xref: /openbmc/linux/drivers/mtd/spi-nor/core.c (revision 0edabdfe89581669609eaac5f6a8d0ae6fe95e7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/mutex.h>
15 #include <linux/math64.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18 
19 #include <linux/mtd/mtd.h>
20 #include <linux/of_platform.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/spi/flash.h>
23 #include <linux/mtd/spi-nor.h>
24 
25 #include "core.h"
26 
27 /* Define max times to check status register before we give up. */
28 
29 /*
30  * For everything but full-chip erase; probably could be much smaller, but kept
31  * around for safety for now
32  */
33 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
34 
35 /*
36  * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37  * for larger flash
38  */
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
40 
41 #define SPI_NOR_MAX_ADDR_WIDTH	4
42 
43 #define SPI_NOR_SRST_SLEEP_MIN 200
44 #define SPI_NOR_SRST_SLEEP_MAX 400
45 
46 /**
47  * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
48  *			   extension type.
49  * @nor:		pointer to a 'struct spi_nor'
50  * @op:			pointer to the 'struct spi_mem_op' whose properties
51  *			need to be initialized.
52  *
53  * Right now, only "repeat" and "invert" are supported.
54  *
55  * Return: The opcode extension.
56  */
57 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
58 			      const struct spi_mem_op *op)
59 {
60 	switch (nor->cmd_ext_type) {
61 	case SPI_NOR_EXT_INVERT:
62 		return ~op->cmd.opcode;
63 
64 	case SPI_NOR_EXT_REPEAT:
65 		return op->cmd.opcode;
66 
67 	default:
68 		dev_err(nor->dev, "Unknown command extension type\n");
69 		return 0;
70 	}
71 }
72 
73 /**
74  * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
75  * @nor:		pointer to a 'struct spi_nor'
76  * @op:			pointer to the 'struct spi_mem_op' whose properties
77  *			need to be initialized.
78  * @proto:		the protocol from which the properties need to be set.
79  */
80 void spi_nor_spimem_setup_op(const struct spi_nor *nor,
81 			     struct spi_mem_op *op,
82 			     const enum spi_nor_protocol proto)
83 {
84 	u8 ext;
85 
86 	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
87 
88 	if (op->addr.nbytes)
89 		op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
90 
91 	if (op->dummy.nbytes)
92 		op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
93 
94 	if (op->data.nbytes)
95 		op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
96 
97 	if (spi_nor_protocol_is_dtr(proto)) {
98 		/*
99 		 * SPIMEM supports mixed DTR modes, but right now we can only
100 		 * have all phases either DTR or STR. IOW, SPIMEM can have
101 		 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4
102 		 * phases to either DTR or STR.
103 		 */
104 		op->cmd.dtr = true;
105 		op->addr.dtr = true;
106 		op->dummy.dtr = true;
107 		op->data.dtr = true;
108 
109 		/* 2 bytes per clock cycle in DTR mode. */
110 		op->dummy.nbytes *= 2;
111 
112 		ext = spi_nor_get_cmd_ext(nor, op);
113 		op->cmd.opcode = (op->cmd.opcode << 8) | ext;
114 		op->cmd.nbytes = 2;
115 	}
116 }
117 
118 /**
119  * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
120  *                           transfer
121  * @nor:        pointer to 'struct spi_nor'
122  * @op:         pointer to 'struct spi_mem_op' template for transfer
123  *
124  * If we have to use the bounce buffer, the data field in @op will be updated.
125  *
126  * Return: true if the bounce buffer is needed, false if not
127  */
128 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
129 {
130 	/* op->data.buf.in occupies the same memory as op->data.buf.out */
131 	if (object_is_on_stack(op->data.buf.in) ||
132 	    !virt_addr_valid(op->data.buf.in)) {
133 		if (op->data.nbytes > nor->bouncebuf_size)
134 			op->data.nbytes = nor->bouncebuf_size;
135 		op->data.buf.in = nor->bouncebuf;
136 		return true;
137 	}
138 
139 	return false;
140 }
141 
142 /**
143  * spi_nor_spimem_exec_op() - execute a memory operation
144  * @nor:        pointer to 'struct spi_nor'
145  * @op:         pointer to 'struct spi_mem_op' template for transfer
146  *
147  * Return: 0 on success, -error otherwise.
148  */
149 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
150 {
151 	int error;
152 
153 	error = spi_mem_adjust_op_size(nor->spimem, op);
154 	if (error)
155 		return error;
156 
157 	return spi_mem_exec_op(nor->spimem, op);
158 }
159 
160 static int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
161 					   u8 *buf, size_t len)
162 {
163 	if (spi_nor_protocol_is_dtr(nor->reg_proto))
164 		return -EOPNOTSUPP;
165 
166 	return nor->controller_ops->read_reg(nor, opcode, buf, len);
167 }
168 
169 static int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
170 					    const u8 *buf, size_t len)
171 {
172 	if (spi_nor_protocol_is_dtr(nor->reg_proto))
173 		return -EOPNOTSUPP;
174 
175 	return nor->controller_ops->write_reg(nor, opcode, buf, len);
176 }
177 
178 static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
179 {
180 	if (spi_nor_protocol_is_dtr(nor->write_proto))
181 		return -EOPNOTSUPP;
182 
183 	return nor->controller_ops->erase(nor, offs);
184 }
185 
186 /**
187  * spi_nor_spimem_read_data() - read data from flash's memory region via
188  *                              spi-mem
189  * @nor:        pointer to 'struct spi_nor'
190  * @from:       offset to read from
191  * @len:        number of bytes to read
192  * @buf:        pointer to dst buffer
193  *
194  * Return: number of bytes read successfully, -errno otherwise
195  */
196 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
197 					size_t len, u8 *buf)
198 {
199 	struct spi_mem_op op =
200 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
201 			   SPI_MEM_OP_ADDR(nor->addr_width, from, 0),
202 			   SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
203 			   SPI_MEM_OP_DATA_IN(len, buf, 0));
204 	bool usebouncebuf;
205 	ssize_t nbytes;
206 	int error;
207 
208 	spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
209 
210 	/* convert the dummy cycles to the number of bytes */
211 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
212 	if (spi_nor_protocol_is_dtr(nor->read_proto))
213 		op.dummy.nbytes *= 2;
214 
215 	usebouncebuf = spi_nor_spimem_bounce(nor, &op);
216 
217 	if (nor->dirmap.rdesc) {
218 		nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
219 					     op.data.nbytes, op.data.buf.in);
220 	} else {
221 		error = spi_nor_spimem_exec_op(nor, &op);
222 		if (error)
223 			return error;
224 		nbytes = op.data.nbytes;
225 	}
226 
227 	if (usebouncebuf && nbytes > 0)
228 		memcpy(buf, op.data.buf.in, nbytes);
229 
230 	return nbytes;
231 }
232 
233 /**
234  * spi_nor_read_data() - read data from flash memory
235  * @nor:        pointer to 'struct spi_nor'
236  * @from:       offset to read from
237  * @len:        number of bytes to read
238  * @buf:        pointer to dst buffer
239  *
240  * Return: number of bytes read successfully, -errno otherwise
241  */
242 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
243 {
244 	if (nor->spimem)
245 		return spi_nor_spimem_read_data(nor, from, len, buf);
246 
247 	return nor->controller_ops->read(nor, from, len, buf);
248 }
249 
250 /**
251  * spi_nor_spimem_write_data() - write data to flash memory via
252  *                               spi-mem
253  * @nor:        pointer to 'struct spi_nor'
254  * @to:         offset to write to
255  * @len:        number of bytes to write
256  * @buf:        pointer to src buffer
257  *
258  * Return: number of bytes written successfully, -errno otherwise
259  */
260 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
261 					 size_t len, const u8 *buf)
262 {
263 	struct spi_mem_op op =
264 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
265 			   SPI_MEM_OP_ADDR(nor->addr_width, to, 0),
266 			   SPI_MEM_OP_NO_DUMMY,
267 			   SPI_MEM_OP_DATA_OUT(len, buf, 0));
268 	ssize_t nbytes;
269 	int error;
270 
271 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
272 		op.addr.nbytes = 0;
273 
274 	spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
275 
276 	if (spi_nor_spimem_bounce(nor, &op))
277 		memcpy(nor->bouncebuf, buf, op.data.nbytes);
278 
279 	if (nor->dirmap.wdesc) {
280 		nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
281 					      op.data.nbytes, op.data.buf.out);
282 	} else {
283 		error = spi_nor_spimem_exec_op(nor, &op);
284 		if (error)
285 			return error;
286 		nbytes = op.data.nbytes;
287 	}
288 
289 	return nbytes;
290 }
291 
292 /**
293  * spi_nor_write_data() - write data to flash memory
294  * @nor:        pointer to 'struct spi_nor'
295  * @to:         offset to write to
296  * @len:        number of bytes to write
297  * @buf:        pointer to src buffer
298  *
299  * Return: number of bytes written successfully, -errno otherwise
300  */
301 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
302 			   const u8 *buf)
303 {
304 	if (nor->spimem)
305 		return spi_nor_spimem_write_data(nor, to, len, buf);
306 
307 	return nor->controller_ops->write(nor, to, len, buf);
308 }
309 
310 /**
311  * spi_nor_write_enable() - Set write enable latch with Write Enable command.
312  * @nor:	pointer to 'struct spi_nor'.
313  *
314  * Return: 0 on success, -errno otherwise.
315  */
316 int spi_nor_write_enable(struct spi_nor *nor)
317 {
318 	int ret;
319 
320 	if (nor->spimem) {
321 		struct spi_mem_op op =
322 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 0),
323 				   SPI_MEM_OP_NO_ADDR,
324 				   SPI_MEM_OP_NO_DUMMY,
325 				   SPI_MEM_OP_NO_DATA);
326 
327 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
328 
329 		ret = spi_mem_exec_op(nor->spimem, &op);
330 	} else {
331 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
332 						       NULL, 0);
333 	}
334 
335 	if (ret)
336 		dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
337 
338 	return ret;
339 }
340 
341 /**
342  * spi_nor_write_disable() - Send Write Disable instruction to the chip.
343  * @nor:	pointer to 'struct spi_nor'.
344  *
345  * Return: 0 on success, -errno otherwise.
346  */
347 int spi_nor_write_disable(struct spi_nor *nor)
348 {
349 	int ret;
350 
351 	if (nor->spimem) {
352 		struct spi_mem_op op =
353 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 0),
354 				   SPI_MEM_OP_NO_ADDR,
355 				   SPI_MEM_OP_NO_DUMMY,
356 				   SPI_MEM_OP_NO_DATA);
357 
358 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
359 
360 		ret = spi_mem_exec_op(nor->spimem, &op);
361 	} else {
362 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
363 						       NULL, 0);
364 	}
365 
366 	if (ret)
367 		dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
368 
369 	return ret;
370 }
371 
372 /**
373  * spi_nor_read_sr() - Read the Status Register.
374  * @nor:	pointer to 'struct spi_nor'.
375  * @sr:		pointer to a DMA-able buffer where the value of the
376  *              Status Register will be written. Should be at least 2 bytes.
377  *
378  * Return: 0 on success, -errno otherwise.
379  */
380 int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
381 {
382 	int ret;
383 
384 	if (nor->spimem) {
385 		struct spi_mem_op op =
386 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 0),
387 				   SPI_MEM_OP_NO_ADDR,
388 				   SPI_MEM_OP_NO_DUMMY,
389 				   SPI_MEM_OP_DATA_IN(1, sr, 0));
390 
391 		if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
392 			op.addr.nbytes = nor->params->rdsr_addr_nbytes;
393 			op.dummy.nbytes = nor->params->rdsr_dummy;
394 			/*
395 			 * We don't want to read only one byte in DTR mode. So,
396 			 * read 2 and then discard the second byte.
397 			 */
398 			op.data.nbytes = 2;
399 		}
400 
401 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
402 
403 		ret = spi_mem_exec_op(nor->spimem, &op);
404 	} else {
405 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
406 						      1);
407 	}
408 
409 	if (ret)
410 		dev_dbg(nor->dev, "error %d reading SR\n", ret);
411 
412 	return ret;
413 }
414 
415 /**
416  * spi_nor_read_fsr() - Read the Flag Status Register.
417  * @nor:	pointer to 'struct spi_nor'
418  * @fsr:	pointer to a DMA-able buffer where the value of the
419  *              Flag Status Register will be written. Should be at least 2
420  *              bytes.
421  *
422  * Return: 0 on success, -errno otherwise.
423  */
424 static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
425 {
426 	int ret;
427 
428 	if (nor->spimem) {
429 		struct spi_mem_op op =
430 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0),
431 				   SPI_MEM_OP_NO_ADDR,
432 				   SPI_MEM_OP_NO_DUMMY,
433 				   SPI_MEM_OP_DATA_IN(1, fsr, 0));
434 
435 		if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
436 			op.addr.nbytes = nor->params->rdsr_addr_nbytes;
437 			op.dummy.nbytes = nor->params->rdsr_dummy;
438 			/*
439 			 * We don't want to read only one byte in DTR mode. So,
440 			 * read 2 and then discard the second byte.
441 			 */
442 			op.data.nbytes = 2;
443 		}
444 
445 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
446 
447 		ret = spi_mem_exec_op(nor->spimem, &op);
448 	} else {
449 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr,
450 						      1);
451 	}
452 
453 	if (ret)
454 		dev_dbg(nor->dev, "error %d reading FSR\n", ret);
455 
456 	return ret;
457 }
458 
459 /**
460  * spi_nor_read_cr() - Read the Configuration Register using the
461  * SPINOR_OP_RDCR (35h) command.
462  * @nor:	pointer to 'struct spi_nor'
463  * @cr:		pointer to a DMA-able buffer where the value of the
464  *              Configuration Register will be written.
465  *
466  * Return: 0 on success, -errno otherwise.
467  */
468 int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
469 {
470 	int ret;
471 
472 	if (nor->spimem) {
473 		struct spi_mem_op op =
474 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 0),
475 				   SPI_MEM_OP_NO_ADDR,
476 				   SPI_MEM_OP_NO_DUMMY,
477 				   SPI_MEM_OP_DATA_IN(1, cr, 0));
478 
479 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
480 
481 		ret = spi_mem_exec_op(nor->spimem, &op);
482 	} else {
483 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
484 						      1);
485 	}
486 
487 	if (ret)
488 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
489 
490 	return ret;
491 }
492 
493 /**
494  * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
495  * @nor:	pointer to 'struct spi_nor'.
496  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
497  *		address mode.
498  *
499  * Return: 0 on success, -errno otherwise.
500  */
501 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
502 {
503 	int ret;
504 
505 	if (nor->spimem) {
506 		struct spi_mem_op op =
507 			SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
508 						  SPINOR_OP_EN4B :
509 						  SPINOR_OP_EX4B,
510 						  0),
511 				  SPI_MEM_OP_NO_ADDR,
512 				  SPI_MEM_OP_NO_DUMMY,
513 				  SPI_MEM_OP_NO_DATA);
514 
515 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
516 
517 		ret = spi_mem_exec_op(nor->spimem, &op);
518 	} else {
519 		ret = spi_nor_controller_ops_write_reg(nor,
520 						       enable ? SPINOR_OP_EN4B :
521 								SPINOR_OP_EX4B,
522 						       NULL, 0);
523 	}
524 
525 	if (ret)
526 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
527 
528 	return ret;
529 }
530 
531 /**
532  * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
533  * flashes.
534  * @nor:	pointer to 'struct spi_nor'.
535  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
536  *		address mode.
537  *
538  * Return: 0 on success, -errno otherwise.
539  */
540 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
541 {
542 	int ret;
543 
544 	nor->bouncebuf[0] = enable << 7;
545 
546 	if (nor->spimem) {
547 		struct spi_mem_op op =
548 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 0),
549 				   SPI_MEM_OP_NO_ADDR,
550 				   SPI_MEM_OP_NO_DUMMY,
551 				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 0));
552 
553 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
554 
555 		ret = spi_mem_exec_op(nor->spimem, &op);
556 	} else {
557 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
558 						       nor->bouncebuf, 1);
559 	}
560 
561 	if (ret)
562 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
563 
564 	return ret;
565 }
566 
567 /**
568  * spi_nor_write_ear() - Write Extended Address Register.
569  * @nor:	pointer to 'struct spi_nor'.
570  * @ear:	value to write to the Extended Address Register.
571  *
572  * Return: 0 on success, -errno otherwise.
573  */
574 int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
575 {
576 	int ret;
577 
578 	nor->bouncebuf[0] = ear;
579 
580 	if (nor->spimem) {
581 		struct spi_mem_op op =
582 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 0),
583 				   SPI_MEM_OP_NO_ADDR,
584 				   SPI_MEM_OP_NO_DUMMY,
585 				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 0));
586 
587 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
588 
589 		ret = spi_mem_exec_op(nor->spimem, &op);
590 	} else {
591 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREAR,
592 						       nor->bouncebuf, 1);
593 	}
594 
595 	if (ret)
596 		dev_dbg(nor->dev, "error %d writing EAR\n", ret);
597 
598 	return ret;
599 }
600 
601 /**
602  * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
603  * @nor:	pointer to 'struct spi_nor'.
604  * @sr:		pointer to a DMA-able buffer where the value of the
605  *              Status Register will be written.
606  *
607  * Return: 0 on success, -errno otherwise.
608  */
609 int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
610 {
611 	int ret;
612 
613 	if (nor->spimem) {
614 		struct spi_mem_op op =
615 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 0),
616 				   SPI_MEM_OP_NO_ADDR,
617 				   SPI_MEM_OP_NO_DUMMY,
618 				   SPI_MEM_OP_DATA_IN(1, sr, 0));
619 
620 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
621 
622 		ret = spi_mem_exec_op(nor->spimem, &op);
623 	} else {
624 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_XRDSR, sr,
625 						      1);
626 	}
627 
628 	if (ret)
629 		dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
630 
631 	return ret;
632 }
633 
634 /**
635  * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
636  * the flash is ready for new commands.
637  * @nor:	pointer to 'struct spi_nor'.
638  *
639  * Return: 1 if ready, 0 if not ready, -errno on errors.
640  */
641 static int spi_nor_xsr_ready(struct spi_nor *nor)
642 {
643 	int ret;
644 
645 	ret = spi_nor_xread_sr(nor, nor->bouncebuf);
646 	if (ret)
647 		return ret;
648 
649 	return !!(nor->bouncebuf[0] & XSR_RDY);
650 }
651 
652 /**
653  * spi_nor_clear_sr() - Clear the Status Register.
654  * @nor:	pointer to 'struct spi_nor'.
655  */
656 static void spi_nor_clear_sr(struct spi_nor *nor)
657 {
658 	int ret;
659 
660 	if (nor->spimem) {
661 		struct spi_mem_op op =
662 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 0),
663 				   SPI_MEM_OP_NO_ADDR,
664 				   SPI_MEM_OP_NO_DUMMY,
665 				   SPI_MEM_OP_NO_DATA);
666 
667 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
668 
669 		ret = spi_mem_exec_op(nor->spimem, &op);
670 	} else {
671 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
672 						       NULL, 0);
673 	}
674 
675 	if (ret)
676 		dev_dbg(nor->dev, "error %d clearing SR\n", ret);
677 }
678 
679 /**
680  * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
681  * for new commands.
682  * @nor:	pointer to 'struct spi_nor'.
683  *
684  * Return: 1 if ready, 0 if not ready, -errno on errors.
685  */
686 static int spi_nor_sr_ready(struct spi_nor *nor)
687 {
688 	int ret = spi_nor_read_sr(nor, nor->bouncebuf);
689 
690 	if (ret)
691 		return ret;
692 
693 	if (nor->flags & SNOR_F_USE_CLSR &&
694 	    nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
695 		if (nor->bouncebuf[0] & SR_E_ERR)
696 			dev_err(nor->dev, "Erase Error occurred\n");
697 		else
698 			dev_err(nor->dev, "Programming Error occurred\n");
699 
700 		spi_nor_clear_sr(nor);
701 
702 		/*
703 		 * WEL bit remains set to one when an erase or page program
704 		 * error occurs. Issue a Write Disable command to protect
705 		 * against inadvertent writes that can possibly corrupt the
706 		 * contents of the memory.
707 		 */
708 		ret = spi_nor_write_disable(nor);
709 		if (ret)
710 			return ret;
711 
712 		return -EIO;
713 	}
714 
715 	return !(nor->bouncebuf[0] & SR_WIP);
716 }
717 
718 /**
719  * spi_nor_clear_fsr() - Clear the Flag Status Register.
720  * @nor:	pointer to 'struct spi_nor'.
721  */
722 static void spi_nor_clear_fsr(struct spi_nor *nor)
723 {
724 	int ret;
725 
726 	if (nor->spimem) {
727 		struct spi_mem_op op =
728 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0),
729 				   SPI_MEM_OP_NO_ADDR,
730 				   SPI_MEM_OP_NO_DUMMY,
731 				   SPI_MEM_OP_NO_DATA);
732 
733 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
734 
735 		ret = spi_mem_exec_op(nor->spimem, &op);
736 	} else {
737 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR,
738 						       NULL, 0);
739 	}
740 
741 	if (ret)
742 		dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
743 }
744 
745 /**
746  * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
747  * ready for new commands.
748  * @nor:	pointer to 'struct spi_nor'.
749  *
750  * Return: 1 if ready, 0 if not ready, -errno on errors.
751  */
752 static int spi_nor_fsr_ready(struct spi_nor *nor)
753 {
754 	int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
755 
756 	if (ret)
757 		return ret;
758 
759 	if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
760 		if (nor->bouncebuf[0] & FSR_E_ERR)
761 			dev_err(nor->dev, "Erase operation failed.\n");
762 		else
763 			dev_err(nor->dev, "Program operation failed.\n");
764 
765 		if (nor->bouncebuf[0] & FSR_PT_ERR)
766 			dev_err(nor->dev,
767 			"Attempted to modify a protected sector.\n");
768 
769 		spi_nor_clear_fsr(nor);
770 
771 		/*
772 		 * WEL bit remains set to one when an erase or page program
773 		 * error occurs. Issue a Write Disable command to protect
774 		 * against inadvertent writes that can possibly corrupt the
775 		 * contents of the memory.
776 		 */
777 		ret = spi_nor_write_disable(nor);
778 		if (ret)
779 			return ret;
780 
781 		return -EIO;
782 	}
783 
784 	return !!(nor->bouncebuf[0] & FSR_READY);
785 }
786 
787 /**
788  * spi_nor_ready() - Query the flash to see if it is ready for new commands.
789  * @nor:	pointer to 'struct spi_nor'.
790  *
791  * Return: 1 if ready, 0 if not ready, -errno on errors.
792  */
793 static int spi_nor_ready(struct spi_nor *nor)
794 {
795 	int sr, fsr;
796 
797 	if (nor->flags & SNOR_F_READY_XSR_RDY)
798 		sr = spi_nor_xsr_ready(nor);
799 	else
800 		sr = spi_nor_sr_ready(nor);
801 	if (sr < 0)
802 		return sr;
803 	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
804 	if (fsr < 0)
805 		return fsr;
806 	return sr && fsr;
807 }
808 
809 /**
810  * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
811  * Status Register until ready, or timeout occurs.
812  * @nor:		pointer to "struct spi_nor".
813  * @timeout_jiffies:	jiffies to wait until timeout.
814  *
815  * Return: 0 on success, -errno otherwise.
816  */
817 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
818 						unsigned long timeout_jiffies)
819 {
820 	unsigned long deadline;
821 	int timeout = 0, ret;
822 
823 	deadline = jiffies + timeout_jiffies;
824 
825 	while (!timeout) {
826 		if (time_after_eq(jiffies, deadline))
827 			timeout = 1;
828 
829 		ret = spi_nor_ready(nor);
830 		if (ret < 0)
831 			return ret;
832 		if (ret)
833 			return 0;
834 
835 		cond_resched();
836 	}
837 
838 	dev_dbg(nor->dev, "flash operation timed out\n");
839 
840 	return -ETIMEDOUT;
841 }
842 
843 /**
844  * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
845  * flash to be ready, or timeout occurs.
846  * @nor:	pointer to "struct spi_nor".
847  *
848  * Return: 0 on success, -errno otherwise.
849  */
850 int spi_nor_wait_till_ready(struct spi_nor *nor)
851 {
852 	return spi_nor_wait_till_ready_with_timeout(nor,
853 						    DEFAULT_READY_WAIT_JIFFIES);
854 }
855 
856 /**
857  * spi_nor_global_block_unlock() - Unlock Global Block Protection.
858  * @nor:	pointer to 'struct spi_nor'.
859  *
860  * Return: 0 on success, -errno otherwise.
861  */
862 int spi_nor_global_block_unlock(struct spi_nor *nor)
863 {
864 	int ret;
865 
866 	ret = spi_nor_write_enable(nor);
867 	if (ret)
868 		return ret;
869 
870 	if (nor->spimem) {
871 		struct spi_mem_op op =
872 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_GBULK, 0),
873 				   SPI_MEM_OP_NO_ADDR,
874 				   SPI_MEM_OP_NO_DUMMY,
875 				   SPI_MEM_OP_NO_DATA);
876 
877 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
878 
879 		ret = spi_mem_exec_op(nor->spimem, &op);
880 	} else {
881 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
882 						       NULL, 0);
883 	}
884 
885 	if (ret) {
886 		dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
887 		return ret;
888 	}
889 
890 	return spi_nor_wait_till_ready(nor);
891 }
892 
893 /**
894  * spi_nor_write_sr() - Write the Status Register.
895  * @nor:	pointer to 'struct spi_nor'.
896  * @sr:		pointer to DMA-able buffer to write to the Status Register.
897  * @len:	number of bytes to write to the Status Register.
898  *
899  * Return: 0 on success, -errno otherwise.
900  */
901 int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
902 {
903 	int ret;
904 
905 	ret = spi_nor_write_enable(nor);
906 	if (ret)
907 		return ret;
908 
909 	if (nor->spimem) {
910 		struct spi_mem_op op =
911 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 0),
912 				   SPI_MEM_OP_NO_ADDR,
913 				   SPI_MEM_OP_NO_DUMMY,
914 				   SPI_MEM_OP_DATA_OUT(len, sr, 0));
915 
916 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
917 
918 		ret = spi_mem_exec_op(nor->spimem, &op);
919 	} else {
920 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
921 						       len);
922 	}
923 
924 	if (ret) {
925 		dev_dbg(nor->dev, "error %d writing SR\n", ret);
926 		return ret;
927 	}
928 
929 	return spi_nor_wait_till_ready(nor);
930 }
931 
932 /**
933  * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
934  * ensure that the byte written match the received value.
935  * @nor:	pointer to a 'struct spi_nor'.
936  * @sr1:	byte value to be written to the Status Register.
937  *
938  * Return: 0 on success, -errno otherwise.
939  */
940 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
941 {
942 	int ret;
943 
944 	nor->bouncebuf[0] = sr1;
945 
946 	ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
947 	if (ret)
948 		return ret;
949 
950 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
951 	if (ret)
952 		return ret;
953 
954 	if (nor->bouncebuf[0] != sr1) {
955 		dev_dbg(nor->dev, "SR1: read back test failed\n");
956 		return -EIO;
957 	}
958 
959 	return 0;
960 }
961 
962 /**
963  * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
964  * Status Register 2 in one shot. Ensure that the byte written in the Status
965  * Register 1 match the received value, and that the 16-bit Write did not
966  * affect what was already in the Status Register 2.
967  * @nor:	pointer to a 'struct spi_nor'.
968  * @sr1:	byte value to be written to the Status Register 1.
969  *
970  * Return: 0 on success, -errno otherwise.
971  */
972 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
973 {
974 	int ret;
975 	u8 *sr_cr = nor->bouncebuf;
976 	u8 cr_written;
977 
978 	/* Make sure we don't overwrite the contents of Status Register 2. */
979 	if (!(nor->flags & SNOR_F_NO_READ_CR)) {
980 		ret = spi_nor_read_cr(nor, &sr_cr[1]);
981 		if (ret)
982 			return ret;
983 	} else if (nor->params->quad_enable) {
984 		/*
985 		 * If the Status Register 2 Read command (35h) is not
986 		 * supported, we should at least be sure we don't
987 		 * change the value of the SR2 Quad Enable bit.
988 		 *
989 		 * We can safely assume that when the Quad Enable method is
990 		 * set, the value of the QE bit is one, as a consequence of the
991 		 * nor->params->quad_enable() call.
992 		 *
993 		 * We can safely assume that the Quad Enable bit is present in
994 		 * the Status Register 2 at BIT(1). According to the JESD216
995 		 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
996 		 * Write Status (01h) command is available just for the cases
997 		 * in which the QE bit is described in SR2 at BIT(1).
998 		 */
999 		sr_cr[1] = SR2_QUAD_EN_BIT1;
1000 	} else {
1001 		sr_cr[1] = 0;
1002 	}
1003 
1004 	sr_cr[0] = sr1;
1005 
1006 	ret = spi_nor_write_sr(nor, sr_cr, 2);
1007 	if (ret)
1008 		return ret;
1009 
1010 	if (nor->flags & SNOR_F_NO_READ_CR)
1011 		return 0;
1012 
1013 	cr_written = sr_cr[1];
1014 
1015 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
1016 	if (ret)
1017 		return ret;
1018 
1019 	if (cr_written != sr_cr[1]) {
1020 		dev_dbg(nor->dev, "CR: read back test failed\n");
1021 		return -EIO;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 /**
1028  * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
1029  * Configuration Register in one shot. Ensure that the byte written in the
1030  * Configuration Register match the received value, and that the 16-bit Write
1031  * did not affect what was already in the Status Register 1.
1032  * @nor:	pointer to a 'struct spi_nor'.
1033  * @cr:		byte value to be written to the Configuration Register.
1034  *
1035  * Return: 0 on success, -errno otherwise.
1036  */
1037 static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
1038 {
1039 	int ret;
1040 	u8 *sr_cr = nor->bouncebuf;
1041 	u8 sr_written;
1042 
1043 	/* Keep the current value of the Status Register 1. */
1044 	ret = spi_nor_read_sr(nor, sr_cr);
1045 	if (ret)
1046 		return ret;
1047 
1048 	sr_cr[1] = cr;
1049 
1050 	ret = spi_nor_write_sr(nor, sr_cr, 2);
1051 	if (ret)
1052 		return ret;
1053 
1054 	sr_written = sr_cr[0];
1055 
1056 	ret = spi_nor_read_sr(nor, sr_cr);
1057 	if (ret)
1058 		return ret;
1059 
1060 	if (sr_written != sr_cr[0]) {
1061 		dev_dbg(nor->dev, "SR: Read back test failed\n");
1062 		return -EIO;
1063 	}
1064 
1065 	if (nor->flags & SNOR_F_NO_READ_CR)
1066 		return 0;
1067 
1068 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
1069 	if (ret)
1070 		return ret;
1071 
1072 	if (cr != sr_cr[1]) {
1073 		dev_dbg(nor->dev, "CR: read back test failed\n");
1074 		return -EIO;
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 /**
1081  * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
1082  * the byte written match the received value without affecting other bits in the
1083  * Status Register 1 and 2.
1084  * @nor:	pointer to a 'struct spi_nor'.
1085  * @sr1:	byte value to be written to the Status Register.
1086  *
1087  * Return: 0 on success, -errno otherwise.
1088  */
1089 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
1090 {
1091 	if (nor->flags & SNOR_F_HAS_16BIT_SR)
1092 		return spi_nor_write_16bit_sr_and_check(nor, sr1);
1093 
1094 	return spi_nor_write_sr1_and_check(nor, sr1);
1095 }
1096 
1097 /**
1098  * spi_nor_write_sr2() - Write the Status Register 2 using the
1099  * SPINOR_OP_WRSR2 (3eh) command.
1100  * @nor:	pointer to 'struct spi_nor'.
1101  * @sr2:	pointer to DMA-able buffer to write to the Status Register 2.
1102  *
1103  * Return: 0 on success, -errno otherwise.
1104  */
1105 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
1106 {
1107 	int ret;
1108 
1109 	ret = spi_nor_write_enable(nor);
1110 	if (ret)
1111 		return ret;
1112 
1113 	if (nor->spimem) {
1114 		struct spi_mem_op op =
1115 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 0),
1116 				   SPI_MEM_OP_NO_ADDR,
1117 				   SPI_MEM_OP_NO_DUMMY,
1118 				   SPI_MEM_OP_DATA_OUT(1, sr2, 0));
1119 
1120 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1121 
1122 		ret = spi_mem_exec_op(nor->spimem, &op);
1123 	} else {
1124 		ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
1125 						       sr2, 1);
1126 	}
1127 
1128 	if (ret) {
1129 		dev_dbg(nor->dev, "error %d writing SR2\n", ret);
1130 		return ret;
1131 	}
1132 
1133 	return spi_nor_wait_till_ready(nor);
1134 }
1135 
1136 /**
1137  * spi_nor_read_sr2() - Read the Status Register 2 using the
1138  * SPINOR_OP_RDSR2 (3fh) command.
1139  * @nor:	pointer to 'struct spi_nor'.
1140  * @sr2:	pointer to DMA-able buffer where the value of the
1141  *		Status Register 2 will be written.
1142  *
1143  * Return: 0 on success, -errno otherwise.
1144  */
1145 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
1146 {
1147 	int ret;
1148 
1149 	if (nor->spimem) {
1150 		struct spi_mem_op op =
1151 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 0),
1152 				   SPI_MEM_OP_NO_ADDR,
1153 				   SPI_MEM_OP_NO_DUMMY,
1154 				   SPI_MEM_OP_DATA_IN(1, sr2, 0));
1155 
1156 		spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1157 
1158 		ret = spi_mem_exec_op(nor->spimem, &op);
1159 	} else {
1160 		ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
1161 						      1);
1162 	}
1163 
1164 	if (ret)
1165 		dev_dbg(nor->dev, "error %d reading SR2\n", ret);
1166 
1167 	return ret;
1168 }
1169 
1170 /**
1171  * spi_nor_erase_chip() - Erase the entire flash memory.
1172  * @nor:	pointer to 'struct spi_nor'.
1173  *
1174  * Return: 0 on success, -errno otherwise.
1175  */
1176 static int spi_nor_erase_chip(struct spi_nor *nor)
1177 {
1178 	int ret;
1179 
1180 	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
1181 
1182 	if (nor->spimem) {
1183 		struct spi_mem_op op =
1184 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 0),
1185 				   SPI_MEM_OP_NO_ADDR,
1186 				   SPI_MEM_OP_NO_DUMMY,
1187 				   SPI_MEM_OP_NO_DATA);
1188 
1189 		spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
1190 
1191 		ret = spi_mem_exec_op(nor->spimem, &op);
1192 	} else {
1193 		ret = spi_nor_controller_ops_write_reg(nor,
1194 						       SPINOR_OP_CHIP_ERASE,
1195 						       NULL, 0);
1196 	}
1197 
1198 	if (ret)
1199 		dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1200 
1201 	return ret;
1202 }
1203 
1204 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1205 {
1206 	size_t i;
1207 
1208 	for (i = 0; i < size; i++)
1209 		if (table[i][0] == opcode)
1210 			return table[i][1];
1211 
1212 	/* No conversion found, keep input op code. */
1213 	return opcode;
1214 }
1215 
1216 u8 spi_nor_convert_3to4_read(u8 opcode)
1217 {
1218 	static const u8 spi_nor_3to4_read[][2] = {
1219 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
1220 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
1221 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
1222 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
1223 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
1224 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
1225 		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
1226 		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },
1227 
1228 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
1229 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
1230 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
1231 	};
1232 
1233 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1234 				      ARRAY_SIZE(spi_nor_3to4_read));
1235 }
1236 
1237 static u8 spi_nor_convert_3to4_program(u8 opcode)
1238 {
1239 	static const u8 spi_nor_3to4_program[][2] = {
1240 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
1241 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
1242 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
1243 		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
1244 		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
1245 	};
1246 
1247 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1248 				      ARRAY_SIZE(spi_nor_3to4_program));
1249 }
1250 
1251 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1252 {
1253 	static const u8 spi_nor_3to4_erase[][2] = {
1254 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
1255 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
1256 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
1257 	};
1258 
1259 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1260 				      ARRAY_SIZE(spi_nor_3to4_erase));
1261 }
1262 
1263 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1264 {
1265 	return !!nor->params->erase_map.uniform_erase_type;
1266 }
1267 
1268 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1269 {
1270 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1271 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1272 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1273 
1274 	if (!spi_nor_has_uniform_erase(nor)) {
1275 		struct spi_nor_erase_map *map = &nor->params->erase_map;
1276 		struct spi_nor_erase_type *erase;
1277 		int i;
1278 
1279 		for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1280 			erase = &map->erase_type[i];
1281 			erase->opcode =
1282 				spi_nor_convert_3to4_erase(erase->opcode);
1283 		}
1284 	}
1285 }
1286 
1287 int spi_nor_lock_and_prep(struct spi_nor *nor)
1288 {
1289 	int ret = 0;
1290 
1291 	mutex_lock(&nor->lock);
1292 
1293 	if (nor->controller_ops &&  nor->controller_ops->prepare) {
1294 		ret = nor->controller_ops->prepare(nor);
1295 		if (ret) {
1296 			mutex_unlock(&nor->lock);
1297 			return ret;
1298 		}
1299 	}
1300 	return ret;
1301 }
1302 
1303 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1304 {
1305 	if (nor->controller_ops && nor->controller_ops->unprepare)
1306 		nor->controller_ops->unprepare(nor);
1307 	mutex_unlock(&nor->lock);
1308 }
1309 
1310 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1311 {
1312 	if (!nor->params->convert_addr)
1313 		return addr;
1314 
1315 	return nor->params->convert_addr(nor, addr);
1316 }
1317 
1318 /*
1319  * Initiate the erasure of a single sector
1320  */
1321 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1322 {
1323 	int i;
1324 
1325 	addr = spi_nor_convert_addr(nor, addr);
1326 
1327 	if (nor->spimem) {
1328 		struct spi_mem_op op =
1329 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0),
1330 				   SPI_MEM_OP_ADDR(nor->addr_width, addr, 0),
1331 				   SPI_MEM_OP_NO_DUMMY,
1332 				   SPI_MEM_OP_NO_DATA);
1333 
1334 		spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
1335 
1336 		return spi_mem_exec_op(nor->spimem, &op);
1337 	} else if (nor->controller_ops->erase) {
1338 		return spi_nor_controller_ops_erase(nor, addr);
1339 	}
1340 
1341 	/*
1342 	 * Default implementation, if driver doesn't have a specialized HW
1343 	 * control
1344 	 */
1345 	for (i = nor->addr_width - 1; i >= 0; i--) {
1346 		nor->bouncebuf[i] = addr & 0xff;
1347 		addr >>= 8;
1348 	}
1349 
1350 	return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
1351 						nor->bouncebuf, nor->addr_width);
1352 }
1353 
1354 /**
1355  * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1356  * @erase:	pointer to a structure that describes a SPI NOR erase type
1357  * @dividend:	dividend value
1358  * @remainder:	pointer to u32 remainder (will be updated)
1359  *
1360  * Return: the result of the division
1361  */
1362 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1363 				     u64 dividend, u32 *remainder)
1364 {
1365 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1366 	*remainder = (u32)dividend & erase->size_mask;
1367 	return dividend >> erase->size_shift;
1368 }
1369 
1370 /**
1371  * spi_nor_find_best_erase_type() - find the best erase type for the given
1372  *				    offset in the serial flash memory and the
1373  *				    number of bytes to erase. The region in
1374  *				    which the address fits is expected to be
1375  *				    provided.
1376  * @map:	the erase map of the SPI NOR
1377  * @region:	pointer to a structure that describes a SPI NOR erase region
1378  * @addr:	offset in the serial flash memory
1379  * @len:	number of bytes to erase
1380  *
1381  * Return: a pointer to the best fitted erase type, NULL otherwise.
1382  */
1383 static const struct spi_nor_erase_type *
1384 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1385 			     const struct spi_nor_erase_region *region,
1386 			     u64 addr, u32 len)
1387 {
1388 	const struct spi_nor_erase_type *erase;
1389 	u32 rem;
1390 	int i;
1391 	u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1392 
1393 	/*
1394 	 * Erase types are ordered by size, with the smallest erase type at
1395 	 * index 0.
1396 	 */
1397 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1398 		/* Does the erase region support the tested erase type? */
1399 		if (!(erase_mask & BIT(i)))
1400 			continue;
1401 
1402 		erase = &map->erase_type[i];
1403 
1404 		/* Alignment is not mandatory for overlaid regions */
1405 		if (region->offset & SNOR_OVERLAID_REGION &&
1406 		    region->size <= len)
1407 			return erase;
1408 
1409 		/* Don't erase more than what the user has asked for. */
1410 		if (erase->size > len)
1411 			continue;
1412 
1413 		spi_nor_div_by_erase_size(erase, addr, &rem);
1414 		if (rem)
1415 			continue;
1416 		else
1417 			return erase;
1418 	}
1419 
1420 	return NULL;
1421 }
1422 
1423 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
1424 {
1425 	return region->offset & SNOR_LAST_REGION;
1426 }
1427 
1428 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
1429 {
1430 	return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
1431 }
1432 
1433 /**
1434  * spi_nor_region_next() - get the next spi nor region
1435  * @region:	pointer to a structure that describes a SPI NOR erase region
1436  *
1437  * Return: the next spi nor region or NULL if last region.
1438  */
1439 struct spi_nor_erase_region *
1440 spi_nor_region_next(struct spi_nor_erase_region *region)
1441 {
1442 	if (spi_nor_region_is_last(region))
1443 		return NULL;
1444 	region++;
1445 	return region;
1446 }
1447 
1448 /**
1449  * spi_nor_find_erase_region() - find the region of the serial flash memory in
1450  *				 which the offset fits
1451  * @map:	the erase map of the SPI NOR
1452  * @addr:	offset in the serial flash memory
1453  *
1454  * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1455  *	   otherwise.
1456  */
1457 static struct spi_nor_erase_region *
1458 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1459 {
1460 	struct spi_nor_erase_region *region = map->regions;
1461 	u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1462 	u64 region_end = region_start + region->size;
1463 
1464 	while (addr < region_start || addr >= region_end) {
1465 		region = spi_nor_region_next(region);
1466 		if (!region)
1467 			return ERR_PTR(-EINVAL);
1468 
1469 		region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1470 		region_end = region_start + region->size;
1471 	}
1472 
1473 	return region;
1474 }
1475 
1476 /**
1477  * spi_nor_init_erase_cmd() - initialize an erase command
1478  * @region:	pointer to a structure that describes a SPI NOR erase region
1479  * @erase:	pointer to a structure that describes a SPI NOR erase type
1480  *
1481  * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1482  *	   otherwise.
1483  */
1484 static struct spi_nor_erase_command *
1485 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1486 		       const struct spi_nor_erase_type *erase)
1487 {
1488 	struct spi_nor_erase_command *cmd;
1489 
1490 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1491 	if (!cmd)
1492 		return ERR_PTR(-ENOMEM);
1493 
1494 	INIT_LIST_HEAD(&cmd->list);
1495 	cmd->opcode = erase->opcode;
1496 	cmd->count = 1;
1497 
1498 	if (region->offset & SNOR_OVERLAID_REGION)
1499 		cmd->size = region->size;
1500 	else
1501 		cmd->size = erase->size;
1502 
1503 	return cmd;
1504 }
1505 
1506 /**
1507  * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1508  * @erase_list:	list of erase commands
1509  */
1510 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1511 {
1512 	struct spi_nor_erase_command *cmd, *next;
1513 
1514 	list_for_each_entry_safe(cmd, next, erase_list, list) {
1515 		list_del(&cmd->list);
1516 		kfree(cmd);
1517 	}
1518 }
1519 
1520 /**
1521  * spi_nor_init_erase_cmd_list() - initialize erase command list
1522  * @nor:	pointer to a 'struct spi_nor'
1523  * @erase_list:	list of erase commands to be executed once we validate that the
1524  *		erase can be performed
1525  * @addr:	offset in the serial flash memory
1526  * @len:	number of bytes to erase
1527  *
1528  * Builds the list of best fitted erase commands and verifies if the erase can
1529  * be performed.
1530  *
1531  * Return: 0 on success, -errno otherwise.
1532  */
1533 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1534 				       struct list_head *erase_list,
1535 				       u64 addr, u32 len)
1536 {
1537 	const struct spi_nor_erase_map *map = &nor->params->erase_map;
1538 	const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1539 	struct spi_nor_erase_region *region;
1540 	struct spi_nor_erase_command *cmd = NULL;
1541 	u64 region_end;
1542 	int ret = -EINVAL;
1543 
1544 	region = spi_nor_find_erase_region(map, addr);
1545 	if (IS_ERR(region))
1546 		return PTR_ERR(region);
1547 
1548 	region_end = spi_nor_region_end(region);
1549 
1550 	while (len) {
1551 		erase = spi_nor_find_best_erase_type(map, region, addr, len);
1552 		if (!erase)
1553 			goto destroy_erase_cmd_list;
1554 
1555 		if (prev_erase != erase ||
1556 		    erase->size != cmd->size ||
1557 		    region->offset & SNOR_OVERLAID_REGION) {
1558 			cmd = spi_nor_init_erase_cmd(region, erase);
1559 			if (IS_ERR(cmd)) {
1560 				ret = PTR_ERR(cmd);
1561 				goto destroy_erase_cmd_list;
1562 			}
1563 
1564 			list_add_tail(&cmd->list, erase_list);
1565 		} else {
1566 			cmd->count++;
1567 		}
1568 
1569 		addr += cmd->size;
1570 		len -= cmd->size;
1571 
1572 		if (len && addr >= region_end) {
1573 			region = spi_nor_region_next(region);
1574 			if (!region)
1575 				goto destroy_erase_cmd_list;
1576 			region_end = spi_nor_region_end(region);
1577 		}
1578 
1579 		prev_erase = erase;
1580 	}
1581 
1582 	return 0;
1583 
1584 destroy_erase_cmd_list:
1585 	spi_nor_destroy_erase_cmd_list(erase_list);
1586 	return ret;
1587 }
1588 
1589 /**
1590  * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1591  * @nor:	pointer to a 'struct spi_nor'
1592  * @addr:	offset in the serial flash memory
1593  * @len:	number of bytes to erase
1594  *
1595  * Build a list of best fitted erase commands and execute it once we validate
1596  * that the erase can be performed.
1597  *
1598  * Return: 0 on success, -errno otherwise.
1599  */
1600 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1601 {
1602 	LIST_HEAD(erase_list);
1603 	struct spi_nor_erase_command *cmd, *next;
1604 	int ret;
1605 
1606 	ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1607 	if (ret)
1608 		return ret;
1609 
1610 	list_for_each_entry_safe(cmd, next, &erase_list, list) {
1611 		nor->erase_opcode = cmd->opcode;
1612 		while (cmd->count) {
1613 			ret = spi_nor_write_enable(nor);
1614 			if (ret)
1615 				goto destroy_erase_cmd_list;
1616 
1617 			ret = spi_nor_erase_sector(nor, addr);
1618 			if (ret)
1619 				goto destroy_erase_cmd_list;
1620 
1621 			addr += cmd->size;
1622 			cmd->count--;
1623 
1624 			ret = spi_nor_wait_till_ready(nor);
1625 			if (ret)
1626 				goto destroy_erase_cmd_list;
1627 		}
1628 		list_del(&cmd->list);
1629 		kfree(cmd);
1630 	}
1631 
1632 	return 0;
1633 
1634 destroy_erase_cmd_list:
1635 	spi_nor_destroy_erase_cmd_list(&erase_list);
1636 	return ret;
1637 }
1638 
1639 /*
1640  * Erase an address range on the nor chip.  The address range may extend
1641  * one or more erase sectors. Return an error if there is a problem erasing.
1642  */
1643 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1644 {
1645 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1646 	u32 addr, len;
1647 	uint32_t rem;
1648 	int ret;
1649 
1650 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1651 			(long long)instr->len);
1652 
1653 	if (spi_nor_has_uniform_erase(nor)) {
1654 		div_u64_rem(instr->len, mtd->erasesize, &rem);
1655 		if (rem)
1656 			return -EINVAL;
1657 	}
1658 
1659 	addr = instr->addr;
1660 	len = instr->len;
1661 
1662 	ret = spi_nor_lock_and_prep(nor);
1663 	if (ret)
1664 		return ret;
1665 
1666 	/* whole-chip erase? */
1667 	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1668 		unsigned long timeout;
1669 
1670 		ret = spi_nor_write_enable(nor);
1671 		if (ret)
1672 			goto erase_err;
1673 
1674 		ret = spi_nor_erase_chip(nor);
1675 		if (ret)
1676 			goto erase_err;
1677 
1678 		/*
1679 		 * Scale the timeout linearly with the size of the flash, with
1680 		 * a minimum calibrated to an old 2MB flash. We could try to
1681 		 * pull these from CFI/SFDP, but these values should be good
1682 		 * enough for now.
1683 		 */
1684 		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1685 			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1686 			      (unsigned long)(mtd->size / SZ_2M));
1687 		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1688 		if (ret)
1689 			goto erase_err;
1690 
1691 	/* REVISIT in some cases we could speed up erasing large regions
1692 	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1693 	 * to use "small sector erase", but that's not always optimal.
1694 	 */
1695 
1696 	/* "sector"-at-a-time erase */
1697 	} else if (spi_nor_has_uniform_erase(nor)) {
1698 		while (len) {
1699 			ret = spi_nor_write_enable(nor);
1700 			if (ret)
1701 				goto erase_err;
1702 
1703 			ret = spi_nor_erase_sector(nor, addr);
1704 			if (ret)
1705 				goto erase_err;
1706 
1707 			addr += mtd->erasesize;
1708 			len -= mtd->erasesize;
1709 
1710 			ret = spi_nor_wait_till_ready(nor);
1711 			if (ret)
1712 				goto erase_err;
1713 		}
1714 
1715 	/* erase multiple sectors */
1716 	} else {
1717 		ret = spi_nor_erase_multi_sectors(nor, addr, len);
1718 		if (ret)
1719 			goto erase_err;
1720 	}
1721 
1722 	ret = spi_nor_write_disable(nor);
1723 
1724 erase_err:
1725 	spi_nor_unlock_and_unprep(nor);
1726 
1727 	return ret;
1728 }
1729 
1730 static u8 spi_nor_get_sr_bp_mask(struct spi_nor *nor)
1731 {
1732 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1733 
1734 	if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6)
1735 		return mask | SR_BP3_BIT6;
1736 
1737 	if (nor->flags & SNOR_F_HAS_4BIT_BP)
1738 		return mask | SR_BP3;
1739 
1740 	return mask;
1741 }
1742 
1743 static u8 spi_nor_get_sr_tb_mask(struct spi_nor *nor)
1744 {
1745 	if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
1746 		return SR_TB_BIT6;
1747 	else
1748 		return SR_TB_BIT5;
1749 }
1750 
1751 static u64 spi_nor_get_min_prot_length_sr(struct spi_nor *nor)
1752 {
1753 	unsigned int bp_slots, bp_slots_needed;
1754 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1755 
1756 	/* Reserved one for "protect none" and one for "protect all". */
1757 	bp_slots = (1 << hweight8(mask)) - 2;
1758 	bp_slots_needed = ilog2(nor->info->n_sectors);
1759 
1760 	if (bp_slots_needed > bp_slots)
1761 		return nor->info->sector_size <<
1762 			(bp_slots_needed - bp_slots);
1763 	else
1764 		return nor->info->sector_size;
1765 }
1766 
1767 static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs,
1768 					uint64_t *len)
1769 {
1770 	struct mtd_info *mtd = &nor->mtd;
1771 	u64 min_prot_len;
1772 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1773 	u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1774 	u8 bp, val = sr & mask;
1775 
1776 	if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3_BIT6)
1777 		val = (val & ~SR_BP3_BIT6) | SR_BP3;
1778 
1779 	bp = val >> SR_BP_SHIFT;
1780 
1781 	if (!bp) {
1782 		/* No protection */
1783 		*ofs = 0;
1784 		*len = 0;
1785 		return;
1786 	}
1787 
1788 	min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1789 	*len = min_prot_len << (bp - 1);
1790 
1791 	if (*len > mtd->size)
1792 		*len = mtd->size;
1793 
1794 	if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask)
1795 		*ofs = 0;
1796 	else
1797 		*ofs = mtd->size - *len;
1798 }
1799 
1800 /*
1801  * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
1802  * @locked is false); 0 otherwise
1803  */
1804 static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs,
1805 					uint64_t len, u8 sr, bool locked)
1806 {
1807 	loff_t lock_offs;
1808 	uint64_t lock_len;
1809 
1810 	if (!len)
1811 		return 1;
1812 
1813 	spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len);
1814 
1815 	if (locked)
1816 		/* Requested range is a sub-range of locked range */
1817 		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
1818 	else
1819 		/* Requested range does not overlap with locked range */
1820 		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
1821 }
1822 
1823 static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1824 				u8 sr)
1825 {
1826 	return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true);
1827 }
1828 
1829 static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1830 				  u8 sr)
1831 {
1832 	return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false);
1833 }
1834 
1835 /*
1836  * Lock a region of the flash. Compatible with ST Micro and similar flash.
1837  * Supports the block protection bits BP{0,1,2}/BP{0,1,2,3} in the status
1838  * register
1839  * (SR). Does not support these features found in newer SR bitfields:
1840  *   - SEC: sector/block protect - only handle SEC=0 (block protect)
1841  *   - CMP: complement protect - only support CMP=0 (range is not complemented)
1842  *
1843  * Support for the following is provided conditionally for some flash:
1844  *   - TB: top/bottom protect
1845  *
1846  * Sample table portion for 8MB flash (Winbond w25q64fw):
1847  *
1848  *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
1849  *  --------------------------------------------------------------------------
1850  *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
1851  *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
1852  *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
1853  *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
1854  *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
1855  *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
1856  *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
1857  *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
1858  *  ------|-------|-------|-------|-------|---------------|-------------------
1859  *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
1860  *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
1861  *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
1862  *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
1863  *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
1864  *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
1865  *
1866  * Returns negative on errors, 0 on success.
1867  */
1868 static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1869 {
1870 	struct mtd_info *mtd = &nor->mtd;
1871 	u64 min_prot_len;
1872 	int ret, status_old, status_new;
1873 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1874 	u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1875 	u8 pow, val;
1876 	loff_t lock_len;
1877 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1878 	bool use_top;
1879 
1880 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1881 	if (ret)
1882 		return ret;
1883 
1884 	status_old = nor->bouncebuf[0];
1885 
1886 	/* If nothing in our range is unlocked, we don't need to do anything */
1887 	if (spi_nor_is_locked_sr(nor, ofs, len, status_old))
1888 		return 0;
1889 
1890 	/* If anything below us is unlocked, we can't use 'bottom' protection */
1891 	if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old))
1892 		can_be_bottom = false;
1893 
1894 	/* If anything above us is unlocked, we can't use 'top' protection */
1895 	if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
1896 				  status_old))
1897 		can_be_top = false;
1898 
1899 	if (!can_be_bottom && !can_be_top)
1900 		return -EINVAL;
1901 
1902 	/* Prefer top, if both are valid */
1903 	use_top = can_be_top;
1904 
1905 	/* lock_len: length of region that should end up locked */
1906 	if (use_top)
1907 		lock_len = mtd->size - ofs;
1908 	else
1909 		lock_len = ofs + len;
1910 
1911 	if (lock_len == mtd->size) {
1912 		val = mask;
1913 	} else {
1914 		min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1915 		pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
1916 		val = pow << SR_BP_SHIFT;
1917 
1918 		if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
1919 			val = (val & ~SR_BP3) | SR_BP3_BIT6;
1920 
1921 		if (val & ~mask)
1922 			return -EINVAL;
1923 
1924 		/* Don't "lock" with no region! */
1925 		if (!(val & mask))
1926 			return -EINVAL;
1927 	}
1928 
1929 	status_new = (status_old & ~mask & ~tb_mask) | val;
1930 
1931 	/* Disallow further writes if WP pin is asserted */
1932 	status_new |= SR_SRWD;
1933 
1934 	if (!use_top)
1935 		status_new |= tb_mask;
1936 
1937 	/* Don't bother if they're the same */
1938 	if (status_new == status_old)
1939 		return 0;
1940 
1941 	/* Only modify protection if it will not unlock other areas */
1942 	if ((status_new & mask) < (status_old & mask))
1943 		return -EINVAL;
1944 
1945 	return spi_nor_write_sr_and_check(nor, status_new);
1946 }
1947 
1948 /*
1949  * Unlock a region of the flash. See spi_nor_sr_lock() for more info
1950  *
1951  * Returns negative on errors, 0 on success.
1952  */
1953 static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1954 {
1955 	struct mtd_info *mtd = &nor->mtd;
1956 	u64 min_prot_len;
1957 	int ret, status_old, status_new;
1958 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1959 	u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1960 	u8 pow, val;
1961 	loff_t lock_len;
1962 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1963 	bool use_top;
1964 
1965 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1966 	if (ret)
1967 		return ret;
1968 
1969 	status_old = nor->bouncebuf[0];
1970 
1971 	/* If nothing in our range is locked, we don't need to do anything */
1972 	if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old))
1973 		return 0;
1974 
1975 	/* If anything below us is locked, we can't use 'top' protection */
1976 	if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old))
1977 		can_be_top = false;
1978 
1979 	/* If anything above us is locked, we can't use 'bottom' protection */
1980 	if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
1981 				    status_old))
1982 		can_be_bottom = false;
1983 
1984 	if (!can_be_bottom && !can_be_top)
1985 		return -EINVAL;
1986 
1987 	/* Prefer top, if both are valid */
1988 	use_top = can_be_top;
1989 
1990 	/* lock_len: length of region that should remain locked */
1991 	if (use_top)
1992 		lock_len = mtd->size - (ofs + len);
1993 	else
1994 		lock_len = ofs;
1995 
1996 	if (lock_len == 0) {
1997 		val = 0; /* fully unlocked */
1998 	} else {
1999 		min_prot_len = spi_nor_get_min_prot_length_sr(nor);
2000 		pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
2001 		val = pow << SR_BP_SHIFT;
2002 
2003 		if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
2004 			val = (val & ~SR_BP3) | SR_BP3_BIT6;
2005 
2006 		/* Some power-of-two sizes are not supported */
2007 		if (val & ~mask)
2008 			return -EINVAL;
2009 	}
2010 
2011 	status_new = (status_old & ~mask & ~tb_mask) | val;
2012 
2013 	/* Don't protect status register if we're fully unlocked */
2014 	if (lock_len == 0)
2015 		status_new &= ~SR_SRWD;
2016 
2017 	if (!use_top)
2018 		status_new |= tb_mask;
2019 
2020 	/* Don't bother if they're the same */
2021 	if (status_new == status_old)
2022 		return 0;
2023 
2024 	/* Only modify protection if it will not lock other areas */
2025 	if ((status_new & mask) > (status_old & mask))
2026 		return -EINVAL;
2027 
2028 	return spi_nor_write_sr_and_check(nor, status_new);
2029 }
2030 
2031 /*
2032  * Check if a region of the flash is (completely) locked. See spi_nor_sr_lock()
2033  * for more info.
2034  *
2035  * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
2036  * negative on errors.
2037  */
2038 static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
2039 {
2040 	int ret;
2041 
2042 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
2043 	if (ret)
2044 		return ret;
2045 
2046 	return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
2047 }
2048 
2049 static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = {
2050 	.lock = spi_nor_sr_lock,
2051 	.unlock = spi_nor_sr_unlock,
2052 	.is_locked = spi_nor_sr_is_locked,
2053 };
2054 
2055 static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2056 {
2057 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2058 	int ret;
2059 
2060 	ret = spi_nor_lock_and_prep(nor);
2061 	if (ret)
2062 		return ret;
2063 
2064 	ret = nor->params->locking_ops->lock(nor, ofs, len);
2065 
2066 	spi_nor_unlock_and_unprep(nor);
2067 	return ret;
2068 }
2069 
2070 static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2071 {
2072 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2073 	int ret;
2074 
2075 	ret = spi_nor_lock_and_prep(nor);
2076 	if (ret)
2077 		return ret;
2078 
2079 	ret = nor->params->locking_ops->unlock(nor, ofs, len);
2080 
2081 	spi_nor_unlock_and_unprep(nor);
2082 	return ret;
2083 }
2084 
2085 static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2086 {
2087 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2088 	int ret;
2089 
2090 	ret = spi_nor_lock_and_prep(nor);
2091 	if (ret)
2092 		return ret;
2093 
2094 	ret = nor->params->locking_ops->is_locked(nor, ofs, len);
2095 
2096 	spi_nor_unlock_and_unprep(nor);
2097 	return ret;
2098 }
2099 
2100 /**
2101  * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
2102  * Register 1.
2103  * @nor:	pointer to a 'struct spi_nor'
2104  *
2105  * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
2106  *
2107  * Return: 0 on success, -errno otherwise.
2108  */
2109 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
2110 {
2111 	int ret;
2112 
2113 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
2114 	if (ret)
2115 		return ret;
2116 
2117 	if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
2118 		return 0;
2119 
2120 	nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
2121 
2122 	return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
2123 }
2124 
2125 /**
2126  * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
2127  * Register 2.
2128  * @nor:       pointer to a 'struct spi_nor'.
2129  *
2130  * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
2131  *
2132  * Return: 0 on success, -errno otherwise.
2133  */
2134 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
2135 {
2136 	int ret;
2137 
2138 	if (nor->flags & SNOR_F_NO_READ_CR)
2139 		return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
2140 
2141 	ret = spi_nor_read_cr(nor, nor->bouncebuf);
2142 	if (ret)
2143 		return ret;
2144 
2145 	if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
2146 		return 0;
2147 
2148 	nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
2149 
2150 	return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
2151 }
2152 
2153 /**
2154  * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
2155  * @nor:	pointer to a 'struct spi_nor'
2156  *
2157  * Set the Quad Enable (QE) bit in the Status Register 2.
2158  *
2159  * This is one of the procedures to set the QE bit described in the SFDP
2160  * (JESD216 rev B) specification but no manufacturer using this procedure has
2161  * been identified yet, hence the name of the function.
2162  *
2163  * Return: 0 on success, -errno otherwise.
2164  */
2165 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
2166 {
2167 	u8 *sr2 = nor->bouncebuf;
2168 	int ret;
2169 	u8 sr2_written;
2170 
2171 	/* Check current Quad Enable bit value. */
2172 	ret = spi_nor_read_sr2(nor, sr2);
2173 	if (ret)
2174 		return ret;
2175 	if (*sr2 & SR2_QUAD_EN_BIT7)
2176 		return 0;
2177 
2178 	/* Update the Quad Enable bit. */
2179 	*sr2 |= SR2_QUAD_EN_BIT7;
2180 
2181 	ret = spi_nor_write_sr2(nor, sr2);
2182 	if (ret)
2183 		return ret;
2184 
2185 	sr2_written = *sr2;
2186 
2187 	/* Read back and check it. */
2188 	ret = spi_nor_read_sr2(nor, sr2);
2189 	if (ret)
2190 		return ret;
2191 
2192 	if (*sr2 != sr2_written) {
2193 		dev_dbg(nor->dev, "SR2: Read back test failed\n");
2194 		return -EIO;
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 static const struct spi_nor_manufacturer *manufacturers[] = {
2201 	&spi_nor_atmel,
2202 	&spi_nor_catalyst,
2203 	&spi_nor_eon,
2204 	&spi_nor_esmt,
2205 	&spi_nor_everspin,
2206 	&spi_nor_fujitsu,
2207 	&spi_nor_gigadevice,
2208 	&spi_nor_intel,
2209 	&spi_nor_issi,
2210 	&spi_nor_macronix,
2211 	&spi_nor_micron,
2212 	&spi_nor_st,
2213 	&spi_nor_spansion,
2214 	&spi_nor_sst,
2215 	&spi_nor_winbond,
2216 	&spi_nor_xilinx,
2217 	&spi_nor_xmc,
2218 };
2219 
2220 static const struct flash_info *
2221 spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
2222 			  const u8 *id)
2223 {
2224 	unsigned int i;
2225 
2226 	for (i = 0; i < nparts; i++) {
2227 		if (parts[i].id_len &&
2228 		    !memcmp(parts[i].id, id, parts[i].id_len))
2229 			return &parts[i];
2230 	}
2231 
2232 	return NULL;
2233 }
2234 
2235 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2236 {
2237 	const struct flash_info *info;
2238 	u8 *id = nor->bouncebuf;
2239 	unsigned int i;
2240 	int ret;
2241 
2242 	if (nor->spimem) {
2243 		struct spi_mem_op op =
2244 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
2245 				   SPI_MEM_OP_NO_ADDR,
2246 				   SPI_MEM_OP_NO_DUMMY,
2247 				   SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
2248 
2249 		ret = spi_mem_exec_op(nor->spimem, &op);
2250 	} else {
2251 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
2252 						    SPI_NOR_MAX_ID_LEN);
2253 	}
2254 	if (ret) {
2255 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
2256 		return ERR_PTR(ret);
2257 	}
2258 
2259 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2260 		info = spi_nor_search_part_by_id(manufacturers[i]->parts,
2261 						 manufacturers[i]->nparts,
2262 						 id);
2263 		if (info) {
2264 			nor->manufacturer = manufacturers[i];
2265 			return info;
2266 		}
2267 	}
2268 
2269 	dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2270 		SPI_NOR_MAX_ID_LEN, id);
2271 	return ERR_PTR(-ENODEV);
2272 }
2273 
2274 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2275 			size_t *retlen, u_char *buf)
2276 {
2277 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2278 	ssize_t ret;
2279 
2280 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2281 
2282 	ret = spi_nor_lock_and_prep(nor);
2283 	if (ret)
2284 		return ret;
2285 
2286 	while (len) {
2287 		loff_t addr = from;
2288 
2289 		addr = spi_nor_convert_addr(nor, addr);
2290 
2291 		ret = spi_nor_read_data(nor, addr, len, buf);
2292 		if (ret == 0) {
2293 			/* We shouldn't see 0-length reads */
2294 			ret = -EIO;
2295 			goto read_err;
2296 		}
2297 		if (ret < 0)
2298 			goto read_err;
2299 
2300 		WARN_ON(ret > len);
2301 		*retlen += ret;
2302 		buf += ret;
2303 		from += ret;
2304 		len -= ret;
2305 	}
2306 	ret = 0;
2307 
2308 read_err:
2309 	spi_nor_unlock_and_unprep(nor);
2310 	return ret;
2311 }
2312 
2313 /*
2314  * Write an address range to the nor chip.  Data must be written in
2315  * FLASH_PAGESIZE chunks.  The address range may be any size provided
2316  * it is within the physical boundaries.
2317  */
2318 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2319 	size_t *retlen, const u_char *buf)
2320 {
2321 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2322 	size_t page_offset, page_remain, i;
2323 	ssize_t ret;
2324 
2325 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2326 
2327 	ret = spi_nor_lock_and_prep(nor);
2328 	if (ret)
2329 		return ret;
2330 
2331 	for (i = 0; i < len; ) {
2332 		ssize_t written;
2333 		loff_t addr = to + i;
2334 
2335 		/*
2336 		 * If page_size is a power of two, the offset can be quickly
2337 		 * calculated with an AND operation. On the other cases we
2338 		 * need to do a modulus operation (more expensive).
2339 		 * Power of two numbers have only one bit set and we can use
2340 		 * the instruction hweight32 to detect if we need to do a
2341 		 * modulus (do_div()) or not.
2342 		 */
2343 		if (hweight32(nor->page_size) == 1) {
2344 			page_offset = addr & (nor->page_size - 1);
2345 		} else {
2346 			uint64_t aux = addr;
2347 
2348 			page_offset = do_div(aux, nor->page_size);
2349 		}
2350 		/* the size of data remaining on the first page */
2351 		page_remain = min_t(size_t,
2352 				    nor->page_size - page_offset, len - i);
2353 
2354 		addr = spi_nor_convert_addr(nor, addr);
2355 
2356 		ret = spi_nor_write_enable(nor);
2357 		if (ret)
2358 			goto write_err;
2359 
2360 		ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2361 		if (ret < 0)
2362 			goto write_err;
2363 		written = ret;
2364 
2365 		ret = spi_nor_wait_till_ready(nor);
2366 		if (ret)
2367 			goto write_err;
2368 		*retlen += written;
2369 		i += written;
2370 	}
2371 
2372 write_err:
2373 	spi_nor_unlock_and_unprep(nor);
2374 	return ret;
2375 }
2376 
2377 static int spi_nor_check(struct spi_nor *nor)
2378 {
2379 	if (!nor->dev ||
2380 	    (!nor->spimem && !nor->controller_ops) ||
2381 	    (!nor->spimem && nor->controller_ops &&
2382 	    (!nor->controller_ops->read ||
2383 	     !nor->controller_ops->write ||
2384 	     !nor->controller_ops->read_reg ||
2385 	     !nor->controller_ops->write_reg))) {
2386 		pr_err("spi-nor: please fill all the necessary fields!\n");
2387 		return -EINVAL;
2388 	}
2389 
2390 	if (nor->spimem && nor->controller_ops) {
2391 		dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2392 		return -EINVAL;
2393 	}
2394 
2395 	return 0;
2396 }
2397 
2398 void
2399 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2400 			  u8 num_mode_clocks,
2401 			  u8 num_wait_states,
2402 			  u8 opcode,
2403 			  enum spi_nor_protocol proto)
2404 {
2405 	read->num_mode_clocks = num_mode_clocks;
2406 	read->num_wait_states = num_wait_states;
2407 	read->opcode = opcode;
2408 	read->proto = proto;
2409 }
2410 
2411 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2412 			     enum spi_nor_protocol proto)
2413 {
2414 	pp->opcode = opcode;
2415 	pp->proto = proto;
2416 }
2417 
2418 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2419 {
2420 	size_t i;
2421 
2422 	for (i = 0; i < size; i++)
2423 		if (table[i][0] == (int)hwcaps)
2424 			return table[i][1];
2425 
2426 	return -EINVAL;
2427 }
2428 
2429 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2430 {
2431 	static const int hwcaps_read2cmd[][2] = {
2432 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
2433 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2434 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2435 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
2436 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
2437 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2438 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2439 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
2440 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
2441 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2442 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2443 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
2444 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
2445 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
2446 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2447 		{ SNOR_HWCAPS_READ_8_8_8_DTR,	SNOR_CMD_READ_8_8_8_DTR },
2448 	};
2449 
2450 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2451 				  ARRAY_SIZE(hwcaps_read2cmd));
2452 }
2453 
2454 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2455 {
2456 	static const int hwcaps_pp2cmd[][2] = {
2457 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
2458 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
2459 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
2460 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2461 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
2462 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
2463 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2464 		{ SNOR_HWCAPS_PP_8_8_8_DTR,	SNOR_CMD_PP_8_8_8_DTR },
2465 	};
2466 
2467 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2468 				  ARRAY_SIZE(hwcaps_pp2cmd));
2469 }
2470 
2471 /**
2472  * spi_nor_spimem_check_op - check if the operation is supported
2473  *                           by controller
2474  *@nor:        pointer to a 'struct spi_nor'
2475  *@op:         pointer to op template to be checked
2476  *
2477  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2478  */
2479 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2480 				   struct spi_mem_op *op)
2481 {
2482 	/*
2483 	 * First test with 4 address bytes. The opcode itself might
2484 	 * be a 3B addressing opcode but we don't care, because
2485 	 * SPI controller implementation should not check the opcode,
2486 	 * but just the sequence.
2487 	 */
2488 	op->addr.nbytes = 4;
2489 	if (!spi_mem_supports_op(nor->spimem, op)) {
2490 		if (nor->mtd.size > SZ_16M)
2491 			return -EOPNOTSUPP;
2492 
2493 		/* If flash size <= 16MB, 3 address bytes are sufficient */
2494 		op->addr.nbytes = 3;
2495 		if (!spi_mem_supports_op(nor->spimem, op))
2496 			return -EOPNOTSUPP;
2497 	}
2498 
2499 	return 0;
2500 }
2501 
2502 /**
2503  * spi_nor_spimem_check_readop - check if the read op is supported
2504  *                               by controller
2505  *@nor:         pointer to a 'struct spi_nor'
2506  *@read:        pointer to op template to be checked
2507  *
2508  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2509  */
2510 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2511 				       const struct spi_nor_read_command *read)
2512 {
2513 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 0),
2514 					  SPI_MEM_OP_ADDR(3, 0, 0),
2515 					  SPI_MEM_OP_DUMMY(1, 0),
2516 					  SPI_MEM_OP_DATA_IN(1, NULL, 0));
2517 
2518 	spi_nor_spimem_setup_op(nor, &op, read->proto);
2519 
2520 	/* convert the dummy cycles to the number of bytes */
2521 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
2522 	if (spi_nor_protocol_is_dtr(nor->read_proto))
2523 		op.dummy.nbytes *= 2;
2524 
2525 	return spi_nor_spimem_check_op(nor, &op);
2526 }
2527 
2528 /**
2529  * spi_nor_spimem_check_pp - check if the page program op is supported
2530  *                           by controller
2531  *@nor:         pointer to a 'struct spi_nor'
2532  *@pp:          pointer to op template to be checked
2533  *
2534  * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2535  */
2536 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2537 				   const struct spi_nor_pp_command *pp)
2538 {
2539 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 0),
2540 					  SPI_MEM_OP_ADDR(3, 0, 0),
2541 					  SPI_MEM_OP_NO_DUMMY,
2542 					  SPI_MEM_OP_DATA_OUT(1, NULL, 0));
2543 
2544 	spi_nor_spimem_setup_op(nor, &op, pp->proto);
2545 
2546 	return spi_nor_spimem_check_op(nor, &op);
2547 }
2548 
2549 /**
2550  * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2551  *                                based on SPI controller capabilities
2552  * @nor:        pointer to a 'struct spi_nor'
2553  * @hwcaps:     pointer to resulting capabilities after adjusting
2554  *              according to controller and flash's capability
2555  */
2556 static void
2557 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2558 {
2559 	struct spi_nor_flash_parameter *params = nor->params;
2560 	unsigned int cap;
2561 
2562 	/* X-X-X modes are not supported yet, mask them all. */
2563 	*hwcaps &= ~SNOR_HWCAPS_X_X_X;
2564 
2565 	/*
2566 	 * If the reset line is broken, we do not want to enter a stateful
2567 	 * mode.
2568 	 */
2569 	if (nor->flags & SNOR_F_BROKEN_RESET)
2570 		*hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
2571 
2572 	for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2573 		int rdidx, ppidx;
2574 
2575 		if (!(*hwcaps & BIT(cap)))
2576 			continue;
2577 
2578 		rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2579 		if (rdidx >= 0 &&
2580 		    spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
2581 			*hwcaps &= ~BIT(cap);
2582 
2583 		ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2584 		if (ppidx < 0)
2585 			continue;
2586 
2587 		if (spi_nor_spimem_check_pp(nor,
2588 					    &params->page_programs[ppidx]))
2589 			*hwcaps &= ~BIT(cap);
2590 	}
2591 }
2592 
2593 /**
2594  * spi_nor_set_erase_type() - set a SPI NOR erase type
2595  * @erase:	pointer to a structure that describes a SPI NOR erase type
2596  * @size:	the size of the sector/block erased by the erase type
2597  * @opcode:	the SPI command op code to erase the sector/block
2598  */
2599 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2600 			    u8 opcode)
2601 {
2602 	erase->size = size;
2603 	erase->opcode = opcode;
2604 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2605 	erase->size_shift = ffs(erase->size) - 1;
2606 	erase->size_mask = (1 << erase->size_shift) - 1;
2607 }
2608 
2609 /**
2610  * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2611  * @map:		the erase map of the SPI NOR
2612  * @erase_mask:		bitmask encoding erase types that can erase the entire
2613  *			flash memory
2614  * @flash_size:		the spi nor flash memory size
2615  */
2616 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2617 				    u8 erase_mask, u64 flash_size)
2618 {
2619 	/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2620 	map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2621 				     SNOR_LAST_REGION;
2622 	map->uniform_region.size = flash_size;
2623 	map->regions = &map->uniform_region;
2624 	map->uniform_erase_type = erase_mask;
2625 }
2626 
2627 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2628 			     const struct sfdp_parameter_header *bfpt_header,
2629 			     const struct sfdp_bfpt *bfpt,
2630 			     struct spi_nor_flash_parameter *params)
2631 {
2632 	int ret;
2633 
2634 	if (nor->manufacturer && nor->manufacturer->fixups &&
2635 	    nor->manufacturer->fixups->post_bfpt) {
2636 		ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2637 							   bfpt, params);
2638 		if (ret)
2639 			return ret;
2640 	}
2641 
2642 	if (nor->info->fixups && nor->info->fixups->post_bfpt)
2643 		return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
2644 						    params);
2645 
2646 	return 0;
2647 }
2648 
2649 static int spi_nor_select_read(struct spi_nor *nor,
2650 			       u32 shared_hwcaps)
2651 {
2652 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2653 	const struct spi_nor_read_command *read;
2654 
2655 	if (best_match < 0)
2656 		return -EINVAL;
2657 
2658 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2659 	if (cmd < 0)
2660 		return -EINVAL;
2661 
2662 	read = &nor->params->reads[cmd];
2663 	nor->read_opcode = read->opcode;
2664 	nor->read_proto = read->proto;
2665 
2666 	/*
2667 	 * In the SPI NOR framework, we don't need to make the difference
2668 	 * between mode clock cycles and wait state clock cycles.
2669 	 * Indeed, the value of the mode clock cycles is used by a QSPI
2670 	 * flash memory to know whether it should enter or leave its 0-4-4
2671 	 * (Continuous Read / XIP) mode.
2672 	 * eXecution In Place is out of the scope of the mtd sub-system.
2673 	 * Hence we choose to merge both mode and wait state clock cycles
2674 	 * into the so called dummy clock cycles.
2675 	 */
2676 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2677 	return 0;
2678 }
2679 
2680 static int spi_nor_select_pp(struct spi_nor *nor,
2681 			     u32 shared_hwcaps)
2682 {
2683 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2684 	const struct spi_nor_pp_command *pp;
2685 
2686 	if (best_match < 0)
2687 		return -EINVAL;
2688 
2689 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2690 	if (cmd < 0)
2691 		return -EINVAL;
2692 
2693 	pp = &nor->params->page_programs[cmd];
2694 	nor->program_opcode = pp->opcode;
2695 	nor->write_proto = pp->proto;
2696 	return 0;
2697 }
2698 
2699 /**
2700  * spi_nor_select_uniform_erase() - select optimum uniform erase type
2701  * @map:		the erase map of the SPI NOR
2702  * @wanted_size:	the erase type size to search for. Contains the value of
2703  *			info->sector_size or of the "small sector" size in case
2704  *			CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
2705  *
2706  * Once the optimum uniform sector erase command is found, disable all the
2707  * other.
2708  *
2709  * Return: pointer to erase type on success, NULL otherwise.
2710  */
2711 static const struct spi_nor_erase_type *
2712 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
2713 			     const u32 wanted_size)
2714 {
2715 	const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2716 	int i;
2717 	u8 uniform_erase_type = map->uniform_erase_type;
2718 
2719 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2720 		if (!(uniform_erase_type & BIT(i)))
2721 			continue;
2722 
2723 		tested_erase = &map->erase_type[i];
2724 
2725 		/*
2726 		 * If the current erase size is the one, stop here:
2727 		 * we have found the right uniform Sector Erase command.
2728 		 */
2729 		if (tested_erase->size == wanted_size) {
2730 			erase = tested_erase;
2731 			break;
2732 		}
2733 
2734 		/*
2735 		 * Otherwise, the current erase size is still a valid candidate.
2736 		 * Select the biggest valid candidate.
2737 		 */
2738 		if (!erase && tested_erase->size)
2739 			erase = tested_erase;
2740 			/* keep iterating to find the wanted_size */
2741 	}
2742 
2743 	if (!erase)
2744 		return NULL;
2745 
2746 	/* Disable all other Sector Erase commands. */
2747 	map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
2748 	map->uniform_erase_type |= BIT(erase - map->erase_type);
2749 	return erase;
2750 }
2751 
2752 static int spi_nor_select_erase(struct spi_nor *nor)
2753 {
2754 	struct spi_nor_erase_map *map = &nor->params->erase_map;
2755 	const struct spi_nor_erase_type *erase = NULL;
2756 	struct mtd_info *mtd = &nor->mtd;
2757 	u32 wanted_size = nor->info->sector_size;
2758 	int i;
2759 
2760 	/*
2761 	 * The previous implementation handling Sector Erase commands assumed
2762 	 * that the SPI flash memory has an uniform layout then used only one
2763 	 * of the supported erase sizes for all Sector Erase commands.
2764 	 * So to be backward compatible, the new implementation also tries to
2765 	 * manage the SPI flash memory as uniform with a single erase sector
2766 	 * size, when possible.
2767 	 */
2768 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
2769 	/* prefer "small sector" erase if possible */
2770 	wanted_size = 4096u;
2771 #endif
2772 
2773 	if (spi_nor_has_uniform_erase(nor)) {
2774 		erase = spi_nor_select_uniform_erase(map, wanted_size);
2775 		if (!erase)
2776 			return -EINVAL;
2777 		nor->erase_opcode = erase->opcode;
2778 		mtd->erasesize = erase->size;
2779 		return 0;
2780 	}
2781 
2782 	/*
2783 	 * For non-uniform SPI flash memory, set mtd->erasesize to the
2784 	 * maximum erase sector size. No need to set nor->erase_opcode.
2785 	 */
2786 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2787 		if (map->erase_type[i].size) {
2788 			erase = &map->erase_type[i];
2789 			break;
2790 		}
2791 	}
2792 
2793 	if (!erase)
2794 		return -EINVAL;
2795 
2796 	mtd->erasesize = erase->size;
2797 	return 0;
2798 }
2799 
2800 static int spi_nor_default_setup(struct spi_nor *nor,
2801 				 const struct spi_nor_hwcaps *hwcaps)
2802 {
2803 	struct spi_nor_flash_parameter *params = nor->params;
2804 	u32 ignored_mask, shared_mask;
2805 	int err;
2806 
2807 	/*
2808 	 * Keep only the hardware capabilities supported by both the SPI
2809 	 * controller and the SPI flash memory.
2810 	 */
2811 	shared_mask = hwcaps->mask & params->hwcaps.mask;
2812 
2813 	if (nor->spimem) {
2814 		/*
2815 		 * When called from spi_nor_probe(), all caps are set and we
2816 		 * need to discard some of them based on what the SPI
2817 		 * controller actually supports (using spi_mem_supports_op()).
2818 		 */
2819 		spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2820 	} else {
2821 		/*
2822 		 * SPI n-n-n protocols are not supported when the SPI
2823 		 * controller directly implements the spi_nor interface.
2824 		 * Yet another reason to switch to spi-mem.
2825 		 */
2826 		ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
2827 		if (shared_mask & ignored_mask) {
2828 			dev_dbg(nor->dev,
2829 				"SPI n-n-n protocols are not supported.\n");
2830 			shared_mask &= ~ignored_mask;
2831 		}
2832 	}
2833 
2834 	/* Select the (Fast) Read command. */
2835 	err = spi_nor_select_read(nor, shared_mask);
2836 	if (err) {
2837 		dev_dbg(nor->dev,
2838 			"can't select read settings supported by both the SPI controller and memory.\n");
2839 		return err;
2840 	}
2841 
2842 	/* Select the Page Program command. */
2843 	err = spi_nor_select_pp(nor, shared_mask);
2844 	if (err) {
2845 		dev_dbg(nor->dev,
2846 			"can't select write settings supported by both the SPI controller and memory.\n");
2847 		return err;
2848 	}
2849 
2850 	/* Select the Sector Erase command. */
2851 	err = spi_nor_select_erase(nor);
2852 	if (err) {
2853 		dev_dbg(nor->dev,
2854 			"can't select erase settings supported by both the SPI controller and memory.\n");
2855 		return err;
2856 	}
2857 
2858 	return 0;
2859 }
2860 
2861 static int spi_nor_setup(struct spi_nor *nor,
2862 			 const struct spi_nor_hwcaps *hwcaps)
2863 {
2864 	if (!nor->params->setup)
2865 		return 0;
2866 
2867 	return nor->params->setup(nor, hwcaps);
2868 }
2869 
2870 /**
2871  * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2872  * settings based on MFR register and ->default_init() hook.
2873  * @nor:	pointer to a 'struct spi_nor'.
2874  */
2875 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2876 {
2877 	if (nor->manufacturer && nor->manufacturer->fixups &&
2878 	    nor->manufacturer->fixups->default_init)
2879 		nor->manufacturer->fixups->default_init(nor);
2880 
2881 	if (nor->info->fixups && nor->info->fixups->default_init)
2882 		nor->info->fixups->default_init(nor);
2883 }
2884 
2885 /**
2886  * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
2887  * based on JESD216 SFDP standard.
2888  * @nor:	pointer to a 'struct spi_nor'.
2889  *
2890  * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2891  * legacy flash parameters and settings will be restored.
2892  */
2893 static void spi_nor_sfdp_init_params(struct spi_nor *nor)
2894 {
2895 	struct spi_nor_flash_parameter sfdp_params;
2896 
2897 	memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2898 
2899 	if (spi_nor_parse_sfdp(nor, nor->params)) {
2900 		memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2901 		nor->addr_width = 0;
2902 		nor->flags &= ~SNOR_F_4B_OPCODES;
2903 	}
2904 }
2905 
2906 /**
2907  * spi_nor_info_init_params() - Initialize the flash's parameters and settings
2908  * based on nor->info data.
2909  * @nor:	pointer to a 'struct spi_nor'.
2910  */
2911 static void spi_nor_info_init_params(struct spi_nor *nor)
2912 {
2913 	struct spi_nor_flash_parameter *params = nor->params;
2914 	struct spi_nor_erase_map *map = &params->erase_map;
2915 	const struct flash_info *info = nor->info;
2916 	struct device_node *np = spi_nor_get_flash_node(nor);
2917 	u8 i, erase_mask;
2918 
2919 	/* Initialize legacy flash parameters and settings. */
2920 	params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2921 	params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
2922 	params->setup = spi_nor_default_setup;
2923 	/* Default to 16-bit Write Status (01h) Command */
2924 	nor->flags |= SNOR_F_HAS_16BIT_SR;
2925 
2926 	/* Set SPI NOR sizes. */
2927 	params->writesize = 1;
2928 	params->size = (u64)info->sector_size * info->n_sectors;
2929 	params->page_size = info->page_size;
2930 
2931 	if (!(info->flags & SPI_NOR_NO_FR)) {
2932 		/* Default to Fast Read for DT and non-DT platform devices. */
2933 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2934 
2935 		/* Mask out Fast Read if not requested at DT instantiation. */
2936 		if (np && !of_property_read_bool(np, "m25p,fast-read"))
2937 			params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2938 	}
2939 
2940 	/* (Fast) Read settings. */
2941 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
2942 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
2943 				  0, 0, SPINOR_OP_READ,
2944 				  SNOR_PROTO_1_1_1);
2945 
2946 	if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2947 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
2948 					  0, 8, SPINOR_OP_READ_FAST,
2949 					  SNOR_PROTO_1_1_1);
2950 
2951 	if (info->flags & SPI_NOR_DUAL_READ) {
2952 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2953 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
2954 					  0, 8, SPINOR_OP_READ_1_1_2,
2955 					  SNOR_PROTO_1_1_2);
2956 	}
2957 
2958 	if (info->flags & SPI_NOR_QUAD_READ) {
2959 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2960 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
2961 					  0, 8, SPINOR_OP_READ_1_1_4,
2962 					  SNOR_PROTO_1_1_4);
2963 	}
2964 
2965 	if (info->flags & SPI_NOR_OCTAL_READ) {
2966 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2967 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
2968 					  0, 8, SPINOR_OP_READ_1_1_8,
2969 					  SNOR_PROTO_1_1_8);
2970 	}
2971 
2972 	if (info->flags & SPI_NOR_OCTAL_DTR_READ) {
2973 		params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
2974 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_8_8_8_DTR],
2975 					  0, 20, SPINOR_OP_READ_FAST,
2976 					  SNOR_PROTO_8_8_8_DTR);
2977 	}
2978 
2979 	/* Page Program settings. */
2980 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
2981 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
2982 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2983 
2984 	if (info->flags & SPI_NOR_OCTAL_DTR_PP) {
2985 		params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
2986 		/*
2987 		 * Since xSPI Page Program opcode is backward compatible with
2988 		 * Legacy SPI, use Legacy SPI opcode there as well.
2989 		 */
2990 		spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP_8_8_8_DTR],
2991 					SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
2992 	}
2993 
2994 	/*
2995 	 * Sector Erase settings. Sort Erase Types in ascending order, with the
2996 	 * smallest erase size starting at BIT(0).
2997 	 */
2998 	erase_mask = 0;
2999 	i = 0;
3000 	if (info->flags & SECT_4K_PMC) {
3001 		erase_mask |= BIT(i);
3002 		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
3003 				       SPINOR_OP_BE_4K_PMC);
3004 		i++;
3005 	} else if (info->flags & SECT_4K) {
3006 		erase_mask |= BIT(i);
3007 		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
3008 				       SPINOR_OP_BE_4K);
3009 		i++;
3010 	}
3011 	erase_mask |= BIT(i);
3012 	spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
3013 			       SPINOR_OP_SE);
3014 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
3015 }
3016 
3017 /**
3018  * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
3019  * after SFDP has been parsed (is also called for SPI NORs that do not
3020  * support RDSFDP).
3021  * @nor:	pointer to a 'struct spi_nor'
3022  *
3023  * Typically used to tweak various parameters that could not be extracted by
3024  * other means (i.e. when information provided by the SFDP/flash_info tables
3025  * are incomplete or wrong).
3026  */
3027 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
3028 {
3029 	if (nor->manufacturer && nor->manufacturer->fixups &&
3030 	    nor->manufacturer->fixups->post_sfdp)
3031 		nor->manufacturer->fixups->post_sfdp(nor);
3032 
3033 	if (nor->info->fixups && nor->info->fixups->post_sfdp)
3034 		nor->info->fixups->post_sfdp(nor);
3035 }
3036 
3037 /**
3038  * spi_nor_late_init_params() - Late initialization of default flash parameters.
3039  * @nor:	pointer to a 'struct spi_nor'
3040  *
3041  * Used to set default flash parameters and settings when the ->default_init()
3042  * hook or the SFDP parser let voids.
3043  */
3044 static void spi_nor_late_init_params(struct spi_nor *nor)
3045 {
3046 	/*
3047 	 * NOR protection support. When locking_ops are not provided, we pick
3048 	 * the default ones.
3049 	 */
3050 	if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
3051 		nor->params->locking_ops = &spi_nor_sr_locking_ops;
3052 }
3053 
3054 /**
3055  * spi_nor_init_params() - Initialize the flash's parameters and settings.
3056  * @nor:	pointer to a 'struct spi_nor'.
3057  *
3058  * The flash parameters and settings are initialized based on a sequence of
3059  * calls that are ordered by priority:
3060  *
3061  * 1/ Default flash parameters initialization. The initializations are done
3062  *    based on nor->info data:
3063  *		spi_nor_info_init_params()
3064  *
3065  * which can be overwritten by:
3066  * 2/ Manufacturer flash parameters initialization. The initializations are
3067  *    done based on MFR register, or when the decisions can not be done solely
3068  *    based on MFR, by using specific flash_info tweeks, ->default_init():
3069  *		spi_nor_manufacturer_init_params()
3070  *
3071  * which can be overwritten by:
3072  * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
3073  *    should be more accurate that the above.
3074  *		spi_nor_sfdp_init_params()
3075  *
3076  *    Please note that there is a ->post_bfpt() fixup hook that can overwrite
3077  *    the flash parameters and settings immediately after parsing the Basic
3078  *    Flash Parameter Table.
3079  *
3080  * which can be overwritten by:
3081  * 4/ Post SFDP flash parameters initialization. Used to tweak various
3082  *    parameters that could not be extracted by other means (i.e. when
3083  *    information provided by the SFDP/flash_info tables are incomplete or
3084  *    wrong).
3085  *		spi_nor_post_sfdp_fixups()
3086  *
3087  * 5/ Late default flash parameters initialization, used when the
3088  * ->default_init() hook or the SFDP parser do not set specific params.
3089  *		spi_nor_late_init_params()
3090  */
3091 static int spi_nor_init_params(struct spi_nor *nor)
3092 {
3093 	nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
3094 	if (!nor->params)
3095 		return -ENOMEM;
3096 
3097 	spi_nor_info_init_params(nor);
3098 
3099 	spi_nor_manufacturer_init_params(nor);
3100 
3101 	if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
3102 				 SPI_NOR_OCTAL_READ | SPI_NOR_OCTAL_DTR_READ)) &&
3103 	    !(nor->info->flags & SPI_NOR_SKIP_SFDP))
3104 		spi_nor_sfdp_init_params(nor);
3105 
3106 	spi_nor_post_sfdp_fixups(nor);
3107 
3108 	spi_nor_late_init_params(nor);
3109 
3110 	return 0;
3111 }
3112 
3113 /** spi_nor_octal_dtr_enable() - enable Octal DTR I/O if needed
3114  * @nor:                 pointer to a 'struct spi_nor'
3115  * @enable:              whether to enable or disable Octal DTR
3116  *
3117  * Return: 0 on success, -errno otherwise.
3118  */
3119 static int spi_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
3120 {
3121 	int ret;
3122 
3123 	if (!nor->params->octal_dtr_enable)
3124 		return 0;
3125 
3126 	if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
3127 	      nor->write_proto == SNOR_PROTO_8_8_8_DTR))
3128 		return 0;
3129 
3130 	if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
3131 		return 0;
3132 
3133 	ret = nor->params->octal_dtr_enable(nor, enable);
3134 	if (ret)
3135 		return ret;
3136 
3137 	if (enable)
3138 		nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
3139 	else
3140 		nor->reg_proto = SNOR_PROTO_1_1_1;
3141 
3142 	return 0;
3143 }
3144 
3145 /**
3146  * spi_nor_quad_enable() - enable Quad I/O if needed.
3147  * @nor:                pointer to a 'struct spi_nor'
3148  *
3149  * Return: 0 on success, -errno otherwise.
3150  */
3151 static int spi_nor_quad_enable(struct spi_nor *nor)
3152 {
3153 	if (!nor->params->quad_enable)
3154 		return 0;
3155 
3156 	if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
3157 	      spi_nor_get_protocol_width(nor->write_proto) == 4))
3158 		return 0;
3159 
3160 	return nor->params->quad_enable(nor);
3161 }
3162 
3163 /**
3164  * spi_nor_try_unlock_all() - Tries to unlock the entire flash memory array.
3165  * @nor:	pointer to a 'struct spi_nor'.
3166  *
3167  * Some SPI NOR flashes are write protected by default after a power-on reset
3168  * cycle, in order to avoid inadvertent writes during power-up. Backward
3169  * compatibility imposes to unlock the entire flash memory array at power-up
3170  * by default.
3171  *
3172  * Unprotecting the entire flash array will fail for boards which are hardware
3173  * write-protected. Thus any errors are ignored.
3174  */
3175 static void spi_nor_try_unlock_all(struct spi_nor *nor)
3176 {
3177 	int ret;
3178 
3179 	if (!(nor->flags & SNOR_F_HAS_LOCK))
3180 		return;
3181 
3182 	dev_dbg(nor->dev, "Unprotecting entire flash array\n");
3183 
3184 	ret = spi_nor_unlock(&nor->mtd, 0, nor->params->size);
3185 	if (ret)
3186 		dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
3187 }
3188 
3189 static int spi_nor_init(struct spi_nor *nor)
3190 {
3191 	int err;
3192 
3193 	err = spi_nor_octal_dtr_enable(nor, true);
3194 	if (err) {
3195 		dev_dbg(nor->dev, "octal mode not supported\n");
3196 		return err;
3197 	}
3198 
3199 	err = spi_nor_quad_enable(nor);
3200 	if (err) {
3201 		dev_dbg(nor->dev, "quad mode not supported\n");
3202 		return err;
3203 	}
3204 
3205 	/*
3206 	 * Some SPI NOR flashes are write protected by default after a power-on
3207 	 * reset cycle, in order to avoid inadvertent writes during power-up.
3208 	 * Backward compatibility imposes to unlock the entire flash memory
3209 	 * array at power-up by default. Depending on the kernel configuration
3210 	 * (1) do nothing, (2) always unlock the entire flash array or (3)
3211 	 * unlock the entire flash array only when the software write
3212 	 * protection bits are volatile. The latter is indicated by
3213 	 * SNOR_F_SWP_IS_VOLATILE.
3214 	 */
3215 	if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
3216 	    (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
3217 	     nor->flags & SNOR_F_SWP_IS_VOLATILE))
3218 		spi_nor_try_unlock_all(nor);
3219 
3220 	if (nor->addr_width == 4 &&
3221 	    nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
3222 	    !(nor->flags & SNOR_F_4B_OPCODES)) {
3223 		/*
3224 		 * If the RESET# pin isn't hooked up properly, or the system
3225 		 * otherwise doesn't perform a reset command in the boot
3226 		 * sequence, it's impossible to 100% protect against unexpected
3227 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
3228 		 * designer) that this is bad.
3229 		 */
3230 		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
3231 			  "enabling reset hack; may not recover from unexpected reboots\n");
3232 		nor->params->set_4byte_addr_mode(nor, true);
3233 	}
3234 
3235 	return 0;
3236 }
3237 
3238 static void spi_nor_soft_reset(struct spi_nor *nor)
3239 {
3240 	struct spi_mem_op op;
3241 	int ret;
3242 
3243 	op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRSTEN, 0),
3244 			SPI_MEM_OP_NO_DUMMY,
3245 			SPI_MEM_OP_NO_ADDR,
3246 			SPI_MEM_OP_NO_DATA);
3247 
3248 	spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3249 
3250 	ret = spi_mem_exec_op(nor->spimem, &op);
3251 	if (ret) {
3252 		dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3253 		return;
3254 	}
3255 
3256 	op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRST, 0),
3257 			SPI_MEM_OP_NO_DUMMY,
3258 			SPI_MEM_OP_NO_ADDR,
3259 			SPI_MEM_OP_NO_DATA);
3260 
3261 	spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3262 
3263 	ret = spi_mem_exec_op(nor->spimem, &op);
3264 	if (ret) {
3265 		dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3266 		return;
3267 	}
3268 
3269 	/*
3270 	 * Software Reset is not instant, and the delay varies from flash to
3271 	 * flash. Looking at a few flashes, most range somewhere below 100
3272 	 * microseconds. So, sleep for a range of 200-400 us.
3273 	 */
3274 	usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
3275 }
3276 
3277 /* mtd suspend handler */
3278 static int spi_nor_suspend(struct mtd_info *mtd)
3279 {
3280 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
3281 	int ret;
3282 
3283 	/* Disable octal DTR mode if we enabled it. */
3284 	ret = spi_nor_octal_dtr_enable(nor, false);
3285 	if (ret)
3286 		dev_err(nor->dev, "suspend() failed\n");
3287 
3288 	return ret;
3289 }
3290 
3291 /* mtd resume handler */
3292 static void spi_nor_resume(struct mtd_info *mtd)
3293 {
3294 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
3295 	struct device *dev = nor->dev;
3296 	int ret;
3297 
3298 	/* re-initialize the nor chip */
3299 	ret = spi_nor_init(nor);
3300 	if (ret)
3301 		dev_err(dev, "resume() failed\n");
3302 }
3303 
3304 void spi_nor_restore(struct spi_nor *nor)
3305 {
3306 	/* restore the addressing mode */
3307 	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3308 	    nor->flags & SNOR_F_BROKEN_RESET)
3309 		nor->params->set_4byte_addr_mode(nor, false);
3310 
3311 	if (nor->flags & SNOR_F_SOFT_RESET)
3312 		spi_nor_soft_reset(nor);
3313 }
3314 EXPORT_SYMBOL_GPL(spi_nor_restore);
3315 
3316 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
3317 						 const char *name)
3318 {
3319 	unsigned int i, j;
3320 
3321 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3322 		for (j = 0; j < manufacturers[i]->nparts; j++) {
3323 			if (!strcmp(name, manufacturers[i]->parts[j].name)) {
3324 				nor->manufacturer = manufacturers[i];
3325 				return &manufacturers[i]->parts[j];
3326 			}
3327 		}
3328 	}
3329 
3330 	return NULL;
3331 }
3332 
3333 static int spi_nor_set_addr_width(struct spi_nor *nor)
3334 {
3335 	if (nor->addr_width) {
3336 		/* already configured from SFDP */
3337 	} else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
3338 		/*
3339 		 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
3340 		 * in this protocol an odd address width cannot be used because
3341 		 * then the address phase would only span a cycle and a half.
3342 		 * Half a cycle would be left over. We would then have to start
3343 		 * the dummy phase in the middle of a cycle and so too the data
3344 		 * phase, and we will end the transaction with half a cycle left
3345 		 * over.
3346 		 *
3347 		 * Force all 8D-8D-8D flashes to use an address width of 4 to
3348 		 * avoid this situation.
3349 		 */
3350 		nor->addr_width = 4;
3351 	} else if (nor->info->addr_width) {
3352 		nor->addr_width = nor->info->addr_width;
3353 	} else {
3354 		nor->addr_width = 3;
3355 	}
3356 
3357 	if (nor->addr_width == 3 && nor->mtd.size > 0x1000000) {
3358 		/* enable 4-byte addressing if the device exceeds 16MiB */
3359 		nor->addr_width = 4;
3360 	}
3361 
3362 	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
3363 		dev_dbg(nor->dev, "address width is too large: %u\n",
3364 			nor->addr_width);
3365 		return -EINVAL;
3366 	}
3367 
3368 	/* Set 4byte opcodes when possible. */
3369 	if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
3370 	    !(nor->flags & SNOR_F_HAS_4BAIT))
3371 		spi_nor_set_4byte_opcodes(nor);
3372 
3373 	return 0;
3374 }
3375 
3376 static void spi_nor_debugfs_init(struct spi_nor *nor,
3377 				 const struct flash_info *info)
3378 {
3379 	struct mtd_info *mtd = &nor->mtd;
3380 
3381 	mtd->dbg.partname = info->name;
3382 	mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
3383 					 info->id_len, info->id);
3384 }
3385 
3386 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3387 						       const char *name)
3388 {
3389 	const struct flash_info *info = NULL;
3390 
3391 	if (name)
3392 		info = spi_nor_match_id(nor, name);
3393 	/* Try to auto-detect if chip name wasn't specified or not found */
3394 	if (!info)
3395 		info = spi_nor_read_id(nor);
3396 	if (IS_ERR_OR_NULL(info))
3397 		return ERR_PTR(-ENOENT);
3398 
3399 	/*
3400 	 * If caller has specified name of flash model that can normally be
3401 	 * detected using JEDEC, let's verify it.
3402 	 */
3403 	if (name && info->id_len) {
3404 		const struct flash_info *jinfo;
3405 
3406 		jinfo = spi_nor_read_id(nor);
3407 		if (IS_ERR(jinfo)) {
3408 			return jinfo;
3409 		} else if (jinfo != info) {
3410 			/*
3411 			 * JEDEC knows better, so overwrite platform ID. We
3412 			 * can't trust partitions any longer, but we'll let
3413 			 * mtd apply them anyway, since some partitions may be
3414 			 * marked read-only, and we don't want to lose that
3415 			 * information, even if it's not 100% accurate.
3416 			 */
3417 			dev_warn(nor->dev, "found %s, expected %s\n",
3418 				 jinfo->name, info->name);
3419 			info = jinfo;
3420 		}
3421 	}
3422 
3423 	return info;
3424 }
3425 
3426 int spi_nor_scan(struct spi_nor *nor, const char *name,
3427 		 const struct spi_nor_hwcaps *hwcaps)
3428 {
3429 	const struct flash_info *info;
3430 	struct device *dev = nor->dev;
3431 	struct mtd_info *mtd = &nor->mtd;
3432 	struct device_node *np = spi_nor_get_flash_node(nor);
3433 	int ret;
3434 	int i;
3435 
3436 	ret = spi_nor_check(nor);
3437 	if (ret)
3438 		return ret;
3439 
3440 	/* Reset SPI protocol for all commands. */
3441 	nor->reg_proto = SNOR_PROTO_1_1_1;
3442 	nor->read_proto = SNOR_PROTO_1_1_1;
3443 	nor->write_proto = SNOR_PROTO_1_1_1;
3444 
3445 	/*
3446 	 * We need the bounce buffer early to read/write registers when going
3447 	 * through the spi-mem layer (buffers have to be DMA-able).
3448 	 * For spi-mem drivers, we'll reallocate a new buffer if
3449 	 * nor->page_size turns out to be greater than PAGE_SIZE (which
3450 	 * shouldn't happen before long since NOR pages are usually less
3451 	 * than 1KB) after spi_nor_scan() returns.
3452 	 */
3453 	nor->bouncebuf_size = PAGE_SIZE;
3454 	nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3455 				      GFP_KERNEL);
3456 	if (!nor->bouncebuf)
3457 		return -ENOMEM;
3458 
3459 	info = spi_nor_get_flash_info(nor, name);
3460 	if (IS_ERR(info))
3461 		return PTR_ERR(info);
3462 
3463 	nor->info = info;
3464 
3465 	spi_nor_debugfs_init(nor, info);
3466 
3467 	mutex_init(&nor->lock);
3468 
3469 	/*
3470 	 * Make sure the XSR_RDY flag is set before calling
3471 	 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
3472 	 * with Atmel SPI NOR.
3473 	 */
3474 	if (info->flags & SPI_NOR_XSR_RDY)
3475 		nor->flags |=  SNOR_F_READY_XSR_RDY;
3476 
3477 	if (info->flags & SPI_NOR_HAS_LOCK)
3478 		nor->flags |= SNOR_F_HAS_LOCK;
3479 
3480 	mtd->_write = spi_nor_write;
3481 
3482 	/* Init flash parameters based on flash_info struct and SFDP */
3483 	ret = spi_nor_init_params(nor);
3484 	if (ret)
3485 		return ret;
3486 
3487 	if (!mtd->name)
3488 		mtd->name = dev_name(dev);
3489 	mtd->priv = nor;
3490 	mtd->type = MTD_NORFLASH;
3491 	mtd->writesize = nor->params->writesize;
3492 	mtd->flags = MTD_CAP_NORFLASH;
3493 	mtd->size = nor->params->size;
3494 	mtd->_erase = spi_nor_erase;
3495 	mtd->_read = spi_nor_read;
3496 	mtd->_suspend = spi_nor_suspend;
3497 	mtd->_resume = spi_nor_resume;
3498 
3499 	if (nor->params->locking_ops) {
3500 		mtd->_lock = spi_nor_lock;
3501 		mtd->_unlock = spi_nor_unlock;
3502 		mtd->_is_locked = spi_nor_is_locked;
3503 	}
3504 
3505 	if (info->flags & USE_FSR)
3506 		nor->flags |= SNOR_F_USE_FSR;
3507 	if (info->flags & SPI_NOR_HAS_TB) {
3508 		nor->flags |= SNOR_F_HAS_SR_TB;
3509 		if (info->flags & SPI_NOR_TB_SR_BIT6)
3510 			nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
3511 	}
3512 
3513 	if (info->flags & NO_CHIP_ERASE)
3514 		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
3515 	if (info->flags & USE_CLSR)
3516 		nor->flags |= SNOR_F_USE_CLSR;
3517 	if (info->flags & SPI_NOR_SWP_IS_VOLATILE)
3518 		nor->flags |= SNOR_F_SWP_IS_VOLATILE;
3519 
3520 	if (info->flags & SPI_NOR_4BIT_BP) {
3521 		nor->flags |= SNOR_F_HAS_4BIT_BP;
3522 		if (info->flags & SPI_NOR_BP3_SR_BIT6)
3523 			nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
3524 	}
3525 
3526 	if (info->flags & SPI_NOR_NO_ERASE)
3527 		mtd->flags |= MTD_NO_ERASE;
3528 
3529 	mtd->dev.parent = dev;
3530 	nor->page_size = nor->params->page_size;
3531 	mtd->writebufsize = nor->page_size;
3532 
3533 	if (of_property_read_bool(np, "broken-flash-reset"))
3534 		nor->flags |= SNOR_F_BROKEN_RESET;
3535 
3536 	/*
3537 	 * Configure the SPI memory:
3538 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3539 	 * - set the number of dummy cycles (mode cycles + wait states).
3540 	 * - set the SPI protocols for register and memory accesses.
3541 	 */
3542 	ret = spi_nor_setup(nor, hwcaps);
3543 	if (ret)
3544 		return ret;
3545 
3546 	if (info->flags & SPI_NOR_4B_OPCODES)
3547 		nor->flags |= SNOR_F_4B_OPCODES;
3548 
3549 	if (info->flags & SPI_NOR_IO_MODE_EN_VOLATILE)
3550 		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
3551 
3552 	ret = spi_nor_set_addr_width(nor);
3553 	if (ret)
3554 		return ret;
3555 
3556 	/* Send all the required SPI flash commands to initialize device */
3557 	ret = spi_nor_init(nor);
3558 	if (ret)
3559 		return ret;
3560 
3561 	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3562 			(long long)mtd->size >> 10);
3563 
3564 	dev_dbg(dev,
3565 		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
3566 		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
3567 		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
3568 		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
3569 
3570 	if (mtd->numeraseregions)
3571 		for (i = 0; i < mtd->numeraseregions; i++)
3572 			dev_dbg(dev,
3573 				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
3574 				".erasesize = 0x%.8x (%uKiB), "
3575 				".numblocks = %d }\n",
3576 				i, (long long)mtd->eraseregions[i].offset,
3577 				mtd->eraseregions[i].erasesize,
3578 				mtd->eraseregions[i].erasesize / 1024,
3579 				mtd->eraseregions[i].numblocks);
3580 	return 0;
3581 }
3582 EXPORT_SYMBOL_GPL(spi_nor_scan);
3583 
3584 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3585 {
3586 	struct spi_mem_dirmap_info info = {
3587 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
3588 				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 0),
3589 				      SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
3590 				      SPI_MEM_OP_DATA_IN(0, NULL, 0)),
3591 		.offset = 0,
3592 		.length = nor->mtd.size,
3593 	};
3594 	struct spi_mem_op *op = &info.op_tmpl;
3595 
3596 	spi_nor_spimem_setup_op(nor, op, nor->read_proto);
3597 
3598 	/* convert the dummy cycles to the number of bytes */
3599 	op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3600 	if (spi_nor_protocol_is_dtr(nor->read_proto))
3601 		op->dummy.nbytes *= 2;
3602 
3603 	/*
3604 	 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3605 	 * of data bytes is non-zero, the data buswidth won't be set here. So,
3606 	 * do it explicitly.
3607 	 */
3608 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3609 
3610 	nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3611 						       &info);
3612 	return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3613 }
3614 
3615 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3616 {
3617 	struct spi_mem_dirmap_info info = {
3618 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
3619 				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 0),
3620 				      SPI_MEM_OP_NO_DUMMY,
3621 				      SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
3622 		.offset = 0,
3623 		.length = nor->mtd.size,
3624 	};
3625 	struct spi_mem_op *op = &info.op_tmpl;
3626 
3627 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3628 		op->addr.nbytes = 0;
3629 
3630 	spi_nor_spimem_setup_op(nor, op, nor->write_proto);
3631 
3632 	/*
3633 	 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3634 	 * of data bytes is non-zero, the data buswidth won't be set here. So,
3635 	 * do it explicitly.
3636 	 */
3637 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3638 
3639 	nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3640 						       &info);
3641 	return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3642 }
3643 
3644 static int spi_nor_probe(struct spi_mem *spimem)
3645 {
3646 	struct spi_device *spi = spimem->spi;
3647 	struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3648 	struct spi_nor *nor;
3649 	/*
3650 	 * Enable all caps by default. The core will mask them after
3651 	 * checking what's really supported using spi_mem_supports_op().
3652 	 */
3653 	const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3654 	char *flash_name;
3655 	int ret;
3656 
3657 	nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3658 	if (!nor)
3659 		return -ENOMEM;
3660 
3661 	nor->spimem = spimem;
3662 	nor->dev = &spi->dev;
3663 	spi_nor_set_flash_node(nor, spi->dev.of_node);
3664 
3665 	spi_mem_set_drvdata(spimem, nor);
3666 
3667 	if (data && data->name)
3668 		nor->mtd.name = data->name;
3669 
3670 	if (!nor->mtd.name)
3671 		nor->mtd.name = spi_mem_get_name(spimem);
3672 
3673 	/*
3674 	 * For some (historical?) reason many platforms provide two different
3675 	 * names in flash_platform_data: "name" and "type". Quite often name is
3676 	 * set to "m25p80" and then "type" provides a real chip name.
3677 	 * If that's the case, respect "type" and ignore a "name".
3678 	 */
3679 	if (data && data->type)
3680 		flash_name = data->type;
3681 	else if (!strcmp(spi->modalias, "spi-nor"))
3682 		flash_name = NULL; /* auto-detect */
3683 	else
3684 		flash_name = spi->modalias;
3685 
3686 	ret = spi_nor_scan(nor, flash_name, &hwcaps);
3687 	if (ret)
3688 		return ret;
3689 
3690 	/*
3691 	 * None of the existing parts have > 512B pages, but let's play safe
3692 	 * and add this logic so that if anyone ever adds support for such
3693 	 * a NOR we don't end up with buffer overflows.
3694 	 */
3695 	if (nor->page_size > PAGE_SIZE) {
3696 		nor->bouncebuf_size = nor->page_size;
3697 		devm_kfree(nor->dev, nor->bouncebuf);
3698 		nor->bouncebuf = devm_kmalloc(nor->dev,
3699 					      nor->bouncebuf_size,
3700 					      GFP_KERNEL);
3701 		if (!nor->bouncebuf)
3702 			return -ENOMEM;
3703 	}
3704 
3705 	ret = spi_nor_create_read_dirmap(nor);
3706 	if (ret)
3707 		return ret;
3708 
3709 	ret = spi_nor_create_write_dirmap(nor);
3710 	if (ret)
3711 		return ret;
3712 
3713 	return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3714 				   data ? data->nr_parts : 0);
3715 }
3716 
3717 static int spi_nor_remove(struct spi_mem *spimem)
3718 {
3719 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3720 
3721 	spi_nor_restore(nor);
3722 
3723 	/* Clean up MTD stuff. */
3724 	return mtd_device_unregister(&nor->mtd);
3725 }
3726 
3727 static void spi_nor_shutdown(struct spi_mem *spimem)
3728 {
3729 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3730 
3731 	spi_nor_restore(nor);
3732 }
3733 
3734 /*
3735  * Do NOT add to this array without reading the following:
3736  *
3737  * Historically, many flash devices are bound to this driver by their name. But
3738  * since most of these flash are compatible to some extent, and their
3739  * differences can often be differentiated by the JEDEC read-ID command, we
3740  * encourage new users to add support to the spi-nor library, and simply bind
3741  * against a generic string here (e.g., "jedec,spi-nor").
3742  *
3743  * Many flash names are kept here in this list (as well as in spi-nor.c) to
3744  * keep them available as module aliases for existing platforms.
3745  */
3746 static const struct spi_device_id spi_nor_dev_ids[] = {
3747 	/*
3748 	 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3749 	 * hack around the fact that the SPI core does not provide uevent
3750 	 * matching for .of_match_table
3751 	 */
3752 	{"spi-nor"},
3753 
3754 	/*
3755 	 * Entries not used in DTs that should be safe to drop after replacing
3756 	 * them with "spi-nor" in platform data.
3757 	 */
3758 	{"s25sl064a"},	{"w25x16"},	{"m25p10"},	{"m25px64"},
3759 
3760 	/*
3761 	 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3762 	 * should be kept for backward compatibility.
3763 	 */
3764 	{"at25df321a"},	{"at25df641"},	{"at26df081a"},
3765 	{"mx25l4005a"},	{"mx25l1606e"},	{"mx25l6405d"},	{"mx25l12805d"},
3766 	{"mx25l25635e"},{"mx66l51235l"},
3767 	{"n25q064"},	{"n25q128a11"},	{"n25q128a13"},	{"n25q512a"},
3768 	{"s25fl256s1"},	{"s25fl512s"},	{"s25sl12801"},	{"s25fl008k"},
3769 	{"s25fl064k"},
3770 	{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3771 	{"m25p40"},	{"m25p80"},	{"m25p16"},	{"m25p32"},
3772 	{"m25p64"},	{"m25p128"},
3773 	{"w25x80"},	{"w25x32"},	{"w25q32"},	{"w25q32dw"},
3774 	{"w25q80bl"},	{"w25q128"},	{"w25q256"},
3775 
3776 	/* Flashes that can't be detected using JEDEC */
3777 	{"m25p05-nonjedec"},	{"m25p10-nonjedec"},	{"m25p20-nonjedec"},
3778 	{"m25p40-nonjedec"},	{"m25p80-nonjedec"},	{"m25p16-nonjedec"},
3779 	{"m25p32-nonjedec"},	{"m25p64-nonjedec"},	{"m25p128-nonjedec"},
3780 
3781 	/* Everspin MRAMs (non-JEDEC) */
3782 	{ "mr25h128" }, /* 128 Kib, 40 MHz */
3783 	{ "mr25h256" }, /* 256 Kib, 40 MHz */
3784 	{ "mr25h10" },  /*   1 Mib, 40 MHz */
3785 	{ "mr25h40" },  /*   4 Mib, 40 MHz */
3786 
3787 	{ },
3788 };
3789 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3790 
3791 static const struct of_device_id spi_nor_of_table[] = {
3792 	/*
3793 	 * Generic compatibility for SPI NOR that can be identified by the
3794 	 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3795 	 */
3796 	{ .compatible = "jedec,spi-nor" },
3797 	{ /* sentinel */ },
3798 };
3799 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3800 
3801 /*
3802  * REVISIT: many of these chips have deep power-down modes, which
3803  * should clearly be entered on suspend() to minimize power use.
3804  * And also when they're otherwise idle...
3805  */
3806 static struct spi_mem_driver spi_nor_driver = {
3807 	.spidrv = {
3808 		.driver = {
3809 			.name = "spi-nor",
3810 			.of_match_table = spi_nor_of_table,
3811 		},
3812 		.id_table = spi_nor_dev_ids,
3813 	},
3814 	.probe = spi_nor_probe,
3815 	.remove = spi_nor_remove,
3816 	.shutdown = spi_nor_shutdown,
3817 };
3818 module_spi_mem_driver(spi_nor_driver);
3819 
3820 MODULE_LICENSE("GPL v2");
3821 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3822 MODULE_AUTHOR("Mike Lavender");
3823 MODULE_DESCRIPTION("framework for SPI NOR");
3824