xref: /openbmc/linux/drivers/mtd/spi-nor/sfdp.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/slab.h>
9 #include <linux/sort.h>
10 #include <linux/mtd/spi-nor.h>
11 
12 #include "core.h"
13 
14 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
15 #define SFDP_PARAM_HEADER_PTP(p) \
16 	(((p)->parameter_table_pointer[2] << 16) | \
17 	 ((p)->parameter_table_pointer[1] <<  8) | \
18 	 ((p)->parameter_table_pointer[0] <<  0))
19 
20 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
21 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
22 #define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
23 #define SFDP_PROFILE1_ID	0xff05	/* xSPI Profile 1.0 table. */
24 #define SFDP_SCCR_MAP_ID	0xff87	/*
25 					 * Status, Control and Configuration
26 					 * Register Map.
27 					 */
28 
29 #define SFDP_SIGNATURE		0x50444653U
30 
31 struct sfdp_header {
32 	u32		signature; /* Ox50444653U <=> "SFDP" */
33 	u8		minor;
34 	u8		major;
35 	u8		nph; /* 0-base number of parameter headers */
36 	u8		unused;
37 
38 	/* Basic Flash Parameter Table. */
39 	struct sfdp_parameter_header	bfpt_header;
40 };
41 
42 /* Fast Read settings. */
43 struct sfdp_bfpt_read {
44 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
45 	u32			hwcaps;
46 
47 	/*
48 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
49 	 * whether the Fast Read x-y-z command is supported.
50 	 */
51 	u32			supported_dword;
52 	u32			supported_bit;
53 
54 	/*
55 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
56 	 * encodes the op code, the number of mode clocks and the number of wait
57 	 * states to be used by Fast Read x-y-z command.
58 	 */
59 	u32			settings_dword;
60 	u32			settings_shift;
61 
62 	/* The SPI protocol for this Fast Read x-y-z command. */
63 	enum spi_nor_protocol	proto;
64 };
65 
66 struct sfdp_bfpt_erase {
67 	/*
68 	 * The half-word at offset <shift> in DWORD <dword> encodes the
69 	 * op code and erase sector size to be used by Sector Erase commands.
70 	 */
71 	u32			dword;
72 	u32			shift;
73 };
74 
75 #define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
76 #define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
77 #define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
78 #define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
79 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)
80 
81 #define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
82 #define SMPT_CMD_READ_DUMMY_SHIFT		16
83 #define SMPT_CMD_READ_DUMMY(_cmd) \
84 	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
85 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL
86 
87 #define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
88 #define SMPT_CMD_READ_DATA_SHIFT		24
89 #define SMPT_CMD_READ_DATA(_cmd) \
90 	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
91 
92 #define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
93 #define SMPT_CMD_OPCODE_SHIFT			8
94 #define SMPT_CMD_OPCODE(_cmd) \
95 	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
96 
97 #define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
98 #define SMPT_MAP_REGION_COUNT_SHIFT		16
99 #define SMPT_MAP_REGION_COUNT(_header) \
100 	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
101 	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)
102 
103 #define SMPT_MAP_ID_MASK			GENMASK(15, 8)
104 #define SMPT_MAP_ID_SHIFT			8
105 #define SMPT_MAP_ID(_header) \
106 	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
107 
108 #define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
109 #define SMPT_MAP_REGION_SIZE_SHIFT		8
110 #define SMPT_MAP_REGION_SIZE(_region) \
111 	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
112 	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
113 
114 #define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
115 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \
116 	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
117 
118 #define SMPT_DESC_TYPE_MAP			BIT(1)
119 #define SMPT_DESC_END				BIT(0)
120 
121 #define SFDP_4BAIT_DWORD_MAX	2
122 
123 struct sfdp_4bait {
124 	/* The hardware capability. */
125 	u32		hwcaps;
126 
127 	/*
128 	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
129 	 * the associated 4-byte address op code is supported.
130 	 */
131 	u32		supported_bit;
132 };
133 
134 /**
135  * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
136  *			addr_width and read_dummy members of the struct spi_nor
137  *			should be previously
138  * set.
139  * @nor:	pointer to a 'struct spi_nor'
140  * @addr:	offset in the serial flash memory
141  * @len:	number of bytes to read
142  * @buf:	buffer where the data is copied into (dma-safe memory)
143  *
144  * Return: 0 on success, -errno otherwise.
145  */
146 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
147 {
148 	ssize_t ret;
149 
150 	while (len) {
151 		ret = spi_nor_read_data(nor, addr, len, buf);
152 		if (ret < 0)
153 			return ret;
154 		if (!ret || ret > len)
155 			return -EIO;
156 
157 		buf += ret;
158 		addr += ret;
159 		len -= ret;
160 	}
161 	return 0;
162 }
163 
164 /**
165  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
166  * @nor:	pointer to a 'struct spi_nor'
167  * @addr:	offset in the SFDP area to start reading data from
168  * @len:	number of bytes to read
169  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
170  *
171  * Whatever the actual numbers of bytes for address and dummy cycles are
172  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
173  * followed by a 3-byte address and 8 dummy clock cycles.
174  *
175  * Return: 0 on success, -errno otherwise.
176  */
177 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
178 			     size_t len, void *buf)
179 {
180 	u8 addr_width, read_opcode, read_dummy;
181 	int ret;
182 
183 	read_opcode = nor->read_opcode;
184 	addr_width = nor->addr_width;
185 	read_dummy = nor->read_dummy;
186 
187 	nor->read_opcode = SPINOR_OP_RDSFDP;
188 	nor->addr_width = 3;
189 	nor->read_dummy = 8;
190 
191 	ret = spi_nor_read_raw(nor, addr, len, buf);
192 
193 	nor->read_opcode = read_opcode;
194 	nor->addr_width = addr_width;
195 	nor->read_dummy = read_dummy;
196 
197 	return ret;
198 }
199 
200 /**
201  * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
202  * @nor:	pointer to a 'struct spi_nor'
203  * @addr:	offset in the SFDP area to start reading data from
204  * @len:	number of bytes to read
205  * @buf:	buffer where the SFDP data are copied into
206  *
207  * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
208  * guaranteed to be dma-safe.
209  *
210  * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
211  *          otherwise.
212  */
213 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
214 					size_t len, void *buf)
215 {
216 	void *dma_safe_buf;
217 	int ret;
218 
219 	dma_safe_buf = kmalloc(len, GFP_KERNEL);
220 	if (!dma_safe_buf)
221 		return -ENOMEM;
222 
223 	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
224 	memcpy(buf, dma_safe_buf, len);
225 	kfree(dma_safe_buf);
226 
227 	return ret;
228 }
229 
230 static void
231 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
232 				    u16 half,
233 				    enum spi_nor_protocol proto)
234 {
235 	read->num_mode_clocks = (half >> 5) & 0x07;
236 	read->num_wait_states = (half >> 0) & 0x1f;
237 	read->opcode = (half >> 8) & 0xff;
238 	read->proto = proto;
239 }
240 
241 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
242 	/* Fast Read 1-1-2 */
243 	{
244 		SNOR_HWCAPS_READ_1_1_2,
245 		BFPT_DWORD(1), BIT(16),	/* Supported bit */
246 		BFPT_DWORD(4), 0,	/* Settings */
247 		SNOR_PROTO_1_1_2,
248 	},
249 
250 	/* Fast Read 1-2-2 */
251 	{
252 		SNOR_HWCAPS_READ_1_2_2,
253 		BFPT_DWORD(1), BIT(20),	/* Supported bit */
254 		BFPT_DWORD(4), 16,	/* Settings */
255 		SNOR_PROTO_1_2_2,
256 	},
257 
258 	/* Fast Read 2-2-2 */
259 	{
260 		SNOR_HWCAPS_READ_2_2_2,
261 		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
262 		BFPT_DWORD(6), 16,	/* Settings */
263 		SNOR_PROTO_2_2_2,
264 	},
265 
266 	/* Fast Read 1-1-4 */
267 	{
268 		SNOR_HWCAPS_READ_1_1_4,
269 		BFPT_DWORD(1), BIT(22),	/* Supported bit */
270 		BFPT_DWORD(3), 16,	/* Settings */
271 		SNOR_PROTO_1_1_4,
272 	},
273 
274 	/* Fast Read 1-4-4 */
275 	{
276 		SNOR_HWCAPS_READ_1_4_4,
277 		BFPT_DWORD(1), BIT(21),	/* Supported bit */
278 		BFPT_DWORD(3), 0,	/* Settings */
279 		SNOR_PROTO_1_4_4,
280 	},
281 
282 	/* Fast Read 4-4-4 */
283 	{
284 		SNOR_HWCAPS_READ_4_4_4,
285 		BFPT_DWORD(5), BIT(4),	/* Supported bit */
286 		BFPT_DWORD(7), 16,	/* Settings */
287 		SNOR_PROTO_4_4_4,
288 	},
289 };
290 
291 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
292 	/* Erase Type 1 in DWORD8 bits[15:0] */
293 	{BFPT_DWORD(8), 0},
294 
295 	/* Erase Type 2 in DWORD8 bits[31:16] */
296 	{BFPT_DWORD(8), 16},
297 
298 	/* Erase Type 3 in DWORD9 bits[15:0] */
299 	{BFPT_DWORD(9), 0},
300 
301 	/* Erase Type 4 in DWORD9 bits[31:16] */
302 	{BFPT_DWORD(9), 16},
303 };
304 
305 /**
306  * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
307  * @erase:	pointer to a structure that describes a SPI NOR erase type
308  * @size:	the size of the sector/block erased by the erase type
309  * @opcode:	the SPI command op code to erase the sector/block
310  * @i:		erase type index as sorted in the Basic Flash Parameter Table
311  *
312  * The supported Erase Types will be sorted at init in ascending order, with
313  * the smallest Erase Type size being the first member in the erase_type array
314  * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
315  * the Basic Flash Parameter Table since it will be used later on to
316  * synchronize with the supported Erase Types defined in SFDP optional tables.
317  */
318 static void
319 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
320 				     u32 size, u8 opcode, u8 i)
321 {
322 	erase->idx = i;
323 	spi_nor_set_erase_type(erase, size, opcode);
324 }
325 
326 /**
327  * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
328  * @l:	member in the left half of the map's erase_type array
329  * @r:	member in the right half of the map's erase_type array
330  *
331  * Comparison function used in the sort() call to sort in ascending order the
332  * map's erase types, the smallest erase type size being the first member in the
333  * sorted erase_type array.
334  *
335  * Return: the result of @l->size - @r->size
336  */
337 static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
338 {
339 	const struct spi_nor_erase_type *left = l, *right = r;
340 
341 	return left->size - right->size;
342 }
343 
344 /**
345  * spi_nor_sort_erase_mask() - sort erase mask
346  * @map:	the erase map of the SPI NOR
347  * @erase_mask:	the erase type mask to be sorted
348  *
349  * Replicate the sort done for the map's erase types in BFPT: sort the erase
350  * mask in ascending order with the smallest erase type size starting from
351  * BIT(0) in the sorted erase mask.
352  *
353  * Return: sorted erase mask.
354  */
355 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
356 {
357 	struct spi_nor_erase_type *erase_type = map->erase_type;
358 	int i;
359 	u8 sorted_erase_mask = 0;
360 
361 	if (!erase_mask)
362 		return 0;
363 
364 	/* Replicate the sort done for the map's erase types. */
365 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
366 		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
367 			sorted_erase_mask |= BIT(i);
368 
369 	return sorted_erase_mask;
370 }
371 
372 /**
373  * spi_nor_regions_sort_erase_types() - sort erase types in each region
374  * @map:	the erase map of the SPI NOR
375  *
376  * Function assumes that the erase types defined in the erase map are already
377  * sorted in ascending order, with the smallest erase type size being the first
378  * member in the erase_type array. It replicates the sort done for the map's
379  * erase types. Each region's erase bitmask will indicate which erase types are
380  * supported from the sorted erase types defined in the erase map.
381  * Sort the all region's erase type at init in order to speed up the process of
382  * finding the best erase command at runtime.
383  */
384 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
385 {
386 	struct spi_nor_erase_region *region = map->regions;
387 	u8 region_erase_mask, sorted_erase_mask;
388 
389 	while (region) {
390 		region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
391 
392 		sorted_erase_mask = spi_nor_sort_erase_mask(map,
393 							    region_erase_mask);
394 
395 		/* Overwrite erase mask. */
396 		region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
397 				 sorted_erase_mask;
398 
399 		region = spi_nor_region_next(region);
400 	}
401 }
402 
403 /**
404  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
405  * @nor:		pointer to a 'struct spi_nor'
406  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
407  *			the Basic Flash Parameter Table length and version
408  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
409  *			filled
410  *
411  * The Basic Flash Parameter Table is the main and only mandatory table as
412  * defined by the SFDP (JESD216) specification.
413  * It provides us with the total size (memory density) of the data array and
414  * the number of address bytes for Fast Read, Page Program and Sector Erase
415  * commands.
416  * For Fast READ commands, it also gives the number of mode clock cycles and
417  * wait states (regrouped in the number of dummy clock cycles) for each
418  * supported instruction op code.
419  * For Page Program, the page size is now available since JESD216 rev A, however
420  * the supported instruction op codes are still not provided.
421  * For Sector Erase commands, this table stores the supported instruction op
422  * codes and the associated sector sizes.
423  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
424  * rev A. The QER bits encode the manufacturer dependent procedure to be
425  * executed to set the Quad Enable (QE) bit in some internal register of the
426  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
427  * sending any Quad SPI command to the memory. Actually, setting the QE bit
428  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
429  * and IO3 hence enabling 4 (Quad) I/O lines.
430  *
431  * Return: 0 on success, -errno otherwise.
432  */
433 static int spi_nor_parse_bfpt(struct spi_nor *nor,
434 			      const struct sfdp_parameter_header *bfpt_header,
435 			      struct spi_nor_flash_parameter *params)
436 {
437 	struct spi_nor_erase_map *map = &params->erase_map;
438 	struct spi_nor_erase_type *erase_type = map->erase_type;
439 	struct sfdp_bfpt bfpt;
440 	size_t len;
441 	int i, cmd, err;
442 	u32 addr, val;
443 	u16 half;
444 	u8 erase_mask;
445 
446 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
447 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
448 		return -EINVAL;
449 
450 	/* Read the Basic Flash Parameter Table. */
451 	len = min_t(size_t, sizeof(bfpt),
452 		    bfpt_header->length * sizeof(u32));
453 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
454 	memset(&bfpt, 0, sizeof(bfpt));
455 	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
456 	if (err < 0)
457 		return err;
458 
459 	/* Fix endianness of the BFPT DWORDs. */
460 	le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
461 
462 	/* Number of address bytes. */
463 	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
464 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
465 	case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
466 		nor->addr_width = 3;
467 		break;
468 
469 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
470 		nor->addr_width = 4;
471 		break;
472 
473 	default:
474 		break;
475 	}
476 
477 	/* Flash Memory Density (in bits). */
478 	val = bfpt.dwords[BFPT_DWORD(2)];
479 	if (val & BIT(31)) {
480 		val &= ~BIT(31);
481 
482 		/*
483 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
484 		 * bits is unlikely to exist so this error probably means
485 		 * the BFPT we are reading is corrupted/wrong.
486 		 */
487 		if (val > 63)
488 			return -EINVAL;
489 
490 		params->size = 1ULL << val;
491 	} else {
492 		params->size = val + 1;
493 	}
494 	params->size >>= 3; /* Convert to bytes. */
495 
496 	/* Fast Read settings. */
497 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
498 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
499 		struct spi_nor_read_command *read;
500 
501 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
502 			params->hwcaps.mask &= ~rd->hwcaps;
503 			continue;
504 		}
505 
506 		params->hwcaps.mask |= rd->hwcaps;
507 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
508 		read = &params->reads[cmd];
509 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
510 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
511 	}
512 
513 	/*
514 	 * Sector Erase settings. Reinitialize the uniform erase map using the
515 	 * Erase Types defined in the bfpt table.
516 	 */
517 	erase_mask = 0;
518 	memset(&params->erase_map, 0, sizeof(params->erase_map));
519 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
520 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
521 		u32 erasesize;
522 		u8 opcode;
523 
524 		half = bfpt.dwords[er->dword] >> er->shift;
525 		erasesize = half & 0xff;
526 
527 		/* erasesize == 0 means this Erase Type is not supported. */
528 		if (!erasesize)
529 			continue;
530 
531 		erasesize = 1U << erasesize;
532 		opcode = (half >> 8) & 0xff;
533 		erase_mask |= BIT(i);
534 		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
535 						     opcode, i);
536 	}
537 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
538 	/*
539 	 * Sort all the map's Erase Types in ascending order with the smallest
540 	 * erase size being the first member in the erase_type array.
541 	 */
542 	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
543 	     spi_nor_map_cmp_erase_type, NULL);
544 	/*
545 	 * Sort the erase types in the uniform region in order to update the
546 	 * uniform_erase_type bitmask. The bitmask will be used later on when
547 	 * selecting the uniform erase.
548 	 */
549 	spi_nor_regions_sort_erase_types(map);
550 	map->uniform_erase_type = map->uniform_region.offset &
551 				  SNOR_ERASE_TYPE_MASK;
552 
553 	/* Stop here if not JESD216 rev A or later. */
554 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
555 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
556 						params);
557 
558 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
559 	val = bfpt.dwords[BFPT_DWORD(11)];
560 	val &= BFPT_DWORD11_PAGE_SIZE_MASK;
561 	val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
562 	params->page_size = 1U << val;
563 
564 	/* Quad Enable Requirements. */
565 	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
566 	case BFPT_DWORD15_QER_NONE:
567 		params->quad_enable = NULL;
568 		break;
569 
570 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
571 		/*
572 		 * Writing only one byte to the Status Register has the
573 		 * side-effect of clearing Status Register 2.
574 		 */
575 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
576 		/*
577 		 * Read Configuration Register (35h) instruction is not
578 		 * supported.
579 		 */
580 		nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
581 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
582 		break;
583 
584 	case BFPT_DWORD15_QER_SR1_BIT6:
585 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
586 		params->quad_enable = spi_nor_sr1_bit6_quad_enable;
587 		break;
588 
589 	case BFPT_DWORD15_QER_SR2_BIT7:
590 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
591 		params->quad_enable = spi_nor_sr2_bit7_quad_enable;
592 		break;
593 
594 	case BFPT_DWORD15_QER_SR2_BIT1:
595 		/*
596 		 * JESD216 rev B or later does not specify if writing only one
597 		 * byte to the Status Register clears or not the Status
598 		 * Register 2, so let's be cautious and keep the default
599 		 * assumption of a 16-bit Write Status (01h) command.
600 		 */
601 		nor->flags |= SNOR_F_HAS_16BIT_SR;
602 
603 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
604 		break;
605 
606 	default:
607 		dev_dbg(nor->dev, "BFPT QER reserved value used\n");
608 		break;
609 	}
610 
611 	/* Soft Reset support. */
612 	if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
613 		nor->flags |= SNOR_F_SOFT_RESET;
614 
615 	/* Stop here if not JESD216 rev C or later. */
616 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
617 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
618 						params);
619 	/* 8D-8D-8D command extension. */
620 	switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
621 	case BFPT_DWORD18_CMD_EXT_REP:
622 		nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
623 		break;
624 
625 	case BFPT_DWORD18_CMD_EXT_INV:
626 		nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
627 		break;
628 
629 	case BFPT_DWORD18_CMD_EXT_RES:
630 		dev_dbg(nor->dev, "Reserved command extension used\n");
631 		break;
632 
633 	case BFPT_DWORD18_CMD_EXT_16B:
634 		dev_dbg(nor->dev, "16-bit opcodes not supported\n");
635 		return -EOPNOTSUPP;
636 	}
637 
638 	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params);
639 }
640 
641 /**
642  * spi_nor_smpt_addr_width() - return the address width used in the
643  *			       configuration detection command.
644  * @nor:	pointer to a 'struct spi_nor'
645  * @settings:	configuration detection command descriptor, dword1
646  */
647 static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings)
648 {
649 	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
650 	case SMPT_CMD_ADDRESS_LEN_0:
651 		return 0;
652 	case SMPT_CMD_ADDRESS_LEN_3:
653 		return 3;
654 	case SMPT_CMD_ADDRESS_LEN_4:
655 		return 4;
656 	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
657 	default:
658 		return nor->addr_width;
659 	}
660 }
661 
662 /**
663  * spi_nor_smpt_read_dummy() - return the configuration detection command read
664  *			       latency, in clock cycles.
665  * @nor:	pointer to a 'struct spi_nor'
666  * @settings:	configuration detection command descriptor, dword1
667  *
668  * Return: the number of dummy cycles for an SMPT read
669  */
670 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
671 {
672 	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
673 
674 	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
675 		return nor->read_dummy;
676 	return read_dummy;
677 }
678 
679 /**
680  * spi_nor_get_map_in_use() - get the configuration map in use
681  * @nor:	pointer to a 'struct spi_nor'
682  * @smpt:	pointer to the sector map parameter table
683  * @smpt_len:	sector map parameter table length
684  *
685  * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
686  */
687 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
688 					 u8 smpt_len)
689 {
690 	const u32 *ret;
691 	u8 *buf;
692 	u32 addr;
693 	int err;
694 	u8 i;
695 	u8 addr_width, read_opcode, read_dummy;
696 	u8 read_data_mask, map_id;
697 
698 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
699 	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
700 	if (!buf)
701 		return ERR_PTR(-ENOMEM);
702 
703 	addr_width = nor->addr_width;
704 	read_dummy = nor->read_dummy;
705 	read_opcode = nor->read_opcode;
706 
707 	map_id = 0;
708 	/* Determine if there are any optional Detection Command Descriptors */
709 	for (i = 0; i < smpt_len; i += 2) {
710 		if (smpt[i] & SMPT_DESC_TYPE_MAP)
711 			break;
712 
713 		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
714 		nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]);
715 		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
716 		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
717 		addr = smpt[i + 1];
718 
719 		err = spi_nor_read_raw(nor, addr, 1, buf);
720 		if (err) {
721 			ret = ERR_PTR(err);
722 			goto out;
723 		}
724 
725 		/*
726 		 * Build an index value that is used to select the Sector Map
727 		 * Configuration that is currently in use.
728 		 */
729 		map_id = map_id << 1 | !!(*buf & read_data_mask);
730 	}
731 
732 	/*
733 	 * If command descriptors are provided, they always precede map
734 	 * descriptors in the table. There is no need to start the iteration
735 	 * over smpt array all over again.
736 	 *
737 	 * Find the matching configuration map.
738 	 */
739 	ret = ERR_PTR(-EINVAL);
740 	while (i < smpt_len) {
741 		if (SMPT_MAP_ID(smpt[i]) == map_id) {
742 			ret = smpt + i;
743 			break;
744 		}
745 
746 		/*
747 		 * If there are no more configuration map descriptors and no
748 		 * configuration ID matched the configuration identifier, the
749 		 * sector address map is unknown.
750 		 */
751 		if (smpt[i] & SMPT_DESC_END)
752 			break;
753 
754 		/* increment the table index to the next map */
755 		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
756 	}
757 
758 	/* fall through */
759 out:
760 	kfree(buf);
761 	nor->addr_width = addr_width;
762 	nor->read_dummy = read_dummy;
763 	nor->read_opcode = read_opcode;
764 	return ret;
765 }
766 
767 static void spi_nor_region_mark_end(struct spi_nor_erase_region *region)
768 {
769 	region->offset |= SNOR_LAST_REGION;
770 }
771 
772 static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
773 {
774 	region->offset |= SNOR_OVERLAID_REGION;
775 }
776 
777 /**
778  * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
779  * @region:	pointer to a structure that describes a SPI NOR erase region
780  * @erase:	pointer to a structure that describes a SPI NOR erase type
781  * @erase_type:	erase type bitmask
782  */
783 static void
784 spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
785 			     const struct spi_nor_erase_type *erase,
786 			     const u8 erase_type)
787 {
788 	int i;
789 
790 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
791 		if (!(erase_type & BIT(i)))
792 			continue;
793 		if (region->size & erase[i].size_mask) {
794 			spi_nor_region_mark_overlay(region);
795 			return;
796 		}
797 	}
798 }
799 
800 /**
801  * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
802  * @nor:	pointer to a 'struct spi_nor'
803  * @params:     pointer to a duplicate 'struct spi_nor_flash_parameter' that is
804  *              used for storing SFDP parsed data
805  * @smpt:	pointer to the sector map parameter table
806  *
807  * Return: 0 on success, -errno otherwise.
808  */
809 static int
810 spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
811 				   struct spi_nor_flash_parameter *params,
812 				   const u32 *smpt)
813 {
814 	struct spi_nor_erase_map *map = &params->erase_map;
815 	struct spi_nor_erase_type *erase = map->erase_type;
816 	struct spi_nor_erase_region *region;
817 	u64 offset;
818 	u32 region_count;
819 	int i, j;
820 	u8 uniform_erase_type, save_uniform_erase_type;
821 	u8 erase_type, regions_erase_type;
822 
823 	region_count = SMPT_MAP_REGION_COUNT(*smpt);
824 	/*
825 	 * The regions will be freed when the driver detaches from the
826 	 * device.
827 	 */
828 	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
829 			      GFP_KERNEL);
830 	if (!region)
831 		return -ENOMEM;
832 	map->regions = region;
833 
834 	uniform_erase_type = 0xff;
835 	regions_erase_type = 0;
836 	offset = 0;
837 	/* Populate regions. */
838 	for (i = 0; i < region_count; i++) {
839 		j = i + 1; /* index for the region dword */
840 		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
841 		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
842 		region[i].offset = offset | erase_type;
843 
844 		spi_nor_region_check_overlay(&region[i], erase, erase_type);
845 
846 		/*
847 		 * Save the erase types that are supported in all regions and
848 		 * can erase the entire flash memory.
849 		 */
850 		uniform_erase_type &= erase_type;
851 
852 		/*
853 		 * regions_erase_type mask will indicate all the erase types
854 		 * supported in this configuration map.
855 		 */
856 		regions_erase_type |= erase_type;
857 
858 		offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
859 			 region[i].size;
860 	}
861 
862 	save_uniform_erase_type = map->uniform_erase_type;
863 	map->uniform_erase_type = spi_nor_sort_erase_mask(map,
864 							  uniform_erase_type);
865 
866 	if (!regions_erase_type) {
867 		/*
868 		 * Roll back to the previous uniform_erase_type mask, SMPT is
869 		 * broken.
870 		 */
871 		map->uniform_erase_type = save_uniform_erase_type;
872 		return -EINVAL;
873 	}
874 
875 	/*
876 	 * BFPT advertises all the erase types supported by all the possible
877 	 * map configurations. Mask out the erase types that are not supported
878 	 * by the current map configuration.
879 	 */
880 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
881 		if (!(regions_erase_type & BIT(erase[i].idx)))
882 			spi_nor_set_erase_type(&erase[i], 0, 0xFF);
883 
884 	spi_nor_region_mark_end(&region[i - 1]);
885 
886 	return 0;
887 }
888 
889 /**
890  * spi_nor_parse_smpt() - parse Sector Map Parameter Table
891  * @nor:		pointer to a 'struct spi_nor'
892  * @smpt_header:	sector map parameter table header
893  * @params:		pointer to a duplicate 'struct spi_nor_flash_parameter'
894  *                      that is used for storing SFDP parsed data
895  *
896  * This table is optional, but when available, we parse it to identify the
897  * location and size of sectors within the main data array of the flash memory
898  * device and to identify which Erase Types are supported by each sector.
899  *
900  * Return: 0 on success, -errno otherwise.
901  */
902 static int spi_nor_parse_smpt(struct spi_nor *nor,
903 			      const struct sfdp_parameter_header *smpt_header,
904 			      struct spi_nor_flash_parameter *params)
905 {
906 	const u32 *sector_map;
907 	u32 *smpt;
908 	size_t len;
909 	u32 addr;
910 	int ret;
911 
912 	/* Read the Sector Map Parameter Table. */
913 	len = smpt_header->length * sizeof(*smpt);
914 	smpt = kmalloc(len, GFP_KERNEL);
915 	if (!smpt)
916 		return -ENOMEM;
917 
918 	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
919 	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
920 	if (ret)
921 		goto out;
922 
923 	/* Fix endianness of the SMPT DWORDs. */
924 	le32_to_cpu_array(smpt, smpt_header->length);
925 
926 	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
927 	if (IS_ERR(sector_map)) {
928 		ret = PTR_ERR(sector_map);
929 		goto out;
930 	}
931 
932 	ret = spi_nor_init_non_uniform_erase_map(nor, params, sector_map);
933 	if (ret)
934 		goto out;
935 
936 	spi_nor_regions_sort_erase_types(&params->erase_map);
937 	/* fall through */
938 out:
939 	kfree(smpt);
940 	return ret;
941 }
942 
943 /**
944  * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
945  * @nor:		pointer to a 'struct spi_nor'.
946  * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
947  *			the 4-Byte Address Instruction Table length and version.
948  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be.
949  *
950  * Return: 0 on success, -errno otherwise.
951  */
952 static int spi_nor_parse_4bait(struct spi_nor *nor,
953 			       const struct sfdp_parameter_header *param_header,
954 			       struct spi_nor_flash_parameter *params)
955 {
956 	static const struct sfdp_4bait reads[] = {
957 		{ SNOR_HWCAPS_READ,		BIT(0) },
958 		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
959 		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
960 		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
961 		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
962 		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
963 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
964 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
965 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
966 	};
967 	static const struct sfdp_4bait programs[] = {
968 		{ SNOR_HWCAPS_PP,		BIT(6) },
969 		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
970 		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
971 	};
972 	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
973 		{ 0u /* not used */,		BIT(9) },
974 		{ 0u /* not used */,		BIT(10) },
975 		{ 0u /* not used */,		BIT(11) },
976 		{ 0u /* not used */,		BIT(12) },
977 	};
978 	struct spi_nor_pp_command *params_pp = params->page_programs;
979 	struct spi_nor_erase_map *map = &params->erase_map;
980 	struct spi_nor_erase_type *erase_type = map->erase_type;
981 	u32 *dwords;
982 	size_t len;
983 	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
984 	int i, ret;
985 
986 	if (param_header->major != SFDP_JESD216_MAJOR ||
987 	    param_header->length < SFDP_4BAIT_DWORD_MAX)
988 		return -EINVAL;
989 
990 	/* Read the 4-byte Address Instruction Table. */
991 	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
992 
993 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
994 	dwords = kmalloc(len, GFP_KERNEL);
995 	if (!dwords)
996 		return -ENOMEM;
997 
998 	addr = SFDP_PARAM_HEADER_PTP(param_header);
999 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1000 	if (ret)
1001 		goto out;
1002 
1003 	/* Fix endianness of the 4BAIT DWORDs. */
1004 	le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
1005 
1006 	/*
1007 	 * Compute the subset of (Fast) Read commands for which the 4-byte
1008 	 * version is supported.
1009 	 */
1010 	discard_hwcaps = 0;
1011 	read_hwcaps = 0;
1012 	for (i = 0; i < ARRAY_SIZE(reads); i++) {
1013 		const struct sfdp_4bait *read = &reads[i];
1014 
1015 		discard_hwcaps |= read->hwcaps;
1016 		if ((params->hwcaps.mask & read->hwcaps) &&
1017 		    (dwords[0] & read->supported_bit))
1018 			read_hwcaps |= read->hwcaps;
1019 	}
1020 
1021 	/*
1022 	 * Compute the subset of Page Program commands for which the 4-byte
1023 	 * version is supported.
1024 	 */
1025 	pp_hwcaps = 0;
1026 	for (i = 0; i < ARRAY_SIZE(programs); i++) {
1027 		const struct sfdp_4bait *program = &programs[i];
1028 
1029 		/*
1030 		 * The 4 Byte Address Instruction (Optional) Table is the only
1031 		 * SFDP table that indicates support for Page Program Commands.
1032 		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1033 		 * authority for specifying Page Program support.
1034 		 */
1035 		discard_hwcaps |= program->hwcaps;
1036 		if (dwords[0] & program->supported_bit)
1037 			pp_hwcaps |= program->hwcaps;
1038 	}
1039 
1040 	/*
1041 	 * Compute the subset of Sector Erase commands for which the 4-byte
1042 	 * version is supported.
1043 	 */
1044 	erase_mask = 0;
1045 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1046 		const struct sfdp_4bait *erase = &erases[i];
1047 
1048 		if (dwords[0] & erase->supported_bit)
1049 			erase_mask |= BIT(i);
1050 	}
1051 
1052 	/* Replicate the sort done for the map's erase types in BFPT. */
1053 	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1054 
1055 	/*
1056 	 * We need at least one 4-byte op code per read, program and erase
1057 	 * operation; the .read(), .write() and .erase() hooks share the
1058 	 * nor->addr_width value.
1059 	 */
1060 	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1061 		goto out;
1062 
1063 	/*
1064 	 * Discard all operations from the 4-byte instruction set which are
1065 	 * not supported by this memory.
1066 	 */
1067 	params->hwcaps.mask &= ~discard_hwcaps;
1068 	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1069 
1070 	/* Use the 4-byte address instruction set. */
1071 	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1072 		struct spi_nor_read_command *read_cmd = &params->reads[i];
1073 
1074 		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1075 	}
1076 
1077 	/* 4BAIT is the only SFDP table that indicates page program support. */
1078 	if (pp_hwcaps & SNOR_HWCAPS_PP) {
1079 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
1080 					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1081 		/*
1082 		 * Since xSPI Page Program opcode is backward compatible with
1083 		 * Legacy SPI, use Legacy SPI opcode there as well.
1084 		 */
1085 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_8_8_8_DTR],
1086 					SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
1087 	}
1088 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1089 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
1090 					SPINOR_OP_PP_1_1_4_4B,
1091 					SNOR_PROTO_1_1_4);
1092 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1093 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
1094 					SPINOR_OP_PP_1_4_4_4B,
1095 					SNOR_PROTO_1_4_4);
1096 
1097 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1098 		if (erase_mask & BIT(i))
1099 			erase_type[i].opcode = (dwords[1] >>
1100 						erase_type[i].idx * 8) & 0xFF;
1101 		else
1102 			spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
1103 	}
1104 
1105 	/*
1106 	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1107 	 * later because we already did the conversion to 4byte opcodes. Also,
1108 	 * this latest function implements a legacy quirk for the erase size of
1109 	 * Spansion memory. However this quirk is no longer needed with new
1110 	 * SFDP compliant memories.
1111 	 */
1112 	nor->addr_width = 4;
1113 	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1114 
1115 	/* fall through */
1116 out:
1117 	kfree(dwords);
1118 	return ret;
1119 }
1120 
1121 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES		BIT(29)
1122 #define PROFILE1_DWORD1_RDSR_DUMMY		BIT(28)
1123 #define PROFILE1_DWORD1_RD_FAST_CMD		GENMASK(15, 8)
1124 #define PROFILE1_DWORD4_DUMMY_200MHZ		GENMASK(11, 7)
1125 #define PROFILE1_DWORD5_DUMMY_166MHZ		GENMASK(31, 27)
1126 #define PROFILE1_DWORD5_DUMMY_133MHZ		GENMASK(21, 17)
1127 #define PROFILE1_DWORD5_DUMMY_100MHZ		GENMASK(11, 7)
1128 
1129 /**
1130  * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1131  * @nor:		pointer to a 'struct spi_nor'
1132  * @profile1_header:	pointer to the 'struct sfdp_parameter_header' describing
1133  *			the Profile 1.0 Table length and version.
1134  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be.
1135  *
1136  * Return: 0 on success, -errno otherwise.
1137  */
1138 static int spi_nor_parse_profile1(struct spi_nor *nor,
1139 				  const struct sfdp_parameter_header *profile1_header,
1140 				  struct spi_nor_flash_parameter *params)
1141 {
1142 	u32 *dwords, addr;
1143 	size_t len;
1144 	int ret;
1145 	u8 dummy, opcode;
1146 
1147 	len = profile1_header->length * sizeof(*dwords);
1148 	dwords = kmalloc(len, GFP_KERNEL);
1149 	if (!dwords)
1150 		return -ENOMEM;
1151 
1152 	addr = SFDP_PARAM_HEADER_PTP(profile1_header);
1153 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1154 	if (ret)
1155 		goto out;
1156 
1157 	le32_to_cpu_array(dwords, profile1_header->length);
1158 
1159 	/* Get 8D-8D-8D fast read opcode and dummy cycles. */
1160 	opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[0]);
1161 
1162 	 /* Set the Read Status Register dummy cycles and dummy address bytes. */
1163 	if (dwords[0] & PROFILE1_DWORD1_RDSR_DUMMY)
1164 		params->rdsr_dummy = 8;
1165 	else
1166 		params->rdsr_dummy = 4;
1167 
1168 	if (dwords[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
1169 		params->rdsr_addr_nbytes = 4;
1170 	else
1171 		params->rdsr_addr_nbytes = 0;
1172 
1173 	/*
1174 	 * We don't know what speed the controller is running at. Find the
1175 	 * dummy cycles for the fastest frequency the flash can run at to be
1176 	 * sure we are never short of dummy cycles. A value of 0 means the
1177 	 * frequency is not supported.
1178 	 *
1179 	 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1180 	 * flashes set the correct value if needed in their fixup hooks.
1181 	 */
1182 	dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[3]);
1183 	if (!dummy)
1184 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, dwords[4]);
1185 	if (!dummy)
1186 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, dwords[4]);
1187 	if (!dummy)
1188 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, dwords[4]);
1189 	if (!dummy)
1190 		dev_dbg(nor->dev,
1191 			"Can't find dummy cycles from Profile 1.0 table\n");
1192 
1193 	/* Round up to an even value to avoid tripping controllers up. */
1194 	dummy = round_up(dummy, 2);
1195 
1196 	/* Update the fast read settings. */
1197 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_8_8_8_DTR],
1198 				  0, dummy, opcode,
1199 				  SNOR_PROTO_8_8_8_DTR);
1200 
1201 out:
1202 	kfree(dwords);
1203 	return ret;
1204 }
1205 
1206 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE		BIT(31)
1207 
1208 /**
1209  * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1210  *                        Map.
1211  * @nor:		pointer to a 'struct spi_nor'
1212  * @sccr_header:	pointer to the 'struct sfdp_parameter_header' describing
1213  *			the SCCR Map table length and version.
1214  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be.
1215  *
1216  * Return: 0 on success, -errno otherwise.
1217  */
1218 static int spi_nor_parse_sccr(struct spi_nor *nor,
1219 			      const struct sfdp_parameter_header *sccr_header,
1220 			      struct spi_nor_flash_parameter *params)
1221 {
1222 	u32 *dwords, addr;
1223 	size_t len;
1224 	int ret;
1225 
1226 	len = sccr_header->length * sizeof(*dwords);
1227 	dwords = kmalloc(len, GFP_KERNEL);
1228 	if (!dwords)
1229 		return -ENOMEM;
1230 
1231 	addr = SFDP_PARAM_HEADER_PTP(sccr_header);
1232 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1233 	if (ret)
1234 		goto out;
1235 
1236 	le32_to_cpu_array(dwords, sccr_header->length);
1237 
1238 	if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, dwords[22]))
1239 		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
1240 
1241 out:
1242 	kfree(dwords);
1243 	return ret;
1244 }
1245 
1246 /**
1247  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1248  * @nor:		pointer to a 'struct spi_nor'
1249  * @params:		pointer to the 'struct spi_nor_flash_parameter' to be
1250  *			filled
1251  *
1252  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1253  * specification. This is a standard which tends to supported by almost all
1254  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1255  * runtime the main parameters needed to perform basic SPI flash operations such
1256  * as Fast Read, Page Program or Sector Erase commands.
1257  *
1258  * Return: 0 on success, -errno otherwise.
1259  */
1260 int spi_nor_parse_sfdp(struct spi_nor *nor,
1261 		       struct spi_nor_flash_parameter *params)
1262 {
1263 	const struct sfdp_parameter_header *param_header, *bfpt_header;
1264 	struct sfdp_parameter_header *param_headers = NULL;
1265 	struct sfdp_header header;
1266 	struct device *dev = nor->dev;
1267 	size_t psize;
1268 	int i, err;
1269 
1270 	/* Get the SFDP header. */
1271 	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1272 	if (err < 0)
1273 		return err;
1274 
1275 	/* Check the SFDP header version. */
1276 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1277 	    header.major != SFDP_JESD216_MAJOR)
1278 		return -EINVAL;
1279 
1280 	/*
1281 	 * Verify that the first and only mandatory parameter header is a
1282 	 * Basic Flash Parameter Table header as specified in JESD216.
1283 	 */
1284 	bfpt_header = &header.bfpt_header;
1285 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1286 	    bfpt_header->major != SFDP_JESD216_MAJOR)
1287 		return -EINVAL;
1288 
1289 	/*
1290 	 * Allocate memory then read all parameter headers with a single
1291 	 * Read SFDP command. These parameter headers will actually be parsed
1292 	 * twice: a first time to get the latest revision of the basic flash
1293 	 * parameter table, then a second time to handle the supported optional
1294 	 * tables.
1295 	 * Hence we read the parameter headers once for all to reduce the
1296 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1297 	 * because we don't need to keep these parameter headers: the allocated
1298 	 * memory is always released with kfree() before exiting this function.
1299 	 */
1300 	if (header.nph) {
1301 		psize = header.nph * sizeof(*param_headers);
1302 
1303 		param_headers = kmalloc(psize, GFP_KERNEL);
1304 		if (!param_headers)
1305 			return -ENOMEM;
1306 
1307 		err = spi_nor_read_sfdp(nor, sizeof(header),
1308 					psize, param_headers);
1309 		if (err < 0) {
1310 			dev_dbg(dev, "failed to read SFDP parameter headers\n");
1311 			goto exit;
1312 		}
1313 	}
1314 
1315 	/*
1316 	 * Check other parameter headers to get the latest revision of
1317 	 * the basic flash parameter table.
1318 	 */
1319 	for (i = 0; i < header.nph; i++) {
1320 		param_header = &param_headers[i];
1321 
1322 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1323 		    param_header->major == SFDP_JESD216_MAJOR &&
1324 		    (param_header->minor > bfpt_header->minor ||
1325 		     (param_header->minor == bfpt_header->minor &&
1326 		      param_header->length > bfpt_header->length)))
1327 			bfpt_header = param_header;
1328 	}
1329 
1330 	err = spi_nor_parse_bfpt(nor, bfpt_header, params);
1331 	if (err)
1332 		goto exit;
1333 
1334 	/* Parse optional parameter tables. */
1335 	for (i = 0; i < header.nph; i++) {
1336 		param_header = &param_headers[i];
1337 
1338 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1339 		case SFDP_SECTOR_MAP_ID:
1340 			err = spi_nor_parse_smpt(nor, param_header, params);
1341 			break;
1342 
1343 		case SFDP_4BAIT_ID:
1344 			err = spi_nor_parse_4bait(nor, param_header, params);
1345 			break;
1346 
1347 		case SFDP_PROFILE1_ID:
1348 			err = spi_nor_parse_profile1(nor, param_header, params);
1349 			break;
1350 
1351 		case SFDP_SCCR_MAP_ID:
1352 			err = spi_nor_parse_sccr(nor, param_header, params);
1353 			break;
1354 
1355 		default:
1356 			break;
1357 		}
1358 
1359 		if (err) {
1360 			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1361 				 SFDP_PARAM_HEADER_ID(param_header));
1362 			/*
1363 			 * Let's not drop all information we extracted so far
1364 			 * if optional table parsers fail. In case of failing,
1365 			 * each optional parser is responsible to roll back to
1366 			 * the previously known spi_nor data.
1367 			 */
1368 			err = 0;
1369 		}
1370 	}
1371 
1372 exit:
1373 	kfree(param_headers);
1374 	return err;
1375 }
1376