xref: /openbmc/linux/drivers/misc/vmw_vmci/vmci_queue_pair.c (revision 6417f03132a6952cd17ddd8eaddbac92b61b17e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware VMCI Driver
4  *
5  * Copyright (C) 2012 VMware, Inc. All rights reserved.
6  */
7 
8 #include <linux/vmw_vmci_defs.h>
9 #include <linux/vmw_vmci_api.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/pagemap.h>
16 #include <linux/pci.h>
17 #include <linux/sched.h>
18 #include <linux/slab.h>
19 #include <linux/uio.h>
20 #include <linux/wait.h>
21 #include <linux/vmalloc.h>
22 #include <linux/skbuff.h>
23 
24 #include "vmci_handle_array.h"
25 #include "vmci_queue_pair.h"
26 #include "vmci_datagram.h"
27 #include "vmci_resource.h"
28 #include "vmci_context.h"
29 #include "vmci_driver.h"
30 #include "vmci_event.h"
31 #include "vmci_route.h"
32 
33 /*
34  * In the following, we will distinguish between two kinds of VMX processes -
35  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
36  * VMCI page files in the VMX and supporting VM to VM communication and the
37  * newer ones that use the guest memory directly. We will in the following
38  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
39  * new-style VMX'en.
40  *
41  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
42  * removed for readability) - see below for more details on the transtions:
43  *
44  *            --------------  NEW  -------------
45  *            |                                |
46  *           \_/                              \_/
47  *     CREATED_NO_MEM <-----------------> CREATED_MEM
48  *            |    |                           |
49  *            |    o-----------------------o   |
50  *            |                            |   |
51  *           \_/                          \_/ \_/
52  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
53  *            |                            |   |
54  *            |     o----------------------o   |
55  *            |     |                          |
56  *           \_/   \_/                        \_/
57  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
58  *            |                                |
59  *            |                                |
60  *            -------------> gone <-------------
61  *
62  * In more detail. When a VMCI queue pair is first created, it will be in the
63  * VMCIQPB_NEW state. It will then move into one of the following states:
64  *
65  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
66  *
67  *     - the created was performed by a host endpoint, in which case there is
68  *       no backing memory yet.
69  *
70  *     - the create was initiated by an old-style VMX, that uses
71  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
72  *       a later point in time. This state can be distinguished from the one
73  *       above by the context ID of the creator. A host side is not allowed to
74  *       attach until the page store has been set.
75  *
76  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
77  *     is created by a VMX using the queue pair device backend that
78  *     sets the UVAs of the queue pair immediately and stores the
79  *     information for later attachers. At this point, it is ready for
80  *     the host side to attach to it.
81  *
82  * Once the queue pair is in one of the created states (with the exception of
83  * the case mentioned for older VMX'en above), it is possible to attach to the
84  * queue pair. Again we have two new states possible:
85  *
86  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
87  *   paths:
88  *
89  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
90  *       pair, and attaches to a queue pair previously created by the host side.
91  *
92  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
93  *       already created by a guest.
94  *
95  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
96  *       vmci_qp_broker_set_page_store (see below).
97  *
98  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
99  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
100  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
101  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
102  *     will be entered.
103  *
104  * From the attached queue pair, the queue pair can enter the shutdown states
105  * when either side of the queue pair detaches. If the guest side detaches
106  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
107  * the content of the queue pair will no longer be available. If the host
108  * side detaches first, the queue pair will either enter the
109  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
110  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
111  * (e.g., the host detaches while a guest is stunned).
112  *
113  * New-style VMX'en will also unmap guest memory, if the guest is
114  * quiesced, e.g., during a snapshot operation. In that case, the guest
115  * memory will no longer be available, and the queue pair will transition from
116  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
117  * in which case the queue pair will transition from the *_NO_MEM state at that
118  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
119  * since the peer may have either attached or detached in the meantime. The
120  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
121  * *_MEM state, and vice versa.
122  */
123 
124 /* The Kernel specific component of the struct vmci_queue structure. */
125 struct vmci_queue_kern_if {
126 	struct mutex __mutex;	/* Protects the queue. */
127 	struct mutex *mutex;	/* Shared by producer and consumer queues. */
128 	size_t num_pages;	/* Number of pages incl. header. */
129 	bool host;		/* Host or guest? */
130 	union {
131 		struct {
132 			dma_addr_t *pas;
133 			void **vas;
134 		} g;		/* Used by the guest. */
135 		struct {
136 			struct page **page;
137 			struct page **header_page;
138 		} h;		/* Used by the host. */
139 	} u;
140 };
141 
142 /*
143  * This structure is opaque to the clients.
144  */
145 struct vmci_qp {
146 	struct vmci_handle handle;
147 	struct vmci_queue *produce_q;
148 	struct vmci_queue *consume_q;
149 	u64 produce_q_size;
150 	u64 consume_q_size;
151 	u32 peer;
152 	u32 flags;
153 	u32 priv_flags;
154 	bool guest_endpoint;
155 	unsigned int blocked;
156 	unsigned int generation;
157 	wait_queue_head_t event;
158 };
159 
160 enum qp_broker_state {
161 	VMCIQPB_NEW,
162 	VMCIQPB_CREATED_NO_MEM,
163 	VMCIQPB_CREATED_MEM,
164 	VMCIQPB_ATTACHED_NO_MEM,
165 	VMCIQPB_ATTACHED_MEM,
166 	VMCIQPB_SHUTDOWN_NO_MEM,
167 	VMCIQPB_SHUTDOWN_MEM,
168 	VMCIQPB_GONE
169 };
170 
171 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
172 				     _qpb->state == VMCIQPB_ATTACHED_MEM || \
173 				     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
174 
175 /*
176  * In the queue pair broker, we always use the guest point of view for
177  * the produce and consume queue values and references, e.g., the
178  * produce queue size stored is the guests produce queue size. The
179  * host endpoint will need to swap these around. The only exception is
180  * the local queue pairs on the host, in which case the host endpoint
181  * that creates the queue pair will have the right orientation, and
182  * the attaching host endpoint will need to swap.
183  */
184 struct qp_entry {
185 	struct list_head list_item;
186 	struct vmci_handle handle;
187 	u32 peer;
188 	u32 flags;
189 	u64 produce_size;
190 	u64 consume_size;
191 	u32 ref_count;
192 };
193 
194 struct qp_broker_entry {
195 	struct vmci_resource resource;
196 	struct qp_entry qp;
197 	u32 create_id;
198 	u32 attach_id;
199 	enum qp_broker_state state;
200 	bool require_trusted_attach;
201 	bool created_by_trusted;
202 	bool vmci_page_files;	/* Created by VMX using VMCI page files */
203 	struct vmci_queue *produce_q;
204 	struct vmci_queue *consume_q;
205 	struct vmci_queue_header saved_produce_q;
206 	struct vmci_queue_header saved_consume_q;
207 	vmci_event_release_cb wakeup_cb;
208 	void *client_data;
209 	void *local_mem;	/* Kernel memory for local queue pair */
210 };
211 
212 struct qp_guest_endpoint {
213 	struct vmci_resource resource;
214 	struct qp_entry qp;
215 	u64 num_ppns;
216 	void *produce_q;
217 	void *consume_q;
218 	struct ppn_set ppn_set;
219 };
220 
221 struct qp_list {
222 	struct list_head head;
223 	struct mutex mutex;	/* Protect queue list. */
224 };
225 
226 static struct qp_list qp_broker_list = {
227 	.head = LIST_HEAD_INIT(qp_broker_list.head),
228 	.mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
229 };
230 
231 static struct qp_list qp_guest_endpoints = {
232 	.head = LIST_HEAD_INIT(qp_guest_endpoints.head),
233 	.mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
234 };
235 
236 #define INVALID_VMCI_GUEST_MEM_ID  0
237 #define QPE_NUM_PAGES(_QPE) ((u32) \
238 			     (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
239 			      DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
240 #define QP_SIZES_ARE_VALID(_prod_qsize, _cons_qsize) \
241 	((_prod_qsize) + (_cons_qsize) >= max(_prod_qsize, _cons_qsize) && \
242 	 (_prod_qsize) + (_cons_qsize) <= VMCI_MAX_GUEST_QP_MEMORY)
243 
244 /*
245  * Frees kernel VA space for a given queue and its queue header, and
246  * frees physical data pages.
247  */
248 static void qp_free_queue(void *q, u64 size)
249 {
250 	struct vmci_queue *queue = q;
251 
252 	if (queue) {
253 		u64 i;
254 
255 		/* Given size does not include header, so add in a page here. */
256 		for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
257 			dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
258 					  queue->kernel_if->u.g.vas[i],
259 					  queue->kernel_if->u.g.pas[i]);
260 		}
261 
262 		vfree(queue);
263 	}
264 }
265 
266 /*
267  * Allocates kernel queue pages of specified size with IOMMU mappings,
268  * plus space for the queue structure/kernel interface and the queue
269  * header.
270  */
271 static void *qp_alloc_queue(u64 size, u32 flags)
272 {
273 	u64 i;
274 	struct vmci_queue *queue;
275 	size_t pas_size;
276 	size_t vas_size;
277 	size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
278 	u64 num_pages;
279 
280 	if (size > SIZE_MAX - PAGE_SIZE)
281 		return NULL;
282 	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
283 	if (num_pages >
284 		 (SIZE_MAX - queue_size) /
285 		 (sizeof(*queue->kernel_if->u.g.pas) +
286 		  sizeof(*queue->kernel_if->u.g.vas)))
287 		return NULL;
288 
289 	pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
290 	vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
291 	queue_size += pas_size + vas_size;
292 
293 	queue = vmalloc(queue_size);
294 	if (!queue)
295 		return NULL;
296 
297 	queue->q_header = NULL;
298 	queue->saved_header = NULL;
299 	queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
300 	queue->kernel_if->mutex = NULL;
301 	queue->kernel_if->num_pages = num_pages;
302 	queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
303 	queue->kernel_if->u.g.vas =
304 		(void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
305 	queue->kernel_if->host = false;
306 
307 	for (i = 0; i < num_pages; i++) {
308 		queue->kernel_if->u.g.vas[i] =
309 			dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
310 					   &queue->kernel_if->u.g.pas[i],
311 					   GFP_KERNEL);
312 		if (!queue->kernel_if->u.g.vas[i]) {
313 			/* Size excl. the header. */
314 			qp_free_queue(queue, i * PAGE_SIZE);
315 			return NULL;
316 		}
317 	}
318 
319 	/* Queue header is the first page. */
320 	queue->q_header = queue->kernel_if->u.g.vas[0];
321 
322 	return queue;
323 }
324 
325 /*
326  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
327  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
328  * by traversing the offset -> page translation structure for the queue.
329  * Assumes that offset + size does not wrap around in the queue.
330  */
331 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
332 				  u64 queue_offset,
333 				  struct iov_iter *from,
334 				  size_t size)
335 {
336 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
337 	size_t bytes_copied = 0;
338 
339 	while (bytes_copied < size) {
340 		const u64 page_index =
341 			(queue_offset + bytes_copied) / PAGE_SIZE;
342 		const size_t page_offset =
343 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
344 		void *va;
345 		size_t to_copy;
346 
347 		if (kernel_if->host)
348 			va = kmap(kernel_if->u.h.page[page_index]);
349 		else
350 			va = kernel_if->u.g.vas[page_index + 1];
351 			/* Skip header. */
352 
353 		if (size - bytes_copied > PAGE_SIZE - page_offset)
354 			/* Enough payload to fill up from this page. */
355 			to_copy = PAGE_SIZE - page_offset;
356 		else
357 			to_copy = size - bytes_copied;
358 
359 		if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
360 					 from)) {
361 			if (kernel_if->host)
362 				kunmap(kernel_if->u.h.page[page_index]);
363 			return VMCI_ERROR_INVALID_ARGS;
364 		}
365 		bytes_copied += to_copy;
366 		if (kernel_if->host)
367 			kunmap(kernel_if->u.h.page[page_index]);
368 	}
369 
370 	return VMCI_SUCCESS;
371 }
372 
373 /*
374  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
375  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
376  * by traversing the offset -> page translation structure for the queue.
377  * Assumes that offset + size does not wrap around in the queue.
378  */
379 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
380 				    const struct vmci_queue *queue,
381 				    u64 queue_offset, size_t size)
382 {
383 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
384 	size_t bytes_copied = 0;
385 
386 	while (bytes_copied < size) {
387 		const u64 page_index =
388 			(queue_offset + bytes_copied) / PAGE_SIZE;
389 		const size_t page_offset =
390 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
391 		void *va;
392 		size_t to_copy;
393 		int err;
394 
395 		if (kernel_if->host)
396 			va = kmap(kernel_if->u.h.page[page_index]);
397 		else
398 			va = kernel_if->u.g.vas[page_index + 1];
399 			/* Skip header. */
400 
401 		if (size - bytes_copied > PAGE_SIZE - page_offset)
402 			/* Enough payload to fill up this page. */
403 			to_copy = PAGE_SIZE - page_offset;
404 		else
405 			to_copy = size - bytes_copied;
406 
407 		err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
408 		if (err != to_copy) {
409 			if (kernel_if->host)
410 				kunmap(kernel_if->u.h.page[page_index]);
411 			return VMCI_ERROR_INVALID_ARGS;
412 		}
413 		bytes_copied += to_copy;
414 		if (kernel_if->host)
415 			kunmap(kernel_if->u.h.page[page_index]);
416 	}
417 
418 	return VMCI_SUCCESS;
419 }
420 
421 /*
422  * Allocates two list of PPNs --- one for the pages in the produce queue,
423  * and the other for the pages in the consume queue. Intializes the list
424  * of PPNs with the page frame numbers of the KVA for the two queues (and
425  * the queue headers).
426  */
427 static int qp_alloc_ppn_set(void *prod_q,
428 			    u64 num_produce_pages,
429 			    void *cons_q,
430 			    u64 num_consume_pages, struct ppn_set *ppn_set)
431 {
432 	u64 *produce_ppns;
433 	u64 *consume_ppns;
434 	struct vmci_queue *produce_q = prod_q;
435 	struct vmci_queue *consume_q = cons_q;
436 	u64 i;
437 
438 	if (!produce_q || !num_produce_pages || !consume_q ||
439 	    !num_consume_pages || !ppn_set)
440 		return VMCI_ERROR_INVALID_ARGS;
441 
442 	if (ppn_set->initialized)
443 		return VMCI_ERROR_ALREADY_EXISTS;
444 
445 	produce_ppns =
446 	    kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
447 			  GFP_KERNEL);
448 	if (!produce_ppns)
449 		return VMCI_ERROR_NO_MEM;
450 
451 	consume_ppns =
452 	    kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
453 			  GFP_KERNEL);
454 	if (!consume_ppns) {
455 		kfree(produce_ppns);
456 		return VMCI_ERROR_NO_MEM;
457 	}
458 
459 	for (i = 0; i < num_produce_pages; i++)
460 		produce_ppns[i] =
461 			produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
462 
463 	for (i = 0; i < num_consume_pages; i++)
464 		consume_ppns[i] =
465 			consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
466 
467 	ppn_set->num_produce_pages = num_produce_pages;
468 	ppn_set->num_consume_pages = num_consume_pages;
469 	ppn_set->produce_ppns = produce_ppns;
470 	ppn_set->consume_ppns = consume_ppns;
471 	ppn_set->initialized = true;
472 	return VMCI_SUCCESS;
473 }
474 
475 /*
476  * Frees the two list of PPNs for a queue pair.
477  */
478 static void qp_free_ppn_set(struct ppn_set *ppn_set)
479 {
480 	if (ppn_set->initialized) {
481 		/* Do not call these functions on NULL inputs. */
482 		kfree(ppn_set->produce_ppns);
483 		kfree(ppn_set->consume_ppns);
484 	}
485 	memset(ppn_set, 0, sizeof(*ppn_set));
486 }
487 
488 /*
489  * Populates the list of PPNs in the hypercall structure with the PPNS
490  * of the produce queue and the consume queue.
491  */
492 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
493 {
494 	if (vmci_use_ppn64()) {
495 		memcpy(call_buf, ppn_set->produce_ppns,
496 		       ppn_set->num_produce_pages *
497 		       sizeof(*ppn_set->produce_ppns));
498 		memcpy(call_buf +
499 		       ppn_set->num_produce_pages *
500 		       sizeof(*ppn_set->produce_ppns),
501 		       ppn_set->consume_ppns,
502 		       ppn_set->num_consume_pages *
503 		       sizeof(*ppn_set->consume_ppns));
504 	} else {
505 		int i;
506 		u32 *ppns = (u32 *) call_buf;
507 
508 		for (i = 0; i < ppn_set->num_produce_pages; i++)
509 			ppns[i] = (u32) ppn_set->produce_ppns[i];
510 
511 		ppns = &ppns[ppn_set->num_produce_pages];
512 
513 		for (i = 0; i < ppn_set->num_consume_pages; i++)
514 			ppns[i] = (u32) ppn_set->consume_ppns[i];
515 	}
516 
517 	return VMCI_SUCCESS;
518 }
519 
520 /*
521  * Allocates kernel VA space of specified size plus space for the queue
522  * and kernel interface.  This is different from the guest queue allocator,
523  * because we do not allocate our own queue header/data pages here but
524  * share those of the guest.
525  */
526 static struct vmci_queue *qp_host_alloc_queue(u64 size)
527 {
528 	struct vmci_queue *queue;
529 	size_t queue_page_size;
530 	u64 num_pages;
531 	const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
532 
533 	if (size > min_t(size_t, VMCI_MAX_GUEST_QP_MEMORY, SIZE_MAX - PAGE_SIZE))
534 		return NULL;
535 	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
536 	if (num_pages > (SIZE_MAX - queue_size) /
537 		 sizeof(*queue->kernel_if->u.h.page))
538 		return NULL;
539 
540 	queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
541 
542 	if (queue_size + queue_page_size > KMALLOC_MAX_SIZE)
543 		return NULL;
544 
545 	queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
546 	if (queue) {
547 		queue->q_header = NULL;
548 		queue->saved_header = NULL;
549 		queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
550 		queue->kernel_if->host = true;
551 		queue->kernel_if->mutex = NULL;
552 		queue->kernel_if->num_pages = num_pages;
553 		queue->kernel_if->u.h.header_page =
554 		    (struct page **)((u8 *)queue + queue_size);
555 		queue->kernel_if->u.h.page =
556 			&queue->kernel_if->u.h.header_page[1];
557 	}
558 
559 	return queue;
560 }
561 
562 /*
563  * Frees kernel memory for a given queue (header plus translation
564  * structure).
565  */
566 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
567 {
568 	kfree(queue);
569 }
570 
571 /*
572  * Initialize the mutex for the pair of queues.  This mutex is used to
573  * protect the q_header and the buffer from changing out from under any
574  * users of either queue.  Of course, it's only any good if the mutexes
575  * are actually acquired.  Queue structure must lie on non-paged memory
576  * or we cannot guarantee access to the mutex.
577  */
578 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
579 				struct vmci_queue *consume_q)
580 {
581 	/*
582 	 * Only the host queue has shared state - the guest queues do not
583 	 * need to synchronize access using a queue mutex.
584 	 */
585 
586 	if (produce_q->kernel_if->host) {
587 		produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
588 		consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
589 		mutex_init(produce_q->kernel_if->mutex);
590 	}
591 }
592 
593 /*
594  * Cleans up the mutex for the pair of queues.
595  */
596 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
597 				   struct vmci_queue *consume_q)
598 {
599 	if (produce_q->kernel_if->host) {
600 		produce_q->kernel_if->mutex = NULL;
601 		consume_q->kernel_if->mutex = NULL;
602 	}
603 }
604 
605 /*
606  * Acquire the mutex for the queue.  Note that the produce_q and
607  * the consume_q share a mutex.  So, only one of the two need to
608  * be passed in to this routine.  Either will work just fine.
609  */
610 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
611 {
612 	if (queue->kernel_if->host)
613 		mutex_lock(queue->kernel_if->mutex);
614 }
615 
616 /*
617  * Release the mutex for the queue.  Note that the produce_q and
618  * the consume_q share a mutex.  So, only one of the two need to
619  * be passed in to this routine.  Either will work just fine.
620  */
621 static void qp_release_queue_mutex(struct vmci_queue *queue)
622 {
623 	if (queue->kernel_if->host)
624 		mutex_unlock(queue->kernel_if->mutex);
625 }
626 
627 /*
628  * Helper function to release pages in the PageStoreAttachInfo
629  * previously obtained using get_user_pages.
630  */
631 static void qp_release_pages(struct page **pages,
632 			     u64 num_pages, bool dirty)
633 {
634 	int i;
635 
636 	for (i = 0; i < num_pages; i++) {
637 		if (dirty)
638 			set_page_dirty_lock(pages[i]);
639 
640 		put_page(pages[i]);
641 		pages[i] = NULL;
642 	}
643 }
644 
645 /*
646  * Lock the user pages referenced by the {produce,consume}Buffer
647  * struct into memory and populate the {produce,consume}Pages
648  * arrays in the attach structure with them.
649  */
650 static int qp_host_get_user_memory(u64 produce_uva,
651 				   u64 consume_uva,
652 				   struct vmci_queue *produce_q,
653 				   struct vmci_queue *consume_q)
654 {
655 	int retval;
656 	int err = VMCI_SUCCESS;
657 
658 	retval = get_user_pages_fast((uintptr_t) produce_uva,
659 				     produce_q->kernel_if->num_pages,
660 				     FOLL_WRITE,
661 				     produce_q->kernel_if->u.h.header_page);
662 	if (retval < (int)produce_q->kernel_if->num_pages) {
663 		pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
664 			retval);
665 		if (retval > 0)
666 			qp_release_pages(produce_q->kernel_if->u.h.header_page,
667 					retval, false);
668 		err = VMCI_ERROR_NO_MEM;
669 		goto out;
670 	}
671 
672 	retval = get_user_pages_fast((uintptr_t) consume_uva,
673 				     consume_q->kernel_if->num_pages,
674 				     FOLL_WRITE,
675 				     consume_q->kernel_if->u.h.header_page);
676 	if (retval < (int)consume_q->kernel_if->num_pages) {
677 		pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
678 			retval);
679 		if (retval > 0)
680 			qp_release_pages(consume_q->kernel_if->u.h.header_page,
681 					retval, false);
682 		qp_release_pages(produce_q->kernel_if->u.h.header_page,
683 				 produce_q->kernel_if->num_pages, false);
684 		err = VMCI_ERROR_NO_MEM;
685 	}
686 
687  out:
688 	return err;
689 }
690 
691 /*
692  * Registers the specification of the user pages used for backing a queue
693  * pair. Enough information to map in pages is stored in the OS specific
694  * part of the struct vmci_queue structure.
695  */
696 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
697 					struct vmci_queue *produce_q,
698 					struct vmci_queue *consume_q)
699 {
700 	u64 produce_uva;
701 	u64 consume_uva;
702 
703 	/*
704 	 * The new style and the old style mapping only differs in
705 	 * that we either get a single or two UVAs, so we split the
706 	 * single UVA range at the appropriate spot.
707 	 */
708 	produce_uva = page_store->pages;
709 	consume_uva = page_store->pages +
710 	    produce_q->kernel_if->num_pages * PAGE_SIZE;
711 	return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
712 				       consume_q);
713 }
714 
715 /*
716  * Releases and removes the references to user pages stored in the attach
717  * struct.  Pages are released from the page cache and may become
718  * swappable again.
719  */
720 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
721 					   struct vmci_queue *consume_q)
722 {
723 	qp_release_pages(produce_q->kernel_if->u.h.header_page,
724 			 produce_q->kernel_if->num_pages, true);
725 	memset(produce_q->kernel_if->u.h.header_page, 0,
726 	       sizeof(*produce_q->kernel_if->u.h.header_page) *
727 	       produce_q->kernel_if->num_pages);
728 	qp_release_pages(consume_q->kernel_if->u.h.header_page,
729 			 consume_q->kernel_if->num_pages, true);
730 	memset(consume_q->kernel_if->u.h.header_page, 0,
731 	       sizeof(*consume_q->kernel_if->u.h.header_page) *
732 	       consume_q->kernel_if->num_pages);
733 }
734 
735 /*
736  * Once qp_host_register_user_memory has been performed on a
737  * queue, the queue pair headers can be mapped into the
738  * kernel. Once mapped, they must be unmapped with
739  * qp_host_unmap_queues prior to calling
740  * qp_host_unregister_user_memory.
741  * Pages are pinned.
742  */
743 static int qp_host_map_queues(struct vmci_queue *produce_q,
744 			      struct vmci_queue *consume_q)
745 {
746 	int result;
747 
748 	if (!produce_q->q_header || !consume_q->q_header) {
749 		struct page *headers[2];
750 
751 		if (produce_q->q_header != consume_q->q_header)
752 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
753 
754 		if (produce_q->kernel_if->u.h.header_page == NULL ||
755 		    *produce_q->kernel_if->u.h.header_page == NULL)
756 			return VMCI_ERROR_UNAVAILABLE;
757 
758 		headers[0] = *produce_q->kernel_if->u.h.header_page;
759 		headers[1] = *consume_q->kernel_if->u.h.header_page;
760 
761 		produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
762 		if (produce_q->q_header != NULL) {
763 			consume_q->q_header =
764 			    (struct vmci_queue_header *)((u8 *)
765 							 produce_q->q_header +
766 							 PAGE_SIZE);
767 			result = VMCI_SUCCESS;
768 		} else {
769 			pr_warn("vmap failed\n");
770 			result = VMCI_ERROR_NO_MEM;
771 		}
772 	} else {
773 		result = VMCI_SUCCESS;
774 	}
775 
776 	return result;
777 }
778 
779 /*
780  * Unmaps previously mapped queue pair headers from the kernel.
781  * Pages are unpinned.
782  */
783 static int qp_host_unmap_queues(u32 gid,
784 				struct vmci_queue *produce_q,
785 				struct vmci_queue *consume_q)
786 {
787 	if (produce_q->q_header) {
788 		if (produce_q->q_header < consume_q->q_header)
789 			vunmap(produce_q->q_header);
790 		else
791 			vunmap(consume_q->q_header);
792 
793 		produce_q->q_header = NULL;
794 		consume_q->q_header = NULL;
795 	}
796 
797 	return VMCI_SUCCESS;
798 }
799 
800 /*
801  * Finds the entry in the list corresponding to a given handle. Assumes
802  * that the list is locked.
803  */
804 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
805 				     struct vmci_handle handle)
806 {
807 	struct qp_entry *entry;
808 
809 	if (vmci_handle_is_invalid(handle))
810 		return NULL;
811 
812 	list_for_each_entry(entry, &qp_list->head, list_item) {
813 		if (vmci_handle_is_equal(entry->handle, handle))
814 			return entry;
815 	}
816 
817 	return NULL;
818 }
819 
820 /*
821  * Finds the entry in the list corresponding to a given handle.
822  */
823 static struct qp_guest_endpoint *
824 qp_guest_handle_to_entry(struct vmci_handle handle)
825 {
826 	struct qp_guest_endpoint *entry;
827 	struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
828 
829 	entry = qp ? container_of(
830 		qp, struct qp_guest_endpoint, qp) : NULL;
831 	return entry;
832 }
833 
834 /*
835  * Finds the entry in the list corresponding to a given handle.
836  */
837 static struct qp_broker_entry *
838 qp_broker_handle_to_entry(struct vmci_handle handle)
839 {
840 	struct qp_broker_entry *entry;
841 	struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
842 
843 	entry = qp ? container_of(
844 		qp, struct qp_broker_entry, qp) : NULL;
845 	return entry;
846 }
847 
848 /*
849  * Dispatches a queue pair event message directly into the local event
850  * queue.
851  */
852 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
853 {
854 	u32 context_id = vmci_get_context_id();
855 	struct vmci_event_qp ev;
856 
857 	ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
858 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
859 					  VMCI_CONTEXT_RESOURCE_ID);
860 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
861 	ev.msg.event_data.event =
862 	    attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
863 	ev.payload.peer_id = context_id;
864 	ev.payload.handle = handle;
865 
866 	return vmci_event_dispatch(&ev.msg.hdr);
867 }
868 
869 /*
870  * Allocates and initializes a qp_guest_endpoint structure.
871  * Allocates a queue_pair rid (and handle) iff the given entry has
872  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
873  * are reserved handles.  Assumes that the QP list mutex is held
874  * by the caller.
875  */
876 static struct qp_guest_endpoint *
877 qp_guest_endpoint_create(struct vmci_handle handle,
878 			 u32 peer,
879 			 u32 flags,
880 			 u64 produce_size,
881 			 u64 consume_size,
882 			 void *produce_q,
883 			 void *consume_q)
884 {
885 	int result;
886 	struct qp_guest_endpoint *entry;
887 	/* One page each for the queue headers. */
888 	const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
889 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
890 
891 	if (vmci_handle_is_invalid(handle)) {
892 		u32 context_id = vmci_get_context_id();
893 
894 		handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
895 	}
896 
897 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
898 	if (entry) {
899 		entry->qp.peer = peer;
900 		entry->qp.flags = flags;
901 		entry->qp.produce_size = produce_size;
902 		entry->qp.consume_size = consume_size;
903 		entry->qp.ref_count = 0;
904 		entry->num_ppns = num_ppns;
905 		entry->produce_q = produce_q;
906 		entry->consume_q = consume_q;
907 		INIT_LIST_HEAD(&entry->qp.list_item);
908 
909 		/* Add resource obj */
910 		result = vmci_resource_add(&entry->resource,
911 					   VMCI_RESOURCE_TYPE_QPAIR_GUEST,
912 					   handle);
913 		entry->qp.handle = vmci_resource_handle(&entry->resource);
914 		if ((result != VMCI_SUCCESS) ||
915 		    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
916 			pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
917 				handle.context, handle.resource, result);
918 			kfree(entry);
919 			entry = NULL;
920 		}
921 	}
922 	return entry;
923 }
924 
925 /*
926  * Frees a qp_guest_endpoint structure.
927  */
928 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
929 {
930 	qp_free_ppn_set(&entry->ppn_set);
931 	qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
932 	qp_free_queue(entry->produce_q, entry->qp.produce_size);
933 	qp_free_queue(entry->consume_q, entry->qp.consume_size);
934 	/* Unlink from resource hash table and free callback */
935 	vmci_resource_remove(&entry->resource);
936 
937 	kfree(entry);
938 }
939 
940 /*
941  * Helper to make a queue_pairAlloc hypercall when the driver is
942  * supporting a guest device.
943  */
944 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
945 {
946 	struct vmci_qp_alloc_msg *alloc_msg;
947 	size_t msg_size;
948 	size_t ppn_size;
949 	int result;
950 
951 	if (!entry || entry->num_ppns <= 2)
952 		return VMCI_ERROR_INVALID_ARGS;
953 
954 	ppn_size = vmci_use_ppn64() ? sizeof(u64) : sizeof(u32);
955 	msg_size = sizeof(*alloc_msg) +
956 	    (size_t) entry->num_ppns * ppn_size;
957 	alloc_msg = kmalloc(msg_size, GFP_KERNEL);
958 	if (!alloc_msg)
959 		return VMCI_ERROR_NO_MEM;
960 
961 	alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
962 					      VMCI_QUEUEPAIR_ALLOC);
963 	alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
964 	alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
965 	alloc_msg->handle = entry->qp.handle;
966 	alloc_msg->peer = entry->qp.peer;
967 	alloc_msg->flags = entry->qp.flags;
968 	alloc_msg->produce_size = entry->qp.produce_size;
969 	alloc_msg->consume_size = entry->qp.consume_size;
970 	alloc_msg->num_ppns = entry->num_ppns;
971 
972 	result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
973 				     &entry->ppn_set);
974 	if (result == VMCI_SUCCESS)
975 		result = vmci_send_datagram(&alloc_msg->hdr);
976 
977 	kfree(alloc_msg);
978 
979 	return result;
980 }
981 
982 /*
983  * Helper to make a queue_pairDetach hypercall when the driver is
984  * supporting a guest device.
985  */
986 static int qp_detatch_hypercall(struct vmci_handle handle)
987 {
988 	struct vmci_qp_detach_msg detach_msg;
989 
990 	detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
991 					      VMCI_QUEUEPAIR_DETACH);
992 	detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
993 	detach_msg.hdr.payload_size = sizeof(handle);
994 	detach_msg.handle = handle;
995 
996 	return vmci_send_datagram(&detach_msg.hdr);
997 }
998 
999 /*
1000  * Adds the given entry to the list. Assumes that the list is locked.
1001  */
1002 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1003 {
1004 	if (entry)
1005 		list_add(&entry->list_item, &qp_list->head);
1006 }
1007 
1008 /*
1009  * Removes the given entry from the list. Assumes that the list is locked.
1010  */
1011 static void qp_list_remove_entry(struct qp_list *qp_list,
1012 				 struct qp_entry *entry)
1013 {
1014 	if (entry)
1015 		list_del(&entry->list_item);
1016 }
1017 
1018 /*
1019  * Helper for VMCI queue_pair detach interface. Frees the physical
1020  * pages for the queue pair.
1021  */
1022 static int qp_detatch_guest_work(struct vmci_handle handle)
1023 {
1024 	int result;
1025 	struct qp_guest_endpoint *entry;
1026 	u32 ref_count = ~0;	/* To avoid compiler warning below */
1027 
1028 	mutex_lock(&qp_guest_endpoints.mutex);
1029 
1030 	entry = qp_guest_handle_to_entry(handle);
1031 	if (!entry) {
1032 		mutex_unlock(&qp_guest_endpoints.mutex);
1033 		return VMCI_ERROR_NOT_FOUND;
1034 	}
1035 
1036 	if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1037 		result = VMCI_SUCCESS;
1038 
1039 		if (entry->qp.ref_count > 1) {
1040 			result = qp_notify_peer_local(false, handle);
1041 			/*
1042 			 * We can fail to notify a local queuepair
1043 			 * because we can't allocate.  We still want
1044 			 * to release the entry if that happens, so
1045 			 * don't bail out yet.
1046 			 */
1047 		}
1048 	} else {
1049 		result = qp_detatch_hypercall(handle);
1050 		if (result < VMCI_SUCCESS) {
1051 			/*
1052 			 * We failed to notify a non-local queuepair.
1053 			 * That other queuepair might still be
1054 			 * accessing the shared memory, so don't
1055 			 * release the entry yet.  It will get cleaned
1056 			 * up by VMCIqueue_pair_Exit() if necessary
1057 			 * (assuming we are going away, otherwise why
1058 			 * did this fail?).
1059 			 */
1060 
1061 			mutex_unlock(&qp_guest_endpoints.mutex);
1062 			return result;
1063 		}
1064 	}
1065 
1066 	/*
1067 	 * If we get here then we either failed to notify a local queuepair, or
1068 	 * we succeeded in all cases.  Release the entry if required.
1069 	 */
1070 
1071 	entry->qp.ref_count--;
1072 	if (entry->qp.ref_count == 0)
1073 		qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1074 
1075 	/* If we didn't remove the entry, this could change once we unlock. */
1076 	if (entry)
1077 		ref_count = entry->qp.ref_count;
1078 
1079 	mutex_unlock(&qp_guest_endpoints.mutex);
1080 
1081 	if (ref_count == 0)
1082 		qp_guest_endpoint_destroy(entry);
1083 
1084 	return result;
1085 }
1086 
1087 /*
1088  * This functions handles the actual allocation of a VMCI queue
1089  * pair guest endpoint. Allocates physical pages for the queue
1090  * pair. It makes OS dependent calls through generic wrappers.
1091  */
1092 static int qp_alloc_guest_work(struct vmci_handle *handle,
1093 			       struct vmci_queue **produce_q,
1094 			       u64 produce_size,
1095 			       struct vmci_queue **consume_q,
1096 			       u64 consume_size,
1097 			       u32 peer,
1098 			       u32 flags,
1099 			       u32 priv_flags)
1100 {
1101 	const u64 num_produce_pages =
1102 	    DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1103 	const u64 num_consume_pages =
1104 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1105 	void *my_produce_q = NULL;
1106 	void *my_consume_q = NULL;
1107 	int result;
1108 	struct qp_guest_endpoint *queue_pair_entry = NULL;
1109 
1110 	if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1111 		return VMCI_ERROR_NO_ACCESS;
1112 
1113 	mutex_lock(&qp_guest_endpoints.mutex);
1114 
1115 	queue_pair_entry = qp_guest_handle_to_entry(*handle);
1116 	if (queue_pair_entry) {
1117 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1118 			/* Local attach case. */
1119 			if (queue_pair_entry->qp.ref_count > 1) {
1120 				pr_devel("Error attempting to attach more than once\n");
1121 				result = VMCI_ERROR_UNAVAILABLE;
1122 				goto error_keep_entry;
1123 			}
1124 
1125 			if (queue_pair_entry->qp.produce_size != consume_size ||
1126 			    queue_pair_entry->qp.consume_size !=
1127 			    produce_size ||
1128 			    queue_pair_entry->qp.flags !=
1129 			    (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1130 				pr_devel("Error mismatched queue pair in local attach\n");
1131 				result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1132 				goto error_keep_entry;
1133 			}
1134 
1135 			/*
1136 			 * Do a local attach.  We swap the consume and
1137 			 * produce queues for the attacher and deliver
1138 			 * an attach event.
1139 			 */
1140 			result = qp_notify_peer_local(true, *handle);
1141 			if (result < VMCI_SUCCESS)
1142 				goto error_keep_entry;
1143 
1144 			my_produce_q = queue_pair_entry->consume_q;
1145 			my_consume_q = queue_pair_entry->produce_q;
1146 			goto out;
1147 		}
1148 
1149 		result = VMCI_ERROR_ALREADY_EXISTS;
1150 		goto error_keep_entry;
1151 	}
1152 
1153 	my_produce_q = qp_alloc_queue(produce_size, flags);
1154 	if (!my_produce_q) {
1155 		pr_warn("Error allocating pages for produce queue\n");
1156 		result = VMCI_ERROR_NO_MEM;
1157 		goto error;
1158 	}
1159 
1160 	my_consume_q = qp_alloc_queue(consume_size, flags);
1161 	if (!my_consume_q) {
1162 		pr_warn("Error allocating pages for consume queue\n");
1163 		result = VMCI_ERROR_NO_MEM;
1164 		goto error;
1165 	}
1166 
1167 	queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1168 						    produce_size, consume_size,
1169 						    my_produce_q, my_consume_q);
1170 	if (!queue_pair_entry) {
1171 		pr_warn("Error allocating memory in %s\n", __func__);
1172 		result = VMCI_ERROR_NO_MEM;
1173 		goto error;
1174 	}
1175 
1176 	result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1177 				  num_consume_pages,
1178 				  &queue_pair_entry->ppn_set);
1179 	if (result < VMCI_SUCCESS) {
1180 		pr_warn("qp_alloc_ppn_set failed\n");
1181 		goto error;
1182 	}
1183 
1184 	/*
1185 	 * It's only necessary to notify the host if this queue pair will be
1186 	 * attached to from another context.
1187 	 */
1188 	if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1189 		/* Local create case. */
1190 		u32 context_id = vmci_get_context_id();
1191 
1192 		/*
1193 		 * Enforce similar checks on local queue pairs as we
1194 		 * do for regular ones.  The handle's context must
1195 		 * match the creator or attacher context id (here they
1196 		 * are both the current context id) and the
1197 		 * attach-only flag cannot exist during create.  We
1198 		 * also ensure specified peer is this context or an
1199 		 * invalid one.
1200 		 */
1201 		if (queue_pair_entry->qp.handle.context != context_id ||
1202 		    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1203 		     queue_pair_entry->qp.peer != context_id)) {
1204 			result = VMCI_ERROR_NO_ACCESS;
1205 			goto error;
1206 		}
1207 
1208 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1209 			result = VMCI_ERROR_NOT_FOUND;
1210 			goto error;
1211 		}
1212 	} else {
1213 		result = qp_alloc_hypercall(queue_pair_entry);
1214 		if (result < VMCI_SUCCESS) {
1215 			pr_devel("qp_alloc_hypercall result = %d\n", result);
1216 			goto error;
1217 		}
1218 	}
1219 
1220 	qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1221 			    (struct vmci_queue *)my_consume_q);
1222 
1223 	qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1224 
1225  out:
1226 	queue_pair_entry->qp.ref_count++;
1227 	*handle = queue_pair_entry->qp.handle;
1228 	*produce_q = (struct vmci_queue *)my_produce_q;
1229 	*consume_q = (struct vmci_queue *)my_consume_q;
1230 
1231 	/*
1232 	 * We should initialize the queue pair header pages on a local
1233 	 * queue pair create.  For non-local queue pairs, the
1234 	 * hypervisor initializes the header pages in the create step.
1235 	 */
1236 	if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1237 	    queue_pair_entry->qp.ref_count == 1) {
1238 		vmci_q_header_init((*produce_q)->q_header, *handle);
1239 		vmci_q_header_init((*consume_q)->q_header, *handle);
1240 	}
1241 
1242 	mutex_unlock(&qp_guest_endpoints.mutex);
1243 
1244 	return VMCI_SUCCESS;
1245 
1246  error:
1247 	mutex_unlock(&qp_guest_endpoints.mutex);
1248 	if (queue_pair_entry) {
1249 		/* The queues will be freed inside the destroy routine. */
1250 		qp_guest_endpoint_destroy(queue_pair_entry);
1251 	} else {
1252 		qp_free_queue(my_produce_q, produce_size);
1253 		qp_free_queue(my_consume_q, consume_size);
1254 	}
1255 	return result;
1256 
1257  error_keep_entry:
1258 	/* This path should only be used when an existing entry was found. */
1259 	mutex_unlock(&qp_guest_endpoints.mutex);
1260 	return result;
1261 }
1262 
1263 /*
1264  * The first endpoint issuing a queue pair allocation will create the state
1265  * of the queue pair in the queue pair broker.
1266  *
1267  * If the creator is a guest, it will associate a VMX virtual address range
1268  * with the queue pair as specified by the page_store. For compatibility with
1269  * older VMX'en, that would use a separate step to set the VMX virtual
1270  * address range, the virtual address range can be registered later using
1271  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1272  * used.
1273  *
1274  * If the creator is the host, a page_store of NULL should be used as well,
1275  * since the host is not able to supply a page store for the queue pair.
1276  *
1277  * For older VMX and host callers, the queue pair will be created in the
1278  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1279  * created in VMCOQPB_CREATED_MEM state.
1280  */
1281 static int qp_broker_create(struct vmci_handle handle,
1282 			    u32 peer,
1283 			    u32 flags,
1284 			    u32 priv_flags,
1285 			    u64 produce_size,
1286 			    u64 consume_size,
1287 			    struct vmci_qp_page_store *page_store,
1288 			    struct vmci_ctx *context,
1289 			    vmci_event_release_cb wakeup_cb,
1290 			    void *client_data, struct qp_broker_entry **ent)
1291 {
1292 	struct qp_broker_entry *entry = NULL;
1293 	const u32 context_id = vmci_ctx_get_id(context);
1294 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1295 	int result;
1296 	u64 guest_produce_size;
1297 	u64 guest_consume_size;
1298 
1299 	/* Do not create if the caller asked not to. */
1300 	if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1301 		return VMCI_ERROR_NOT_FOUND;
1302 
1303 	/*
1304 	 * Creator's context ID should match handle's context ID or the creator
1305 	 * must allow the context in handle's context ID as the "peer".
1306 	 */
1307 	if (handle.context != context_id && handle.context != peer)
1308 		return VMCI_ERROR_NO_ACCESS;
1309 
1310 	if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1311 		return VMCI_ERROR_DST_UNREACHABLE;
1312 
1313 	/*
1314 	 * Creator's context ID for local queue pairs should match the
1315 	 * peer, if a peer is specified.
1316 	 */
1317 	if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1318 		return VMCI_ERROR_NO_ACCESS;
1319 
1320 	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1321 	if (!entry)
1322 		return VMCI_ERROR_NO_MEM;
1323 
1324 	if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1325 		/*
1326 		 * The queue pair broker entry stores values from the guest
1327 		 * point of view, so a creating host side endpoint should swap
1328 		 * produce and consume values -- unless it is a local queue
1329 		 * pair, in which case no swapping is necessary, since the local
1330 		 * attacher will swap queues.
1331 		 */
1332 
1333 		guest_produce_size = consume_size;
1334 		guest_consume_size = produce_size;
1335 	} else {
1336 		guest_produce_size = produce_size;
1337 		guest_consume_size = consume_size;
1338 	}
1339 
1340 	entry->qp.handle = handle;
1341 	entry->qp.peer = peer;
1342 	entry->qp.flags = flags;
1343 	entry->qp.produce_size = guest_produce_size;
1344 	entry->qp.consume_size = guest_consume_size;
1345 	entry->qp.ref_count = 1;
1346 	entry->create_id = context_id;
1347 	entry->attach_id = VMCI_INVALID_ID;
1348 	entry->state = VMCIQPB_NEW;
1349 	entry->require_trusted_attach =
1350 	    !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1351 	entry->created_by_trusted =
1352 	    !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1353 	entry->vmci_page_files = false;
1354 	entry->wakeup_cb = wakeup_cb;
1355 	entry->client_data = client_data;
1356 	entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1357 	if (entry->produce_q == NULL) {
1358 		result = VMCI_ERROR_NO_MEM;
1359 		goto error;
1360 	}
1361 	entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1362 	if (entry->consume_q == NULL) {
1363 		result = VMCI_ERROR_NO_MEM;
1364 		goto error;
1365 	}
1366 
1367 	qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1368 
1369 	INIT_LIST_HEAD(&entry->qp.list_item);
1370 
1371 	if (is_local) {
1372 		u8 *tmp;
1373 
1374 		entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1375 					   PAGE_SIZE, GFP_KERNEL);
1376 		if (entry->local_mem == NULL) {
1377 			result = VMCI_ERROR_NO_MEM;
1378 			goto error;
1379 		}
1380 		entry->state = VMCIQPB_CREATED_MEM;
1381 		entry->produce_q->q_header = entry->local_mem;
1382 		tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1383 		    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1384 		entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1385 	} else if (page_store) {
1386 		/*
1387 		 * The VMX already initialized the queue pair headers, so no
1388 		 * need for the kernel side to do that.
1389 		 */
1390 		result = qp_host_register_user_memory(page_store,
1391 						      entry->produce_q,
1392 						      entry->consume_q);
1393 		if (result < VMCI_SUCCESS)
1394 			goto error;
1395 
1396 		entry->state = VMCIQPB_CREATED_MEM;
1397 	} else {
1398 		/*
1399 		 * A create without a page_store may be either a host
1400 		 * side create (in which case we are waiting for the
1401 		 * guest side to supply the memory) or an old style
1402 		 * queue pair create (in which case we will expect a
1403 		 * set page store call as the next step).
1404 		 */
1405 		entry->state = VMCIQPB_CREATED_NO_MEM;
1406 	}
1407 
1408 	qp_list_add_entry(&qp_broker_list, &entry->qp);
1409 	if (ent != NULL)
1410 		*ent = entry;
1411 
1412 	/* Add to resource obj */
1413 	result = vmci_resource_add(&entry->resource,
1414 				   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1415 				   handle);
1416 	if (result != VMCI_SUCCESS) {
1417 		pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1418 			handle.context, handle.resource, result);
1419 		goto error;
1420 	}
1421 
1422 	entry->qp.handle = vmci_resource_handle(&entry->resource);
1423 	if (is_local) {
1424 		vmci_q_header_init(entry->produce_q->q_header,
1425 				   entry->qp.handle);
1426 		vmci_q_header_init(entry->consume_q->q_header,
1427 				   entry->qp.handle);
1428 	}
1429 
1430 	vmci_ctx_qp_create(context, entry->qp.handle);
1431 
1432 	return VMCI_SUCCESS;
1433 
1434  error:
1435 	if (entry != NULL) {
1436 		qp_host_free_queue(entry->produce_q, guest_produce_size);
1437 		qp_host_free_queue(entry->consume_q, guest_consume_size);
1438 		kfree(entry);
1439 	}
1440 
1441 	return result;
1442 }
1443 
1444 /*
1445  * Enqueues an event datagram to notify the peer VM attached to
1446  * the given queue pair handle about attach/detach event by the
1447  * given VM.  Returns Payload size of datagram enqueued on
1448  * success, error code otherwise.
1449  */
1450 static int qp_notify_peer(bool attach,
1451 			  struct vmci_handle handle,
1452 			  u32 my_id,
1453 			  u32 peer_id)
1454 {
1455 	int rv;
1456 	struct vmci_event_qp ev;
1457 
1458 	if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1459 	    peer_id == VMCI_INVALID_ID)
1460 		return VMCI_ERROR_INVALID_ARGS;
1461 
1462 	/*
1463 	 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1464 	 * number of pending events from the hypervisor to a given VM
1465 	 * otherwise a rogue VM could do an arbitrary number of attach
1466 	 * and detach operations causing memory pressure in the host
1467 	 * kernel.
1468 	 */
1469 
1470 	ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1471 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1472 					  VMCI_CONTEXT_RESOURCE_ID);
1473 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1474 	ev.msg.event_data.event = attach ?
1475 	    VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1476 	ev.payload.handle = handle;
1477 	ev.payload.peer_id = my_id;
1478 
1479 	rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1480 				    &ev.msg.hdr, false);
1481 	if (rv < VMCI_SUCCESS)
1482 		pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1483 			attach ? "ATTACH" : "DETACH", peer_id);
1484 
1485 	return rv;
1486 }
1487 
1488 /*
1489  * The second endpoint issuing a queue pair allocation will attach to
1490  * the queue pair registered with the queue pair broker.
1491  *
1492  * If the attacher is a guest, it will associate a VMX virtual address
1493  * range with the queue pair as specified by the page_store. At this
1494  * point, the already attach host endpoint may start using the queue
1495  * pair, and an attach event is sent to it. For compatibility with
1496  * older VMX'en, that used a separate step to set the VMX virtual
1497  * address range, the virtual address range can be registered later
1498  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1499  * NULL should be used, and the attach event will be generated once
1500  * the actual page store has been set.
1501  *
1502  * If the attacher is the host, a page_store of NULL should be used as
1503  * well, since the page store information is already set by the guest.
1504  *
1505  * For new VMX and host callers, the queue pair will be moved to the
1506  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1507  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1508  */
1509 static int qp_broker_attach(struct qp_broker_entry *entry,
1510 			    u32 peer,
1511 			    u32 flags,
1512 			    u32 priv_flags,
1513 			    u64 produce_size,
1514 			    u64 consume_size,
1515 			    struct vmci_qp_page_store *page_store,
1516 			    struct vmci_ctx *context,
1517 			    vmci_event_release_cb wakeup_cb,
1518 			    void *client_data,
1519 			    struct qp_broker_entry **ent)
1520 {
1521 	const u32 context_id = vmci_ctx_get_id(context);
1522 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1523 	int result;
1524 
1525 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1526 	    entry->state != VMCIQPB_CREATED_MEM)
1527 		return VMCI_ERROR_UNAVAILABLE;
1528 
1529 	if (is_local) {
1530 		if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1531 		    context_id != entry->create_id) {
1532 			return VMCI_ERROR_INVALID_ARGS;
1533 		}
1534 	} else if (context_id == entry->create_id ||
1535 		   context_id == entry->attach_id) {
1536 		return VMCI_ERROR_ALREADY_EXISTS;
1537 	}
1538 
1539 	if (VMCI_CONTEXT_IS_VM(context_id) &&
1540 	    VMCI_CONTEXT_IS_VM(entry->create_id))
1541 		return VMCI_ERROR_DST_UNREACHABLE;
1542 
1543 	/*
1544 	 * If we are attaching from a restricted context then the queuepair
1545 	 * must have been created by a trusted endpoint.
1546 	 */
1547 	if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1548 	    !entry->created_by_trusted)
1549 		return VMCI_ERROR_NO_ACCESS;
1550 
1551 	/*
1552 	 * If we are attaching to a queuepair that was created by a restricted
1553 	 * context then we must be trusted.
1554 	 */
1555 	if (entry->require_trusted_attach &&
1556 	    (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1557 		return VMCI_ERROR_NO_ACCESS;
1558 
1559 	/*
1560 	 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1561 	 * control check is not performed.
1562 	 */
1563 	if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1564 		return VMCI_ERROR_NO_ACCESS;
1565 
1566 	if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1567 		/*
1568 		 * Do not attach if the caller doesn't support Host Queue Pairs
1569 		 * and a host created this queue pair.
1570 		 */
1571 
1572 		if (!vmci_ctx_supports_host_qp(context))
1573 			return VMCI_ERROR_INVALID_RESOURCE;
1574 
1575 	} else if (context_id == VMCI_HOST_CONTEXT_ID) {
1576 		struct vmci_ctx *create_context;
1577 		bool supports_host_qp;
1578 
1579 		/*
1580 		 * Do not attach a host to a user created queue pair if that
1581 		 * user doesn't support host queue pair end points.
1582 		 */
1583 
1584 		create_context = vmci_ctx_get(entry->create_id);
1585 		supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1586 		vmci_ctx_put(create_context);
1587 
1588 		if (!supports_host_qp)
1589 			return VMCI_ERROR_INVALID_RESOURCE;
1590 	}
1591 
1592 	if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1593 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1594 
1595 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1596 		/*
1597 		 * The queue pair broker entry stores values from the guest
1598 		 * point of view, so an attaching guest should match the values
1599 		 * stored in the entry.
1600 		 */
1601 
1602 		if (entry->qp.produce_size != produce_size ||
1603 		    entry->qp.consume_size != consume_size) {
1604 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1605 		}
1606 	} else if (entry->qp.produce_size != consume_size ||
1607 		   entry->qp.consume_size != produce_size) {
1608 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1609 	}
1610 
1611 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1612 		/*
1613 		 * If a guest attached to a queue pair, it will supply
1614 		 * the backing memory.  If this is a pre NOVMVM vmx,
1615 		 * the backing memory will be supplied by calling
1616 		 * vmci_qp_broker_set_page_store() following the
1617 		 * return of the vmci_qp_broker_alloc() call. If it is
1618 		 * a vmx of version NOVMVM or later, the page store
1619 		 * must be supplied as part of the
1620 		 * vmci_qp_broker_alloc call.  Under all circumstances
1621 		 * must the initially created queue pair not have any
1622 		 * memory associated with it already.
1623 		 */
1624 
1625 		if (entry->state != VMCIQPB_CREATED_NO_MEM)
1626 			return VMCI_ERROR_INVALID_ARGS;
1627 
1628 		if (page_store != NULL) {
1629 			/*
1630 			 * Patch up host state to point to guest
1631 			 * supplied memory. The VMX already
1632 			 * initialized the queue pair headers, so no
1633 			 * need for the kernel side to do that.
1634 			 */
1635 
1636 			result = qp_host_register_user_memory(page_store,
1637 							      entry->produce_q,
1638 							      entry->consume_q);
1639 			if (result < VMCI_SUCCESS)
1640 				return result;
1641 
1642 			entry->state = VMCIQPB_ATTACHED_MEM;
1643 		} else {
1644 			entry->state = VMCIQPB_ATTACHED_NO_MEM;
1645 		}
1646 	} else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1647 		/*
1648 		 * The host side is attempting to attach to a queue
1649 		 * pair that doesn't have any memory associated with
1650 		 * it. This must be a pre NOVMVM vmx that hasn't set
1651 		 * the page store information yet, or a quiesced VM.
1652 		 */
1653 
1654 		return VMCI_ERROR_UNAVAILABLE;
1655 	} else {
1656 		/* The host side has successfully attached to a queue pair. */
1657 		entry->state = VMCIQPB_ATTACHED_MEM;
1658 	}
1659 
1660 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
1661 		result =
1662 		    qp_notify_peer(true, entry->qp.handle, context_id,
1663 				   entry->create_id);
1664 		if (result < VMCI_SUCCESS)
1665 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1666 				entry->create_id, entry->qp.handle.context,
1667 				entry->qp.handle.resource);
1668 	}
1669 
1670 	entry->attach_id = context_id;
1671 	entry->qp.ref_count++;
1672 	if (wakeup_cb) {
1673 		entry->wakeup_cb = wakeup_cb;
1674 		entry->client_data = client_data;
1675 	}
1676 
1677 	/*
1678 	 * When attaching to local queue pairs, the context already has
1679 	 * an entry tracking the queue pair, so don't add another one.
1680 	 */
1681 	if (!is_local)
1682 		vmci_ctx_qp_create(context, entry->qp.handle);
1683 
1684 	if (ent != NULL)
1685 		*ent = entry;
1686 
1687 	return VMCI_SUCCESS;
1688 }
1689 
1690 /*
1691  * queue_pair_Alloc for use when setting up queue pair endpoints
1692  * on the host.
1693  */
1694 static int qp_broker_alloc(struct vmci_handle handle,
1695 			   u32 peer,
1696 			   u32 flags,
1697 			   u32 priv_flags,
1698 			   u64 produce_size,
1699 			   u64 consume_size,
1700 			   struct vmci_qp_page_store *page_store,
1701 			   struct vmci_ctx *context,
1702 			   vmci_event_release_cb wakeup_cb,
1703 			   void *client_data,
1704 			   struct qp_broker_entry **ent,
1705 			   bool *swap)
1706 {
1707 	const u32 context_id = vmci_ctx_get_id(context);
1708 	bool create;
1709 	struct qp_broker_entry *entry = NULL;
1710 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1711 	int result;
1712 
1713 	if (vmci_handle_is_invalid(handle) ||
1714 	    (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1715 	    !(produce_size || consume_size) ||
1716 	    !context || context_id == VMCI_INVALID_ID ||
1717 	    handle.context == VMCI_INVALID_ID) {
1718 		return VMCI_ERROR_INVALID_ARGS;
1719 	}
1720 
1721 	if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1722 		return VMCI_ERROR_INVALID_ARGS;
1723 
1724 	/*
1725 	 * In the initial argument check, we ensure that non-vmkernel hosts
1726 	 * are not allowed to create local queue pairs.
1727 	 */
1728 
1729 	mutex_lock(&qp_broker_list.mutex);
1730 
1731 	if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1732 		pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1733 			 context_id, handle.context, handle.resource);
1734 		mutex_unlock(&qp_broker_list.mutex);
1735 		return VMCI_ERROR_ALREADY_EXISTS;
1736 	}
1737 
1738 	if (handle.resource != VMCI_INVALID_ID)
1739 		entry = qp_broker_handle_to_entry(handle);
1740 
1741 	if (!entry) {
1742 		create = true;
1743 		result =
1744 		    qp_broker_create(handle, peer, flags, priv_flags,
1745 				     produce_size, consume_size, page_store,
1746 				     context, wakeup_cb, client_data, ent);
1747 	} else {
1748 		create = false;
1749 		result =
1750 		    qp_broker_attach(entry, peer, flags, priv_flags,
1751 				     produce_size, consume_size, page_store,
1752 				     context, wakeup_cb, client_data, ent);
1753 	}
1754 
1755 	mutex_unlock(&qp_broker_list.mutex);
1756 
1757 	if (swap)
1758 		*swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1759 		    !(create && is_local);
1760 
1761 	return result;
1762 }
1763 
1764 /*
1765  * This function implements the kernel API for allocating a queue
1766  * pair.
1767  */
1768 static int qp_alloc_host_work(struct vmci_handle *handle,
1769 			      struct vmci_queue **produce_q,
1770 			      u64 produce_size,
1771 			      struct vmci_queue **consume_q,
1772 			      u64 consume_size,
1773 			      u32 peer,
1774 			      u32 flags,
1775 			      u32 priv_flags,
1776 			      vmci_event_release_cb wakeup_cb,
1777 			      void *client_data)
1778 {
1779 	struct vmci_handle new_handle;
1780 	struct vmci_ctx *context;
1781 	struct qp_broker_entry *entry;
1782 	int result;
1783 	bool swap;
1784 
1785 	if (vmci_handle_is_invalid(*handle)) {
1786 		new_handle = vmci_make_handle(
1787 			VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1788 	} else
1789 		new_handle = *handle;
1790 
1791 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1792 	entry = NULL;
1793 	result =
1794 	    qp_broker_alloc(new_handle, peer, flags, priv_flags,
1795 			    produce_size, consume_size, NULL, context,
1796 			    wakeup_cb, client_data, &entry, &swap);
1797 	if (result == VMCI_SUCCESS) {
1798 		if (swap) {
1799 			/*
1800 			 * If this is a local queue pair, the attacher
1801 			 * will swap around produce and consume
1802 			 * queues.
1803 			 */
1804 
1805 			*produce_q = entry->consume_q;
1806 			*consume_q = entry->produce_q;
1807 		} else {
1808 			*produce_q = entry->produce_q;
1809 			*consume_q = entry->consume_q;
1810 		}
1811 
1812 		*handle = vmci_resource_handle(&entry->resource);
1813 	} else {
1814 		*handle = VMCI_INVALID_HANDLE;
1815 		pr_devel("queue pair broker failed to alloc (result=%d)\n",
1816 			 result);
1817 	}
1818 	vmci_ctx_put(context);
1819 	return result;
1820 }
1821 
1822 /*
1823  * Allocates a VMCI queue_pair. Only checks validity of input
1824  * arguments. The real work is done in the host or guest
1825  * specific function.
1826  */
1827 int vmci_qp_alloc(struct vmci_handle *handle,
1828 		  struct vmci_queue **produce_q,
1829 		  u64 produce_size,
1830 		  struct vmci_queue **consume_q,
1831 		  u64 consume_size,
1832 		  u32 peer,
1833 		  u32 flags,
1834 		  u32 priv_flags,
1835 		  bool guest_endpoint,
1836 		  vmci_event_release_cb wakeup_cb,
1837 		  void *client_data)
1838 {
1839 	if (!handle || !produce_q || !consume_q ||
1840 	    (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1841 		return VMCI_ERROR_INVALID_ARGS;
1842 
1843 	if (guest_endpoint) {
1844 		return qp_alloc_guest_work(handle, produce_q,
1845 					   produce_size, consume_q,
1846 					   consume_size, peer,
1847 					   flags, priv_flags);
1848 	} else {
1849 		return qp_alloc_host_work(handle, produce_q,
1850 					  produce_size, consume_q,
1851 					  consume_size, peer, flags,
1852 					  priv_flags, wakeup_cb, client_data);
1853 	}
1854 }
1855 
1856 /*
1857  * This function implements the host kernel API for detaching from
1858  * a queue pair.
1859  */
1860 static int qp_detatch_host_work(struct vmci_handle handle)
1861 {
1862 	int result;
1863 	struct vmci_ctx *context;
1864 
1865 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1866 
1867 	result = vmci_qp_broker_detach(handle, context);
1868 
1869 	vmci_ctx_put(context);
1870 	return result;
1871 }
1872 
1873 /*
1874  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1875  * Real work is done in the host or guest specific function.
1876  */
1877 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1878 {
1879 	if (vmci_handle_is_invalid(handle))
1880 		return VMCI_ERROR_INVALID_ARGS;
1881 
1882 	if (guest_endpoint)
1883 		return qp_detatch_guest_work(handle);
1884 	else
1885 		return qp_detatch_host_work(handle);
1886 }
1887 
1888 /*
1889  * Returns the entry from the head of the list. Assumes that the list is
1890  * locked.
1891  */
1892 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1893 {
1894 	if (!list_empty(&qp_list->head)) {
1895 		struct qp_entry *entry =
1896 		    list_first_entry(&qp_list->head, struct qp_entry,
1897 				     list_item);
1898 		return entry;
1899 	}
1900 
1901 	return NULL;
1902 }
1903 
1904 void vmci_qp_broker_exit(void)
1905 {
1906 	struct qp_entry *entry;
1907 	struct qp_broker_entry *be;
1908 
1909 	mutex_lock(&qp_broker_list.mutex);
1910 
1911 	while ((entry = qp_list_get_head(&qp_broker_list))) {
1912 		be = (struct qp_broker_entry *)entry;
1913 
1914 		qp_list_remove_entry(&qp_broker_list, entry);
1915 		kfree(be);
1916 	}
1917 
1918 	mutex_unlock(&qp_broker_list.mutex);
1919 }
1920 
1921 /*
1922  * Requests that a queue pair be allocated with the VMCI queue
1923  * pair broker. Allocates a queue pair entry if one does not
1924  * exist. Attaches to one if it exists, and retrieves the page
1925  * files backing that queue_pair.  Assumes that the queue pair
1926  * broker lock is held.
1927  */
1928 int vmci_qp_broker_alloc(struct vmci_handle handle,
1929 			 u32 peer,
1930 			 u32 flags,
1931 			 u32 priv_flags,
1932 			 u64 produce_size,
1933 			 u64 consume_size,
1934 			 struct vmci_qp_page_store *page_store,
1935 			 struct vmci_ctx *context)
1936 {
1937 	if (!QP_SIZES_ARE_VALID(produce_size, consume_size))
1938 		return VMCI_ERROR_NO_RESOURCES;
1939 
1940 	return qp_broker_alloc(handle, peer, flags, priv_flags,
1941 			       produce_size, consume_size,
1942 			       page_store, context, NULL, NULL, NULL, NULL);
1943 }
1944 
1945 /*
1946  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1947  * step to add the UVAs of the VMX mapping of the queue pair. This function
1948  * provides backwards compatibility with such VMX'en, and takes care of
1949  * registering the page store for a queue pair previously allocated by the
1950  * VMX during create or attach. This function will move the queue pair state
1951  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1952  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1953  * attached state with memory, the queue pair is ready to be used by the
1954  * host peer, and an attached event will be generated.
1955  *
1956  * Assumes that the queue pair broker lock is held.
1957  *
1958  * This function is only used by the hosted platform, since there is no
1959  * issue with backwards compatibility for vmkernel.
1960  */
1961 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1962 				  u64 produce_uva,
1963 				  u64 consume_uva,
1964 				  struct vmci_ctx *context)
1965 {
1966 	struct qp_broker_entry *entry;
1967 	int result;
1968 	const u32 context_id = vmci_ctx_get_id(context);
1969 
1970 	if (vmci_handle_is_invalid(handle) || !context ||
1971 	    context_id == VMCI_INVALID_ID)
1972 		return VMCI_ERROR_INVALID_ARGS;
1973 
1974 	/*
1975 	 * We only support guest to host queue pairs, so the VMX must
1976 	 * supply UVAs for the mapped page files.
1977 	 */
1978 
1979 	if (produce_uva == 0 || consume_uva == 0)
1980 		return VMCI_ERROR_INVALID_ARGS;
1981 
1982 	mutex_lock(&qp_broker_list.mutex);
1983 
1984 	if (!vmci_ctx_qp_exists(context, handle)) {
1985 		pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1986 			context_id, handle.context, handle.resource);
1987 		result = VMCI_ERROR_NOT_FOUND;
1988 		goto out;
1989 	}
1990 
1991 	entry = qp_broker_handle_to_entry(handle);
1992 	if (!entry) {
1993 		result = VMCI_ERROR_NOT_FOUND;
1994 		goto out;
1995 	}
1996 
1997 	/*
1998 	 * If I'm the owner then I can set the page store.
1999 	 *
2000 	 * Or, if a host created the queue_pair and I'm the attached peer
2001 	 * then I can set the page store.
2002 	 */
2003 	if (entry->create_id != context_id &&
2004 	    (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2005 	     entry->attach_id != context_id)) {
2006 		result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2007 		goto out;
2008 	}
2009 
2010 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2011 	    entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2012 		result = VMCI_ERROR_UNAVAILABLE;
2013 		goto out;
2014 	}
2015 
2016 	result = qp_host_get_user_memory(produce_uva, consume_uva,
2017 					 entry->produce_q, entry->consume_q);
2018 	if (result < VMCI_SUCCESS)
2019 		goto out;
2020 
2021 	result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2022 	if (result < VMCI_SUCCESS) {
2023 		qp_host_unregister_user_memory(entry->produce_q,
2024 					       entry->consume_q);
2025 		goto out;
2026 	}
2027 
2028 	if (entry->state == VMCIQPB_CREATED_NO_MEM)
2029 		entry->state = VMCIQPB_CREATED_MEM;
2030 	else
2031 		entry->state = VMCIQPB_ATTACHED_MEM;
2032 
2033 	entry->vmci_page_files = true;
2034 
2035 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
2036 		result =
2037 		    qp_notify_peer(true, handle, context_id, entry->create_id);
2038 		if (result < VMCI_SUCCESS) {
2039 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2040 				entry->create_id, entry->qp.handle.context,
2041 				entry->qp.handle.resource);
2042 		}
2043 	}
2044 
2045 	result = VMCI_SUCCESS;
2046  out:
2047 	mutex_unlock(&qp_broker_list.mutex);
2048 	return result;
2049 }
2050 
2051 /*
2052  * Resets saved queue headers for the given QP broker
2053  * entry. Should be used when guest memory becomes available
2054  * again, or the guest detaches.
2055  */
2056 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2057 {
2058 	entry->produce_q->saved_header = NULL;
2059 	entry->consume_q->saved_header = NULL;
2060 }
2061 
2062 /*
2063  * The main entry point for detaching from a queue pair registered with the
2064  * queue pair broker. If more than one endpoint is attached to the queue
2065  * pair, the first endpoint will mainly decrement a reference count and
2066  * generate a notification to its peer. The last endpoint will clean up
2067  * the queue pair state registered with the broker.
2068  *
2069  * When a guest endpoint detaches, it will unmap and unregister the guest
2070  * memory backing the queue pair. If the host is still attached, it will
2071  * no longer be able to access the queue pair content.
2072  *
2073  * If the queue pair is already in a state where there is no memory
2074  * registered for the queue pair (any *_NO_MEM state), it will transition to
2075  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2076  * endpoint is the first of two endpoints to detach. If the host endpoint is
2077  * the first out of two to detach, the queue pair will move to the
2078  * VMCIQPB_SHUTDOWN_MEM state.
2079  */
2080 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2081 {
2082 	struct qp_broker_entry *entry;
2083 	const u32 context_id = vmci_ctx_get_id(context);
2084 	u32 peer_id;
2085 	bool is_local = false;
2086 	int result;
2087 
2088 	if (vmci_handle_is_invalid(handle) || !context ||
2089 	    context_id == VMCI_INVALID_ID) {
2090 		return VMCI_ERROR_INVALID_ARGS;
2091 	}
2092 
2093 	mutex_lock(&qp_broker_list.mutex);
2094 
2095 	if (!vmci_ctx_qp_exists(context, handle)) {
2096 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2097 			 context_id, handle.context, handle.resource);
2098 		result = VMCI_ERROR_NOT_FOUND;
2099 		goto out;
2100 	}
2101 
2102 	entry = qp_broker_handle_to_entry(handle);
2103 	if (!entry) {
2104 		pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2105 			 context_id, handle.context, handle.resource);
2106 		result = VMCI_ERROR_NOT_FOUND;
2107 		goto out;
2108 	}
2109 
2110 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2111 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2112 		goto out;
2113 	}
2114 
2115 	if (context_id == entry->create_id) {
2116 		peer_id = entry->attach_id;
2117 		entry->create_id = VMCI_INVALID_ID;
2118 	} else {
2119 		peer_id = entry->create_id;
2120 		entry->attach_id = VMCI_INVALID_ID;
2121 	}
2122 	entry->qp.ref_count--;
2123 
2124 	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2125 
2126 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2127 		bool headers_mapped;
2128 
2129 		/*
2130 		 * Pre NOVMVM vmx'en may detach from a queue pair
2131 		 * before setting the page store, and in that case
2132 		 * there is no user memory to detach from. Also, more
2133 		 * recent VMX'en may detach from a queue pair in the
2134 		 * quiesced state.
2135 		 */
2136 
2137 		qp_acquire_queue_mutex(entry->produce_q);
2138 		headers_mapped = entry->produce_q->q_header ||
2139 		    entry->consume_q->q_header;
2140 		if (QPBROKERSTATE_HAS_MEM(entry)) {
2141 			result =
2142 			    qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2143 						 entry->produce_q,
2144 						 entry->consume_q);
2145 			if (result < VMCI_SUCCESS)
2146 				pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2147 					handle.context, handle.resource,
2148 					result);
2149 
2150 			qp_host_unregister_user_memory(entry->produce_q,
2151 						       entry->consume_q);
2152 
2153 		}
2154 
2155 		if (!headers_mapped)
2156 			qp_reset_saved_headers(entry);
2157 
2158 		qp_release_queue_mutex(entry->produce_q);
2159 
2160 		if (!headers_mapped && entry->wakeup_cb)
2161 			entry->wakeup_cb(entry->client_data);
2162 
2163 	} else {
2164 		if (entry->wakeup_cb) {
2165 			entry->wakeup_cb = NULL;
2166 			entry->client_data = NULL;
2167 		}
2168 	}
2169 
2170 	if (entry->qp.ref_count == 0) {
2171 		qp_list_remove_entry(&qp_broker_list, &entry->qp);
2172 
2173 		if (is_local)
2174 			kfree(entry->local_mem);
2175 
2176 		qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2177 		qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2178 		qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2179 		/* Unlink from resource hash table and free callback */
2180 		vmci_resource_remove(&entry->resource);
2181 
2182 		kfree(entry);
2183 
2184 		vmci_ctx_qp_destroy(context, handle);
2185 	} else {
2186 		qp_notify_peer(false, handle, context_id, peer_id);
2187 		if (context_id == VMCI_HOST_CONTEXT_ID &&
2188 		    QPBROKERSTATE_HAS_MEM(entry)) {
2189 			entry->state = VMCIQPB_SHUTDOWN_MEM;
2190 		} else {
2191 			entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2192 		}
2193 
2194 		if (!is_local)
2195 			vmci_ctx_qp_destroy(context, handle);
2196 
2197 	}
2198 	result = VMCI_SUCCESS;
2199  out:
2200 	mutex_unlock(&qp_broker_list.mutex);
2201 	return result;
2202 }
2203 
2204 /*
2205  * Establishes the necessary mappings for a queue pair given a
2206  * reference to the queue pair guest memory. This is usually
2207  * called when a guest is unquiesced and the VMX is allowed to
2208  * map guest memory once again.
2209  */
2210 int vmci_qp_broker_map(struct vmci_handle handle,
2211 		       struct vmci_ctx *context,
2212 		       u64 guest_mem)
2213 {
2214 	struct qp_broker_entry *entry;
2215 	const u32 context_id = vmci_ctx_get_id(context);
2216 	int result;
2217 
2218 	if (vmci_handle_is_invalid(handle) || !context ||
2219 	    context_id == VMCI_INVALID_ID)
2220 		return VMCI_ERROR_INVALID_ARGS;
2221 
2222 	mutex_lock(&qp_broker_list.mutex);
2223 
2224 	if (!vmci_ctx_qp_exists(context, handle)) {
2225 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2226 			 context_id, handle.context, handle.resource);
2227 		result = VMCI_ERROR_NOT_FOUND;
2228 		goto out;
2229 	}
2230 
2231 	entry = qp_broker_handle_to_entry(handle);
2232 	if (!entry) {
2233 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2234 			 context_id, handle.context, handle.resource);
2235 		result = VMCI_ERROR_NOT_FOUND;
2236 		goto out;
2237 	}
2238 
2239 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2240 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2241 		goto out;
2242 	}
2243 
2244 	result = VMCI_SUCCESS;
2245 
2246 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2247 		struct vmci_qp_page_store page_store;
2248 
2249 		page_store.pages = guest_mem;
2250 		page_store.len = QPE_NUM_PAGES(entry->qp);
2251 
2252 		qp_acquire_queue_mutex(entry->produce_q);
2253 		qp_reset_saved_headers(entry);
2254 		result =
2255 		    qp_host_register_user_memory(&page_store,
2256 						 entry->produce_q,
2257 						 entry->consume_q);
2258 		qp_release_queue_mutex(entry->produce_q);
2259 		if (result == VMCI_SUCCESS) {
2260 			/* Move state from *_NO_MEM to *_MEM */
2261 
2262 			entry->state++;
2263 
2264 			if (entry->wakeup_cb)
2265 				entry->wakeup_cb(entry->client_data);
2266 		}
2267 	}
2268 
2269  out:
2270 	mutex_unlock(&qp_broker_list.mutex);
2271 	return result;
2272 }
2273 
2274 /*
2275  * Saves a snapshot of the queue headers for the given QP broker
2276  * entry. Should be used when guest memory is unmapped.
2277  * Results:
2278  * VMCI_SUCCESS on success, appropriate error code if guest memory
2279  * can't be accessed..
2280  */
2281 static int qp_save_headers(struct qp_broker_entry *entry)
2282 {
2283 	int result;
2284 
2285 	if (entry->produce_q->saved_header != NULL &&
2286 	    entry->consume_q->saved_header != NULL) {
2287 		/*
2288 		 *  If the headers have already been saved, we don't need to do
2289 		 *  it again, and we don't want to map in the headers
2290 		 *  unnecessarily.
2291 		 */
2292 
2293 		return VMCI_SUCCESS;
2294 	}
2295 
2296 	if (NULL == entry->produce_q->q_header ||
2297 	    NULL == entry->consume_q->q_header) {
2298 		result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2299 		if (result < VMCI_SUCCESS)
2300 			return result;
2301 	}
2302 
2303 	memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2304 	       sizeof(entry->saved_produce_q));
2305 	entry->produce_q->saved_header = &entry->saved_produce_q;
2306 	memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2307 	       sizeof(entry->saved_consume_q));
2308 	entry->consume_q->saved_header = &entry->saved_consume_q;
2309 
2310 	return VMCI_SUCCESS;
2311 }
2312 
2313 /*
2314  * Removes all references to the guest memory of a given queue pair, and
2315  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2316  * called when a VM is being quiesced where access to guest memory should
2317  * avoided.
2318  */
2319 int vmci_qp_broker_unmap(struct vmci_handle handle,
2320 			 struct vmci_ctx *context,
2321 			 u32 gid)
2322 {
2323 	struct qp_broker_entry *entry;
2324 	const u32 context_id = vmci_ctx_get_id(context);
2325 	int result;
2326 
2327 	if (vmci_handle_is_invalid(handle) || !context ||
2328 	    context_id == VMCI_INVALID_ID)
2329 		return VMCI_ERROR_INVALID_ARGS;
2330 
2331 	mutex_lock(&qp_broker_list.mutex);
2332 
2333 	if (!vmci_ctx_qp_exists(context, handle)) {
2334 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2335 			 context_id, handle.context, handle.resource);
2336 		result = VMCI_ERROR_NOT_FOUND;
2337 		goto out;
2338 	}
2339 
2340 	entry = qp_broker_handle_to_entry(handle);
2341 	if (!entry) {
2342 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2343 			 context_id, handle.context, handle.resource);
2344 		result = VMCI_ERROR_NOT_FOUND;
2345 		goto out;
2346 	}
2347 
2348 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2349 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2350 		goto out;
2351 	}
2352 
2353 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2354 		qp_acquire_queue_mutex(entry->produce_q);
2355 		result = qp_save_headers(entry);
2356 		if (result < VMCI_SUCCESS)
2357 			pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2358 				handle.context, handle.resource, result);
2359 
2360 		qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2361 
2362 		/*
2363 		 * On hosted, when we unmap queue pairs, the VMX will also
2364 		 * unmap the guest memory, so we invalidate the previously
2365 		 * registered memory. If the queue pair is mapped again at a
2366 		 * later point in time, we will need to reregister the user
2367 		 * memory with a possibly new user VA.
2368 		 */
2369 		qp_host_unregister_user_memory(entry->produce_q,
2370 					       entry->consume_q);
2371 
2372 		/*
2373 		 * Move state from *_MEM to *_NO_MEM.
2374 		 */
2375 		entry->state--;
2376 
2377 		qp_release_queue_mutex(entry->produce_q);
2378 	}
2379 
2380 	result = VMCI_SUCCESS;
2381 
2382  out:
2383 	mutex_unlock(&qp_broker_list.mutex);
2384 	return result;
2385 }
2386 
2387 /*
2388  * Destroys all guest queue pair endpoints. If active guest queue
2389  * pairs still exist, hypercalls to attempt detach from these
2390  * queue pairs will be made. Any failure to detach is silently
2391  * ignored.
2392  */
2393 void vmci_qp_guest_endpoints_exit(void)
2394 {
2395 	struct qp_entry *entry;
2396 	struct qp_guest_endpoint *ep;
2397 
2398 	mutex_lock(&qp_guest_endpoints.mutex);
2399 
2400 	while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2401 		ep = (struct qp_guest_endpoint *)entry;
2402 
2403 		/* Don't make a hypercall for local queue_pairs. */
2404 		if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2405 			qp_detatch_hypercall(entry->handle);
2406 
2407 		/* We cannot fail the exit, so let's reset ref_count. */
2408 		entry->ref_count = 0;
2409 		qp_list_remove_entry(&qp_guest_endpoints, entry);
2410 
2411 		qp_guest_endpoint_destroy(ep);
2412 	}
2413 
2414 	mutex_unlock(&qp_guest_endpoints.mutex);
2415 }
2416 
2417 /*
2418  * Helper routine that will lock the queue pair before subsequent
2419  * operations.
2420  * Note: Non-blocking on the host side is currently only implemented in ESX.
2421  * Since non-blocking isn't yet implemented on the host personality we
2422  * have no reason to acquire a spin lock.  So to avoid the use of an
2423  * unnecessary lock only acquire the mutex if we can block.
2424  */
2425 static void qp_lock(const struct vmci_qp *qpair)
2426 {
2427 	qp_acquire_queue_mutex(qpair->produce_q);
2428 }
2429 
2430 /*
2431  * Helper routine that unlocks the queue pair after calling
2432  * qp_lock.
2433  */
2434 static void qp_unlock(const struct vmci_qp *qpair)
2435 {
2436 	qp_release_queue_mutex(qpair->produce_q);
2437 }
2438 
2439 /*
2440  * The queue headers may not be mapped at all times. If a queue is
2441  * currently not mapped, it will be attempted to do so.
2442  */
2443 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2444 				struct vmci_queue *consume_q)
2445 {
2446 	int result;
2447 
2448 	if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2449 		result = qp_host_map_queues(produce_q, consume_q);
2450 		if (result < VMCI_SUCCESS)
2451 			return (produce_q->saved_header &&
2452 				consume_q->saved_header) ?
2453 			    VMCI_ERROR_QUEUEPAIR_NOT_READY :
2454 			    VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2455 	}
2456 
2457 	return VMCI_SUCCESS;
2458 }
2459 
2460 /*
2461  * Helper routine that will retrieve the produce and consume
2462  * headers of a given queue pair. If the guest memory of the
2463  * queue pair is currently not available, the saved queue headers
2464  * will be returned, if these are available.
2465  */
2466 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2467 				struct vmci_queue_header **produce_q_header,
2468 				struct vmci_queue_header **consume_q_header)
2469 {
2470 	int result;
2471 
2472 	result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2473 	if (result == VMCI_SUCCESS) {
2474 		*produce_q_header = qpair->produce_q->q_header;
2475 		*consume_q_header = qpair->consume_q->q_header;
2476 	} else if (qpair->produce_q->saved_header &&
2477 		   qpair->consume_q->saved_header) {
2478 		*produce_q_header = qpair->produce_q->saved_header;
2479 		*consume_q_header = qpair->consume_q->saved_header;
2480 		result = VMCI_SUCCESS;
2481 	}
2482 
2483 	return result;
2484 }
2485 
2486 /*
2487  * Callback from VMCI queue pair broker indicating that a queue
2488  * pair that was previously not ready, now either is ready or
2489  * gone forever.
2490  */
2491 static int qp_wakeup_cb(void *client_data)
2492 {
2493 	struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2494 
2495 	qp_lock(qpair);
2496 	while (qpair->blocked > 0) {
2497 		qpair->blocked--;
2498 		qpair->generation++;
2499 		wake_up(&qpair->event);
2500 	}
2501 	qp_unlock(qpair);
2502 
2503 	return VMCI_SUCCESS;
2504 }
2505 
2506 /*
2507  * Makes the calling thread wait for the queue pair to become
2508  * ready for host side access.  Returns true when thread is
2509  * woken up after queue pair state change, false otherwise.
2510  */
2511 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2512 {
2513 	unsigned int generation;
2514 
2515 	qpair->blocked++;
2516 	generation = qpair->generation;
2517 	qp_unlock(qpair);
2518 	wait_event(qpair->event, generation != qpair->generation);
2519 	qp_lock(qpair);
2520 
2521 	return true;
2522 }
2523 
2524 /*
2525  * Enqueues a given buffer to the produce queue using the provided
2526  * function. As many bytes as possible (space available in the queue)
2527  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2528  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2529  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2530  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2531  * an error occured when accessing the buffer,
2532  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2533  * available.  Otherwise, the number of bytes written to the queue is
2534  * returned.  Updates the tail pointer of the produce queue.
2535  */
2536 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2537 				 struct vmci_queue *consume_q,
2538 				 const u64 produce_q_size,
2539 				 struct iov_iter *from)
2540 {
2541 	s64 free_space;
2542 	u64 tail;
2543 	size_t buf_size = iov_iter_count(from);
2544 	size_t written;
2545 	ssize_t result;
2546 
2547 	result = qp_map_queue_headers(produce_q, consume_q);
2548 	if (unlikely(result != VMCI_SUCCESS))
2549 		return result;
2550 
2551 	free_space = vmci_q_header_free_space(produce_q->q_header,
2552 					      consume_q->q_header,
2553 					      produce_q_size);
2554 	if (free_space == 0)
2555 		return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2556 
2557 	if (free_space < VMCI_SUCCESS)
2558 		return (ssize_t) free_space;
2559 
2560 	written = (size_t) (free_space > buf_size ? buf_size : free_space);
2561 	tail = vmci_q_header_producer_tail(produce_q->q_header);
2562 	if (likely(tail + written < produce_q_size)) {
2563 		result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2564 	} else {
2565 		/* Tail pointer wraps around. */
2566 
2567 		const size_t tmp = (size_t) (produce_q_size - tail);
2568 
2569 		result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2570 		if (result >= VMCI_SUCCESS)
2571 			result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2572 						 written - tmp);
2573 	}
2574 
2575 	if (result < VMCI_SUCCESS)
2576 		return result;
2577 
2578 	vmci_q_header_add_producer_tail(produce_q->q_header, written,
2579 					produce_q_size);
2580 	return written;
2581 }
2582 
2583 /*
2584  * Dequeues data (if available) from the given consume queue. Writes data
2585  * to the user provided buffer using the provided function.
2586  * Assumes the queue->mutex has been acquired.
2587  * Results:
2588  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2589  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2590  * (as defined by the queue size).
2591  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2592  * Otherwise the number of bytes dequeued is returned.
2593  * Side effects:
2594  * Updates the head pointer of the consume queue.
2595  */
2596 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2597 				 struct vmci_queue *consume_q,
2598 				 const u64 consume_q_size,
2599 				 struct iov_iter *to,
2600 				 bool update_consumer)
2601 {
2602 	size_t buf_size = iov_iter_count(to);
2603 	s64 buf_ready;
2604 	u64 head;
2605 	size_t read;
2606 	ssize_t result;
2607 
2608 	result = qp_map_queue_headers(produce_q, consume_q);
2609 	if (unlikely(result != VMCI_SUCCESS))
2610 		return result;
2611 
2612 	buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2613 					    produce_q->q_header,
2614 					    consume_q_size);
2615 	if (buf_ready == 0)
2616 		return VMCI_ERROR_QUEUEPAIR_NODATA;
2617 
2618 	if (buf_ready < VMCI_SUCCESS)
2619 		return (ssize_t) buf_ready;
2620 
2621 	read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2622 	head = vmci_q_header_consumer_head(produce_q->q_header);
2623 	if (likely(head + read < consume_q_size)) {
2624 		result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2625 	} else {
2626 		/* Head pointer wraps around. */
2627 
2628 		const size_t tmp = (size_t) (consume_q_size - head);
2629 
2630 		result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2631 		if (result >= VMCI_SUCCESS)
2632 			result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2633 						   read - tmp);
2634 
2635 	}
2636 
2637 	if (result < VMCI_SUCCESS)
2638 		return result;
2639 
2640 	if (update_consumer)
2641 		vmci_q_header_add_consumer_head(produce_q->q_header,
2642 						read, consume_q_size);
2643 
2644 	return read;
2645 }
2646 
2647 /*
2648  * vmci_qpair_alloc() - Allocates a queue pair.
2649  * @qpair:      Pointer for the new vmci_qp struct.
2650  * @handle:     Handle to track the resource.
2651  * @produce_qsize:      Desired size of the producer queue.
2652  * @consume_qsize:      Desired size of the consumer queue.
2653  * @peer:       ContextID of the peer.
2654  * @flags:      VMCI flags.
2655  * @priv_flags: VMCI priviledge flags.
2656  *
2657  * This is the client interface for allocating the memory for a
2658  * vmci_qp structure and then attaching to the underlying
2659  * queue.  If an error occurs allocating the memory for the
2660  * vmci_qp structure no attempt is made to attach.  If an
2661  * error occurs attaching, then the structure is freed.
2662  */
2663 int vmci_qpair_alloc(struct vmci_qp **qpair,
2664 		     struct vmci_handle *handle,
2665 		     u64 produce_qsize,
2666 		     u64 consume_qsize,
2667 		     u32 peer,
2668 		     u32 flags,
2669 		     u32 priv_flags)
2670 {
2671 	struct vmci_qp *my_qpair;
2672 	int retval;
2673 	struct vmci_handle src = VMCI_INVALID_HANDLE;
2674 	struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2675 	enum vmci_route route;
2676 	vmci_event_release_cb wakeup_cb;
2677 	void *client_data;
2678 
2679 	/*
2680 	 * Restrict the size of a queuepair.  The device already
2681 	 * enforces a limit on the total amount of memory that can be
2682 	 * allocated to queuepairs for a guest.  However, we try to
2683 	 * allocate this memory before we make the queuepair
2684 	 * allocation hypercall.  On Linux, we allocate each page
2685 	 * separately, which means rather than fail, the guest will
2686 	 * thrash while it tries to allocate, and will become
2687 	 * increasingly unresponsive to the point where it appears to
2688 	 * be hung.  So we place a limit on the size of an individual
2689 	 * queuepair here, and leave the device to enforce the
2690 	 * restriction on total queuepair memory.  (Note that this
2691 	 * doesn't prevent all cases; a user with only this much
2692 	 * physical memory could still get into trouble.)  The error
2693 	 * used by the device is NO_RESOURCES, so use that here too.
2694 	 */
2695 
2696 	if (!QP_SIZES_ARE_VALID(produce_qsize, consume_qsize))
2697 		return VMCI_ERROR_NO_RESOURCES;
2698 
2699 	retval = vmci_route(&src, &dst, false, &route);
2700 	if (retval < VMCI_SUCCESS)
2701 		route = vmci_guest_code_active() ?
2702 		    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2703 
2704 	if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2705 		pr_devel("NONBLOCK OR PINNED set");
2706 		return VMCI_ERROR_INVALID_ARGS;
2707 	}
2708 
2709 	my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2710 	if (!my_qpair)
2711 		return VMCI_ERROR_NO_MEM;
2712 
2713 	my_qpair->produce_q_size = produce_qsize;
2714 	my_qpair->consume_q_size = consume_qsize;
2715 	my_qpair->peer = peer;
2716 	my_qpair->flags = flags;
2717 	my_qpair->priv_flags = priv_flags;
2718 
2719 	wakeup_cb = NULL;
2720 	client_data = NULL;
2721 
2722 	if (VMCI_ROUTE_AS_HOST == route) {
2723 		my_qpair->guest_endpoint = false;
2724 		if (!(flags & VMCI_QPFLAG_LOCAL)) {
2725 			my_qpair->blocked = 0;
2726 			my_qpair->generation = 0;
2727 			init_waitqueue_head(&my_qpair->event);
2728 			wakeup_cb = qp_wakeup_cb;
2729 			client_data = (void *)my_qpair;
2730 		}
2731 	} else {
2732 		my_qpair->guest_endpoint = true;
2733 	}
2734 
2735 	retval = vmci_qp_alloc(handle,
2736 			       &my_qpair->produce_q,
2737 			       my_qpair->produce_q_size,
2738 			       &my_qpair->consume_q,
2739 			       my_qpair->consume_q_size,
2740 			       my_qpair->peer,
2741 			       my_qpair->flags,
2742 			       my_qpair->priv_flags,
2743 			       my_qpair->guest_endpoint,
2744 			       wakeup_cb, client_data);
2745 
2746 	if (retval < VMCI_SUCCESS) {
2747 		kfree(my_qpair);
2748 		return retval;
2749 	}
2750 
2751 	*qpair = my_qpair;
2752 	my_qpair->handle = *handle;
2753 
2754 	return retval;
2755 }
2756 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2757 
2758 /*
2759  * vmci_qpair_detach() - Detatches the client from a queue pair.
2760  * @qpair:      Reference of a pointer to the qpair struct.
2761  *
2762  * This is the client interface for detaching from a VMCIQPair.
2763  * Note that this routine will free the memory allocated for the
2764  * vmci_qp structure too.
2765  */
2766 int vmci_qpair_detach(struct vmci_qp **qpair)
2767 {
2768 	int result;
2769 	struct vmci_qp *old_qpair;
2770 
2771 	if (!qpair || !(*qpair))
2772 		return VMCI_ERROR_INVALID_ARGS;
2773 
2774 	old_qpair = *qpair;
2775 	result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2776 
2777 	/*
2778 	 * The guest can fail to detach for a number of reasons, and
2779 	 * if it does so, it will cleanup the entry (if there is one).
2780 	 * The host can fail too, but it won't cleanup the entry
2781 	 * immediately, it will do that later when the context is
2782 	 * freed.  Either way, we need to release the qpair struct
2783 	 * here; there isn't much the caller can do, and we don't want
2784 	 * to leak.
2785 	 */
2786 
2787 	memset(old_qpair, 0, sizeof(*old_qpair));
2788 	old_qpair->handle = VMCI_INVALID_HANDLE;
2789 	old_qpair->peer = VMCI_INVALID_ID;
2790 	kfree(old_qpair);
2791 	*qpair = NULL;
2792 
2793 	return result;
2794 }
2795 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2796 
2797 /*
2798  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2799  * @qpair:      Pointer to the queue pair struct.
2800  * @producer_tail:      Reference used for storing producer tail index.
2801  * @consumer_head:      Reference used for storing the consumer head index.
2802  *
2803  * This is the client interface for getting the current indexes of the
2804  * QPair from the point of the view of the caller as the producer.
2805  */
2806 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2807 				   u64 *producer_tail,
2808 				   u64 *consumer_head)
2809 {
2810 	struct vmci_queue_header *produce_q_header;
2811 	struct vmci_queue_header *consume_q_header;
2812 	int result;
2813 
2814 	if (!qpair)
2815 		return VMCI_ERROR_INVALID_ARGS;
2816 
2817 	qp_lock(qpair);
2818 	result =
2819 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2820 	if (result == VMCI_SUCCESS)
2821 		vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2822 					   producer_tail, consumer_head);
2823 	qp_unlock(qpair);
2824 
2825 	if (result == VMCI_SUCCESS &&
2826 	    ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2827 	     (consumer_head && *consumer_head >= qpair->produce_q_size)))
2828 		return VMCI_ERROR_INVALID_SIZE;
2829 
2830 	return result;
2831 }
2832 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2833 
2834 /*
2835  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2836  * @qpair:      Pointer to the queue pair struct.
2837  * @consumer_tail:      Reference used for storing consumer tail index.
2838  * @producer_head:      Reference used for storing the producer head index.
2839  *
2840  * This is the client interface for getting the current indexes of the
2841  * QPair from the point of the view of the caller as the consumer.
2842  */
2843 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2844 				   u64 *consumer_tail,
2845 				   u64 *producer_head)
2846 {
2847 	struct vmci_queue_header *produce_q_header;
2848 	struct vmci_queue_header *consume_q_header;
2849 	int result;
2850 
2851 	if (!qpair)
2852 		return VMCI_ERROR_INVALID_ARGS;
2853 
2854 	qp_lock(qpair);
2855 	result =
2856 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2857 	if (result == VMCI_SUCCESS)
2858 		vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2859 					   consumer_tail, producer_head);
2860 	qp_unlock(qpair);
2861 
2862 	if (result == VMCI_SUCCESS &&
2863 	    ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2864 	     (producer_head && *producer_head >= qpair->consume_q_size)))
2865 		return VMCI_ERROR_INVALID_SIZE;
2866 
2867 	return result;
2868 }
2869 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2870 
2871 /*
2872  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2873  * @qpair:      Pointer to the queue pair struct.
2874  *
2875  * This is the client interface for getting the amount of free
2876  * space in the QPair from the point of the view of the caller as
2877  * the producer which is the common case.  Returns < 0 if err, else
2878  * available bytes into which data can be enqueued if > 0.
2879  */
2880 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2881 {
2882 	struct vmci_queue_header *produce_q_header;
2883 	struct vmci_queue_header *consume_q_header;
2884 	s64 result;
2885 
2886 	if (!qpair)
2887 		return VMCI_ERROR_INVALID_ARGS;
2888 
2889 	qp_lock(qpair);
2890 	result =
2891 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2892 	if (result == VMCI_SUCCESS)
2893 		result = vmci_q_header_free_space(produce_q_header,
2894 						  consume_q_header,
2895 						  qpair->produce_q_size);
2896 	else
2897 		result = 0;
2898 
2899 	qp_unlock(qpair);
2900 
2901 	return result;
2902 }
2903 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2904 
2905 /*
2906  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2907  * @qpair:      Pointer to the queue pair struct.
2908  *
2909  * This is the client interface for getting the amount of free
2910  * space in the QPair from the point of the view of the caller as
2911  * the consumer which is not the common case.  Returns < 0 if err, else
2912  * available bytes into which data can be enqueued if > 0.
2913  */
2914 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2915 {
2916 	struct vmci_queue_header *produce_q_header;
2917 	struct vmci_queue_header *consume_q_header;
2918 	s64 result;
2919 
2920 	if (!qpair)
2921 		return VMCI_ERROR_INVALID_ARGS;
2922 
2923 	qp_lock(qpair);
2924 	result =
2925 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2926 	if (result == VMCI_SUCCESS)
2927 		result = vmci_q_header_free_space(consume_q_header,
2928 						  produce_q_header,
2929 						  qpair->consume_q_size);
2930 	else
2931 		result = 0;
2932 
2933 	qp_unlock(qpair);
2934 
2935 	return result;
2936 }
2937 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2938 
2939 /*
2940  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2941  * producer queue.
2942  * @qpair:      Pointer to the queue pair struct.
2943  *
2944  * This is the client interface for getting the amount of
2945  * enqueued data in the QPair from the point of the view of the
2946  * caller as the producer which is not the common case.  Returns < 0 if err,
2947  * else available bytes that may be read.
2948  */
2949 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2950 {
2951 	struct vmci_queue_header *produce_q_header;
2952 	struct vmci_queue_header *consume_q_header;
2953 	s64 result;
2954 
2955 	if (!qpair)
2956 		return VMCI_ERROR_INVALID_ARGS;
2957 
2958 	qp_lock(qpair);
2959 	result =
2960 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2961 	if (result == VMCI_SUCCESS)
2962 		result = vmci_q_header_buf_ready(produce_q_header,
2963 						 consume_q_header,
2964 						 qpair->produce_q_size);
2965 	else
2966 		result = 0;
2967 
2968 	qp_unlock(qpair);
2969 
2970 	return result;
2971 }
2972 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2973 
2974 /*
2975  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2976  * consumer queue.
2977  * @qpair:      Pointer to the queue pair struct.
2978  *
2979  * This is the client interface for getting the amount of
2980  * enqueued data in the QPair from the point of the view of the
2981  * caller as the consumer which is the normal case.  Returns < 0 if err,
2982  * else available bytes that may be read.
2983  */
2984 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2985 {
2986 	struct vmci_queue_header *produce_q_header;
2987 	struct vmci_queue_header *consume_q_header;
2988 	s64 result;
2989 
2990 	if (!qpair)
2991 		return VMCI_ERROR_INVALID_ARGS;
2992 
2993 	qp_lock(qpair);
2994 	result =
2995 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2996 	if (result == VMCI_SUCCESS)
2997 		result = vmci_q_header_buf_ready(consume_q_header,
2998 						 produce_q_header,
2999 						 qpair->consume_q_size);
3000 	else
3001 		result = 0;
3002 
3003 	qp_unlock(qpair);
3004 
3005 	return result;
3006 }
3007 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3008 
3009 /*
3010  * vmci_qpair_enqueue() - Throw data on the queue.
3011  * @qpair:      Pointer to the queue pair struct.
3012  * @buf:        Pointer to buffer containing data
3013  * @buf_size:   Length of buffer.
3014  * @buf_type:   Buffer type (Unused).
3015  *
3016  * This is the client interface for enqueueing data into the queue.
3017  * Returns number of bytes enqueued or < 0 on error.
3018  */
3019 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3020 			   const void *buf,
3021 			   size_t buf_size,
3022 			   int buf_type)
3023 {
3024 	ssize_t result;
3025 	struct iov_iter from;
3026 	struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3027 
3028 	if (!qpair || !buf)
3029 		return VMCI_ERROR_INVALID_ARGS;
3030 
3031 	iov_iter_kvec(&from, WRITE, &v, 1, buf_size);
3032 
3033 	qp_lock(qpair);
3034 
3035 	do {
3036 		result = qp_enqueue_locked(qpair->produce_q,
3037 					   qpair->consume_q,
3038 					   qpair->produce_q_size,
3039 					   &from);
3040 
3041 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3042 		    !qp_wait_for_ready_queue(qpair))
3043 			result = VMCI_ERROR_WOULD_BLOCK;
3044 
3045 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3046 
3047 	qp_unlock(qpair);
3048 
3049 	return result;
3050 }
3051 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3052 
3053 /*
3054  * vmci_qpair_dequeue() - Get data from the queue.
3055  * @qpair:      Pointer to the queue pair struct.
3056  * @buf:        Pointer to buffer for the data
3057  * @buf_size:   Length of buffer.
3058  * @buf_type:   Buffer type (Unused).
3059  *
3060  * This is the client interface for dequeueing data from the queue.
3061  * Returns number of bytes dequeued or < 0 on error.
3062  */
3063 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3064 			   void *buf,
3065 			   size_t buf_size,
3066 			   int buf_type)
3067 {
3068 	ssize_t result;
3069 	struct iov_iter to;
3070 	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3071 
3072 	if (!qpair || !buf)
3073 		return VMCI_ERROR_INVALID_ARGS;
3074 
3075 	iov_iter_kvec(&to, READ, &v, 1, buf_size);
3076 
3077 	qp_lock(qpair);
3078 
3079 	do {
3080 		result = qp_dequeue_locked(qpair->produce_q,
3081 					   qpair->consume_q,
3082 					   qpair->consume_q_size,
3083 					   &to, true);
3084 
3085 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3086 		    !qp_wait_for_ready_queue(qpair))
3087 			result = VMCI_ERROR_WOULD_BLOCK;
3088 
3089 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3090 
3091 	qp_unlock(qpair);
3092 
3093 	return result;
3094 }
3095 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3096 
3097 /*
3098  * vmci_qpair_peek() - Peek at the data in the queue.
3099  * @qpair:      Pointer to the queue pair struct.
3100  * @buf:        Pointer to buffer for the data
3101  * @buf_size:   Length of buffer.
3102  * @buf_type:   Buffer type (Unused on Linux).
3103  *
3104  * This is the client interface for peeking into a queue.  (I.e.,
3105  * copy data from the queue without updating the head pointer.)
3106  * Returns number of bytes dequeued or < 0 on error.
3107  */
3108 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3109 			void *buf,
3110 			size_t buf_size,
3111 			int buf_type)
3112 {
3113 	struct iov_iter to;
3114 	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3115 	ssize_t result;
3116 
3117 	if (!qpair || !buf)
3118 		return VMCI_ERROR_INVALID_ARGS;
3119 
3120 	iov_iter_kvec(&to, READ, &v, 1, buf_size);
3121 
3122 	qp_lock(qpair);
3123 
3124 	do {
3125 		result = qp_dequeue_locked(qpair->produce_q,
3126 					   qpair->consume_q,
3127 					   qpair->consume_q_size,
3128 					   &to, false);
3129 
3130 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3131 		    !qp_wait_for_ready_queue(qpair))
3132 			result = VMCI_ERROR_WOULD_BLOCK;
3133 
3134 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3135 
3136 	qp_unlock(qpair);
3137 
3138 	return result;
3139 }
3140 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3141 
3142 /*
3143  * vmci_qpair_enquev() - Throw data on the queue using iov.
3144  * @qpair:      Pointer to the queue pair struct.
3145  * @iov:        Pointer to buffer containing data
3146  * @iov_size:   Length of buffer.
3147  * @buf_type:   Buffer type (Unused).
3148  *
3149  * This is the client interface for enqueueing data into the queue.
3150  * This function uses IO vectors to handle the work. Returns number
3151  * of bytes enqueued or < 0 on error.
3152  */
3153 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3154 			  struct msghdr *msg,
3155 			  size_t iov_size,
3156 			  int buf_type)
3157 {
3158 	ssize_t result;
3159 
3160 	if (!qpair)
3161 		return VMCI_ERROR_INVALID_ARGS;
3162 
3163 	qp_lock(qpair);
3164 
3165 	do {
3166 		result = qp_enqueue_locked(qpair->produce_q,
3167 					   qpair->consume_q,
3168 					   qpair->produce_q_size,
3169 					   &msg->msg_iter);
3170 
3171 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3172 		    !qp_wait_for_ready_queue(qpair))
3173 			result = VMCI_ERROR_WOULD_BLOCK;
3174 
3175 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3176 
3177 	qp_unlock(qpair);
3178 
3179 	return result;
3180 }
3181 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3182 
3183 /*
3184  * vmci_qpair_dequev() - Get data from the queue using iov.
3185  * @qpair:      Pointer to the queue pair struct.
3186  * @iov:        Pointer to buffer for the data
3187  * @iov_size:   Length of buffer.
3188  * @buf_type:   Buffer type (Unused).
3189  *
3190  * This is the client interface for dequeueing data from the queue.
3191  * This function uses IO vectors to handle the work. Returns number
3192  * of bytes dequeued or < 0 on error.
3193  */
3194 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3195 			  struct msghdr *msg,
3196 			  size_t iov_size,
3197 			  int buf_type)
3198 {
3199 	ssize_t result;
3200 
3201 	if (!qpair)
3202 		return VMCI_ERROR_INVALID_ARGS;
3203 
3204 	qp_lock(qpair);
3205 
3206 	do {
3207 		result = qp_dequeue_locked(qpair->produce_q,
3208 					   qpair->consume_q,
3209 					   qpair->consume_q_size,
3210 					   &msg->msg_iter, true);
3211 
3212 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3213 		    !qp_wait_for_ready_queue(qpair))
3214 			result = VMCI_ERROR_WOULD_BLOCK;
3215 
3216 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3217 
3218 	qp_unlock(qpair);
3219 
3220 	return result;
3221 }
3222 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3223 
3224 /*
3225  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3226  * @qpair:      Pointer to the queue pair struct.
3227  * @iov:        Pointer to buffer for the data
3228  * @iov_size:   Length of buffer.
3229  * @buf_type:   Buffer type (Unused on Linux).
3230  *
3231  * This is the client interface for peeking into a queue.  (I.e.,
3232  * copy data from the queue without updating the head pointer.)
3233  * This function uses IO vectors to handle the work. Returns number
3234  * of bytes peeked or < 0 on error.
3235  */
3236 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3237 			 struct msghdr *msg,
3238 			 size_t iov_size,
3239 			 int buf_type)
3240 {
3241 	ssize_t result;
3242 
3243 	if (!qpair)
3244 		return VMCI_ERROR_INVALID_ARGS;
3245 
3246 	qp_lock(qpair);
3247 
3248 	do {
3249 		result = qp_dequeue_locked(qpair->produce_q,
3250 					   qpair->consume_q,
3251 					   qpair->consume_q_size,
3252 					   &msg->msg_iter, false);
3253 
3254 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3255 		    !qp_wait_for_ready_queue(qpair))
3256 			result = VMCI_ERROR_WOULD_BLOCK;
3257 
3258 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3259 
3260 	qp_unlock(qpair);
3261 	return result;
3262 }
3263 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3264