xref: /openbmc/linux/drivers/mmc/host/sunxi-mmc.c (revision 2b91c4a870c9830eaf95e744454c9c218cccb736)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for sunxi SD/MMC host controllers
4  * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
5  * (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
6  * (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
7  * (C) Copyright 2013-2014 David Lanzendörfer <david.lanzendoerfer@o2s.ch>
8  * (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
9  * (C) Copyright 2017 Sootech SA
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk/sunxi-ng.h>
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/mmc/card.h>
22 #include <linux/mmc/core.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h>
25 #include <linux/mmc/sd.h>
26 #include <linux/mmc/sdio.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/module.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/of_address.h>
31 #include <linux/of_platform.h>
32 #include <linux/platform_device.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/regulator/consumer.h>
35 #include <linux/reset.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 
40 /* register offset definitions */
41 #define SDXC_REG_GCTRL	(0x00) /* SMC Global Control Register */
42 #define SDXC_REG_CLKCR	(0x04) /* SMC Clock Control Register */
43 #define SDXC_REG_TMOUT	(0x08) /* SMC Time Out Register */
44 #define SDXC_REG_WIDTH	(0x0C) /* SMC Bus Width Register */
45 #define SDXC_REG_BLKSZ	(0x10) /* SMC Block Size Register */
46 #define SDXC_REG_BCNTR	(0x14) /* SMC Byte Count Register */
47 #define SDXC_REG_CMDR	(0x18) /* SMC Command Register */
48 #define SDXC_REG_CARG	(0x1C) /* SMC Argument Register */
49 #define SDXC_REG_RESP0	(0x20) /* SMC Response Register 0 */
50 #define SDXC_REG_RESP1	(0x24) /* SMC Response Register 1 */
51 #define SDXC_REG_RESP2	(0x28) /* SMC Response Register 2 */
52 #define SDXC_REG_RESP3	(0x2C) /* SMC Response Register 3 */
53 #define SDXC_REG_IMASK	(0x30) /* SMC Interrupt Mask Register */
54 #define SDXC_REG_MISTA	(0x34) /* SMC Masked Interrupt Status Register */
55 #define SDXC_REG_RINTR	(0x38) /* SMC Raw Interrupt Status Register */
56 #define SDXC_REG_STAS	(0x3C) /* SMC Status Register */
57 #define SDXC_REG_FTRGL	(0x40) /* SMC FIFO Threshold Watermark Registe */
58 #define SDXC_REG_FUNS	(0x44) /* SMC Function Select Register */
59 #define SDXC_REG_CBCR	(0x48) /* SMC CIU Byte Count Register */
60 #define SDXC_REG_BBCR	(0x4C) /* SMC BIU Byte Count Register */
61 #define SDXC_REG_DBGC	(0x50) /* SMC Debug Enable Register */
62 #define SDXC_REG_HWRST	(0x78) /* SMC Card Hardware Reset for Register */
63 #define SDXC_REG_DMAC	(0x80) /* SMC IDMAC Control Register */
64 #define SDXC_REG_DLBA	(0x84) /* SMC IDMAC Descriptor List Base Addre */
65 #define SDXC_REG_IDST	(0x88) /* SMC IDMAC Status Register */
66 #define SDXC_REG_IDIE	(0x8C) /* SMC IDMAC Interrupt Enable Register */
67 #define SDXC_REG_CHDA	(0x90)
68 #define SDXC_REG_CBDA	(0x94)
69 
70 /* New registers introduced in A64 */
71 #define SDXC_REG_A12A		0x058 /* SMC Auto Command 12 Register */
72 #define SDXC_REG_SD_NTSR	0x05C /* SMC New Timing Set Register */
73 #define SDXC_REG_DRV_DL		0x140 /* Drive Delay Control Register */
74 #define SDXC_REG_SAMP_DL_REG	0x144 /* SMC sample delay control */
75 #define SDXC_REG_DS_DL_REG	0x148 /* SMC data strobe delay control */
76 
77 #define mmc_readl(host, reg) \
78 	readl((host)->reg_base + SDXC_##reg)
79 #define mmc_writel(host, reg, value) \
80 	writel((value), (host)->reg_base + SDXC_##reg)
81 
82 /* global control register bits */
83 #define SDXC_SOFT_RESET			BIT(0)
84 #define SDXC_FIFO_RESET			BIT(1)
85 #define SDXC_DMA_RESET			BIT(2)
86 #define SDXC_INTERRUPT_ENABLE_BIT	BIT(4)
87 #define SDXC_DMA_ENABLE_BIT		BIT(5)
88 #define SDXC_DEBOUNCE_ENABLE_BIT	BIT(8)
89 #define SDXC_POSEDGE_LATCH_DATA		BIT(9)
90 #define SDXC_DDR_MODE			BIT(10)
91 #define SDXC_MEMORY_ACCESS_DONE		BIT(29)
92 #define SDXC_ACCESS_DONE_DIRECT		BIT(30)
93 #define SDXC_ACCESS_BY_AHB		BIT(31)
94 #define SDXC_ACCESS_BY_DMA		(0 << 31)
95 #define SDXC_HARDWARE_RESET \
96 	(SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
97 
98 /* clock control bits */
99 #define SDXC_MASK_DATA0			BIT(31)
100 #define SDXC_CARD_CLOCK_ON		BIT(16)
101 #define SDXC_LOW_POWER_ON		BIT(17)
102 
103 /* bus width */
104 #define SDXC_WIDTH1			0
105 #define SDXC_WIDTH4			1
106 #define SDXC_WIDTH8			2
107 
108 /* smc command bits */
109 #define SDXC_RESP_EXPIRE		BIT(6)
110 #define SDXC_LONG_RESPONSE		BIT(7)
111 #define SDXC_CHECK_RESPONSE_CRC		BIT(8)
112 #define SDXC_DATA_EXPIRE		BIT(9)
113 #define SDXC_WRITE			BIT(10)
114 #define SDXC_SEQUENCE_MODE		BIT(11)
115 #define SDXC_SEND_AUTO_STOP		BIT(12)
116 #define SDXC_WAIT_PRE_OVER		BIT(13)
117 #define SDXC_STOP_ABORT_CMD		BIT(14)
118 #define SDXC_SEND_INIT_SEQUENCE		BIT(15)
119 #define SDXC_UPCLK_ONLY			BIT(21)
120 #define SDXC_READ_CEATA_DEV		BIT(22)
121 #define SDXC_CCS_EXPIRE			BIT(23)
122 #define SDXC_ENABLE_BIT_BOOT		BIT(24)
123 #define SDXC_ALT_BOOT_OPTIONS		BIT(25)
124 #define SDXC_BOOT_ACK_EXPIRE		BIT(26)
125 #define SDXC_BOOT_ABORT			BIT(27)
126 #define SDXC_VOLTAGE_SWITCH	        BIT(28)
127 #define SDXC_USE_HOLD_REGISTER	        BIT(29)
128 #define SDXC_START			BIT(31)
129 
130 /* interrupt bits */
131 #define SDXC_RESP_ERROR			BIT(1)
132 #define SDXC_COMMAND_DONE		BIT(2)
133 #define SDXC_DATA_OVER			BIT(3)
134 #define SDXC_TX_DATA_REQUEST		BIT(4)
135 #define SDXC_RX_DATA_REQUEST		BIT(5)
136 #define SDXC_RESP_CRC_ERROR		BIT(6)
137 #define SDXC_DATA_CRC_ERROR		BIT(7)
138 #define SDXC_RESP_TIMEOUT		BIT(8)
139 #define SDXC_DATA_TIMEOUT		BIT(9)
140 #define SDXC_VOLTAGE_CHANGE_DONE	BIT(10)
141 #define SDXC_FIFO_RUN_ERROR		BIT(11)
142 #define SDXC_HARD_WARE_LOCKED		BIT(12)
143 #define SDXC_START_BIT_ERROR		BIT(13)
144 #define SDXC_AUTO_COMMAND_DONE		BIT(14)
145 #define SDXC_END_BIT_ERROR		BIT(15)
146 #define SDXC_SDIO_INTERRUPT		BIT(16)
147 #define SDXC_CARD_INSERT		BIT(30)
148 #define SDXC_CARD_REMOVE		BIT(31)
149 #define SDXC_INTERRUPT_ERROR_BIT \
150 	(SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
151 	 SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
152 	 SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
153 #define SDXC_INTERRUPT_DONE_BIT \
154 	(SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
155 	 SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
156 
157 /* status */
158 #define SDXC_RXWL_FLAG			BIT(0)
159 #define SDXC_TXWL_FLAG			BIT(1)
160 #define SDXC_FIFO_EMPTY			BIT(2)
161 #define SDXC_FIFO_FULL			BIT(3)
162 #define SDXC_CARD_PRESENT		BIT(8)
163 #define SDXC_CARD_DATA_BUSY		BIT(9)
164 #define SDXC_DATA_FSM_BUSY		BIT(10)
165 #define SDXC_DMA_REQUEST		BIT(31)
166 #define SDXC_FIFO_SIZE			16
167 
168 /* Function select */
169 #define SDXC_CEATA_ON			(0xceaa << 16)
170 #define SDXC_SEND_IRQ_RESPONSE		BIT(0)
171 #define SDXC_SDIO_READ_WAIT		BIT(1)
172 #define SDXC_ABORT_READ_DATA		BIT(2)
173 #define SDXC_SEND_CCSD			BIT(8)
174 #define SDXC_SEND_AUTO_STOPCCSD		BIT(9)
175 #define SDXC_CEATA_DEV_IRQ_ENABLE	BIT(10)
176 
177 /* IDMA controller bus mod bit field */
178 #define SDXC_IDMAC_SOFT_RESET		BIT(0)
179 #define SDXC_IDMAC_FIX_BURST		BIT(1)
180 #define SDXC_IDMAC_IDMA_ON		BIT(7)
181 #define SDXC_IDMAC_REFETCH_DES		BIT(31)
182 
183 /* IDMA status bit field */
184 #define SDXC_IDMAC_TRANSMIT_INTERRUPT		BIT(0)
185 #define SDXC_IDMAC_RECEIVE_INTERRUPT		BIT(1)
186 #define SDXC_IDMAC_FATAL_BUS_ERROR		BIT(2)
187 #define SDXC_IDMAC_DESTINATION_INVALID		BIT(4)
188 #define SDXC_IDMAC_CARD_ERROR_SUM		BIT(5)
189 #define SDXC_IDMAC_NORMAL_INTERRUPT_SUM		BIT(8)
190 #define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM	BIT(9)
191 #define SDXC_IDMAC_HOST_ABORT_INTERRUPT		BIT(10)
192 #define SDXC_IDMAC_IDLE				(0 << 13)
193 #define SDXC_IDMAC_SUSPEND			(1 << 13)
194 #define SDXC_IDMAC_DESC_READ			(2 << 13)
195 #define SDXC_IDMAC_DESC_CHECK			(3 << 13)
196 #define SDXC_IDMAC_READ_REQUEST_WAIT		(4 << 13)
197 #define SDXC_IDMAC_WRITE_REQUEST_WAIT		(5 << 13)
198 #define SDXC_IDMAC_READ				(6 << 13)
199 #define SDXC_IDMAC_WRITE			(7 << 13)
200 #define SDXC_IDMAC_DESC_CLOSE			(8 << 13)
201 
202 /*
203 * If the idma-des-size-bits of property is ie 13, bufsize bits are:
204 *  Bits  0-12: buf1 size
205 *  Bits 13-25: buf2 size
206 *  Bits 26-31: not used
207 * Since we only ever set buf1 size, we can simply store it directly.
208 */
209 #define SDXC_IDMAC_DES0_DIC	BIT(1)  /* disable interrupt on completion */
210 #define SDXC_IDMAC_DES0_LD	BIT(2)  /* last descriptor */
211 #define SDXC_IDMAC_DES0_FD	BIT(3)  /* first descriptor */
212 #define SDXC_IDMAC_DES0_CH	BIT(4)  /* chain mode */
213 #define SDXC_IDMAC_DES0_ER	BIT(5)  /* end of ring */
214 #define SDXC_IDMAC_DES0_CES	BIT(30) /* card error summary */
215 #define SDXC_IDMAC_DES0_OWN	BIT(31) /* 1-idma owns it, 0-host owns it */
216 
217 #define SDXC_CLK_400K		0
218 #define SDXC_CLK_25M		1
219 #define SDXC_CLK_50M		2
220 #define SDXC_CLK_50M_DDR	3
221 #define SDXC_CLK_50M_DDR_8BIT	4
222 
223 #define SDXC_2X_TIMING_MODE	BIT(31)
224 
225 #define SDXC_CAL_START		BIT(15)
226 #define SDXC_CAL_DONE		BIT(14)
227 #define SDXC_CAL_DL_SHIFT	8
228 #define SDXC_CAL_DL_SW_EN	BIT(7)
229 #define SDXC_CAL_DL_SW_SHIFT	0
230 #define SDXC_CAL_DL_MASK	0x3f
231 
232 #define SDXC_CAL_TIMEOUT	3	/* in seconds, 3s is enough*/
233 
234 struct sunxi_mmc_clk_delay {
235 	u32 output;
236 	u32 sample;
237 };
238 
239 struct sunxi_idma_des {
240 	__le32 config;
241 	__le32 buf_size;
242 	__le32 buf_addr_ptr1;
243 	__le32 buf_addr_ptr2;
244 };
245 
246 struct sunxi_mmc_cfg {
247 	u32 idma_des_size_bits;
248 	u32 idma_des_shift;
249 	const struct sunxi_mmc_clk_delay *clk_delays;
250 
251 	/* does the IP block support autocalibration? */
252 	bool can_calibrate;
253 
254 	/* Does DATA0 needs to be masked while the clock is updated */
255 	bool mask_data0;
256 
257 	/*
258 	 * hardware only supports new timing mode, either due to lack of
259 	 * a mode switch in the clock controller, or the mmc controller
260 	 * is permanently configured in the new timing mode, without the
261 	 * NTSR mode switch.
262 	 */
263 	bool needs_new_timings;
264 
265 	/* clock hardware can switch between old and new timing modes */
266 	bool ccu_has_timings_switch;
267 };
268 
269 struct sunxi_mmc_host {
270 	struct device *dev;
271 	struct mmc_host	*mmc;
272 	struct reset_control *reset;
273 	const struct sunxi_mmc_cfg *cfg;
274 
275 	/* IO mapping base */
276 	void __iomem	*reg_base;
277 
278 	/* clock management */
279 	struct clk	*clk_ahb;
280 	struct clk	*clk_mmc;
281 	struct clk	*clk_sample;
282 	struct clk	*clk_output;
283 
284 	/* irq */
285 	spinlock_t	lock;
286 	int		irq;
287 	u32		int_sum;
288 	u32		sdio_imask;
289 
290 	/* dma */
291 	dma_addr_t	sg_dma;
292 	void		*sg_cpu;
293 	bool		wait_dma;
294 
295 	struct mmc_request *mrq;
296 	struct mmc_request *manual_stop_mrq;
297 	int		ferror;
298 
299 	/* vqmmc */
300 	bool		vqmmc_enabled;
301 
302 	/* timings */
303 	bool		use_new_timings;
304 };
305 
306 static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
307 {
308 	unsigned long expire = jiffies + msecs_to_jiffies(250);
309 	u32 rval;
310 
311 	mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
312 	do {
313 		rval = mmc_readl(host, REG_GCTRL);
314 	} while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
315 
316 	if (rval & SDXC_HARDWARE_RESET) {
317 		dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
318 		return -EIO;
319 	}
320 
321 	return 0;
322 }
323 
324 static int sunxi_mmc_init_host(struct sunxi_mmc_host *host)
325 {
326 	u32 rval;
327 
328 	if (sunxi_mmc_reset_host(host))
329 		return -EIO;
330 
331 	/*
332 	 * Burst 8 transfers, RX trigger level: 7, TX trigger level: 8
333 	 *
334 	 * TODO: sun9i has a larger FIFO and supports higher trigger values
335 	 */
336 	mmc_writel(host, REG_FTRGL, 0x20070008);
337 	/* Maximum timeout value */
338 	mmc_writel(host, REG_TMOUT, 0xffffffff);
339 	/* Unmask SDIO interrupt if needed */
340 	mmc_writel(host, REG_IMASK, host->sdio_imask);
341 	/* Clear all pending interrupts */
342 	mmc_writel(host, REG_RINTR, 0xffffffff);
343 	/* Debug register? undocumented */
344 	mmc_writel(host, REG_DBGC, 0xdeb);
345 	/* Enable CEATA support */
346 	mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
347 	/* Set DMA descriptor list base address */
348 	mmc_writel(host, REG_DLBA, host->sg_dma >> host->cfg->idma_des_shift);
349 
350 	rval = mmc_readl(host, REG_GCTRL);
351 	rval |= SDXC_INTERRUPT_ENABLE_BIT;
352 	/* Undocumented, but found in Allwinner code */
353 	rval &= ~SDXC_ACCESS_DONE_DIRECT;
354 	mmc_writel(host, REG_GCTRL, rval);
355 
356 	return 0;
357 }
358 
359 static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
360 				    struct mmc_data *data)
361 {
362 	struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
363 	dma_addr_t next_desc = host->sg_dma;
364 	int i, max_len = (1 << host->cfg->idma_des_size_bits);
365 
366 	for (i = 0; i < data->sg_len; i++) {
367 		pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH |
368 					     SDXC_IDMAC_DES0_OWN |
369 					     SDXC_IDMAC_DES0_DIC);
370 
371 		if (data->sg[i].length == max_len)
372 			pdes[i].buf_size = 0; /* 0 == max_len */
373 		else
374 			pdes[i].buf_size = cpu_to_le32(data->sg[i].length);
375 
376 		next_desc += sizeof(struct sunxi_idma_des);
377 		pdes[i].buf_addr_ptr1 =
378 			cpu_to_le32(sg_dma_address(&data->sg[i]) >>
379 				    host->cfg->idma_des_shift);
380 		pdes[i].buf_addr_ptr2 =
381 			cpu_to_le32(next_desc >>
382 				    host->cfg->idma_des_shift);
383 	}
384 
385 	pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD);
386 	pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD |
387 					  SDXC_IDMAC_DES0_ER);
388 	pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC);
389 	pdes[i - 1].buf_addr_ptr2 = 0;
390 
391 	/*
392 	 * Avoid the io-store starting the idmac hitting io-mem before the
393 	 * descriptors hit the main-mem.
394 	 */
395 	wmb();
396 }
397 
398 static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
399 			     struct mmc_data *data)
400 {
401 	u32 i, dma_len;
402 	struct scatterlist *sg;
403 
404 	dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
405 			     mmc_get_dma_dir(data));
406 	if (dma_len == 0) {
407 		dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
408 		return -ENOMEM;
409 	}
410 
411 	for_each_sg(data->sg, sg, data->sg_len, i) {
412 		if (sg->offset & 3 || sg->length & 3) {
413 			dev_err(mmc_dev(host->mmc),
414 				"unaligned scatterlist: os %x length %d\n",
415 				sg->offset, sg->length);
416 			return -EINVAL;
417 		}
418 	}
419 
420 	return 0;
421 }
422 
423 static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
424 				struct mmc_data *data)
425 {
426 	u32 rval;
427 
428 	sunxi_mmc_init_idma_des(host, data);
429 
430 	rval = mmc_readl(host, REG_GCTRL);
431 	rval |= SDXC_DMA_ENABLE_BIT;
432 	mmc_writel(host, REG_GCTRL, rval);
433 	rval |= SDXC_DMA_RESET;
434 	mmc_writel(host, REG_GCTRL, rval);
435 
436 	mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
437 
438 	if (!(data->flags & MMC_DATA_WRITE))
439 		mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
440 
441 	mmc_writel(host, REG_DMAC,
442 		   SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
443 }
444 
445 static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
446 				       struct mmc_request *req)
447 {
448 	u32 arg, cmd_val, ri;
449 	unsigned long expire = jiffies + msecs_to_jiffies(1000);
450 
451 	cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
452 		  SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
453 
454 	if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
455 		cmd_val |= SD_IO_RW_DIRECT;
456 		arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
457 		      ((req->cmd->arg >> 28) & 0x7);
458 	} else {
459 		cmd_val |= MMC_STOP_TRANSMISSION;
460 		arg = 0;
461 	}
462 
463 	mmc_writel(host, REG_CARG, arg);
464 	mmc_writel(host, REG_CMDR, cmd_val);
465 
466 	do {
467 		ri = mmc_readl(host, REG_RINTR);
468 	} while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
469 		 time_before(jiffies, expire));
470 
471 	if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
472 		dev_err(mmc_dev(host->mmc), "send stop command failed\n");
473 		if (req->stop)
474 			req->stop->resp[0] = -ETIMEDOUT;
475 	} else {
476 		if (req->stop)
477 			req->stop->resp[0] = mmc_readl(host, REG_RESP0);
478 	}
479 
480 	mmc_writel(host, REG_RINTR, 0xffff);
481 }
482 
483 static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
484 {
485 	struct mmc_command *cmd = host->mrq->cmd;
486 	struct mmc_data *data = host->mrq->data;
487 
488 	/* For some cmds timeout is normal with sd/mmc cards */
489 	if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
490 		SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
491 				      cmd->opcode == SD_IO_RW_DIRECT))
492 		return;
493 
494 	dev_dbg(mmc_dev(host->mmc),
495 		"smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
496 		host->mmc->index, cmd->opcode,
497 		data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
498 		host->int_sum & SDXC_RESP_ERROR     ? " RE"     : "",
499 		host->int_sum & SDXC_RESP_CRC_ERROR  ? " RCE"    : "",
500 		host->int_sum & SDXC_DATA_CRC_ERROR  ? " DCE"    : "",
501 		host->int_sum & SDXC_RESP_TIMEOUT ? " RTO"    : "",
502 		host->int_sum & SDXC_DATA_TIMEOUT ? " DTO"    : "",
503 		host->int_sum & SDXC_FIFO_RUN_ERROR  ? " FE"     : "",
504 		host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL"     : "",
505 		host->int_sum & SDXC_START_BIT_ERROR ? " SBE"    : "",
506 		host->int_sum & SDXC_END_BIT_ERROR   ? " EBE"    : ""
507 		);
508 }
509 
510 /* Called in interrupt context! */
511 static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
512 {
513 	struct mmc_request *mrq = host->mrq;
514 	struct mmc_data *data = mrq->data;
515 	u32 rval;
516 
517 	mmc_writel(host, REG_IMASK, host->sdio_imask);
518 	mmc_writel(host, REG_IDIE, 0);
519 
520 	if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
521 		sunxi_mmc_dump_errinfo(host);
522 		mrq->cmd->error = -ETIMEDOUT;
523 
524 		if (data) {
525 			data->error = -ETIMEDOUT;
526 			host->manual_stop_mrq = mrq;
527 		}
528 
529 		if (mrq->stop)
530 			mrq->stop->error = -ETIMEDOUT;
531 	} else {
532 		if (mrq->cmd->flags & MMC_RSP_136) {
533 			mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
534 			mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
535 			mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
536 			mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
537 		} else {
538 			mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
539 		}
540 
541 		if (data)
542 			data->bytes_xfered = data->blocks * data->blksz;
543 	}
544 
545 	if (data) {
546 		mmc_writel(host, REG_IDST, 0x337);
547 		mmc_writel(host, REG_DMAC, 0);
548 		rval = mmc_readl(host, REG_GCTRL);
549 		rval |= SDXC_DMA_RESET;
550 		mmc_writel(host, REG_GCTRL, rval);
551 		rval &= ~SDXC_DMA_ENABLE_BIT;
552 		mmc_writel(host, REG_GCTRL, rval);
553 		rval |= SDXC_FIFO_RESET;
554 		mmc_writel(host, REG_GCTRL, rval);
555 		dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
556 			     mmc_get_dma_dir(data));
557 	}
558 
559 	mmc_writel(host, REG_RINTR, 0xffff);
560 
561 	host->mrq = NULL;
562 	host->int_sum = 0;
563 	host->wait_dma = false;
564 
565 	return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
566 }
567 
568 static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
569 {
570 	struct sunxi_mmc_host *host = dev_id;
571 	struct mmc_request *mrq;
572 	u32 msk_int, idma_int;
573 	bool finalize = false;
574 	bool sdio_int = false;
575 	irqreturn_t ret = IRQ_HANDLED;
576 
577 	spin_lock(&host->lock);
578 
579 	idma_int  = mmc_readl(host, REG_IDST);
580 	msk_int   = mmc_readl(host, REG_MISTA);
581 
582 	dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
583 		host->mrq, msk_int, idma_int);
584 
585 	mrq = host->mrq;
586 	if (mrq) {
587 		if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
588 			host->wait_dma = false;
589 
590 		host->int_sum |= msk_int;
591 
592 		/* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
593 		if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
594 				!(host->int_sum & SDXC_COMMAND_DONE))
595 			mmc_writel(host, REG_IMASK,
596 				   host->sdio_imask | SDXC_COMMAND_DONE);
597 		/* Don't wait for dma on error */
598 		else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
599 			finalize = true;
600 		else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
601 				!host->wait_dma)
602 			finalize = true;
603 	}
604 
605 	if (msk_int & SDXC_SDIO_INTERRUPT)
606 		sdio_int = true;
607 
608 	mmc_writel(host, REG_RINTR, msk_int);
609 	mmc_writel(host, REG_IDST, idma_int);
610 
611 	if (finalize)
612 		ret = sunxi_mmc_finalize_request(host);
613 
614 	spin_unlock(&host->lock);
615 
616 	if (finalize && ret == IRQ_HANDLED)
617 		mmc_request_done(host->mmc, mrq);
618 
619 	if (sdio_int)
620 		mmc_signal_sdio_irq(host->mmc);
621 
622 	return ret;
623 }
624 
625 static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
626 {
627 	struct sunxi_mmc_host *host = dev_id;
628 	struct mmc_request *mrq;
629 	unsigned long iflags;
630 
631 	spin_lock_irqsave(&host->lock, iflags);
632 	mrq = host->manual_stop_mrq;
633 	spin_unlock_irqrestore(&host->lock, iflags);
634 
635 	if (!mrq) {
636 		dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
637 		return IRQ_HANDLED;
638 	}
639 
640 	dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
641 
642 	/*
643 	 * We will never have more than one outstanding request,
644 	 * and we do not complete the request until after
645 	 * we've cleared host->manual_stop_mrq so we do not need to
646 	 * spin lock this function.
647 	 * Additionally we have wait states within this function
648 	 * so having it in a lock is a very bad idea.
649 	 */
650 	sunxi_mmc_send_manual_stop(host, mrq);
651 
652 	spin_lock_irqsave(&host->lock, iflags);
653 	host->manual_stop_mrq = NULL;
654 	spin_unlock_irqrestore(&host->lock, iflags);
655 
656 	mmc_request_done(host->mmc, mrq);
657 
658 	return IRQ_HANDLED;
659 }
660 
661 static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
662 {
663 	unsigned long expire = jiffies + msecs_to_jiffies(750);
664 	u32 rval;
665 
666 	dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n",
667 		oclk_en ? "en" : "dis");
668 
669 	rval = mmc_readl(host, REG_CLKCR);
670 	rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0);
671 
672 	if (oclk_en)
673 		rval |= SDXC_CARD_CLOCK_ON;
674 	if (host->cfg->mask_data0)
675 		rval |= SDXC_MASK_DATA0;
676 
677 	mmc_writel(host, REG_CLKCR, rval);
678 
679 	rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
680 	mmc_writel(host, REG_CMDR, rval);
681 
682 	do {
683 		rval = mmc_readl(host, REG_CMDR);
684 	} while (time_before(jiffies, expire) && (rval & SDXC_START));
685 
686 	/* clear irq status bits set by the command */
687 	mmc_writel(host, REG_RINTR,
688 		   mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
689 
690 	if (rval & SDXC_START) {
691 		dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
692 		return -EIO;
693 	}
694 
695 	if (host->cfg->mask_data0) {
696 		rval = mmc_readl(host, REG_CLKCR);
697 		mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0);
698 	}
699 
700 	return 0;
701 }
702 
703 static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off)
704 {
705 	if (!host->cfg->can_calibrate)
706 		return 0;
707 
708 	/*
709 	 * FIXME:
710 	 * This is not clear how the calibration is supposed to work
711 	 * yet. The best rate have been obtained by simply setting the
712 	 * delay to 0, as Allwinner does in its BSP.
713 	 *
714 	 * The only mode that doesn't have such a delay is HS400, that
715 	 * is in itself a TODO.
716 	 */
717 	writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off);
718 
719 	return 0;
720 }
721 
722 static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host,
723 				   struct mmc_ios *ios, u32 rate)
724 {
725 	int index;
726 
727 	/* clk controller delays not used under new timings mode */
728 	if (host->use_new_timings)
729 		return 0;
730 
731 	/* some old controllers don't support delays */
732 	if (!host->cfg->clk_delays)
733 		return 0;
734 
735 	/* determine delays */
736 	if (rate <= 400000) {
737 		index = SDXC_CLK_400K;
738 	} else if (rate <= 25000000) {
739 		index = SDXC_CLK_25M;
740 	} else if (rate <= 52000000) {
741 		if (ios->timing != MMC_TIMING_UHS_DDR50 &&
742 		    ios->timing != MMC_TIMING_MMC_DDR52) {
743 			index = SDXC_CLK_50M;
744 		} else if (ios->bus_width == MMC_BUS_WIDTH_8) {
745 			index = SDXC_CLK_50M_DDR_8BIT;
746 		} else {
747 			index = SDXC_CLK_50M_DDR;
748 		}
749 	} else {
750 		dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n");
751 		return -EINVAL;
752 	}
753 
754 	clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample);
755 	clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output);
756 
757 	return 0;
758 }
759 
760 static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
761 				  struct mmc_ios *ios)
762 {
763 	struct mmc_host *mmc = host->mmc;
764 	long rate;
765 	u32 rval, clock = ios->clock, div = 1;
766 	int ret;
767 
768 	ret = sunxi_mmc_oclk_onoff(host, 0);
769 	if (ret)
770 		return ret;
771 
772 	/* Our clock is gated now */
773 	mmc->actual_clock = 0;
774 
775 	if (!ios->clock)
776 		return 0;
777 
778 	/*
779 	 * Under the old timing mode, 8 bit DDR requires the module
780 	 * clock to be double the card clock. Under the new timing
781 	 * mode, all DDR modes require a doubled module clock.
782 	 *
783 	 * We currently only support the standard MMC DDR52 mode.
784 	 * This block should be updated once support for other DDR
785 	 * modes is added.
786 	 */
787 	if (ios->timing == MMC_TIMING_MMC_DDR52 &&
788 	    (host->use_new_timings ||
789 	     ios->bus_width == MMC_BUS_WIDTH_8)) {
790 		div = 2;
791 		clock <<= 1;
792 	}
793 
794 	if (host->use_new_timings && host->cfg->ccu_has_timings_switch) {
795 		ret = sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
796 		if (ret) {
797 			dev_err(mmc_dev(mmc),
798 				"error setting new timing mode\n");
799 			return ret;
800 		}
801 	}
802 
803 	rate = clk_round_rate(host->clk_mmc, clock);
804 	if (rate < 0) {
805 		dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n",
806 			clock, rate);
807 		return rate;
808 	}
809 	dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n",
810 		clock, rate);
811 
812 	/* setting clock rate */
813 	ret = clk_set_rate(host->clk_mmc, rate);
814 	if (ret) {
815 		dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n",
816 			rate, ret);
817 		return ret;
818 	}
819 
820 	/* set internal divider */
821 	rval = mmc_readl(host, REG_CLKCR);
822 	rval &= ~0xff;
823 	rval |= div - 1;
824 	mmc_writel(host, REG_CLKCR, rval);
825 
826 	/* update card clock rate to account for internal divider */
827 	rate /= div;
828 
829 	/*
830 	 * Configure the controller to use the new timing mode if needed.
831 	 * On controllers that only support the new timing mode, such as
832 	 * the eMMC controller on the A64, this register does not exist,
833 	 * and any writes to it are ignored.
834 	 */
835 	if (host->use_new_timings) {
836 		/* Don't touch the delay bits */
837 		rval = mmc_readl(host, REG_SD_NTSR);
838 		rval |= SDXC_2X_TIMING_MODE;
839 		mmc_writel(host, REG_SD_NTSR, rval);
840 	}
841 
842 	/* sunxi_mmc_clk_set_phase expects the actual card clock rate */
843 	ret = sunxi_mmc_clk_set_phase(host, ios, rate);
844 	if (ret)
845 		return ret;
846 
847 	ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG);
848 	if (ret)
849 		return ret;
850 
851 	/*
852 	 * FIXME:
853 	 *
854 	 * In HS400 we'll also need to calibrate the data strobe
855 	 * signal. This should only happen on the MMC2 controller (at
856 	 * least on the A64).
857 	 */
858 
859 	ret = sunxi_mmc_oclk_onoff(host, 1);
860 	if (ret)
861 		return ret;
862 
863 	/* And we just enabled our clock back */
864 	mmc->actual_clock = rate;
865 
866 	return 0;
867 }
868 
869 static void sunxi_mmc_set_bus_width(struct sunxi_mmc_host *host,
870 				   unsigned char width)
871 {
872 	switch (width) {
873 	case MMC_BUS_WIDTH_1:
874 		mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
875 		break;
876 	case MMC_BUS_WIDTH_4:
877 		mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
878 		break;
879 	case MMC_BUS_WIDTH_8:
880 		mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
881 		break;
882 	}
883 }
884 
885 static void sunxi_mmc_set_clk(struct sunxi_mmc_host *host, struct mmc_ios *ios)
886 {
887 	u32 rval;
888 
889 	/* set ddr mode */
890 	rval = mmc_readl(host, REG_GCTRL);
891 	if (ios->timing == MMC_TIMING_UHS_DDR50 ||
892 	    ios->timing == MMC_TIMING_MMC_DDR52)
893 		rval |= SDXC_DDR_MODE;
894 	else
895 		rval &= ~SDXC_DDR_MODE;
896 	mmc_writel(host, REG_GCTRL, rval);
897 
898 	host->ferror = sunxi_mmc_clk_set_rate(host, ios);
899 	/* Android code had a usleep_range(50000, 55000); here */
900 }
901 
902 static void sunxi_mmc_card_power(struct sunxi_mmc_host *host,
903 				 struct mmc_ios *ios)
904 {
905 	struct mmc_host *mmc = host->mmc;
906 
907 	switch (ios->power_mode) {
908 	case MMC_POWER_UP:
909 		dev_dbg(mmc_dev(mmc), "Powering card up\n");
910 
911 		if (!IS_ERR(mmc->supply.vmmc)) {
912 			host->ferror = mmc_regulator_set_ocr(mmc,
913 							     mmc->supply.vmmc,
914 							     ios->vdd);
915 			if (host->ferror)
916 				return;
917 		}
918 
919 		if (!IS_ERR(mmc->supply.vqmmc)) {
920 			host->ferror = regulator_enable(mmc->supply.vqmmc);
921 			if (host->ferror) {
922 				dev_err(mmc_dev(mmc),
923 					"failed to enable vqmmc\n");
924 				return;
925 			}
926 			host->vqmmc_enabled = true;
927 		}
928 		break;
929 
930 	case MMC_POWER_OFF:
931 		dev_dbg(mmc_dev(mmc), "Powering card off\n");
932 
933 		if (!IS_ERR(mmc->supply.vmmc))
934 			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
935 
936 		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled)
937 			regulator_disable(mmc->supply.vqmmc);
938 
939 		host->vqmmc_enabled = false;
940 		break;
941 
942 	default:
943 		dev_dbg(mmc_dev(mmc), "Ignoring unknown card power state\n");
944 		break;
945 	}
946 }
947 
948 static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
949 {
950 	struct sunxi_mmc_host *host = mmc_priv(mmc);
951 
952 	sunxi_mmc_card_power(host, ios);
953 	sunxi_mmc_set_bus_width(host, ios->bus_width);
954 	sunxi_mmc_set_clk(host, ios);
955 }
956 
957 static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
958 {
959 	int ret;
960 
961 	/* vqmmc regulator is available */
962 	if (!IS_ERR(mmc->supply.vqmmc)) {
963 		ret = mmc_regulator_set_vqmmc(mmc, ios);
964 		return ret < 0 ? ret : 0;
965 	}
966 
967 	/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
968 	if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330)
969 		return 0;
970 
971 	return -EINVAL;
972 }
973 
974 static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
975 {
976 	struct sunxi_mmc_host *host = mmc_priv(mmc);
977 	unsigned long flags;
978 	u32 imask;
979 
980 	if (enable)
981 		pm_runtime_get_noresume(host->dev);
982 
983 	spin_lock_irqsave(&host->lock, flags);
984 
985 	imask = mmc_readl(host, REG_IMASK);
986 	if (enable) {
987 		host->sdio_imask = SDXC_SDIO_INTERRUPT;
988 		imask |= SDXC_SDIO_INTERRUPT;
989 	} else {
990 		host->sdio_imask = 0;
991 		imask &= ~SDXC_SDIO_INTERRUPT;
992 	}
993 	mmc_writel(host, REG_IMASK, imask);
994 	spin_unlock_irqrestore(&host->lock, flags);
995 
996 	if (!enable)
997 		pm_runtime_put_noidle(host->mmc->parent);
998 }
999 
1000 static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
1001 {
1002 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1003 	mmc_writel(host, REG_HWRST, 0);
1004 	udelay(10);
1005 	mmc_writel(host, REG_HWRST, 1);
1006 	udelay(300);
1007 }
1008 
1009 static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
1010 {
1011 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1012 	struct mmc_command *cmd = mrq->cmd;
1013 	struct mmc_data *data = mrq->data;
1014 	unsigned long iflags;
1015 	u32 imask = SDXC_INTERRUPT_ERROR_BIT;
1016 	u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
1017 	bool wait_dma = host->wait_dma;
1018 	int ret;
1019 
1020 	/* Check for set_ios errors (should never happen) */
1021 	if (host->ferror) {
1022 		mrq->cmd->error = host->ferror;
1023 		mmc_request_done(mmc, mrq);
1024 		return;
1025 	}
1026 
1027 	if (data) {
1028 		ret = sunxi_mmc_map_dma(host, data);
1029 		if (ret < 0) {
1030 			dev_err(mmc_dev(mmc), "map DMA failed\n");
1031 			cmd->error = ret;
1032 			data->error = ret;
1033 			mmc_request_done(mmc, mrq);
1034 			return;
1035 		}
1036 	}
1037 
1038 	if (cmd->opcode == MMC_GO_IDLE_STATE) {
1039 		cmd_val |= SDXC_SEND_INIT_SEQUENCE;
1040 		imask |= SDXC_COMMAND_DONE;
1041 	}
1042 
1043 	if (cmd->flags & MMC_RSP_PRESENT) {
1044 		cmd_val |= SDXC_RESP_EXPIRE;
1045 		if (cmd->flags & MMC_RSP_136)
1046 			cmd_val |= SDXC_LONG_RESPONSE;
1047 		if (cmd->flags & MMC_RSP_CRC)
1048 			cmd_val |= SDXC_CHECK_RESPONSE_CRC;
1049 
1050 		if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
1051 			cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
1052 
1053 			if (cmd->data->stop) {
1054 				imask |= SDXC_AUTO_COMMAND_DONE;
1055 				cmd_val |= SDXC_SEND_AUTO_STOP;
1056 			} else {
1057 				imask |= SDXC_DATA_OVER;
1058 			}
1059 
1060 			if (cmd->data->flags & MMC_DATA_WRITE)
1061 				cmd_val |= SDXC_WRITE;
1062 			else
1063 				wait_dma = true;
1064 		} else {
1065 			imask |= SDXC_COMMAND_DONE;
1066 		}
1067 	} else {
1068 		imask |= SDXC_COMMAND_DONE;
1069 	}
1070 
1071 	dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
1072 		cmd_val & 0x3f, cmd_val, cmd->arg, imask,
1073 		mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
1074 
1075 	spin_lock_irqsave(&host->lock, iflags);
1076 
1077 	if (host->mrq || host->manual_stop_mrq) {
1078 		spin_unlock_irqrestore(&host->lock, iflags);
1079 
1080 		if (data)
1081 			dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
1082 				     mmc_get_dma_dir(data));
1083 
1084 		dev_err(mmc_dev(mmc), "request already pending\n");
1085 		mrq->cmd->error = -EBUSY;
1086 		mmc_request_done(mmc, mrq);
1087 		return;
1088 	}
1089 
1090 	if (data) {
1091 		mmc_writel(host, REG_BLKSZ, data->blksz);
1092 		mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
1093 		sunxi_mmc_start_dma(host, data);
1094 	}
1095 
1096 	host->mrq = mrq;
1097 	host->wait_dma = wait_dma;
1098 	mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
1099 	mmc_writel(host, REG_CARG, cmd->arg);
1100 	mmc_writel(host, REG_CMDR, cmd_val);
1101 
1102 	spin_unlock_irqrestore(&host->lock, iflags);
1103 }
1104 
1105 static int sunxi_mmc_card_busy(struct mmc_host *mmc)
1106 {
1107 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1108 
1109 	return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY);
1110 }
1111 
1112 static const struct mmc_host_ops sunxi_mmc_ops = {
1113 	.request	 = sunxi_mmc_request,
1114 	.set_ios	 = sunxi_mmc_set_ios,
1115 	.get_ro		 = mmc_gpio_get_ro,
1116 	.get_cd		 = mmc_gpio_get_cd,
1117 	.enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
1118 	.start_signal_voltage_switch = sunxi_mmc_volt_switch,
1119 	.card_hw_reset	 = sunxi_mmc_hw_reset,
1120 	.card_busy	 = sunxi_mmc_card_busy,
1121 };
1122 
1123 static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = {
1124 	[SDXC_CLK_400K]		= { .output = 180, .sample = 180 },
1125 	[SDXC_CLK_25M]		= { .output = 180, .sample =  75 },
1126 	[SDXC_CLK_50M]		= { .output =  90, .sample = 120 },
1127 	[SDXC_CLK_50M_DDR]	= { .output =  60, .sample = 120 },
1128 	/* Value from A83T "new timing mode". Works but might not be right. */
1129 	[SDXC_CLK_50M_DDR_8BIT]	= { .output =  90, .sample = 180 },
1130 };
1131 
1132 static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = {
1133 	[SDXC_CLK_400K]		= { .output = 180, .sample = 180 },
1134 	[SDXC_CLK_25M]		= { .output = 180, .sample =  75 },
1135 	[SDXC_CLK_50M]		= { .output = 150, .sample = 120 },
1136 	[SDXC_CLK_50M_DDR]	= { .output =  54, .sample =  36 },
1137 	[SDXC_CLK_50M_DDR_8BIT]	= { .output =  72, .sample =  72 },
1138 };
1139 
1140 static const struct sunxi_mmc_cfg sun4i_a10_cfg = {
1141 	.idma_des_size_bits = 13,
1142 	.clk_delays = NULL,
1143 	.can_calibrate = false,
1144 };
1145 
1146 static const struct sunxi_mmc_cfg sun5i_a13_cfg = {
1147 	.idma_des_size_bits = 16,
1148 	.clk_delays = NULL,
1149 	.can_calibrate = false,
1150 };
1151 
1152 static const struct sunxi_mmc_cfg sun7i_a20_cfg = {
1153 	.idma_des_size_bits = 16,
1154 	.clk_delays = sunxi_mmc_clk_delays,
1155 	.can_calibrate = false,
1156 };
1157 
1158 static const struct sunxi_mmc_cfg sun8i_a83t_emmc_cfg = {
1159 	.idma_des_size_bits = 16,
1160 	.clk_delays = sunxi_mmc_clk_delays,
1161 	.can_calibrate = false,
1162 	.ccu_has_timings_switch = true,
1163 };
1164 
1165 static const struct sunxi_mmc_cfg sun9i_a80_cfg = {
1166 	.idma_des_size_bits = 16,
1167 	.clk_delays = sun9i_mmc_clk_delays,
1168 	.can_calibrate = false,
1169 };
1170 
1171 static const struct sunxi_mmc_cfg sun20i_d1_cfg = {
1172 	.idma_des_size_bits = 13,
1173 	.idma_des_shift = 2,
1174 	.can_calibrate = true,
1175 	.mask_data0 = true,
1176 	.needs_new_timings = true,
1177 };
1178 
1179 static const struct sunxi_mmc_cfg sun50i_a64_cfg = {
1180 	.idma_des_size_bits = 16,
1181 	.clk_delays = NULL,
1182 	.can_calibrate = true,
1183 	.mask_data0 = true,
1184 	.needs_new_timings = true,
1185 };
1186 
1187 static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = {
1188 	.idma_des_size_bits = 13,
1189 	.clk_delays = NULL,
1190 	.can_calibrate = true,
1191 	.needs_new_timings = true,
1192 };
1193 
1194 static const struct sunxi_mmc_cfg sun50i_a100_cfg = {
1195 	.idma_des_size_bits = 16,
1196 	.idma_des_shift = 2,
1197 	.clk_delays = NULL,
1198 	.can_calibrate = true,
1199 	.mask_data0 = true,
1200 	.needs_new_timings = true,
1201 };
1202 
1203 static const struct sunxi_mmc_cfg sun50i_a100_emmc_cfg = {
1204 	.idma_des_size_bits = 13,
1205 	.idma_des_shift = 2,
1206 	.clk_delays = NULL,
1207 	.can_calibrate = true,
1208 	.needs_new_timings = true,
1209 };
1210 
1211 static const struct of_device_id sunxi_mmc_of_match[] = {
1212 	{ .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg },
1213 	{ .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg },
1214 	{ .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg },
1215 	{ .compatible = "allwinner,sun8i-a83t-emmc", .data = &sun8i_a83t_emmc_cfg },
1216 	{ .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg },
1217 	{ .compatible = "allwinner,sun20i-d1-mmc", .data = &sun20i_d1_cfg },
1218 	{ .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg },
1219 	{ .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg },
1220 	{ .compatible = "allwinner,sun50i-a100-mmc", .data = &sun50i_a100_cfg },
1221 	{ .compatible = "allwinner,sun50i-a100-emmc", .data = &sun50i_a100_emmc_cfg },
1222 	{ /* sentinel */ }
1223 };
1224 MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
1225 
1226 static int sunxi_mmc_enable(struct sunxi_mmc_host *host)
1227 {
1228 	int ret;
1229 
1230 	if (!IS_ERR(host->reset)) {
1231 		ret = reset_control_reset(host->reset);
1232 		if (ret) {
1233 			dev_err(host->dev, "Couldn't reset the MMC controller (%d)\n",
1234 				ret);
1235 			return ret;
1236 		}
1237 	}
1238 
1239 	ret = clk_prepare_enable(host->clk_ahb);
1240 	if (ret) {
1241 		dev_err(host->dev, "Couldn't enable the bus clocks (%d)\n", ret);
1242 		goto error_assert_reset;
1243 	}
1244 
1245 	ret = clk_prepare_enable(host->clk_mmc);
1246 	if (ret) {
1247 		dev_err(host->dev, "Enable mmc clk err %d\n", ret);
1248 		goto error_disable_clk_ahb;
1249 	}
1250 
1251 	ret = clk_prepare_enable(host->clk_output);
1252 	if (ret) {
1253 		dev_err(host->dev, "Enable output clk err %d\n", ret);
1254 		goto error_disable_clk_mmc;
1255 	}
1256 
1257 	ret = clk_prepare_enable(host->clk_sample);
1258 	if (ret) {
1259 		dev_err(host->dev, "Enable sample clk err %d\n", ret);
1260 		goto error_disable_clk_output;
1261 	}
1262 
1263 	/*
1264 	 * Sometimes the controller asserts the irq on boot for some reason,
1265 	 * make sure the controller is in a sane state before enabling irqs.
1266 	 */
1267 	ret = sunxi_mmc_reset_host(host);
1268 	if (ret)
1269 		goto error_disable_clk_sample;
1270 
1271 	return 0;
1272 
1273 error_disable_clk_sample:
1274 	clk_disable_unprepare(host->clk_sample);
1275 error_disable_clk_output:
1276 	clk_disable_unprepare(host->clk_output);
1277 error_disable_clk_mmc:
1278 	clk_disable_unprepare(host->clk_mmc);
1279 error_disable_clk_ahb:
1280 	clk_disable_unprepare(host->clk_ahb);
1281 error_assert_reset:
1282 	if (!IS_ERR(host->reset))
1283 		reset_control_assert(host->reset);
1284 	return ret;
1285 }
1286 
1287 static void sunxi_mmc_disable(struct sunxi_mmc_host *host)
1288 {
1289 	sunxi_mmc_reset_host(host);
1290 
1291 	clk_disable_unprepare(host->clk_sample);
1292 	clk_disable_unprepare(host->clk_output);
1293 	clk_disable_unprepare(host->clk_mmc);
1294 	clk_disable_unprepare(host->clk_ahb);
1295 
1296 	if (!IS_ERR(host->reset))
1297 		reset_control_assert(host->reset);
1298 }
1299 
1300 static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
1301 				      struct platform_device *pdev)
1302 {
1303 	int ret;
1304 
1305 	host->cfg = of_device_get_match_data(&pdev->dev);
1306 	if (!host->cfg)
1307 		return -EINVAL;
1308 
1309 	ret = mmc_regulator_get_supply(host->mmc);
1310 	if (ret)
1311 		return ret;
1312 
1313 	host->reg_base = devm_platform_ioremap_resource(pdev, 0);
1314 	if (IS_ERR(host->reg_base))
1315 		return PTR_ERR(host->reg_base);
1316 
1317 	host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1318 	if (IS_ERR(host->clk_ahb)) {
1319 		dev_err(&pdev->dev, "Could not get ahb clock\n");
1320 		return PTR_ERR(host->clk_ahb);
1321 	}
1322 
1323 	host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
1324 	if (IS_ERR(host->clk_mmc)) {
1325 		dev_err(&pdev->dev, "Could not get mmc clock\n");
1326 		return PTR_ERR(host->clk_mmc);
1327 	}
1328 
1329 	if (host->cfg->clk_delays) {
1330 		host->clk_output = devm_clk_get(&pdev->dev, "output");
1331 		if (IS_ERR(host->clk_output)) {
1332 			dev_err(&pdev->dev, "Could not get output clock\n");
1333 			return PTR_ERR(host->clk_output);
1334 		}
1335 
1336 		host->clk_sample = devm_clk_get(&pdev->dev, "sample");
1337 		if (IS_ERR(host->clk_sample)) {
1338 			dev_err(&pdev->dev, "Could not get sample clock\n");
1339 			return PTR_ERR(host->clk_sample);
1340 		}
1341 	}
1342 
1343 	host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev,
1344 								"ahb");
1345 	if (PTR_ERR(host->reset) == -EPROBE_DEFER)
1346 		return PTR_ERR(host->reset);
1347 
1348 	ret = sunxi_mmc_enable(host);
1349 	if (ret)
1350 		return ret;
1351 
1352 	host->irq = platform_get_irq(pdev, 0);
1353 	if (host->irq <= 0) {
1354 		ret = -EINVAL;
1355 		goto error_disable_mmc;
1356 	}
1357 
1358 	return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
1359 			sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
1360 
1361 error_disable_mmc:
1362 	sunxi_mmc_disable(host);
1363 	return ret;
1364 }
1365 
1366 static int sunxi_mmc_probe(struct platform_device *pdev)
1367 {
1368 	struct sunxi_mmc_host *host;
1369 	struct mmc_host *mmc;
1370 	int ret;
1371 
1372 	mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
1373 	if (!mmc) {
1374 		dev_err(&pdev->dev, "mmc alloc host failed\n");
1375 		return -ENOMEM;
1376 	}
1377 	platform_set_drvdata(pdev, mmc);
1378 
1379 	host = mmc_priv(mmc);
1380 	host->dev = &pdev->dev;
1381 	host->mmc = mmc;
1382 	spin_lock_init(&host->lock);
1383 
1384 	ret = sunxi_mmc_resource_request(host, pdev);
1385 	if (ret)
1386 		goto error_free_host;
1387 
1388 	host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
1389 					  &host->sg_dma, GFP_KERNEL);
1390 	if (!host->sg_cpu) {
1391 		dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
1392 		ret = -ENOMEM;
1393 		goto error_free_host;
1394 	}
1395 
1396 	if (host->cfg->ccu_has_timings_switch) {
1397 		/*
1398 		 * Supports both old and new timing modes.
1399 		 * Try setting the clk to new timing mode.
1400 		 */
1401 		sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
1402 
1403 		/* And check the result */
1404 		ret = sunxi_ccu_get_mmc_timing_mode(host->clk_mmc);
1405 		if (ret < 0) {
1406 			/*
1407 			 * For whatever reason we were not able to get
1408 			 * the current active mode. Default to old mode.
1409 			 */
1410 			dev_warn(&pdev->dev, "MMC clk timing mode unknown\n");
1411 			host->use_new_timings = false;
1412 		} else {
1413 			host->use_new_timings = !!ret;
1414 		}
1415 	} else if (host->cfg->needs_new_timings) {
1416 		/* Supports new timing mode only */
1417 		host->use_new_timings = true;
1418 	}
1419 
1420 	mmc->ops		= &sunxi_mmc_ops;
1421 	mmc->max_blk_count	= 8192;
1422 	mmc->max_blk_size	= 4096;
1423 	mmc->max_segs		= PAGE_SIZE / sizeof(struct sunxi_idma_des);
1424 	mmc->max_seg_size	= (1 << host->cfg->idma_des_size_bits);
1425 	mmc->max_req_size	= mmc->max_seg_size * mmc->max_segs;
1426 	/* 400kHz ~ 52MHz */
1427 	mmc->f_min		=   400000;
1428 	mmc->f_max		= 52000000;
1429 	mmc->caps	       |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1430 				  MMC_CAP_SDIO_IRQ;
1431 
1432 	/*
1433 	 * Some H5 devices do not have signal traces precise enough to
1434 	 * use HS DDR mode for their eMMC chips.
1435 	 *
1436 	 * We still enable HS DDR modes for all the other controller
1437 	 * variants that support them.
1438 	 */
1439 	if ((host->cfg->clk_delays || host->use_new_timings) &&
1440 	    !of_device_is_compatible(pdev->dev.of_node,
1441 				     "allwinner,sun50i-h5-emmc"))
1442 		mmc->caps      |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR;
1443 
1444 	ret = mmc_of_parse(mmc);
1445 	if (ret)
1446 		goto error_free_dma;
1447 
1448 	/*
1449 	 * If we don't support delay chains in the SoC, we can't use any
1450 	 * of the higher speed modes. Mask them out in case the device
1451 	 * tree specifies the properties for them, which gets added to
1452 	 * the caps by mmc_of_parse() above.
1453 	 */
1454 	if (!(host->cfg->clk_delays || host->use_new_timings)) {
1455 		mmc->caps &= ~(MMC_CAP_3_3V_DDR | MMC_CAP_1_8V_DDR |
1456 			       MMC_CAP_1_2V_DDR | MMC_CAP_UHS);
1457 		mmc->caps2 &= ~MMC_CAP2_HS200;
1458 	}
1459 
1460 	/* TODO: This driver doesn't support HS400 mode yet */
1461 	mmc->caps2 &= ~MMC_CAP2_HS400;
1462 
1463 	ret = sunxi_mmc_init_host(host);
1464 	if (ret)
1465 		goto error_free_dma;
1466 
1467 	pm_runtime_set_active(&pdev->dev);
1468 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1469 	pm_runtime_use_autosuspend(&pdev->dev);
1470 	pm_runtime_enable(&pdev->dev);
1471 
1472 	ret = mmc_add_host(mmc);
1473 	if (ret)
1474 		goto error_free_dma;
1475 
1476 	dev_info(&pdev->dev, "initialized, max. request size: %u KB%s\n",
1477 		 mmc->max_req_size >> 10,
1478 		 host->use_new_timings ? ", uses new timings mode" : "");
1479 
1480 	return 0;
1481 
1482 error_free_dma:
1483 	dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1484 error_free_host:
1485 	mmc_free_host(mmc);
1486 	return ret;
1487 }
1488 
1489 static int sunxi_mmc_remove(struct platform_device *pdev)
1490 {
1491 	struct mmc_host	*mmc = platform_get_drvdata(pdev);
1492 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1493 
1494 	mmc_remove_host(mmc);
1495 	pm_runtime_disable(&pdev->dev);
1496 	if (!pm_runtime_status_suspended(&pdev->dev)) {
1497 		disable_irq(host->irq);
1498 		sunxi_mmc_disable(host);
1499 	}
1500 	dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
1501 	mmc_free_host(mmc);
1502 
1503 	return 0;
1504 }
1505 
1506 #ifdef CONFIG_PM
1507 static int sunxi_mmc_runtime_resume(struct device *dev)
1508 {
1509 	struct mmc_host	*mmc = dev_get_drvdata(dev);
1510 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1511 	int ret;
1512 
1513 	ret = sunxi_mmc_enable(host);
1514 	if (ret)
1515 		return ret;
1516 
1517 	sunxi_mmc_init_host(host);
1518 	sunxi_mmc_set_bus_width(host, mmc->ios.bus_width);
1519 	sunxi_mmc_set_clk(host, &mmc->ios);
1520 	enable_irq(host->irq);
1521 
1522 	return 0;
1523 }
1524 
1525 static int sunxi_mmc_runtime_suspend(struct device *dev)
1526 {
1527 	struct mmc_host	*mmc = dev_get_drvdata(dev);
1528 	struct sunxi_mmc_host *host = mmc_priv(mmc);
1529 
1530 	/*
1531 	 * When clocks are off, it's possible receiving
1532 	 * fake interrupts, which will stall the system.
1533 	 * Disabling the irq  will prevent this.
1534 	 */
1535 	disable_irq(host->irq);
1536 	sunxi_mmc_reset_host(host);
1537 	sunxi_mmc_disable(host);
1538 
1539 	return 0;
1540 }
1541 #endif
1542 
1543 static const struct dev_pm_ops sunxi_mmc_pm_ops = {
1544 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1545 				pm_runtime_force_resume)
1546 	SET_RUNTIME_PM_OPS(sunxi_mmc_runtime_suspend,
1547 			   sunxi_mmc_runtime_resume,
1548 			   NULL)
1549 };
1550 
1551 static struct platform_driver sunxi_mmc_driver = {
1552 	.driver = {
1553 		.name	= "sunxi-mmc",
1554 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1555 		.of_match_table = sunxi_mmc_of_match,
1556 		.pm = &sunxi_mmc_pm_ops,
1557 	},
1558 	.probe		= sunxi_mmc_probe,
1559 	.remove		= sunxi_mmc_remove,
1560 };
1561 module_platform_driver(sunxi_mmc_driver);
1562 
1563 MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
1564 MODULE_LICENSE("GPL v2");
1565 MODULE_AUTHOR("David Lanzendörfer <david.lanzendoerfer@o2s.ch>");
1566 MODULE_ALIAS("platform:sunxi-mmc");
1567