xref: /openbmc/linux/drivers/mtd/nand/raw/s3c2410.c (revision bf3608f338e928e5d26b620feb7d8afcdfff50e3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright © 2004-2008 Simtec Electronics
4  *	http://armlinux.simtec.co.uk/
5  *	Ben Dooks <ben@simtec.co.uk>
6  *
7  * Samsung S3C2410/S3C2440/S3C2412 NAND driver
8 */
9 
10 #define pr_fmt(fmt) "nand-s3c2410: " fmt
11 
12 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
13 #define DEBUG
14 #endif
15 
16 #include <linux/module.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/string.h>
20 #include <linux/io.h>
21 #include <linux/ioport.h>
22 #include <linux/platform_device.h>
23 #include <linux/delay.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/cpufreq.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/rawnand.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include <linux/platform_data/mtd-nand-s3c2410.h>
36 
37 #define S3C2410_NFREG(x) (x)
38 
39 #define S3C2410_NFCONF		S3C2410_NFREG(0x00)
40 #define S3C2410_NFCMD		S3C2410_NFREG(0x04)
41 #define S3C2410_NFADDR		S3C2410_NFREG(0x08)
42 #define S3C2410_NFDATA		S3C2410_NFREG(0x0C)
43 #define S3C2410_NFSTAT		S3C2410_NFREG(0x10)
44 #define S3C2410_NFECC		S3C2410_NFREG(0x14)
45 #define S3C2440_NFCONT		S3C2410_NFREG(0x04)
46 #define S3C2440_NFCMD		S3C2410_NFREG(0x08)
47 #define S3C2440_NFADDR		S3C2410_NFREG(0x0C)
48 #define S3C2440_NFDATA		S3C2410_NFREG(0x10)
49 #define S3C2440_NFSTAT		S3C2410_NFREG(0x20)
50 #define S3C2440_NFMECC0		S3C2410_NFREG(0x2C)
51 #define S3C2412_NFSTAT		S3C2410_NFREG(0x28)
52 #define S3C2412_NFMECC0		S3C2410_NFREG(0x34)
53 #define S3C2410_NFCONF_EN		(1<<15)
54 #define S3C2410_NFCONF_INITECC		(1<<12)
55 #define S3C2410_NFCONF_nFCE		(1<<11)
56 #define S3C2410_NFCONF_TACLS(x)		((x)<<8)
57 #define S3C2410_NFCONF_TWRPH0(x)	((x)<<4)
58 #define S3C2410_NFCONF_TWRPH1(x)	((x)<<0)
59 #define S3C2410_NFSTAT_BUSY		(1<<0)
60 #define S3C2440_NFCONF_TACLS(x)		((x)<<12)
61 #define S3C2440_NFCONF_TWRPH0(x)	((x)<<8)
62 #define S3C2440_NFCONF_TWRPH1(x)	((x)<<4)
63 #define S3C2440_NFCONT_INITECC		(1<<4)
64 #define S3C2440_NFCONT_nFCE		(1<<1)
65 #define S3C2440_NFCONT_ENABLE		(1<<0)
66 #define S3C2440_NFSTAT_READY		(1<<0)
67 #define S3C2412_NFCONF_NANDBOOT		(1<<31)
68 #define S3C2412_NFCONT_INIT_MAIN_ECC	(1<<5)
69 #define S3C2412_NFCONT_nFCE0		(1<<1)
70 #define S3C2412_NFSTAT_READY		(1<<0)
71 
72 /* new oob placement block for use with hardware ecc generation
73  */
74 static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
75 				 struct mtd_oob_region *oobregion)
76 {
77 	if (section)
78 		return -ERANGE;
79 
80 	oobregion->offset = 0;
81 	oobregion->length = 3;
82 
83 	return 0;
84 }
85 
86 static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
87 				  struct mtd_oob_region *oobregion)
88 {
89 	if (section)
90 		return -ERANGE;
91 
92 	oobregion->offset = 8;
93 	oobregion->length = 8;
94 
95 	return 0;
96 }
97 
98 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
99 	.ecc = s3c2410_ooblayout_ecc,
100 	.free = s3c2410_ooblayout_free,
101 };
102 
103 /* controller and mtd information */
104 
105 struct s3c2410_nand_info;
106 
107 /**
108  * struct s3c2410_nand_mtd - driver MTD structure
109  * @mtd: The MTD instance to pass to the MTD layer.
110  * @chip: The NAND chip information.
111  * @set: The platform information supplied for this set of NAND chips.
112  * @info: Link back to the hardware information.
113 */
114 struct s3c2410_nand_mtd {
115 	struct nand_chip		chip;
116 	struct s3c2410_nand_set		*set;
117 	struct s3c2410_nand_info	*info;
118 };
119 
120 enum s3c_cpu_type {
121 	TYPE_S3C2410,
122 	TYPE_S3C2412,
123 	TYPE_S3C2440,
124 };
125 
126 enum s3c_nand_clk_state {
127 	CLOCK_DISABLE	= 0,
128 	CLOCK_ENABLE,
129 	CLOCK_SUSPEND,
130 };
131 
132 /* overview of the s3c2410 nand state */
133 
134 /**
135  * struct s3c2410_nand_info - NAND controller state.
136  * @controller: Base controller structure.
137  * @mtds: An array of MTD instances on this controller.
138  * @platform: The platform data for this board.
139  * @device: The platform device we bound to.
140  * @clk: The clock resource for this controller.
141  * @regs: The area mapped for the hardware registers.
142  * @sel_reg: Pointer to the register controlling the NAND selection.
143  * @sel_bit: The bit in @sel_reg to select the NAND chip.
144  * @mtd_count: The number of MTDs created from this controller.
145  * @save_sel: The contents of @sel_reg to be saved over suspend.
146  * @clk_rate: The clock rate from @clk.
147  * @clk_state: The current clock state.
148  * @cpu_type: The exact type of this controller.
149  * @freq_transition: CPUFreq notifier block
150  */
151 struct s3c2410_nand_info {
152 	/* mtd info */
153 	struct nand_controller		controller;
154 	struct s3c2410_nand_mtd		*mtds;
155 	struct s3c2410_platform_nand	*platform;
156 
157 	/* device info */
158 	struct device			*device;
159 	struct clk			*clk;
160 	void __iomem			*regs;
161 	void __iomem			*sel_reg;
162 	int				sel_bit;
163 	int				mtd_count;
164 	unsigned long			save_sel;
165 	unsigned long			clk_rate;
166 	enum s3c_nand_clk_state		clk_state;
167 
168 	enum s3c_cpu_type		cpu_type;
169 
170 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
171 	struct notifier_block	freq_transition;
172 #endif
173 };
174 
175 struct s3c24XX_nand_devtype_data {
176 	enum s3c_cpu_type type;
177 };
178 
179 static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
180 	.type = TYPE_S3C2410,
181 };
182 
183 static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
184 	.type = TYPE_S3C2412,
185 };
186 
187 static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
188 	.type = TYPE_S3C2440,
189 };
190 
191 /* conversion functions */
192 
193 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
194 {
195 	return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
196 			    chip);
197 }
198 
199 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
200 {
201 	return s3c2410_nand_mtd_toours(mtd)->info;
202 }
203 
204 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
205 {
206 	return platform_get_drvdata(dev);
207 }
208 
209 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
210 {
211 	return dev_get_platdata(&dev->dev);
212 }
213 
214 static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
215 {
216 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
217 	return 1;
218 #else
219 	return 0;
220 #endif
221 }
222 
223 /**
224  * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
225  * @info: The controller instance.
226  * @new_state: State to which clock should be set.
227  */
228 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
229 		enum s3c_nand_clk_state new_state)
230 {
231 	if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
232 		return;
233 
234 	if (info->clk_state == CLOCK_ENABLE) {
235 		if (new_state != CLOCK_ENABLE)
236 			clk_disable_unprepare(info->clk);
237 	} else {
238 		if (new_state == CLOCK_ENABLE)
239 			clk_prepare_enable(info->clk);
240 	}
241 
242 	info->clk_state = new_state;
243 }
244 
245 /* timing calculations */
246 
247 #define NS_IN_KHZ 1000000
248 
249 /**
250  * s3c_nand_calc_rate - calculate timing data.
251  * @wanted: The cycle time in nanoseconds.
252  * @clk: The clock rate in kHz.
253  * @max: The maximum divider value.
254  *
255  * Calculate the timing value from the given parameters.
256  */
257 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
258 {
259 	int result;
260 
261 	result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
262 
263 	pr_debug("result %d from %ld, %d\n", result, clk, wanted);
264 
265 	if (result > max) {
266 		pr_err("%d ns is too big for current clock rate %ld\n",
267 			wanted, clk);
268 		return -1;
269 	}
270 
271 	if (result < 1)
272 		result = 1;
273 
274 	return result;
275 }
276 
277 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
278 
279 /* controller setup */
280 
281 /**
282  * s3c2410_nand_setrate - setup controller timing information.
283  * @info: The controller instance.
284  *
285  * Given the information supplied by the platform, calculate and set
286  * the necessary timing registers in the hardware to generate the
287  * necessary timing cycles to the hardware.
288  */
289 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
290 {
291 	struct s3c2410_platform_nand *plat = info->platform;
292 	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
293 	int tacls, twrph0, twrph1;
294 	unsigned long clkrate = clk_get_rate(info->clk);
295 	unsigned long set, cfg, mask;
296 	unsigned long flags;
297 
298 	/* calculate the timing information for the controller */
299 
300 	info->clk_rate = clkrate;
301 	clkrate /= 1000;	/* turn clock into kHz for ease of use */
302 
303 	if (plat != NULL) {
304 		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
305 		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
306 		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
307 	} else {
308 		/* default timings */
309 		tacls = tacls_max;
310 		twrph0 = 8;
311 		twrph1 = 8;
312 	}
313 
314 	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
315 		dev_err(info->device, "cannot get suitable timings\n");
316 		return -EINVAL;
317 	}
318 
319 	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
320 		tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
321 						twrph1, to_ns(twrph1, clkrate));
322 
323 	switch (info->cpu_type) {
324 	case TYPE_S3C2410:
325 		mask = (S3C2410_NFCONF_TACLS(3) |
326 			S3C2410_NFCONF_TWRPH0(7) |
327 			S3C2410_NFCONF_TWRPH1(7));
328 		set = S3C2410_NFCONF_EN;
329 		set |= S3C2410_NFCONF_TACLS(tacls - 1);
330 		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
331 		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
332 		break;
333 
334 	case TYPE_S3C2440:
335 	case TYPE_S3C2412:
336 		mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
337 			S3C2440_NFCONF_TWRPH0(7) |
338 			S3C2440_NFCONF_TWRPH1(7));
339 
340 		set = S3C2440_NFCONF_TACLS(tacls - 1);
341 		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
342 		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
343 		break;
344 
345 	default:
346 		BUG();
347 	}
348 
349 	local_irq_save(flags);
350 
351 	cfg = readl(info->regs + S3C2410_NFCONF);
352 	cfg &= ~mask;
353 	cfg |= set;
354 	writel(cfg, info->regs + S3C2410_NFCONF);
355 
356 	local_irq_restore(flags);
357 
358 	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
359 
360 	return 0;
361 }
362 
363 /**
364  * s3c2410_nand_inithw - basic hardware initialisation
365  * @info: The hardware state.
366  *
367  * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
368  * to setup the hardware access speeds and set the controller to be enabled.
369 */
370 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
371 {
372 	int ret;
373 
374 	ret = s3c2410_nand_setrate(info);
375 	if (ret < 0)
376 		return ret;
377 
378 	switch (info->cpu_type) {
379 	case TYPE_S3C2410:
380 	default:
381 		break;
382 
383 	case TYPE_S3C2440:
384 	case TYPE_S3C2412:
385 		/* enable the controller and de-assert nFCE */
386 
387 		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
388 	}
389 
390 	return 0;
391 }
392 
393 /**
394  * s3c2410_nand_select_chip - select the given nand chip
395  * @this: NAND chip object.
396  * @chip: The chip number.
397  *
398  * This is called by the MTD layer to either select a given chip for the
399  * @mtd instance, or to indicate that the access has finished and the
400  * chip can be de-selected.
401  *
402  * The routine ensures that the nFCE line is correctly setup, and any
403  * platform specific selection code is called to route nFCE to the specific
404  * chip.
405  */
406 static void s3c2410_nand_select_chip(struct nand_chip *this, int chip)
407 {
408 	struct s3c2410_nand_info *info;
409 	struct s3c2410_nand_mtd *nmtd;
410 	unsigned long cur;
411 
412 	nmtd = nand_get_controller_data(this);
413 	info = nmtd->info;
414 
415 	if (chip != -1)
416 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
417 
418 	cur = readl(info->sel_reg);
419 
420 	if (chip == -1) {
421 		cur |= info->sel_bit;
422 	} else {
423 		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
424 			dev_err(info->device, "invalid chip %d\n", chip);
425 			return;
426 		}
427 
428 		if (info->platform != NULL) {
429 			if (info->platform->select_chip != NULL)
430 				(info->platform->select_chip) (nmtd->set, chip);
431 		}
432 
433 		cur &= ~info->sel_bit;
434 	}
435 
436 	writel(cur, info->sel_reg);
437 
438 	if (chip == -1)
439 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
440 }
441 
442 /* s3c2410_nand_hwcontrol
443  *
444  * Issue command and address cycles to the chip
445 */
446 
447 static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd,
448 				   unsigned int ctrl)
449 {
450 	struct mtd_info *mtd = nand_to_mtd(chip);
451 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
452 
453 	if (cmd == NAND_CMD_NONE)
454 		return;
455 
456 	if (ctrl & NAND_CLE)
457 		writeb(cmd, info->regs + S3C2410_NFCMD);
458 	else
459 		writeb(cmd, info->regs + S3C2410_NFADDR);
460 }
461 
462 /* command and control functions */
463 
464 static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd,
465 				   unsigned int ctrl)
466 {
467 	struct mtd_info *mtd = nand_to_mtd(chip);
468 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
469 
470 	if (cmd == NAND_CMD_NONE)
471 		return;
472 
473 	if (ctrl & NAND_CLE)
474 		writeb(cmd, info->regs + S3C2440_NFCMD);
475 	else
476 		writeb(cmd, info->regs + S3C2440_NFADDR);
477 }
478 
479 /* s3c2410_nand_devready()
480  *
481  * returns 0 if the nand is busy, 1 if it is ready
482 */
483 
484 static int s3c2410_nand_devready(struct nand_chip *chip)
485 {
486 	struct mtd_info *mtd = nand_to_mtd(chip);
487 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
488 	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
489 }
490 
491 static int s3c2440_nand_devready(struct nand_chip *chip)
492 {
493 	struct mtd_info *mtd = nand_to_mtd(chip);
494 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
495 	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
496 }
497 
498 static int s3c2412_nand_devready(struct nand_chip *chip)
499 {
500 	struct mtd_info *mtd = nand_to_mtd(chip);
501 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
502 	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
503 }
504 
505 /* ECC handling functions */
506 
507 static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat,
508 				     u_char *read_ecc, u_char *calc_ecc)
509 {
510 	struct mtd_info *mtd = nand_to_mtd(chip);
511 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
512 	unsigned int diff0, diff1, diff2;
513 	unsigned int bit, byte;
514 
515 	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
516 
517 	diff0 = read_ecc[0] ^ calc_ecc[0];
518 	diff1 = read_ecc[1] ^ calc_ecc[1];
519 	diff2 = read_ecc[2] ^ calc_ecc[2];
520 
521 	pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
522 		 __func__, 3, read_ecc, 3, calc_ecc,
523 		 diff0, diff1, diff2);
524 
525 	if (diff0 == 0 && diff1 == 0 && diff2 == 0)
526 		return 0;		/* ECC is ok */
527 
528 	/* sometimes people do not think about using the ECC, so check
529 	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
530 	 * the error, on the assumption that this is an un-eccd page.
531 	 */
532 	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
533 	    && info->platform->ignore_unset_ecc)
534 		return 0;
535 
536 	/* Can we correct this ECC (ie, one row and column change).
537 	 * Note, this is similar to the 256 error code on smartmedia */
538 
539 	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
540 	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
541 	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
542 		/* calculate the bit position of the error */
543 
544 		bit  = ((diff2 >> 3) & 1) |
545 		       ((diff2 >> 4) & 2) |
546 		       ((diff2 >> 5) & 4);
547 
548 		/* calculate the byte position of the error */
549 
550 		byte = ((diff2 << 7) & 0x100) |
551 		       ((diff1 << 0) & 0x80)  |
552 		       ((diff1 << 1) & 0x40)  |
553 		       ((diff1 << 2) & 0x20)  |
554 		       ((diff1 << 3) & 0x10)  |
555 		       ((diff0 >> 4) & 0x08)  |
556 		       ((diff0 >> 3) & 0x04)  |
557 		       ((diff0 >> 2) & 0x02)  |
558 		       ((diff0 >> 1) & 0x01);
559 
560 		dev_dbg(info->device, "correcting error bit %d, byte %d\n",
561 			bit, byte);
562 
563 		dat[byte] ^= (1 << bit);
564 		return 1;
565 	}
566 
567 	/* if there is only one bit difference in the ECC, then
568 	 * one of only a row or column parity has changed, which
569 	 * means the error is most probably in the ECC itself */
570 
571 	diff0 |= (diff1 << 8);
572 	diff0 |= (diff2 << 16);
573 
574 	/* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
575 	if ((diff0 & (diff0 - 1)) == 0)
576 		return 1;
577 
578 	return -1;
579 }
580 
581 /* ECC functions
582  *
583  * These allow the s3c2410 and s3c2440 to use the controller's ECC
584  * generator block to ECC the data as it passes through]
585 */
586 
587 static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode)
588 {
589 	struct s3c2410_nand_info *info;
590 	unsigned long ctrl;
591 
592 	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
593 	ctrl = readl(info->regs + S3C2410_NFCONF);
594 	ctrl |= S3C2410_NFCONF_INITECC;
595 	writel(ctrl, info->regs + S3C2410_NFCONF);
596 }
597 
598 static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode)
599 {
600 	struct s3c2410_nand_info *info;
601 	unsigned long ctrl;
602 
603 	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
604 	ctrl = readl(info->regs + S3C2440_NFCONT);
605 	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
606 	       info->regs + S3C2440_NFCONT);
607 }
608 
609 static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode)
610 {
611 	struct s3c2410_nand_info *info;
612 	unsigned long ctrl;
613 
614 	info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip));
615 	ctrl = readl(info->regs + S3C2440_NFCONT);
616 	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
617 }
618 
619 static int s3c2410_nand_calculate_ecc(struct nand_chip *chip,
620 				      const u_char *dat, u_char *ecc_code)
621 {
622 	struct mtd_info *mtd = nand_to_mtd(chip);
623 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
624 
625 	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
626 	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
627 	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
628 
629 	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
630 
631 	return 0;
632 }
633 
634 static int s3c2412_nand_calculate_ecc(struct nand_chip *chip,
635 				      const u_char *dat, u_char *ecc_code)
636 {
637 	struct mtd_info *mtd = nand_to_mtd(chip);
638 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
639 	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
640 
641 	ecc_code[0] = ecc;
642 	ecc_code[1] = ecc >> 8;
643 	ecc_code[2] = ecc >> 16;
644 
645 	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
646 
647 	return 0;
648 }
649 
650 static int s3c2440_nand_calculate_ecc(struct nand_chip *chip,
651 				      const u_char *dat, u_char *ecc_code)
652 {
653 	struct mtd_info *mtd = nand_to_mtd(chip);
654 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
655 	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
656 
657 	ecc_code[0] = ecc;
658 	ecc_code[1] = ecc >> 8;
659 	ecc_code[2] = ecc >> 16;
660 
661 	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
662 
663 	return 0;
664 }
665 
666 /* over-ride the standard functions for a little more speed. We can
667  * use read/write block to move the data buffers to/from the controller
668 */
669 
670 static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
671 {
672 	readsb(this->legacy.IO_ADDR_R, buf, len);
673 }
674 
675 static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len)
676 {
677 	struct mtd_info *mtd = nand_to_mtd(this);
678 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
679 
680 	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
681 
682 	/* cleanup if we've got less than a word to do */
683 	if (len & 3) {
684 		buf += len & ~3;
685 
686 		for (; len & 3; len--)
687 			*buf++ = readb(info->regs + S3C2440_NFDATA);
688 	}
689 }
690 
691 static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf,
692 				   int len)
693 {
694 	writesb(this->legacy.IO_ADDR_W, buf, len);
695 }
696 
697 static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf,
698 				   int len)
699 {
700 	struct mtd_info *mtd = nand_to_mtd(this);
701 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
702 
703 	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
704 
705 	/* cleanup any fractional write */
706 	if (len & 3) {
707 		buf += len & ~3;
708 
709 		for (; len & 3; len--, buf++)
710 			writeb(*buf, info->regs + S3C2440_NFDATA);
711 	}
712 }
713 
714 /* cpufreq driver support */
715 
716 #ifdef CONFIG_ARM_S3C24XX_CPUFREQ
717 
718 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
719 					  unsigned long val, void *data)
720 {
721 	struct s3c2410_nand_info *info;
722 	unsigned long newclk;
723 
724 	info = container_of(nb, struct s3c2410_nand_info, freq_transition);
725 	newclk = clk_get_rate(info->clk);
726 
727 	if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
728 	    (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
729 		s3c2410_nand_setrate(info);
730 	}
731 
732 	return 0;
733 }
734 
735 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
736 {
737 	info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
738 
739 	return cpufreq_register_notifier(&info->freq_transition,
740 					 CPUFREQ_TRANSITION_NOTIFIER);
741 }
742 
743 static inline void
744 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
745 {
746 	cpufreq_unregister_notifier(&info->freq_transition,
747 				    CPUFREQ_TRANSITION_NOTIFIER);
748 }
749 
750 #else
751 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
752 {
753 	return 0;
754 }
755 
756 static inline void
757 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
758 {
759 }
760 #endif
761 
762 /* device management functions */
763 
764 static int s3c24xx_nand_remove(struct platform_device *pdev)
765 {
766 	struct s3c2410_nand_info *info = to_nand_info(pdev);
767 
768 	if (info == NULL)
769 		return 0;
770 
771 	s3c2410_nand_cpufreq_deregister(info);
772 
773 	/* Release all our mtds  and their partitions, then go through
774 	 * freeing the resources used
775 	 */
776 
777 	if (info->mtds != NULL) {
778 		struct s3c2410_nand_mtd *ptr = info->mtds;
779 		int mtdno;
780 
781 		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
782 			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
783 			WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr->chip)));
784 			nand_cleanup(&ptr->chip);
785 		}
786 	}
787 
788 	/* free the common resources */
789 
790 	if (!IS_ERR(info->clk))
791 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
792 
793 	return 0;
794 }
795 
796 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
797 				      struct s3c2410_nand_mtd *mtd,
798 				      struct s3c2410_nand_set *set)
799 {
800 	if (set) {
801 		struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
802 
803 		mtdinfo->name = set->name;
804 
805 		return mtd_device_register(mtdinfo, set->partitions,
806 					   set->nr_partitions);
807 	}
808 
809 	return -ENODEV;
810 }
811 
812 static int s3c2410_nand_setup_interface(struct nand_chip *chip, int csline,
813 					const struct nand_interface_config *conf)
814 {
815 	struct mtd_info *mtd = nand_to_mtd(chip);
816 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
817 	struct s3c2410_platform_nand *pdata = info->platform;
818 	const struct nand_sdr_timings *timings;
819 	int tacls;
820 
821 	timings = nand_get_sdr_timings(conf);
822 	if (IS_ERR(timings))
823 		return -ENOTSUPP;
824 
825 	tacls = timings->tCLS_min - timings->tWP_min;
826 	if (tacls < 0)
827 		tacls = 0;
828 
829 	pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
830 	pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
831 	pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
832 
833 	return s3c2410_nand_setrate(info);
834 }
835 
836 /**
837  * s3c2410_nand_init_chip - initialise a single instance of an chip
838  * @info: The base NAND controller the chip is on.
839  * @nmtd: The new controller MTD instance to fill in.
840  * @set: The information passed from the board specific platform data.
841  *
842  * Initialise the given @nmtd from the information in @info and @set. This
843  * readies the structure for use with the MTD layer functions by ensuring
844  * all pointers are setup and the necessary control routines selected.
845  */
846 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
847 				   struct s3c2410_nand_mtd *nmtd,
848 				   struct s3c2410_nand_set *set)
849 {
850 	struct device_node *np = info->device->of_node;
851 	struct nand_chip *chip = &nmtd->chip;
852 	void __iomem *regs = info->regs;
853 
854 	nand_set_flash_node(chip, set->of_node);
855 
856 	chip->legacy.write_buf    = s3c2410_nand_write_buf;
857 	chip->legacy.read_buf     = s3c2410_nand_read_buf;
858 	chip->legacy.select_chip  = s3c2410_nand_select_chip;
859 	chip->legacy.chip_delay   = 50;
860 	nand_set_controller_data(chip, nmtd);
861 	chip->options	   = set->options;
862 	chip->controller   = &info->controller;
863 
864 	/*
865 	 * let's keep behavior unchanged for legacy boards booting via pdata and
866 	 * auto-detect timings only when booting with a device tree.
867 	 */
868 	if (!np)
869 		chip->options |= NAND_KEEP_TIMINGS;
870 
871 	switch (info->cpu_type) {
872 	case TYPE_S3C2410:
873 		chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA;
874 		info->sel_reg   = regs + S3C2410_NFCONF;
875 		info->sel_bit	= S3C2410_NFCONF_nFCE;
876 		chip->legacy.cmd_ctrl  = s3c2410_nand_hwcontrol;
877 		chip->legacy.dev_ready = s3c2410_nand_devready;
878 		break;
879 
880 	case TYPE_S3C2440:
881 		chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
882 		info->sel_reg   = regs + S3C2440_NFCONT;
883 		info->sel_bit	= S3C2440_NFCONT_nFCE;
884 		chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
885 		chip->legacy.dev_ready = s3c2440_nand_devready;
886 		chip->legacy.read_buf  = s3c2440_nand_read_buf;
887 		chip->legacy.write_buf	= s3c2440_nand_write_buf;
888 		break;
889 
890 	case TYPE_S3C2412:
891 		chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA;
892 		info->sel_reg   = regs + S3C2440_NFCONT;
893 		info->sel_bit	= S3C2412_NFCONT_nFCE0;
894 		chip->legacy.cmd_ctrl  = s3c2440_nand_hwcontrol;
895 		chip->legacy.dev_ready = s3c2412_nand_devready;
896 
897 		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
898 			dev_info(info->device, "System booted from NAND\n");
899 
900 		break;
901 	}
902 
903 	chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W;
904 
905 	nmtd->info	   = info;
906 	nmtd->set	   = set;
907 
908 	chip->ecc.engine_type = info->platform->engine_type;
909 
910 	/*
911 	 * If you use u-boot BBT creation code, specifying this flag will
912 	 * let the kernel fish out the BBT from the NAND.
913 	 */
914 	if (set->flash_bbt)
915 		chip->bbt_options |= NAND_BBT_USE_FLASH;
916 }
917 
918 /**
919  * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
920  * @chip: The NAND chip
921  *
922  * This hook is called by the core after the identification of the NAND chip,
923  * once the relevant per-chip information is up to date.. This call ensure that
924  * we update the internal state accordingly.
925  *
926  * The internal state is currently limited to the ECC state information.
927 */
928 static int s3c2410_nand_attach_chip(struct nand_chip *chip)
929 {
930 	struct mtd_info *mtd = nand_to_mtd(chip);
931 	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
932 
933 	switch (chip->ecc.engine_type) {
934 
935 	case NAND_ECC_ENGINE_TYPE_NONE:
936 		dev_info(info->device, "ECC disabled\n");
937 		break;
938 
939 	case NAND_ECC_ENGINE_TYPE_SOFT:
940 		/*
941 		 * This driver expects Hamming based ECC when engine_type is set
942 		 * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to
943 		 * NAND_ECC_ALGO_HAMMING to avoid adding an extra ecc_algo field
944 		 * to s3c2410_platform_nand.
945 		 */
946 		chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
947 		dev_info(info->device, "soft ECC\n");
948 		break;
949 
950 	case NAND_ECC_ENGINE_TYPE_ON_HOST:
951 		chip->ecc.calculate = s3c2410_nand_calculate_ecc;
952 		chip->ecc.correct   = s3c2410_nand_correct_data;
953 		chip->ecc.strength  = 1;
954 
955 		switch (info->cpu_type) {
956 		case TYPE_S3C2410:
957 			chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc;
958 			chip->ecc.calculate = s3c2410_nand_calculate_ecc;
959 			break;
960 
961 		case TYPE_S3C2412:
962 			chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
963 			chip->ecc.calculate = s3c2412_nand_calculate_ecc;
964 			break;
965 
966 		case TYPE_S3C2440:
967 			chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
968 			chip->ecc.calculate = s3c2440_nand_calculate_ecc;
969 			break;
970 		}
971 
972 		dev_dbg(info->device, "chip %p => page shift %d\n",
973 			chip, chip->page_shift);
974 
975 		/* change the behaviour depending on whether we are using
976 		 * the large or small page nand device */
977 		if (chip->page_shift > 10) {
978 			chip->ecc.size	    = 256;
979 			chip->ecc.bytes	    = 3;
980 		} else {
981 			chip->ecc.size	    = 512;
982 			chip->ecc.bytes	    = 3;
983 			mtd_set_ooblayout(nand_to_mtd(chip),
984 					  &s3c2410_ooblayout_ops);
985 		}
986 
987 		dev_info(info->device, "hardware ECC\n");
988 		break;
989 
990 	default:
991 		dev_err(info->device, "invalid ECC mode!\n");
992 		return -EINVAL;
993 	}
994 
995 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
996 		chip->options |= NAND_SKIP_BBTSCAN;
997 
998 	return 0;
999 }
1000 
1001 static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
1002 	.attach_chip = s3c2410_nand_attach_chip,
1003 	.setup_interface = s3c2410_nand_setup_interface,
1004 };
1005 
1006 static const struct of_device_id s3c24xx_nand_dt_ids[] = {
1007 	{
1008 		.compatible = "samsung,s3c2410-nand",
1009 		.data = &s3c2410_nand_devtype_data,
1010 	}, {
1011 		/* also compatible with s3c6400 */
1012 		.compatible = "samsung,s3c2412-nand",
1013 		.data = &s3c2412_nand_devtype_data,
1014 	}, {
1015 		.compatible = "samsung,s3c2440-nand",
1016 		.data = &s3c2440_nand_devtype_data,
1017 	},
1018 	{ /* sentinel */ }
1019 };
1020 MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
1021 
1022 static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
1023 {
1024 	const struct s3c24XX_nand_devtype_data *devtype_data;
1025 	struct s3c2410_platform_nand *pdata;
1026 	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1027 	struct device_node *np = pdev->dev.of_node, *child;
1028 	struct s3c2410_nand_set *sets;
1029 
1030 	devtype_data = of_device_get_match_data(&pdev->dev);
1031 	if (!devtype_data)
1032 		return -ENODEV;
1033 
1034 	info->cpu_type = devtype_data->type;
1035 
1036 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1037 	if (!pdata)
1038 		return -ENOMEM;
1039 
1040 	pdev->dev.platform_data = pdata;
1041 
1042 	pdata->nr_sets = of_get_child_count(np);
1043 	if (!pdata->nr_sets)
1044 		return 0;
1045 
1046 	sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
1047 			    GFP_KERNEL);
1048 	if (!sets)
1049 		return -ENOMEM;
1050 
1051 	pdata->sets = sets;
1052 
1053 	for_each_available_child_of_node(np, child) {
1054 		sets->name = (char *)child->name;
1055 		sets->of_node = child;
1056 		sets->nr_chips = 1;
1057 
1058 		of_node_get(child);
1059 
1060 		sets++;
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
1067 {
1068 	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
1069 
1070 	info->cpu_type = platform_get_device_id(pdev)->driver_data;
1071 
1072 	return 0;
1073 }
1074 
1075 /* s3c24xx_nand_probe
1076  *
1077  * called by device layer when it finds a device matching
1078  * one our driver can handled. This code checks to see if
1079  * it can allocate all necessary resources then calls the
1080  * nand layer to look for devices
1081 */
1082 static int s3c24xx_nand_probe(struct platform_device *pdev)
1083 {
1084 	struct s3c2410_platform_nand *plat;
1085 	struct s3c2410_nand_info *info;
1086 	struct s3c2410_nand_mtd *nmtd;
1087 	struct s3c2410_nand_set *sets;
1088 	struct resource *res;
1089 	int err = 0;
1090 	int size;
1091 	int nr_sets;
1092 	int setno;
1093 
1094 	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1095 	if (info == NULL) {
1096 		err = -ENOMEM;
1097 		goto exit_error;
1098 	}
1099 
1100 	platform_set_drvdata(pdev, info);
1101 
1102 	nand_controller_init(&info->controller);
1103 	info->controller.ops = &s3c24xx_nand_controller_ops;
1104 
1105 	/* get the clock source and enable it */
1106 
1107 	info->clk = devm_clk_get(&pdev->dev, "nand");
1108 	if (IS_ERR(info->clk)) {
1109 		dev_err(&pdev->dev, "failed to get clock\n");
1110 		err = -ENOENT;
1111 		goto exit_error;
1112 	}
1113 
1114 	s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1115 
1116 	if (pdev->dev.of_node)
1117 		err = s3c24xx_nand_probe_dt(pdev);
1118 	else
1119 		err = s3c24xx_nand_probe_pdata(pdev);
1120 
1121 	if (err)
1122 		goto exit_error;
1123 
1124 	plat = to_nand_plat(pdev);
1125 
1126 	/* allocate and map the resource */
1127 
1128 	/* currently we assume we have the one resource */
1129 	res = pdev->resource;
1130 	size = resource_size(res);
1131 
1132 	info->device	= &pdev->dev;
1133 	info->platform	= plat;
1134 
1135 	info->regs = devm_ioremap_resource(&pdev->dev, res);
1136 	if (IS_ERR(info->regs)) {
1137 		err = PTR_ERR(info->regs);
1138 		goto exit_error;
1139 	}
1140 
1141 	dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1142 
1143 	if (!plat->sets || plat->nr_sets < 1) {
1144 		err = -EINVAL;
1145 		goto exit_error;
1146 	}
1147 
1148 	sets = plat->sets;
1149 	nr_sets = plat->nr_sets;
1150 
1151 	info->mtd_count = nr_sets;
1152 
1153 	/* allocate our information */
1154 
1155 	size = nr_sets * sizeof(*info->mtds);
1156 	info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1157 	if (info->mtds == NULL) {
1158 		err = -ENOMEM;
1159 		goto exit_error;
1160 	}
1161 
1162 	/* initialise all possible chips */
1163 
1164 	nmtd = info->mtds;
1165 
1166 	for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
1167 		struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1168 
1169 		pr_debug("initialising set %d (%p, info %p)\n",
1170 			 setno, nmtd, info);
1171 
1172 		mtd->dev.parent = &pdev->dev;
1173 		s3c2410_nand_init_chip(info, nmtd, sets);
1174 
1175 		err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1);
1176 		if (err)
1177 			goto exit_error;
1178 
1179 		s3c2410_nand_add_partition(info, nmtd, sets);
1180 	}
1181 
1182 	/* initialise the hardware */
1183 	err = s3c2410_nand_inithw(info);
1184 	if (err != 0)
1185 		goto exit_error;
1186 
1187 	err = s3c2410_nand_cpufreq_register(info);
1188 	if (err < 0) {
1189 		dev_err(&pdev->dev, "failed to init cpufreq support\n");
1190 		goto exit_error;
1191 	}
1192 
1193 	if (allow_clk_suspend(info)) {
1194 		dev_info(&pdev->dev, "clock idle support enabled\n");
1195 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1196 	}
1197 
1198 	return 0;
1199 
1200  exit_error:
1201 	s3c24xx_nand_remove(pdev);
1202 
1203 	if (err == 0)
1204 		err = -EINVAL;
1205 	return err;
1206 }
1207 
1208 /* PM Support */
1209 #ifdef CONFIG_PM
1210 
1211 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1212 {
1213 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1214 
1215 	if (info) {
1216 		info->save_sel = readl(info->sel_reg);
1217 
1218 		/* For the moment, we must ensure nFCE is high during
1219 		 * the time we are suspended. This really should be
1220 		 * handled by suspending the MTDs we are using, but
1221 		 * that is currently not the case. */
1222 
1223 		writel(info->save_sel | info->sel_bit, info->sel_reg);
1224 
1225 		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 static int s3c24xx_nand_resume(struct platform_device *dev)
1232 {
1233 	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1234 	unsigned long sel;
1235 
1236 	if (info) {
1237 		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1238 		s3c2410_nand_inithw(info);
1239 
1240 		/* Restore the state of the nFCE line. */
1241 
1242 		sel = readl(info->sel_reg);
1243 		sel &= ~info->sel_bit;
1244 		sel |= info->save_sel & info->sel_bit;
1245 		writel(sel, info->sel_reg);
1246 
1247 		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1248 	}
1249 
1250 	return 0;
1251 }
1252 
1253 #else
1254 #define s3c24xx_nand_suspend NULL
1255 #define s3c24xx_nand_resume NULL
1256 #endif
1257 
1258 /* driver device registration */
1259 
1260 static const struct platform_device_id s3c24xx_driver_ids[] = {
1261 	{
1262 		.name		= "s3c2410-nand",
1263 		.driver_data	= TYPE_S3C2410,
1264 	}, {
1265 		.name		= "s3c2440-nand",
1266 		.driver_data	= TYPE_S3C2440,
1267 	}, {
1268 		.name		= "s3c2412-nand",
1269 		.driver_data	= TYPE_S3C2412,
1270 	}, {
1271 		.name		= "s3c6400-nand",
1272 		.driver_data	= TYPE_S3C2412, /* compatible with 2412 */
1273 	},
1274 	{ }
1275 };
1276 
1277 MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
1278 
1279 static struct platform_driver s3c24xx_nand_driver = {
1280 	.probe		= s3c24xx_nand_probe,
1281 	.remove		= s3c24xx_nand_remove,
1282 	.suspend	= s3c24xx_nand_suspend,
1283 	.resume		= s3c24xx_nand_resume,
1284 	.id_table	= s3c24xx_driver_ids,
1285 	.driver		= {
1286 		.name	= "s3c24xx-nand",
1287 		.of_match_table = s3c24xx_nand_dt_ids,
1288 	},
1289 };
1290 
1291 module_platform_driver(s3c24xx_nand_driver);
1292 
1293 MODULE_LICENSE("GPL");
1294 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1295 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1296