1288 
1289 	if (cpu_port) {
1290 		if (!ksz_is_ksz88x3(dev))
1291 			ksz8795_cpu_interface_select(dev, port);
1292 
1293 		member = dsa_user_ports(ds);
1294 	} else {
1295 		member = BIT(dsa_upstream_port(ds, port));
1296 	}
1297 
1298 	ksz8_cfg_port_member(dev, port, member);
1299 }
1300 
1301 void ksz8_config_cpu_port(struct dsa_switch *ds)
1302 {
1303 	struct ksz_device *dev = ds->priv;
1304 	struct ksz8 *ksz8 = dev->priv;
1305 	const u8 *regs = ksz8->regs;
1306 	struct ksz_port *p;
1307 	const u32 *masks;
1308 	u8 remote;
1309 	int i;
1310 
1311 	masks = ksz8->masks;
1312 
1313 	/* Switch marks the maximum frame with extra byte as oversize. */
1314 	ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true);
1315 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1316 
1317 	p = &dev->ports[dev->cpu_port];
1318 	p->on = 1;
1319 
1320 	ksz8_port_setup(dev, dev->cpu_port, true);
1321 
1322 	for (i = 0; i < dev->phy_port_cnt; i++) {
1323 		p = &dev->ports[i];
1324 
1325 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1326 
1327 		/* Last port may be disabled. */
1328 		if (i == dev->phy_port_cnt)
1329 			break;
1330 		p->on = 1;
1331 		p->phy = 1;
1332 	}
1333 	for (i = 0; i < dev->phy_port_cnt; i++) {
1334 		p = &dev->ports[i];
1335 		if (!p->on)
1336 			continue;
1337 		if (!ksz_is_ksz88x3(dev)) {
1338 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1339 			if (remote & KSZ8_PORT_FIBER_MODE)
1340 				p->fiber = 1;
1341 		}
1342 		if (p->fiber)
1343 			ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
1344 				     true);
1345 		else
1346 			ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
1347 				     false);
1348 	}
1349 }
1350 
1351 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1352 {
1353 	struct ksz_device *dev = ds->priv;
1354 	int ret = 0;
1355 
1356 	/* KSZ87xx Errata DS80000687C.
1357 	 * Module 2: Link drops with some EEE link partners.
1358 	 *   An issue with the EEE next page exchange between the
1359 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1360 	 *   the link dropping.
1361 	 */
1362 	if (dev->info->ksz87xx_eee_link_erratum)
1363 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1364 
1365 	return ret;
1366 }
1367 
1368 int ksz8_enable_stp_addr(struct ksz_device *dev)
1369 {
1370 	struct alu_struct alu;
1371 
1372 	/* Setup STP address for STP operation. */
1373 	memset(&alu, 0, sizeof(alu));
1374 	ether_addr_copy(alu.mac, eth_stp_addr);
1375 	alu.is_static = true;
1376 	alu.is_override = true;
1377 	alu.port_forward = dev->info->cpu_ports;
1378 
1379 	ksz8_w_sta_mac_table(dev, 0, &alu);
1380 
1381 	return 0;
1382 }
1383 
1384 int ksz8_setup(struct dsa_switch *ds)
1385 {
1386 	struct ksz_device *dev = ds->priv;
1387 	int i;
1388 
1389 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1390 
1391 	/* Enable automatic fast aging when link changed detected. */
1392 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1393 
1394 	/* Enable aggressive back off algorithm in half duplex mode. */
1395 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1396 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1397 
1398 	/*
1399 	 * Make sure unicast VLAN boundary is set as default and
1400 	 * enable no excessive collision drop.
1401 	 */
1402 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1403 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1404 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1405 
1406 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1407 
1408 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1409 
1410 	if (!ksz_is_ksz88x3(dev))
1411 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1412 
1413 	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1414 		ksz8_r_vlan_entries(dev, i);
1415 
1416 	return ksz8_handle_global_errata(ds);
1417 }
1418 
1419 void ksz8_get_caps(struct ksz_device *dev, int port,
1420 		   struct phylink_config *config)
1421 {
1422 	config->mac_capabilities = MAC_10 | MAC_100;
1423 
1424 	/* Silicon Errata Sheet (DS80000830A):
1425 	 * "Port 1 does not respond to received flow control PAUSE frames"
1426 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1427 	 * switches.
1428 	 */
1429 	if (!ksz_is_ksz88x3(dev) || port)
1430 		config->mac_capabilities |= MAC_SYM_PAUSE;
1431 
1432 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1433 	if (!ksz_is_ksz88x3(dev))
1434 		config->mac_capabilities |= MAC_ASYM_PAUSE;
1435 }
1436 
1437 u32 ksz8_get_port_addr(int port, int offset)
1438 {
1439 	return PORT_CTRL_ADDR(port, offset);
1440 }
1441 
1442 int ksz8_switch_init(struct ksz_device *dev)
1443 {
1444 	struct ksz8 *ksz8 = dev->priv;
1445 
1446 	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1447 	dev->phy_port_cnt = dev->info->port_cnt - 1;
1448 	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1449 
1450 	if (ksz_is_ksz88x3(dev)) {
1451 		ksz8->regs = ksz8863_regs;
1452 		ksz8->masks = ksz8863_masks;
1453 		ksz8->shifts = ksz8863_shifts;
1454 	} else {
1455 		ksz8->regs = ksz8795_regs;
1456 		ksz8->masks = ksz8795_masks;
1457 		ksz8->shifts = ksz8795_shifts;
1458 	}
1459 
1460 	/* We rely on software untagging on the CPU port, so that we
1461 	 * can support both tagged and untagged VLANs
1462 	 */
1463 	dev->ds->untag_bridge_pvid = true;
1464 
1465 	/* VLAN filtering is partly controlled by the global VLAN
1466 	 * Enable flag
1467 	 */
1468 	dev->ds->vlan_filtering_is_global = true;
1469 
1470 	return 0;
1471 }
1472 
1473 void ksz8_switch_exit(struct ksz_device *dev)
1474 {
1475 	ksz8_reset_switch(dev);
1476 }
1477 
1478 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1479 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1480 MODULE_LICENSE("GPL");
1481