xref: /openbmc/linux/drivers/mtd/nand/spi/core.c (revision 67bb66d32905627e29400e2cb7f87a7c4c8cf667)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2016-2017 Micron Technology, Inc.
4  *
5  * Authors:
6  *	Peter Pan <peterpandong@micron.com>
7  *	Boris Brezillon <boris.brezillon@bootlin.com>
8  */
9 
10 #define pr_fmt(fmt)	"spi-nand: " fmt
11 
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22 
23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
24 {
25 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
26 						      spinand->scratchbuf);
27 	int ret;
28 
29 	ret = spi_mem_exec_op(spinand->spimem, &op);
30 	if (ret)
31 		return ret;
32 
33 	*val = *spinand->scratchbuf;
34 	return 0;
35 }
36 
37 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
38 {
39 	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
40 						      spinand->scratchbuf);
41 
42 	*spinand->scratchbuf = val;
43 	return spi_mem_exec_op(spinand->spimem, &op);
44 }
45 
46 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
47 {
48 	return spinand_read_reg_op(spinand, REG_STATUS, status);
49 }
50 
51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
52 {
53 	struct nand_device *nand = spinand_to_nand(spinand);
54 
55 	if (WARN_ON(spinand->cur_target < 0 ||
56 		    spinand->cur_target >= nand->memorg.ntargets))
57 		return -EINVAL;
58 
59 	*cfg = spinand->cfg_cache[spinand->cur_target];
60 	return 0;
61 }
62 
63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
64 {
65 	struct nand_device *nand = spinand_to_nand(spinand);
66 	int ret;
67 
68 	if (WARN_ON(spinand->cur_target < 0 ||
69 		    spinand->cur_target >= nand->memorg.ntargets))
70 		return -EINVAL;
71 
72 	if (spinand->cfg_cache[spinand->cur_target] == cfg)
73 		return 0;
74 
75 	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
76 	if (ret)
77 		return ret;
78 
79 	spinand->cfg_cache[spinand->cur_target] = cfg;
80 	return 0;
81 }
82 
83 /**
84  * spinand_upd_cfg() - Update the configuration register
85  * @spinand: the spinand device
86  * @mask: the mask encoding the bits to update in the config reg
87  * @val: the new value to apply
88  *
89  * Update the configuration register.
90  *
91  * Return: 0 on success, a negative error code otherwise.
92  */
93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
94 {
95 	int ret;
96 	u8 cfg;
97 
98 	ret = spinand_get_cfg(spinand, &cfg);
99 	if (ret)
100 		return ret;
101 
102 	cfg &= ~mask;
103 	cfg |= val;
104 
105 	return spinand_set_cfg(spinand, cfg);
106 }
107 
108 /**
109  * spinand_select_target() - Select a specific NAND target/die
110  * @spinand: the spinand device
111  * @target: the target/die to select
112  *
113  * Select a new target/die. If chip only has one die, this function is a NOOP.
114  *
115  * Return: 0 on success, a negative error code otherwise.
116  */
117 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
118 {
119 	struct nand_device *nand = spinand_to_nand(spinand);
120 	int ret;
121 
122 	if (WARN_ON(target >= nand->memorg.ntargets))
123 		return -EINVAL;
124 
125 	if (spinand->cur_target == target)
126 		return 0;
127 
128 	if (nand->memorg.ntargets == 1) {
129 		spinand->cur_target = target;
130 		return 0;
131 	}
132 
133 	ret = spinand->select_target(spinand, target);
134 	if (ret)
135 		return ret;
136 
137 	spinand->cur_target = target;
138 	return 0;
139 }
140 
141 static int spinand_read_cfg(struct spinand_device *spinand)
142 {
143 	struct nand_device *nand = spinand_to_nand(spinand);
144 	unsigned int target;
145 	int ret;
146 
147 	for (target = 0; target < nand->memorg.ntargets; target++) {
148 		ret = spinand_select_target(spinand, target);
149 		if (ret)
150 			return ret;
151 
152 		/*
153 		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
154 		 * here to bypass the config cache.
155 		 */
156 		ret = spinand_read_reg_op(spinand, REG_CFG,
157 					  &spinand->cfg_cache[target]);
158 		if (ret)
159 			return ret;
160 	}
161 
162 	return 0;
163 }
164 
165 static int spinand_init_cfg_cache(struct spinand_device *spinand)
166 {
167 	struct nand_device *nand = spinand_to_nand(spinand);
168 	struct device *dev = &spinand->spimem->spi->dev;
169 
170 	spinand->cfg_cache = devm_kcalloc(dev,
171 					  nand->memorg.ntargets,
172 					  sizeof(*spinand->cfg_cache),
173 					  GFP_KERNEL);
174 	if (!spinand->cfg_cache)
175 		return -ENOMEM;
176 
177 	return 0;
178 }
179 
180 static int spinand_init_quad_enable(struct spinand_device *spinand)
181 {
182 	bool enable = false;
183 
184 	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
185 		return 0;
186 
187 	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
188 	    spinand->op_templates.write_cache->data.buswidth == 4 ||
189 	    spinand->op_templates.update_cache->data.buswidth == 4)
190 		enable = true;
191 
192 	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
193 			       enable ? CFG_QUAD_ENABLE : 0);
194 }
195 
196 static int spinand_ecc_enable(struct spinand_device *spinand,
197 			      bool enable)
198 {
199 	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
200 			       enable ? CFG_ECC_ENABLE : 0);
201 }
202 
203 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
204 {
205 	struct nand_device *nand = spinand_to_nand(spinand);
206 
207 	if (spinand->eccinfo.get_status)
208 		return spinand->eccinfo.get_status(spinand, status);
209 
210 	switch (status & STATUS_ECC_MASK) {
211 	case STATUS_ECC_NO_BITFLIPS:
212 		return 0;
213 
214 	case STATUS_ECC_HAS_BITFLIPS:
215 		/*
216 		 * We have no way to know exactly how many bitflips have been
217 		 * fixed, so let's return the maximum possible value so that
218 		 * wear-leveling layers move the data immediately.
219 		 */
220 		return nanddev_get_ecc_conf(nand)->strength;
221 
222 	case STATUS_ECC_UNCOR_ERROR:
223 		return -EBADMSG;
224 
225 	default:
226 		break;
227 	}
228 
229 	return -EINVAL;
230 }
231 
232 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
233 				       struct mtd_oob_region *region)
234 {
235 	return -ERANGE;
236 }
237 
238 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
239 					struct mtd_oob_region *region)
240 {
241 	if (section)
242 		return -ERANGE;
243 
244 	/* Reserve 2 bytes for the BBM. */
245 	region->offset = 2;
246 	region->length = 62;
247 
248 	return 0;
249 }
250 
251 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
252 	.ecc = spinand_noecc_ooblayout_ecc,
253 	.free = spinand_noecc_ooblayout_free,
254 };
255 
256 static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
257 {
258 	struct spinand_device *spinand = nand_to_spinand(nand);
259 	struct mtd_info *mtd = nanddev_to_mtd(nand);
260 	struct spinand_ondie_ecc_conf *engine_conf;
261 
262 	nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
263 	nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
264 	nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
265 
266 	engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
267 	if (!engine_conf)
268 		return -ENOMEM;
269 
270 	nand->ecc.ctx.priv = engine_conf;
271 
272 	if (spinand->eccinfo.ooblayout)
273 		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
274 	else
275 		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
276 
277 	return 0;
278 }
279 
280 static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
281 {
282 	kfree(nand->ecc.ctx.priv);
283 }
284 
285 static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
286 					    struct nand_page_io_req *req)
287 {
288 	struct spinand_device *spinand = nand_to_spinand(nand);
289 	bool enable = (req->mode != MTD_OPS_RAW);
290 
291 	/* Only enable or disable the engine */
292 	return spinand_ecc_enable(spinand, enable);
293 }
294 
295 static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
296 					   struct nand_page_io_req *req)
297 {
298 	struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
299 	struct spinand_device *spinand = nand_to_spinand(nand);
300 	struct mtd_info *mtd = spinand_to_mtd(spinand);
301 	int ret;
302 
303 	if (req->mode == MTD_OPS_RAW)
304 		return 0;
305 
306 	/* Nothing to do when finishing a page write */
307 	if (req->type == NAND_PAGE_WRITE)
308 		return 0;
309 
310 	/* Finish a page write: check the status, report errors/bitflips */
311 	ret = spinand_check_ecc_status(spinand, engine_conf->status);
312 	if (ret == -EBADMSG)
313 		mtd->ecc_stats.failed++;
314 	else if (ret > 0)
315 		mtd->ecc_stats.corrected += ret;
316 
317 	return ret;
318 }
319 
320 static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
321 	.init_ctx = spinand_ondie_ecc_init_ctx,
322 	.cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
323 	.prepare_io_req = spinand_ondie_ecc_prepare_io_req,
324 	.finish_io_req = spinand_ondie_ecc_finish_io_req,
325 };
326 
327 static struct nand_ecc_engine spinand_ondie_ecc_engine = {
328 	.ops = &spinand_ondie_ecc_engine_ops,
329 };
330 
331 static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
332 {
333 	struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
334 
335 	if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
336 	    engine_conf)
337 		engine_conf->status = status;
338 }
339 
340 static int spinand_write_enable_op(struct spinand_device *spinand)
341 {
342 	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
343 
344 	return spi_mem_exec_op(spinand->spimem, &op);
345 }
346 
347 static int spinand_load_page_op(struct spinand_device *spinand,
348 				const struct nand_page_io_req *req)
349 {
350 	struct nand_device *nand = spinand_to_nand(spinand);
351 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
352 	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
353 
354 	return spi_mem_exec_op(spinand->spimem, &op);
355 }
356 
357 static int spinand_read_from_cache_op(struct spinand_device *spinand,
358 				      const struct nand_page_io_req *req)
359 {
360 	struct nand_device *nand = spinand_to_nand(spinand);
361 	struct mtd_info *mtd = spinand_to_mtd(spinand);
362 	struct spi_mem_dirmap_desc *rdesc;
363 	unsigned int nbytes = 0;
364 	void *buf = NULL;
365 	u16 column = 0;
366 	ssize_t ret;
367 
368 	if (req->datalen) {
369 		buf = spinand->databuf;
370 		nbytes = nanddev_page_size(nand);
371 		column = 0;
372 	}
373 
374 	if (req->ooblen) {
375 		nbytes += nanddev_per_page_oobsize(nand);
376 		if (!buf) {
377 			buf = spinand->oobbuf;
378 			column = nanddev_page_size(nand);
379 		}
380 	}
381 
382 	rdesc = spinand->dirmaps[req->pos.plane].rdesc;
383 
384 	while (nbytes) {
385 		ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
386 		if (ret < 0)
387 			return ret;
388 
389 		if (!ret || ret > nbytes)
390 			return -EIO;
391 
392 		nbytes -= ret;
393 		column += ret;
394 		buf += ret;
395 	}
396 
397 	if (req->datalen)
398 		memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
399 		       req->datalen);
400 
401 	if (req->ooblen) {
402 		if (req->mode == MTD_OPS_AUTO_OOB)
403 			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
404 						    spinand->oobbuf,
405 						    req->ooboffs,
406 						    req->ooblen);
407 		else
408 			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
409 			       req->ooblen);
410 	}
411 
412 	return 0;
413 }
414 
415 static int spinand_write_to_cache_op(struct spinand_device *spinand,
416 				     const struct nand_page_io_req *req)
417 {
418 	struct nand_device *nand = spinand_to_nand(spinand);
419 	struct mtd_info *mtd = spinand_to_mtd(spinand);
420 	struct spi_mem_dirmap_desc *wdesc;
421 	unsigned int nbytes, column = 0;
422 	void *buf = spinand->databuf;
423 	ssize_t ret;
424 
425 	/*
426 	 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
427 	 * the cache content to 0xFF (depends on vendor implementation), so we
428 	 * must fill the page cache entirely even if we only want to program
429 	 * the data portion of the page, otherwise we might corrupt the BBM or
430 	 * user data previously programmed in OOB area.
431 	 *
432 	 * Only reset the data buffer manually, the OOB buffer is prepared by
433 	 * ECC engines ->prepare_io_req() callback.
434 	 */
435 	nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
436 	memset(spinand->databuf, 0xff, nanddev_page_size(nand));
437 
438 	if (req->datalen)
439 		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
440 		       req->datalen);
441 
442 	if (req->ooblen) {
443 		if (req->mode == MTD_OPS_AUTO_OOB)
444 			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
445 						    spinand->oobbuf,
446 						    req->ooboffs,
447 						    req->ooblen);
448 		else
449 			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
450 			       req->ooblen);
451 	}
452 
453 	wdesc = spinand->dirmaps[req->pos.plane].wdesc;
454 
455 	while (nbytes) {
456 		ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
457 		if (ret < 0)
458 			return ret;
459 
460 		if (!ret || ret > nbytes)
461 			return -EIO;
462 
463 		nbytes -= ret;
464 		column += ret;
465 		buf += ret;
466 	}
467 
468 	return 0;
469 }
470 
471 static int spinand_program_op(struct spinand_device *spinand,
472 			      const struct nand_page_io_req *req)
473 {
474 	struct nand_device *nand = spinand_to_nand(spinand);
475 	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
476 	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
477 
478 	return spi_mem_exec_op(spinand->spimem, &op);
479 }
480 
481 static int spinand_erase_op(struct spinand_device *spinand,
482 			    const struct nand_pos *pos)
483 {
484 	struct nand_device *nand = spinand_to_nand(spinand);
485 	unsigned int row = nanddev_pos_to_row(nand, pos);
486 	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
487 
488 	return spi_mem_exec_op(spinand->spimem, &op);
489 }
490 
491 static int spinand_wait(struct spinand_device *spinand,
492 			unsigned long initial_delay_us,
493 			unsigned long poll_delay_us,
494 			u8 *s)
495 {
496 	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
497 						      spinand->scratchbuf);
498 	u8 status;
499 	int ret;
500 
501 	ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
502 				  initial_delay_us,
503 				  poll_delay_us,
504 				  SPINAND_WAITRDY_TIMEOUT_MS);
505 	if (ret)
506 		return ret;
507 
508 	status = *spinand->scratchbuf;
509 	if (!(status & STATUS_BUSY))
510 		goto out;
511 
512 	/*
513 	 * Extra read, just in case the STATUS_READY bit has changed
514 	 * since our last check
515 	 */
516 	ret = spinand_read_status(spinand, &status);
517 	if (ret)
518 		return ret;
519 
520 out:
521 	if (s)
522 		*s = status;
523 
524 	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
525 }
526 
527 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
528 			      u8 ndummy, u8 *buf)
529 {
530 	struct spi_mem_op op = SPINAND_READID_OP(
531 		naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
532 	int ret;
533 
534 	ret = spi_mem_exec_op(spinand->spimem, &op);
535 	if (!ret)
536 		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
537 
538 	return ret;
539 }
540 
541 static int spinand_reset_op(struct spinand_device *spinand)
542 {
543 	struct spi_mem_op op = SPINAND_RESET_OP;
544 	int ret;
545 
546 	ret = spi_mem_exec_op(spinand->spimem, &op);
547 	if (ret)
548 		return ret;
549 
550 	return spinand_wait(spinand,
551 			    SPINAND_RESET_INITIAL_DELAY_US,
552 			    SPINAND_RESET_POLL_DELAY_US,
553 			    NULL);
554 }
555 
556 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
557 {
558 	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
559 }
560 
561 static int spinand_read_page(struct spinand_device *spinand,
562 			     const struct nand_page_io_req *req)
563 {
564 	struct nand_device *nand = spinand_to_nand(spinand);
565 	u8 status;
566 	int ret;
567 
568 	ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
569 	if (ret)
570 		return ret;
571 
572 	ret = spinand_load_page_op(spinand, req);
573 	if (ret)
574 		return ret;
575 
576 	ret = spinand_wait(spinand,
577 			   SPINAND_READ_INITIAL_DELAY_US,
578 			   SPINAND_READ_POLL_DELAY_US,
579 			   &status);
580 	if (ret < 0)
581 		return ret;
582 
583 	spinand_ondie_ecc_save_status(nand, status);
584 
585 	ret = spinand_read_from_cache_op(spinand, req);
586 	if (ret)
587 		return ret;
588 
589 	return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
590 }
591 
592 static int spinand_write_page(struct spinand_device *spinand,
593 			      const struct nand_page_io_req *req)
594 {
595 	struct nand_device *nand = spinand_to_nand(spinand);
596 	u8 status;
597 	int ret;
598 
599 	ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
600 	if (ret)
601 		return ret;
602 
603 	ret = spinand_write_enable_op(spinand);
604 	if (ret)
605 		return ret;
606 
607 	ret = spinand_write_to_cache_op(spinand, req);
608 	if (ret)
609 		return ret;
610 
611 	ret = spinand_program_op(spinand, req);
612 	if (ret)
613 		return ret;
614 
615 	ret = spinand_wait(spinand,
616 			   SPINAND_WRITE_INITIAL_DELAY_US,
617 			   SPINAND_WRITE_POLL_DELAY_US,
618 			   &status);
619 	if (!ret && (status & STATUS_PROG_FAILED))
620 		return -EIO;
621 
622 	return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
623 }
624 
625 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
626 			    struct mtd_oob_ops *ops)
627 {
628 	struct spinand_device *spinand = mtd_to_spinand(mtd);
629 	struct nand_device *nand = mtd_to_nanddev(mtd);
630 	unsigned int max_bitflips = 0;
631 	struct nand_io_iter iter;
632 	bool disable_ecc = false;
633 	bool ecc_failed = false;
634 	int ret = 0;
635 
636 	if (ops->mode == MTD_OPS_RAW || !spinand->eccinfo.ooblayout)
637 		disable_ecc = true;
638 
639 	mutex_lock(&spinand->lock);
640 
641 	nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
642 		if (disable_ecc)
643 			iter.req.mode = MTD_OPS_RAW;
644 
645 		ret = spinand_select_target(spinand, iter.req.pos.target);
646 		if (ret)
647 			break;
648 
649 		ret = spinand_read_page(spinand, &iter.req);
650 		if (ret < 0 && ret != -EBADMSG)
651 			break;
652 
653 		if (ret == -EBADMSG)
654 			ecc_failed = true;
655 		else
656 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
657 
658 		ret = 0;
659 		ops->retlen += iter.req.datalen;
660 		ops->oobretlen += iter.req.ooblen;
661 	}
662 
663 	mutex_unlock(&spinand->lock);
664 
665 	if (ecc_failed && !ret)
666 		ret = -EBADMSG;
667 
668 	return ret ? ret : max_bitflips;
669 }
670 
671 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
672 			     struct mtd_oob_ops *ops)
673 {
674 	struct spinand_device *spinand = mtd_to_spinand(mtd);
675 	struct nand_device *nand = mtd_to_nanddev(mtd);
676 	struct nand_io_iter iter;
677 	bool disable_ecc = false;
678 	int ret = 0;
679 
680 	if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
681 		disable_ecc = true;
682 
683 	mutex_lock(&spinand->lock);
684 
685 	nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
686 		if (disable_ecc)
687 			iter.req.mode = MTD_OPS_RAW;
688 
689 		ret = spinand_select_target(spinand, iter.req.pos.target);
690 		if (ret)
691 			break;
692 
693 		ret = spinand_write_page(spinand, &iter.req);
694 		if (ret)
695 			break;
696 
697 		ops->retlen += iter.req.datalen;
698 		ops->oobretlen += iter.req.ooblen;
699 	}
700 
701 	mutex_unlock(&spinand->lock);
702 
703 	return ret;
704 }
705 
706 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
707 {
708 	struct spinand_device *spinand = nand_to_spinand(nand);
709 	u8 marker[2] = { };
710 	struct nand_page_io_req req = {
711 		.pos = *pos,
712 		.ooblen = sizeof(marker),
713 		.ooboffs = 0,
714 		.oobbuf.in = marker,
715 		.mode = MTD_OPS_RAW,
716 	};
717 
718 	spinand_select_target(spinand, pos->target);
719 	spinand_read_page(spinand, &req);
720 	if (marker[0] != 0xff || marker[1] != 0xff)
721 		return true;
722 
723 	return false;
724 }
725 
726 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
727 {
728 	struct nand_device *nand = mtd_to_nanddev(mtd);
729 	struct spinand_device *spinand = nand_to_spinand(nand);
730 	struct nand_pos pos;
731 	int ret;
732 
733 	nanddev_offs_to_pos(nand, offs, &pos);
734 	mutex_lock(&spinand->lock);
735 	ret = nanddev_isbad(nand, &pos);
736 	mutex_unlock(&spinand->lock);
737 
738 	return ret;
739 }
740 
741 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
742 {
743 	struct spinand_device *spinand = nand_to_spinand(nand);
744 	u8 marker[2] = { };
745 	struct nand_page_io_req req = {
746 		.pos = *pos,
747 		.ooboffs = 0,
748 		.ooblen = sizeof(marker),
749 		.oobbuf.out = marker,
750 		.mode = MTD_OPS_RAW,
751 	};
752 	int ret;
753 
754 	ret = spinand_select_target(spinand, pos->target);
755 	if (ret)
756 		return ret;
757 
758 	ret = spinand_write_enable_op(spinand);
759 	if (ret)
760 		return ret;
761 
762 	return spinand_write_page(spinand, &req);
763 }
764 
765 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
766 {
767 	struct nand_device *nand = mtd_to_nanddev(mtd);
768 	struct spinand_device *spinand = nand_to_spinand(nand);
769 	struct nand_pos pos;
770 	int ret;
771 
772 	nanddev_offs_to_pos(nand, offs, &pos);
773 	mutex_lock(&spinand->lock);
774 	ret = nanddev_markbad(nand, &pos);
775 	mutex_unlock(&spinand->lock);
776 
777 	return ret;
778 }
779 
780 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
781 {
782 	struct spinand_device *spinand = nand_to_spinand(nand);
783 	u8 status;
784 	int ret;
785 
786 	ret = spinand_select_target(spinand, pos->target);
787 	if (ret)
788 		return ret;
789 
790 	ret = spinand_write_enable_op(spinand);
791 	if (ret)
792 		return ret;
793 
794 	ret = spinand_erase_op(spinand, pos);
795 	if (ret)
796 		return ret;
797 
798 	ret = spinand_wait(spinand,
799 			   SPINAND_ERASE_INITIAL_DELAY_US,
800 			   SPINAND_ERASE_POLL_DELAY_US,
801 			   &status);
802 
803 	if (!ret && (status & STATUS_ERASE_FAILED))
804 		ret = -EIO;
805 
806 	return ret;
807 }
808 
809 static int spinand_mtd_erase(struct mtd_info *mtd,
810 			     struct erase_info *einfo)
811 {
812 	struct spinand_device *spinand = mtd_to_spinand(mtd);
813 	int ret;
814 
815 	mutex_lock(&spinand->lock);
816 	ret = nanddev_mtd_erase(mtd, einfo);
817 	mutex_unlock(&spinand->lock);
818 
819 	return ret;
820 }
821 
822 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
823 {
824 	struct spinand_device *spinand = mtd_to_spinand(mtd);
825 	struct nand_device *nand = mtd_to_nanddev(mtd);
826 	struct nand_pos pos;
827 	int ret;
828 
829 	nanddev_offs_to_pos(nand, offs, &pos);
830 	mutex_lock(&spinand->lock);
831 	ret = nanddev_isreserved(nand, &pos);
832 	mutex_unlock(&spinand->lock);
833 
834 	return ret;
835 }
836 
837 static int spinand_create_dirmap(struct spinand_device *spinand,
838 				 unsigned int plane)
839 {
840 	struct nand_device *nand = spinand_to_nand(spinand);
841 	struct spi_mem_dirmap_info info = {
842 		.length = nanddev_page_size(nand) +
843 			  nanddev_per_page_oobsize(nand),
844 	};
845 	struct spi_mem_dirmap_desc *desc;
846 
847 	/* The plane number is passed in MSB just above the column address */
848 	info.offset = plane << fls(nand->memorg.pagesize);
849 
850 	info.op_tmpl = *spinand->op_templates.update_cache;
851 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
852 					  spinand->spimem, &info);
853 	if (IS_ERR(desc))
854 		return PTR_ERR(desc);
855 
856 	spinand->dirmaps[plane].wdesc = desc;
857 
858 	info.op_tmpl = *spinand->op_templates.read_cache;
859 	desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
860 					  spinand->spimem, &info);
861 	if (IS_ERR(desc))
862 		return PTR_ERR(desc);
863 
864 	spinand->dirmaps[plane].rdesc = desc;
865 
866 	return 0;
867 }
868 
869 static int spinand_create_dirmaps(struct spinand_device *spinand)
870 {
871 	struct nand_device *nand = spinand_to_nand(spinand);
872 	int i, ret;
873 
874 	spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
875 					sizeof(*spinand->dirmaps) *
876 					nand->memorg.planes_per_lun,
877 					GFP_KERNEL);
878 	if (!spinand->dirmaps)
879 		return -ENOMEM;
880 
881 	for (i = 0; i < nand->memorg.planes_per_lun; i++) {
882 		ret = spinand_create_dirmap(spinand, i);
883 		if (ret)
884 			return ret;
885 	}
886 
887 	return 0;
888 }
889 
890 static const struct nand_ops spinand_ops = {
891 	.erase = spinand_erase,
892 	.markbad = spinand_markbad,
893 	.isbad = spinand_isbad,
894 };
895 
896 static const struct spinand_manufacturer *spinand_manufacturers[] = {
897 	&gigadevice_spinand_manufacturer,
898 	&macronix_spinand_manufacturer,
899 	&micron_spinand_manufacturer,
900 	&paragon_spinand_manufacturer,
901 	&toshiba_spinand_manufacturer,
902 	&winbond_spinand_manufacturer,
903 };
904 
905 static int spinand_manufacturer_match(struct spinand_device *spinand,
906 				      enum spinand_readid_method rdid_method)
907 {
908 	u8 *id = spinand->id.data;
909 	unsigned int i;
910 	int ret;
911 
912 	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
913 		const struct spinand_manufacturer *manufacturer =
914 			spinand_manufacturers[i];
915 
916 		if (id[0] != manufacturer->id)
917 			continue;
918 
919 		ret = spinand_match_and_init(spinand,
920 					     manufacturer->chips,
921 					     manufacturer->nchips,
922 					     rdid_method);
923 		if (ret < 0)
924 			continue;
925 
926 		spinand->manufacturer = manufacturer;
927 		return 0;
928 	}
929 	return -ENOTSUPP;
930 }
931 
932 static int spinand_id_detect(struct spinand_device *spinand)
933 {
934 	u8 *id = spinand->id.data;
935 	int ret;
936 
937 	ret = spinand_read_id_op(spinand, 0, 0, id);
938 	if (ret)
939 		return ret;
940 	ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
941 	if (!ret)
942 		return 0;
943 
944 	ret = spinand_read_id_op(spinand, 1, 0, id);
945 	if (ret)
946 		return ret;
947 	ret = spinand_manufacturer_match(spinand,
948 					 SPINAND_READID_METHOD_OPCODE_ADDR);
949 	if (!ret)
950 		return 0;
951 
952 	ret = spinand_read_id_op(spinand, 0, 1, id);
953 	if (ret)
954 		return ret;
955 	ret = spinand_manufacturer_match(spinand,
956 					 SPINAND_READID_METHOD_OPCODE_DUMMY);
957 
958 	return ret;
959 }
960 
961 static int spinand_manufacturer_init(struct spinand_device *spinand)
962 {
963 	if (spinand->manufacturer->ops->init)
964 		return spinand->manufacturer->ops->init(spinand);
965 
966 	return 0;
967 }
968 
969 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
970 {
971 	/* Release manufacturer private data */
972 	if (spinand->manufacturer->ops->cleanup)
973 		return spinand->manufacturer->ops->cleanup(spinand);
974 }
975 
976 static const struct spi_mem_op *
977 spinand_select_op_variant(struct spinand_device *spinand,
978 			  const struct spinand_op_variants *variants)
979 {
980 	struct nand_device *nand = spinand_to_nand(spinand);
981 	unsigned int i;
982 
983 	for (i = 0; i < variants->nops; i++) {
984 		struct spi_mem_op op = variants->ops[i];
985 		unsigned int nbytes;
986 		int ret;
987 
988 		nbytes = nanddev_per_page_oobsize(nand) +
989 			 nanddev_page_size(nand);
990 
991 		while (nbytes) {
992 			op.data.nbytes = nbytes;
993 			ret = spi_mem_adjust_op_size(spinand->spimem, &op);
994 			if (ret)
995 				break;
996 
997 			if (!spi_mem_supports_op(spinand->spimem, &op))
998 				break;
999 
1000 			nbytes -= op.data.nbytes;
1001 		}
1002 
1003 		if (!nbytes)
1004 			return &variants->ops[i];
1005 	}
1006 
1007 	return NULL;
1008 }
1009 
1010 /**
1011  * spinand_match_and_init() - Try to find a match between a device ID and an
1012  *			      entry in a spinand_info table
1013  * @spinand: SPI NAND object
1014  * @table: SPI NAND device description table
1015  * @table_size: size of the device description table
1016  * @rdid_method: read id method to match
1017  *
1018  * Match between a device ID retrieved through the READ_ID command and an
1019  * entry in the SPI NAND description table. If a match is found, the spinand
1020  * object will be initialized with information provided by the matching
1021  * spinand_info entry.
1022  *
1023  * Return: 0 on success, a negative error code otherwise.
1024  */
1025 int spinand_match_and_init(struct spinand_device *spinand,
1026 			   const struct spinand_info *table,
1027 			   unsigned int table_size,
1028 			   enum spinand_readid_method rdid_method)
1029 {
1030 	u8 *id = spinand->id.data;
1031 	struct nand_device *nand = spinand_to_nand(spinand);
1032 	unsigned int i;
1033 
1034 	for (i = 0; i < table_size; i++) {
1035 		const struct spinand_info *info = &table[i];
1036 		const struct spi_mem_op *op;
1037 
1038 		if (rdid_method != info->devid.method)
1039 			continue;
1040 
1041 		if (memcmp(id + 1, info->devid.id, info->devid.len))
1042 			continue;
1043 
1044 		nand->memorg = table[i].memorg;
1045 		nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1046 		spinand->eccinfo = table[i].eccinfo;
1047 		spinand->flags = table[i].flags;
1048 		spinand->id.len = 1 + table[i].devid.len;
1049 		spinand->select_target = table[i].select_target;
1050 
1051 		op = spinand_select_op_variant(spinand,
1052 					       info->op_variants.read_cache);
1053 		if (!op)
1054 			return -ENOTSUPP;
1055 
1056 		spinand->op_templates.read_cache = op;
1057 
1058 		op = spinand_select_op_variant(spinand,
1059 					       info->op_variants.write_cache);
1060 		if (!op)
1061 			return -ENOTSUPP;
1062 
1063 		spinand->op_templates.write_cache = op;
1064 
1065 		op = spinand_select_op_variant(spinand,
1066 					       info->op_variants.update_cache);
1067 		spinand->op_templates.update_cache = op;
1068 
1069 		return 0;
1070 	}
1071 
1072 	return -ENOTSUPP;
1073 }
1074 
1075 static int spinand_detect(struct spinand_device *spinand)
1076 {
1077 	struct device *dev = &spinand->spimem->spi->dev;
1078 	struct nand_device *nand = spinand_to_nand(spinand);
1079 	int ret;
1080 
1081 	ret = spinand_reset_op(spinand);
1082 	if (ret)
1083 		return ret;
1084 
1085 	ret = spinand_id_detect(spinand);
1086 	if (ret) {
1087 		dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1088 			spinand->id.data);
1089 		return ret;
1090 	}
1091 
1092 	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1093 		dev_err(dev,
1094 			"SPI NANDs with more than one die must implement ->select_target()\n");
1095 		return -EINVAL;
1096 	}
1097 
1098 	dev_info(&spinand->spimem->spi->dev,
1099 		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1100 	dev_info(&spinand->spimem->spi->dev,
1101 		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1102 		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1103 		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1104 
1105 	return 0;
1106 }
1107 
1108 static int spinand_init_flash(struct spinand_device *spinand)
1109 {
1110 	struct device *dev = &spinand->spimem->spi->dev;
1111 	struct nand_device *nand = spinand_to_nand(spinand);
1112 	int ret, i;
1113 
1114 	ret = spinand_read_cfg(spinand);
1115 	if (ret)
1116 		return ret;
1117 
1118 	ret = spinand_init_quad_enable(spinand);
1119 	if (ret)
1120 		return ret;
1121 
1122 	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1123 	if (ret)
1124 		return ret;
1125 
1126 	ret = spinand_manufacturer_init(spinand);
1127 	if (ret) {
1128 		dev_err(dev,
1129 		"Failed to initialize the SPI NAND chip (err = %d)\n",
1130 		ret);
1131 		return ret;
1132 	}
1133 
1134 	/* After power up, all blocks are locked, so unlock them here. */
1135 	for (i = 0; i < nand->memorg.ntargets; i++) {
1136 		ret = spinand_select_target(spinand, i);
1137 		if (ret)
1138 			break;
1139 
1140 		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1141 		if (ret)
1142 			break;
1143 	}
1144 
1145 	if (ret)
1146 		spinand_manufacturer_cleanup(spinand);
1147 
1148 	return ret;
1149 }
1150 
1151 static void spinand_mtd_resume(struct mtd_info *mtd)
1152 {
1153 	struct spinand_device *spinand = mtd_to_spinand(mtd);
1154 	int ret;
1155 
1156 	ret = spinand_reset_op(spinand);
1157 	if (ret)
1158 		return;
1159 
1160 	ret = spinand_init_flash(spinand);
1161 	if (ret)
1162 		return;
1163 
1164 	spinand_ecc_enable(spinand, false);
1165 }
1166 
1167 static int spinand_init(struct spinand_device *spinand)
1168 {
1169 	struct device *dev = &spinand->spimem->spi->dev;
1170 	struct mtd_info *mtd = spinand_to_mtd(spinand);
1171 	struct nand_device *nand = mtd_to_nanddev(mtd);
1172 	int ret;
1173 
1174 	/*
1175 	 * We need a scratch buffer because the spi_mem interface requires that
1176 	 * buf passed in spi_mem_op->data.buf be DMA-able.
1177 	 */
1178 	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1179 	if (!spinand->scratchbuf)
1180 		return -ENOMEM;
1181 
1182 	ret = spinand_detect(spinand);
1183 	if (ret)
1184 		goto err_free_bufs;
1185 
1186 	/*
1187 	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1188 	 * may use this buffer for DMA access.
1189 	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1190 	 */
1191 	spinand->databuf = kzalloc(nanddev_page_size(nand) +
1192 			       nanddev_per_page_oobsize(nand),
1193 			       GFP_KERNEL);
1194 	if (!spinand->databuf) {
1195 		ret = -ENOMEM;
1196 		goto err_free_bufs;
1197 	}
1198 
1199 	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1200 
1201 	ret = spinand_init_cfg_cache(spinand);
1202 	if (ret)
1203 		goto err_free_bufs;
1204 
1205 	ret = spinand_init_flash(spinand);
1206 	if (ret)
1207 		goto err_free_bufs;
1208 
1209 	ret = spinand_create_dirmaps(spinand);
1210 	if (ret) {
1211 		dev_err(dev,
1212 			"Failed to create direct mappings for read/write operations (err = %d)\n",
1213 			ret);
1214 		goto err_manuf_cleanup;
1215 	}
1216 
1217 	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1218 	if (ret)
1219 		goto err_manuf_cleanup;
1220 
1221 	/* SPI-NAND default ECC engine is on-die */
1222 	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1223 	nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1224 
1225 	spinand_ecc_enable(spinand, false);
1226 	ret = nanddev_ecc_engine_init(nand);
1227 	if (ret)
1228 		goto err_cleanup_nanddev;
1229 
1230 	mtd->_read_oob = spinand_mtd_read;
1231 	mtd->_write_oob = spinand_mtd_write;
1232 	mtd->_block_isbad = spinand_mtd_block_isbad;
1233 	mtd->_block_markbad = spinand_mtd_block_markbad;
1234 	mtd->_block_isreserved = spinand_mtd_block_isreserved;
1235 	mtd->_erase = spinand_mtd_erase;
1236 	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1237 	mtd->_resume = spinand_mtd_resume;
1238 
1239 	if (nand->ecc.engine) {
1240 		ret = mtd_ooblayout_count_freebytes(mtd);
1241 		if (ret < 0)
1242 			goto err_cleanup_ecc_engine;
1243 	}
1244 
1245 	mtd->oobavail = ret;
1246 
1247 	/* Propagate ECC information to mtd_info */
1248 	mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1249 	mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1250 
1251 	return 0;
1252 
1253 err_cleanup_ecc_engine:
1254 	nanddev_ecc_engine_cleanup(nand);
1255 
1256 err_cleanup_nanddev:
1257 	nanddev_cleanup(nand);
1258 
1259 err_manuf_cleanup:
1260 	spinand_manufacturer_cleanup(spinand);
1261 
1262 err_free_bufs:
1263 	kfree(spinand->databuf);
1264 	kfree(spinand->scratchbuf);
1265 	return ret;
1266 }
1267 
1268 static void spinand_cleanup(struct spinand_device *spinand)
1269 {
1270 	struct nand_device *nand = spinand_to_nand(spinand);
1271 
1272 	nanddev_cleanup(nand);
1273 	spinand_manufacturer_cleanup(spinand);
1274 	kfree(spinand->databuf);
1275 	kfree(spinand->scratchbuf);
1276 }
1277 
1278 static int spinand_probe(struct spi_mem *mem)
1279 {
1280 	struct spinand_device *spinand;
1281 	struct mtd_info *mtd;
1282 	int ret;
1283 
1284 	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1285 			       GFP_KERNEL);
1286 	if (!spinand)
1287 		return -ENOMEM;
1288 
1289 	spinand->spimem = mem;
1290 	spi_mem_set_drvdata(mem, spinand);
1291 	spinand_set_of_node(spinand, mem->spi->dev.of_node);
1292 	mutex_init(&spinand->lock);
1293 	mtd = spinand_to_mtd(spinand);
1294 	mtd->dev.parent = &mem->spi->dev;
1295 
1296 	ret = spinand_init(spinand);
1297 	if (ret)
1298 		return ret;
1299 
1300 	ret = mtd_device_register(mtd, NULL, 0);
1301 	if (ret)
1302 		goto err_spinand_cleanup;
1303 
1304 	return 0;
1305 
1306 err_spinand_cleanup:
1307 	spinand_cleanup(spinand);
1308 
1309 	return ret;
1310 }
1311 
1312 static int spinand_remove(struct spi_mem *mem)
1313 {
1314 	struct spinand_device *spinand;
1315 	struct mtd_info *mtd;
1316 	int ret;
1317 
1318 	spinand = spi_mem_get_drvdata(mem);
1319 	mtd = spinand_to_mtd(spinand);
1320 
1321 	ret = mtd_device_unregister(mtd);
1322 	if (ret)
1323 		return ret;
1324 
1325 	spinand_cleanup(spinand);
1326 
1327 	return 0;
1328 }
1329 
1330 static const struct spi_device_id spinand_ids[] = {
1331 	{ .name = "spi-nand" },
1332 	{ /* sentinel */ },
1333 };
1334 MODULE_DEVICE_TABLE(spi, spinand_ids);
1335 
1336 #ifdef CONFIG_OF
1337 static const struct of_device_id spinand_of_ids[] = {
1338 	{ .compatible = "spi-nand" },
1339 	{ /* sentinel */ },
1340 };
1341 MODULE_DEVICE_TABLE(of, spinand_of_ids);
1342 #endif
1343 
1344 static struct spi_mem_driver spinand_drv = {
1345 	.spidrv = {
1346 		.id_table = spinand_ids,
1347 		.driver = {
1348 			.name = "spi-nand",
1349 			.of_match_table = of_match_ptr(spinand_of_ids),
1350 		},
1351 	},
1352 	.probe = spinand_probe,
1353 	.remove = spinand_remove,
1354 };
1355 module_spi_mem_driver(spinand_drv);
1356 
1357 MODULE_DESCRIPTION("SPI NAND framework");
1358 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1359 MODULE_LICENSE("GPL v2");
1360