xref: /openbmc/linux/drivers/net/dsa/microchip/ksz8795.c (revision 486f9ca715d7b70ed79dbe91296b9e0110deaab5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24 
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28 
29 static const u32 ksz8795_masks[] = {
30 	[PORT_802_1P_REMAPPING]		= BIT(7),
31 	[SW_TAIL_TAG_ENABLE]		= BIT(1),
32 	[MIB_COUNTER_OVERFLOW]		= BIT(6),
33 	[MIB_COUNTER_VALID]		= BIT(5),
34 	[VLAN_TABLE_FID]		= GENMASK(6, 0),
35 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(11, 7),
36 	[VLAN_TABLE_VALID]		= BIT(12),
37 	[STATIC_MAC_TABLE_VALID]	= BIT(21),
38 	[STATIC_MAC_TABLE_USE_FID]	= BIT(23),
39 	[STATIC_MAC_TABLE_FID]		= GENMASK(30, 24),
40 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(26),
41 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(24, 20),
42 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(6, 0),
43 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(8),
44 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
45 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 29),
46 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(26, 20),
47 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(26, 24),
48 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(28, 27),
49 };
50 
51 static const u8 ksz8795_shifts[] = {
52 	[VLAN_TABLE_MEMBERSHIP_S]	= 7,
53 	[VLAN_TABLE]			= 16,
54 	[STATIC_MAC_FWD_PORTS]		= 16,
55 	[STATIC_MAC_FID]		= 24,
56 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
57 	[DYNAMIC_MAC_ENTRIES]		= 29,
58 	[DYNAMIC_MAC_FID]		= 16,
59 	[DYNAMIC_MAC_TIMESTAMP]		= 27,
60 	[DYNAMIC_MAC_SRC_PORT]		= 24,
61 };
62 
63 static const u32 ksz8863_masks[] = {
64 	[PORT_802_1P_REMAPPING]		= BIT(3),
65 	[SW_TAIL_TAG_ENABLE]		= BIT(6),
66 	[MIB_COUNTER_OVERFLOW]		= BIT(7),
67 	[MIB_COUNTER_VALID]		= BIT(6),
68 	[VLAN_TABLE_FID]		= GENMASK(15, 12),
69 	[VLAN_TABLE_MEMBERSHIP]		= GENMASK(18, 16),
70 	[VLAN_TABLE_VALID]		= BIT(19),
71 	[STATIC_MAC_TABLE_VALID]	= BIT(19),
72 	[STATIC_MAC_TABLE_USE_FID]	= BIT(21),
73 	[STATIC_MAC_TABLE_FID]		= GENMASK(29, 26),
74 	[STATIC_MAC_TABLE_OVERRIDE]	= BIT(20),
75 	[STATIC_MAC_TABLE_FWD_PORTS]	= GENMASK(18, 16),
76 	[DYNAMIC_MAC_TABLE_ENTRIES_H]	= GENMASK(5, 0),
77 	[DYNAMIC_MAC_TABLE_MAC_EMPTY]	= BIT(7),
78 	[DYNAMIC_MAC_TABLE_NOT_READY]	= BIT(7),
79 	[DYNAMIC_MAC_TABLE_ENTRIES]	= GENMASK(31, 28),
80 	[DYNAMIC_MAC_TABLE_FID]		= GENMASK(19, 16),
81 	[DYNAMIC_MAC_TABLE_SRC_PORT]	= GENMASK(21, 20),
82 	[DYNAMIC_MAC_TABLE_TIMESTAMP]	= GENMASK(23, 22),
83 };
84 
85 static u8 ksz8863_shifts[] = {
86 	[VLAN_TABLE_MEMBERSHIP_S]	= 16,
87 	[STATIC_MAC_FWD_PORTS]		= 16,
88 	[STATIC_MAC_FID]		= 22,
89 	[DYNAMIC_MAC_ENTRIES_H]		= 3,
90 	[DYNAMIC_MAC_ENTRIES]		= 24,
91 	[DYNAMIC_MAC_FID]		= 16,
92 	[DYNAMIC_MAC_TIMESTAMP]		= 24,
93 	[DYNAMIC_MAC_SRC_PORT]		= 20,
94 };
95 
96 static bool ksz_is_ksz88x3(struct ksz_device *dev)
97 {
98 	return dev->chip_id == 0x8830;
99 }
100 
101 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
102 {
103 	regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
104 }
105 
106 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
107 			 bool set)
108 {
109 	regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
110 			   bits, set ? bits : 0);
111 }
112 
113 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
114 {
115 	const u8 *regs;
116 	u16 ctrl_addr;
117 	int ret = 0;
118 
119 	regs = dev->info->regs;
120 
121 	mutex_lock(&dev->alu_mutex);
122 
123 	ctrl_addr = IND_ACC_TABLE(table) | addr;
124 	ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
125 	if (!ret)
126 		ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
127 
128 	mutex_unlock(&dev->alu_mutex);
129 
130 	return ret;
131 }
132 
133 int ksz8_reset_switch(struct ksz_device *dev)
134 {
135 	if (ksz_is_ksz88x3(dev)) {
136 		/* reset switch */
137 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
138 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
139 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
140 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
141 	} else {
142 		/* reset switch */
143 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
144 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
145 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
146 	}
147 
148 	return 0;
149 }
150 
151 static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
152 {
153 	u8 hi, lo;
154 
155 	/* Number of queues can only be 1, 2, or 4. */
156 	switch (queue) {
157 	case 4:
158 	case 3:
159 		queue = PORT_QUEUE_SPLIT_4;
160 		break;
161 	case 2:
162 		queue = PORT_QUEUE_SPLIT_2;
163 		break;
164 	default:
165 		queue = PORT_QUEUE_SPLIT_1;
166 	}
167 	ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
168 	ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
169 	lo &= ~PORT_QUEUE_SPLIT_L;
170 	if (queue & PORT_QUEUE_SPLIT_2)
171 		lo |= PORT_QUEUE_SPLIT_L;
172 	hi &= ~PORT_QUEUE_SPLIT_H;
173 	if (queue & PORT_QUEUE_SPLIT_4)
174 		hi |= PORT_QUEUE_SPLIT_H;
175 	ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
176 	ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
177 
178 	/* Default is port based for egress rate limit. */
179 	if (queue != PORT_QUEUE_SPLIT_1)
180 		ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
181 			true);
182 }
183 
184 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
185 {
186 	struct ksz8 *ksz8 = dev->priv;
187 	const u32 *masks;
188 	const u8 *regs;
189 	u16 ctrl_addr;
190 	u32 data;
191 	u8 check;
192 	int loop;
193 
194 	masks = ksz8->masks;
195 	regs = dev->info->regs;
196 
197 	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
198 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
199 
200 	mutex_lock(&dev->alu_mutex);
201 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
202 
203 	/* It is almost guaranteed to always read the valid bit because of
204 	 * slow SPI speed.
205 	 */
206 	for (loop = 2; loop > 0; loop--) {
207 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
208 
209 		if (check & masks[MIB_COUNTER_VALID]) {
210 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
211 			if (check & masks[MIB_COUNTER_OVERFLOW])
212 				*cnt += MIB_COUNTER_VALUE + 1;
213 			*cnt += data & MIB_COUNTER_VALUE;
214 			break;
215 		}
216 	}
217 	mutex_unlock(&dev->alu_mutex);
218 }
219 
220 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
221 			      u64 *dropped, u64 *cnt)
222 {
223 	struct ksz8 *ksz8 = dev->priv;
224 	const u32 *masks;
225 	const u8 *regs;
226 	u16 ctrl_addr;
227 	u32 data;
228 	u8 check;
229 	int loop;
230 
231 	masks = ksz8->masks;
232 	regs = dev->info->regs;
233 
234 	addr -= dev->info->reg_mib_cnt;
235 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
236 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
237 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
238 
239 	mutex_lock(&dev->alu_mutex);
240 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
241 
242 	/* It is almost guaranteed to always read the valid bit because of
243 	 * slow SPI speed.
244 	 */
245 	for (loop = 2; loop > 0; loop--) {
246 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
247 
248 		if (check & masks[MIB_COUNTER_VALID]) {
249 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
250 			if (addr < 2) {
251 				u64 total;
252 
253 				total = check & MIB_TOTAL_BYTES_H;
254 				total <<= 32;
255 				*cnt += total;
256 				*cnt += data;
257 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
258 					total = MIB_TOTAL_BYTES_H + 1;
259 					total <<= 32;
260 					*cnt += total;
261 				}
262 			} else {
263 				if (check & masks[MIB_COUNTER_OVERFLOW])
264 					*cnt += MIB_PACKET_DROPPED + 1;
265 				*cnt += data & MIB_PACKET_DROPPED;
266 			}
267 			break;
268 		}
269 	}
270 	mutex_unlock(&dev->alu_mutex);
271 }
272 
273 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
274 			      u64 *dropped, u64 *cnt)
275 {
276 	u32 *last = (u32 *)dropped;
277 	const u8 *regs;
278 	u16 ctrl_addr;
279 	u32 data;
280 	u32 cur;
281 
282 	regs = dev->info->regs;
283 
284 	addr -= dev->info->reg_mib_cnt;
285 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
286 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
287 	ctrl_addr += port;
288 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
289 
290 	mutex_lock(&dev->alu_mutex);
291 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
292 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
293 	mutex_unlock(&dev->alu_mutex);
294 
295 	data &= MIB_PACKET_DROPPED;
296 	cur = last[addr];
297 	if (data != cur) {
298 		last[addr] = data;
299 		if (data < cur)
300 			data += MIB_PACKET_DROPPED + 1;
301 		data -= cur;
302 		*cnt += data;
303 	}
304 }
305 
306 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
307 		    u64 *dropped, u64 *cnt)
308 {
309 	if (ksz_is_ksz88x3(dev))
310 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
311 	else
312 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
313 }
314 
315 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
316 {
317 	if (ksz_is_ksz88x3(dev))
318 		return;
319 
320 	/* enable the port for flush/freeze function */
321 	if (freeze)
322 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
323 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
324 
325 	/* disable the port after freeze is done */
326 	if (!freeze)
327 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
328 }
329 
330 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
331 {
332 	struct ksz_port_mib *mib = &dev->ports[port].mib;
333 	u64 *dropped;
334 
335 	if (!ksz_is_ksz88x3(dev)) {
336 		/* flush all enabled port MIB counters */
337 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
338 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
339 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
340 	}
341 
342 	mib->cnt_ptr = 0;
343 
344 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
345 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
346 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
347 					&mib->counters[mib->cnt_ptr]);
348 		++mib->cnt_ptr;
349 	}
350 
351 	/* last one in storage */
352 	dropped = &mib->counters[dev->info->mib_cnt];
353 
354 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
355 	while (mib->cnt_ptr < dev->info->mib_cnt) {
356 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
357 					dropped, &mib->counters[mib->cnt_ptr]);
358 		++mib->cnt_ptr;
359 	}
360 }
361 
362 static void ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
363 {
364 	const u8 *regs;
365 	u16 ctrl_addr;
366 
367 	regs = dev->info->regs;
368 
369 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
370 
371 	mutex_lock(&dev->alu_mutex);
372 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
373 	ksz_read64(dev, regs[REG_IND_DATA_HI], data);
374 	mutex_unlock(&dev->alu_mutex);
375 }
376 
377 static void ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
378 {
379 	const u8 *regs;
380 	u16 ctrl_addr;
381 
382 	regs = dev->info->regs;
383 
384 	ctrl_addr = IND_ACC_TABLE(table) | addr;
385 
386 	mutex_lock(&dev->alu_mutex);
387 	ksz_write64(dev, regs[REG_IND_DATA_HI], data);
388 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
389 	mutex_unlock(&dev->alu_mutex);
390 }
391 
392 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
393 {
394 	struct ksz8 *ksz8 = dev->priv;
395 	int timeout = 100;
396 	const u32 *masks;
397 	const u8 *regs;
398 
399 	masks = ksz8->masks;
400 	regs = dev->info->regs;
401 
402 	do {
403 		ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
404 		timeout--;
405 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
406 
407 	/* Entry is not ready for accessing. */
408 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
409 		return -EAGAIN;
410 	/* Entry is ready for accessing. */
411 	} else {
412 		ksz_read8(dev, regs[REG_IND_DATA_8], data);
413 
414 		/* There is no valid entry in the table. */
415 		if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
416 			return -ENXIO;
417 	}
418 	return 0;
419 }
420 
421 int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
422 			 u8 *fid, u8 *src_port, u8 *timestamp, u16 *entries)
423 {
424 	struct ksz8 *ksz8 = dev->priv;
425 	u32 data_hi, data_lo;
426 	const u8 *shifts;
427 	const u32 *masks;
428 	const u8 *regs;
429 	u16 ctrl_addr;
430 	u8 data;
431 	int rc;
432 
433 	shifts = ksz8->shifts;
434 	masks = ksz8->masks;
435 	regs = dev->info->regs;
436 
437 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
438 
439 	mutex_lock(&dev->alu_mutex);
440 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
441 
442 	rc = ksz8_valid_dyn_entry(dev, &data);
443 	if (rc == -EAGAIN) {
444 		if (addr == 0)
445 			*entries = 0;
446 	} else if (rc == -ENXIO) {
447 		*entries = 0;
448 	/* At least one valid entry in the table. */
449 	} else {
450 		u64 buf = 0;
451 		int cnt;
452 
453 		ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
454 		data_hi = (u32)(buf >> 32);
455 		data_lo = (u32)buf;
456 
457 		/* Check out how many valid entry in the table. */
458 		cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
459 		cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
460 		cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
461 			shifts[DYNAMIC_MAC_ENTRIES];
462 		*entries = cnt + 1;
463 
464 		*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
465 			shifts[DYNAMIC_MAC_FID];
466 		*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
467 			shifts[DYNAMIC_MAC_SRC_PORT];
468 		*timestamp = (data_hi & masks[DYNAMIC_MAC_TABLE_TIMESTAMP]) >>
469 			shifts[DYNAMIC_MAC_TIMESTAMP];
470 
471 		mac_addr[5] = (u8)data_lo;
472 		mac_addr[4] = (u8)(data_lo >> 8);
473 		mac_addr[3] = (u8)(data_lo >> 16);
474 		mac_addr[2] = (u8)(data_lo >> 24);
475 
476 		mac_addr[1] = (u8)data_hi;
477 		mac_addr[0] = (u8)(data_hi >> 8);
478 		rc = 0;
479 	}
480 	mutex_unlock(&dev->alu_mutex);
481 
482 	return rc;
483 }
484 
485 int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
486 			 struct alu_struct *alu)
487 {
488 	struct ksz8 *ksz8 = dev->priv;
489 	u32 data_hi, data_lo;
490 	const u8 *shifts;
491 	const u32 *masks;
492 	u64 data;
493 
494 	shifts = ksz8->shifts;
495 	masks = ksz8->masks;
496 
497 	ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
498 	data_hi = data >> 32;
499 	data_lo = (u32)data;
500 	if (data_hi & (masks[STATIC_MAC_TABLE_VALID] |
501 			masks[STATIC_MAC_TABLE_OVERRIDE])) {
502 		alu->mac[5] = (u8)data_lo;
503 		alu->mac[4] = (u8)(data_lo >> 8);
504 		alu->mac[3] = (u8)(data_lo >> 16);
505 		alu->mac[2] = (u8)(data_lo >> 24);
506 		alu->mac[1] = (u8)data_hi;
507 		alu->mac[0] = (u8)(data_hi >> 8);
508 		alu->port_forward =
509 			(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
510 				shifts[STATIC_MAC_FWD_PORTS];
511 		alu->is_override =
512 			(data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
513 		data_hi >>= 1;
514 		alu->is_static = true;
515 		alu->is_use_fid =
516 			(data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
517 		alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
518 				shifts[STATIC_MAC_FID];
519 		return 0;
520 	}
521 	return -ENXIO;
522 }
523 
524 void ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
525 			  struct alu_struct *alu)
526 {
527 	struct ksz8 *ksz8 = dev->priv;
528 	u32 data_hi, data_lo;
529 	const u8 *shifts;
530 	const u32 *masks;
531 	u64 data;
532 
533 	shifts = ksz8->shifts;
534 	masks = ksz8->masks;
535 
536 	data_lo = ((u32)alu->mac[2] << 24) |
537 		((u32)alu->mac[3] << 16) |
538 		((u32)alu->mac[4] << 8) | alu->mac[5];
539 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
540 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
541 
542 	if (alu->is_override)
543 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
544 	if (alu->is_use_fid) {
545 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
546 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
547 	}
548 	if (alu->is_static)
549 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
550 	else
551 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
552 
553 	data = (u64)data_hi << 32 | data_lo;
554 	ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
555 }
556 
557 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
558 			   u8 *member, u8 *valid)
559 {
560 	struct ksz8 *ksz8 = dev->priv;
561 	const u8 *shifts;
562 	const u32 *masks;
563 
564 	shifts = ksz8->shifts;
565 	masks = ksz8->masks;
566 
567 	*fid = vlan & masks[VLAN_TABLE_FID];
568 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
569 			shifts[VLAN_TABLE_MEMBERSHIP_S];
570 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
571 }
572 
573 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
574 			 u16 *vlan)
575 {
576 	struct ksz8 *ksz8 = dev->priv;
577 	const u8 *shifts;
578 	const u32 *masks;
579 
580 	shifts = ksz8->shifts;
581 	masks = ksz8->masks;
582 
583 	*vlan = fid;
584 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
585 	if (valid)
586 		*vlan |= masks[VLAN_TABLE_VALID];
587 }
588 
589 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
590 {
591 	struct ksz8 *ksz8 = dev->priv;
592 	const u8 *shifts;
593 	u64 data;
594 	int i;
595 
596 	shifts = ksz8->shifts;
597 
598 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
599 	addr *= 4;
600 	for (i = 0; i < 4; i++) {
601 		dev->vlan_cache[addr + i].table[0] = (u16)data;
602 		data >>= shifts[VLAN_TABLE];
603 	}
604 }
605 
606 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
607 {
608 	int index;
609 	u16 *data;
610 	u16 addr;
611 	u64 buf;
612 
613 	data = (u16 *)&buf;
614 	addr = vid / 4;
615 	index = vid & 3;
616 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
617 	*vlan = data[index];
618 }
619 
620 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
621 {
622 	int index;
623 	u16 *data;
624 	u16 addr;
625 	u64 buf;
626 
627 	data = (u16 *)&buf;
628 	addr = vid / 4;
629 	index = vid & 3;
630 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
631 	data[index] = vlan;
632 	dev->vlan_cache[vid].table[0] = vlan;
633 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
634 }
635 
636 void ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
637 {
638 	u8 restart, speed, ctrl, link;
639 	int processed = true;
640 	const u8 *regs;
641 	u8 val1, val2;
642 	u16 data = 0;
643 	u8 p = phy;
644 
645 	regs = dev->info->regs;
646 
647 	switch (reg) {
648 	case MII_BMCR:
649 		ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
650 		ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
651 		ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
652 		if (restart & PORT_PHY_LOOPBACK)
653 			data |= BMCR_LOOPBACK;
654 		if (ctrl & PORT_FORCE_100_MBIT)
655 			data |= BMCR_SPEED100;
656 		if (ksz_is_ksz88x3(dev)) {
657 			if ((ctrl & PORT_AUTO_NEG_ENABLE))
658 				data |= BMCR_ANENABLE;
659 		} else {
660 			if (!(ctrl & PORT_AUTO_NEG_DISABLE))
661 				data |= BMCR_ANENABLE;
662 		}
663 		if (restart & PORT_POWER_DOWN)
664 			data |= BMCR_PDOWN;
665 		if (restart & PORT_AUTO_NEG_RESTART)
666 			data |= BMCR_ANRESTART;
667 		if (ctrl & PORT_FORCE_FULL_DUPLEX)
668 			data |= BMCR_FULLDPLX;
669 		if (speed & PORT_HP_MDIX)
670 			data |= KSZ886X_BMCR_HP_MDIX;
671 		if (restart & PORT_FORCE_MDIX)
672 			data |= KSZ886X_BMCR_FORCE_MDI;
673 		if (restart & PORT_AUTO_MDIX_DISABLE)
674 			data |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
675 		if (restart & PORT_TX_DISABLE)
676 			data |= KSZ886X_BMCR_DISABLE_TRANSMIT;
677 		if (restart & PORT_LED_OFF)
678 			data |= KSZ886X_BMCR_DISABLE_LED;
679 		break;
680 	case MII_BMSR:
681 		ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
682 		data = BMSR_100FULL |
683 		       BMSR_100HALF |
684 		       BMSR_10FULL |
685 		       BMSR_10HALF |
686 		       BMSR_ANEGCAPABLE;
687 		if (link & PORT_AUTO_NEG_COMPLETE)
688 			data |= BMSR_ANEGCOMPLETE;
689 		if (link & PORT_STAT_LINK_GOOD)
690 			data |= BMSR_LSTATUS;
691 		break;
692 	case MII_PHYSID1:
693 		data = KSZ8795_ID_HI;
694 		break;
695 	case MII_PHYSID2:
696 		if (ksz_is_ksz88x3(dev))
697 			data = KSZ8863_ID_LO;
698 		else
699 			data = KSZ8795_ID_LO;
700 		break;
701 	case MII_ADVERTISE:
702 		ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
703 		data = ADVERTISE_CSMA;
704 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
705 			data |= ADVERTISE_PAUSE_CAP;
706 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
707 			data |= ADVERTISE_100FULL;
708 		if (ctrl & PORT_AUTO_NEG_100BTX)
709 			data |= ADVERTISE_100HALF;
710 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
711 			data |= ADVERTISE_10FULL;
712 		if (ctrl & PORT_AUTO_NEG_10BT)
713 			data |= ADVERTISE_10HALF;
714 		break;
715 	case MII_LPA:
716 		ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
717 		data = LPA_SLCT;
718 		if (link & PORT_REMOTE_SYM_PAUSE)
719 			data |= LPA_PAUSE_CAP;
720 		if (link & PORT_REMOTE_100BTX_FD)
721 			data |= LPA_100FULL;
722 		if (link & PORT_REMOTE_100BTX)
723 			data |= LPA_100HALF;
724 		if (link & PORT_REMOTE_10BT_FD)
725 			data |= LPA_10FULL;
726 		if (link & PORT_REMOTE_10BT)
727 			data |= LPA_10HALF;
728 		if (data & ~LPA_SLCT)
729 			data |= LPA_LPACK;
730 		break;
731 	case PHY_REG_LINK_MD:
732 		ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
733 		ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
734 		if (val1 & PORT_START_CABLE_DIAG)
735 			data |= PHY_START_CABLE_DIAG;
736 
737 		if (val1 & PORT_CABLE_10M_SHORT)
738 			data |= PHY_CABLE_10M_SHORT;
739 
740 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
741 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
742 
743 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
744 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
745 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
746 		break;
747 	case PHY_REG_PHY_CTRL:
748 		ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
749 		if (link & PORT_MDIX_STATUS)
750 			data |= KSZ886X_CTRL_MDIX_STAT;
751 		break;
752 	default:
753 		processed = false;
754 		break;
755 	}
756 	if (processed)
757 		*val = data;
758 }
759 
760 void ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
761 {
762 	u8 restart, speed, ctrl, data;
763 	const u8 *regs;
764 	u8 p = phy;
765 
766 	regs = dev->info->regs;
767 
768 	switch (reg) {
769 	case MII_BMCR:
770 
771 		/* Do not support PHY reset function. */
772 		if (val & BMCR_RESET)
773 			break;
774 		ksz_pread8(dev, p, regs[P_SPEED_STATUS], &speed);
775 		data = speed;
776 		if (val & KSZ886X_BMCR_HP_MDIX)
777 			data |= PORT_HP_MDIX;
778 		else
779 			data &= ~PORT_HP_MDIX;
780 		if (data != speed)
781 			ksz_pwrite8(dev, p, regs[P_SPEED_STATUS], data);
782 		ksz_pread8(dev, p, regs[P_FORCE_CTRL], &ctrl);
783 		data = ctrl;
784 		if (ksz_is_ksz88x3(dev)) {
785 			if ((val & BMCR_ANENABLE))
786 				data |= PORT_AUTO_NEG_ENABLE;
787 			else
788 				data &= ~PORT_AUTO_NEG_ENABLE;
789 		} else {
790 			if (!(val & BMCR_ANENABLE))
791 				data |= PORT_AUTO_NEG_DISABLE;
792 			else
793 				data &= ~PORT_AUTO_NEG_DISABLE;
794 
795 			/* Fiber port does not support auto-negotiation. */
796 			if (dev->ports[p].fiber)
797 				data |= PORT_AUTO_NEG_DISABLE;
798 		}
799 
800 		if (val & BMCR_SPEED100)
801 			data |= PORT_FORCE_100_MBIT;
802 		else
803 			data &= ~PORT_FORCE_100_MBIT;
804 		if (val & BMCR_FULLDPLX)
805 			data |= PORT_FORCE_FULL_DUPLEX;
806 		else
807 			data &= ~PORT_FORCE_FULL_DUPLEX;
808 		if (data != ctrl)
809 			ksz_pwrite8(dev, p, regs[P_FORCE_CTRL], data);
810 		ksz_pread8(dev, p, regs[P_NEG_RESTART_CTRL], &restart);
811 		data = restart;
812 		if (val & KSZ886X_BMCR_DISABLE_LED)
813 			data |= PORT_LED_OFF;
814 		else
815 			data &= ~PORT_LED_OFF;
816 		if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
817 			data |= PORT_TX_DISABLE;
818 		else
819 			data &= ~PORT_TX_DISABLE;
820 		if (val & BMCR_ANRESTART)
821 			data |= PORT_AUTO_NEG_RESTART;
822 		else
823 			data &= ~(PORT_AUTO_NEG_RESTART);
824 		if (val & BMCR_PDOWN)
825 			data |= PORT_POWER_DOWN;
826 		else
827 			data &= ~PORT_POWER_DOWN;
828 		if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
829 			data |= PORT_AUTO_MDIX_DISABLE;
830 		else
831 			data &= ~PORT_AUTO_MDIX_DISABLE;
832 		if (val & KSZ886X_BMCR_FORCE_MDI)
833 			data |= PORT_FORCE_MDIX;
834 		else
835 			data &= ~PORT_FORCE_MDIX;
836 		if (val & BMCR_LOOPBACK)
837 			data |= PORT_PHY_LOOPBACK;
838 		else
839 			data &= ~PORT_PHY_LOOPBACK;
840 		if (data != restart)
841 			ksz_pwrite8(dev, p, regs[P_NEG_RESTART_CTRL], data);
842 		break;
843 	case MII_ADVERTISE:
844 		ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
845 		data = ctrl;
846 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
847 			  PORT_AUTO_NEG_100BTX_FD |
848 			  PORT_AUTO_NEG_100BTX |
849 			  PORT_AUTO_NEG_10BT_FD |
850 			  PORT_AUTO_NEG_10BT);
851 		if (val & ADVERTISE_PAUSE_CAP)
852 			data |= PORT_AUTO_NEG_SYM_PAUSE;
853 		if (val & ADVERTISE_100FULL)
854 			data |= PORT_AUTO_NEG_100BTX_FD;
855 		if (val & ADVERTISE_100HALF)
856 			data |= PORT_AUTO_NEG_100BTX;
857 		if (val & ADVERTISE_10FULL)
858 			data |= PORT_AUTO_NEG_10BT_FD;
859 		if (val & ADVERTISE_10HALF)
860 			data |= PORT_AUTO_NEG_10BT;
861 		if (data != ctrl)
862 			ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
863 		break;
864 	case PHY_REG_LINK_MD:
865 		if (val & PHY_START_CABLE_DIAG)
866 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
867 		break;
868 	default:
869 		break;
870 	}
871 }
872 
873 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
874 {
875 	u8 data;
876 
877 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
878 	data &= ~PORT_VLAN_MEMBERSHIP;
879 	data |= (member & dev->port_mask);
880 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
881 }
882 
883 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
884 {
885 	u8 learn[DSA_MAX_PORTS];
886 	int first, index, cnt;
887 	struct ksz_port *p;
888 
889 	if ((uint)port < dev->info->port_cnt) {
890 		first = port;
891 		cnt = port + 1;
892 	} else {
893 		/* Flush all ports. */
894 		first = 0;
895 		cnt = dev->info->port_cnt;
896 	}
897 	for (index = first; index < cnt; index++) {
898 		p = &dev->ports[index];
899 		if (!p->on)
900 			continue;
901 		ksz_pread8(dev, index, P_STP_CTRL, &learn[index]);
902 		if (!(learn[index] & PORT_LEARN_DISABLE))
903 			ksz_pwrite8(dev, index, P_STP_CTRL,
904 				    learn[index] | PORT_LEARN_DISABLE);
905 	}
906 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
907 	for (index = first; index < cnt; index++) {
908 		p = &dev->ports[index];
909 		if (!p->on)
910 			continue;
911 		if (!(learn[index] & PORT_LEARN_DISABLE))
912 			ksz_pwrite8(dev, index, P_STP_CTRL, learn[index]);
913 	}
914 }
915 
916 int ksz8_fdb_dump(struct ksz_device *dev, int port,
917 		  dsa_fdb_dump_cb_t *cb, void *data)
918 {
919 	int ret = 0;
920 	u16 i = 0;
921 	u16 entries = 0;
922 	u8 timestamp = 0;
923 	u8 fid;
924 	u8 member;
925 	struct alu_struct alu;
926 
927 	do {
928 		alu.is_static = false;
929 		ret = ksz8_r_dyn_mac_table(dev, i, alu.mac, &fid, &member,
930 					   &timestamp, &entries);
931 		if (!ret && (member & BIT(port))) {
932 			ret = cb(alu.mac, alu.fid, alu.is_static, data);
933 			if (ret)
934 				break;
935 		}
936 		i++;
937 	} while (i < entries);
938 	if (i >= entries)
939 		ret = 0;
940 
941 	return ret;
942 }
943 
944 int ksz8_mdb_add(struct ksz_device *dev, int port,
945 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
946 {
947 	struct alu_struct alu;
948 	int index;
949 	int empty = 0;
950 
951 	alu.port_forward = 0;
952 	for (index = 0; index < dev->info->num_statics; index++) {
953 		if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
954 			/* Found one already in static MAC table. */
955 			if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
956 			    alu.fid == mdb->vid)
957 				break;
958 		/* Remember the first empty entry. */
959 		} else if (!empty) {
960 			empty = index + 1;
961 		}
962 	}
963 
964 	/* no available entry */
965 	if (index == dev->info->num_statics && !empty)
966 		return -ENOSPC;
967 
968 	/* add entry */
969 	if (index == dev->info->num_statics) {
970 		index = empty - 1;
971 		memset(&alu, 0, sizeof(alu));
972 		memcpy(alu.mac, mdb->addr, ETH_ALEN);
973 		alu.is_static = true;
974 	}
975 	alu.port_forward |= BIT(port);
976 	if (mdb->vid) {
977 		alu.is_use_fid = true;
978 
979 		/* Need a way to map VID to FID. */
980 		alu.fid = mdb->vid;
981 	}
982 	ksz8_w_sta_mac_table(dev, index, &alu);
983 
984 	return 0;
985 }
986 
987 int ksz8_mdb_del(struct ksz_device *dev, int port,
988 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
989 {
990 	struct alu_struct alu;
991 	int index;
992 
993 	for (index = 0; index < dev->info->num_statics; index++) {
994 		if (!ksz8_r_sta_mac_table(dev, index, &alu)) {
995 			/* Found one already in static MAC table. */
996 			if (!memcmp(alu.mac, mdb->addr, ETH_ALEN) &&
997 			    alu.fid == mdb->vid)
998 				break;
999 		}
1000 	}
1001 
1002 	/* no available entry */
1003 	if (index == dev->info->num_statics)
1004 		goto exit;
1005 
1006 	/* clear port */
1007 	alu.port_forward &= ~BIT(port);
1008 	if (!alu.port_forward)
1009 		alu.is_static = false;
1010 	ksz8_w_sta_mac_table(dev, index, &alu);
1011 
1012 exit:
1013 	return 0;
1014 }
1015 
1016 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1017 			     struct netlink_ext_ack *extack)
1018 {
1019 	if (ksz_is_ksz88x3(dev))
1020 		return -ENOTSUPP;
1021 
1022 	/* Discard packets with VID not enabled on the switch */
1023 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1024 
1025 	/* Discard packets with VID not enabled on the ingress port */
1026 	for (port = 0; port < dev->phy_port_cnt; ++port)
1027 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1028 			     flag);
1029 
1030 	return 0;
1031 }
1032 
1033 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1034 {
1035 	if (ksz_is_ksz88x3(dev)) {
1036 		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1037 			0x03 << (4 - 2 * port), state);
1038 	} else {
1039 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1040 	}
1041 }
1042 
1043 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1044 		       const struct switchdev_obj_port_vlan *vlan,
1045 		       struct netlink_ext_ack *extack)
1046 {
1047 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1048 	struct ksz_port *p = &dev->ports[port];
1049 	u16 data, new_pvid = 0;
1050 	u8 fid, member, valid;
1051 
1052 	if (ksz_is_ksz88x3(dev))
1053 		return -ENOTSUPP;
1054 
1055 	/* If a VLAN is added with untagged flag different from the
1056 	 * port's Remove Tag flag, we need to change the latter.
1057 	 * Ignore VID 0, which is always untagged.
1058 	 * Ignore CPU port, which will always be tagged.
1059 	 */
1060 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1061 	    port != dev->cpu_port) {
1062 		unsigned int vid;
1063 
1064 		/* Reject attempts to add a VLAN that requires the
1065 		 * Remove Tag flag to be changed, unless there are no
1066 		 * other VLANs currently configured.
1067 		 */
1068 		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1069 			/* Skip the VID we are going to add or reconfigure */
1070 			if (vid == vlan->vid)
1071 				continue;
1072 
1073 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1074 				       &fid, &member, &valid);
1075 			if (valid && (member & BIT(port)))
1076 				return -EINVAL;
1077 		}
1078 
1079 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1080 		p->remove_tag = untagged;
1081 	}
1082 
1083 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1084 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1085 
1086 	/* First time to setup the VLAN entry. */
1087 	if (!valid) {
1088 		/* Need to find a way to map VID to FID. */
1089 		fid = 1;
1090 		valid = 1;
1091 	}
1092 	member |= BIT(port);
1093 
1094 	ksz8_to_vlan(dev, fid, member, valid, &data);
1095 	ksz8_w_vlan_table(dev, vlan->vid, data);
1096 
1097 	/* change PVID */
1098 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1099 		new_pvid = vlan->vid;
1100 
1101 	if (new_pvid) {
1102 		u16 vid;
1103 
1104 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1105 		vid &= ~VLAN_VID_MASK;
1106 		vid |= new_pvid;
1107 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1108 
1109 		ksz8_port_enable_pvid(dev, port, true);
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1116 		       const struct switchdev_obj_port_vlan *vlan)
1117 {
1118 	u16 data, pvid;
1119 	u8 fid, member, valid;
1120 
1121 	if (ksz_is_ksz88x3(dev))
1122 		return -ENOTSUPP;
1123 
1124 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1125 	pvid = pvid & 0xFFF;
1126 
1127 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1128 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1129 
1130 	member &= ~BIT(port);
1131 
1132 	/* Invalidate the entry if no more member. */
1133 	if (!member) {
1134 		fid = 0;
1135 		valid = 0;
1136 	}
1137 
1138 	ksz8_to_vlan(dev, fid, member, valid, &data);
1139 	ksz8_w_vlan_table(dev, vlan->vid, data);
1140 
1141 	if (pvid == vlan->vid)
1142 		ksz8_port_enable_pvid(dev, port, false);
1143 
1144 	return 0;
1145 }
1146 
1147 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1148 			 struct dsa_mall_mirror_tc_entry *mirror,
1149 			 bool ingress, struct netlink_ext_ack *extack)
1150 {
1151 	if (ingress) {
1152 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1153 		dev->mirror_rx |= BIT(port);
1154 	} else {
1155 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1156 		dev->mirror_tx |= BIT(port);
1157 	}
1158 
1159 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1160 
1161 	/* configure mirror port */
1162 	if (dev->mirror_rx || dev->mirror_tx)
1163 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1164 			     PORT_MIRROR_SNIFFER, true);
1165 
1166 	return 0;
1167 }
1168 
1169 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1170 			  struct dsa_mall_mirror_tc_entry *mirror)
1171 {
1172 	u8 data;
1173 
1174 	if (mirror->ingress) {
1175 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1176 		dev->mirror_rx &= ~BIT(port);
1177 	} else {
1178 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1179 		dev->mirror_tx &= ~BIT(port);
1180 	}
1181 
1182 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1183 
1184 	if (!dev->mirror_rx && !dev->mirror_tx)
1185 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1186 			     PORT_MIRROR_SNIFFER, false);
1187 }
1188 
1189 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1190 {
1191 	struct ksz_port *p = &dev->ports[port];
1192 	u8 data8;
1193 
1194 	if (!p->interface && dev->compat_interface) {
1195 		dev_warn(dev->dev,
1196 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1197 			 "Please update your device tree.\n",
1198 			 port);
1199 		p->interface = dev->compat_interface;
1200 	}
1201 
1202 	/* Configure MII interface for proper network communication. */
1203 	ksz_read8(dev, REG_PORT_5_CTRL_6, &data8);
1204 	data8 &= ~PORT_INTERFACE_TYPE;
1205 	data8 &= ~PORT_GMII_1GPS_MODE;
1206 	switch (p->interface) {
1207 	case PHY_INTERFACE_MODE_MII:
1208 		p->phydev.speed = SPEED_100;
1209 		break;
1210 	case PHY_INTERFACE_MODE_RMII:
1211 		data8 |= PORT_INTERFACE_RMII;
1212 		p->phydev.speed = SPEED_100;
1213 		break;
1214 	case PHY_INTERFACE_MODE_GMII:
1215 		data8 |= PORT_GMII_1GPS_MODE;
1216 		data8 |= PORT_INTERFACE_GMII;
1217 		p->phydev.speed = SPEED_1000;
1218 		break;
1219 	default:
1220 		data8 &= ~PORT_RGMII_ID_IN_ENABLE;
1221 		data8 &= ~PORT_RGMII_ID_OUT_ENABLE;
1222 		if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1223 		    p->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1224 			data8 |= PORT_RGMII_ID_IN_ENABLE;
1225 		if (p->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1226 		    p->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1227 			data8 |= PORT_RGMII_ID_OUT_ENABLE;
1228 		data8 |= PORT_GMII_1GPS_MODE;
1229 		data8 |= PORT_INTERFACE_RGMII;
1230 		p->phydev.speed = SPEED_1000;
1231 		break;
1232 	}
1233 	ksz_write8(dev, REG_PORT_5_CTRL_6, data8);
1234 	p->phydev.duplex = 1;
1235 }
1236 
1237 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1238 {
1239 	struct dsa_switch *ds = dev->ds;
1240 	struct ksz8 *ksz8 = dev->priv;
1241 	const u32 *masks;
1242 	u8 member;
1243 
1244 	masks = ksz8->masks;
1245 
1246 	/* enable broadcast storm limit */
1247 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1248 
1249 	if (!ksz_is_ksz88x3(dev))
1250 		ksz8795_set_prio_queue(dev, port, 4);
1251 
1252 	/* disable DiffServ priority */
1253 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
1254 
1255 	/* replace priority */
1256 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1257 		     masks[PORT_802_1P_REMAPPING], false);
1258 
1259 	/* enable 802.1p priority */
1260 	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
1261 
1262 	if (cpu_port) {
1263 		if (!ksz_is_ksz88x3(dev))
1264 			ksz8795_cpu_interface_select(dev, port);
1265 
1266 		member = dsa_user_ports(ds);
1267 	} else {
1268 		member = BIT(dsa_upstream_port(ds, port));
1269 	}
1270 
1271 	ksz8_cfg_port_member(dev, port, member);
1272 }
1273 
1274 void ksz8_config_cpu_port(struct dsa_switch *ds)
1275 {
1276 	struct ksz_device *dev = ds->priv;
1277 	struct ksz8 *ksz8 = dev->priv;
1278 	struct ksz_port *p;
1279 	const u32 *masks;
1280 	const u8 *regs;
1281 	u8 remote;
1282 	int i;
1283 
1284 	masks = ksz8->masks;
1285 	regs = dev->info->regs;
1286 
1287 	/* Switch marks the maximum frame with extra byte as oversize. */
1288 	ksz_cfg(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, true);
1289 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1290 
1291 	p = &dev->ports[dev->cpu_port];
1292 	p->on = 1;
1293 
1294 	ksz8_port_setup(dev, dev->cpu_port, true);
1295 
1296 	for (i = 0; i < dev->phy_port_cnt; i++) {
1297 		p = &dev->ports[i];
1298 
1299 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1300 
1301 		/* Last port may be disabled. */
1302 		if (i == dev->phy_port_cnt)
1303 			break;
1304 		p->on = 1;
1305 		p->phy = 1;
1306 	}
1307 	for (i = 0; i < dev->phy_port_cnt; i++) {
1308 		p = &dev->ports[i];
1309 		if (!p->on)
1310 			continue;
1311 		if (!ksz_is_ksz88x3(dev)) {
1312 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1313 			if (remote & KSZ8_PORT_FIBER_MODE)
1314 				p->fiber = 1;
1315 		}
1316 		if (p->fiber)
1317 			ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
1318 				     true);
1319 		else
1320 			ksz_port_cfg(dev, i, P_STP_CTRL, PORT_FORCE_FLOW_CTRL,
1321 				     false);
1322 	}
1323 }
1324 
1325 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1326 {
1327 	struct ksz_device *dev = ds->priv;
1328 	int ret = 0;
1329 
1330 	/* KSZ87xx Errata DS80000687C.
1331 	 * Module 2: Link drops with some EEE link partners.
1332 	 *   An issue with the EEE next page exchange between the
1333 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1334 	 *   the link dropping.
1335 	 */
1336 	if (dev->info->ksz87xx_eee_link_erratum)
1337 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1338 
1339 	return ret;
1340 }
1341 
1342 int ksz8_enable_stp_addr(struct ksz_device *dev)
1343 {
1344 	struct alu_struct alu;
1345 
1346 	/* Setup STP address for STP operation. */
1347 	memset(&alu, 0, sizeof(alu));
1348 	ether_addr_copy(alu.mac, eth_stp_addr);
1349 	alu.is_static = true;
1350 	alu.is_override = true;
1351 	alu.port_forward = dev->info->cpu_ports;
1352 
1353 	ksz8_w_sta_mac_table(dev, 0, &alu);
1354 
1355 	return 0;
1356 }
1357 
1358 int ksz8_setup(struct dsa_switch *ds)
1359 {
1360 	struct ksz_device *dev = ds->priv;
1361 	int i;
1362 
1363 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_FLOW_CTRL, true);
1364 
1365 	/* Enable automatic fast aging when link changed detected. */
1366 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1367 
1368 	/* Enable aggressive back off algorithm in half duplex mode. */
1369 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_1,
1370 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1371 
1372 	/*
1373 	 * Make sure unicast VLAN boundary is set as default and
1374 	 * enable no excessive collision drop.
1375 	 */
1376 	regmap_update_bits(dev->regmap[0], REG_SW_CTRL_2,
1377 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1378 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1379 
1380 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1381 
1382 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1383 
1384 	if (!ksz_is_ksz88x3(dev))
1385 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1386 
1387 	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1388 		ksz8_r_vlan_entries(dev, i);
1389 
1390 	return ksz8_handle_global_errata(ds);
1391 }
1392 
1393 void ksz8_get_caps(struct ksz_device *dev, int port,
1394 		   struct phylink_config *config)
1395 {
1396 	config->mac_capabilities = MAC_10 | MAC_100;
1397 
1398 	/* Silicon Errata Sheet (DS80000830A):
1399 	 * "Port 1 does not respond to received flow control PAUSE frames"
1400 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1401 	 * switches.
1402 	 */
1403 	if (!ksz_is_ksz88x3(dev) || port)
1404 		config->mac_capabilities |= MAC_SYM_PAUSE;
1405 
1406 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1407 	if (!ksz_is_ksz88x3(dev))
1408 		config->mac_capabilities |= MAC_ASYM_PAUSE;
1409 }
1410 
1411 u32 ksz8_get_port_addr(int port, int offset)
1412 {
1413 	return PORT_CTRL_ADDR(port, offset);
1414 }
1415 
1416 int ksz8_switch_init(struct ksz_device *dev)
1417 {
1418 	struct ksz8 *ksz8 = dev->priv;
1419 
1420 	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1421 	dev->phy_port_cnt = dev->info->port_cnt - 1;
1422 	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1423 
1424 	if (ksz_is_ksz88x3(dev)) {
1425 		ksz8->masks = ksz8863_masks;
1426 		ksz8->shifts = ksz8863_shifts;
1427 	} else {
1428 		ksz8->masks = ksz8795_masks;
1429 		ksz8->shifts = ksz8795_shifts;
1430 	}
1431 
1432 	/* We rely on software untagging on the CPU port, so that we
1433 	 * can support both tagged and untagged VLANs
1434 	 */
1435 	dev->ds->untag_bridge_pvid = true;
1436 
1437 	/* VLAN filtering is partly controlled by the global VLAN
1438 	 * Enable flag
1439 	 */
1440 	dev->ds->vlan_filtering_is_global = true;
1441 
1442 	return 0;
1443 }
1444 
1445 void ksz8_switch_exit(struct ksz_device *dev)
1446 {
1447 	ksz8_reset_switch(dev);
1448 }
1449 
1450 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1451 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1452 MODULE_LICENSE("GPL");
1453