xref: /openbmc/linux/drivers/mtd/ubi/eba.c (revision 799dca34ac543485f581bd8464ec9b1c4f0f852a)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20 
21 /*
22  * The UBI Eraseblock Association (EBA) sub-system.
23  *
24  * This sub-system is responsible for I/O to/from logical eraseblock.
25  *
26  * Although in this implementation the EBA table is fully kept and managed in
27  * RAM, which assumes poor scalability, it might be (partially) maintained on
28  * flash in future implementations.
29  *
30  * The EBA sub-system implements per-logical eraseblock locking. Before
31  * accessing a logical eraseblock it is locked for reading or writing. The
32  * per-logical eraseblock locking is implemented by means of the lock tree. The
33  * lock tree is an RB-tree which refers all the currently locked logical
34  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
35  * They are indexed by (@vol_id, @lnum) pairs.
36  *
37  * EBA also maintains the global sequence counter which is incremented each
38  * time a logical eraseblock is mapped to a physical eraseblock and it is
39  * stored in the volume identifier header. This means that each VID header has
40  * a unique sequence number. The sequence number is only increased an we assume
41  * 64 bits is enough to never overflow.
42  */
43 
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/err.h>
47 #include "ubi.h"
48 
49 /* Number of physical eraseblocks reserved for atomic LEB change operation */
50 #define EBA_RESERVED_PEBS 1
51 
52 /**
53  * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
54  * @pnum: the physical eraseblock number attached to the LEB
55  *
56  * This structure is encoding a LEB -> PEB association. Note that the LEB
57  * number is not stored here, because it is the index used to access the
58  * entries table.
59  */
60 struct ubi_eba_entry {
61 	int pnum;
62 };
63 
64 /**
65  * struct ubi_eba_table - LEB -> PEB association information
66  * @entries: the LEB to PEB mapping (one entry per LEB).
67  *
68  * This structure is private to the EBA logic and should be kept here.
69  * It is encoding the LEB to PEB association table, and is subject to
70  * changes.
71  */
72 struct ubi_eba_table {
73 	struct ubi_eba_entry *entries;
74 };
75 
76 /**
77  * next_sqnum - get next sequence number.
78  * @ubi: UBI device description object
79  *
80  * This function returns next sequence number to use, which is just the current
81  * global sequence counter value. It also increases the global sequence
82  * counter.
83  */
84 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
85 {
86 	unsigned long long sqnum;
87 
88 	spin_lock(&ubi->ltree_lock);
89 	sqnum = ubi->global_sqnum++;
90 	spin_unlock(&ubi->ltree_lock);
91 
92 	return sqnum;
93 }
94 
95 /**
96  * ubi_get_compat - get compatibility flags of a volume.
97  * @ubi: UBI device description object
98  * @vol_id: volume ID
99  *
100  * This function returns compatibility flags for an internal volume. User
101  * volumes have no compatibility flags, so %0 is returned.
102  */
103 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
104 {
105 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
106 		return UBI_LAYOUT_VOLUME_COMPAT;
107 	return 0;
108 }
109 
110 /**
111  * ubi_eba_get_ldesc - get information about a LEB
112  * @vol: volume description object
113  * @lnum: logical eraseblock number
114  * @ldesc: the LEB descriptor to fill
115  *
116  * Used to query information about a specific LEB.
117  * It is currently only returning the physical position of the LEB, but will be
118  * extended to provide more information.
119  */
120 void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
121 		       struct ubi_eba_leb_desc *ldesc)
122 {
123 	ldesc->lnum = lnum;
124 	ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
125 }
126 
127 /**
128  * ubi_eba_create_table - allocate a new EBA table and initialize it with all
129  *			  LEBs unmapped
130  * @vol: volume containing the EBA table to copy
131  * @nentries: number of entries in the table
132  *
133  * Allocate a new EBA table and initialize it with all LEBs unmapped.
134  * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
135  */
136 struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
137 					   int nentries)
138 {
139 	struct ubi_eba_table *tbl;
140 	int err = -ENOMEM;
141 	int i;
142 
143 	tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
144 	if (!tbl)
145 		return ERR_PTR(-ENOMEM);
146 
147 	tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
148 				     GFP_KERNEL);
149 	if (!tbl->entries)
150 		goto err;
151 
152 	for (i = 0; i < nentries; i++)
153 		tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
154 
155 	return tbl;
156 
157 err:
158 	kfree(tbl->entries);
159 	kfree(tbl);
160 
161 	return ERR_PTR(err);
162 }
163 
164 /**
165  * ubi_eba_destroy_table - destroy an EBA table
166  * @tbl: the table to destroy
167  *
168  * Destroy an EBA table.
169  */
170 void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
171 {
172 	if (!tbl)
173 		return;
174 
175 	kfree(tbl->entries);
176 	kfree(tbl);
177 }
178 
179 /**
180  * ubi_eba_copy_table - copy the EBA table attached to vol into another table
181  * @vol: volume containing the EBA table to copy
182  * @dst: destination
183  * @nentries: number of entries to copy
184  *
185  * Copy the EBA table stored in vol into the one pointed by dst.
186  */
187 void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
188 			int nentries)
189 {
190 	struct ubi_eba_table *src;
191 	int i;
192 
193 	ubi_assert(dst && vol && vol->eba_tbl);
194 
195 	src = vol->eba_tbl;
196 
197 	for (i = 0; i < nentries; i++)
198 		dst->entries[i].pnum = src->entries[i].pnum;
199 }
200 
201 /**
202  * ubi_eba_replace_table - assign a new EBA table to a volume
203  * @vol: volume containing the EBA table to copy
204  * @tbl: new EBA table
205  *
206  * Assign a new EBA table to the volume and release the old one.
207  */
208 void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
209 {
210 	ubi_eba_destroy_table(vol->eba_tbl);
211 	vol->eba_tbl = tbl;
212 }
213 
214 /**
215  * ltree_lookup - look up the lock tree.
216  * @ubi: UBI device description object
217  * @vol_id: volume ID
218  * @lnum: logical eraseblock number
219  *
220  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
221  * object if the logical eraseblock is locked and %NULL if it is not.
222  * @ubi->ltree_lock has to be locked.
223  */
224 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
225 					    int lnum)
226 {
227 	struct rb_node *p;
228 
229 	p = ubi->ltree.rb_node;
230 	while (p) {
231 		struct ubi_ltree_entry *le;
232 
233 		le = rb_entry(p, struct ubi_ltree_entry, rb);
234 
235 		if (vol_id < le->vol_id)
236 			p = p->rb_left;
237 		else if (vol_id > le->vol_id)
238 			p = p->rb_right;
239 		else {
240 			if (lnum < le->lnum)
241 				p = p->rb_left;
242 			else if (lnum > le->lnum)
243 				p = p->rb_right;
244 			else
245 				return le;
246 		}
247 	}
248 
249 	return NULL;
250 }
251 
252 /**
253  * ltree_add_entry - add new entry to the lock tree.
254  * @ubi: UBI device description object
255  * @vol_id: volume ID
256  * @lnum: logical eraseblock number
257  *
258  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
259  * lock tree. If such entry is already there, its usage counter is increased.
260  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
261  * failed.
262  */
263 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
264 					       int vol_id, int lnum)
265 {
266 	struct ubi_ltree_entry *le, *le1, *le_free;
267 
268 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
269 	if (!le)
270 		return ERR_PTR(-ENOMEM);
271 
272 	le->users = 0;
273 	init_rwsem(&le->mutex);
274 	le->vol_id = vol_id;
275 	le->lnum = lnum;
276 
277 	spin_lock(&ubi->ltree_lock);
278 	le1 = ltree_lookup(ubi, vol_id, lnum);
279 
280 	if (le1) {
281 		/*
282 		 * This logical eraseblock is already locked. The newly
283 		 * allocated lock entry is not needed.
284 		 */
285 		le_free = le;
286 		le = le1;
287 	} else {
288 		struct rb_node **p, *parent = NULL;
289 
290 		/*
291 		 * No lock entry, add the newly allocated one to the
292 		 * @ubi->ltree RB-tree.
293 		 */
294 		le_free = NULL;
295 
296 		p = &ubi->ltree.rb_node;
297 		while (*p) {
298 			parent = *p;
299 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
300 
301 			if (vol_id < le1->vol_id)
302 				p = &(*p)->rb_left;
303 			else if (vol_id > le1->vol_id)
304 				p = &(*p)->rb_right;
305 			else {
306 				ubi_assert(lnum != le1->lnum);
307 				if (lnum < le1->lnum)
308 					p = &(*p)->rb_left;
309 				else
310 					p = &(*p)->rb_right;
311 			}
312 		}
313 
314 		rb_link_node(&le->rb, parent, p);
315 		rb_insert_color(&le->rb, &ubi->ltree);
316 	}
317 	le->users += 1;
318 	spin_unlock(&ubi->ltree_lock);
319 
320 	kfree(le_free);
321 	return le;
322 }
323 
324 /**
325  * leb_read_lock - lock logical eraseblock for reading.
326  * @ubi: UBI device description object
327  * @vol_id: volume ID
328  * @lnum: logical eraseblock number
329  *
330  * This function locks a logical eraseblock for reading. Returns zero in case
331  * of success and a negative error code in case of failure.
332  */
333 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
334 {
335 	struct ubi_ltree_entry *le;
336 
337 	le = ltree_add_entry(ubi, vol_id, lnum);
338 	if (IS_ERR(le))
339 		return PTR_ERR(le);
340 	down_read(&le->mutex);
341 	return 0;
342 }
343 
344 /**
345  * leb_read_unlock - unlock logical eraseblock.
346  * @ubi: UBI device description object
347  * @vol_id: volume ID
348  * @lnum: logical eraseblock number
349  */
350 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
351 {
352 	struct ubi_ltree_entry *le;
353 
354 	spin_lock(&ubi->ltree_lock);
355 	le = ltree_lookup(ubi, vol_id, lnum);
356 	le->users -= 1;
357 	ubi_assert(le->users >= 0);
358 	up_read(&le->mutex);
359 	if (le->users == 0) {
360 		rb_erase(&le->rb, &ubi->ltree);
361 		kfree(le);
362 	}
363 	spin_unlock(&ubi->ltree_lock);
364 }
365 
366 /**
367  * leb_write_lock - lock logical eraseblock for writing.
368  * @ubi: UBI device description object
369  * @vol_id: volume ID
370  * @lnum: logical eraseblock number
371  *
372  * This function locks a logical eraseblock for writing. Returns zero in case
373  * of success and a negative error code in case of failure.
374  */
375 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
376 {
377 	struct ubi_ltree_entry *le;
378 
379 	le = ltree_add_entry(ubi, vol_id, lnum);
380 	if (IS_ERR(le))
381 		return PTR_ERR(le);
382 	down_write(&le->mutex);
383 	return 0;
384 }
385 
386 /**
387  * leb_write_lock - lock logical eraseblock for writing.
388  * @ubi: UBI device description object
389  * @vol_id: volume ID
390  * @lnum: logical eraseblock number
391  *
392  * This function locks a logical eraseblock for writing if there is no
393  * contention and does nothing if there is contention. Returns %0 in case of
394  * success, %1 in case of contention, and and a negative error code in case of
395  * failure.
396  */
397 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
398 {
399 	struct ubi_ltree_entry *le;
400 
401 	le = ltree_add_entry(ubi, vol_id, lnum);
402 	if (IS_ERR(le))
403 		return PTR_ERR(le);
404 	if (down_write_trylock(&le->mutex))
405 		return 0;
406 
407 	/* Contention, cancel */
408 	spin_lock(&ubi->ltree_lock);
409 	le->users -= 1;
410 	ubi_assert(le->users >= 0);
411 	if (le->users == 0) {
412 		rb_erase(&le->rb, &ubi->ltree);
413 		kfree(le);
414 	}
415 	spin_unlock(&ubi->ltree_lock);
416 
417 	return 1;
418 }
419 
420 /**
421  * leb_write_unlock - unlock logical eraseblock.
422  * @ubi: UBI device description object
423  * @vol_id: volume ID
424  * @lnum: logical eraseblock number
425  */
426 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
427 {
428 	struct ubi_ltree_entry *le;
429 
430 	spin_lock(&ubi->ltree_lock);
431 	le = ltree_lookup(ubi, vol_id, lnum);
432 	le->users -= 1;
433 	ubi_assert(le->users >= 0);
434 	up_write(&le->mutex);
435 	if (le->users == 0) {
436 		rb_erase(&le->rb, &ubi->ltree);
437 		kfree(le);
438 	}
439 	spin_unlock(&ubi->ltree_lock);
440 }
441 
442 /**
443  * ubi_eba_is_mapped - check if a LEB is mapped.
444  * @vol: volume description object
445  * @lnum: logical eraseblock number
446  *
447  * This function returns true if the LEB is mapped, false otherwise.
448  */
449 bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
450 {
451 	return vol->eba_tbl->entries[lnum].pnum >= 0;
452 }
453 
454 /**
455  * ubi_eba_unmap_leb - un-map logical eraseblock.
456  * @ubi: UBI device description object
457  * @vol: volume description object
458  * @lnum: logical eraseblock number
459  *
460  * This function un-maps logical eraseblock @lnum and schedules corresponding
461  * physical eraseblock for erasure. Returns zero in case of success and a
462  * negative error code in case of failure.
463  */
464 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
465 		      int lnum)
466 {
467 	int err, pnum, vol_id = vol->vol_id;
468 
469 	if (ubi->ro_mode)
470 		return -EROFS;
471 
472 	err = leb_write_lock(ubi, vol_id, lnum);
473 	if (err)
474 		return err;
475 
476 	pnum = vol->eba_tbl->entries[lnum].pnum;
477 	if (pnum < 0)
478 		/* This logical eraseblock is already unmapped */
479 		goto out_unlock;
480 
481 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
482 
483 	down_read(&ubi->fm_eba_sem);
484 	vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
485 	up_read(&ubi->fm_eba_sem);
486 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
487 
488 out_unlock:
489 	leb_write_unlock(ubi, vol_id, lnum);
490 	return err;
491 }
492 
493 /**
494  * ubi_eba_read_leb - read data.
495  * @ubi: UBI device description object
496  * @vol: volume description object
497  * @lnum: logical eraseblock number
498  * @buf: buffer to store the read data
499  * @offset: offset from where to read
500  * @len: how many bytes to read
501  * @check: data CRC check flag
502  *
503  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
504  * bytes. The @check flag only makes sense for static volumes and forces
505  * eraseblock data CRC checking.
506  *
507  * In case of success this function returns zero. In case of a static volume,
508  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
509  * returned for any volume type if an ECC error was detected by the MTD device
510  * driver. Other negative error cored may be returned in case of other errors.
511  */
512 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
513 		     void *buf, int offset, int len, int check)
514 {
515 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
516 	struct ubi_vid_hdr *vid_hdr;
517 	uint32_t uninitialized_var(crc);
518 
519 	err = leb_read_lock(ubi, vol_id, lnum);
520 	if (err)
521 		return err;
522 
523 	pnum = vol->eba_tbl->entries[lnum].pnum;
524 	if (pnum < 0) {
525 		/*
526 		 * The logical eraseblock is not mapped, fill the whole buffer
527 		 * with 0xFF bytes. The exception is static volumes for which
528 		 * it is an error to read unmapped logical eraseblocks.
529 		 */
530 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
531 			len, offset, vol_id, lnum);
532 		leb_read_unlock(ubi, vol_id, lnum);
533 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
534 		memset(buf, 0xFF, len);
535 		return 0;
536 	}
537 
538 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
539 		len, offset, vol_id, lnum, pnum);
540 
541 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
542 		check = 0;
543 
544 retry:
545 	if (check) {
546 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
547 		if (!vid_hdr) {
548 			err = -ENOMEM;
549 			goto out_unlock;
550 		}
551 
552 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
553 		if (err && err != UBI_IO_BITFLIPS) {
554 			if (err > 0) {
555 				/*
556 				 * The header is either absent or corrupted.
557 				 * The former case means there is a bug -
558 				 * switch to read-only mode just in case.
559 				 * The latter case means a real corruption - we
560 				 * may try to recover data. FIXME: but this is
561 				 * not implemented.
562 				 */
563 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
564 				    err == UBI_IO_BAD_HDR) {
565 					ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
566 						 pnum, vol_id, lnum);
567 					err = -EBADMSG;
568 				} else {
569 					/*
570 					 * Ending up here in the non-Fastmap case
571 					 * is a clear bug as the VID header had to
572 					 * be present at scan time to have it referenced.
573 					 * With fastmap the story is more complicated.
574 					 * Fastmap has the mapping info without the need
575 					 * of a full scan. So the LEB could have been
576 					 * unmapped, Fastmap cannot know this and keeps
577 					 * the LEB referenced.
578 					 * This is valid and works as the layer above UBI
579 					 * has to do bookkeeping about used/referenced
580 					 * LEBs in any case.
581 					 */
582 					if (ubi->fast_attach) {
583 						err = -EBADMSG;
584 					} else {
585 						err = -EINVAL;
586 						ubi_ro_mode(ubi);
587 					}
588 				}
589 			}
590 			goto out_free;
591 		} else if (err == UBI_IO_BITFLIPS)
592 			scrub = 1;
593 
594 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
595 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
596 
597 		crc = be32_to_cpu(vid_hdr->data_crc);
598 		ubi_free_vid_hdr(ubi, vid_hdr);
599 	}
600 
601 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
602 	if (err) {
603 		if (err == UBI_IO_BITFLIPS)
604 			scrub = 1;
605 		else if (mtd_is_eccerr(err)) {
606 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
607 				goto out_unlock;
608 			scrub = 1;
609 			if (!check) {
610 				ubi_msg(ubi, "force data checking");
611 				check = 1;
612 				goto retry;
613 			}
614 		} else
615 			goto out_unlock;
616 	}
617 
618 	if (check) {
619 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
620 		if (crc1 != crc) {
621 			ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
622 				 crc1, crc);
623 			err = -EBADMSG;
624 			goto out_unlock;
625 		}
626 	}
627 
628 	if (scrub)
629 		err = ubi_wl_scrub_peb(ubi, pnum);
630 
631 	leb_read_unlock(ubi, vol_id, lnum);
632 	return err;
633 
634 out_free:
635 	ubi_free_vid_hdr(ubi, vid_hdr);
636 out_unlock:
637 	leb_read_unlock(ubi, vol_id, lnum);
638 	return err;
639 }
640 
641 /**
642  * ubi_eba_read_leb_sg - read data into a scatter gather list.
643  * @ubi: UBI device description object
644  * @vol: volume description object
645  * @lnum: logical eraseblock number
646  * @sgl: UBI scatter gather list to store the read data
647  * @offset: offset from where to read
648  * @len: how many bytes to read
649  * @check: data CRC check flag
650  *
651  * This function works exactly like ubi_eba_read_leb(). But instead of
652  * storing the read data into a buffer it writes to an UBI scatter gather
653  * list.
654  */
655 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
656 			struct ubi_sgl *sgl, int lnum, int offset, int len,
657 			int check)
658 {
659 	int to_read;
660 	int ret;
661 	struct scatterlist *sg;
662 
663 	for (;;) {
664 		ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
665 		sg = &sgl->sg[sgl->list_pos];
666 		if (len < sg->length - sgl->page_pos)
667 			to_read = len;
668 		else
669 			to_read = sg->length - sgl->page_pos;
670 
671 		ret = ubi_eba_read_leb(ubi, vol, lnum,
672 				       sg_virt(sg) + sgl->page_pos, offset,
673 				       to_read, check);
674 		if (ret < 0)
675 			return ret;
676 
677 		offset += to_read;
678 		len -= to_read;
679 		if (!len) {
680 			sgl->page_pos += to_read;
681 			if (sgl->page_pos == sg->length) {
682 				sgl->list_pos++;
683 				sgl->page_pos = 0;
684 			}
685 
686 			break;
687 		}
688 
689 		sgl->list_pos++;
690 		sgl->page_pos = 0;
691 	}
692 
693 	return ret;
694 }
695 
696 /**
697  * try_recover_peb - try to recover from write failure.
698  * @vol: volume description object
699  * @pnum: the physical eraseblock to recover
700  * @lnum: logical eraseblock number
701  * @buf: data which was not written because of the write failure
702  * @offset: offset of the failed write
703  * @len: how many bytes should have been written
704  * @vid: VID header
705  * @retry: whether the caller should retry in case of failure
706  *
707  * This function is called in case of a write failure and moves all good data
708  * from the potentially bad physical eraseblock to a good physical eraseblock.
709  * This function also writes the data which was not written due to the failure.
710  * Returns 0 in case of success, and a negative error code in case of failure.
711  * In case of failure, the %retry parameter is set to false if this is a fatal
712  * error (retrying won't help), and true otherwise.
713  */
714 static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
715 			   const void *buf, int offset, int len,
716 			   struct ubi_vid_hdr *vid_hdr, bool *retry)
717 {
718 	struct ubi_device *ubi = vol->ubi;
719 	int new_pnum, err, vol_id = vol->vol_id, data_size;
720 	uint32_t crc;
721 
722 	*retry = false;
723 
724 	new_pnum = ubi_wl_get_peb(ubi);
725 	if (new_pnum < 0) {
726 		err = new_pnum;
727 		goto out_put;
728 	}
729 
730 	ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
731 		pnum, new_pnum);
732 
733 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
734 	if (err && err != UBI_IO_BITFLIPS) {
735 		if (err > 0)
736 			err = -EIO;
737 		goto out_put;
738 	}
739 
740 	ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
741 
742 	mutex_lock(&ubi->buf_mutex);
743 	memset(ubi->peb_buf + offset, 0xFF, len);
744 
745 	/* Read everything before the area where the write failure happened */
746 	if (offset > 0) {
747 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
748 		if (err && err != UBI_IO_BITFLIPS)
749 			goto out_unlock;
750 	}
751 
752 	*retry = true;
753 
754 	memcpy(ubi->peb_buf + offset, buf, len);
755 
756 	data_size = offset + len;
757 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
758 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
759 	vid_hdr->copy_flag = 1;
760 	vid_hdr->data_size = cpu_to_be32(data_size);
761 	vid_hdr->data_crc = cpu_to_be32(crc);
762 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
763 	if (err)
764 		goto out_unlock;
765 
766 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
767 
768 out_unlock:
769 	mutex_unlock(&ubi->buf_mutex);
770 
771 	if (!err)
772 		vol->eba_tbl->entries[lnum].pnum = new_pnum;
773 
774 out_put:
775 	up_read(&ubi->fm_eba_sem);
776 
777 	if (!err) {
778 		ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
779 		ubi_msg(ubi, "data was successfully recovered");
780 	} else if (new_pnum >= 0) {
781 		/*
782 		 * Bad luck? This physical eraseblock is bad too? Crud. Let's
783 		 * try to get another one.
784 		 */
785 		ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
786 		ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
787 	}
788 
789 	return err;
790 }
791 
792 /**
793  * recover_peb - recover from write failure.
794  * @ubi: UBI device description object
795  * @pnum: the physical eraseblock to recover
796  * @vol_id: volume ID
797  * @lnum: logical eraseblock number
798  * @buf: data which was not written because of the write failure
799  * @offset: offset of the failed write
800  * @len: how many bytes should have been written
801  *
802  * This function is called in case of a write failure and moves all good data
803  * from the potentially bad physical eraseblock to a good physical eraseblock.
804  * This function also writes the data which was not written due to the failure.
805  * Returns 0 in case of success, and a negative error code in case of failure.
806  * This function tries %UBI_IO_RETRIES before giving up.
807  */
808 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
809 		       const void *buf, int offset, int len)
810 {
811 	int err, idx = vol_id2idx(ubi, vol_id), tries;
812 	struct ubi_volume *vol = ubi->volumes[idx];
813 	struct ubi_vid_hdr *vid_hdr;
814 
815 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
816 	if (!vid_hdr)
817 		return -ENOMEM;
818 
819 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
820 		bool retry;
821 
822 		err = try_recover_peb(vol, pnum, lnum, buf, offset, len,
823 				      vid_hdr, &retry);
824 		if (!err || !retry)
825 			break;
826 
827 		ubi_msg(ubi, "try again");
828 	}
829 
830 	ubi_free_vid_hdr(ubi, vid_hdr);
831 
832 	return err;
833 }
834 
835 /**
836  * try_write_vid_and_data - try to write VID header and data to a new PEB.
837  * @vol: volume description object
838  * @lnum: logical eraseblock number
839  * @vid_hdr: VID header to write
840  * @buf: buffer containing the data
841  * @offset: where to start writing data
842  * @len: how many bytes should be written
843  *
844  * This function tries to write VID header and data belonging to logical
845  * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
846  * in case of success and a negative error code in case of failure.
847  * In case of error, it is possible that something was still written to the
848  * flash media, but may be some garbage.
849  */
850 static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
851 				  struct ubi_vid_hdr *vid_hdr, const void *buf,
852 				  int offset, int len)
853 {
854 	struct ubi_device *ubi = vol->ubi;
855 	int pnum, opnum, err, vol_id = vol->vol_id;
856 
857 	pnum = ubi_wl_get_peb(ubi);
858 	if (pnum < 0) {
859 		err = pnum;
860 		goto out_put;
861 	}
862 
863 	opnum = vol->eba_tbl->entries[lnum].pnum;
864 
865 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
866 		len, offset, vol_id, lnum, pnum);
867 
868 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
869 	if (err) {
870 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
871 			 vol_id, lnum, pnum);
872 		goto out_put;
873 	}
874 
875 	if (len) {
876 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
877 		if (err) {
878 			ubi_warn(ubi,
879 				 "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
880 				 len, offset, vol_id, lnum, pnum);
881 			goto out_put;
882 		}
883 	}
884 
885 	vol->eba_tbl->entries[lnum].pnum = pnum;
886 
887 out_put:
888 	up_read(&ubi->fm_eba_sem);
889 
890 	if (err && pnum >= 0)
891 		err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
892 	else if (!err && opnum >= 0)
893 		err = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
894 
895 	return err;
896 }
897 
898 /**
899  * ubi_eba_write_leb - write data to dynamic volume.
900  * @ubi: UBI device description object
901  * @vol: volume description object
902  * @lnum: logical eraseblock number
903  * @buf: the data to write
904  * @offset: offset within the logical eraseblock where to write
905  * @len: how many bytes to write
906  *
907  * This function writes data to logical eraseblock @lnum of a dynamic volume
908  * @vol. Returns zero in case of success and a negative error code in case
909  * of failure. In case of error, it is possible that something was still
910  * written to the flash media, but may be some garbage.
911  * This function retries %UBI_IO_RETRIES times before giving up.
912  */
913 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
914 		      const void *buf, int offset, int len)
915 {
916 	int err, pnum, tries, vol_id = vol->vol_id;
917 	struct ubi_vid_hdr *vid_hdr;
918 
919 	if (ubi->ro_mode)
920 		return -EROFS;
921 
922 	err = leb_write_lock(ubi, vol_id, lnum);
923 	if (err)
924 		return err;
925 
926 	pnum = vol->eba_tbl->entries[lnum].pnum;
927 	if (pnum >= 0) {
928 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
929 			len, offset, vol_id, lnum, pnum);
930 
931 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
932 		if (err) {
933 			ubi_warn(ubi, "failed to write data to PEB %d", pnum);
934 			if (err == -EIO && ubi->bad_allowed)
935 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
936 						  offset, len);
937 		}
938 
939 		goto out;
940 	}
941 
942 	/*
943 	 * The logical eraseblock is not mapped. We have to get a free physical
944 	 * eraseblock and write the volume identifier header there first.
945 	 */
946 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
947 	if (!vid_hdr) {
948 		leb_write_unlock(ubi, vol_id, lnum);
949 		return -ENOMEM;
950 	}
951 
952 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
953 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
954 	vid_hdr->vol_id = cpu_to_be32(vol_id);
955 	vid_hdr->lnum = cpu_to_be32(lnum);
956 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
957 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
958 
959 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
960 		err = try_write_vid_and_data(vol, lnum, vid_hdr, buf, offset,
961 					     len);
962 		if (err != -EIO || !ubi->bad_allowed)
963 			break;
964 
965 		/*
966 		 * Fortunately, this is the first write operation to this
967 		 * physical eraseblock, so just put it and request a new one.
968 		 * We assume that if this physical eraseblock went bad, the
969 		 * erase code will handle that.
970 		 */
971 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
972 		ubi_msg(ubi, "try another PEB");
973 	}
974 
975 	ubi_free_vid_hdr(ubi, vid_hdr);
976 
977 out:
978 	if (err)
979 		ubi_ro_mode(ubi);
980 
981 	leb_write_unlock(ubi, vol_id, lnum);
982 
983 	return err;
984 }
985 
986 /**
987  * ubi_eba_write_leb_st - write data to static volume.
988  * @ubi: UBI device description object
989  * @vol: volume description object
990  * @lnum: logical eraseblock number
991  * @buf: data to write
992  * @len: how many bytes to write
993  * @used_ebs: how many logical eraseblocks will this volume contain
994  *
995  * This function writes data to logical eraseblock @lnum of static volume
996  * @vol. The @used_ebs argument should contain total number of logical
997  * eraseblock in this static volume.
998  *
999  * When writing to the last logical eraseblock, the @len argument doesn't have
1000  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
1001  * to the real data size, although the @buf buffer has to contain the
1002  * alignment. In all other cases, @len has to be aligned.
1003  *
1004  * It is prohibited to write more than once to logical eraseblocks of static
1005  * volumes. This function returns zero in case of success and a negative error
1006  * code in case of failure.
1007  */
1008 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
1009 			 int lnum, const void *buf, int len, int used_ebs)
1010 {
1011 	int err, tries, data_size = len, vol_id = vol->vol_id;
1012 	struct ubi_vid_hdr *vid_hdr;
1013 	uint32_t crc;
1014 
1015 	if (ubi->ro_mode)
1016 		return -EROFS;
1017 
1018 	if (lnum == used_ebs - 1)
1019 		/* If this is the last LEB @len may be unaligned */
1020 		len = ALIGN(data_size, ubi->min_io_size);
1021 	else
1022 		ubi_assert(!(len & (ubi->min_io_size - 1)));
1023 
1024 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1025 	if (!vid_hdr)
1026 		return -ENOMEM;
1027 
1028 	err = leb_write_lock(ubi, vol_id, lnum);
1029 	if (err)
1030 		goto out;
1031 
1032 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1033 	vid_hdr->vol_id = cpu_to_be32(vol_id);
1034 	vid_hdr->lnum = cpu_to_be32(lnum);
1035 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1036 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1037 
1038 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
1039 	vid_hdr->vol_type = UBI_VID_STATIC;
1040 	vid_hdr->data_size = cpu_to_be32(data_size);
1041 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
1042 	vid_hdr->data_crc = cpu_to_be32(crc);
1043 
1044 	ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
1045 
1046 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1047 		err = try_write_vid_and_data(vol, lnum, vid_hdr, buf, 0, len);
1048 		if (err != -EIO || !ubi->bad_allowed)
1049 			break;
1050 
1051 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1052 		ubi_msg(ubi, "try another PEB");
1053 	}
1054 
1055 	if (err)
1056 		ubi_ro_mode(ubi);
1057 
1058 	leb_write_unlock(ubi, vol_id, lnum);
1059 
1060 out:
1061 	ubi_free_vid_hdr(ubi, vid_hdr);
1062 
1063 	return err;
1064 }
1065 
1066 /*
1067  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
1068  * @ubi: UBI device description object
1069  * @vol: volume description object
1070  * @lnum: logical eraseblock number
1071  * @buf: data to write
1072  * @len: how many bytes to write
1073  *
1074  * This function changes the contents of a logical eraseblock atomically. @buf
1075  * has to contain new logical eraseblock data, and @len - the length of the
1076  * data, which has to be aligned. This function guarantees that in case of an
1077  * unclean reboot the old contents is preserved. Returns zero in case of
1078  * success and a negative error code in case of failure.
1079  *
1080  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
1081  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
1082  */
1083 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
1084 			      int lnum, const void *buf, int len)
1085 {
1086 	int err, tries, vol_id = vol->vol_id;
1087 	struct ubi_vid_hdr *vid_hdr;
1088 	uint32_t crc;
1089 
1090 	if (ubi->ro_mode)
1091 		return -EROFS;
1092 
1093 	if (len == 0) {
1094 		/*
1095 		 * Special case when data length is zero. In this case the LEB
1096 		 * has to be unmapped and mapped somewhere else.
1097 		 */
1098 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
1099 		if (err)
1100 			return err;
1101 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
1102 	}
1103 
1104 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1105 	if (!vid_hdr)
1106 		return -ENOMEM;
1107 
1108 	mutex_lock(&ubi->alc_mutex);
1109 	err = leb_write_lock(ubi, vol_id, lnum);
1110 	if (err)
1111 		goto out_mutex;
1112 
1113 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1114 	vid_hdr->vol_id = cpu_to_be32(vol_id);
1115 	vid_hdr->lnum = cpu_to_be32(lnum);
1116 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
1117 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
1118 
1119 	crc = crc32(UBI_CRC32_INIT, buf, len);
1120 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
1121 	vid_hdr->data_size = cpu_to_be32(len);
1122 	vid_hdr->copy_flag = 1;
1123 	vid_hdr->data_crc = cpu_to_be32(crc);
1124 
1125 	dbg_eba("change LEB %d:%d", vol_id, lnum);
1126 
1127 	for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
1128 		err = try_write_vid_and_data(vol, lnum, vid_hdr, buf, 0, len);
1129 		if (err != -EIO || !ubi->bad_allowed)
1130 			break;
1131 
1132 		vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1133 		ubi_msg(ubi, "try another PEB");
1134 	}
1135 
1136 	/*
1137 	 * This flash device does not admit of bad eraseblocks or
1138 	 * something nasty and unexpected happened. Switch to read-only
1139 	 * mode just in case.
1140 	 */
1141 	if (err)
1142 		ubi_ro_mode(ubi);
1143 
1144 	leb_write_unlock(ubi, vol_id, lnum);
1145 
1146 out_mutex:
1147 	mutex_unlock(&ubi->alc_mutex);
1148 	ubi_free_vid_hdr(ubi, vid_hdr);
1149 	return err;
1150 }
1151 
1152 /**
1153  * is_error_sane - check whether a read error is sane.
1154  * @err: code of the error happened during reading
1155  *
1156  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1157  * cannot read data from the target PEB (an error @err happened). If the error
1158  * code is sane, then we treat this error as non-fatal. Otherwise the error is
1159  * fatal and UBI will be switched to R/O mode later.
1160  *
1161  * The idea is that we try not to switch to R/O mode if the read error is
1162  * something which suggests there was a real read problem. E.g., %-EIO. Or a
1163  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1164  * mode, simply because we do not know what happened at the MTD level, and we
1165  * cannot handle this. E.g., the underlying driver may have become crazy, and
1166  * it is safer to switch to R/O mode to preserve the data.
1167  *
1168  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1169  * which we have just written.
1170  */
1171 static int is_error_sane(int err)
1172 {
1173 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1174 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1175 		return 0;
1176 	return 1;
1177 }
1178 
1179 /**
1180  * ubi_eba_copy_leb - copy logical eraseblock.
1181  * @ubi: UBI device description object
1182  * @from: physical eraseblock number from where to copy
1183  * @to: physical eraseblock number where to copy
1184  * @vid_hdr: VID header of the @from physical eraseblock
1185  *
1186  * This function copies logical eraseblock from physical eraseblock @from to
1187  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1188  * function. Returns:
1189  *   o %0 in case of success;
1190  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1191  *   o a negative error code in case of failure.
1192  */
1193 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1194 		     struct ubi_vid_hdr *vid_hdr)
1195 {
1196 	int err, vol_id, lnum, data_size, aldata_size, idx;
1197 	struct ubi_volume *vol;
1198 	uint32_t crc;
1199 
1200 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1201 	lnum = be32_to_cpu(vid_hdr->lnum);
1202 
1203 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1204 
1205 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
1206 		data_size = be32_to_cpu(vid_hdr->data_size);
1207 		aldata_size = ALIGN(data_size, ubi->min_io_size);
1208 	} else
1209 		data_size = aldata_size =
1210 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1211 
1212 	idx = vol_id2idx(ubi, vol_id);
1213 	spin_lock(&ubi->volumes_lock);
1214 	/*
1215 	 * Note, we may race with volume deletion, which means that the volume
1216 	 * this logical eraseblock belongs to might be being deleted. Since the
1217 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1218 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1219 	 */
1220 	vol = ubi->volumes[idx];
1221 	spin_unlock(&ubi->volumes_lock);
1222 	if (!vol) {
1223 		/* No need to do further work, cancel */
1224 		dbg_wl("volume %d is being removed, cancel", vol_id);
1225 		return MOVE_CANCEL_RACE;
1226 	}
1227 
1228 	/*
1229 	 * We do not want anybody to write to this logical eraseblock while we
1230 	 * are moving it, so lock it.
1231 	 *
1232 	 * Note, we are using non-waiting locking here, because we cannot sleep
1233 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1234 	 * unmapping the LEB which is mapped to the PEB we are going to move
1235 	 * (@from). This task locks the LEB and goes sleep in the
1236 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1237 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1238 	 * LEB is already locked, we just do not move it and return
1239 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1240 	 * we do not know the reasons of the contention - it may be just a
1241 	 * normal I/O on this LEB, so we want to re-try.
1242 	 */
1243 	err = leb_write_trylock(ubi, vol_id, lnum);
1244 	if (err) {
1245 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1246 		return MOVE_RETRY;
1247 	}
1248 
1249 	/*
1250 	 * The LEB might have been put meanwhile, and the task which put it is
1251 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1252 	 * cancel it.
1253 	 */
1254 	if (vol->eba_tbl->entries[lnum].pnum != from) {
1255 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1256 		       vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
1257 		err = MOVE_CANCEL_RACE;
1258 		goto out_unlock_leb;
1259 	}
1260 
1261 	/*
1262 	 * OK, now the LEB is locked and we can safely start moving it. Since
1263 	 * this function utilizes the @ubi->peb_buf buffer which is shared
1264 	 * with some other functions - we lock the buffer by taking the
1265 	 * @ubi->buf_mutex.
1266 	 */
1267 	mutex_lock(&ubi->buf_mutex);
1268 	dbg_wl("read %d bytes of data", aldata_size);
1269 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1270 	if (err && err != UBI_IO_BITFLIPS) {
1271 		ubi_warn(ubi, "error %d while reading data from PEB %d",
1272 			 err, from);
1273 		err = MOVE_SOURCE_RD_ERR;
1274 		goto out_unlock_buf;
1275 	}
1276 
1277 	/*
1278 	 * Now we have got to calculate how much data we have to copy. In
1279 	 * case of a static volume it is fairly easy - the VID header contains
1280 	 * the data size. In case of a dynamic volume it is more difficult - we
1281 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1282 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1283 	 * may have some side-effects. And not only this. It is important not
1284 	 * to include those 0xFFs to CRC because later the they may be filled
1285 	 * by data.
1286 	 */
1287 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1288 		aldata_size = data_size =
1289 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1290 
1291 	cond_resched();
1292 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1293 	cond_resched();
1294 
1295 	/*
1296 	 * It may turn out to be that the whole @from physical eraseblock
1297 	 * contains only 0xFF bytes. Then we have to only write the VID header
1298 	 * and do not write any data. This also means we should not set
1299 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1300 	 */
1301 	if (data_size > 0) {
1302 		vid_hdr->copy_flag = 1;
1303 		vid_hdr->data_size = cpu_to_be32(data_size);
1304 		vid_hdr->data_crc = cpu_to_be32(crc);
1305 	}
1306 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1307 
1308 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1309 	if (err) {
1310 		if (err == -EIO)
1311 			err = MOVE_TARGET_WR_ERR;
1312 		goto out_unlock_buf;
1313 	}
1314 
1315 	cond_resched();
1316 
1317 	/* Read the VID header back and check if it was written correctly */
1318 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1319 	if (err) {
1320 		if (err != UBI_IO_BITFLIPS) {
1321 			ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1322 				 err, to);
1323 			if (is_error_sane(err))
1324 				err = MOVE_TARGET_RD_ERR;
1325 		} else
1326 			err = MOVE_TARGET_BITFLIPS;
1327 		goto out_unlock_buf;
1328 	}
1329 
1330 	if (data_size > 0) {
1331 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1332 		if (err) {
1333 			if (err == -EIO)
1334 				err = MOVE_TARGET_WR_ERR;
1335 			goto out_unlock_buf;
1336 		}
1337 
1338 		cond_resched();
1339 	}
1340 
1341 	ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
1342 	down_read(&ubi->fm_eba_sem);
1343 	vol->eba_tbl->entries[lnum].pnum = to;
1344 	up_read(&ubi->fm_eba_sem);
1345 
1346 out_unlock_buf:
1347 	mutex_unlock(&ubi->buf_mutex);
1348 out_unlock_leb:
1349 	leb_write_unlock(ubi, vol_id, lnum);
1350 	return err;
1351 }
1352 
1353 /**
1354  * print_rsvd_warning - warn about not having enough reserved PEBs.
1355  * @ubi: UBI device description object
1356  *
1357  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1358  * cannot reserve enough PEBs for bad block handling. This function makes a
1359  * decision whether we have to print a warning or not. The algorithm is as
1360  * follows:
1361  *   o if this is a new UBI image, then just print the warning
1362  *   o if this is an UBI image which has already been used for some time, print
1363  *     a warning only if we can reserve less than 10% of the expected amount of
1364  *     the reserved PEB.
1365  *
1366  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1367  * of PEBs becomes smaller, which is normal and we do not want to scare users
1368  * with a warning every time they attach the MTD device. This was an issue
1369  * reported by real users.
1370  */
1371 static void print_rsvd_warning(struct ubi_device *ubi,
1372 			       struct ubi_attach_info *ai)
1373 {
1374 	/*
1375 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1376 	 * large number to distinguish between newly flashed and used images.
1377 	 */
1378 	if (ai->max_sqnum > (1 << 18)) {
1379 		int min = ubi->beb_rsvd_level / 10;
1380 
1381 		if (!min)
1382 			min = 1;
1383 		if (ubi->beb_rsvd_pebs > min)
1384 			return;
1385 	}
1386 
1387 	ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1388 		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1389 	if (ubi->corr_peb_count)
1390 		ubi_warn(ubi, "%d PEBs are corrupted and not used",
1391 			 ubi->corr_peb_count);
1392 }
1393 
1394 /**
1395  * self_check_eba - run a self check on the EBA table constructed by fastmap.
1396  * @ubi: UBI device description object
1397  * @ai_fastmap: UBI attach info object created by fastmap
1398  * @ai_scan: UBI attach info object created by scanning
1399  *
1400  * Returns < 0 in case of an internal error, 0 otherwise.
1401  * If a bad EBA table entry was found it will be printed out and
1402  * ubi_assert() triggers.
1403  */
1404 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1405 		   struct ubi_attach_info *ai_scan)
1406 {
1407 	int i, j, num_volumes, ret = 0;
1408 	int **scan_eba, **fm_eba;
1409 	struct ubi_ainf_volume *av;
1410 	struct ubi_volume *vol;
1411 	struct ubi_ainf_peb *aeb;
1412 	struct rb_node *rb;
1413 
1414 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1415 
1416 	scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1417 	if (!scan_eba)
1418 		return -ENOMEM;
1419 
1420 	fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1421 	if (!fm_eba) {
1422 		kfree(scan_eba);
1423 		return -ENOMEM;
1424 	}
1425 
1426 	for (i = 0; i < num_volumes; i++) {
1427 		vol = ubi->volumes[i];
1428 		if (!vol)
1429 			continue;
1430 
1431 		scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1432 				      GFP_KERNEL);
1433 		if (!scan_eba[i]) {
1434 			ret = -ENOMEM;
1435 			goto out_free;
1436 		}
1437 
1438 		fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1439 				    GFP_KERNEL);
1440 		if (!fm_eba[i]) {
1441 			ret = -ENOMEM;
1442 			goto out_free;
1443 		}
1444 
1445 		for (j = 0; j < vol->reserved_pebs; j++)
1446 			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1447 
1448 		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1449 		if (!av)
1450 			continue;
1451 
1452 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1453 			scan_eba[i][aeb->lnum] = aeb->pnum;
1454 
1455 		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1456 		if (!av)
1457 			continue;
1458 
1459 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1460 			fm_eba[i][aeb->lnum] = aeb->pnum;
1461 
1462 		for (j = 0; j < vol->reserved_pebs; j++) {
1463 			if (scan_eba[i][j] != fm_eba[i][j]) {
1464 				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1465 					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1466 					continue;
1467 
1468 				ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1469 					vol->vol_id, j, fm_eba[i][j],
1470 					scan_eba[i][j]);
1471 				ubi_assert(0);
1472 			}
1473 		}
1474 	}
1475 
1476 out_free:
1477 	for (i = 0; i < num_volumes; i++) {
1478 		if (!ubi->volumes[i])
1479 			continue;
1480 
1481 		kfree(scan_eba[i]);
1482 		kfree(fm_eba[i]);
1483 	}
1484 
1485 	kfree(scan_eba);
1486 	kfree(fm_eba);
1487 	return ret;
1488 }
1489 
1490 /**
1491  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1492  * @ubi: UBI device description object
1493  * @ai: attaching information
1494  *
1495  * This function returns zero in case of success and a negative error code in
1496  * case of failure.
1497  */
1498 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1499 {
1500 	int i, err, num_volumes;
1501 	struct ubi_ainf_volume *av;
1502 	struct ubi_volume *vol;
1503 	struct ubi_ainf_peb *aeb;
1504 	struct rb_node *rb;
1505 
1506 	dbg_eba("initialize EBA sub-system");
1507 
1508 	spin_lock_init(&ubi->ltree_lock);
1509 	mutex_init(&ubi->alc_mutex);
1510 	ubi->ltree = RB_ROOT;
1511 
1512 	ubi->global_sqnum = ai->max_sqnum + 1;
1513 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1514 
1515 	for (i = 0; i < num_volumes; i++) {
1516 		struct ubi_eba_table *tbl;
1517 
1518 		vol = ubi->volumes[i];
1519 		if (!vol)
1520 			continue;
1521 
1522 		cond_resched();
1523 
1524 		tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
1525 		if (IS_ERR(tbl)) {
1526 			err = PTR_ERR(tbl);
1527 			goto out_free;
1528 		}
1529 
1530 		ubi_eba_replace_table(vol, tbl);
1531 
1532 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1533 		if (!av)
1534 			continue;
1535 
1536 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1537 			if (aeb->lnum >= vol->reserved_pebs) {
1538 				/*
1539 				 * This may happen in case of an unclean reboot
1540 				 * during re-size.
1541 				 */
1542 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1543 			} else {
1544 				struct ubi_eba_entry *entry;
1545 
1546 				entry = &vol->eba_tbl->entries[aeb->lnum];
1547 				entry->pnum = aeb->pnum;
1548 			}
1549 		}
1550 	}
1551 
1552 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1553 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1554 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1555 		if (ubi->corr_peb_count)
1556 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1557 				ubi->corr_peb_count);
1558 		err = -ENOSPC;
1559 		goto out_free;
1560 	}
1561 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1562 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1563 
1564 	if (ubi->bad_allowed) {
1565 		ubi_calculate_reserved(ubi);
1566 
1567 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1568 			/* No enough free physical eraseblocks */
1569 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1570 			print_rsvd_warning(ubi, ai);
1571 		} else
1572 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1573 
1574 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1575 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1576 	}
1577 
1578 	dbg_eba("EBA sub-system is initialized");
1579 	return 0;
1580 
1581 out_free:
1582 	for (i = 0; i < num_volumes; i++) {
1583 		if (!ubi->volumes[i])
1584 			continue;
1585 		ubi_eba_replace_table(ubi->volumes[i], NULL);
1586 	}
1587 	return err;
1588 }
1589