1 /* 2 * mmc_spi.c - Access SD/MMC cards through SPI master controllers 3 * 4 * (C) Copyright 2005, Intec Automation, 5 * Mike Lavender (mike@steroidmicros) 6 * (C) Copyright 2006-2007, David Brownell 7 * (C) Copyright 2007, Axis Communications, 8 * Hans-Peter Nilsson (hp@axis.com) 9 * (C) Copyright 2007, ATRON electronic GmbH, 10 * Jan Nikitenko <jan.nikitenko@gmail.com> 11 * 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 * 23 * You should have received a copy of the GNU General Public License 24 * along with this program; if not, write to the Free Software 25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 26 */ 27 #include <linux/hrtimer.h> 28 #include <linux/delay.h> 29 #include <linux/bio.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/crc7.h> 32 #include <linux/crc-itu-t.h> 33 #include <linux/scatterlist.h> 34 35 #include <linux/mmc/host.h> 36 #include <linux/mmc/mmc.h> /* for R1_SPI_* bit values */ 37 38 #include <linux/spi/spi.h> 39 #include <linux/spi/mmc_spi.h> 40 41 #include <asm/unaligned.h> 42 43 44 /* NOTES: 45 * 46 * - For now, we won't try to interoperate with a real mmc/sd/sdio 47 * controller, although some of them do have hardware support for 48 * SPI protocol. The main reason for such configs would be mmc-ish 49 * cards like DataFlash, which don't support that "native" protocol. 50 * 51 * We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to 52 * switch between driver stacks, and in any case if "native" mode 53 * is available, it will be faster and hence preferable. 54 * 55 * - MMC depends on a different chipselect management policy than the 56 * SPI interface currently supports for shared bus segments: it needs 57 * to issue multiple spi_message requests with the chipselect active, 58 * using the results of one message to decide the next one to issue. 59 * 60 * Pending updates to the programming interface, this driver expects 61 * that it not share the bus with other drivers (precluding conflicts). 62 * 63 * - We tell the controller to keep the chipselect active from the 64 * beginning of an mmc_host_ops.request until the end. So beware 65 * of SPI controller drivers that mis-handle the cs_change flag! 66 * 67 * However, many cards seem OK with chipselect flapping up/down 68 * during that time ... at least on unshared bus segments. 69 */ 70 71 72 /* 73 * Local protocol constants, internal to data block protocols. 74 */ 75 76 /* Response tokens used to ack each block written: */ 77 #define SPI_MMC_RESPONSE_CODE(x) ((x) & 0x1f) 78 #define SPI_RESPONSE_ACCEPTED ((2 << 1)|1) 79 #define SPI_RESPONSE_CRC_ERR ((5 << 1)|1) 80 #define SPI_RESPONSE_WRITE_ERR ((6 << 1)|1) 81 82 /* Read and write blocks start with these tokens and end with crc; 83 * on error, read tokens act like a subset of R2_SPI_* values. 84 */ 85 #define SPI_TOKEN_SINGLE 0xfe /* single block r/w, multiblock read */ 86 #define SPI_TOKEN_MULTI_WRITE 0xfc /* multiblock write */ 87 #define SPI_TOKEN_STOP_TRAN 0xfd /* terminate multiblock write */ 88 89 #define MMC_SPI_BLOCKSIZE 512 90 91 92 /* These fixed timeouts come from the latest SD specs, which say to ignore 93 * the CSD values. The R1B value is for card erase (e.g. the "I forgot the 94 * card's password" scenario); it's mostly applied to STOP_TRANSMISSION after 95 * reads which takes nowhere near that long. Older cards may be able to use 96 * shorter timeouts ... but why bother? 97 */ 98 #define readblock_timeout ktime_set(0, 100 * 1000 * 1000) 99 #define writeblock_timeout ktime_set(0, 250 * 1000 * 1000) 100 #define r1b_timeout ktime_set(3, 0) 101 102 103 /****************************************************************************/ 104 105 /* 106 * Local Data Structures 107 */ 108 109 /* "scratch" is per-{command,block} data exchanged with the card */ 110 struct scratch { 111 u8 status[29]; 112 u8 data_token; 113 __be16 crc_val; 114 }; 115 116 struct mmc_spi_host { 117 struct mmc_host *mmc; 118 struct spi_device *spi; 119 120 unsigned char power_mode; 121 u16 powerup_msecs; 122 123 struct mmc_spi_platform_data *pdata; 124 125 /* for bulk data transfers */ 126 struct spi_transfer token, t, crc, early_status; 127 struct spi_message m; 128 129 /* for status readback */ 130 struct spi_transfer status; 131 struct spi_message readback; 132 133 /* underlying DMA-aware controller, or null */ 134 struct device *dma_dev; 135 136 /* buffer used for commands and for message "overhead" */ 137 struct scratch *data; 138 dma_addr_t data_dma; 139 140 /* Specs say to write ones most of the time, even when the card 141 * has no need to read its input data; and many cards won't care. 142 * This is our source of those ones. 143 */ 144 void *ones; 145 dma_addr_t ones_dma; 146 }; 147 148 149 /****************************************************************************/ 150 151 /* 152 * MMC-over-SPI protocol glue, used by the MMC stack interface 153 */ 154 155 static inline int mmc_cs_off(struct mmc_spi_host *host) 156 { 157 /* chipselect will always be inactive after setup() */ 158 return spi_setup(host->spi); 159 } 160 161 static int 162 mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len) 163 { 164 int status; 165 166 if (len > sizeof(*host->data)) { 167 WARN_ON(1); 168 return -EIO; 169 } 170 171 host->status.len = len; 172 173 if (host->dma_dev) 174 dma_sync_single_for_device(host->dma_dev, 175 host->data_dma, sizeof(*host->data), 176 DMA_FROM_DEVICE); 177 178 status = spi_sync(host->spi, &host->readback); 179 if (status == 0) 180 status = host->readback.status; 181 182 if (host->dma_dev) 183 dma_sync_single_for_cpu(host->dma_dev, 184 host->data_dma, sizeof(*host->data), 185 DMA_FROM_DEVICE); 186 187 return status; 188 } 189 190 static int 191 mmc_spi_skip(struct mmc_spi_host *host, ktime_t timeout, unsigned n, u8 byte) 192 { 193 u8 *cp = host->data->status; 194 195 timeout = ktime_add(timeout, ktime_get()); 196 197 while (1) { 198 int status; 199 unsigned i; 200 201 status = mmc_spi_readbytes(host, n); 202 if (status < 0) 203 return status; 204 205 for (i = 0; i < n; i++) { 206 if (cp[i] != byte) 207 return cp[i]; 208 } 209 210 /* REVISIT investigate msleep() to avoid busy-wait I/O 211 * in at least some cases. 212 */ 213 if (ktime_to_ns(ktime_sub(ktime_get(), timeout)) > 0) 214 break; 215 } 216 return -ETIMEDOUT; 217 } 218 219 static inline int 220 mmc_spi_wait_unbusy(struct mmc_spi_host *host, ktime_t timeout) 221 { 222 return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0); 223 } 224 225 static int mmc_spi_readtoken(struct mmc_spi_host *host) 226 { 227 return mmc_spi_skip(host, readblock_timeout, 1, 0xff); 228 } 229 230 231 /* 232 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol 233 * hosts return! The low byte holds R1_SPI bits. The next byte may hold 234 * R2_SPI bits ... for SEND_STATUS, or after data read errors. 235 * 236 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on 237 * newer cards R7 (IF_COND). 238 */ 239 240 static char *maptype(struct mmc_command *cmd) 241 { 242 switch (mmc_spi_resp_type(cmd)) { 243 case MMC_RSP_SPI_R1: return "R1"; 244 case MMC_RSP_SPI_R1B: return "R1B"; 245 case MMC_RSP_SPI_R2: return "R2/R5"; 246 case MMC_RSP_SPI_R3: return "R3/R4/R7"; 247 default: return "?"; 248 } 249 } 250 251 /* return zero, else negative errno after setting cmd->error */ 252 static int mmc_spi_response_get(struct mmc_spi_host *host, 253 struct mmc_command *cmd, int cs_on) 254 { 255 u8 *cp = host->data->status; 256 u8 *end = cp + host->t.len; 257 int value = 0; 258 char tag[32]; 259 260 snprintf(tag, sizeof(tag), " ... CMD%d response SPI_%s", 261 cmd->opcode, maptype(cmd)); 262 263 /* Except for data block reads, the whole response will already 264 * be stored in the scratch buffer. It's somewhere after the 265 * command and the first byte we read after it. We ignore that 266 * first byte. After STOP_TRANSMISSION command it may include 267 * two data bits, but otherwise it's all ones. 268 */ 269 cp += 8; 270 while (cp < end && *cp == 0xff) 271 cp++; 272 273 /* Data block reads (R1 response types) may need more data... */ 274 if (cp == end) { 275 unsigned i; 276 277 cp = host->data->status; 278 279 /* Card sends N(CR) (== 1..8) bytes of all-ones then one 280 * status byte ... and we already scanned 2 bytes. 281 * 282 * REVISIT block read paths use nasty byte-at-a-time I/O 283 * so it can always DMA directly into the target buffer. 284 * It'd probably be better to memcpy() the first chunk and 285 * avoid extra i/o calls... 286 */ 287 for (i = 2; i < 9; i++) { 288 value = mmc_spi_readbytes(host, 1); 289 if (value < 0) 290 goto done; 291 if (*cp != 0xff) 292 goto checkstatus; 293 } 294 value = -ETIMEDOUT; 295 goto done; 296 } 297 298 checkstatus: 299 if (*cp & 0x80) { 300 dev_dbg(&host->spi->dev, "%s: INVALID RESPONSE, %02x\n", 301 tag, *cp); 302 value = -EBADR; 303 goto done; 304 } 305 306 cmd->resp[0] = *cp++; 307 cmd->error = 0; 308 309 /* Status byte: the entire seven-bit R1 response. */ 310 if (cmd->resp[0] != 0) { 311 if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS 312 | R1_SPI_ILLEGAL_COMMAND) 313 & cmd->resp[0]) 314 value = -EINVAL; 315 else if (R1_SPI_COM_CRC & cmd->resp[0]) 316 value = -EILSEQ; 317 else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET) 318 & cmd->resp[0]) 319 value = -EIO; 320 /* else R1_SPI_IDLE, "it's resetting" */ 321 } 322 323 switch (mmc_spi_resp_type(cmd)) { 324 325 /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads) 326 * and less-common stuff like various erase operations. 327 */ 328 case MMC_RSP_SPI_R1B: 329 /* maybe we read all the busy tokens already */ 330 while (cp < end && *cp == 0) 331 cp++; 332 if (cp == end) 333 mmc_spi_wait_unbusy(host, r1b_timeout); 334 break; 335 336 /* SPI R2 == R1 + second status byte; SEND_STATUS 337 * SPI R5 == R1 + data byte; IO_RW_DIRECT 338 */ 339 case MMC_RSP_SPI_R2: 340 cmd->resp[0] |= *cp << 8; 341 break; 342 343 /* SPI R3, R4, or R7 == R1 + 4 bytes */ 344 case MMC_RSP_SPI_R3: 345 cmd->resp[1] = be32_to_cpu(get_unaligned((u32 *)cp)); 346 break; 347 348 /* SPI R1 == just one status byte */ 349 case MMC_RSP_SPI_R1: 350 break; 351 352 default: 353 dev_dbg(&host->spi->dev, "bad response type %04x\n", 354 mmc_spi_resp_type(cmd)); 355 if (value >= 0) 356 value = -EINVAL; 357 goto done; 358 } 359 360 if (value < 0) 361 dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n", 362 tag, cmd->resp[0], cmd->resp[1]); 363 364 /* disable chipselect on errors and some success cases */ 365 if (value >= 0 && cs_on) 366 return value; 367 done: 368 if (value < 0) 369 cmd->error = value; 370 mmc_cs_off(host); 371 return value; 372 } 373 374 /* Issue command and read its response. 375 * Returns zero on success, negative for error. 376 * 377 * On error, caller must cope with mmc core retry mechanism. That 378 * means immediate low-level resubmit, which affects the bus lock... 379 */ 380 static int 381 mmc_spi_command_send(struct mmc_spi_host *host, 382 struct mmc_request *mrq, 383 struct mmc_command *cmd, int cs_on) 384 { 385 struct scratch *data = host->data; 386 u8 *cp = data->status; 387 u32 arg = cmd->arg; 388 int status; 389 struct spi_transfer *t; 390 391 /* We can handle most commands (except block reads) in one full 392 * duplex I/O operation before either starting the next transfer 393 * (data block or command) or else deselecting the card. 394 * 395 * First, write 7 bytes: 396 * - an all-ones byte to ensure the card is ready 397 * - opcode byte (plus start and transmission bits) 398 * - four bytes of big-endian argument 399 * - crc7 (plus end bit) ... always computed, it's cheap 400 * 401 * We init the whole buffer to all-ones, which is what we need 402 * to write while we're reading (later) response data. 403 */ 404 memset(cp++, 0xff, sizeof(data->status)); 405 406 *cp++ = 0x40 | cmd->opcode; 407 *cp++ = (u8)(arg >> 24); 408 *cp++ = (u8)(arg >> 16); 409 *cp++ = (u8)(arg >> 8); 410 *cp++ = (u8)arg; 411 *cp++ = (crc7(0, &data->status[1], 5) << 1) | 0x01; 412 413 /* Then, read up to 13 bytes (while writing all-ones): 414 * - N(CR) (== 1..8) bytes of all-ones 415 * - status byte (for all response types) 416 * - the rest of the response, either: 417 * + nothing, for R1 or R1B responses 418 * + second status byte, for R2 responses 419 * + four data bytes, for R3 and R7 responses 420 * 421 * Finally, read some more bytes ... in the nice cases we know in 422 * advance how many, and reading 1 more is always OK: 423 * - N(EC) (== 0..N) bytes of all-ones, before deselect/finish 424 * - N(RC) (== 1..N) bytes of all-ones, before next command 425 * - N(WR) (== 1..N) bytes of all-ones, before data write 426 * 427 * So in those cases one full duplex I/O of at most 21 bytes will 428 * handle the whole command, leaving the card ready to receive a 429 * data block or new command. We do that whenever we can, shaving 430 * CPU and IRQ costs (especially when using DMA or FIFOs). 431 * 432 * There are two other cases, where it's not generally practical 433 * to rely on a single I/O: 434 * 435 * - R1B responses need at least N(EC) bytes of all-zeroes. 436 * 437 * In this case we can *try* to fit it into one I/O, then 438 * maybe read more data later. 439 * 440 * - Data block reads are more troublesome, since a variable 441 * number of padding bytes precede the token and data. 442 * + N(CX) (== 0..8) bytes of all-ones, before CSD or CID 443 * + N(AC) (== 1..many) bytes of all-ones 444 * 445 * In this case we currently only have minimal speedups here: 446 * when N(CR) == 1 we can avoid I/O in response_get(). 447 */ 448 if (cs_on && (mrq->data->flags & MMC_DATA_READ)) { 449 cp += 2; /* min(N(CR)) + status */ 450 /* R1 */ 451 } else { 452 cp += 10; /* max(N(CR)) + status + min(N(RC),N(WR)) */ 453 if (cmd->flags & MMC_RSP_SPI_S2) /* R2/R5 */ 454 cp++; 455 else if (cmd->flags & MMC_RSP_SPI_B4) /* R3/R4/R7 */ 456 cp += 4; 457 else if (cmd->flags & MMC_RSP_BUSY) /* R1B */ 458 cp = data->status + sizeof(data->status); 459 /* else: R1 (most commands) */ 460 } 461 462 dev_dbg(&host->spi->dev, " mmc_spi: CMD%d, resp %s\n", 463 cmd->opcode, maptype(cmd)); 464 465 /* send command, leaving chipselect active */ 466 spi_message_init(&host->m); 467 468 t = &host->t; 469 memset(t, 0, sizeof(*t)); 470 t->tx_buf = t->rx_buf = data->status; 471 t->tx_dma = t->rx_dma = host->data_dma; 472 t->len = cp - data->status; 473 t->cs_change = 1; 474 spi_message_add_tail(t, &host->m); 475 476 if (host->dma_dev) { 477 host->m.is_dma_mapped = 1; 478 dma_sync_single_for_device(host->dma_dev, 479 host->data_dma, sizeof(*host->data), 480 DMA_BIDIRECTIONAL); 481 } 482 status = spi_sync(host->spi, &host->m); 483 if (status == 0) 484 status = host->m.status; 485 486 if (host->dma_dev) 487 dma_sync_single_for_cpu(host->dma_dev, 488 host->data_dma, sizeof(*host->data), 489 DMA_BIDIRECTIONAL); 490 if (status < 0) { 491 dev_dbg(&host->spi->dev, " ... write returned %d\n", status); 492 cmd->error = status; 493 return status; 494 } 495 496 /* after no-data commands and STOP_TRANSMISSION, chipselect off */ 497 return mmc_spi_response_get(host, cmd, cs_on); 498 } 499 500 /* Build data message with up to four separate transfers. For TX, we 501 * start by writing the data token. And in most cases, we finish with 502 * a status transfer. 503 * 504 * We always provide TX data for data and CRC. The MMC/SD protocol 505 * requires us to write ones; but Linux defaults to writing zeroes; 506 * so we explicitly initialize it to all ones on RX paths. 507 * 508 * We also handle DMA mapping, so the underlying SPI controller does 509 * not need to (re)do it for each message. 510 */ 511 static void 512 mmc_spi_setup_data_message( 513 struct mmc_spi_host *host, 514 int multiple, 515 enum dma_data_direction direction) 516 { 517 struct spi_transfer *t; 518 struct scratch *scratch = host->data; 519 dma_addr_t dma = host->data_dma; 520 521 spi_message_init(&host->m); 522 if (dma) 523 host->m.is_dma_mapped = 1; 524 525 /* for reads, readblock() skips 0xff bytes before finding 526 * the token; for writes, this transfer issues that token. 527 */ 528 if (direction == DMA_TO_DEVICE) { 529 t = &host->token; 530 memset(t, 0, sizeof(*t)); 531 t->len = 1; 532 if (multiple) 533 scratch->data_token = SPI_TOKEN_MULTI_WRITE; 534 else 535 scratch->data_token = SPI_TOKEN_SINGLE; 536 t->tx_buf = &scratch->data_token; 537 if (dma) 538 t->tx_dma = dma + offsetof(struct scratch, data_token); 539 spi_message_add_tail(t, &host->m); 540 } 541 542 /* Body of transfer is buffer, then CRC ... 543 * either TX-only, or RX with TX-ones. 544 */ 545 t = &host->t; 546 memset(t, 0, sizeof(*t)); 547 t->tx_buf = host->ones; 548 t->tx_dma = host->ones_dma; 549 /* length and actual buffer info are written later */ 550 spi_message_add_tail(t, &host->m); 551 552 t = &host->crc; 553 memset(t, 0, sizeof(*t)); 554 t->len = 2; 555 if (direction == DMA_TO_DEVICE) { 556 /* the actual CRC may get written later */ 557 t->tx_buf = &scratch->crc_val; 558 if (dma) 559 t->tx_dma = dma + offsetof(struct scratch, crc_val); 560 } else { 561 t->tx_buf = host->ones; 562 t->tx_dma = host->ones_dma; 563 t->rx_buf = &scratch->crc_val; 564 if (dma) 565 t->rx_dma = dma + offsetof(struct scratch, crc_val); 566 } 567 spi_message_add_tail(t, &host->m); 568 569 /* 570 * A single block read is followed by N(EC) [0+] all-ones bytes 571 * before deselect ... don't bother. 572 * 573 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before 574 * the next block is read, or a STOP_TRANSMISSION is issued. We'll 575 * collect that single byte, so readblock() doesn't need to. 576 * 577 * For a write, the one-byte data response follows immediately, then 578 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes. 579 * Then single block reads may deselect, and multiblock ones issue 580 * the next token (next data block, or STOP_TRAN). We can try to 581 * minimize I/O ops by using a single read to collect end-of-busy. 582 */ 583 if (multiple || direction == DMA_TO_DEVICE) { 584 t = &host->early_status; 585 memset(t, 0, sizeof(*t)); 586 t->len = (direction == DMA_TO_DEVICE) 587 ? sizeof(scratch->status) 588 : 1; 589 t->tx_buf = host->ones; 590 t->tx_dma = host->ones_dma; 591 t->rx_buf = scratch->status; 592 if (dma) 593 t->rx_dma = dma + offsetof(struct scratch, status); 594 t->cs_change = 1; 595 spi_message_add_tail(t, &host->m); 596 } 597 } 598 599 /* 600 * Write one block: 601 * - caller handled preceding N(WR) [1+] all-ones bytes 602 * - data block 603 * + token 604 * + data bytes 605 * + crc16 606 * - an all-ones byte ... card writes a data-response byte 607 * - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy' 608 * 609 * Return negative errno, else success. 610 */ 611 static int 612 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t) 613 { 614 struct spi_device *spi = host->spi; 615 int status, i; 616 struct scratch *scratch = host->data; 617 618 if (host->mmc->use_spi_crc) 619 scratch->crc_val = cpu_to_be16( 620 crc_itu_t(0, t->tx_buf, t->len)); 621 if (host->dma_dev) 622 dma_sync_single_for_device(host->dma_dev, 623 host->data_dma, sizeof(*scratch), 624 DMA_BIDIRECTIONAL); 625 626 status = spi_sync(spi, &host->m); 627 if (status == 0) 628 status = host->m.status; 629 630 if (status != 0) { 631 dev_dbg(&spi->dev, "write error (%d)\n", status); 632 return status; 633 } 634 635 if (host->dma_dev) 636 dma_sync_single_for_cpu(host->dma_dev, 637 host->data_dma, sizeof(*scratch), 638 DMA_BIDIRECTIONAL); 639 640 /* 641 * Get the transmission data-response reply. It must follow 642 * immediately after the data block we transferred. This reply 643 * doesn't necessarily tell whether the write operation succeeded; 644 * it just says if the transmission was ok and whether *earlier* 645 * writes succeeded; see the standard. 646 */ 647 switch (SPI_MMC_RESPONSE_CODE(scratch->status[0])) { 648 case SPI_RESPONSE_ACCEPTED: 649 status = 0; 650 break; 651 case SPI_RESPONSE_CRC_ERR: 652 /* host shall then issue MMC_STOP_TRANSMISSION */ 653 status = -EILSEQ; 654 break; 655 case SPI_RESPONSE_WRITE_ERR: 656 /* host shall then issue MMC_STOP_TRANSMISSION, 657 * and should MMC_SEND_STATUS to sort it out 658 */ 659 status = -EIO; 660 break; 661 default: 662 status = -EPROTO; 663 break; 664 } 665 if (status != 0) { 666 dev_dbg(&spi->dev, "write error %02x (%d)\n", 667 scratch->status[0], status); 668 return status; 669 } 670 671 t->tx_buf += t->len; 672 if (host->dma_dev) 673 t->tx_dma += t->len; 674 675 /* Return when not busy. If we didn't collect that status yet, 676 * we'll need some more I/O. 677 */ 678 for (i = 1; i < sizeof(scratch->status); i++) { 679 if (scratch->status[i] != 0) 680 return 0; 681 } 682 return mmc_spi_wait_unbusy(host, writeblock_timeout); 683 } 684 685 /* 686 * Read one block: 687 * - skip leading all-ones bytes ... either 688 * + N(AC) [1..f(clock,CSD)] usually, else 689 * + N(CX) [0..8] when reading CSD or CID 690 * - data block 691 * + token ... if error token, no data or crc 692 * + data bytes 693 * + crc16 694 * 695 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow 696 * before dropping chipselect. 697 * 698 * For multiblock reads, caller either reads the next block or issues a 699 * STOP_TRANSMISSION command. 700 */ 701 static int 702 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t) 703 { 704 struct spi_device *spi = host->spi; 705 int status; 706 struct scratch *scratch = host->data; 707 708 /* At least one SD card sends an all-zeroes byte when N(CX) 709 * applies, before the all-ones bytes ... just cope with that. 710 */ 711 status = mmc_spi_readbytes(host, 1); 712 if (status < 0) 713 return status; 714 status = scratch->status[0]; 715 if (status == 0xff || status == 0) 716 status = mmc_spi_readtoken(host); 717 718 if (status == SPI_TOKEN_SINGLE) { 719 if (host->dma_dev) { 720 dma_sync_single_for_device(host->dma_dev, 721 host->data_dma, sizeof(*scratch), 722 DMA_BIDIRECTIONAL); 723 dma_sync_single_for_device(host->dma_dev, 724 t->rx_dma, t->len, 725 DMA_FROM_DEVICE); 726 } 727 728 status = spi_sync(spi, &host->m); 729 if (status == 0) 730 status = host->m.status; 731 732 if (host->dma_dev) { 733 dma_sync_single_for_cpu(host->dma_dev, 734 host->data_dma, sizeof(*scratch), 735 DMA_BIDIRECTIONAL); 736 dma_sync_single_for_cpu(host->dma_dev, 737 t->rx_dma, t->len, 738 DMA_FROM_DEVICE); 739 } 740 741 } else { 742 dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status); 743 744 /* we've read extra garbage, timed out, etc */ 745 if (status < 0) 746 return status; 747 748 /* low four bits are an R2 subset, fifth seems to be 749 * vendor specific ... map them all to generic error.. 750 */ 751 return -EIO; 752 } 753 754 if (host->mmc->use_spi_crc) { 755 u16 crc = crc_itu_t(0, t->rx_buf, t->len); 756 757 be16_to_cpus(&scratch->crc_val); 758 if (scratch->crc_val != crc) { 759 dev_dbg(&spi->dev, "read - crc error: crc_val=0x%04x, " 760 "computed=0x%04x len=%d\n", 761 scratch->crc_val, crc, t->len); 762 return -EILSEQ; 763 } 764 } 765 766 t->rx_buf += t->len; 767 if (host->dma_dev) 768 t->rx_dma += t->len; 769 770 return 0; 771 } 772 773 /* 774 * An MMC/SD data stage includes one or more blocks, optional CRCs, 775 * and inline handshaking. That handhaking makes it unlike most 776 * other SPI protocol stacks. 777 */ 778 static void 779 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd, 780 struct mmc_data *data, u32 blk_size) 781 { 782 struct spi_device *spi = host->spi; 783 struct device *dma_dev = host->dma_dev; 784 struct spi_transfer *t; 785 enum dma_data_direction direction; 786 struct scatterlist *sg; 787 unsigned n_sg; 788 int multiple = (data->blocks > 1); 789 790 if (data->flags & MMC_DATA_READ) 791 direction = DMA_FROM_DEVICE; 792 else 793 direction = DMA_TO_DEVICE; 794 mmc_spi_setup_data_message(host, multiple, direction); 795 t = &host->t; 796 797 /* Handle scatterlist segments one at a time, with synch for 798 * each 512-byte block 799 */ 800 for (sg = data->sg, n_sg = data->sg_len; n_sg; n_sg--, sg++) { 801 int status = 0; 802 dma_addr_t dma_addr = 0; 803 void *kmap_addr; 804 unsigned length = sg->length; 805 enum dma_data_direction dir = direction; 806 807 /* set up dma mapping for controller drivers that might 808 * use DMA ... though they may fall back to PIO 809 */ 810 if (dma_dev) { 811 /* never invalidate whole *shared* pages ... */ 812 if ((sg->offset != 0 || length != PAGE_SIZE) 813 && dir == DMA_FROM_DEVICE) 814 dir = DMA_BIDIRECTIONAL; 815 816 dma_addr = dma_map_page(dma_dev, sg->page, 0, 817 PAGE_SIZE, dir); 818 if (direction == DMA_TO_DEVICE) 819 t->tx_dma = dma_addr + sg->offset; 820 else 821 t->rx_dma = dma_addr + sg->offset; 822 } 823 824 /* allow pio too; we don't allow highmem */ 825 kmap_addr = kmap(sg->page); 826 if (direction == DMA_TO_DEVICE) 827 t->tx_buf = kmap_addr + sg->offset; 828 else 829 t->rx_buf = kmap_addr + sg->offset; 830 831 /* transfer each block, and update request status */ 832 while (length) { 833 t->len = min(length, blk_size); 834 835 dev_dbg(&host->spi->dev, 836 " mmc_spi: %s block, %d bytes\n", 837 (direction == DMA_TO_DEVICE) 838 ? "write" 839 : "read", 840 t->len); 841 842 if (direction == DMA_TO_DEVICE) 843 status = mmc_spi_writeblock(host, t); 844 else 845 status = mmc_spi_readblock(host, t); 846 if (status < 0) 847 break; 848 849 data->bytes_xfered += t->len; 850 length -= t->len; 851 852 if (!multiple) 853 break; 854 } 855 856 /* discard mappings */ 857 if (direction == DMA_FROM_DEVICE) 858 flush_kernel_dcache_page(sg->page); 859 kunmap(sg->page); 860 if (dma_dev) 861 dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir); 862 863 if (status < 0) { 864 data->error = status; 865 dev_dbg(&spi->dev, "%s status %d\n", 866 (direction == DMA_TO_DEVICE) 867 ? "write" : "read", 868 status); 869 break; 870 } 871 } 872 873 /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that 874 * can be issued before multiblock writes. Unlike its more widely 875 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23), 876 * that can affect the STOP_TRAN logic. Complete (and current) 877 * MMC specs should sort that out before Linux starts using CMD23. 878 */ 879 if (direction == DMA_TO_DEVICE && multiple) { 880 struct scratch *scratch = host->data; 881 int tmp; 882 const unsigned statlen = sizeof(scratch->status); 883 884 dev_dbg(&spi->dev, " mmc_spi: STOP_TRAN\n"); 885 886 /* Tweak the per-block message we set up earlier by morphing 887 * it to hold single buffer with the token followed by some 888 * all-ones bytes ... skip N(BR) (0..1), scan the rest for 889 * "not busy any longer" status, and leave chip selected. 890 */ 891 INIT_LIST_HEAD(&host->m.transfers); 892 list_add(&host->early_status.transfer_list, 893 &host->m.transfers); 894 895 memset(scratch->status, 0xff, statlen); 896 scratch->status[0] = SPI_TOKEN_STOP_TRAN; 897 898 host->early_status.tx_buf = host->early_status.rx_buf; 899 host->early_status.tx_dma = host->early_status.rx_dma; 900 host->early_status.len = statlen; 901 902 if (host->dma_dev) 903 dma_sync_single_for_device(host->dma_dev, 904 host->data_dma, sizeof(*scratch), 905 DMA_BIDIRECTIONAL); 906 907 tmp = spi_sync(spi, &host->m); 908 if (tmp == 0) 909 tmp = host->m.status; 910 911 if (host->dma_dev) 912 dma_sync_single_for_cpu(host->dma_dev, 913 host->data_dma, sizeof(*scratch), 914 DMA_BIDIRECTIONAL); 915 916 if (tmp < 0) { 917 if (!data->error) 918 data->error = tmp; 919 return; 920 } 921 922 /* Ideally we collected "not busy" status with one I/O, 923 * avoiding wasteful byte-at-a-time scanning... but more 924 * I/O is often needed. 925 */ 926 for (tmp = 2; tmp < statlen; tmp++) { 927 if (scratch->status[tmp] != 0) 928 return; 929 } 930 tmp = mmc_spi_wait_unbusy(host, writeblock_timeout); 931 if (tmp < 0 && !data->error) 932 data->error = tmp; 933 } 934 } 935 936 /****************************************************************************/ 937 938 /* 939 * MMC driver implementation -- the interface to the MMC stack 940 */ 941 942 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq) 943 { 944 struct mmc_spi_host *host = mmc_priv(mmc); 945 int status = -EINVAL; 946 947 #ifdef DEBUG 948 /* MMC core and layered drivers *MUST* issue SPI-aware commands */ 949 { 950 struct mmc_command *cmd; 951 int invalid = 0; 952 953 cmd = mrq->cmd; 954 if (!mmc_spi_resp_type(cmd)) { 955 dev_dbg(&host->spi->dev, "bogus command\n"); 956 cmd->error = -EINVAL; 957 invalid = 1; 958 } 959 960 cmd = mrq->stop; 961 if (cmd && !mmc_spi_resp_type(cmd)) { 962 dev_dbg(&host->spi->dev, "bogus STOP command\n"); 963 cmd->error = -EINVAL; 964 invalid = 1; 965 } 966 967 if (invalid) { 968 dump_stack(); 969 mmc_request_done(host->mmc, mrq); 970 return; 971 } 972 } 973 #endif 974 975 /* issue command; then optionally data and stop */ 976 status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL); 977 if (status == 0 && mrq->data) { 978 mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz); 979 if (mrq->stop) 980 status = mmc_spi_command_send(host, mrq, mrq->stop, 0); 981 else 982 mmc_cs_off(host); 983 } 984 985 mmc_request_done(host->mmc, mrq); 986 } 987 988 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0" 989 * 990 * NOTE that here we can't know that the card has just been powered up; 991 * not all MMC/SD sockets support power switching. 992 * 993 * FIXME when the card is still in SPI mode, e.g. from a previous kernel, 994 * this doesn't seem to do the right thing at all... 995 */ 996 static void mmc_spi_initsequence(struct mmc_spi_host *host) 997 { 998 /* Try to be very sure any previous command has completed; 999 * wait till not-busy, skip debris from any old commands. 1000 */ 1001 mmc_spi_wait_unbusy(host, r1b_timeout); 1002 mmc_spi_readbytes(host, 10); 1003 1004 /* 1005 * Do a burst with chipselect active-high. We need to do this to 1006 * meet the requirement of 74 clock cycles with both chipselect 1007 * and CMD (MOSI) high before CMD0 ... after the card has been 1008 * powered up to Vdd(min), and so is ready to take commands. 1009 * 1010 * Some cards are particularly needy of this (e.g. Viking "SD256") 1011 * while most others don't seem to care. 1012 * 1013 * Note that this is one of the places MMC/SD plays games with the 1014 * SPI protocol. Another is that when chipselect is released while 1015 * the card returns BUSY status, the clock must issue several cycles 1016 * with chipselect high before the card will stop driving its output. 1017 */ 1018 host->spi->mode |= SPI_CS_HIGH; 1019 if (spi_setup(host->spi) != 0) { 1020 /* Just warn; most cards work without it. */ 1021 dev_warn(&host->spi->dev, 1022 "can't change chip-select polarity\n"); 1023 host->spi->mode &= ~SPI_CS_HIGH; 1024 } else { 1025 mmc_spi_readbytes(host, 18); 1026 1027 host->spi->mode &= ~SPI_CS_HIGH; 1028 if (spi_setup(host->spi) != 0) { 1029 /* Wot, we can't get the same setup we had before? */ 1030 dev_err(&host->spi->dev, 1031 "can't restore chip-select polarity\n"); 1032 } 1033 } 1034 } 1035 1036 static char *mmc_powerstring(u8 power_mode) 1037 { 1038 switch (power_mode) { 1039 case MMC_POWER_OFF: return "off"; 1040 case MMC_POWER_UP: return "up"; 1041 case MMC_POWER_ON: return "on"; 1042 } 1043 return "?"; 1044 } 1045 1046 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) 1047 { 1048 struct mmc_spi_host *host = mmc_priv(mmc); 1049 1050 if (host->power_mode != ios->power_mode) { 1051 int canpower; 1052 1053 canpower = host->pdata && host->pdata->setpower; 1054 1055 dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n", 1056 mmc_powerstring(ios->power_mode), 1057 ios->vdd, 1058 canpower ? ", can switch" : ""); 1059 1060 /* switch power on/off if possible, accounting for 1061 * max 250msec powerup time if needed. 1062 */ 1063 if (canpower) { 1064 switch (ios->power_mode) { 1065 case MMC_POWER_OFF: 1066 case MMC_POWER_UP: 1067 host->pdata->setpower(&host->spi->dev, 1068 ios->vdd); 1069 if (ios->power_mode == MMC_POWER_UP) 1070 msleep(host->powerup_msecs); 1071 } 1072 } 1073 1074 /* See 6.4.1 in the simplified SD card physical spec 2.0 */ 1075 if (ios->power_mode == MMC_POWER_ON) 1076 mmc_spi_initsequence(host); 1077 1078 /* If powering down, ground all card inputs to avoid power 1079 * delivery from data lines! On a shared SPI bus, this 1080 * will probably be temporary; 6.4.2 of the simplified SD 1081 * spec says this must last at least 1msec. 1082 * 1083 * - Clock low means CPOL 0, e.g. mode 0 1084 * - MOSI low comes from writing zero 1085 * - Chipselect is usually active low... 1086 */ 1087 if (canpower && ios->power_mode == MMC_POWER_OFF) { 1088 int mres; 1089 1090 host->spi->mode &= ~(SPI_CPOL|SPI_CPHA); 1091 mres = spi_setup(host->spi); 1092 if (mres < 0) 1093 dev_dbg(&host->spi->dev, 1094 "switch to SPI mode 0 failed\n"); 1095 1096 if (spi_w8r8(host->spi, 0x00) < 0) 1097 dev_dbg(&host->spi->dev, 1098 "put spi signals to low failed\n"); 1099 1100 /* 1101 * Now clock should be low due to spi mode 0; 1102 * MOSI should be low because of written 0x00; 1103 * chipselect should be low (it is active low) 1104 * power supply is off, so now MMC is off too! 1105 * 1106 * FIXME no, chipselect can be high since the 1107 * device is inactive and SPI_CS_HIGH is clear... 1108 */ 1109 msleep(10); 1110 if (mres == 0) { 1111 host->spi->mode |= (SPI_CPOL|SPI_CPHA); 1112 mres = spi_setup(host->spi); 1113 if (mres < 0) 1114 dev_dbg(&host->spi->dev, 1115 "switch back to SPI mode 3" 1116 " failed\n"); 1117 } 1118 } 1119 1120 host->power_mode = ios->power_mode; 1121 } 1122 1123 if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) { 1124 int status; 1125 1126 host->spi->max_speed_hz = ios->clock; 1127 status = spi_setup(host->spi); 1128 dev_dbg(&host->spi->dev, 1129 "mmc_spi: clock to %d Hz, %d\n", 1130 host->spi->max_speed_hz, status); 1131 } 1132 } 1133 1134 static int mmc_spi_get_ro(struct mmc_host *mmc) 1135 { 1136 struct mmc_spi_host *host = mmc_priv(mmc); 1137 1138 if (host->pdata && host->pdata->get_ro) 1139 return host->pdata->get_ro(mmc->parent); 1140 /* board doesn't support read only detection; assume writeable */ 1141 return 0; 1142 } 1143 1144 1145 static const struct mmc_host_ops mmc_spi_ops = { 1146 .request = mmc_spi_request, 1147 .set_ios = mmc_spi_set_ios, 1148 .get_ro = mmc_spi_get_ro, 1149 }; 1150 1151 1152 /****************************************************************************/ 1153 1154 /* 1155 * SPI driver implementation 1156 */ 1157 1158 static irqreturn_t 1159 mmc_spi_detect_irq(int irq, void *mmc) 1160 { 1161 struct mmc_spi_host *host = mmc_priv(mmc); 1162 u16 delay_msec = max(host->pdata->detect_delay, (u16)100); 1163 1164 mmc_detect_change(mmc, msecs_to_jiffies(delay_msec)); 1165 return IRQ_HANDLED; 1166 } 1167 1168 static int mmc_spi_probe(struct spi_device *spi) 1169 { 1170 void *ones; 1171 struct mmc_host *mmc; 1172 struct mmc_spi_host *host; 1173 int status; 1174 1175 /* MMC and SD specs only seem to care that sampling is on the 1176 * rising edge ... meaning SPI modes 0 or 3. So either SPI mode 1177 * should be legit. We'll use mode 0 since it seems to be a 1178 * bit less troublesome on some hardware ... unclear why. 1179 */ 1180 spi->mode = SPI_MODE_0; 1181 spi->bits_per_word = 8; 1182 1183 status = spi_setup(spi); 1184 if (status < 0) { 1185 dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n", 1186 spi->mode, spi->max_speed_hz / 1000, 1187 status); 1188 return status; 1189 } 1190 1191 /* We can use the bus safely iff nobody else will interfere with 1192 * us. That is, either we have the experimental exclusive access 1193 * primitives ... or else there's nobody to share it with. 1194 */ 1195 if (spi->master->num_chipselect > 1) { 1196 struct device *parent = spi->dev.parent; 1197 1198 /* If there are multiple devices on this bus, we 1199 * can't proceed. 1200 */ 1201 spin_lock(&parent->klist_children.k_lock); 1202 if (parent->klist_children.k_list.next 1203 != parent->klist_children.k_list.prev) 1204 status = -EMLINK; 1205 else 1206 status = 0; 1207 spin_unlock(&parent->klist_children.k_lock); 1208 if (status < 0) { 1209 dev_err(&spi->dev, "can't share SPI bus\n"); 1210 return status; 1211 } 1212 1213 /* REVISIT we can't guarantee another device won't 1214 * be added later. It's uncommon though ... for now, 1215 * work as if this is safe. 1216 */ 1217 dev_warn(&spi->dev, "ASSUMING unshared SPI bus!\n"); 1218 } 1219 1220 /* We need a supply of ones to transmit. This is the only time 1221 * the CPU touches these, so cache coherency isn't a concern. 1222 * 1223 * NOTE if many systems use more than one MMC-over-SPI connector 1224 * it'd save some memory to share this. That's evidently rare. 1225 */ 1226 status = -ENOMEM; 1227 ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL); 1228 if (!ones) 1229 goto nomem; 1230 memset(ones, 0xff, MMC_SPI_BLOCKSIZE); 1231 1232 mmc = mmc_alloc_host(sizeof(*host), &spi->dev); 1233 if (!mmc) 1234 goto nomem; 1235 1236 mmc->ops = &mmc_spi_ops; 1237 mmc->max_blk_size = MMC_SPI_BLOCKSIZE; 1238 1239 /* As long as we keep track of the number of successfully 1240 * transmitted blocks, we're good for multiwrite. 1241 */ 1242 mmc->caps = MMC_CAP_SPI | MMC_CAP_MULTIWRITE; 1243 1244 /* SPI doesn't need the lowspeed device identification thing for 1245 * MMC or SD cards, since it never comes up in open drain mode. 1246 * That's good; some SPI masters can't handle very low speeds! 1247 * 1248 * However, low speed SDIO cards need not handle over 400 KHz; 1249 * that's the only reason not to use a few MHz for f_min (until 1250 * the upper layer reads the target frequency from the CSD). 1251 */ 1252 mmc->f_min = 400000; 1253 mmc->f_max = spi->max_speed_hz; 1254 1255 host = mmc_priv(mmc); 1256 host->mmc = mmc; 1257 host->spi = spi; 1258 1259 host->ones = ones; 1260 1261 /* Platform data is used to hook up things like card sensing 1262 * and power switching gpios. 1263 */ 1264 host->pdata = spi->dev.platform_data; 1265 if (host->pdata) 1266 mmc->ocr_avail = host->pdata->ocr_mask; 1267 if (!mmc->ocr_avail) { 1268 dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n"); 1269 mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34; 1270 } 1271 if (host->pdata && host->pdata->setpower) { 1272 host->powerup_msecs = host->pdata->powerup_msecs; 1273 if (!host->powerup_msecs || host->powerup_msecs > 250) 1274 host->powerup_msecs = 250; 1275 } 1276 1277 dev_set_drvdata(&spi->dev, mmc); 1278 1279 /* preallocate dma buffers */ 1280 host->data = kmalloc(sizeof(*host->data), GFP_KERNEL); 1281 if (!host->data) 1282 goto fail_nobuf1; 1283 1284 if (spi->master->dev.parent->dma_mask) { 1285 struct device *dev = spi->master->dev.parent; 1286 1287 host->dma_dev = dev; 1288 host->ones_dma = dma_map_single(dev, ones, 1289 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1290 host->data_dma = dma_map_single(dev, host->data, 1291 sizeof(*host->data), DMA_BIDIRECTIONAL); 1292 1293 /* REVISIT in theory those map operations can fail... */ 1294 1295 dma_sync_single_for_cpu(host->dma_dev, 1296 host->data_dma, sizeof(*host->data), 1297 DMA_BIDIRECTIONAL); 1298 } 1299 1300 /* setup message for status/busy readback */ 1301 spi_message_init(&host->readback); 1302 host->readback.is_dma_mapped = (host->dma_dev != NULL); 1303 1304 spi_message_add_tail(&host->status, &host->readback); 1305 host->status.tx_buf = host->ones; 1306 host->status.tx_dma = host->ones_dma; 1307 host->status.rx_buf = &host->data->status; 1308 host->status.rx_dma = host->data_dma + offsetof(struct scratch, status); 1309 host->status.cs_change = 1; 1310 1311 /* register card detect irq */ 1312 if (host->pdata && host->pdata->init) { 1313 status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc); 1314 if (status != 0) 1315 goto fail_glue_init; 1316 } 1317 1318 status = mmc_add_host(mmc); 1319 if (status != 0) 1320 goto fail_add_host; 1321 1322 dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n", 1323 mmc->class_dev.bus_id, 1324 host->dma_dev ? "" : ", no DMA", 1325 (host->pdata && host->pdata->get_ro) 1326 ? "" : ", no WP", 1327 (host->pdata && host->pdata->setpower) 1328 ? "" : ", no poweroff"); 1329 return 0; 1330 1331 fail_add_host: 1332 mmc_remove_host (mmc); 1333 fail_glue_init: 1334 if (host->dma_dev) 1335 dma_unmap_single(host->dma_dev, host->data_dma, 1336 sizeof(*host->data), DMA_BIDIRECTIONAL); 1337 kfree(host->data); 1338 1339 fail_nobuf1: 1340 mmc_free_host(mmc); 1341 dev_set_drvdata(&spi->dev, NULL); 1342 1343 nomem: 1344 kfree(ones); 1345 return status; 1346 } 1347 1348 1349 static int __devexit mmc_spi_remove(struct spi_device *spi) 1350 { 1351 struct mmc_host *mmc = dev_get_drvdata(&spi->dev); 1352 struct mmc_spi_host *host; 1353 1354 if (mmc) { 1355 host = mmc_priv(mmc); 1356 1357 /* prevent new mmc_detect_change() calls */ 1358 if (host->pdata && host->pdata->exit) 1359 host->pdata->exit(&spi->dev, mmc); 1360 1361 mmc_remove_host(mmc); 1362 1363 if (host->dma_dev) { 1364 dma_unmap_single(host->dma_dev, host->ones_dma, 1365 MMC_SPI_BLOCKSIZE, DMA_TO_DEVICE); 1366 dma_unmap_single(host->dma_dev, host->data_dma, 1367 sizeof(*host->data), DMA_BIDIRECTIONAL); 1368 } 1369 1370 kfree(host->data); 1371 kfree(host->ones); 1372 1373 spi->max_speed_hz = mmc->f_max; 1374 mmc_free_host(mmc); 1375 dev_set_drvdata(&spi->dev, NULL); 1376 } 1377 return 0; 1378 } 1379 1380 1381 static struct spi_driver mmc_spi_driver = { 1382 .driver = { 1383 .name = "mmc_spi", 1384 .bus = &spi_bus_type, 1385 .owner = THIS_MODULE, 1386 }, 1387 .probe = mmc_spi_probe, 1388 .remove = __devexit_p(mmc_spi_remove), 1389 }; 1390 1391 1392 static int __init mmc_spi_init(void) 1393 { 1394 return spi_register_driver(&mmc_spi_driver); 1395 } 1396 module_init(mmc_spi_init); 1397 1398 1399 static void __exit mmc_spi_exit(void) 1400 { 1401 spi_unregister_driver(&mmc_spi_driver); 1402 } 1403 module_exit(mmc_spi_exit); 1404 1405 1406 MODULE_AUTHOR("Mike Lavender, David Brownell, " 1407 "Hans-Peter Nilsson, Jan Nikitenko"); 1408 MODULE_DESCRIPTION("SPI SD/MMC host driver"); 1409 MODULE_LICENSE("GPL"); 1410