xref: /openbmc/linux/drivers/media/pci/intel/ipu-bridge.c (revision 7d9326f10cdd9028b4460ccc4006d4d138996b6d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Author: Dan Scally <djrscally@gmail.com> */
3 
4 #include <linux/acpi.h>
5 #include <linux/device.h>
6 #include <linux/i2c.h>
7 #include <linux/pci.h>
8 #include <linux/property.h>
9 #include <media/v4l2-fwnode.h>
10 
11 #include "ipu-bridge.h"
12 
13 /*
14  * Extend this array with ACPI Hardware IDs of devices known to be working
15  * plus the number of link-frequencies expected by their drivers, along with
16  * the frequency values in hertz. This is somewhat opportunistic way of adding
17  * support for this for now in the hopes of a better source for the information
18  * (possibly some encoded value in the SSDB buffer that we're unaware of)
19  * becoming apparent in the future.
20  *
21  * Do not add an entry for a sensor that is not actually supported.
22  */
23 static const struct ipu_sensor_config ipu_supported_sensors[] = {
24 	/* Omnivision OV5693 */
25 	IPU_SENSOR_CONFIG("INT33BE", 1, 419200000),
26 	/* Omnivision OV8865 */
27 	IPU_SENSOR_CONFIG("INT347A", 1, 360000000),
28 	/* Omnivision OV7251 */
29 	IPU_SENSOR_CONFIG("INT347E", 1, 319200000),
30 	/* Omnivision OV2680 */
31 	IPU_SENSOR_CONFIG("OVTI2680", 0),
32 	/* Omnivision ov8856 */
33 	IPU_SENSOR_CONFIG("OVTI8856", 3, 180000000, 360000000, 720000000),
34 	/* Omnivision ov2740 */
35 	IPU_SENSOR_CONFIG("INT3474", 1, 360000000),
36 	/* Hynix hi556 */
37 	IPU_SENSOR_CONFIG("INT3537", 1, 437000000),
38 	/* Omnivision ov13b10 */
39 	IPU_SENSOR_CONFIG("OVTIDB10", 1, 560000000),
40 };
41 
42 static const struct ipu_property_names prop_names = {
43 	.clock_frequency = "clock-frequency",
44 	.rotation = "rotation",
45 	.orientation = "orientation",
46 	.bus_type = "bus-type",
47 	.data_lanes = "data-lanes",
48 	.remote_endpoint = "remote-endpoint",
49 	.link_frequencies = "link-frequencies",
50 };
51 
52 static const char * const ipu_vcm_types[] = {
53 	"ad5823",
54 	"dw9714",
55 	"ad5816",
56 	"dw9719",
57 	"dw9718",
58 	"dw9806b",
59 	"wv517s",
60 	"lc898122xa",
61 	"lc898212axb",
62 };
63 
64 static int ipu_bridge_read_acpi_buffer(struct acpi_device *adev, char *id,
65 				       void *data, u32 size)
66 {
67 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
68 	union acpi_object *obj;
69 	acpi_status status;
70 	int ret = 0;
71 
72 	status = acpi_evaluate_object(adev->handle, id, NULL, &buffer);
73 	if (ACPI_FAILURE(status))
74 		return -ENODEV;
75 
76 	obj = buffer.pointer;
77 	if (!obj) {
78 		dev_err(&adev->dev, "Couldn't locate ACPI buffer\n");
79 		return -ENODEV;
80 	}
81 
82 	if (obj->type != ACPI_TYPE_BUFFER) {
83 		dev_err(&adev->dev, "Not an ACPI buffer\n");
84 		ret = -ENODEV;
85 		goto out_free_buff;
86 	}
87 
88 	if (obj->buffer.length > size) {
89 		dev_err(&adev->dev, "Given buffer is too small\n");
90 		ret = -EINVAL;
91 		goto out_free_buff;
92 	}
93 
94 	memcpy(data, obj->buffer.pointer, obj->buffer.length);
95 
96 out_free_buff:
97 	kfree(buffer.pointer);
98 	return ret;
99 }
100 
101 static u32 ipu_bridge_parse_rotation(struct ipu_sensor *sensor)
102 {
103 	switch (sensor->ssdb.degree) {
104 	case IPU_SENSOR_ROTATION_NORMAL:
105 		return 0;
106 	case IPU_SENSOR_ROTATION_INVERTED:
107 		return 180;
108 	default:
109 		dev_warn(&sensor->adev->dev,
110 			 "Unknown rotation %d. Assume 0 degree rotation\n",
111 			 sensor->ssdb.degree);
112 		return 0;
113 	}
114 }
115 
116 static enum v4l2_fwnode_orientation ipu_bridge_parse_orientation(struct ipu_sensor *sensor)
117 {
118 	switch (sensor->pld->panel) {
119 	case ACPI_PLD_PANEL_FRONT:
120 		return V4L2_FWNODE_ORIENTATION_FRONT;
121 	case ACPI_PLD_PANEL_BACK:
122 		return V4L2_FWNODE_ORIENTATION_BACK;
123 	case ACPI_PLD_PANEL_TOP:
124 	case ACPI_PLD_PANEL_LEFT:
125 	case ACPI_PLD_PANEL_RIGHT:
126 	case ACPI_PLD_PANEL_UNKNOWN:
127 		return V4L2_FWNODE_ORIENTATION_EXTERNAL;
128 	default:
129 		dev_warn(&sensor->adev->dev, "Unknown _PLD panel value %d\n",
130 			 sensor->pld->panel);
131 		return V4L2_FWNODE_ORIENTATION_EXTERNAL;
132 	}
133 }
134 
135 static void ipu_bridge_create_fwnode_properties(
136 	struct ipu_sensor *sensor,
137 	struct ipu_bridge *bridge,
138 	const struct ipu_sensor_config *cfg)
139 {
140 	u32 rotation;
141 	enum v4l2_fwnode_orientation orientation;
142 
143 	rotation = ipu_bridge_parse_rotation(sensor);
144 	orientation = ipu_bridge_parse_orientation(sensor);
145 
146 	sensor->prop_names = prop_names;
147 
148 	sensor->local_ref[0] = SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_IPU_ENDPOINT]);
149 	sensor->remote_ref[0] = SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_SENSOR_ENDPOINT]);
150 
151 	sensor->dev_properties[0] = PROPERTY_ENTRY_U32(
152 					sensor->prop_names.clock_frequency,
153 					sensor->ssdb.mclkspeed);
154 	sensor->dev_properties[1] = PROPERTY_ENTRY_U32(
155 					sensor->prop_names.rotation,
156 					rotation);
157 	sensor->dev_properties[2] = PROPERTY_ENTRY_U32(
158 					sensor->prop_names.orientation,
159 					orientation);
160 	if (sensor->ssdb.vcmtype) {
161 		sensor->vcm_ref[0] =
162 			SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_VCM]);
163 		sensor->dev_properties[3] =
164 			PROPERTY_ENTRY_REF_ARRAY("lens-focus", sensor->vcm_ref);
165 	}
166 
167 	sensor->ep_properties[0] = PROPERTY_ENTRY_U32(
168 					sensor->prop_names.bus_type,
169 					V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
170 	sensor->ep_properties[1] = PROPERTY_ENTRY_U32_ARRAY_LEN(
171 					sensor->prop_names.data_lanes,
172 					bridge->data_lanes,
173 					sensor->ssdb.lanes);
174 	sensor->ep_properties[2] = PROPERTY_ENTRY_REF_ARRAY(
175 					sensor->prop_names.remote_endpoint,
176 					sensor->local_ref);
177 
178 	if (cfg->nr_link_freqs > 0)
179 		sensor->ep_properties[3] = PROPERTY_ENTRY_U64_ARRAY_LEN(
180 			sensor->prop_names.link_frequencies,
181 			cfg->link_freqs,
182 			cfg->nr_link_freqs);
183 
184 	sensor->ipu_properties[0] = PROPERTY_ENTRY_U32_ARRAY_LEN(
185 					sensor->prop_names.data_lanes,
186 					bridge->data_lanes,
187 					sensor->ssdb.lanes);
188 	sensor->ipu_properties[1] = PROPERTY_ENTRY_REF_ARRAY(
189 					sensor->prop_names.remote_endpoint,
190 					sensor->remote_ref);
191 }
192 
193 static void ipu_bridge_init_swnode_names(struct ipu_sensor *sensor)
194 {
195 	snprintf(sensor->node_names.remote_port,
196 		 sizeof(sensor->node_names.remote_port),
197 		 SWNODE_GRAPH_PORT_NAME_FMT, sensor->ssdb.link);
198 	snprintf(sensor->node_names.port,
199 		 sizeof(sensor->node_names.port),
200 		 SWNODE_GRAPH_PORT_NAME_FMT, 0); /* Always port 0 */
201 	snprintf(sensor->node_names.endpoint,
202 		 sizeof(sensor->node_names.endpoint),
203 		 SWNODE_GRAPH_ENDPOINT_NAME_FMT, 0); /* And endpoint 0 */
204 }
205 
206 static void ipu_bridge_init_swnode_group(struct ipu_sensor *sensor)
207 {
208 	struct software_node *nodes = sensor->swnodes;
209 
210 	sensor->group[SWNODE_SENSOR_HID] = &nodes[SWNODE_SENSOR_HID];
211 	sensor->group[SWNODE_SENSOR_PORT] = &nodes[SWNODE_SENSOR_PORT];
212 	sensor->group[SWNODE_SENSOR_ENDPOINT] = &nodes[SWNODE_SENSOR_ENDPOINT];
213 	sensor->group[SWNODE_IPU_PORT] = &nodes[SWNODE_IPU_PORT];
214 	sensor->group[SWNODE_IPU_ENDPOINT] = &nodes[SWNODE_IPU_ENDPOINT];
215 	if (sensor->ssdb.vcmtype)
216 		sensor->group[SWNODE_VCM] =  &nodes[SWNODE_VCM];
217 }
218 
219 static void ipu_bridge_create_connection_swnodes(struct ipu_bridge *bridge,
220 						 struct ipu_sensor *sensor)
221 {
222 	struct software_node *nodes = sensor->swnodes;
223 	char vcm_name[ACPI_ID_LEN + 4];
224 
225 	ipu_bridge_init_swnode_names(sensor);
226 
227 	nodes[SWNODE_SENSOR_HID] = NODE_SENSOR(sensor->name,
228 					       sensor->dev_properties);
229 	nodes[SWNODE_SENSOR_PORT] = NODE_PORT(sensor->node_names.port,
230 					      &nodes[SWNODE_SENSOR_HID]);
231 	nodes[SWNODE_SENSOR_ENDPOINT] = NODE_ENDPOINT(
232 						sensor->node_names.endpoint,
233 						&nodes[SWNODE_SENSOR_PORT],
234 						sensor->ep_properties);
235 	nodes[SWNODE_IPU_PORT] = NODE_PORT(sensor->node_names.remote_port,
236 					   &bridge->ipu_hid_node);
237 	nodes[SWNODE_IPU_ENDPOINT] = NODE_ENDPOINT(
238 						sensor->node_names.endpoint,
239 						&nodes[SWNODE_IPU_PORT],
240 						sensor->ipu_properties);
241 	if (sensor->ssdb.vcmtype) {
242 		/* append ssdb.link to distinguish VCM nodes with same HID */
243 		snprintf(vcm_name, sizeof(vcm_name), "%s-%u",
244 			 ipu_vcm_types[sensor->ssdb.vcmtype - 1],
245 			 sensor->ssdb.link);
246 		nodes[SWNODE_VCM] = NODE_VCM(vcm_name);
247 	}
248 
249 	ipu_bridge_init_swnode_group(sensor);
250 }
251 
252 static void ipu_bridge_instantiate_vcm_i2c_client(struct ipu_sensor *sensor)
253 {
254 	struct i2c_board_info board_info = { };
255 	char name[16];
256 
257 	if (!sensor->ssdb.vcmtype)
258 		return;
259 
260 	snprintf(name, sizeof(name), "%s-VCM", acpi_dev_name(sensor->adev));
261 	board_info.dev_name = name;
262 	strscpy(board_info.type, ipu_vcm_types[sensor->ssdb.vcmtype - 1],
263 		ARRAY_SIZE(board_info.type));
264 	board_info.swnode = &sensor->swnodes[SWNODE_VCM];
265 
266 	sensor->vcm_i2c_client =
267 		i2c_acpi_new_device_by_fwnode(acpi_fwnode_handle(sensor->adev),
268 					      1, &board_info);
269 	if (IS_ERR(sensor->vcm_i2c_client)) {
270 		dev_warn(&sensor->adev->dev, "Error instantiation VCM i2c-client: %ld\n",
271 			 PTR_ERR(sensor->vcm_i2c_client));
272 		sensor->vcm_i2c_client = NULL;
273 	}
274 }
275 
276 static void ipu_bridge_unregister_sensors(struct ipu_bridge *bridge)
277 {
278 	struct ipu_sensor *sensor;
279 	unsigned int i;
280 
281 	for (i = 0; i < bridge->n_sensors; i++) {
282 		sensor = &bridge->sensors[i];
283 		software_node_unregister_node_group(sensor->group);
284 		ACPI_FREE(sensor->pld);
285 		acpi_dev_put(sensor->adev);
286 		i2c_unregister_device(sensor->vcm_i2c_client);
287 	}
288 }
289 
290 static int ipu_bridge_connect_sensor(const struct ipu_sensor_config *cfg,
291 				     struct ipu_bridge *bridge,
292 				     struct pci_dev *ipu)
293 {
294 	struct fwnode_handle *fwnode, *primary;
295 	struct ipu_sensor *sensor;
296 	struct acpi_device *adev;
297 	acpi_status status;
298 	int ret;
299 
300 	for_each_acpi_dev_match(adev, cfg->hid, NULL, -1) {
301 		if (!adev->status.enabled)
302 			continue;
303 
304 		if (bridge->n_sensors >= IPU_MAX_PORTS) {
305 			acpi_dev_put(adev);
306 			dev_err(&ipu->dev, "Exceeded available IPU ports\n");
307 			return -EINVAL;
308 		}
309 
310 		sensor = &bridge->sensors[bridge->n_sensors];
311 
312 		ret = ipu_bridge_read_acpi_buffer(adev, "SSDB",
313 						  &sensor->ssdb,
314 						  sizeof(sensor->ssdb));
315 		if (ret)
316 			goto err_put_adev;
317 
318 		snprintf(sensor->name, sizeof(sensor->name), "%s-%u",
319 			 cfg->hid, sensor->ssdb.link);
320 
321 		if (sensor->ssdb.vcmtype > ARRAY_SIZE(ipu_vcm_types)) {
322 			dev_warn(&adev->dev, "Unknown VCM type %d\n",
323 				 sensor->ssdb.vcmtype);
324 			sensor->ssdb.vcmtype = 0;
325 		}
326 
327 		status = acpi_get_physical_device_location(adev->handle, &sensor->pld);
328 		if (ACPI_FAILURE(status)) {
329 			ret = -ENODEV;
330 			goto err_put_adev;
331 		}
332 
333 		if (sensor->ssdb.lanes > IPU_MAX_LANES) {
334 			dev_err(&adev->dev,
335 				"Number of lanes in SSDB is invalid\n");
336 			ret = -EINVAL;
337 			goto err_free_pld;
338 		}
339 
340 		ipu_bridge_create_fwnode_properties(sensor, bridge, cfg);
341 		ipu_bridge_create_connection_swnodes(bridge, sensor);
342 
343 		ret = software_node_register_node_group(sensor->group);
344 		if (ret)
345 			goto err_free_pld;
346 
347 		fwnode = software_node_fwnode(&sensor->swnodes[
348 						      SWNODE_SENSOR_HID]);
349 		if (!fwnode) {
350 			ret = -ENODEV;
351 			goto err_free_swnodes;
352 		}
353 
354 		sensor->adev = acpi_dev_get(adev);
355 
356 		primary = acpi_fwnode_handle(adev);
357 		primary->secondary = fwnode;
358 
359 		ipu_bridge_instantiate_vcm_i2c_client(sensor);
360 
361 		dev_info(&ipu->dev, "Found supported sensor %s\n",
362 			 acpi_dev_name(adev));
363 
364 		bridge->n_sensors++;
365 	}
366 
367 	return 0;
368 
369 err_free_swnodes:
370 	software_node_unregister_node_group(sensor->group);
371 err_free_pld:
372 	ACPI_FREE(sensor->pld);
373 err_put_adev:
374 	acpi_dev_put(adev);
375 	return ret;
376 }
377 
378 static int ipu_bridge_connect_sensors(struct ipu_bridge *bridge,
379 				      struct pci_dev *ipu)
380 {
381 	unsigned int i;
382 	int ret;
383 
384 	for (i = 0; i < ARRAY_SIZE(ipu_supported_sensors); i++) {
385 		const struct ipu_sensor_config *cfg =
386 			&ipu_supported_sensors[i];
387 
388 		ret = ipu_bridge_connect_sensor(cfg, bridge, ipu);
389 		if (ret)
390 			goto err_unregister_sensors;
391 	}
392 
393 	return 0;
394 
395 err_unregister_sensors:
396 	ipu_bridge_unregister_sensors(bridge);
397 	return ret;
398 }
399 
400 /*
401  * The VCM cannot be probed until the PMIC is completely setup. We cannot rely
402  * on -EPROBE_DEFER for this, since the consumer<->supplier relations between
403  * the VCM and regulators/clks are not described in ACPI, instead they are
404  * passed as board-data to the PMIC drivers. Since -PROBE_DEFER does not work
405  * for the clks/regulators the VCM i2c-clients must not be instantiated until
406  * the PMIC is fully setup.
407  *
408  * The sensor/VCM ACPI device has an ACPI _DEP on the PMIC, check this using the
409  * acpi_dev_ready_for_enumeration() helper, like the i2c-core-acpi code does
410  * for the sensors.
411  */
412 static int ipu_bridge_sensors_are_ready(void)
413 {
414 	struct acpi_device *adev;
415 	bool ready = true;
416 	unsigned int i;
417 
418 	for (i = 0; i < ARRAY_SIZE(ipu_supported_sensors); i++) {
419 		const struct ipu_sensor_config *cfg =
420 			&ipu_supported_sensors[i];
421 
422 		for_each_acpi_dev_match(adev, cfg->hid, NULL, -1) {
423 			if (!adev->status.enabled)
424 				continue;
425 
426 			if (!acpi_dev_ready_for_enumeration(adev))
427 				ready = false;
428 		}
429 	}
430 
431 	return ready;
432 }
433 
434 int ipu_bridge_init(struct pci_dev *ipu)
435 {
436 	struct device *dev = &ipu->dev;
437 	struct fwnode_handle *fwnode;
438 	struct ipu_bridge *bridge;
439 	unsigned int i;
440 	int ret;
441 
442 	if (!ipu_bridge_sensors_are_ready())
443 		return -EPROBE_DEFER;
444 
445 	bridge = kzalloc(sizeof(*bridge), GFP_KERNEL);
446 	if (!bridge)
447 		return -ENOMEM;
448 
449 	strscpy(bridge->ipu_node_name, IPU_HID,
450 		sizeof(bridge->ipu_node_name));
451 	bridge->ipu_hid_node.name = bridge->ipu_node_name;
452 
453 	ret = software_node_register(&bridge->ipu_hid_node);
454 	if (ret < 0) {
455 		dev_err(dev, "Failed to register the IPU HID node\n");
456 		goto err_free_bridge;
457 	}
458 
459 	/*
460 	 * Map the lane arrangement, which is fixed for the IPU3 (meaning we
461 	 * only need one, rather than one per sensor). We include it as a
462 	 * member of the struct ipu_bridge rather than a global variable so
463 	 * that it survives if the module is unloaded along with the rest of
464 	 * the struct.
465 	 */
466 	for (i = 0; i < IPU_MAX_LANES; i++)
467 		bridge->data_lanes[i] = i + 1;
468 
469 	ret = ipu_bridge_connect_sensors(bridge, ipu);
470 	if (ret || bridge->n_sensors == 0)
471 		goto err_unregister_ipu;
472 
473 	dev_info(dev, "Connected %d cameras\n", bridge->n_sensors);
474 
475 	fwnode = software_node_fwnode(&bridge->ipu_hid_node);
476 	if (!fwnode) {
477 		dev_err(dev, "Error getting fwnode from ipu software_node\n");
478 		ret = -ENODEV;
479 		goto err_unregister_sensors;
480 	}
481 
482 	set_secondary_fwnode(dev, fwnode);
483 
484 	return 0;
485 
486 err_unregister_sensors:
487 	ipu_bridge_unregister_sensors(bridge);
488 err_unregister_ipu:
489 	software_node_unregister(&bridge->ipu_hid_node);
490 err_free_bridge:
491 	kfree(bridge);
492 
493 	return ret;
494 }
495 EXPORT_SYMBOL_NS_GPL(ipu_bridge_init, INTEL_IPU_BRIDGE);
496