xref: /openbmc/linux/drivers/misc/sgi-gru/grufault.c (revision e006043a4d2da52bba9fd9cb7e5a22e2951ff69b)
1 /*
2  * SN Platform GRU Driver
3  *
4  *              FAULT HANDLER FOR GRU DETECTED TLB MISSES
5  *
6  * This file contains code that handles TLB misses within the GRU.
7  * These misses are reported either via interrupts or user polling of
8  * the user CB.
9  *
10  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; if not, write to the Free Software
24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/errno.h>
29 #include <linux/spinlock.h>
30 #include <linux/mm.h>
31 #include <linux/hugetlb.h>
32 #include <linux/device.h>
33 #include <linux/io.h>
34 #include <linux/uaccess.h>
35 #include <linux/security.h>
36 #include <asm/pgtable.h>
37 #include "gru.h"
38 #include "grutables.h"
39 #include "grulib.h"
40 #include "gru_instructions.h"
41 #include <asm/uv/uv_hub.h>
42 
43 /*
44  * Test if a physical address is a valid GRU GSEG address
45  */
46 static inline int is_gru_paddr(unsigned long paddr)
47 {
48 	return paddr >= gru_start_paddr && paddr < gru_end_paddr;
49 }
50 
51 /*
52  * Find the vma of a GRU segment. Caller must hold mmap_sem.
53  */
54 struct vm_area_struct *gru_find_vma(unsigned long vaddr)
55 {
56 	struct vm_area_struct *vma;
57 
58 	vma = find_vma(current->mm, vaddr);
59 	if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops)
60 		return vma;
61 	return NULL;
62 }
63 
64 /*
65  * Find and lock the gts that contains the specified user vaddr.
66  *
67  * Returns:
68  * 	- *gts with the mmap_sem locked for read and the GTS locked.
69  *	- NULL if vaddr invalid OR is not a valid GSEG vaddr.
70  */
71 
72 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr)
73 {
74 	struct mm_struct *mm = current->mm;
75 	struct vm_area_struct *vma;
76 	struct gru_thread_state *gts = NULL;
77 
78 	down_read(&mm->mmap_sem);
79 	vma = gru_find_vma(vaddr);
80 	if (vma)
81 		gts = gru_find_thread_state(vma, TSID(vaddr, vma));
82 	if (gts)
83 		mutex_lock(&gts->ts_ctxlock);
84 	else
85 		up_read(&mm->mmap_sem);
86 	return gts;
87 }
88 
89 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr)
90 {
91 	struct mm_struct *mm = current->mm;
92 	struct vm_area_struct *vma;
93 	struct gru_thread_state *gts = ERR_PTR(-EINVAL);
94 
95 	down_write(&mm->mmap_sem);
96 	vma = gru_find_vma(vaddr);
97 	if (!vma)
98 		goto err;
99 
100 	gts = gru_alloc_thread_state(vma, TSID(vaddr, vma));
101 	if (IS_ERR(gts))
102 		goto err;
103 	mutex_lock(&gts->ts_ctxlock);
104 	downgrade_write(&mm->mmap_sem);
105 	return gts;
106 
107 err:
108 	up_write(&mm->mmap_sem);
109 	return gts;
110 }
111 
112 /*
113  * Unlock a GTS that was previously locked with gru_find_lock_gts().
114  */
115 static void gru_unlock_gts(struct gru_thread_state *gts)
116 {
117 	mutex_unlock(&gts->ts_ctxlock);
118 	up_read(&current->mm->mmap_sem);
119 }
120 
121 /*
122  * Set a CB.istatus to active using a user virtual address. This must be done
123  * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY.
124  * If the line is evicted, the status may be lost. The in-cache update
125  * is necessary to prevent the user from seeing a stale cb.istatus that will
126  * change as soon as the TFH restart is complete. Races may cause an
127  * occasional failure to clear the cb.istatus, but that is ok.
128  */
129 static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk)
130 {
131 	if (cbk) {
132 		cbk->istatus = CBS_ACTIVE;
133 	}
134 }
135 
136 /*
137  * Convert a interrupt IRQ to a pointer to the GRU GTS that caused the
138  * interrupt. Interrupts are always sent to a cpu on the blade that contains the
139  * GRU (except for headless blades which are not currently supported). A blade
140  * has N grus; a block of N consecutive IRQs is assigned to the GRUs. The IRQ
141  * number uniquely identifies the GRU chiplet on the local blade that caused the
142  * interrupt. Always called in interrupt context.
143  */
144 static inline struct gru_state *irq_to_gru(int irq)
145 {
146 	return &gru_base[uv_numa_blade_id()]->bs_grus[irq - IRQ_GRU];
147 }
148 
149 /*
150  * Read & clear a TFM
151  *
152  * The GRU has an array of fault maps. A map is private to a cpu
153  * Only one cpu will be accessing a cpu's fault map.
154  *
155  * This function scans the cpu-private fault map & clears all bits that
156  * are set. The function returns a bitmap that indicates the bits that
157  * were cleared. Note that sense the maps may be updated asynchronously by
158  * the GRU, atomic operations must be used to clear bits.
159  */
160 static void get_clear_fault_map(struct gru_state *gru,
161 				struct gru_tlb_fault_map *imap,
162 				struct gru_tlb_fault_map *dmap)
163 {
164 	unsigned long i, k;
165 	struct gru_tlb_fault_map *tfm;
166 
167 	tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id());
168 	prefetchw(tfm);		/* Helps on hardware, required for emulator */
169 	for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) {
170 		k = tfm->fault_bits[i];
171 		if (k)
172 			k = xchg(&tfm->fault_bits[i], 0UL);
173 		imap->fault_bits[i] = k;
174 		k = tfm->done_bits[i];
175 		if (k)
176 			k = xchg(&tfm->done_bits[i], 0UL);
177 		dmap->fault_bits[i] = k;
178 	}
179 
180 	/*
181 	 * Not functionally required but helps performance. (Required
182 	 * on emulator)
183 	 */
184 	gru_flush_cache(tfm);
185 }
186 
187 /*
188  * Atomic (interrupt context) & non-atomic (user context) functions to
189  * convert a vaddr into a physical address. The size of the page
190  * is returned in pageshift.
191  * 	returns:
192  * 		  0 - successful
193  * 		< 0 - error code
194  * 		  1 - (atomic only) try again in non-atomic context
195  */
196 static int non_atomic_pte_lookup(struct vm_area_struct *vma,
197 				 unsigned long vaddr, int write,
198 				 unsigned long *paddr, int *pageshift)
199 {
200 	struct page *page;
201 
202 	/* ZZZ Need to handle HUGE pages */
203 	if (is_vm_hugetlb_page(vma))
204 		return -EFAULT;
205 	*pageshift = PAGE_SHIFT;
206 	if (get_user_pages
207 	    (current, current->mm, vaddr, 1, write, 0, &page, NULL) <= 0)
208 		return -EFAULT;
209 	*paddr = page_to_phys(page);
210 	put_page(page);
211 	return 0;
212 }
213 
214 /*
215  * atomic_pte_lookup
216  *
217  * Convert a user virtual address to a physical address
218  * Only supports Intel large pages (2MB only) on x86_64.
219  *	ZZZ - hugepage support is incomplete
220  *
221  * NOTE: mmap_sem is already held on entry to this function. This
222  * guarantees existence of the page tables.
223  */
224 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr,
225 	int write, unsigned long *paddr, int *pageshift)
226 {
227 	pgd_t *pgdp;
228 	pmd_t *pmdp;
229 	pud_t *pudp;
230 	pte_t pte;
231 
232 	pgdp = pgd_offset(vma->vm_mm, vaddr);
233 	if (unlikely(pgd_none(*pgdp)))
234 		goto err;
235 
236 	pudp = pud_offset(pgdp, vaddr);
237 	if (unlikely(pud_none(*pudp)))
238 		goto err;
239 
240 	pmdp = pmd_offset(pudp, vaddr);
241 	if (unlikely(pmd_none(*pmdp)))
242 		goto err;
243 #ifdef CONFIG_X86_64
244 	if (unlikely(pmd_large(*pmdp)))
245 		pte = *(pte_t *) pmdp;
246 	else
247 #endif
248 		pte = *pte_offset_kernel(pmdp, vaddr);
249 
250 	if (unlikely(!pte_present(pte) ||
251 		     (write && (!pte_write(pte) || !pte_dirty(pte)))))
252 		return 1;
253 
254 	*paddr = pte_pfn(pte) << PAGE_SHIFT;
255 #ifdef CONFIG_HUGETLB_PAGE
256 	*pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT;
257 #else
258 	*pageshift = PAGE_SHIFT;
259 #endif
260 	return 0;
261 
262 err:
263 	local_irq_enable();
264 	return 1;
265 }
266 
267 static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr,
268 		    int write, int atomic, unsigned long *gpa, int *pageshift)
269 {
270 	struct mm_struct *mm = gts->ts_mm;
271 	struct vm_area_struct *vma;
272 	unsigned long paddr;
273 	int ret, ps;
274 
275 	vma = find_vma(mm, vaddr);
276 	if (!vma)
277 		goto inval;
278 
279 	/*
280 	 * Atomic lookup is faster & usually works even if called in non-atomic
281 	 * context.
282 	 */
283 	rmb();	/* Must/check ms_range_active before loading PTEs */
284 	ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps);
285 	if (ret) {
286 		if (atomic)
287 			goto upm;
288 		if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps))
289 			goto inval;
290 	}
291 	if (is_gru_paddr(paddr))
292 		goto inval;
293 	paddr = paddr & ~((1UL << ps) - 1);
294 	*gpa = uv_soc_phys_ram_to_gpa(paddr);
295 	*pageshift = ps;
296 	return 0;
297 
298 inval:
299 	return -1;
300 upm:
301 	return -2;
302 }
303 
304 
305 /*
306  * Drop a TLB entry into the GRU. The fault is described by info in an TFH.
307  *	Input:
308  *		cb    Address of user CBR. Null if not running in user context
309  * 	Return:
310  * 		  0 = dropin, exception, or switch to UPM successful
311  * 		  1 = range invalidate active
312  * 		< 0 = error code
313  *
314  */
315 static int gru_try_dropin(struct gru_thread_state *gts,
316 			  struct gru_tlb_fault_handle *tfh,
317 			  struct gru_instruction_bits *cbk)
318 {
319 	int pageshift = 0, asid, write, ret, atomic = !cbk;
320 	unsigned long gpa = 0, vaddr = 0;
321 
322 	/*
323 	 * NOTE: The GRU contains magic hardware that eliminates races between
324 	 * TLB invalidates and TLB dropins. If an invalidate occurs
325 	 * in the window between reading the TFH and the subsequent TLB dropin,
326 	 * the dropin is ignored. This eliminates the need for additional locks.
327 	 */
328 
329 	/*
330 	 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call.
331 	 * Might be a hardware race OR a stupid user. Ignore FMM because FMM
332 	 * is a transient state.
333 	 */
334 	if (tfh->status != TFHSTATUS_EXCEPTION) {
335 		gru_flush_cache(tfh);
336 		if (tfh->status != TFHSTATUS_EXCEPTION)
337 			goto failnoexception;
338 		STAT(tfh_stale_on_fault);
339 	}
340 	if (tfh->state == TFHSTATE_IDLE)
341 		goto failidle;
342 	if (tfh->state == TFHSTATE_MISS_FMM && cbk)
343 		goto failfmm;
344 
345 	write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0;
346 	vaddr = tfh->missvaddr;
347 	asid = tfh->missasid;
348 	if (asid == 0)
349 		goto failnoasid;
350 
351 	rmb();	/* TFH must be cache resident before reading ms_range_active */
352 
353 	/*
354 	 * TFH is cache resident - at least briefly. Fail the dropin
355 	 * if a range invalidate is active.
356 	 */
357 	if (atomic_read(&gts->ts_gms->ms_range_active))
358 		goto failactive;
359 
360 	ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift);
361 	if (ret == -1)
362 		goto failinval;
363 	if (ret == -2)
364 		goto failupm;
365 
366 	if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) {
367 		gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift);
368 		if (atomic || !gru_update_cch(gts)) {
369 			gts->ts_force_cch_reload = 1;
370 			goto failupm;
371 		}
372 	}
373 	gru_cb_set_istatus_active(cbk);
374 	tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write,
375 			  GRU_PAGESIZE(pageshift));
376 	STAT(tlb_dropin);
377 	gru_dbg(grudev,
378 		"%s: tfh 0x%p, vaddr 0x%lx, asid 0x%x, ps %d, gpa 0x%lx\n",
379 		ret ? "non-atomic" : "atomic", tfh, vaddr, asid,
380 		pageshift, gpa);
381 	return 0;
382 
383 failnoasid:
384 	/* No asid (delayed unload). */
385 	STAT(tlb_dropin_fail_no_asid);
386 	gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
387 	if (!cbk)
388 		tfh_user_polling_mode(tfh);
389 	else
390 		gru_flush_cache(tfh);
391 	return -EAGAIN;
392 
393 failupm:
394 	/* Atomic failure switch CBR to UPM */
395 	tfh_user_polling_mode(tfh);
396 	STAT(tlb_dropin_fail_upm);
397 	gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
398 	return 1;
399 
400 failfmm:
401 	/* FMM state on UPM call */
402 	gru_flush_cache(tfh);
403 	STAT(tlb_dropin_fail_fmm);
404 	gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state);
405 	return 0;
406 
407 failnoexception:
408 	/* TFH status did not show exception pending */
409 	gru_flush_cache(tfh);
410 	if (cbk)
411 		gru_flush_cache(cbk);
412 	STAT(tlb_dropin_fail_no_exception);
413 	gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n",
414 		tfh, tfh->status, tfh->state);
415 	return 0;
416 
417 failidle:
418 	/* TFH state was idle  - no miss pending */
419 	gru_flush_cache(tfh);
420 	if (cbk)
421 		gru_flush_cache(cbk);
422 	STAT(tlb_dropin_fail_idle);
423 	gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state);
424 	return 0;
425 
426 failinval:
427 	/* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */
428 	tfh_exception(tfh);
429 	STAT(tlb_dropin_fail_invalid);
430 	gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr);
431 	return -EFAULT;
432 
433 failactive:
434 	/* Range invalidate active. Switch to UPM iff atomic */
435 	if (!cbk)
436 		tfh_user_polling_mode(tfh);
437 	else
438 		gru_flush_cache(tfh);
439 	STAT(tlb_dropin_fail_range_active);
440 	gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n",
441 		tfh, vaddr);
442 	return 1;
443 }
444 
445 /*
446  * Process an external interrupt from the GRU. This interrupt is
447  * caused by a TLB miss.
448  * Note that this is the interrupt handler that is registered with linux
449  * interrupt handlers.
450  */
451 irqreturn_t gru_intr(int irq, void *dev_id)
452 {
453 	struct gru_state *gru;
454 	struct gru_tlb_fault_map imap, dmap;
455 	struct gru_thread_state *gts;
456 	struct gru_tlb_fault_handle *tfh = NULL;
457 	int cbrnum, ctxnum;
458 
459 	STAT(intr);
460 
461 	gru = irq_to_gru(irq);
462 	if (!gru) {
463 		dev_err(grudev, "GRU: invalid interrupt: cpu %d, irq %d\n",
464 			raw_smp_processor_id(), irq);
465 		return IRQ_NONE;
466 	}
467 	get_clear_fault_map(gru, &imap, &dmap);
468 
469 	for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) {
470 		complete(gru->gs_blade->bs_async_wq);
471 		gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n",
472 			gru->gs_gid, cbrnum, gru->gs_blade->bs_async_wq->done);
473 	}
474 
475 	for_each_cbr_in_tfm(cbrnum, imap.fault_bits) {
476 		tfh = get_tfh_by_index(gru, cbrnum);
477 		prefetchw(tfh);	/* Helps on hdw, required for emulator */
478 
479 		/*
480 		 * When hardware sets a bit in the faultmap, it implicitly
481 		 * locks the GRU context so that it cannot be unloaded.
482 		 * The gts cannot change until a TFH start/writestart command
483 		 * is issued.
484 		 */
485 		ctxnum = tfh->ctxnum;
486 		gts = gru->gs_gts[ctxnum];
487 
488 		/*
489 		 * This is running in interrupt context. Trylock the mmap_sem.
490 		 * If it fails, retry the fault in user context.
491 		 */
492 		if (!gts->ts_force_cch_reload &&
493 					down_read_trylock(&gts->ts_mm->mmap_sem)) {
494 			gts->ustats.fmm_tlbdropin++;
495 			gru_try_dropin(gts, tfh, NULL);
496 			up_read(&gts->ts_mm->mmap_sem);
497 		} else {
498 			tfh_user_polling_mode(tfh);
499 			STAT(intr_mm_lock_failed);
500 		}
501 	}
502 	return IRQ_HANDLED;
503 }
504 
505 
506 static int gru_user_dropin(struct gru_thread_state *gts,
507 			   struct gru_tlb_fault_handle *tfh,
508 			   void *cb)
509 {
510 	struct gru_mm_struct *gms = gts->ts_gms;
511 	int ret;
512 
513 	gts->ustats.upm_tlbdropin++;
514 	while (1) {
515 		wait_event(gms->ms_wait_queue,
516 			   atomic_read(&gms->ms_range_active) == 0);
517 		prefetchw(tfh);	/* Helps on hdw, required for emulator */
518 		ret = gru_try_dropin(gts, tfh, cb);
519 		if (ret <= 0)
520 			return ret;
521 		STAT(call_os_wait_queue);
522 	}
523 }
524 
525 /*
526  * This interface is called as a result of a user detecting a "call OS" bit
527  * in a user CB. Normally means that a TLB fault has occurred.
528  * 	cb - user virtual address of the CB
529  */
530 int gru_handle_user_call_os(unsigned long cb)
531 {
532 	struct gru_tlb_fault_handle *tfh;
533 	struct gru_thread_state *gts;
534 	void *cbk;
535 	int ucbnum, cbrnum, ret = -EINVAL;
536 
537 	STAT(call_os);
538 	gru_dbg(grudev, "address 0x%lx\n", cb);
539 
540 	/* sanity check the cb pointer */
541 	ucbnum = get_cb_number((void *)cb);
542 	if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB)
543 		return -EINVAL;
544 
545 	gts = gru_find_lock_gts(cb);
546 	if (!gts)
547 		return -EINVAL;
548 
549 	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE)
550 		goto exit;
551 
552 	gru_check_context_placement(gts);
553 
554 	/*
555 	 * CCH may contain stale data if ts_force_cch_reload is set.
556 	 */
557 	if (gts->ts_gru && gts->ts_force_cch_reload) {
558 		gts->ts_force_cch_reload = 0;
559 		gru_update_cch(gts);
560 	}
561 
562 	ret = -EAGAIN;
563 	cbrnum = thread_cbr_number(gts, ucbnum);
564 	if (gts->ts_gru) {
565 		tfh = get_tfh_by_index(gts->ts_gru, cbrnum);
566 		cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr,
567 				gts->ts_ctxnum, ucbnum);
568 		ret = gru_user_dropin(gts, tfh, cbk);
569 	}
570 exit:
571 	gru_unlock_gts(gts);
572 	return ret;
573 }
574 
575 /*
576  * Fetch the exception detail information for a CB that terminated with
577  * an exception.
578  */
579 int gru_get_exception_detail(unsigned long arg)
580 {
581 	struct control_block_extended_exc_detail excdet;
582 	struct gru_control_block_extended *cbe;
583 	struct gru_thread_state *gts;
584 	int ucbnum, cbrnum, ret;
585 
586 	STAT(user_exception);
587 	if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet)))
588 		return -EFAULT;
589 
590 	gru_dbg(grudev, "address 0x%lx\n", excdet.cb);
591 	gts = gru_find_lock_gts(excdet.cb);
592 	if (!gts)
593 		return -EINVAL;
594 
595 	ucbnum = get_cb_number((void *)excdet.cb);
596 	if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) {
597 		ret = -EINVAL;
598 	} else if (gts->ts_gru) {
599 		cbrnum = thread_cbr_number(gts, ucbnum);
600 		cbe = get_cbe_by_index(gts->ts_gru, cbrnum);
601 		gru_flush_cache(cbe);	/* CBE not coherent */
602 		excdet.opc = cbe->opccpy;
603 		excdet.exopc = cbe->exopccpy;
604 		excdet.ecause = cbe->ecause;
605 		excdet.exceptdet0 = cbe->idef1upd;
606 		excdet.exceptdet1 = cbe->idef3upd;
607 		excdet.cbrstate = cbe->cbrstate;
608 		excdet.cbrexecstatus = cbe->cbrexecstatus;
609 		gru_flush_cache(cbe);
610 		ret = 0;
611 	} else {
612 		ret = -EAGAIN;
613 	}
614 	gru_unlock_gts(gts);
615 
616 	gru_dbg(grudev,
617 		"cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, "
618 		"exdet0 0x%lx, exdet1 0x%x\n",
619 		excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus,
620 		excdet.ecause, excdet.exceptdet0, excdet.exceptdet1);
621 	if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet)))
622 		ret = -EFAULT;
623 	return ret;
624 }
625 
626 /*
627  * User request to unload a context. Content is saved for possible reload.
628  */
629 static int gru_unload_all_contexts(void)
630 {
631 	struct gru_thread_state *gts;
632 	struct gru_state *gru;
633 	int gid, ctxnum;
634 
635 	if (!capable(CAP_SYS_ADMIN))
636 		return -EPERM;
637 	foreach_gid(gid) {
638 		gru = GID_TO_GRU(gid);
639 		spin_lock(&gru->gs_lock);
640 		for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) {
641 			gts = gru->gs_gts[ctxnum];
642 			if (gts && mutex_trylock(&gts->ts_ctxlock)) {
643 				spin_unlock(&gru->gs_lock);
644 				gru_unload_context(gts, 1);
645 				mutex_unlock(&gts->ts_ctxlock);
646 				spin_lock(&gru->gs_lock);
647 			}
648 		}
649 		spin_unlock(&gru->gs_lock);
650 	}
651 	return 0;
652 }
653 
654 int gru_user_unload_context(unsigned long arg)
655 {
656 	struct gru_thread_state *gts;
657 	struct gru_unload_context_req req;
658 
659 	STAT(user_unload_context);
660 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
661 		return -EFAULT;
662 
663 	gru_dbg(grudev, "gseg 0x%lx\n", req.gseg);
664 
665 	if (!req.gseg)
666 		return gru_unload_all_contexts();
667 
668 	gts = gru_find_lock_gts(req.gseg);
669 	if (!gts)
670 		return -EINVAL;
671 
672 	if (gts->ts_gru)
673 		gru_unload_context(gts, 1);
674 	gru_unlock_gts(gts);
675 
676 	return 0;
677 }
678 
679 /*
680  * User request to flush a range of virtual addresses from the GRU TLB
681  * (Mainly for testing).
682  */
683 int gru_user_flush_tlb(unsigned long arg)
684 {
685 	struct gru_thread_state *gts;
686 	struct gru_flush_tlb_req req;
687 	struct gru_mm_struct *gms;
688 
689 	STAT(user_flush_tlb);
690 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
691 		return -EFAULT;
692 
693 	gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg,
694 		req.vaddr, req.len);
695 
696 	gts = gru_find_lock_gts(req.gseg);
697 	if (!gts)
698 		return -EINVAL;
699 
700 	gms = gts->ts_gms;
701 	gru_unlock_gts(gts);
702 	gru_flush_tlb_range(gms, req.vaddr, req.len);
703 
704 	return 0;
705 }
706 
707 /*
708  * Fetch GSEG statisticss
709  */
710 long gru_get_gseg_statistics(unsigned long arg)
711 {
712 	struct gru_thread_state *gts;
713 	struct gru_get_gseg_statistics_req req;
714 
715 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
716 		return -EFAULT;
717 
718 	/*
719 	 * The library creates arrays of contexts for threaded programs.
720 	 * If no gts exists in the array, the context has never been used & all
721 	 * statistics are implicitly 0.
722 	 */
723 	gts = gru_find_lock_gts(req.gseg);
724 	if (gts) {
725 		memcpy(&req.stats, &gts->ustats, sizeof(gts->ustats));
726 		gru_unlock_gts(gts);
727 	} else {
728 		memset(&req.stats, 0, sizeof(gts->ustats));
729 	}
730 
731 	if (copy_to_user((void __user *)arg, &req, sizeof(req)))
732 		return -EFAULT;
733 
734 	return 0;
735 }
736 
737 /*
738  * Register the current task as the user of the GSEG slice.
739  * Needed for TLB fault interrupt targeting.
740  */
741 int gru_set_context_option(unsigned long arg)
742 {
743 	struct gru_thread_state *gts;
744 	struct gru_set_context_option_req req;
745 	int ret = 0;
746 
747 	STAT(set_context_option);
748 	if (copy_from_user(&req, (void __user *)arg, sizeof(req)))
749 		return -EFAULT;
750 	gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1);
751 
752 	gts = gru_alloc_locked_gts(req.gseg);
753 	if (IS_ERR(gts))
754 		return PTR_ERR(gts);
755 
756 	switch (req.op) {
757 	case sco_blade_chiplet:
758 		/* Select blade/chiplet for GRU context */
759 		if (req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || !gru_base[req.val1] ||
760 		    req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB) {
761 			ret = -EINVAL;
762 		} else {
763 			gts->ts_user_blade_id = req.val1;
764 			gts->ts_user_chiplet_id = req.val0;
765 			gru_check_context_placement(gts);
766 		}
767 		break;
768 	case sco_gseg_owner:
769  		/* Register the current task as the GSEG owner */
770 		gts->ts_tgid_owner = current->tgid;
771 		break;
772 	case sco_cch_req_slice:
773  		/* Set the CCH slice option */
774 		gts->ts_cch_req_slice = req.val1 & 3;
775 		break;
776 	default:
777 		ret = -EINVAL;
778 	}
779 	gru_unlock_gts(gts);
780 
781 	return ret;
782 }
783