xref: /openbmc/linux/drivers/mtd/nand/raw/meson_nand.c (revision 1c9f8dff62d85ce00b0e99f774a84bd783af7cac)
1 // SPDX-License-Identifier: (GPL-2.0+ OR MIT)
2 /*
3  * Amlogic Meson Nand Flash Controller Driver
4  *
5  * Copyright (c) 2018 Amlogic, inc.
6  * Author: Liang Yang <liang.yang@amlogic.com>
7  */
8 
9 #include <linux/platform_device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/mtd/rawnand.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/mfd/syscon.h>
17 #include <linux/regmap.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/iopoll.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/sched/task_stack.h>
24 
25 #define NFC_REG_CMD		0x00
26 #define NFC_CMD_IDLE		(0xc << 14)
27 #define NFC_CMD_CLE		(0x5 << 14)
28 #define NFC_CMD_ALE		(0x6 << 14)
29 #define NFC_CMD_ADL		((0 << 16) | (3 << 20))
30 #define NFC_CMD_ADH		((1 << 16) | (3 << 20))
31 #define NFC_CMD_AIL		((2 << 16) | (3 << 20))
32 #define NFC_CMD_AIH		((3 << 16) | (3 << 20))
33 #define NFC_CMD_SEED		((8 << 16) | (3 << 20))
34 #define NFC_CMD_M2N		((0 << 17) | (2 << 20))
35 #define NFC_CMD_N2M		((1 << 17) | (2 << 20))
36 #define NFC_CMD_RB		BIT(20)
37 #define NFC_CMD_SCRAMBLER_ENABLE	BIT(19)
38 #define NFC_CMD_SCRAMBLER_DISABLE	0
39 #define NFC_CMD_SHORTMODE_DISABLE	0
40 #define NFC_CMD_RB_INT		BIT(14)
41 #define NFC_CMD_RB_INT_NO_PIN	((0xb << 10) | BIT(18) | BIT(16))
42 
43 #define NFC_CMD_GET_SIZE(x)	(((x) >> 22) & GENMASK(4, 0))
44 
45 #define NFC_REG_CFG		0x04
46 #define NFC_REG_DADR		0x08
47 #define NFC_REG_IADR		0x0c
48 #define NFC_REG_BUF		0x10
49 #define NFC_REG_INFO		0x14
50 #define NFC_REG_DC		0x18
51 #define NFC_REG_ADR		0x1c
52 #define NFC_REG_DL		0x20
53 #define NFC_REG_DH		0x24
54 #define NFC_REG_CADR		0x28
55 #define NFC_REG_SADR		0x2c
56 #define NFC_REG_PINS		0x30
57 #define NFC_REG_VER		0x38
58 
59 #define NFC_RB_IRQ_EN		BIT(21)
60 
61 #define CLK_DIV_SHIFT		0
62 #define CLK_DIV_WIDTH		6
63 
64 #define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages)	\
65 	(								\
66 		(cmd_dir)			|			\
67 		((ran) << 19)			|			\
68 		((bch) << 14)			|			\
69 		((short_mode) << 13)		|			\
70 		(((page_size) & 0x7f) << 6)	|			\
71 		((pages) & 0x3f)					\
72 	)
73 
74 #define GENCMDDADDRL(adl, addr)		((adl) | ((addr) & 0xffff))
75 #define GENCMDDADDRH(adh, addr)		((adh) | (((addr) >> 16) & 0xffff))
76 #define GENCMDIADDRL(ail, addr)		((ail) | ((addr) & 0xffff))
77 #define GENCMDIADDRH(aih, addr)		((aih) | (((addr) >> 16) & 0xffff))
78 
79 #define DMA_DIR(dir)		((dir) ? NFC_CMD_N2M : NFC_CMD_M2N)
80 #define DMA_ADDR_ALIGN		8
81 
82 #define ECC_CHECK_RETURN_FF	(-1)
83 
84 #define NAND_CE0		(0xe << 10)
85 #define NAND_CE1		(0xd << 10)
86 
87 #define DMA_BUSY_TIMEOUT	0x100000
88 #define CMD_FIFO_EMPTY_TIMEOUT	1000
89 
90 #define MAX_CE_NUM		2
91 
92 /* eMMC clock register, misc control */
93 #define CLK_SELECT_NAND		BIT(31)
94 
95 #define NFC_CLK_CYCLE		6
96 
97 /* nand flash controller delay 3 ns */
98 #define NFC_DEFAULT_DELAY	3000
99 
100 #define ROW_ADDER(page, index)	(((page) >> (8 * (index))) & 0xff)
101 #define MAX_CYCLE_ADDRS		5
102 #define DIRREAD			1
103 #define DIRWRITE		0
104 
105 #define ECC_PARITY_BCH8_512B	14
106 #define ECC_COMPLETE            BIT(31)
107 #define ECC_ERR_CNT(x)		(((x) >> 24) & GENMASK(5, 0))
108 #define ECC_ZERO_CNT(x)		(((x) >> 16) & GENMASK(5, 0))
109 #define ECC_UNCORRECTABLE	0x3f
110 
111 #define PER_INFO_BYTE		8
112 
113 #define NFC_CMD_RAW_LEN	GENMASK(13, 0)
114 
115 #define NFC_COLUMN_ADDR_0	0
116 #define NFC_COLUMN_ADDR_1	0
117 
118 struct meson_nfc_nand_chip {
119 	struct list_head node;
120 	struct nand_chip nand;
121 	unsigned long clk_rate;
122 	unsigned long level1_divider;
123 	u32 bus_timing;
124 	u32 twb;
125 	u32 tadl;
126 	u32 tbers_max;
127 
128 	u32 bch_mode;
129 	u8 *data_buf;
130 	__le64 *info_buf;
131 	u32 nsels;
132 	u8 sels[];
133 };
134 
135 struct meson_nand_ecc {
136 	u32 bch;
137 	u32 strength;
138 };
139 
140 struct meson_nfc_data {
141 	const struct nand_ecc_caps *ecc_caps;
142 };
143 
144 struct meson_nfc_param {
145 	u32 chip_select;
146 	u32 rb_select;
147 };
148 
149 struct nand_rw_cmd {
150 	u32 cmd0;
151 	u32 addrs[MAX_CYCLE_ADDRS];
152 	u32 cmd1;
153 };
154 
155 struct nand_timing {
156 	u32 twb;
157 	u32 tadl;
158 	u32 tbers_max;
159 };
160 
161 struct meson_nfc {
162 	struct nand_controller controller;
163 	struct clk *core_clk;
164 	struct clk *device_clk;
165 	struct clk *nand_clk;
166 	struct clk_divider nand_divider;
167 
168 	unsigned long clk_rate;
169 	u32 bus_timing;
170 
171 	struct device *dev;
172 	void __iomem *reg_base;
173 	void __iomem *reg_clk;
174 	struct completion completion;
175 	struct list_head chips;
176 	const struct meson_nfc_data *data;
177 	struct meson_nfc_param param;
178 	struct nand_timing timing;
179 	union {
180 		int cmd[32];
181 		struct nand_rw_cmd rw;
182 	} cmdfifo;
183 
184 	dma_addr_t daddr;
185 	dma_addr_t iaddr;
186 	u32 info_bytes;
187 
188 	unsigned long assigned_cs;
189 	bool no_rb_pin;
190 };
191 
192 enum {
193 	NFC_ECC_BCH8_1K		= 2,
194 	NFC_ECC_BCH24_1K,
195 	NFC_ECC_BCH30_1K,
196 	NFC_ECC_BCH40_1K,
197 	NFC_ECC_BCH50_1K,
198 	NFC_ECC_BCH60_1K,
199 };
200 
201 #define MESON_ECC_DATA(b, s)	{ .bch = (b),	.strength = (s)}
202 
203 static struct meson_nand_ecc meson_ecc[] = {
204 	MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8),
205 	MESON_ECC_DATA(NFC_ECC_BCH24_1K, 24),
206 	MESON_ECC_DATA(NFC_ECC_BCH30_1K, 30),
207 	MESON_ECC_DATA(NFC_ECC_BCH40_1K, 40),
208 	MESON_ECC_DATA(NFC_ECC_BCH50_1K, 50),
209 	MESON_ECC_DATA(NFC_ECC_BCH60_1K, 60),
210 };
211 
212 static int meson_nand_calc_ecc_bytes(int step_size, int strength)
213 {
214 	int ecc_bytes;
215 
216 	if (step_size == 512 && strength == 8)
217 		return ECC_PARITY_BCH8_512B;
218 
219 	ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8);
220 	ecc_bytes = ALIGN(ecc_bytes, 2);
221 
222 	return ecc_bytes;
223 }
224 
225 NAND_ECC_CAPS_SINGLE(meson_gxl_ecc_caps,
226 		     meson_nand_calc_ecc_bytes, 1024, 8, 24, 30, 40, 50, 60);
227 NAND_ECC_CAPS_SINGLE(meson_axg_ecc_caps,
228 		     meson_nand_calc_ecc_bytes, 1024, 8);
229 
230 static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand)
231 {
232 	return container_of(nand, struct meson_nfc_nand_chip, nand);
233 }
234 
235 static void meson_nfc_select_chip(struct nand_chip *nand, int chip)
236 {
237 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
238 	struct meson_nfc *nfc = nand_get_controller_data(nand);
239 	int ret, value;
240 
241 	if (chip < 0 || WARN_ON_ONCE(chip >= meson_chip->nsels))
242 		return;
243 
244 	nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0;
245 	nfc->param.rb_select = nfc->param.chip_select;
246 	nfc->timing.twb = meson_chip->twb;
247 	nfc->timing.tadl = meson_chip->tadl;
248 	nfc->timing.tbers_max = meson_chip->tbers_max;
249 
250 	if (nfc->clk_rate != meson_chip->clk_rate) {
251 		ret = clk_set_rate(nfc->nand_clk, meson_chip->clk_rate);
252 		if (ret) {
253 			dev_err(nfc->dev, "failed to set clock rate\n");
254 			return;
255 		}
256 		nfc->clk_rate = meson_chip->clk_rate;
257 	}
258 	if (nfc->bus_timing != meson_chip->bus_timing) {
259 		value = (NFC_CLK_CYCLE - 1) | (meson_chip->bus_timing << 5);
260 		writel(value, nfc->reg_base + NFC_REG_CFG);
261 		writel((1 << 31), nfc->reg_base + NFC_REG_CMD);
262 		nfc->bus_timing =  meson_chip->bus_timing;
263 	}
264 }
265 
266 static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time)
267 {
268 	writel(nfc->param.chip_select | NFC_CMD_IDLE | (time & 0x3ff),
269 	       nfc->reg_base + NFC_REG_CMD);
270 }
271 
272 static void meson_nfc_cmd_seed(struct meson_nfc *nfc, u32 seed)
273 {
274 	writel(NFC_CMD_SEED | (0xc2 + (seed & 0x7fff)),
275 	       nfc->reg_base + NFC_REG_CMD);
276 }
277 
278 static void meson_nfc_cmd_access(struct nand_chip *nand, int raw, bool dir,
279 				 int scrambler)
280 {
281 	struct mtd_info *mtd = nand_to_mtd(nand);
282 	struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
283 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
284 	u32 bch = meson_chip->bch_mode, cmd;
285 	int len = mtd->writesize, pagesize, pages;
286 
287 	pagesize = nand->ecc.size;
288 
289 	if (raw) {
290 		len = mtd->writesize + mtd->oobsize;
291 		cmd = len | scrambler | DMA_DIR(dir);
292 		writel(cmd, nfc->reg_base + NFC_REG_CMD);
293 		return;
294 	}
295 
296 	pages = len / nand->ecc.size;
297 
298 	cmd = CMDRWGEN(DMA_DIR(dir), scrambler, bch,
299 		       NFC_CMD_SHORTMODE_DISABLE, pagesize, pages);
300 
301 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
302 }
303 
304 static void meson_nfc_drain_cmd(struct meson_nfc *nfc)
305 {
306 	/*
307 	 * Insert two commands to make sure all valid commands are finished.
308 	 *
309 	 * The Nand flash controller is designed as two stages pipleline -
310 	 *  a) fetch and b) excute.
311 	 * There might be cases when the driver see command queue is empty,
312 	 * but the Nand flash controller still has two commands buffered,
313 	 * one is fetched into NFC request queue (ready to run), and another
314 	 * is actively executing. So pushing 2 "IDLE" commands guarantees that
315 	 * the pipeline is emptied.
316 	 */
317 	meson_nfc_cmd_idle(nfc, 0);
318 	meson_nfc_cmd_idle(nfc, 0);
319 }
320 
321 static int meson_nfc_wait_cmd_finish(struct meson_nfc *nfc,
322 				     unsigned int timeout_ms)
323 {
324 	u32 cmd_size = 0;
325 	int ret;
326 
327 	/* wait cmd fifo is empty */
328 	ret = readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size,
329 					 !NFC_CMD_GET_SIZE(cmd_size),
330 					 10, timeout_ms * 1000);
331 	if (ret)
332 		dev_err(nfc->dev, "wait for empty CMD FIFO time out\n");
333 
334 	return ret;
335 }
336 
337 static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc)
338 {
339 	meson_nfc_drain_cmd(nfc);
340 
341 	return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT);
342 }
343 
344 static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i)
345 {
346 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
347 	int len;
348 
349 	len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i;
350 
351 	return meson_chip->data_buf + len;
352 }
353 
354 static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i)
355 {
356 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
357 	int len, temp;
358 
359 	temp = nand->ecc.size + nand->ecc.bytes;
360 	len = (temp + 2) * i;
361 
362 	return meson_chip->data_buf + len;
363 }
364 
365 static void meson_nfc_get_data_oob(struct nand_chip *nand,
366 				   u8 *buf, u8 *oobbuf)
367 {
368 	int i, oob_len = 0;
369 	u8 *dsrc, *osrc;
370 
371 	oob_len = nand->ecc.bytes + 2;
372 	for (i = 0; i < nand->ecc.steps; i++) {
373 		if (buf) {
374 			dsrc = meson_nfc_data_ptr(nand, i);
375 			memcpy(buf, dsrc, nand->ecc.size);
376 			buf += nand->ecc.size;
377 		}
378 		osrc = meson_nfc_oob_ptr(nand, i);
379 		memcpy(oobbuf, osrc, oob_len);
380 		oobbuf += oob_len;
381 	}
382 }
383 
384 static void meson_nfc_set_data_oob(struct nand_chip *nand,
385 				   const u8 *buf, u8 *oobbuf)
386 {
387 	int i, oob_len = 0;
388 	u8 *dsrc, *osrc;
389 
390 	oob_len = nand->ecc.bytes + 2;
391 	for (i = 0; i < nand->ecc.steps; i++) {
392 		if (buf) {
393 			dsrc = meson_nfc_data_ptr(nand, i);
394 			memcpy(dsrc, buf, nand->ecc.size);
395 			buf += nand->ecc.size;
396 		}
397 		osrc = meson_nfc_oob_ptr(nand, i);
398 		memcpy(osrc, oobbuf, oob_len);
399 		oobbuf += oob_len;
400 	}
401 }
402 
403 static int meson_nfc_wait_no_rb_pin(struct meson_nfc *nfc, int timeout_ms,
404 				    bool need_cmd_read0)
405 {
406 	u32 cmd, cfg;
407 
408 	meson_nfc_cmd_idle(nfc, nfc->timing.twb);
409 	meson_nfc_drain_cmd(nfc);
410 	meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT);
411 
412 	cfg = readl(nfc->reg_base + NFC_REG_CFG);
413 	cfg |= NFC_RB_IRQ_EN;
414 	writel(cfg, nfc->reg_base + NFC_REG_CFG);
415 
416 	reinit_completion(&nfc->completion);
417 	cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_STATUS;
418 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
419 
420 	/* use the max erase time as the maximum clock for waiting R/B */
421 	cmd = NFC_CMD_RB | NFC_CMD_RB_INT_NO_PIN | nfc->timing.tbers_max;
422 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
423 
424 	if (!wait_for_completion_timeout(&nfc->completion,
425 					 msecs_to_jiffies(timeout_ms)))
426 		return -ETIMEDOUT;
427 
428 	if (need_cmd_read0) {
429 		cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_READ0;
430 		writel(cmd, nfc->reg_base + NFC_REG_CMD);
431 		meson_nfc_drain_cmd(nfc);
432 		meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT);
433 	}
434 
435 	return 0;
436 }
437 
438 static int meson_nfc_wait_rb_pin(struct meson_nfc *nfc, int timeout_ms)
439 {
440 	u32 cmd, cfg;
441 	int ret = 0;
442 
443 	meson_nfc_cmd_idle(nfc, nfc->timing.twb);
444 	meson_nfc_drain_cmd(nfc);
445 	meson_nfc_wait_cmd_finish(nfc, CMD_FIFO_EMPTY_TIMEOUT);
446 
447 	cfg = readl(nfc->reg_base + NFC_REG_CFG);
448 	cfg |= NFC_RB_IRQ_EN;
449 	writel(cfg, nfc->reg_base + NFC_REG_CFG);
450 
451 	reinit_completion(&nfc->completion);
452 
453 	/* use the max erase time as the maximum clock for waiting R/B */
454 	cmd = NFC_CMD_RB | NFC_CMD_RB_INT
455 		| nfc->param.chip_select | nfc->timing.tbers_max;
456 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
457 
458 	ret = wait_for_completion_timeout(&nfc->completion,
459 					  msecs_to_jiffies(timeout_ms));
460 	if (ret == 0)
461 		ret = -1;
462 
463 	return ret;
464 }
465 
466 static int meson_nfc_queue_rb(struct meson_nfc *nfc, int timeout_ms,
467 			      bool need_cmd_read0)
468 {
469 	if (nfc->no_rb_pin) {
470 		/* This mode is used when there is no wired R/B pin.
471 		 * It works like 'nand_soft_waitrdy()', but instead of
472 		 * polling NAND_CMD_STATUS bit in the software loop,
473 		 * it will wait for interrupt - controllers checks IO
474 		 * bus and when it detects NAND_CMD_STATUS on it, it
475 		 * raises interrupt. After interrupt, NAND_CMD_READ0 is
476 		 * sent as terminator of the ready waiting procedure if
477 		 * needed (for all cases except page programming - this
478 		 * is reason of 'need_cmd_read0' flag).
479 		 */
480 		return meson_nfc_wait_no_rb_pin(nfc, timeout_ms,
481 						need_cmd_read0);
482 	} else {
483 		return meson_nfc_wait_rb_pin(nfc, timeout_ms);
484 	}
485 }
486 
487 static void meson_nfc_set_user_byte(struct nand_chip *nand, u8 *oob_buf)
488 {
489 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
490 	__le64 *info;
491 	int i, count;
492 
493 	for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) {
494 		info = &meson_chip->info_buf[i];
495 		*info |= oob_buf[count];
496 		*info |= oob_buf[count + 1] << 8;
497 	}
498 }
499 
500 static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf)
501 {
502 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
503 	__le64 *info;
504 	int i, count;
505 
506 	for (i = 0, count = 0; i < nand->ecc.steps; i++, count += 2) {
507 		info = &meson_chip->info_buf[i];
508 		oob_buf[count] = *info;
509 		oob_buf[count + 1] = *info >> 8;
510 	}
511 }
512 
513 static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips,
514 				 u64 *correct_bitmap)
515 {
516 	struct mtd_info *mtd = nand_to_mtd(nand);
517 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
518 	__le64 *info;
519 	int ret = 0, i;
520 
521 	for (i = 0; i < nand->ecc.steps; i++) {
522 		info = &meson_chip->info_buf[i];
523 		if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) {
524 			mtd->ecc_stats.corrected += ECC_ERR_CNT(*info);
525 			*bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info));
526 			*correct_bitmap |= BIT_ULL(i);
527 			continue;
528 		}
529 		if ((nand->options & NAND_NEED_SCRAMBLING) &&
530 		    ECC_ZERO_CNT(*info) < nand->ecc.strength) {
531 			mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info);
532 			*bitflips = max_t(u32, *bitflips,
533 					  ECC_ZERO_CNT(*info));
534 			ret = ECC_CHECK_RETURN_FF;
535 		} else {
536 			ret = -EBADMSG;
537 		}
538 	}
539 	return ret;
540 }
541 
542 static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf,
543 				      int datalen, void *infobuf, int infolen,
544 				      enum dma_data_direction dir)
545 {
546 	struct meson_nfc *nfc = nand_get_controller_data(nand);
547 	u32 cmd;
548 	int ret = 0;
549 
550 	nfc->daddr = dma_map_single(nfc->dev, databuf, datalen, dir);
551 	ret = dma_mapping_error(nfc->dev, nfc->daddr);
552 	if (ret) {
553 		dev_err(nfc->dev, "DMA mapping error\n");
554 		return ret;
555 	}
556 	cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr);
557 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
558 
559 	cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr);
560 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
561 
562 	if (infobuf) {
563 		nfc->iaddr = dma_map_single(nfc->dev, infobuf, infolen, dir);
564 		ret = dma_mapping_error(nfc->dev, nfc->iaddr);
565 		if (ret) {
566 			dev_err(nfc->dev, "DMA mapping error\n");
567 			dma_unmap_single(nfc->dev,
568 					 nfc->daddr, datalen, dir);
569 			return ret;
570 		}
571 		nfc->info_bytes = infolen;
572 		cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr);
573 		writel(cmd, nfc->reg_base + NFC_REG_CMD);
574 
575 		cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr);
576 		writel(cmd, nfc->reg_base + NFC_REG_CMD);
577 	}
578 
579 	return ret;
580 }
581 
582 static void meson_nfc_dma_buffer_release(struct nand_chip *nand,
583 					 int datalen, int infolen,
584 					 enum dma_data_direction dir)
585 {
586 	struct meson_nfc *nfc = nand_get_controller_data(nand);
587 
588 	dma_unmap_single(nfc->dev, nfc->daddr, datalen, dir);
589 	if (infolen) {
590 		dma_unmap_single(nfc->dev, nfc->iaddr, infolen, dir);
591 		nfc->info_bytes = 0;
592 	}
593 }
594 
595 static int meson_nfc_read_buf(struct nand_chip *nand, u8 *buf, int len)
596 {
597 	struct meson_nfc *nfc = nand_get_controller_data(nand);
598 	int ret = 0;
599 	u32 cmd;
600 	u8 *info;
601 
602 	info = kzalloc(PER_INFO_BYTE, GFP_KERNEL);
603 	if (!info)
604 		return -ENOMEM;
605 
606 	ret = meson_nfc_dma_buffer_setup(nand, buf, len, info,
607 					 PER_INFO_BYTE, DMA_FROM_DEVICE);
608 	if (ret)
609 		goto out;
610 
611 	cmd = NFC_CMD_N2M | len;
612 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
613 
614 	meson_nfc_drain_cmd(nfc);
615 	meson_nfc_wait_cmd_finish(nfc, 1000);
616 	meson_nfc_dma_buffer_release(nand, len, PER_INFO_BYTE, DMA_FROM_DEVICE);
617 
618 out:
619 	kfree(info);
620 
621 	return ret;
622 }
623 
624 static int meson_nfc_write_buf(struct nand_chip *nand, u8 *buf, int len)
625 {
626 	struct meson_nfc *nfc = nand_get_controller_data(nand);
627 	int ret = 0;
628 	u32 cmd;
629 
630 	ret = meson_nfc_dma_buffer_setup(nand, buf, len, NULL,
631 					 0, DMA_TO_DEVICE);
632 	if (ret)
633 		return ret;
634 
635 	cmd = NFC_CMD_M2N | len;
636 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
637 
638 	meson_nfc_drain_cmd(nfc);
639 	meson_nfc_wait_cmd_finish(nfc, 1000);
640 	meson_nfc_dma_buffer_release(nand, len, 0, DMA_TO_DEVICE);
641 
642 	return ret;
643 }
644 
645 static int meson_nfc_rw_cmd_prepare_and_execute(struct nand_chip *nand,
646 						int page, bool in)
647 {
648 	const struct nand_sdr_timings *sdr =
649 		nand_get_sdr_timings(nand_get_interface_config(nand));
650 	struct mtd_info *mtd = nand_to_mtd(nand);
651 	struct meson_nfc *nfc = nand_get_controller_data(nand);
652 	u32 *addrs = nfc->cmdfifo.rw.addrs;
653 	u32 cs = nfc->param.chip_select;
654 	u32 cmd0, cmd_num, row_start;
655 	int i;
656 
657 	cmd_num = sizeof(struct nand_rw_cmd) / sizeof(int);
658 
659 	cmd0 = in ? NAND_CMD_READ0 : NAND_CMD_SEQIN;
660 	nfc->cmdfifo.rw.cmd0 = cs | NFC_CMD_CLE | cmd0;
661 
662 	addrs[0] = cs | NFC_CMD_ALE | NFC_COLUMN_ADDR_0;
663 	if (mtd->writesize <= 512) {
664 		cmd_num--;
665 		row_start = 1;
666 	} else {
667 		addrs[1] = cs | NFC_CMD_ALE | NFC_COLUMN_ADDR_1;
668 		row_start = 2;
669 	}
670 
671 	addrs[row_start] = cs | NFC_CMD_ALE | ROW_ADDER(page, 0);
672 	addrs[row_start + 1] = cs | NFC_CMD_ALE | ROW_ADDER(page, 1);
673 
674 	if (nand->options & NAND_ROW_ADDR_3)
675 		addrs[row_start + 2] =
676 			cs | NFC_CMD_ALE | ROW_ADDER(page, 2);
677 	else
678 		cmd_num--;
679 
680 	/* subtract cmd1 */
681 	cmd_num--;
682 
683 	for (i = 0; i < cmd_num; i++)
684 		writel_relaxed(nfc->cmdfifo.cmd[i],
685 			       nfc->reg_base + NFC_REG_CMD);
686 
687 	if (in) {
688 		nfc->cmdfifo.rw.cmd1 = cs | NFC_CMD_CLE | NAND_CMD_READSTART;
689 		writel(nfc->cmdfifo.rw.cmd1, nfc->reg_base + NFC_REG_CMD);
690 		meson_nfc_queue_rb(nfc, PSEC_TO_MSEC(sdr->tR_max), true);
691 	} else {
692 		meson_nfc_cmd_idle(nfc, nfc->timing.tadl);
693 	}
694 
695 	return 0;
696 }
697 
698 static int meson_nfc_write_page_sub(struct nand_chip *nand,
699 				    int page, int raw)
700 {
701 	const struct nand_sdr_timings *sdr =
702 		nand_get_sdr_timings(nand_get_interface_config(nand));
703 	struct mtd_info *mtd = nand_to_mtd(nand);
704 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
705 	struct meson_nfc *nfc = nand_get_controller_data(nand);
706 	int data_len, info_len;
707 	u32 cmd;
708 	int ret;
709 
710 	meson_nfc_select_chip(nand, nand->cur_cs);
711 
712 	data_len =  mtd->writesize + mtd->oobsize;
713 	info_len = nand->ecc.steps * PER_INFO_BYTE;
714 
715 	ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRWRITE);
716 	if (ret)
717 		return ret;
718 
719 	ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
720 					 data_len, meson_chip->info_buf,
721 					 info_len, DMA_TO_DEVICE);
722 	if (ret)
723 		return ret;
724 
725 	if (nand->options & NAND_NEED_SCRAMBLING) {
726 		meson_nfc_cmd_seed(nfc, page);
727 		meson_nfc_cmd_access(nand, raw, DIRWRITE,
728 				     NFC_CMD_SCRAMBLER_ENABLE);
729 	} else {
730 		meson_nfc_cmd_access(nand, raw, DIRWRITE,
731 				     NFC_CMD_SCRAMBLER_DISABLE);
732 	}
733 
734 	cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG;
735 	writel(cmd, nfc->reg_base + NFC_REG_CMD);
736 	meson_nfc_queue_rb(nfc, PSEC_TO_MSEC(sdr->tPROG_max), false);
737 
738 	meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE);
739 
740 	return ret;
741 }
742 
743 static int meson_nfc_write_page_raw(struct nand_chip *nand, const u8 *buf,
744 				    int oob_required, int page)
745 {
746 	u8 *oob_buf = nand->oob_poi;
747 
748 	meson_nfc_set_data_oob(nand, buf, oob_buf);
749 
750 	return meson_nfc_write_page_sub(nand, page, 1);
751 }
752 
753 static int meson_nfc_write_page_hwecc(struct nand_chip *nand,
754 				      const u8 *buf, int oob_required, int page)
755 {
756 	struct mtd_info *mtd = nand_to_mtd(nand);
757 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
758 	u8 *oob_buf = nand->oob_poi;
759 
760 	memcpy(meson_chip->data_buf, buf, mtd->writesize);
761 	memset(meson_chip->info_buf, 0, nand->ecc.steps * PER_INFO_BYTE);
762 	meson_nfc_set_user_byte(nand, oob_buf);
763 
764 	return meson_nfc_write_page_sub(nand, page, 0);
765 }
766 
767 static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc,
768 					    struct nand_chip *nand, int raw)
769 {
770 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
771 	__le64 *info;
772 	u32 neccpages;
773 	int ret;
774 
775 	neccpages = raw ? 1 : nand->ecc.steps;
776 	info = &meson_chip->info_buf[neccpages - 1];
777 	do {
778 		usleep_range(10, 15);
779 		/* info is updated by nfc dma engine*/
780 		smp_rmb();
781 		dma_sync_single_for_cpu(nfc->dev, nfc->iaddr, nfc->info_bytes,
782 					DMA_FROM_DEVICE);
783 		ret = *info & ECC_COMPLETE;
784 	} while (!ret);
785 }
786 
787 static int meson_nfc_read_page_sub(struct nand_chip *nand,
788 				   int page, int raw)
789 {
790 	struct mtd_info *mtd = nand_to_mtd(nand);
791 	struct meson_nfc *nfc = nand_get_controller_data(nand);
792 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
793 	int data_len, info_len;
794 	int ret;
795 
796 	meson_nfc_select_chip(nand, nand->cur_cs);
797 
798 	data_len =  mtd->writesize + mtd->oobsize;
799 	info_len = nand->ecc.steps * PER_INFO_BYTE;
800 
801 	ret = meson_nfc_rw_cmd_prepare_and_execute(nand, page, DIRREAD);
802 	if (ret)
803 		return ret;
804 
805 	ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
806 					 data_len, meson_chip->info_buf,
807 					 info_len, DMA_FROM_DEVICE);
808 	if (ret)
809 		return ret;
810 
811 	if (nand->options & NAND_NEED_SCRAMBLING) {
812 		meson_nfc_cmd_seed(nfc, page);
813 		meson_nfc_cmd_access(nand, raw, DIRREAD,
814 				     NFC_CMD_SCRAMBLER_ENABLE);
815 	} else {
816 		meson_nfc_cmd_access(nand, raw, DIRREAD,
817 				     NFC_CMD_SCRAMBLER_DISABLE);
818 	}
819 
820 	ret = meson_nfc_wait_dma_finish(nfc);
821 	meson_nfc_check_ecc_pages_valid(nfc, nand, raw);
822 
823 	meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_FROM_DEVICE);
824 
825 	return ret;
826 }
827 
828 static int meson_nfc_read_page_raw(struct nand_chip *nand, u8 *buf,
829 				   int oob_required, int page)
830 {
831 	u8 *oob_buf = nand->oob_poi;
832 	int ret;
833 
834 	ret = meson_nfc_read_page_sub(nand, page, 1);
835 	if (ret)
836 		return ret;
837 
838 	meson_nfc_get_data_oob(nand, buf, oob_buf);
839 
840 	return 0;
841 }
842 
843 static int meson_nfc_read_page_hwecc(struct nand_chip *nand, u8 *buf,
844 				     int oob_required, int page)
845 {
846 	struct mtd_info *mtd = nand_to_mtd(nand);
847 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
848 	struct nand_ecc_ctrl *ecc = &nand->ecc;
849 	u64 correct_bitmap = 0;
850 	u32 bitflips = 0;
851 	u8 *oob_buf = nand->oob_poi;
852 	int ret, i;
853 
854 	ret = meson_nfc_read_page_sub(nand, page, 0);
855 	if (ret)
856 		return ret;
857 
858 	meson_nfc_get_user_byte(nand, oob_buf);
859 	ret = meson_nfc_ecc_correct(nand, &bitflips, &correct_bitmap);
860 	if (ret == ECC_CHECK_RETURN_FF) {
861 		if (buf)
862 			memset(buf, 0xff, mtd->writesize);
863 		memset(oob_buf, 0xff, mtd->oobsize);
864 	} else if (ret < 0) {
865 		if ((nand->options & NAND_NEED_SCRAMBLING) || !buf) {
866 			mtd->ecc_stats.failed++;
867 			return bitflips;
868 		}
869 		ret  = meson_nfc_read_page_raw(nand, buf, 0, page);
870 		if (ret)
871 			return ret;
872 
873 		for (i = 0; i < nand->ecc.steps ; i++) {
874 			u8 *data = buf + i * ecc->size;
875 			u8 *oob = nand->oob_poi + i * (ecc->bytes + 2);
876 
877 			if (correct_bitmap & BIT_ULL(i))
878 				continue;
879 			ret = nand_check_erased_ecc_chunk(data,	ecc->size,
880 							  oob, ecc->bytes + 2,
881 							  NULL, 0,
882 							  ecc->strength);
883 			if (ret < 0) {
884 				mtd->ecc_stats.failed++;
885 			} else {
886 				mtd->ecc_stats.corrected += ret;
887 				bitflips =  max_t(u32, bitflips, ret);
888 			}
889 		}
890 	} else if (buf && buf != meson_chip->data_buf) {
891 		memcpy(buf, meson_chip->data_buf, mtd->writesize);
892 	}
893 
894 	return bitflips;
895 }
896 
897 static int meson_nfc_read_oob_raw(struct nand_chip *nand, int page)
898 {
899 	return meson_nfc_read_page_raw(nand, NULL, 1, page);
900 }
901 
902 static int meson_nfc_read_oob(struct nand_chip *nand, int page)
903 {
904 	return meson_nfc_read_page_hwecc(nand, NULL, 1, page);
905 }
906 
907 static bool meson_nfc_is_buffer_dma_safe(const void *buffer)
908 {
909 	if ((uintptr_t)buffer % DMA_ADDR_ALIGN)
910 		return false;
911 
912 	if (virt_addr_valid(buffer) && (!object_is_on_stack(buffer)))
913 		return true;
914 	return false;
915 }
916 
917 static void *
918 meson_nand_op_get_dma_safe_input_buf(const struct nand_op_instr *instr)
919 {
920 	if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR))
921 		return NULL;
922 
923 	if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.in))
924 		return instr->ctx.data.buf.in;
925 
926 	return kzalloc(instr->ctx.data.len, GFP_KERNEL);
927 }
928 
929 static void
930 meson_nand_op_put_dma_safe_input_buf(const struct nand_op_instr *instr,
931 				     void *buf)
932 {
933 	if (WARN_ON(instr->type != NAND_OP_DATA_IN_INSTR) ||
934 	    WARN_ON(!buf))
935 		return;
936 
937 	if (buf == instr->ctx.data.buf.in)
938 		return;
939 
940 	memcpy(instr->ctx.data.buf.in, buf, instr->ctx.data.len);
941 	kfree(buf);
942 }
943 
944 static void *
945 meson_nand_op_get_dma_safe_output_buf(const struct nand_op_instr *instr)
946 {
947 	if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR))
948 		return NULL;
949 
950 	if (meson_nfc_is_buffer_dma_safe(instr->ctx.data.buf.out))
951 		return (void *)instr->ctx.data.buf.out;
952 
953 	return kmemdup(instr->ctx.data.buf.out,
954 		       instr->ctx.data.len, GFP_KERNEL);
955 }
956 
957 static void
958 meson_nand_op_put_dma_safe_output_buf(const struct nand_op_instr *instr,
959 				      const void *buf)
960 {
961 	if (WARN_ON(instr->type != NAND_OP_DATA_OUT_INSTR) ||
962 	    WARN_ON(!buf))
963 		return;
964 
965 	if (buf != instr->ctx.data.buf.out)
966 		kfree(buf);
967 }
968 
969 static int meson_nfc_check_op(struct nand_chip *chip,
970 			      const struct nand_operation *op)
971 {
972 	int op_id;
973 
974 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
975 		const struct nand_op_instr *instr;
976 
977 		instr = &op->instrs[op_id];
978 
979 		switch (instr->type) {
980 		case NAND_OP_DATA_IN_INSTR:
981 		case NAND_OP_DATA_OUT_INSTR:
982 			if (instr->ctx.data.len > NFC_CMD_RAW_LEN)
983 				return -ENOTSUPP;
984 
985 			break;
986 		default:
987 			break;
988 		}
989 	}
990 
991 	return 0;
992 }
993 
994 static int meson_nfc_exec_op(struct nand_chip *nand,
995 			     const struct nand_operation *op, bool check_only)
996 {
997 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
998 	struct meson_nfc *nfc = nand_get_controller_data(nand);
999 	const struct nand_op_instr *instr = NULL;
1000 	void *buf;
1001 	u32 op_id, delay_idle, cmd;
1002 	int err;
1003 	int i;
1004 
1005 	err = meson_nfc_check_op(nand, op);
1006 	if (err)
1007 		return err;
1008 
1009 	if (check_only)
1010 		return 0;
1011 
1012 	meson_nfc_select_chip(nand, op->cs);
1013 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
1014 		instr = &op->instrs[op_id];
1015 		delay_idle = DIV_ROUND_UP(PSEC_TO_NSEC(instr->delay_ns),
1016 					  meson_chip->level1_divider *
1017 					  NFC_CLK_CYCLE);
1018 		switch (instr->type) {
1019 		case NAND_OP_CMD_INSTR:
1020 			cmd = nfc->param.chip_select | NFC_CMD_CLE;
1021 			cmd |= instr->ctx.cmd.opcode & 0xff;
1022 			writel(cmd, nfc->reg_base + NFC_REG_CMD);
1023 			meson_nfc_cmd_idle(nfc, delay_idle);
1024 			break;
1025 
1026 		case NAND_OP_ADDR_INSTR:
1027 			for (i = 0; i < instr->ctx.addr.naddrs; i++) {
1028 				cmd = nfc->param.chip_select | NFC_CMD_ALE;
1029 				cmd |= instr->ctx.addr.addrs[i] & 0xff;
1030 				writel(cmd, nfc->reg_base + NFC_REG_CMD);
1031 			}
1032 			meson_nfc_cmd_idle(nfc, delay_idle);
1033 			break;
1034 
1035 		case NAND_OP_DATA_IN_INSTR:
1036 			buf = meson_nand_op_get_dma_safe_input_buf(instr);
1037 			if (!buf)
1038 				return -ENOMEM;
1039 			meson_nfc_read_buf(nand, buf, instr->ctx.data.len);
1040 			meson_nand_op_put_dma_safe_input_buf(instr, buf);
1041 			break;
1042 
1043 		case NAND_OP_DATA_OUT_INSTR:
1044 			buf = meson_nand_op_get_dma_safe_output_buf(instr);
1045 			if (!buf)
1046 				return -ENOMEM;
1047 			meson_nfc_write_buf(nand, buf, instr->ctx.data.len);
1048 			meson_nand_op_put_dma_safe_output_buf(instr, buf);
1049 			break;
1050 
1051 		case NAND_OP_WAITRDY_INSTR:
1052 			meson_nfc_queue_rb(nfc, instr->ctx.waitrdy.timeout_ms,
1053 					   true);
1054 			if (instr->delay_ns)
1055 				meson_nfc_cmd_idle(nfc, delay_idle);
1056 			break;
1057 		}
1058 	}
1059 	meson_nfc_wait_cmd_finish(nfc, 1000);
1060 	return 0;
1061 }
1062 
1063 static int meson_ooblayout_ecc(struct mtd_info *mtd, int section,
1064 			       struct mtd_oob_region *oobregion)
1065 {
1066 	struct nand_chip *nand = mtd_to_nand(mtd);
1067 
1068 	if (section >= nand->ecc.steps)
1069 		return -ERANGE;
1070 
1071 	oobregion->offset =  2 + (section * (2 + nand->ecc.bytes));
1072 	oobregion->length = nand->ecc.bytes;
1073 
1074 	return 0;
1075 }
1076 
1077 static int meson_ooblayout_free(struct mtd_info *mtd, int section,
1078 				struct mtd_oob_region *oobregion)
1079 {
1080 	struct nand_chip *nand = mtd_to_nand(mtd);
1081 
1082 	if (section >= nand->ecc.steps)
1083 		return -ERANGE;
1084 
1085 	oobregion->offset = section * (2 + nand->ecc.bytes);
1086 	oobregion->length = 2;
1087 
1088 	return 0;
1089 }
1090 
1091 static const struct mtd_ooblayout_ops meson_ooblayout_ops = {
1092 	.ecc = meson_ooblayout_ecc,
1093 	.free = meson_ooblayout_free,
1094 };
1095 
1096 static int meson_nfc_clk_init(struct meson_nfc *nfc)
1097 {
1098 	struct clk_parent_data nfc_divider_parent_data[1] = {0};
1099 	struct clk_init_data init = {0};
1100 	int ret;
1101 
1102 	/* request core clock */
1103 	nfc->core_clk = devm_clk_get(nfc->dev, "core");
1104 	if (IS_ERR(nfc->core_clk)) {
1105 		dev_err(nfc->dev, "failed to get core clock\n");
1106 		return PTR_ERR(nfc->core_clk);
1107 	}
1108 
1109 	nfc->device_clk = devm_clk_get(nfc->dev, "device");
1110 	if (IS_ERR(nfc->device_clk)) {
1111 		dev_err(nfc->dev, "failed to get device clock\n");
1112 		return PTR_ERR(nfc->device_clk);
1113 	}
1114 
1115 	init.name = devm_kasprintf(nfc->dev,
1116 				   GFP_KERNEL, "%s#div",
1117 				   dev_name(nfc->dev));
1118 	init.ops = &clk_divider_ops;
1119 	nfc_divider_parent_data[0].fw_name = "device";
1120 	init.parent_data = nfc_divider_parent_data;
1121 	init.num_parents = 1;
1122 	nfc->nand_divider.reg = nfc->reg_clk;
1123 	nfc->nand_divider.shift = CLK_DIV_SHIFT;
1124 	nfc->nand_divider.width = CLK_DIV_WIDTH;
1125 	nfc->nand_divider.hw.init = &init;
1126 	nfc->nand_divider.flags = CLK_DIVIDER_ONE_BASED |
1127 				  CLK_DIVIDER_ROUND_CLOSEST |
1128 				  CLK_DIVIDER_ALLOW_ZERO;
1129 
1130 	nfc->nand_clk = devm_clk_register(nfc->dev, &nfc->nand_divider.hw);
1131 	if (IS_ERR(nfc->nand_clk))
1132 		return PTR_ERR(nfc->nand_clk);
1133 
1134 	/* init SD_EMMC_CLOCK to sane defaults w/min clock rate */
1135 	writel(CLK_SELECT_NAND | readl(nfc->reg_clk),
1136 	       nfc->reg_clk);
1137 
1138 	ret = clk_prepare_enable(nfc->core_clk);
1139 	if (ret) {
1140 		dev_err(nfc->dev, "failed to enable core clock\n");
1141 		return ret;
1142 	}
1143 
1144 	ret = clk_prepare_enable(nfc->device_clk);
1145 	if (ret) {
1146 		dev_err(nfc->dev, "failed to enable device clock\n");
1147 		goto err_device_clk;
1148 	}
1149 
1150 	ret = clk_prepare_enable(nfc->nand_clk);
1151 	if (ret) {
1152 		dev_err(nfc->dev, "pre enable NFC divider fail\n");
1153 		goto err_nand_clk;
1154 	}
1155 
1156 	ret = clk_set_rate(nfc->nand_clk, 24000000);
1157 	if (ret)
1158 		goto err_disable_clk;
1159 
1160 	return 0;
1161 
1162 err_disable_clk:
1163 	clk_disable_unprepare(nfc->nand_clk);
1164 err_nand_clk:
1165 	clk_disable_unprepare(nfc->device_clk);
1166 err_device_clk:
1167 	clk_disable_unprepare(nfc->core_clk);
1168 	return ret;
1169 }
1170 
1171 static void meson_nfc_disable_clk(struct meson_nfc *nfc)
1172 {
1173 	clk_disable_unprepare(nfc->nand_clk);
1174 	clk_disable_unprepare(nfc->device_clk);
1175 	clk_disable_unprepare(nfc->core_clk);
1176 }
1177 
1178 static void meson_nfc_free_buffer(struct nand_chip *nand)
1179 {
1180 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
1181 
1182 	kfree(meson_chip->info_buf);
1183 	kfree(meson_chip->data_buf);
1184 }
1185 
1186 static int meson_chip_buffer_init(struct nand_chip *nand)
1187 {
1188 	struct mtd_info *mtd = nand_to_mtd(nand);
1189 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
1190 	u32 page_bytes, info_bytes, nsectors;
1191 
1192 	nsectors = mtd->writesize / nand->ecc.size;
1193 
1194 	page_bytes =  mtd->writesize + mtd->oobsize;
1195 	info_bytes = nsectors * PER_INFO_BYTE;
1196 
1197 	meson_chip->data_buf = kmalloc(page_bytes, GFP_KERNEL);
1198 	if (!meson_chip->data_buf)
1199 		return -ENOMEM;
1200 
1201 	meson_chip->info_buf = kmalloc(info_bytes, GFP_KERNEL);
1202 	if (!meson_chip->info_buf) {
1203 		kfree(meson_chip->data_buf);
1204 		return -ENOMEM;
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 static
1211 int meson_nfc_setup_interface(struct nand_chip *nand, int csline,
1212 			      const struct nand_interface_config *conf)
1213 {
1214 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
1215 	const struct nand_sdr_timings *timings;
1216 	u32 div, bt_min, bt_max, tbers_clocks;
1217 
1218 	timings = nand_get_sdr_timings(conf);
1219 	if (IS_ERR(timings))
1220 		return -ENOTSUPP;
1221 
1222 	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1223 		return 0;
1224 
1225 	div = DIV_ROUND_UP((timings->tRC_min / 1000), NFC_CLK_CYCLE);
1226 	bt_min = (timings->tREA_max + NFC_DEFAULT_DELAY) / div;
1227 	bt_max = (NFC_DEFAULT_DELAY + timings->tRHOH_min +
1228 		  timings->tRC_min / 2) / div;
1229 
1230 	meson_chip->twb = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tWB_max),
1231 				       div * NFC_CLK_CYCLE);
1232 	meson_chip->tadl = DIV_ROUND_UP(PSEC_TO_NSEC(timings->tADL_min),
1233 					div * NFC_CLK_CYCLE);
1234 	tbers_clocks = DIV_ROUND_UP_ULL(PSEC_TO_NSEC(timings->tBERS_max),
1235 					div * NFC_CLK_CYCLE);
1236 	meson_chip->tbers_max = ilog2(tbers_clocks);
1237 	if (!is_power_of_2(tbers_clocks))
1238 		meson_chip->tbers_max++;
1239 
1240 	bt_min = DIV_ROUND_UP(bt_min, 1000);
1241 	bt_max = DIV_ROUND_UP(bt_max, 1000);
1242 
1243 	if (bt_max < bt_min)
1244 		return -EINVAL;
1245 
1246 	meson_chip->level1_divider = div;
1247 	meson_chip->clk_rate = 1000000000 / meson_chip->level1_divider;
1248 	meson_chip->bus_timing = (bt_min + bt_max) / 2 + 1;
1249 
1250 	return 0;
1251 }
1252 
1253 static int meson_nand_bch_mode(struct nand_chip *nand)
1254 {
1255 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
1256 	int i;
1257 
1258 	if (nand->ecc.strength > 60 || nand->ecc.strength < 8)
1259 		return -EINVAL;
1260 
1261 	for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) {
1262 		if (meson_ecc[i].strength == nand->ecc.strength) {
1263 			meson_chip->bch_mode = meson_ecc[i].bch;
1264 			return 0;
1265 		}
1266 	}
1267 
1268 	return -EINVAL;
1269 }
1270 
1271 static void meson_nand_detach_chip(struct nand_chip *nand)
1272 {
1273 	meson_nfc_free_buffer(nand);
1274 }
1275 
1276 static int meson_nand_attach_chip(struct nand_chip *nand)
1277 {
1278 	struct meson_nfc *nfc = nand_get_controller_data(nand);
1279 	struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
1280 	struct mtd_info *mtd = nand_to_mtd(nand);
1281 	int raw_writesize;
1282 	int ret;
1283 
1284 	if (!mtd->name) {
1285 		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
1286 					   "%s:nand%d",
1287 					   dev_name(nfc->dev),
1288 					   meson_chip->sels[0]);
1289 		if (!mtd->name)
1290 			return -ENOMEM;
1291 	}
1292 
1293 	raw_writesize = mtd->writesize + mtd->oobsize;
1294 	if (raw_writesize > NFC_CMD_RAW_LEN) {
1295 		dev_err(nfc->dev, "too big write size in raw mode: %d > %ld\n",
1296 			raw_writesize, NFC_CMD_RAW_LEN);
1297 		return -EINVAL;
1298 	}
1299 
1300 	if (nand->bbt_options & NAND_BBT_USE_FLASH)
1301 		nand->bbt_options |= NAND_BBT_NO_OOB;
1302 
1303 	nand->options |= NAND_NO_SUBPAGE_WRITE;
1304 
1305 	ret = nand_ecc_choose_conf(nand, nfc->data->ecc_caps,
1306 				   mtd->oobsize - 2);
1307 	if (ret) {
1308 		dev_err(nfc->dev, "failed to ECC init\n");
1309 		return -EINVAL;
1310 	}
1311 
1312 	mtd_set_ooblayout(mtd, &meson_ooblayout_ops);
1313 
1314 	ret = meson_nand_bch_mode(nand);
1315 	if (ret)
1316 		return -EINVAL;
1317 
1318 	nand->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1319 	nand->ecc.write_page_raw = meson_nfc_write_page_raw;
1320 	nand->ecc.write_page = meson_nfc_write_page_hwecc;
1321 	nand->ecc.write_oob_raw = nand_write_oob_std;
1322 	nand->ecc.write_oob = nand_write_oob_std;
1323 
1324 	nand->ecc.read_page_raw = meson_nfc_read_page_raw;
1325 	nand->ecc.read_page = meson_nfc_read_page_hwecc;
1326 	nand->ecc.read_oob_raw = meson_nfc_read_oob_raw;
1327 	nand->ecc.read_oob = meson_nfc_read_oob;
1328 
1329 	if (nand->options & NAND_BUSWIDTH_16) {
1330 		dev_err(nfc->dev, "16bits bus width not supported");
1331 		return -EINVAL;
1332 	}
1333 	ret = meson_chip_buffer_init(nand);
1334 	if (ret)
1335 		return -ENOMEM;
1336 
1337 	return ret;
1338 }
1339 
1340 static const struct nand_controller_ops meson_nand_controller_ops = {
1341 	.attach_chip = meson_nand_attach_chip,
1342 	.detach_chip = meson_nand_detach_chip,
1343 	.setup_interface = meson_nfc_setup_interface,
1344 	.exec_op = meson_nfc_exec_op,
1345 };
1346 
1347 static int
1348 meson_nfc_nand_chip_init(struct device *dev,
1349 			 struct meson_nfc *nfc, struct device_node *np)
1350 {
1351 	struct meson_nfc_nand_chip *meson_chip;
1352 	struct nand_chip *nand;
1353 	struct mtd_info *mtd;
1354 	int ret, i;
1355 	u32 tmp, nsels;
1356 	u32 nand_rb_val = 0;
1357 
1358 	nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
1359 	if (!nsels || nsels > MAX_CE_NUM) {
1360 		dev_err(dev, "invalid register property size\n");
1361 		return -EINVAL;
1362 	}
1363 
1364 	meson_chip = devm_kzalloc(dev, struct_size(meson_chip, sels, nsels),
1365 				  GFP_KERNEL);
1366 	if (!meson_chip)
1367 		return -ENOMEM;
1368 
1369 	meson_chip->nsels = nsels;
1370 
1371 	for (i = 0; i < nsels; i++) {
1372 		ret = of_property_read_u32_index(np, "reg", i, &tmp);
1373 		if (ret) {
1374 			dev_err(dev, "could not retrieve register property: %d\n",
1375 				ret);
1376 			return ret;
1377 		}
1378 
1379 		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
1380 			dev_err(dev, "CS %d already assigned\n", tmp);
1381 			return -EINVAL;
1382 		}
1383 	}
1384 
1385 	nand = &meson_chip->nand;
1386 	nand->controller = &nfc->controller;
1387 	nand->controller->ops = &meson_nand_controller_ops;
1388 	nand_set_flash_node(nand, np);
1389 	nand_set_controller_data(nand, nfc);
1390 
1391 	nand->options |= NAND_USES_DMA;
1392 	mtd = nand_to_mtd(nand);
1393 	mtd->owner = THIS_MODULE;
1394 	mtd->dev.parent = dev;
1395 
1396 	ret = of_property_read_u32(np, "nand-rb", &nand_rb_val);
1397 	if (ret == -EINVAL)
1398 		nfc->no_rb_pin = true;
1399 	else if (ret)
1400 		return ret;
1401 
1402 	if (nand_rb_val)
1403 		return -EINVAL;
1404 
1405 	ret = nand_scan(nand, nsels);
1406 	if (ret)
1407 		return ret;
1408 
1409 	ret = mtd_device_register(mtd, NULL, 0);
1410 	if (ret) {
1411 		dev_err(dev, "failed to register MTD device: %d\n", ret);
1412 		nand_cleanup(nand);
1413 		return ret;
1414 	}
1415 
1416 	list_add_tail(&meson_chip->node, &nfc->chips);
1417 
1418 	return 0;
1419 }
1420 
1421 static void meson_nfc_nand_chip_cleanup(struct meson_nfc *nfc)
1422 {
1423 	struct meson_nfc_nand_chip *meson_chip;
1424 	struct mtd_info *mtd;
1425 
1426 	while (!list_empty(&nfc->chips)) {
1427 		meson_chip = list_first_entry(&nfc->chips,
1428 					      struct meson_nfc_nand_chip, node);
1429 		mtd = nand_to_mtd(&meson_chip->nand);
1430 		WARN_ON(mtd_device_unregister(mtd));
1431 
1432 		nand_cleanup(&meson_chip->nand);
1433 		list_del(&meson_chip->node);
1434 	}
1435 }
1436 
1437 static int meson_nfc_nand_chips_init(struct device *dev,
1438 				     struct meson_nfc *nfc)
1439 {
1440 	struct device_node *np = dev->of_node;
1441 	struct device_node *nand_np;
1442 	int ret;
1443 
1444 	for_each_child_of_node(np, nand_np) {
1445 		ret = meson_nfc_nand_chip_init(dev, nfc, nand_np);
1446 		if (ret) {
1447 			meson_nfc_nand_chip_cleanup(nfc);
1448 			of_node_put(nand_np);
1449 			return ret;
1450 		}
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 static irqreturn_t meson_nfc_irq(int irq, void *id)
1457 {
1458 	struct meson_nfc *nfc = id;
1459 	u32 cfg;
1460 
1461 	cfg = readl(nfc->reg_base + NFC_REG_CFG);
1462 	if (!(cfg & NFC_RB_IRQ_EN))
1463 		return IRQ_NONE;
1464 
1465 	cfg &= ~(NFC_RB_IRQ_EN);
1466 	writel(cfg, nfc->reg_base + NFC_REG_CFG);
1467 
1468 	complete(&nfc->completion);
1469 	return IRQ_HANDLED;
1470 }
1471 
1472 static const struct meson_nfc_data meson_gxl_data = {
1473 	.ecc_caps = &meson_gxl_ecc_caps,
1474 };
1475 
1476 static const struct meson_nfc_data meson_axg_data = {
1477 	.ecc_caps = &meson_axg_ecc_caps,
1478 };
1479 
1480 static const struct of_device_id meson_nfc_id_table[] = {
1481 	{
1482 		.compatible = "amlogic,meson-gxl-nfc",
1483 		.data = &meson_gxl_data,
1484 	}, {
1485 		.compatible = "amlogic,meson-axg-nfc",
1486 		.data = &meson_axg_data,
1487 	},
1488 	{}
1489 };
1490 MODULE_DEVICE_TABLE(of, meson_nfc_id_table);
1491 
1492 static int meson_nfc_probe(struct platform_device *pdev)
1493 {
1494 	struct device *dev = &pdev->dev;
1495 	struct meson_nfc *nfc;
1496 	int ret, irq;
1497 
1498 	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1499 	if (!nfc)
1500 		return -ENOMEM;
1501 
1502 	nfc->data = of_device_get_match_data(&pdev->dev);
1503 	if (!nfc->data)
1504 		return -ENODEV;
1505 
1506 	nand_controller_init(&nfc->controller);
1507 	INIT_LIST_HEAD(&nfc->chips);
1508 	init_completion(&nfc->completion);
1509 
1510 	nfc->dev = dev;
1511 
1512 	nfc->reg_base = devm_platform_ioremap_resource_byname(pdev, "nfc");
1513 	if (IS_ERR(nfc->reg_base))
1514 		return PTR_ERR(nfc->reg_base);
1515 
1516 	nfc->reg_clk = devm_platform_ioremap_resource_byname(pdev, "emmc");
1517 	if (IS_ERR(nfc->reg_clk))
1518 		return PTR_ERR(nfc->reg_clk);
1519 
1520 	irq = platform_get_irq(pdev, 0);
1521 	if (irq < 0)
1522 		return -EINVAL;
1523 
1524 	ret = meson_nfc_clk_init(nfc);
1525 	if (ret) {
1526 		dev_err(dev, "failed to initialize NAND clock\n");
1527 		return ret;
1528 	}
1529 
1530 	writel(0, nfc->reg_base + NFC_REG_CFG);
1531 	ret = devm_request_irq(dev, irq, meson_nfc_irq, 0, dev_name(dev), nfc);
1532 	if (ret) {
1533 		dev_err(dev, "failed to request NFC IRQ\n");
1534 		ret = -EINVAL;
1535 		goto err_clk;
1536 	}
1537 
1538 	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
1539 	if (ret) {
1540 		dev_err(dev, "failed to set DMA mask\n");
1541 		goto err_clk;
1542 	}
1543 
1544 	platform_set_drvdata(pdev, nfc);
1545 
1546 	ret = meson_nfc_nand_chips_init(dev, nfc);
1547 	if (ret) {
1548 		dev_err(dev, "failed to init NAND chips\n");
1549 		goto err_clk;
1550 	}
1551 
1552 	return 0;
1553 err_clk:
1554 	meson_nfc_disable_clk(nfc);
1555 	return ret;
1556 }
1557 
1558 static void meson_nfc_remove(struct platform_device *pdev)
1559 {
1560 	struct meson_nfc *nfc = platform_get_drvdata(pdev);
1561 
1562 	meson_nfc_nand_chip_cleanup(nfc);
1563 
1564 	meson_nfc_disable_clk(nfc);
1565 }
1566 
1567 static struct platform_driver meson_nfc_driver = {
1568 	.probe  = meson_nfc_probe,
1569 	.remove_new = meson_nfc_remove,
1570 	.driver = {
1571 		.name  = "meson-nand",
1572 		.of_match_table = meson_nfc_id_table,
1573 	},
1574 };
1575 module_platform_driver(meson_nfc_driver);
1576 
1577 MODULE_LICENSE("Dual MIT/GPL");
1578 MODULE_AUTHOR("Liang Yang <liang.yang@amlogic.com>");
1579 MODULE_DESCRIPTION("Amlogic's Meson NAND Flash Controller driver");
1580