xref: /openbmc/linux/drivers/mtd/nand/raw/diskonchip.c (revision 7e534323c416216e8ac45b5633fb0a5e5137e5b5)
1 /*
2  * (C) 2003 Red Hat, Inc.
3  * (C) 2004 Dan Brown <dan_brown@ieee.org>
4  * (C) 2004 Kalev Lember <kalev@smartlink.ee>
5  *
6  * Author: David Woodhouse <dwmw2@infradead.org>
7  * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
8  * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
9  *
10  * Error correction code lifted from the old docecc code
11  * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
12  * Copyright (C) 2000 Netgem S.A.
13  * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
14  *
15  * Interface to generic NAND code for M-Systems DiskOnChip devices
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/rslib.h>
23 #include <linux/moduleparam.h>
24 #include <linux/slab.h>
25 #include <linux/io.h>
26 
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/rawnand.h>
29 #include <linux/mtd/doc2000.h>
30 #include <linux/mtd/partitions.h>
31 #include <linux/mtd/inftl.h>
32 #include <linux/module.h>
33 
34 /* Where to look for the devices? */
35 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
36 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
37 #endif
38 
39 static unsigned long doc_locations[] __initdata = {
40 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
41 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
42 	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
43 	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
44 	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
45 	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
46 	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
47 #else
48 	0xc8000, 0xca000, 0xcc000, 0xce000,
49 	0xd0000, 0xd2000, 0xd4000, 0xd6000,
50 	0xd8000, 0xda000, 0xdc000, 0xde000,
51 	0xe0000, 0xe2000, 0xe4000, 0xe6000,
52 	0xe8000, 0xea000, 0xec000, 0xee000,
53 #endif
54 #endif
55 	0xffffffff };
56 
57 static struct mtd_info *doclist = NULL;
58 
59 struct doc_priv {
60 	void __iomem *virtadr;
61 	unsigned long physadr;
62 	u_char ChipID;
63 	u_char CDSNControl;
64 	int chips_per_floor;	/* The number of chips detected on each floor */
65 	int curfloor;
66 	int curchip;
67 	int mh0_page;
68 	int mh1_page;
69 	struct rs_control *rs_decoder;
70 	struct mtd_info *nextdoc;
71 
72 	/* Handle the last stage of initialization (BBT scan, partitioning) */
73 	int (*late_init)(struct mtd_info *mtd);
74 };
75 
76 /* This is the ecc value computed by the HW ecc generator upon writing an empty
77    page, one with all 0xff for data. */
78 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
79 
80 #define INFTL_BBT_RESERVED_BLOCKS 4
81 
82 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
83 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
84 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
85 
86 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
87 			      unsigned int bitmask);
88 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
89 
90 static int debug = 0;
91 module_param(debug, int, 0);
92 
93 static int try_dword = 1;
94 module_param(try_dword, int, 0);
95 
96 static int no_ecc_failures = 0;
97 module_param(no_ecc_failures, int, 0);
98 
99 static int no_autopart = 0;
100 module_param(no_autopart, int, 0);
101 
102 static int show_firmware_partition = 0;
103 module_param(show_firmware_partition, int, 0);
104 
105 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
106 static int inftl_bbt_write = 1;
107 #else
108 static int inftl_bbt_write = 0;
109 #endif
110 module_param(inftl_bbt_write, int, 0);
111 
112 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
113 module_param(doc_config_location, ulong, 0);
114 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
115 
116 /* Sector size for HW ECC */
117 #define SECTOR_SIZE 512
118 /* The sector bytes are packed into NB_DATA 10 bit words */
119 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
120 /* Number of roots */
121 #define NROOTS 4
122 /* First consective root */
123 #define FCR 510
124 /* Number of symbols */
125 #define NN 1023
126 
127 /*
128  * The HW decoder in the DoC ASIC's provides us a error syndrome,
129  * which we must convert to a standard syndrome usable by the generic
130  * Reed-Solomon library code.
131  *
132  * Fabrice Bellard figured this out in the old docecc code. I added
133  * some comments, improved a minor bit and converted it to make use
134  * of the generic Reed-Solomon library. tglx
135  */
136 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
137 {
138 	int i, j, nerr, errpos[8];
139 	uint8_t parity;
140 	uint16_t ds[4], s[5], tmp, errval[8], syn[4];
141 	struct rs_codec *cd = rs->codec;
142 
143 	memset(syn, 0, sizeof(syn));
144 	/* Convert the ecc bytes into words */
145 	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
146 	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
147 	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
148 	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
149 	parity = ecc[1];
150 
151 	/* Initialize the syndrome buffer */
152 	for (i = 0; i < NROOTS; i++)
153 		s[i] = ds[0];
154 	/*
155 	 *  Evaluate
156 	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
157 	 *  where x = alpha^(FCR + i)
158 	 */
159 	for (j = 1; j < NROOTS; j++) {
160 		if (ds[j] == 0)
161 			continue;
162 		tmp = cd->index_of[ds[j]];
163 		for (i = 0; i < NROOTS; i++)
164 			s[i] ^= cd->alpha_to[rs_modnn(cd, tmp + (FCR + i) * j)];
165 	}
166 
167 	/* Calc syn[i] = s[i] / alpha^(v + i) */
168 	for (i = 0; i < NROOTS; i++) {
169 		if (s[i])
170 			syn[i] = rs_modnn(cd, cd->index_of[s[i]] + (NN - FCR - i));
171 	}
172 	/* Call the decoder library */
173 	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
174 
175 	/* Incorrectable errors ? */
176 	if (nerr < 0)
177 		return nerr;
178 
179 	/*
180 	 * Correct the errors. The bitpositions are a bit of magic,
181 	 * but they are given by the design of the de/encoder circuit
182 	 * in the DoC ASIC's.
183 	 */
184 	for (i = 0; i < nerr; i++) {
185 		int index, bitpos, pos = 1015 - errpos[i];
186 		uint8_t val;
187 		if (pos >= NB_DATA && pos < 1019)
188 			continue;
189 		if (pos < NB_DATA) {
190 			/* extract bit position (MSB first) */
191 			pos = 10 * (NB_DATA - 1 - pos) - 6;
192 			/* now correct the following 10 bits. At most two bytes
193 			   can be modified since pos is even */
194 			index = (pos >> 3) ^ 1;
195 			bitpos = pos & 7;
196 			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
197 				val = (uint8_t) (errval[i] >> (2 + bitpos));
198 				parity ^= val;
199 				if (index < SECTOR_SIZE)
200 					data[index] ^= val;
201 			}
202 			index = ((pos >> 3) + 1) ^ 1;
203 			bitpos = (bitpos + 10) & 7;
204 			if (bitpos == 0)
205 				bitpos = 8;
206 			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
207 				val = (uint8_t) (errval[i] << (8 - bitpos));
208 				parity ^= val;
209 				if (index < SECTOR_SIZE)
210 					data[index] ^= val;
211 			}
212 		}
213 	}
214 	/* If the parity is wrong, no rescue possible */
215 	return parity ? -EBADMSG : nerr;
216 }
217 
218 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
219 {
220 	volatile char dummy;
221 	int i;
222 
223 	for (i = 0; i < cycles; i++) {
224 		if (DoC_is_Millennium(doc))
225 			dummy = ReadDOC(doc->virtadr, NOP);
226 		else if (DoC_is_MillenniumPlus(doc))
227 			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
228 		else
229 			dummy = ReadDOC(doc->virtadr, DOCStatus);
230 	}
231 
232 }
233 
234 #define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
235 
236 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
237 static int _DoC_WaitReady(struct doc_priv *doc)
238 {
239 	void __iomem *docptr = doc->virtadr;
240 	unsigned long timeo = jiffies + (HZ * 10);
241 
242 	if (debug)
243 		printk("_DoC_WaitReady...\n");
244 	/* Out-of-line routine to wait for chip response */
245 	if (DoC_is_MillenniumPlus(doc)) {
246 		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
247 			if (time_after(jiffies, timeo)) {
248 				printk("_DoC_WaitReady timed out.\n");
249 				return -EIO;
250 			}
251 			udelay(1);
252 			cond_resched();
253 		}
254 	} else {
255 		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
256 			if (time_after(jiffies, timeo)) {
257 				printk("_DoC_WaitReady timed out.\n");
258 				return -EIO;
259 			}
260 			udelay(1);
261 			cond_resched();
262 		}
263 	}
264 
265 	return 0;
266 }
267 
268 static inline int DoC_WaitReady(struct doc_priv *doc)
269 {
270 	void __iomem *docptr = doc->virtadr;
271 	int ret = 0;
272 
273 	if (DoC_is_MillenniumPlus(doc)) {
274 		DoC_Delay(doc, 4);
275 
276 		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
277 			/* Call the out-of-line routine to wait */
278 			ret = _DoC_WaitReady(doc);
279 	} else {
280 		DoC_Delay(doc, 4);
281 
282 		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
283 			/* Call the out-of-line routine to wait */
284 			ret = _DoC_WaitReady(doc);
285 		DoC_Delay(doc, 2);
286 	}
287 
288 	if (debug)
289 		printk("DoC_WaitReady OK\n");
290 	return ret;
291 }
292 
293 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
294 {
295 	struct nand_chip *this = mtd_to_nand(mtd);
296 	struct doc_priv *doc = nand_get_controller_data(this);
297 	void __iomem *docptr = doc->virtadr;
298 
299 	if (debug)
300 		printk("write_byte %02x\n", datum);
301 	WriteDOC(datum, docptr, CDSNSlowIO);
302 	WriteDOC(datum, docptr, 2k_CDSN_IO);
303 }
304 
305 static u_char doc2000_read_byte(struct nand_chip *this)
306 {
307 	struct doc_priv *doc = nand_get_controller_data(this);
308 	void __iomem *docptr = doc->virtadr;
309 	u_char ret;
310 
311 	ReadDOC(docptr, CDSNSlowIO);
312 	DoC_Delay(doc, 2);
313 	ret = ReadDOC(docptr, 2k_CDSN_IO);
314 	if (debug)
315 		printk("read_byte returns %02x\n", ret);
316 	return ret;
317 }
318 
319 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
320 {
321 	struct nand_chip *this = mtd_to_nand(mtd);
322 	struct doc_priv *doc = nand_get_controller_data(this);
323 	void __iomem *docptr = doc->virtadr;
324 	int i;
325 	if (debug)
326 		printk("writebuf of %d bytes: ", len);
327 	for (i = 0; i < len; i++) {
328 		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
329 		if (debug && i < 16)
330 			printk("%02x ", buf[i]);
331 	}
332 	if (debug)
333 		printk("\n");
334 }
335 
336 static void doc2000_readbuf(struct nand_chip *this, u_char *buf, int len)
337 {
338 	struct doc_priv *doc = nand_get_controller_data(this);
339 	void __iomem *docptr = doc->virtadr;
340 	int i;
341 
342 	if (debug)
343 		printk("readbuf of %d bytes: ", len);
344 
345 	for (i = 0; i < len; i++)
346 		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
347 }
348 
349 static void doc2000_readbuf_dword(struct nand_chip *this, u_char *buf, int len)
350 {
351 	struct doc_priv *doc = nand_get_controller_data(this);
352 	void __iomem *docptr = doc->virtadr;
353 	int i;
354 
355 	if (debug)
356 		printk("readbuf_dword of %d bytes: ", len);
357 
358 	if (unlikely((((unsigned long)buf) | len) & 3)) {
359 		for (i = 0; i < len; i++) {
360 			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
361 		}
362 	} else {
363 		for (i = 0; i < len; i += 4) {
364 			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
365 		}
366 	}
367 }
368 
369 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
370 {
371 	struct nand_chip *this = mtd_to_nand(mtd);
372 	struct doc_priv *doc = nand_get_controller_data(this);
373 	uint16_t ret;
374 
375 	doc200x_select_chip(mtd, nr);
376 	doc200x_hwcontrol(mtd, NAND_CMD_READID,
377 			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
378 	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
379 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
380 
381 	/* We can't use dev_ready here, but at least we wait for the
382 	 * command to complete
383 	 */
384 	udelay(50);
385 
386 	ret = this->read_byte(this) << 8;
387 	ret |= this->read_byte(this);
388 
389 	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
390 		/* First chip probe. See if we get same results by 32-bit access */
391 		union {
392 			uint32_t dword;
393 			uint8_t byte[4];
394 		} ident;
395 		void __iomem *docptr = doc->virtadr;
396 
397 		doc200x_hwcontrol(mtd, NAND_CMD_READID,
398 				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
399 		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
400 		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
401 				  NAND_NCE | NAND_CTRL_CHANGE);
402 
403 		udelay(50);
404 
405 		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
406 		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
407 			pr_info("DiskOnChip 2000 responds to DWORD access\n");
408 			this->read_buf = &doc2000_readbuf_dword;
409 		}
410 	}
411 
412 	return ret;
413 }
414 
415 static void __init doc2000_count_chips(struct mtd_info *mtd)
416 {
417 	struct nand_chip *this = mtd_to_nand(mtd);
418 	struct doc_priv *doc = nand_get_controller_data(this);
419 	uint16_t mfrid;
420 	int i;
421 
422 	/* Max 4 chips per floor on DiskOnChip 2000 */
423 	doc->chips_per_floor = 4;
424 
425 	/* Find out what the first chip is */
426 	mfrid = doc200x_ident_chip(mtd, 0);
427 
428 	/* Find how many chips in each floor. */
429 	for (i = 1; i < 4; i++) {
430 		if (doc200x_ident_chip(mtd, i) != mfrid)
431 			break;
432 	}
433 	doc->chips_per_floor = i;
434 	pr_debug("Detected %d chips per floor.\n", i);
435 }
436 
437 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
438 {
439 	struct doc_priv *doc = nand_get_controller_data(this);
440 
441 	int status;
442 
443 	DoC_WaitReady(doc);
444 	nand_status_op(this, NULL);
445 	DoC_WaitReady(doc);
446 	status = (int)this->read_byte(this);
447 
448 	return status;
449 }
450 
451 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
452 {
453 	struct nand_chip *this = mtd_to_nand(mtd);
454 	struct doc_priv *doc = nand_get_controller_data(this);
455 	void __iomem *docptr = doc->virtadr;
456 
457 	WriteDOC(datum, docptr, CDSNSlowIO);
458 	WriteDOC(datum, docptr, Mil_CDSN_IO);
459 	WriteDOC(datum, docptr, WritePipeTerm);
460 }
461 
462 static u_char doc2001_read_byte(struct nand_chip *this)
463 {
464 	struct doc_priv *doc = nand_get_controller_data(this);
465 	void __iomem *docptr = doc->virtadr;
466 
467 	//ReadDOC(docptr, CDSNSlowIO);
468 	/* 11.4.5 -- delay twice to allow extended length cycle */
469 	DoC_Delay(doc, 2);
470 	ReadDOC(docptr, ReadPipeInit);
471 	//return ReadDOC(docptr, Mil_CDSN_IO);
472 	return ReadDOC(docptr, LastDataRead);
473 }
474 
475 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
476 {
477 	struct nand_chip *this = mtd_to_nand(mtd);
478 	struct doc_priv *doc = nand_get_controller_data(this);
479 	void __iomem *docptr = doc->virtadr;
480 	int i;
481 
482 	for (i = 0; i < len; i++)
483 		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
484 	/* Terminate write pipeline */
485 	WriteDOC(0x00, docptr, WritePipeTerm);
486 }
487 
488 static void doc2001_readbuf(struct nand_chip *this, u_char *buf, int len)
489 {
490 	struct doc_priv *doc = nand_get_controller_data(this);
491 	void __iomem *docptr = doc->virtadr;
492 	int i;
493 
494 	/* Start read pipeline */
495 	ReadDOC(docptr, ReadPipeInit);
496 
497 	for (i = 0; i < len - 1; i++)
498 		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
499 
500 	/* Terminate read pipeline */
501 	buf[i] = ReadDOC(docptr, LastDataRead);
502 }
503 
504 static u_char doc2001plus_read_byte(struct nand_chip *this)
505 {
506 	struct doc_priv *doc = nand_get_controller_data(this);
507 	void __iomem *docptr = doc->virtadr;
508 	u_char ret;
509 
510 	ReadDOC(docptr, Mplus_ReadPipeInit);
511 	ReadDOC(docptr, Mplus_ReadPipeInit);
512 	ret = ReadDOC(docptr, Mplus_LastDataRead);
513 	if (debug)
514 		printk("read_byte returns %02x\n", ret);
515 	return ret;
516 }
517 
518 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
519 {
520 	struct nand_chip *this = mtd_to_nand(mtd);
521 	struct doc_priv *doc = nand_get_controller_data(this);
522 	void __iomem *docptr = doc->virtadr;
523 	int i;
524 
525 	if (debug)
526 		printk("writebuf of %d bytes: ", len);
527 	for (i = 0; i < len; i++) {
528 		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
529 		if (debug && i < 16)
530 			printk("%02x ", buf[i]);
531 	}
532 	if (debug)
533 		printk("\n");
534 }
535 
536 static void doc2001plus_readbuf(struct nand_chip *this, u_char *buf, int len)
537 {
538 	struct doc_priv *doc = nand_get_controller_data(this);
539 	void __iomem *docptr = doc->virtadr;
540 	int i;
541 
542 	if (debug)
543 		printk("readbuf of %d bytes: ", len);
544 
545 	/* Start read pipeline */
546 	ReadDOC(docptr, Mplus_ReadPipeInit);
547 	ReadDOC(docptr, Mplus_ReadPipeInit);
548 
549 	for (i = 0; i < len - 2; i++) {
550 		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
551 		if (debug && i < 16)
552 			printk("%02x ", buf[i]);
553 	}
554 
555 	/* Terminate read pipeline */
556 	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
557 	if (debug && i < 16)
558 		printk("%02x ", buf[len - 2]);
559 	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
560 	if (debug && i < 16)
561 		printk("%02x ", buf[len - 1]);
562 	if (debug)
563 		printk("\n");
564 }
565 
566 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
567 {
568 	struct nand_chip *this = mtd_to_nand(mtd);
569 	struct doc_priv *doc = nand_get_controller_data(this);
570 	void __iomem *docptr = doc->virtadr;
571 	int floor = 0;
572 
573 	if (debug)
574 		printk("select chip (%d)\n", chip);
575 
576 	if (chip == -1) {
577 		/* Disable flash internally */
578 		WriteDOC(0, docptr, Mplus_FlashSelect);
579 		return;
580 	}
581 
582 	floor = chip / doc->chips_per_floor;
583 	chip -= (floor * doc->chips_per_floor);
584 
585 	/* Assert ChipEnable and deassert WriteProtect */
586 	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
587 	nand_reset_op(this);
588 
589 	doc->curchip = chip;
590 	doc->curfloor = floor;
591 }
592 
593 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
594 {
595 	struct nand_chip *this = mtd_to_nand(mtd);
596 	struct doc_priv *doc = nand_get_controller_data(this);
597 	void __iomem *docptr = doc->virtadr;
598 	int floor = 0;
599 
600 	if (debug)
601 		printk("select chip (%d)\n", chip);
602 
603 	if (chip == -1)
604 		return;
605 
606 	floor = chip / doc->chips_per_floor;
607 	chip -= (floor * doc->chips_per_floor);
608 
609 	/* 11.4.4 -- deassert CE before changing chip */
610 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
611 
612 	WriteDOC(floor, docptr, FloorSelect);
613 	WriteDOC(chip, docptr, CDSNDeviceSelect);
614 
615 	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
616 
617 	doc->curchip = chip;
618 	doc->curfloor = floor;
619 }
620 
621 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
622 
623 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
624 			      unsigned int ctrl)
625 {
626 	struct nand_chip *this = mtd_to_nand(mtd);
627 	struct doc_priv *doc = nand_get_controller_data(this);
628 	void __iomem *docptr = doc->virtadr;
629 
630 	if (ctrl & NAND_CTRL_CHANGE) {
631 		doc->CDSNControl &= ~CDSN_CTRL_MSK;
632 		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
633 		if (debug)
634 			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
635 		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
636 		/* 11.4.3 -- 4 NOPs after CSDNControl write */
637 		DoC_Delay(doc, 4);
638 	}
639 	if (cmd != NAND_CMD_NONE) {
640 		if (DoC_is_2000(doc))
641 			doc2000_write_byte(mtd, cmd);
642 		else
643 			doc2001_write_byte(mtd, cmd);
644 	}
645 }
646 
647 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
648 {
649 	struct nand_chip *this = mtd_to_nand(mtd);
650 	struct doc_priv *doc = nand_get_controller_data(this);
651 	void __iomem *docptr = doc->virtadr;
652 
653 	/*
654 	 * Must terminate write pipeline before sending any commands
655 	 * to the device.
656 	 */
657 	if (command == NAND_CMD_PAGEPROG) {
658 		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
659 		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
660 	}
661 
662 	/*
663 	 * Write out the command to the device.
664 	 */
665 	if (command == NAND_CMD_SEQIN) {
666 		int readcmd;
667 
668 		if (column >= mtd->writesize) {
669 			/* OOB area */
670 			column -= mtd->writesize;
671 			readcmd = NAND_CMD_READOOB;
672 		} else if (column < 256) {
673 			/* First 256 bytes --> READ0 */
674 			readcmd = NAND_CMD_READ0;
675 		} else {
676 			column -= 256;
677 			readcmd = NAND_CMD_READ1;
678 		}
679 		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
680 	}
681 	WriteDOC(command, docptr, Mplus_FlashCmd);
682 	WriteDOC(0, docptr, Mplus_WritePipeTerm);
683 	WriteDOC(0, docptr, Mplus_WritePipeTerm);
684 
685 	if (column != -1 || page_addr != -1) {
686 		/* Serially input address */
687 		if (column != -1) {
688 			/* Adjust columns for 16 bit buswidth */
689 			if (this->options & NAND_BUSWIDTH_16 &&
690 					!nand_opcode_8bits(command))
691 				column >>= 1;
692 			WriteDOC(column, docptr, Mplus_FlashAddress);
693 		}
694 		if (page_addr != -1) {
695 			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
696 			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
697 			if (this->options & NAND_ROW_ADDR_3) {
698 				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
699 				printk("high density\n");
700 			}
701 		}
702 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
703 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
704 		/* deassert ALE */
705 		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
706 		    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
707 			WriteDOC(0, docptr, Mplus_FlashControl);
708 	}
709 
710 	/*
711 	 * program and erase have their own busy handlers
712 	 * status and sequential in needs no delay
713 	 */
714 	switch (command) {
715 
716 	case NAND_CMD_PAGEPROG:
717 	case NAND_CMD_ERASE1:
718 	case NAND_CMD_ERASE2:
719 	case NAND_CMD_SEQIN:
720 	case NAND_CMD_STATUS:
721 		return;
722 
723 	case NAND_CMD_RESET:
724 		if (this->dev_ready)
725 			break;
726 		udelay(this->chip_delay);
727 		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
728 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
729 		WriteDOC(0, docptr, Mplus_WritePipeTerm);
730 		while (!(this->read_byte(this) & 0x40)) ;
731 		return;
732 
733 		/* This applies to read commands */
734 	default:
735 		/*
736 		 * If we don't have access to the busy pin, we apply the given
737 		 * command delay
738 		 */
739 		if (!this->dev_ready) {
740 			udelay(this->chip_delay);
741 			return;
742 		}
743 	}
744 
745 	/* Apply this short delay always to ensure that we do wait tWB in
746 	 * any case on any machine. */
747 	ndelay(100);
748 	/* wait until command is processed */
749 	while (!this->dev_ready(mtd)) ;
750 }
751 
752 static int doc200x_dev_ready(struct mtd_info *mtd)
753 {
754 	struct nand_chip *this = mtd_to_nand(mtd);
755 	struct doc_priv *doc = nand_get_controller_data(this);
756 	void __iomem *docptr = doc->virtadr;
757 
758 	if (DoC_is_MillenniumPlus(doc)) {
759 		/* 11.4.2 -- must NOP four times before checking FR/B# */
760 		DoC_Delay(doc, 4);
761 		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
762 			if (debug)
763 				printk("not ready\n");
764 			return 0;
765 		}
766 		if (debug)
767 			printk("was ready\n");
768 		return 1;
769 	} else {
770 		/* 11.4.2 -- must NOP four times before checking FR/B# */
771 		DoC_Delay(doc, 4);
772 		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
773 			if (debug)
774 				printk("not ready\n");
775 			return 0;
776 		}
777 		/* 11.4.2 -- Must NOP twice if it's ready */
778 		DoC_Delay(doc, 2);
779 		if (debug)
780 			printk("was ready\n");
781 		return 1;
782 	}
783 }
784 
785 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs)
786 {
787 	/* This is our last resort if we couldn't find or create a BBT.  Just
788 	   pretend all blocks are good. */
789 	return 0;
790 }
791 
792 static void doc200x_enable_hwecc(struct nand_chip *this, int mode)
793 {
794 	struct doc_priv *doc = nand_get_controller_data(this);
795 	void __iomem *docptr = doc->virtadr;
796 
797 	/* Prime the ECC engine */
798 	switch (mode) {
799 	case NAND_ECC_READ:
800 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
801 		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
802 		break;
803 	case NAND_ECC_WRITE:
804 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
805 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
806 		break;
807 	}
808 }
809 
810 static void doc2001plus_enable_hwecc(struct nand_chip *this, int mode)
811 {
812 	struct doc_priv *doc = nand_get_controller_data(this);
813 	void __iomem *docptr = doc->virtadr;
814 
815 	/* Prime the ECC engine */
816 	switch (mode) {
817 	case NAND_ECC_READ:
818 		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
819 		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
820 		break;
821 	case NAND_ECC_WRITE:
822 		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
823 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
824 		break;
825 	}
826 }
827 
828 /* This code is only called on write */
829 static int doc200x_calculate_ecc(struct nand_chip *this, const u_char *dat,
830 				 unsigned char *ecc_code)
831 {
832 	struct doc_priv *doc = nand_get_controller_data(this);
833 	void __iomem *docptr = doc->virtadr;
834 	int i;
835 	int emptymatch = 1;
836 
837 	/* flush the pipeline */
838 	if (DoC_is_2000(doc)) {
839 		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
840 		WriteDOC(0, docptr, 2k_CDSN_IO);
841 		WriteDOC(0, docptr, 2k_CDSN_IO);
842 		WriteDOC(0, docptr, 2k_CDSN_IO);
843 		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
844 	} else if (DoC_is_MillenniumPlus(doc)) {
845 		WriteDOC(0, docptr, Mplus_NOP);
846 		WriteDOC(0, docptr, Mplus_NOP);
847 		WriteDOC(0, docptr, Mplus_NOP);
848 	} else {
849 		WriteDOC(0, docptr, NOP);
850 		WriteDOC(0, docptr, NOP);
851 		WriteDOC(0, docptr, NOP);
852 	}
853 
854 	for (i = 0; i < 6; i++) {
855 		if (DoC_is_MillenniumPlus(doc))
856 			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
857 		else
858 			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
859 		if (ecc_code[i] != empty_write_ecc[i])
860 			emptymatch = 0;
861 	}
862 	if (DoC_is_MillenniumPlus(doc))
863 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
864 	else
865 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
866 #if 0
867 	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
868 	if (emptymatch) {
869 		/* Note: this somewhat expensive test should not be triggered
870 		   often.  It could be optimized away by examining the data in
871 		   the writebuf routine, and remembering the result. */
872 		for (i = 0; i < 512; i++) {
873 			if (dat[i] == 0xff)
874 				continue;
875 			emptymatch = 0;
876 			break;
877 		}
878 	}
879 	/* If emptymatch still =1, we do have an all-0xff data buffer.
880 	   Return all-0xff ecc value instead of the computed one, so
881 	   it'll look just like a freshly-erased page. */
882 	if (emptymatch)
883 		memset(ecc_code, 0xff, 6);
884 #endif
885 	return 0;
886 }
887 
888 static int doc200x_correct_data(struct nand_chip *this, u_char *dat,
889 				u_char *read_ecc, u_char *isnull)
890 {
891 	int i, ret = 0;
892 	struct doc_priv *doc = nand_get_controller_data(this);
893 	void __iomem *docptr = doc->virtadr;
894 	uint8_t calc_ecc[6];
895 	volatile u_char dummy;
896 
897 	/* flush the pipeline */
898 	if (DoC_is_2000(doc)) {
899 		dummy = ReadDOC(docptr, 2k_ECCStatus);
900 		dummy = ReadDOC(docptr, 2k_ECCStatus);
901 		dummy = ReadDOC(docptr, 2k_ECCStatus);
902 	} else if (DoC_is_MillenniumPlus(doc)) {
903 		dummy = ReadDOC(docptr, Mplus_ECCConf);
904 		dummy = ReadDOC(docptr, Mplus_ECCConf);
905 		dummy = ReadDOC(docptr, Mplus_ECCConf);
906 	} else {
907 		dummy = ReadDOC(docptr, ECCConf);
908 		dummy = ReadDOC(docptr, ECCConf);
909 		dummy = ReadDOC(docptr, ECCConf);
910 	}
911 
912 	/* Error occurred ? */
913 	if (dummy & 0x80) {
914 		for (i = 0; i < 6; i++) {
915 			if (DoC_is_MillenniumPlus(doc))
916 				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
917 			else
918 				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
919 		}
920 
921 		ret = doc_ecc_decode(doc->rs_decoder, dat, calc_ecc);
922 		if (ret > 0)
923 			pr_err("doc200x_correct_data corrected %d errors\n",
924 			       ret);
925 	}
926 	if (DoC_is_MillenniumPlus(doc))
927 		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
928 	else
929 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
930 	if (no_ecc_failures && mtd_is_eccerr(ret)) {
931 		pr_err("suppressing ECC failure\n");
932 		ret = 0;
933 	}
934 	return ret;
935 }
936 
937 //u_char mydatabuf[528];
938 
939 static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section,
940 				 struct mtd_oob_region *oobregion)
941 {
942 	if (section)
943 		return -ERANGE;
944 
945 	oobregion->offset = 0;
946 	oobregion->length = 6;
947 
948 	return 0;
949 }
950 
951 static int doc200x_ooblayout_free(struct mtd_info *mtd, int section,
952 				  struct mtd_oob_region *oobregion)
953 {
954 	if (section > 1)
955 		return -ERANGE;
956 
957 	/*
958 	 * The strange out-of-order free bytes definition is a (possibly
959 	 * unneeded) attempt to retain compatibility.  It used to read:
960 	 *	.oobfree = { {8, 8} }
961 	 * Since that leaves two bytes unusable, it was changed.  But the
962 	 * following scheme might affect existing jffs2 installs by moving the
963 	 * cleanmarker:
964 	 *	.oobfree = { {6, 10} }
965 	 * jffs2 seems to handle the above gracefully, but the current scheme
966 	 * seems safer. The only problem with it is that any code retrieving
967 	 * free bytes position must be able to handle out-of-order segments.
968 	 */
969 	if (!section) {
970 		oobregion->offset = 8;
971 		oobregion->length = 8;
972 	} else {
973 		oobregion->offset = 6;
974 		oobregion->length = 2;
975 	}
976 
977 	return 0;
978 }
979 
980 static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = {
981 	.ecc = doc200x_ooblayout_ecc,
982 	.free = doc200x_ooblayout_free,
983 };
984 
985 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
986    On successful return, buf will contain a copy of the media header for
987    further processing.  id is the string to scan for, and will presumably be
988    either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
989    header.  The page #s of the found media headers are placed in mh0_page and
990    mh1_page in the DOC private structure. */
991 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
992 {
993 	struct nand_chip *this = mtd_to_nand(mtd);
994 	struct doc_priv *doc = nand_get_controller_data(this);
995 	unsigned offs;
996 	int ret;
997 	size_t retlen;
998 
999 	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1000 		ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1001 		if (retlen != mtd->writesize)
1002 			continue;
1003 		if (ret) {
1004 			pr_warn("ECC error scanning DOC at 0x%x\n", offs);
1005 		}
1006 		if (memcmp(buf, id, 6))
1007 			continue;
1008 		pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1009 		if (doc->mh0_page == -1) {
1010 			doc->mh0_page = offs >> this->page_shift;
1011 			if (!findmirror)
1012 				return 1;
1013 			continue;
1014 		}
1015 		doc->mh1_page = offs >> this->page_shift;
1016 		return 2;
1017 	}
1018 	if (doc->mh0_page == -1) {
1019 		pr_warn("DiskOnChip %s Media Header not found.\n", id);
1020 		return 0;
1021 	}
1022 	/* Only one mediaheader was found.  We want buf to contain a
1023 	   mediaheader on return, so we'll have to re-read the one we found. */
1024 	offs = doc->mh0_page << this->page_shift;
1025 	ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1026 	if (retlen != mtd->writesize) {
1027 		/* Insanity.  Give up. */
1028 		pr_err("Read DiskOnChip Media Header once, but can't reread it???\n");
1029 		return 0;
1030 	}
1031 	return 1;
1032 }
1033 
1034 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1035 {
1036 	struct nand_chip *this = mtd_to_nand(mtd);
1037 	struct doc_priv *doc = nand_get_controller_data(this);
1038 	int ret = 0;
1039 	u_char *buf;
1040 	struct NFTLMediaHeader *mh;
1041 	const unsigned psize = 1 << this->page_shift;
1042 	int numparts = 0;
1043 	unsigned blocks, maxblocks;
1044 	int offs, numheaders;
1045 
1046 	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1047 	if (!buf) {
1048 		return 0;
1049 	}
1050 	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1051 		goto out;
1052 	mh = (struct NFTLMediaHeader *)buf;
1053 
1054 	le16_to_cpus(&mh->NumEraseUnits);
1055 	le16_to_cpus(&mh->FirstPhysicalEUN);
1056 	le32_to_cpus(&mh->FormattedSize);
1057 
1058 	pr_info("    DataOrgID        = %s\n"
1059 		"    NumEraseUnits    = %d\n"
1060 		"    FirstPhysicalEUN = %d\n"
1061 		"    FormattedSize    = %d\n"
1062 		"    UnitSizeFactor   = %d\n",
1063 		mh->DataOrgID, mh->NumEraseUnits,
1064 		mh->FirstPhysicalEUN, mh->FormattedSize,
1065 		mh->UnitSizeFactor);
1066 
1067 	blocks = mtd->size >> this->phys_erase_shift;
1068 	maxblocks = min(32768U, mtd->erasesize - psize);
1069 
1070 	if (mh->UnitSizeFactor == 0x00) {
1071 		/* Auto-determine UnitSizeFactor.  The constraints are:
1072 		   - There can be at most 32768 virtual blocks.
1073 		   - There can be at most (virtual block size - page size)
1074 		   virtual blocks (because MediaHeader+BBT must fit in 1).
1075 		 */
1076 		mh->UnitSizeFactor = 0xff;
1077 		while (blocks > maxblocks) {
1078 			blocks >>= 1;
1079 			maxblocks = min(32768U, (maxblocks << 1) + psize);
1080 			mh->UnitSizeFactor--;
1081 		}
1082 		pr_warn("UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1083 	}
1084 
1085 	/* NOTE: The lines below modify internal variables of the NAND and MTD
1086 	   layers; variables with have already been configured by nand_scan.
1087 	   Unfortunately, we didn't know before this point what these values
1088 	   should be.  Thus, this code is somewhat dependent on the exact
1089 	   implementation of the NAND layer.  */
1090 	if (mh->UnitSizeFactor != 0xff) {
1091 		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1092 		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1093 		pr_info("Setting virtual erase size to %d\n", mtd->erasesize);
1094 		blocks = mtd->size >> this->bbt_erase_shift;
1095 		maxblocks = min(32768U, mtd->erasesize - psize);
1096 	}
1097 
1098 	if (blocks > maxblocks) {
1099 		pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1100 		goto out;
1101 	}
1102 
1103 	/* Skip past the media headers. */
1104 	offs = max(doc->mh0_page, doc->mh1_page);
1105 	offs <<= this->page_shift;
1106 	offs += mtd->erasesize;
1107 
1108 	if (show_firmware_partition == 1) {
1109 		parts[0].name = " DiskOnChip Firmware / Media Header partition";
1110 		parts[0].offset = 0;
1111 		parts[0].size = offs;
1112 		numparts = 1;
1113 	}
1114 
1115 	parts[numparts].name = " DiskOnChip BDTL partition";
1116 	parts[numparts].offset = offs;
1117 	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1118 
1119 	offs += parts[numparts].size;
1120 	numparts++;
1121 
1122 	if (offs < mtd->size) {
1123 		parts[numparts].name = " DiskOnChip Remainder partition";
1124 		parts[numparts].offset = offs;
1125 		parts[numparts].size = mtd->size - offs;
1126 		numparts++;
1127 	}
1128 
1129 	ret = numparts;
1130  out:
1131 	kfree(buf);
1132 	return ret;
1133 }
1134 
1135 /* This is a stripped-down copy of the code in inftlmount.c */
1136 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1137 {
1138 	struct nand_chip *this = mtd_to_nand(mtd);
1139 	struct doc_priv *doc = nand_get_controller_data(this);
1140 	int ret = 0;
1141 	u_char *buf;
1142 	struct INFTLMediaHeader *mh;
1143 	struct INFTLPartition *ip;
1144 	int numparts = 0;
1145 	int blocks;
1146 	int vshift, lastvunit = 0;
1147 	int i;
1148 	int end = mtd->size;
1149 
1150 	if (inftl_bbt_write)
1151 		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1152 
1153 	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1154 	if (!buf) {
1155 		return 0;
1156 	}
1157 
1158 	if (!find_media_headers(mtd, buf, "BNAND", 0))
1159 		goto out;
1160 	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1161 	mh = (struct INFTLMediaHeader *)buf;
1162 
1163 	le32_to_cpus(&mh->NoOfBootImageBlocks);
1164 	le32_to_cpus(&mh->NoOfBinaryPartitions);
1165 	le32_to_cpus(&mh->NoOfBDTLPartitions);
1166 	le32_to_cpus(&mh->BlockMultiplierBits);
1167 	le32_to_cpus(&mh->FormatFlags);
1168 	le32_to_cpus(&mh->PercentUsed);
1169 
1170 	pr_info("    bootRecordID          = %s\n"
1171 		"    NoOfBootImageBlocks   = %d\n"
1172 		"    NoOfBinaryPartitions  = %d\n"
1173 		"    NoOfBDTLPartitions    = %d\n"
1174 		"    BlockMultiplerBits    = %d\n"
1175 		"    FormatFlgs            = %d\n"
1176 		"    OsakVersion           = %d.%d.%d.%d\n"
1177 		"    PercentUsed           = %d\n",
1178 		mh->bootRecordID, mh->NoOfBootImageBlocks,
1179 		mh->NoOfBinaryPartitions,
1180 		mh->NoOfBDTLPartitions,
1181 		mh->BlockMultiplierBits, mh->FormatFlags,
1182 		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1183 		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1184 		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1185 		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1186 		mh->PercentUsed);
1187 
1188 	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1189 
1190 	blocks = mtd->size >> vshift;
1191 	if (blocks > 32768) {
1192 		pr_err("BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1193 		goto out;
1194 	}
1195 
1196 	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1197 	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1198 		pr_err("Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1199 		goto out;
1200 	}
1201 
1202 	/* Scan the partitions */
1203 	for (i = 0; (i < 4); i++) {
1204 		ip = &(mh->Partitions[i]);
1205 		le32_to_cpus(&ip->virtualUnits);
1206 		le32_to_cpus(&ip->firstUnit);
1207 		le32_to_cpus(&ip->lastUnit);
1208 		le32_to_cpus(&ip->flags);
1209 		le32_to_cpus(&ip->spareUnits);
1210 		le32_to_cpus(&ip->Reserved0);
1211 
1212 		pr_info("    PARTITION[%d] ->\n"
1213 			"        virtualUnits    = %d\n"
1214 			"        firstUnit       = %d\n"
1215 			"        lastUnit        = %d\n"
1216 			"        flags           = 0x%x\n"
1217 			"        spareUnits      = %d\n",
1218 			i, ip->virtualUnits, ip->firstUnit,
1219 			ip->lastUnit, ip->flags,
1220 			ip->spareUnits);
1221 
1222 		if ((show_firmware_partition == 1) &&
1223 		    (i == 0) && (ip->firstUnit > 0)) {
1224 			parts[0].name = " DiskOnChip IPL / Media Header partition";
1225 			parts[0].offset = 0;
1226 			parts[0].size = mtd->erasesize * ip->firstUnit;
1227 			numparts = 1;
1228 		}
1229 
1230 		if (ip->flags & INFTL_BINARY)
1231 			parts[numparts].name = " DiskOnChip BDK partition";
1232 		else
1233 			parts[numparts].name = " DiskOnChip BDTL partition";
1234 		parts[numparts].offset = ip->firstUnit << vshift;
1235 		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1236 		numparts++;
1237 		if (ip->lastUnit > lastvunit)
1238 			lastvunit = ip->lastUnit;
1239 		if (ip->flags & INFTL_LAST)
1240 			break;
1241 	}
1242 	lastvunit++;
1243 	if ((lastvunit << vshift) < end) {
1244 		parts[numparts].name = " DiskOnChip Remainder partition";
1245 		parts[numparts].offset = lastvunit << vshift;
1246 		parts[numparts].size = end - parts[numparts].offset;
1247 		numparts++;
1248 	}
1249 	ret = numparts;
1250  out:
1251 	kfree(buf);
1252 	return ret;
1253 }
1254 
1255 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1256 {
1257 	int ret, numparts;
1258 	struct nand_chip *this = mtd_to_nand(mtd);
1259 	struct doc_priv *doc = nand_get_controller_data(this);
1260 	struct mtd_partition parts[2];
1261 
1262 	memset((char *)parts, 0, sizeof(parts));
1263 	/* On NFTL, we have to find the media headers before we can read the
1264 	   BBTs, since they're stored in the media header eraseblocks. */
1265 	numparts = nftl_partscan(mtd, parts);
1266 	if (!numparts)
1267 		return -EIO;
1268 	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1269 				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1270 				NAND_BBT_VERSION;
1271 	this->bbt_td->veroffs = 7;
1272 	this->bbt_td->pages[0] = doc->mh0_page + 1;
1273 	if (doc->mh1_page != -1) {
1274 		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1275 					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1276 					NAND_BBT_VERSION;
1277 		this->bbt_md->veroffs = 7;
1278 		this->bbt_md->pages[0] = doc->mh1_page + 1;
1279 	} else {
1280 		this->bbt_md = NULL;
1281 	}
1282 
1283 	ret = nand_create_bbt(this);
1284 	if (ret)
1285 		return ret;
1286 
1287 	return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1288 }
1289 
1290 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1291 {
1292 	int ret, numparts;
1293 	struct nand_chip *this = mtd_to_nand(mtd);
1294 	struct doc_priv *doc = nand_get_controller_data(this);
1295 	struct mtd_partition parts[5];
1296 
1297 	if (this->numchips > doc->chips_per_floor) {
1298 		pr_err("Multi-floor INFTL devices not yet supported.\n");
1299 		return -EIO;
1300 	}
1301 
1302 	if (DoC_is_MillenniumPlus(doc)) {
1303 		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1304 		if (inftl_bbt_write)
1305 			this->bbt_td->options |= NAND_BBT_WRITE;
1306 		this->bbt_td->pages[0] = 2;
1307 		this->bbt_md = NULL;
1308 	} else {
1309 		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1310 		if (inftl_bbt_write)
1311 			this->bbt_td->options |= NAND_BBT_WRITE;
1312 		this->bbt_td->offs = 8;
1313 		this->bbt_td->len = 8;
1314 		this->bbt_td->veroffs = 7;
1315 		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1316 		this->bbt_td->reserved_block_code = 0x01;
1317 		this->bbt_td->pattern = "MSYS_BBT";
1318 
1319 		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1320 		if (inftl_bbt_write)
1321 			this->bbt_md->options |= NAND_BBT_WRITE;
1322 		this->bbt_md->offs = 8;
1323 		this->bbt_md->len = 8;
1324 		this->bbt_md->veroffs = 7;
1325 		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1326 		this->bbt_md->reserved_block_code = 0x01;
1327 		this->bbt_md->pattern = "TBB_SYSM";
1328 	}
1329 
1330 	ret = nand_create_bbt(this);
1331 	if (ret)
1332 		return ret;
1333 
1334 	memset((char *)parts, 0, sizeof(parts));
1335 	numparts = inftl_partscan(mtd, parts);
1336 	/* At least for now, require the INFTL Media Header.  We could probably
1337 	   do without it for non-INFTL use, since all it gives us is
1338 	   autopartitioning, but I want to give it more thought. */
1339 	if (!numparts)
1340 		return -EIO;
1341 	return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
1342 }
1343 
1344 static inline int __init doc2000_init(struct mtd_info *mtd)
1345 {
1346 	struct nand_chip *this = mtd_to_nand(mtd);
1347 	struct doc_priv *doc = nand_get_controller_data(this);
1348 
1349 	this->read_byte = doc2000_read_byte;
1350 	this->write_buf = doc2000_writebuf;
1351 	this->read_buf = doc2000_readbuf;
1352 	doc->late_init = nftl_scan_bbt;
1353 
1354 	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1355 	doc2000_count_chips(mtd);
1356 	mtd->name = "DiskOnChip 2000 (NFTL Model)";
1357 	return (4 * doc->chips_per_floor);
1358 }
1359 
1360 static inline int __init doc2001_init(struct mtd_info *mtd)
1361 {
1362 	struct nand_chip *this = mtd_to_nand(mtd);
1363 	struct doc_priv *doc = nand_get_controller_data(this);
1364 
1365 	this->read_byte = doc2001_read_byte;
1366 	this->write_buf = doc2001_writebuf;
1367 	this->read_buf = doc2001_readbuf;
1368 
1369 	ReadDOC(doc->virtadr, ChipID);
1370 	ReadDOC(doc->virtadr, ChipID);
1371 	ReadDOC(doc->virtadr, ChipID);
1372 	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1373 		/* It's not a Millennium; it's one of the newer
1374 		   DiskOnChip 2000 units with a similar ASIC.
1375 		   Treat it like a Millennium, except that it
1376 		   can have multiple chips. */
1377 		doc2000_count_chips(mtd);
1378 		mtd->name = "DiskOnChip 2000 (INFTL Model)";
1379 		doc->late_init = inftl_scan_bbt;
1380 		return (4 * doc->chips_per_floor);
1381 	} else {
1382 		/* Bog-standard Millennium */
1383 		doc->chips_per_floor = 1;
1384 		mtd->name = "DiskOnChip Millennium";
1385 		doc->late_init = nftl_scan_bbt;
1386 		return 1;
1387 	}
1388 }
1389 
1390 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1391 {
1392 	struct nand_chip *this = mtd_to_nand(mtd);
1393 	struct doc_priv *doc = nand_get_controller_data(this);
1394 
1395 	this->read_byte = doc2001plus_read_byte;
1396 	this->write_buf = doc2001plus_writebuf;
1397 	this->read_buf = doc2001plus_readbuf;
1398 	doc->late_init = inftl_scan_bbt;
1399 	this->cmd_ctrl = NULL;
1400 	this->select_chip = doc2001plus_select_chip;
1401 	this->cmdfunc = doc2001plus_command;
1402 	this->ecc.hwctl = doc2001plus_enable_hwecc;
1403 
1404 	doc->chips_per_floor = 1;
1405 	mtd->name = "DiskOnChip Millennium Plus";
1406 
1407 	return 1;
1408 }
1409 
1410 static int __init doc_probe(unsigned long physadr)
1411 {
1412 	struct nand_chip *nand = NULL;
1413 	struct doc_priv *doc = NULL;
1414 	unsigned char ChipID;
1415 	struct mtd_info *mtd;
1416 	void __iomem *virtadr;
1417 	unsigned char save_control;
1418 	unsigned char tmp, tmpb, tmpc;
1419 	int reg, len, numchips;
1420 	int ret = 0;
1421 
1422 	if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
1423 		return -EBUSY;
1424 	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1425 	if (!virtadr) {
1426 		pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n",
1427 		       DOC_IOREMAP_LEN, physadr);
1428 		ret = -EIO;
1429 		goto error_ioremap;
1430 	}
1431 
1432 	/* It's not possible to cleanly detect the DiskOnChip - the
1433 	 * bootup procedure will put the device into reset mode, and
1434 	 * it's not possible to talk to it without actually writing
1435 	 * to the DOCControl register. So we store the current contents
1436 	 * of the DOCControl register's location, in case we later decide
1437 	 * that it's not a DiskOnChip, and want to put it back how we
1438 	 * found it.
1439 	 */
1440 	save_control = ReadDOC(virtadr, DOCControl);
1441 
1442 	/* Reset the DiskOnChip ASIC */
1443 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1444 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1445 
1446 	/* Enable the DiskOnChip ASIC */
1447 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1448 	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1449 
1450 	ChipID = ReadDOC(virtadr, ChipID);
1451 
1452 	switch (ChipID) {
1453 	case DOC_ChipID_Doc2k:
1454 		reg = DoC_2k_ECCStatus;
1455 		break;
1456 	case DOC_ChipID_DocMil:
1457 		reg = DoC_ECCConf;
1458 		break;
1459 	case DOC_ChipID_DocMilPlus16:
1460 	case DOC_ChipID_DocMilPlus32:
1461 	case 0:
1462 		/* Possible Millennium Plus, need to do more checks */
1463 		/* Possibly release from power down mode */
1464 		for (tmp = 0; (tmp < 4); tmp++)
1465 			ReadDOC(virtadr, Mplus_Power);
1466 
1467 		/* Reset the Millennium Plus ASIC */
1468 		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1469 		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1470 		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1471 
1472 		usleep_range(1000, 2000);
1473 		/* Enable the Millennium Plus ASIC */
1474 		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1475 		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1476 		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1477 		usleep_range(1000, 2000);
1478 
1479 		ChipID = ReadDOC(virtadr, ChipID);
1480 
1481 		switch (ChipID) {
1482 		case DOC_ChipID_DocMilPlus16:
1483 			reg = DoC_Mplus_Toggle;
1484 			break;
1485 		case DOC_ChipID_DocMilPlus32:
1486 			pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1487 		default:
1488 			ret = -ENODEV;
1489 			goto notfound;
1490 		}
1491 		break;
1492 
1493 	default:
1494 		ret = -ENODEV;
1495 		goto notfound;
1496 	}
1497 	/* Check the TOGGLE bit in the ECC register */
1498 	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1499 	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1500 	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1501 	if ((tmp == tmpb) || (tmp != tmpc)) {
1502 		pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1503 		ret = -ENODEV;
1504 		goto notfound;
1505 	}
1506 
1507 	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1508 		unsigned char oldval;
1509 		unsigned char newval;
1510 		nand = mtd_to_nand(mtd);
1511 		doc = nand_get_controller_data(nand);
1512 		/* Use the alias resolution register to determine if this is
1513 		   in fact the same DOC aliased to a new address.  If writes
1514 		   to one chip's alias resolution register change the value on
1515 		   the other chip, they're the same chip. */
1516 		if (ChipID == DOC_ChipID_DocMilPlus16) {
1517 			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1518 			newval = ReadDOC(virtadr, Mplus_AliasResolution);
1519 		} else {
1520 			oldval = ReadDOC(doc->virtadr, AliasResolution);
1521 			newval = ReadDOC(virtadr, AliasResolution);
1522 		}
1523 		if (oldval != newval)
1524 			continue;
1525 		if (ChipID == DOC_ChipID_DocMilPlus16) {
1526 			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1527 			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1528 			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it
1529 		} else {
1530 			WriteDOC(~newval, virtadr, AliasResolution);
1531 			oldval = ReadDOC(doc->virtadr, AliasResolution);
1532 			WriteDOC(newval, virtadr, AliasResolution);	// restore it
1533 		}
1534 		newval = ~newval;
1535 		if (oldval == newval) {
1536 			pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n",
1537 				 doc->physadr, physadr);
1538 			goto notfound;
1539 		}
1540 	}
1541 
1542 	pr_notice("DiskOnChip found at 0x%lx\n", physadr);
1543 
1544 	len = sizeof(struct nand_chip) + sizeof(struct doc_priv) +
1545 	      (2 * sizeof(struct nand_bbt_descr));
1546 	nand = kzalloc(len, GFP_KERNEL);
1547 	if (!nand) {
1548 		ret = -ENOMEM;
1549 		goto fail;
1550 	}
1551 
1552 
1553 	/*
1554 	 * Allocate a RS codec instance
1555 	 *
1556 	 * Symbolsize is 10 (bits)
1557 	 * Primitve polynomial is x^10+x^3+1
1558 	 * First consecutive root is 510
1559 	 * Primitve element to generate roots = 1
1560 	 * Generator polinomial degree = 4
1561 	 */
1562 	doc = (struct doc_priv *) (nand + 1);
1563 	doc->rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1564 	if (!doc->rs_decoder) {
1565 		pr_err("DiskOnChip: Could not create a RS codec\n");
1566 		ret = -ENOMEM;
1567 		goto fail;
1568 	}
1569 
1570 	mtd			= nand_to_mtd(nand);
1571 	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
1572 	nand->bbt_md		= nand->bbt_td + 1;
1573 
1574 	mtd->owner		= THIS_MODULE;
1575 	mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops);
1576 
1577 	nand_set_controller_data(nand, doc);
1578 	nand->select_chip	= doc200x_select_chip;
1579 	nand->cmd_ctrl		= doc200x_hwcontrol;
1580 	nand->dev_ready		= doc200x_dev_ready;
1581 	nand->waitfunc		= doc200x_wait;
1582 	nand->block_bad		= doc200x_block_bad;
1583 	nand->ecc.hwctl		= doc200x_enable_hwecc;
1584 	nand->ecc.calculate	= doc200x_calculate_ecc;
1585 	nand->ecc.correct	= doc200x_correct_data;
1586 
1587 	nand->ecc.mode		= NAND_ECC_HW_SYNDROME;
1588 	nand->ecc.size		= 512;
1589 	nand->ecc.bytes		= 6;
1590 	nand->ecc.strength	= 2;
1591 	nand->ecc.options	= NAND_ECC_GENERIC_ERASED_CHECK;
1592 	nand->bbt_options	= NAND_BBT_USE_FLASH;
1593 	/* Skip the automatic BBT scan so we can run it manually */
1594 	nand->options		|= NAND_SKIP_BBTSCAN;
1595 
1596 	doc->physadr		= physadr;
1597 	doc->virtadr		= virtadr;
1598 	doc->ChipID		= ChipID;
1599 	doc->curfloor		= -1;
1600 	doc->curchip		= -1;
1601 	doc->mh0_page		= -1;
1602 	doc->mh1_page		= -1;
1603 	doc->nextdoc		= doclist;
1604 
1605 	if (ChipID == DOC_ChipID_Doc2k)
1606 		numchips = doc2000_init(mtd);
1607 	else if (ChipID == DOC_ChipID_DocMilPlus16)
1608 		numchips = doc2001plus_init(mtd);
1609 	else
1610 		numchips = doc2001_init(mtd);
1611 
1612 	if ((ret = nand_scan(nand, numchips)) || (ret = doc->late_init(mtd))) {
1613 		/* DBB note: i believe nand_release is necessary here, as
1614 		   buffers may have been allocated in nand_base.  Check with
1615 		   Thomas. FIX ME! */
1616 		/* nand_release will call mtd_device_unregister, but we
1617 		   haven't yet added it.  This is handled without incident by
1618 		   mtd_device_unregister, as far as I can tell. */
1619 		nand_release(nand);
1620 		goto fail;
1621 	}
1622 
1623 	/* Success! */
1624 	doclist = mtd;
1625 	return 0;
1626 
1627  notfound:
1628 	/* Put back the contents of the DOCControl register, in case it's not
1629 	   actually a DiskOnChip.  */
1630 	WriteDOC(save_control, virtadr, DOCControl);
1631  fail:
1632 	if (doc)
1633 		free_rs(doc->rs_decoder);
1634 	kfree(nand);
1635 	iounmap(virtadr);
1636 
1637 error_ioremap:
1638 	release_mem_region(physadr, DOC_IOREMAP_LEN);
1639 
1640 	return ret;
1641 }
1642 
1643 static void release_nanddoc(void)
1644 {
1645 	struct mtd_info *mtd, *nextmtd;
1646 	struct nand_chip *nand;
1647 	struct doc_priv *doc;
1648 
1649 	for (mtd = doclist; mtd; mtd = nextmtd) {
1650 		nand = mtd_to_nand(mtd);
1651 		doc = nand_get_controller_data(nand);
1652 
1653 		nextmtd = doc->nextdoc;
1654 		nand_release(nand);
1655 		iounmap(doc->virtadr);
1656 		release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
1657 		free_rs(doc->rs_decoder);
1658 		kfree(nand);
1659 	}
1660 }
1661 
1662 static int __init init_nanddoc(void)
1663 {
1664 	int i, ret = 0;
1665 
1666 	if (doc_config_location) {
1667 		pr_info("Using configured DiskOnChip probe address 0x%lx\n",
1668 			doc_config_location);
1669 		ret = doc_probe(doc_config_location);
1670 		if (ret < 0)
1671 			return ret;
1672 	} else {
1673 		for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1674 			doc_probe(doc_locations[i]);
1675 		}
1676 	}
1677 	/* No banner message any more. Print a message if no DiskOnChip
1678 	   found, so the user knows we at least tried. */
1679 	if (!doclist) {
1680 		pr_info("No valid DiskOnChip devices found\n");
1681 		ret = -ENODEV;
1682 	}
1683 	return ret;
1684 }
1685 
1686 static void __exit cleanup_nanddoc(void)
1687 {
1688 	/* Cleanup the nand/DoC resources */
1689 	release_nanddoc();
1690 }
1691 
1692 module_init(init_nanddoc);
1693 module_exit(cleanup_nanddoc);
1694 
1695 MODULE_LICENSE("GPL");
1696 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1697 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
1698