xref: /openbmc/linux/drivers/md/raid5.c (revision 3a83f4677539bce8eaa2bca9ee9c20e172d7ab04)
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *	   Copyright (C) 1999, 2000 Ingo Molnar
5  *	   Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45 
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59 
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64 
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67 
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76 
77 #define NR_STRIPES		256
78 #define STRIPE_SIZE		PAGE_SIZE
79 #define STRIPE_SHIFT		(PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS		(STRIPE_SIZE>>9)
81 #define	IO_THRESHOLD		1
82 #define BYPASS_THRESHOLD	1
83 #define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK		(NR_HASH - 1)
85 #define MAX_STRIPE_BATCH	8
86 
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 	return &conf->stripe_hashtbl[hash];
91 }
92 
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97 
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 	spin_lock_irq(conf->hash_locks + hash);
101 	spin_lock(&conf->device_lock);
102 }
103 
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 	spin_unlock(&conf->device_lock);
107 	spin_unlock_irq(conf->hash_locks + hash);
108 }
109 
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 	int i;
113 	local_irq_disable();
114 	spin_lock(conf->hash_locks);
115 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 	spin_lock(&conf->device_lock);
118 }
119 
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 	int i;
123 	spin_unlock(&conf->device_lock);
124 	for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 		spin_unlock(conf->hash_locks + i - 1);
126 	local_irq_enable();
127 }
128 
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 	int sectors = bio_sectors(bio);
141 	if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 		return bio->bi_next;
143 	else
144 		return NULL;
145 }
146 
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 	return (atomic_read(segments) >> 16) & 0xffff;
155 }
156 
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 	return atomic_sub_return(1, segments) & 0xffff;
161 }
162 
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 	atomic_inc(segments);
167 }
168 
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 	unsigned int cnt)
171 {
172 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 	int old, new;
174 
175 	do {
176 		old = atomic_read(segments);
177 		new = (old & 0xffff) | (cnt << 16);
178 	} while (atomic_cmpxchg(segments, old, new) != old);
179 }
180 
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 	atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 	atomic_set(segments, cnt);
185 }
186 
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 	if (sh->ddf_layout)
191 		/* ddf always start from first device */
192 		return 0;
193 	/* md starts just after Q block */
194 	if (sh->qd_idx == sh->disks - 1)
195 		return 0;
196 	else
197 		return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 	disk++;
202 	return (disk < raid_disks) ? disk : 0;
203 }
204 
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 			     int *count, int syndrome_disks)
212 {
213 	int slot = *count;
214 
215 	if (sh->ddf_layout)
216 		(*count)++;
217 	if (idx == sh->pd_idx)
218 		return syndrome_disks;
219 	if (idx == sh->qd_idx)
220 		return syndrome_disks + 1;
221 	if (!sh->ddf_layout)
222 		(*count)++;
223 	return slot;
224 }
225 
226 static void return_io(struct bio_list *return_bi)
227 {
228 	struct bio *bi;
229 	while ((bi = bio_list_pop(return_bi)) != NULL) {
230 		bi->bi_iter.bi_size = 0;
231 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 					 bi, 0);
233 		bio_endio(bi);
234 	}
235 }
236 
237 static void print_raid5_conf (struct r5conf *conf);
238 
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241 	return sh->check_state || sh->reconstruct_state ||
242 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245 
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248 	struct r5conf *conf = sh->raid_conf;
249 	struct r5worker_group *group;
250 	int thread_cnt;
251 	int i, cpu = sh->cpu;
252 
253 	if (!cpu_online(cpu)) {
254 		cpu = cpumask_any(cpu_online_mask);
255 		sh->cpu = cpu;
256 	}
257 
258 	if (list_empty(&sh->lru)) {
259 		struct r5worker_group *group;
260 		group = conf->worker_groups + cpu_to_group(cpu);
261 		list_add_tail(&sh->lru, &group->handle_list);
262 		group->stripes_cnt++;
263 		sh->group = group;
264 	}
265 
266 	if (conf->worker_cnt_per_group == 0) {
267 		md_wakeup_thread(conf->mddev->thread);
268 		return;
269 	}
270 
271 	group = conf->worker_groups + cpu_to_group(sh->cpu);
272 
273 	group->workers[0].working = true;
274 	/* at least one worker should run to avoid race */
275 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276 
277 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 	/* wakeup more workers */
279 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 		if (group->workers[i].working == false) {
281 			group->workers[i].working = true;
282 			queue_work_on(sh->cpu, raid5_wq,
283 				      &group->workers[i].work);
284 			thread_cnt--;
285 		}
286 	}
287 }
288 
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 			      struct list_head *temp_inactive_list)
291 {
292 	BUG_ON(!list_empty(&sh->lru));
293 	BUG_ON(atomic_read(&conf->active_stripes)==0);
294 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
296 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297 			list_add_tail(&sh->lru, &conf->delayed_list);
298 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 			   sh->bm_seq - conf->seq_write > 0)
300 			list_add_tail(&sh->lru, &conf->bitmap_list);
301 		else {
302 			clear_bit(STRIPE_DELAYED, &sh->state);
303 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 			if (conf->worker_cnt_per_group == 0) {
305 				list_add_tail(&sh->lru, &conf->handle_list);
306 			} else {
307 				raid5_wakeup_stripe_thread(sh);
308 				return;
309 			}
310 		}
311 		md_wakeup_thread(conf->mddev->thread);
312 	} else {
313 		BUG_ON(stripe_operations_active(sh));
314 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 			if (atomic_dec_return(&conf->preread_active_stripes)
316 			    < IO_THRESHOLD)
317 				md_wakeup_thread(conf->mddev->thread);
318 		atomic_dec(&conf->active_stripes);
319 		if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 			list_add_tail(&sh->lru, temp_inactive_list);
321 	}
322 }
323 
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 			     struct list_head *temp_inactive_list)
326 {
327 	if (atomic_dec_and_test(&sh->count))
328 		do_release_stripe(conf, sh, temp_inactive_list);
329 }
330 
331 /*
332  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333  *
334  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335  * given time. Adding stripes only takes device lock, while deleting stripes
336  * only takes hash lock.
337  */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339 					 struct list_head *temp_inactive_list,
340 					 int hash)
341 {
342 	int size;
343 	bool do_wakeup = false;
344 	unsigned long flags;
345 
346 	if (hash == NR_STRIPE_HASH_LOCKS) {
347 		size = NR_STRIPE_HASH_LOCKS;
348 		hash = NR_STRIPE_HASH_LOCKS - 1;
349 	} else
350 		size = 1;
351 	while (size) {
352 		struct list_head *list = &temp_inactive_list[size - 1];
353 
354 		/*
355 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
356 		 * remove stripes from the list
357 		 */
358 		if (!list_empty_careful(list)) {
359 			spin_lock_irqsave(conf->hash_locks + hash, flags);
360 			if (list_empty(conf->inactive_list + hash) &&
361 			    !list_empty(list))
362 				atomic_dec(&conf->empty_inactive_list_nr);
363 			list_splice_tail_init(list, conf->inactive_list + hash);
364 			do_wakeup = true;
365 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366 		}
367 		size--;
368 		hash--;
369 	}
370 
371 	if (do_wakeup) {
372 		wake_up(&conf->wait_for_stripe);
373 		if (atomic_read(&conf->active_stripes) == 0)
374 			wake_up(&conf->wait_for_quiescent);
375 		if (conf->retry_read_aligned)
376 			md_wakeup_thread(conf->mddev->thread);
377 	}
378 }
379 
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382 			       struct list_head *temp_inactive_list)
383 {
384 	struct stripe_head *sh;
385 	int count = 0;
386 	struct llist_node *head;
387 
388 	head = llist_del_all(&conf->released_stripes);
389 	head = llist_reverse_order(head);
390 	while (head) {
391 		int hash;
392 
393 		sh = llist_entry(head, struct stripe_head, release_list);
394 		head = llist_next(head);
395 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 		smp_mb();
397 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398 		/*
399 		 * Don't worry the bit is set here, because if the bit is set
400 		 * again, the count is always > 1. This is true for
401 		 * STRIPE_ON_UNPLUG_LIST bit too.
402 		 */
403 		hash = sh->hash_lock_index;
404 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
405 		count++;
406 	}
407 
408 	return count;
409 }
410 
411 void raid5_release_stripe(struct stripe_head *sh)
412 {
413 	struct r5conf *conf = sh->raid_conf;
414 	unsigned long flags;
415 	struct list_head list;
416 	int hash;
417 	bool wakeup;
418 
419 	/* Avoid release_list until the last reference.
420 	 */
421 	if (atomic_add_unless(&sh->count, -1, 1))
422 		return;
423 
424 	if (unlikely(!conf->mddev->thread) ||
425 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426 		goto slow_path;
427 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428 	if (wakeup)
429 		md_wakeup_thread(conf->mddev->thread);
430 	return;
431 slow_path:
432 	local_irq_save(flags);
433 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434 	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435 		INIT_LIST_HEAD(&list);
436 		hash = sh->hash_lock_index;
437 		do_release_stripe(conf, sh, &list);
438 		spin_unlock(&conf->device_lock);
439 		release_inactive_stripe_list(conf, &list, hash);
440 	}
441 	local_irq_restore(flags);
442 }
443 
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446 	pr_debug("remove_hash(), stripe %llu\n",
447 		(unsigned long long)sh->sector);
448 
449 	hlist_del_init(&sh->hash);
450 }
451 
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
455 
456 	pr_debug("insert_hash(), stripe %llu\n",
457 		(unsigned long long)sh->sector);
458 
459 	hlist_add_head(&sh->hash, hp);
460 }
461 
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
464 {
465 	struct stripe_head *sh = NULL;
466 	struct list_head *first;
467 
468 	if (list_empty(conf->inactive_list + hash))
469 		goto out;
470 	first = (conf->inactive_list + hash)->next;
471 	sh = list_entry(first, struct stripe_head, lru);
472 	list_del_init(first);
473 	remove_hash(sh);
474 	atomic_inc(&conf->active_stripes);
475 	BUG_ON(hash != sh->hash_lock_index);
476 	if (list_empty(conf->inactive_list + hash))
477 		atomic_inc(&conf->empty_inactive_list_nr);
478 out:
479 	return sh;
480 }
481 
482 static void shrink_buffers(struct stripe_head *sh)
483 {
484 	struct page *p;
485 	int i;
486 	int num = sh->raid_conf->pool_size;
487 
488 	for (i = 0; i < num ; i++) {
489 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
490 		p = sh->dev[i].page;
491 		if (!p)
492 			continue;
493 		sh->dev[i].page = NULL;
494 		put_page(p);
495 	}
496 }
497 
498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
499 {
500 	int i;
501 	int num = sh->raid_conf->pool_size;
502 
503 	for (i = 0; i < num; i++) {
504 		struct page *page;
505 
506 		if (!(page = alloc_page(gfp))) {
507 			return 1;
508 		}
509 		sh->dev[i].page = page;
510 		sh->dev[i].orig_page = page;
511 	}
512 	return 0;
513 }
514 
515 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
517 			    struct stripe_head *sh);
518 
519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
520 {
521 	struct r5conf *conf = sh->raid_conf;
522 	int i, seq;
523 
524 	BUG_ON(atomic_read(&sh->count) != 0);
525 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
526 	BUG_ON(stripe_operations_active(sh));
527 	BUG_ON(sh->batch_head);
528 
529 	pr_debug("init_stripe called, stripe %llu\n",
530 		(unsigned long long)sector);
531 retry:
532 	seq = read_seqcount_begin(&conf->gen_lock);
533 	sh->generation = conf->generation - previous;
534 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535 	sh->sector = sector;
536 	stripe_set_idx(sector, conf, previous, sh);
537 	sh->state = 0;
538 
539 	for (i = sh->disks; i--; ) {
540 		struct r5dev *dev = &sh->dev[i];
541 
542 		if (dev->toread || dev->read || dev->towrite || dev->written ||
543 		    test_bit(R5_LOCKED, &dev->flags)) {
544 			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545 			       (unsigned long long)sh->sector, i, dev->toread,
546 			       dev->read, dev->towrite, dev->written,
547 			       test_bit(R5_LOCKED, &dev->flags));
548 			WARN_ON(1);
549 		}
550 		dev->flags = 0;
551 		raid5_build_block(sh, i, previous);
552 	}
553 	if (read_seqcount_retry(&conf->gen_lock, seq))
554 		goto retry;
555 	sh->overwrite_disks = 0;
556 	insert_hash(conf, sh);
557 	sh->cpu = smp_processor_id();
558 	set_bit(STRIPE_BATCH_READY, &sh->state);
559 }
560 
561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
562 					 short generation)
563 {
564 	struct stripe_head *sh;
565 
566 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
567 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
568 		if (sh->sector == sector && sh->generation == generation)
569 			return sh;
570 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
571 	return NULL;
572 }
573 
574 /*
575  * Need to check if array has failed when deciding whether to:
576  *  - start an array
577  *  - remove non-faulty devices
578  *  - add a spare
579  *  - allow a reshape
580  * This determination is simple when no reshape is happening.
581  * However if there is a reshape, we need to carefully check
582  * both the before and after sections.
583  * This is because some failed devices may only affect one
584  * of the two sections, and some non-in_sync devices may
585  * be insync in the section most affected by failed devices.
586  */
587 static int calc_degraded(struct r5conf *conf)
588 {
589 	int degraded, degraded2;
590 	int i;
591 
592 	rcu_read_lock();
593 	degraded = 0;
594 	for (i = 0; i < conf->previous_raid_disks; i++) {
595 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
596 		if (rdev && test_bit(Faulty, &rdev->flags))
597 			rdev = rcu_dereference(conf->disks[i].replacement);
598 		if (!rdev || test_bit(Faulty, &rdev->flags))
599 			degraded++;
600 		else if (test_bit(In_sync, &rdev->flags))
601 			;
602 		else
603 			/* not in-sync or faulty.
604 			 * If the reshape increases the number of devices,
605 			 * this is being recovered by the reshape, so
606 			 * this 'previous' section is not in_sync.
607 			 * If the number of devices is being reduced however,
608 			 * the device can only be part of the array if
609 			 * we are reverting a reshape, so this section will
610 			 * be in-sync.
611 			 */
612 			if (conf->raid_disks >= conf->previous_raid_disks)
613 				degraded++;
614 	}
615 	rcu_read_unlock();
616 	if (conf->raid_disks == conf->previous_raid_disks)
617 		return degraded;
618 	rcu_read_lock();
619 	degraded2 = 0;
620 	for (i = 0; i < conf->raid_disks; i++) {
621 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
622 		if (rdev && test_bit(Faulty, &rdev->flags))
623 			rdev = rcu_dereference(conf->disks[i].replacement);
624 		if (!rdev || test_bit(Faulty, &rdev->flags))
625 			degraded2++;
626 		else if (test_bit(In_sync, &rdev->flags))
627 			;
628 		else
629 			/* not in-sync or faulty.
630 			 * If reshape increases the number of devices, this
631 			 * section has already been recovered, else it
632 			 * almost certainly hasn't.
633 			 */
634 			if (conf->raid_disks <= conf->previous_raid_disks)
635 				degraded2++;
636 	}
637 	rcu_read_unlock();
638 	if (degraded2 > degraded)
639 		return degraded2;
640 	return degraded;
641 }
642 
643 static int has_failed(struct r5conf *conf)
644 {
645 	int degraded;
646 
647 	if (conf->mddev->reshape_position == MaxSector)
648 		return conf->mddev->degraded > conf->max_degraded;
649 
650 	degraded = calc_degraded(conf);
651 	if (degraded > conf->max_degraded)
652 		return 1;
653 	return 0;
654 }
655 
656 struct stripe_head *
657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658 			int previous, int noblock, int noquiesce)
659 {
660 	struct stripe_head *sh;
661 	int hash = stripe_hash_locks_hash(sector);
662 	int inc_empty_inactive_list_flag;
663 
664 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
665 
666 	spin_lock_irq(conf->hash_locks + hash);
667 
668 	do {
669 		wait_event_lock_irq(conf->wait_for_quiescent,
670 				    conf->quiesce == 0 || noquiesce,
671 				    *(conf->hash_locks + hash));
672 		sh = __find_stripe(conf, sector, conf->generation - previous);
673 		if (!sh) {
674 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
675 				sh = get_free_stripe(conf, hash);
676 				if (!sh && !test_bit(R5_DID_ALLOC,
677 						     &conf->cache_state))
678 					set_bit(R5_ALLOC_MORE,
679 						&conf->cache_state);
680 			}
681 			if (noblock && sh == NULL)
682 				break;
683 			if (!sh) {
684 				set_bit(R5_INACTIVE_BLOCKED,
685 					&conf->cache_state);
686 				wait_event_lock_irq(
687 					conf->wait_for_stripe,
688 					!list_empty(conf->inactive_list + hash) &&
689 					(atomic_read(&conf->active_stripes)
690 					 < (conf->max_nr_stripes * 3 / 4)
691 					 || !test_bit(R5_INACTIVE_BLOCKED,
692 						      &conf->cache_state)),
693 					*(conf->hash_locks + hash));
694 				clear_bit(R5_INACTIVE_BLOCKED,
695 					  &conf->cache_state);
696 			} else {
697 				init_stripe(sh, sector, previous);
698 				atomic_inc(&sh->count);
699 			}
700 		} else if (!atomic_inc_not_zero(&sh->count)) {
701 			spin_lock(&conf->device_lock);
702 			if (!atomic_read(&sh->count)) {
703 				if (!test_bit(STRIPE_HANDLE, &sh->state))
704 					atomic_inc(&conf->active_stripes);
705 				BUG_ON(list_empty(&sh->lru) &&
706 				       !test_bit(STRIPE_EXPANDING, &sh->state));
707 				inc_empty_inactive_list_flag = 0;
708 				if (!list_empty(conf->inactive_list + hash))
709 					inc_empty_inactive_list_flag = 1;
710 				list_del_init(&sh->lru);
711 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
712 					atomic_inc(&conf->empty_inactive_list_nr);
713 				if (sh->group) {
714 					sh->group->stripes_cnt--;
715 					sh->group = NULL;
716 				}
717 			}
718 			atomic_inc(&sh->count);
719 			spin_unlock(&conf->device_lock);
720 		}
721 	} while (sh == NULL);
722 
723 	spin_unlock_irq(conf->hash_locks + hash);
724 	return sh;
725 }
726 
727 static bool is_full_stripe_write(struct stripe_head *sh)
728 {
729 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
730 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
731 }
732 
733 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
734 {
735 	local_irq_disable();
736 	if (sh1 > sh2) {
737 		spin_lock(&sh2->stripe_lock);
738 		spin_lock_nested(&sh1->stripe_lock, 1);
739 	} else {
740 		spin_lock(&sh1->stripe_lock);
741 		spin_lock_nested(&sh2->stripe_lock, 1);
742 	}
743 }
744 
745 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
746 {
747 	spin_unlock(&sh1->stripe_lock);
748 	spin_unlock(&sh2->stripe_lock);
749 	local_irq_enable();
750 }
751 
752 /* Only freshly new full stripe normal write stripe can be added to a batch list */
753 static bool stripe_can_batch(struct stripe_head *sh)
754 {
755 	struct r5conf *conf = sh->raid_conf;
756 
757 	if (conf->log)
758 		return false;
759 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
760 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
761 		is_full_stripe_write(sh);
762 }
763 
764 /* we only do back search */
765 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
766 {
767 	struct stripe_head *head;
768 	sector_t head_sector, tmp_sec;
769 	int hash;
770 	int dd_idx;
771 	int inc_empty_inactive_list_flag;
772 
773 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774 	tmp_sec = sh->sector;
775 	if (!sector_div(tmp_sec, conf->chunk_sectors))
776 		return;
777 	head_sector = sh->sector - STRIPE_SECTORS;
778 
779 	hash = stripe_hash_locks_hash(head_sector);
780 	spin_lock_irq(conf->hash_locks + hash);
781 	head = __find_stripe(conf, head_sector, conf->generation);
782 	if (head && !atomic_inc_not_zero(&head->count)) {
783 		spin_lock(&conf->device_lock);
784 		if (!atomic_read(&head->count)) {
785 			if (!test_bit(STRIPE_HANDLE, &head->state))
786 				atomic_inc(&conf->active_stripes);
787 			BUG_ON(list_empty(&head->lru) &&
788 			       !test_bit(STRIPE_EXPANDING, &head->state));
789 			inc_empty_inactive_list_flag = 0;
790 			if (!list_empty(conf->inactive_list + hash))
791 				inc_empty_inactive_list_flag = 1;
792 			list_del_init(&head->lru);
793 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
794 				atomic_inc(&conf->empty_inactive_list_nr);
795 			if (head->group) {
796 				head->group->stripes_cnt--;
797 				head->group = NULL;
798 			}
799 		}
800 		atomic_inc(&head->count);
801 		spin_unlock(&conf->device_lock);
802 	}
803 	spin_unlock_irq(conf->hash_locks + hash);
804 
805 	if (!head)
806 		return;
807 	if (!stripe_can_batch(head))
808 		goto out;
809 
810 	lock_two_stripes(head, sh);
811 	/* clear_batch_ready clear the flag */
812 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
813 		goto unlock_out;
814 
815 	if (sh->batch_head)
816 		goto unlock_out;
817 
818 	dd_idx = 0;
819 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
820 		dd_idx++;
821 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
822 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
823 		goto unlock_out;
824 
825 	if (head->batch_head) {
826 		spin_lock(&head->batch_head->batch_lock);
827 		/* This batch list is already running */
828 		if (!stripe_can_batch(head)) {
829 			spin_unlock(&head->batch_head->batch_lock);
830 			goto unlock_out;
831 		}
832 
833 		/*
834 		 * at this point, head's BATCH_READY could be cleared, but we
835 		 * can still add the stripe to batch list
836 		 */
837 		list_add(&sh->batch_list, &head->batch_list);
838 		spin_unlock(&head->batch_head->batch_lock);
839 
840 		sh->batch_head = head->batch_head;
841 	} else {
842 		head->batch_head = head;
843 		sh->batch_head = head->batch_head;
844 		spin_lock(&head->batch_lock);
845 		list_add_tail(&sh->batch_list, &head->batch_list);
846 		spin_unlock(&head->batch_lock);
847 	}
848 
849 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
850 		if (atomic_dec_return(&conf->preread_active_stripes)
851 		    < IO_THRESHOLD)
852 			md_wakeup_thread(conf->mddev->thread);
853 
854 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
855 		int seq = sh->bm_seq;
856 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
857 		    sh->batch_head->bm_seq > seq)
858 			seq = sh->batch_head->bm_seq;
859 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
860 		sh->batch_head->bm_seq = seq;
861 	}
862 
863 	atomic_inc(&sh->count);
864 unlock_out:
865 	unlock_two_stripes(head, sh);
866 out:
867 	raid5_release_stripe(head);
868 }
869 
870 /* Determine if 'data_offset' or 'new_data_offset' should be used
871  * in this stripe_head.
872  */
873 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
874 {
875 	sector_t progress = conf->reshape_progress;
876 	/* Need a memory barrier to make sure we see the value
877 	 * of conf->generation, or ->data_offset that was set before
878 	 * reshape_progress was updated.
879 	 */
880 	smp_rmb();
881 	if (progress == MaxSector)
882 		return 0;
883 	if (sh->generation == conf->generation - 1)
884 		return 0;
885 	/* We are in a reshape, and this is a new-generation stripe,
886 	 * so use new_data_offset.
887 	 */
888 	return 1;
889 }
890 
891 static void
892 raid5_end_read_request(struct bio *bi);
893 static void
894 raid5_end_write_request(struct bio *bi);
895 
896 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
897 {
898 	struct r5conf *conf = sh->raid_conf;
899 	int i, disks = sh->disks;
900 	struct stripe_head *head_sh = sh;
901 
902 	might_sleep();
903 
904 	if (r5l_write_stripe(conf->log, sh) == 0)
905 		return;
906 	for (i = disks; i--; ) {
907 		int op, op_flags = 0;
908 		int replace_only = 0;
909 		struct bio *bi, *rbi;
910 		struct md_rdev *rdev, *rrdev = NULL;
911 
912 		sh = head_sh;
913 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
914 			op = REQ_OP_WRITE;
915 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
916 				op_flags = REQ_FUA;
917 			if (test_bit(R5_Discard, &sh->dev[i].flags))
918 				op = REQ_OP_DISCARD;
919 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
920 			op = REQ_OP_READ;
921 		else if (test_and_clear_bit(R5_WantReplace,
922 					    &sh->dev[i].flags)) {
923 			op = REQ_OP_WRITE;
924 			replace_only = 1;
925 		} else
926 			continue;
927 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
928 			op_flags |= REQ_SYNC;
929 
930 again:
931 		bi = &sh->dev[i].req;
932 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
933 
934 		rcu_read_lock();
935 		rrdev = rcu_dereference(conf->disks[i].replacement);
936 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
937 		rdev = rcu_dereference(conf->disks[i].rdev);
938 		if (!rdev) {
939 			rdev = rrdev;
940 			rrdev = NULL;
941 		}
942 		if (op_is_write(op)) {
943 			if (replace_only)
944 				rdev = NULL;
945 			if (rdev == rrdev)
946 				/* We raced and saw duplicates */
947 				rrdev = NULL;
948 		} else {
949 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
950 				rdev = rrdev;
951 			rrdev = NULL;
952 		}
953 
954 		if (rdev && test_bit(Faulty, &rdev->flags))
955 			rdev = NULL;
956 		if (rdev)
957 			atomic_inc(&rdev->nr_pending);
958 		if (rrdev && test_bit(Faulty, &rrdev->flags))
959 			rrdev = NULL;
960 		if (rrdev)
961 			atomic_inc(&rrdev->nr_pending);
962 		rcu_read_unlock();
963 
964 		/* We have already checked bad blocks for reads.  Now
965 		 * need to check for writes.  We never accept write errors
966 		 * on the replacement, so we don't to check rrdev.
967 		 */
968 		while (op_is_write(op) && rdev &&
969 		       test_bit(WriteErrorSeen, &rdev->flags)) {
970 			sector_t first_bad;
971 			int bad_sectors;
972 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
973 					      &first_bad, &bad_sectors);
974 			if (!bad)
975 				break;
976 
977 			if (bad < 0) {
978 				set_bit(BlockedBadBlocks, &rdev->flags);
979 				if (!conf->mddev->external &&
980 				    conf->mddev->flags) {
981 					/* It is very unlikely, but we might
982 					 * still need to write out the
983 					 * bad block log - better give it
984 					 * a chance*/
985 					md_check_recovery(conf->mddev);
986 				}
987 				/*
988 				 * Because md_wait_for_blocked_rdev
989 				 * will dec nr_pending, we must
990 				 * increment it first.
991 				 */
992 				atomic_inc(&rdev->nr_pending);
993 				md_wait_for_blocked_rdev(rdev, conf->mddev);
994 			} else {
995 				/* Acknowledged bad block - skip the write */
996 				rdev_dec_pending(rdev, conf->mddev);
997 				rdev = NULL;
998 			}
999 		}
1000 
1001 		if (rdev) {
1002 			if (s->syncing || s->expanding || s->expanded
1003 			    || s->replacing)
1004 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1005 
1006 			set_bit(STRIPE_IO_STARTED, &sh->state);
1007 
1008 			bi->bi_bdev = rdev->bdev;
1009 			bio_set_op_attrs(bi, op, op_flags);
1010 			bi->bi_end_io = op_is_write(op)
1011 				? raid5_end_write_request
1012 				: raid5_end_read_request;
1013 			bi->bi_private = sh;
1014 
1015 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1016 				__func__, (unsigned long long)sh->sector,
1017 				bi->bi_opf, i);
1018 			atomic_inc(&sh->count);
1019 			if (sh != head_sh)
1020 				atomic_inc(&head_sh->count);
1021 			if (use_new_offset(conf, sh))
1022 				bi->bi_iter.bi_sector = (sh->sector
1023 						 + rdev->new_data_offset);
1024 			else
1025 				bi->bi_iter.bi_sector = (sh->sector
1026 						 + rdev->data_offset);
1027 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1028 				bi->bi_opf |= REQ_NOMERGE;
1029 
1030 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1031 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1032 			sh->dev[i].vec.bv_page = sh->dev[i].page;
1033 			bi->bi_vcnt = 1;
1034 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1035 			bi->bi_io_vec[0].bv_offset = 0;
1036 			bi->bi_iter.bi_size = STRIPE_SIZE;
1037 			/*
1038 			 * If this is discard request, set bi_vcnt 0. We don't
1039 			 * want to confuse SCSI because SCSI will replace payload
1040 			 */
1041 			if (op == REQ_OP_DISCARD)
1042 				bi->bi_vcnt = 0;
1043 			if (rrdev)
1044 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1045 
1046 			if (conf->mddev->gendisk)
1047 				trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1048 						      bi, disk_devt(conf->mddev->gendisk),
1049 						      sh->dev[i].sector);
1050 			generic_make_request(bi);
1051 		}
1052 		if (rrdev) {
1053 			if (s->syncing || s->expanding || s->expanded
1054 			    || s->replacing)
1055 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1056 
1057 			set_bit(STRIPE_IO_STARTED, &sh->state);
1058 
1059 			rbi->bi_bdev = rrdev->bdev;
1060 			bio_set_op_attrs(rbi, op, op_flags);
1061 			BUG_ON(!op_is_write(op));
1062 			rbi->bi_end_io = raid5_end_write_request;
1063 			rbi->bi_private = sh;
1064 
1065 			pr_debug("%s: for %llu schedule op %d on "
1066 				 "replacement disc %d\n",
1067 				__func__, (unsigned long long)sh->sector,
1068 				rbi->bi_opf, i);
1069 			atomic_inc(&sh->count);
1070 			if (sh != head_sh)
1071 				atomic_inc(&head_sh->count);
1072 			if (use_new_offset(conf, sh))
1073 				rbi->bi_iter.bi_sector = (sh->sector
1074 						  + rrdev->new_data_offset);
1075 			else
1076 				rbi->bi_iter.bi_sector = (sh->sector
1077 						  + rrdev->data_offset);
1078 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1079 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1080 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1081 			rbi->bi_vcnt = 1;
1082 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1083 			rbi->bi_io_vec[0].bv_offset = 0;
1084 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1085 			/*
1086 			 * If this is discard request, set bi_vcnt 0. We don't
1087 			 * want to confuse SCSI because SCSI will replace payload
1088 			 */
1089 			if (op == REQ_OP_DISCARD)
1090 				rbi->bi_vcnt = 0;
1091 			if (conf->mddev->gendisk)
1092 				trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1093 						      rbi, disk_devt(conf->mddev->gendisk),
1094 						      sh->dev[i].sector);
1095 			generic_make_request(rbi);
1096 		}
1097 		if (!rdev && !rrdev) {
1098 			if (op_is_write(op))
1099 				set_bit(STRIPE_DEGRADED, &sh->state);
1100 			pr_debug("skip op %d on disc %d for sector %llu\n",
1101 				bi->bi_opf, i, (unsigned long long)sh->sector);
1102 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1103 			set_bit(STRIPE_HANDLE, &sh->state);
1104 		}
1105 
1106 		if (!head_sh->batch_head)
1107 			continue;
1108 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1109 				      batch_list);
1110 		if (sh != head_sh)
1111 			goto again;
1112 	}
1113 }
1114 
1115 static struct dma_async_tx_descriptor *
1116 async_copy_data(int frombio, struct bio *bio, struct page **page,
1117 	sector_t sector, struct dma_async_tx_descriptor *tx,
1118 	struct stripe_head *sh)
1119 {
1120 	struct bio_vec bvl;
1121 	struct bvec_iter iter;
1122 	struct page *bio_page;
1123 	int page_offset;
1124 	struct async_submit_ctl submit;
1125 	enum async_tx_flags flags = 0;
1126 
1127 	if (bio->bi_iter.bi_sector >= sector)
1128 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1129 	else
1130 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1131 
1132 	if (frombio)
1133 		flags |= ASYNC_TX_FENCE;
1134 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1135 
1136 	bio_for_each_segment(bvl, bio, iter) {
1137 		int len = bvl.bv_len;
1138 		int clen;
1139 		int b_offset = 0;
1140 
1141 		if (page_offset < 0) {
1142 			b_offset = -page_offset;
1143 			page_offset += b_offset;
1144 			len -= b_offset;
1145 		}
1146 
1147 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1148 			clen = STRIPE_SIZE - page_offset;
1149 		else
1150 			clen = len;
1151 
1152 		if (clen > 0) {
1153 			b_offset += bvl.bv_offset;
1154 			bio_page = bvl.bv_page;
1155 			if (frombio) {
1156 				if (sh->raid_conf->skip_copy &&
1157 				    b_offset == 0 && page_offset == 0 &&
1158 				    clen == STRIPE_SIZE)
1159 					*page = bio_page;
1160 				else
1161 					tx = async_memcpy(*page, bio_page, page_offset,
1162 						  b_offset, clen, &submit);
1163 			} else
1164 				tx = async_memcpy(bio_page, *page, b_offset,
1165 						  page_offset, clen, &submit);
1166 		}
1167 		/* chain the operations */
1168 		submit.depend_tx = tx;
1169 
1170 		if (clen < len) /* hit end of page */
1171 			break;
1172 		page_offset +=  len;
1173 	}
1174 
1175 	return tx;
1176 }
1177 
1178 static void ops_complete_biofill(void *stripe_head_ref)
1179 {
1180 	struct stripe_head *sh = stripe_head_ref;
1181 	struct bio_list return_bi = BIO_EMPTY_LIST;
1182 	int i;
1183 
1184 	pr_debug("%s: stripe %llu\n", __func__,
1185 		(unsigned long long)sh->sector);
1186 
1187 	/* clear completed biofills */
1188 	for (i = sh->disks; i--; ) {
1189 		struct r5dev *dev = &sh->dev[i];
1190 
1191 		/* acknowledge completion of a biofill operation */
1192 		/* and check if we need to reply to a read request,
1193 		 * new R5_Wantfill requests are held off until
1194 		 * !STRIPE_BIOFILL_RUN
1195 		 */
1196 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1197 			struct bio *rbi, *rbi2;
1198 
1199 			BUG_ON(!dev->read);
1200 			rbi = dev->read;
1201 			dev->read = NULL;
1202 			while (rbi && rbi->bi_iter.bi_sector <
1203 				dev->sector + STRIPE_SECTORS) {
1204 				rbi2 = r5_next_bio(rbi, dev->sector);
1205 				if (!raid5_dec_bi_active_stripes(rbi))
1206 					bio_list_add(&return_bi, rbi);
1207 				rbi = rbi2;
1208 			}
1209 		}
1210 	}
1211 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1212 
1213 	return_io(&return_bi);
1214 
1215 	set_bit(STRIPE_HANDLE, &sh->state);
1216 	raid5_release_stripe(sh);
1217 }
1218 
1219 static void ops_run_biofill(struct stripe_head *sh)
1220 {
1221 	struct dma_async_tx_descriptor *tx = NULL;
1222 	struct async_submit_ctl submit;
1223 	int i;
1224 
1225 	BUG_ON(sh->batch_head);
1226 	pr_debug("%s: stripe %llu\n", __func__,
1227 		(unsigned long long)sh->sector);
1228 
1229 	for (i = sh->disks; i--; ) {
1230 		struct r5dev *dev = &sh->dev[i];
1231 		if (test_bit(R5_Wantfill, &dev->flags)) {
1232 			struct bio *rbi;
1233 			spin_lock_irq(&sh->stripe_lock);
1234 			dev->read = rbi = dev->toread;
1235 			dev->toread = NULL;
1236 			spin_unlock_irq(&sh->stripe_lock);
1237 			while (rbi && rbi->bi_iter.bi_sector <
1238 				dev->sector + STRIPE_SECTORS) {
1239 				tx = async_copy_data(0, rbi, &dev->page,
1240 					dev->sector, tx, sh);
1241 				rbi = r5_next_bio(rbi, dev->sector);
1242 			}
1243 		}
1244 	}
1245 
1246 	atomic_inc(&sh->count);
1247 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1248 	async_trigger_callback(&submit);
1249 }
1250 
1251 static void mark_target_uptodate(struct stripe_head *sh, int target)
1252 {
1253 	struct r5dev *tgt;
1254 
1255 	if (target < 0)
1256 		return;
1257 
1258 	tgt = &sh->dev[target];
1259 	set_bit(R5_UPTODATE, &tgt->flags);
1260 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261 	clear_bit(R5_Wantcompute, &tgt->flags);
1262 }
1263 
1264 static void ops_complete_compute(void *stripe_head_ref)
1265 {
1266 	struct stripe_head *sh = stripe_head_ref;
1267 
1268 	pr_debug("%s: stripe %llu\n", __func__,
1269 		(unsigned long long)sh->sector);
1270 
1271 	/* mark the computed target(s) as uptodate */
1272 	mark_target_uptodate(sh, sh->ops.target);
1273 	mark_target_uptodate(sh, sh->ops.target2);
1274 
1275 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1276 	if (sh->check_state == check_state_compute_run)
1277 		sh->check_state = check_state_compute_result;
1278 	set_bit(STRIPE_HANDLE, &sh->state);
1279 	raid5_release_stripe(sh);
1280 }
1281 
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1284 				 struct raid5_percpu *percpu, int i)
1285 {
1286 	void *addr;
1287 
1288 	addr = flex_array_get(percpu->scribble, i);
1289 	return addr + sizeof(struct page *) * (sh->disks + 2);
1290 }
1291 
1292 /* return a pointer to the address conversion region of the scribble buffer */
1293 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1294 {
1295 	void *addr;
1296 
1297 	addr = flex_array_get(percpu->scribble, i);
1298 	return addr;
1299 }
1300 
1301 static struct dma_async_tx_descriptor *
1302 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1303 {
1304 	int disks = sh->disks;
1305 	struct page **xor_srcs = to_addr_page(percpu, 0);
1306 	int target = sh->ops.target;
1307 	struct r5dev *tgt = &sh->dev[target];
1308 	struct page *xor_dest = tgt->page;
1309 	int count = 0;
1310 	struct dma_async_tx_descriptor *tx;
1311 	struct async_submit_ctl submit;
1312 	int i;
1313 
1314 	BUG_ON(sh->batch_head);
1315 
1316 	pr_debug("%s: stripe %llu block: %d\n",
1317 		__func__, (unsigned long long)sh->sector, target);
1318 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1319 
1320 	for (i = disks; i--; )
1321 		if (i != target)
1322 			xor_srcs[count++] = sh->dev[i].page;
1323 
1324 	atomic_inc(&sh->count);
1325 
1326 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1327 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1328 	if (unlikely(count == 1))
1329 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1330 	else
1331 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1332 
1333 	return tx;
1334 }
1335 
1336 /* set_syndrome_sources - populate source buffers for gen_syndrome
1337  * @srcs - (struct page *) array of size sh->disks
1338  * @sh - stripe_head to parse
1339  *
1340  * Populates srcs in proper layout order for the stripe and returns the
1341  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1342  * destination buffer is recorded in srcs[count] and the Q destination
1343  * is recorded in srcs[count+1]].
1344  */
1345 static int set_syndrome_sources(struct page **srcs,
1346 				struct stripe_head *sh,
1347 				int srctype)
1348 {
1349 	int disks = sh->disks;
1350 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1351 	int d0_idx = raid6_d0(sh);
1352 	int count;
1353 	int i;
1354 
1355 	for (i = 0; i < disks; i++)
1356 		srcs[i] = NULL;
1357 
1358 	count = 0;
1359 	i = d0_idx;
1360 	do {
1361 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1362 		struct r5dev *dev = &sh->dev[i];
1363 
1364 		if (i == sh->qd_idx || i == sh->pd_idx ||
1365 		    (srctype == SYNDROME_SRC_ALL) ||
1366 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1367 		     test_bit(R5_Wantdrain, &dev->flags)) ||
1368 		    (srctype == SYNDROME_SRC_WRITTEN &&
1369 		     dev->written))
1370 			srcs[slot] = sh->dev[i].page;
1371 		i = raid6_next_disk(i, disks);
1372 	} while (i != d0_idx);
1373 
1374 	return syndrome_disks;
1375 }
1376 
1377 static struct dma_async_tx_descriptor *
1378 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1379 {
1380 	int disks = sh->disks;
1381 	struct page **blocks = to_addr_page(percpu, 0);
1382 	int target;
1383 	int qd_idx = sh->qd_idx;
1384 	struct dma_async_tx_descriptor *tx;
1385 	struct async_submit_ctl submit;
1386 	struct r5dev *tgt;
1387 	struct page *dest;
1388 	int i;
1389 	int count;
1390 
1391 	BUG_ON(sh->batch_head);
1392 	if (sh->ops.target < 0)
1393 		target = sh->ops.target2;
1394 	else if (sh->ops.target2 < 0)
1395 		target = sh->ops.target;
1396 	else
1397 		/* we should only have one valid target */
1398 		BUG();
1399 	BUG_ON(target < 0);
1400 	pr_debug("%s: stripe %llu block: %d\n",
1401 		__func__, (unsigned long long)sh->sector, target);
1402 
1403 	tgt = &sh->dev[target];
1404 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1405 	dest = tgt->page;
1406 
1407 	atomic_inc(&sh->count);
1408 
1409 	if (target == qd_idx) {
1410 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1411 		blocks[count] = NULL; /* regenerating p is not necessary */
1412 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1413 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1414 				  ops_complete_compute, sh,
1415 				  to_addr_conv(sh, percpu, 0));
1416 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1417 	} else {
1418 		/* Compute any data- or p-drive using XOR */
1419 		count = 0;
1420 		for (i = disks; i-- ; ) {
1421 			if (i == target || i == qd_idx)
1422 				continue;
1423 			blocks[count++] = sh->dev[i].page;
1424 		}
1425 
1426 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1427 				  NULL, ops_complete_compute, sh,
1428 				  to_addr_conv(sh, percpu, 0));
1429 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1430 	}
1431 
1432 	return tx;
1433 }
1434 
1435 static struct dma_async_tx_descriptor *
1436 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1437 {
1438 	int i, count, disks = sh->disks;
1439 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1440 	int d0_idx = raid6_d0(sh);
1441 	int faila = -1, failb = -1;
1442 	int target = sh->ops.target;
1443 	int target2 = sh->ops.target2;
1444 	struct r5dev *tgt = &sh->dev[target];
1445 	struct r5dev *tgt2 = &sh->dev[target2];
1446 	struct dma_async_tx_descriptor *tx;
1447 	struct page **blocks = to_addr_page(percpu, 0);
1448 	struct async_submit_ctl submit;
1449 
1450 	BUG_ON(sh->batch_head);
1451 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1452 		 __func__, (unsigned long long)sh->sector, target, target2);
1453 	BUG_ON(target < 0 || target2 < 0);
1454 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1455 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1456 
1457 	/* we need to open-code set_syndrome_sources to handle the
1458 	 * slot number conversion for 'faila' and 'failb'
1459 	 */
1460 	for (i = 0; i < disks ; i++)
1461 		blocks[i] = NULL;
1462 	count = 0;
1463 	i = d0_idx;
1464 	do {
1465 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1466 
1467 		blocks[slot] = sh->dev[i].page;
1468 
1469 		if (i == target)
1470 			faila = slot;
1471 		if (i == target2)
1472 			failb = slot;
1473 		i = raid6_next_disk(i, disks);
1474 	} while (i != d0_idx);
1475 
1476 	BUG_ON(faila == failb);
1477 	if (failb < faila)
1478 		swap(faila, failb);
1479 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1480 		 __func__, (unsigned long long)sh->sector, faila, failb);
1481 
1482 	atomic_inc(&sh->count);
1483 
1484 	if (failb == syndrome_disks+1) {
1485 		/* Q disk is one of the missing disks */
1486 		if (faila == syndrome_disks) {
1487 			/* Missing P+Q, just recompute */
1488 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1489 					  ops_complete_compute, sh,
1490 					  to_addr_conv(sh, percpu, 0));
1491 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1492 						  STRIPE_SIZE, &submit);
1493 		} else {
1494 			struct page *dest;
1495 			int data_target;
1496 			int qd_idx = sh->qd_idx;
1497 
1498 			/* Missing D+Q: recompute D from P, then recompute Q */
1499 			if (target == qd_idx)
1500 				data_target = target2;
1501 			else
1502 				data_target = target;
1503 
1504 			count = 0;
1505 			for (i = disks; i-- ; ) {
1506 				if (i == data_target || i == qd_idx)
1507 					continue;
1508 				blocks[count++] = sh->dev[i].page;
1509 			}
1510 			dest = sh->dev[data_target].page;
1511 			init_async_submit(&submit,
1512 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1513 					  NULL, NULL, NULL,
1514 					  to_addr_conv(sh, percpu, 0));
1515 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1516 				       &submit);
1517 
1518 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1519 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1520 					  ops_complete_compute, sh,
1521 					  to_addr_conv(sh, percpu, 0));
1522 			return async_gen_syndrome(blocks, 0, count+2,
1523 						  STRIPE_SIZE, &submit);
1524 		}
1525 	} else {
1526 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527 				  ops_complete_compute, sh,
1528 				  to_addr_conv(sh, percpu, 0));
1529 		if (failb == syndrome_disks) {
1530 			/* We're missing D+P. */
1531 			return async_raid6_datap_recov(syndrome_disks+2,
1532 						       STRIPE_SIZE, faila,
1533 						       blocks, &submit);
1534 		} else {
1535 			/* We're missing D+D. */
1536 			return async_raid6_2data_recov(syndrome_disks+2,
1537 						       STRIPE_SIZE, faila, failb,
1538 						       blocks, &submit);
1539 		}
1540 	}
1541 }
1542 
1543 static void ops_complete_prexor(void *stripe_head_ref)
1544 {
1545 	struct stripe_head *sh = stripe_head_ref;
1546 
1547 	pr_debug("%s: stripe %llu\n", __func__,
1548 		(unsigned long long)sh->sector);
1549 }
1550 
1551 static struct dma_async_tx_descriptor *
1552 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1553 		struct dma_async_tx_descriptor *tx)
1554 {
1555 	int disks = sh->disks;
1556 	struct page **xor_srcs = to_addr_page(percpu, 0);
1557 	int count = 0, pd_idx = sh->pd_idx, i;
1558 	struct async_submit_ctl submit;
1559 
1560 	/* existing parity data subtracted */
1561 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1562 
1563 	BUG_ON(sh->batch_head);
1564 	pr_debug("%s: stripe %llu\n", __func__,
1565 		(unsigned long long)sh->sector);
1566 
1567 	for (i = disks; i--; ) {
1568 		struct r5dev *dev = &sh->dev[i];
1569 		/* Only process blocks that are known to be uptodate */
1570 		if (test_bit(R5_Wantdrain, &dev->flags))
1571 			xor_srcs[count++] = dev->page;
1572 	}
1573 
1574 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1575 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1576 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1577 
1578 	return tx;
1579 }
1580 
1581 static struct dma_async_tx_descriptor *
1582 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1583 		struct dma_async_tx_descriptor *tx)
1584 {
1585 	struct page **blocks = to_addr_page(percpu, 0);
1586 	int count;
1587 	struct async_submit_ctl submit;
1588 
1589 	pr_debug("%s: stripe %llu\n", __func__,
1590 		(unsigned long long)sh->sector);
1591 
1592 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1593 
1594 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1595 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1596 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1597 
1598 	return tx;
1599 }
1600 
1601 static struct dma_async_tx_descriptor *
1602 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1603 {
1604 	int disks = sh->disks;
1605 	int i;
1606 	struct stripe_head *head_sh = sh;
1607 
1608 	pr_debug("%s: stripe %llu\n", __func__,
1609 		(unsigned long long)sh->sector);
1610 
1611 	for (i = disks; i--; ) {
1612 		struct r5dev *dev;
1613 		struct bio *chosen;
1614 
1615 		sh = head_sh;
1616 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1617 			struct bio *wbi;
1618 
1619 again:
1620 			dev = &sh->dev[i];
1621 			spin_lock_irq(&sh->stripe_lock);
1622 			chosen = dev->towrite;
1623 			dev->towrite = NULL;
1624 			sh->overwrite_disks = 0;
1625 			BUG_ON(dev->written);
1626 			wbi = dev->written = chosen;
1627 			spin_unlock_irq(&sh->stripe_lock);
1628 			WARN_ON(dev->page != dev->orig_page);
1629 
1630 			while (wbi && wbi->bi_iter.bi_sector <
1631 				dev->sector + STRIPE_SECTORS) {
1632 				if (wbi->bi_opf & REQ_FUA)
1633 					set_bit(R5_WantFUA, &dev->flags);
1634 				if (wbi->bi_opf & REQ_SYNC)
1635 					set_bit(R5_SyncIO, &dev->flags);
1636 				if (bio_op(wbi) == REQ_OP_DISCARD)
1637 					set_bit(R5_Discard, &dev->flags);
1638 				else {
1639 					tx = async_copy_data(1, wbi, &dev->page,
1640 						dev->sector, tx, sh);
1641 					if (dev->page != dev->orig_page) {
1642 						set_bit(R5_SkipCopy, &dev->flags);
1643 						clear_bit(R5_UPTODATE, &dev->flags);
1644 						clear_bit(R5_OVERWRITE, &dev->flags);
1645 					}
1646 				}
1647 				wbi = r5_next_bio(wbi, dev->sector);
1648 			}
1649 
1650 			if (head_sh->batch_head) {
1651 				sh = list_first_entry(&sh->batch_list,
1652 						      struct stripe_head,
1653 						      batch_list);
1654 				if (sh == head_sh)
1655 					continue;
1656 				goto again;
1657 			}
1658 		}
1659 	}
1660 
1661 	return tx;
1662 }
1663 
1664 static void ops_complete_reconstruct(void *stripe_head_ref)
1665 {
1666 	struct stripe_head *sh = stripe_head_ref;
1667 	int disks = sh->disks;
1668 	int pd_idx = sh->pd_idx;
1669 	int qd_idx = sh->qd_idx;
1670 	int i;
1671 	bool fua = false, sync = false, discard = false;
1672 
1673 	pr_debug("%s: stripe %llu\n", __func__,
1674 		(unsigned long long)sh->sector);
1675 
1676 	for (i = disks; i--; ) {
1677 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1678 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1679 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1680 	}
1681 
1682 	for (i = disks; i--; ) {
1683 		struct r5dev *dev = &sh->dev[i];
1684 
1685 		if (dev->written || i == pd_idx || i == qd_idx) {
1686 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1687 				set_bit(R5_UPTODATE, &dev->flags);
1688 			if (fua)
1689 				set_bit(R5_WantFUA, &dev->flags);
1690 			if (sync)
1691 				set_bit(R5_SyncIO, &dev->flags);
1692 		}
1693 	}
1694 
1695 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1696 		sh->reconstruct_state = reconstruct_state_drain_result;
1697 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1698 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1699 	else {
1700 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1701 		sh->reconstruct_state = reconstruct_state_result;
1702 	}
1703 
1704 	set_bit(STRIPE_HANDLE, &sh->state);
1705 	raid5_release_stripe(sh);
1706 }
1707 
1708 static void
1709 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1710 		     struct dma_async_tx_descriptor *tx)
1711 {
1712 	int disks = sh->disks;
1713 	struct page **xor_srcs;
1714 	struct async_submit_ctl submit;
1715 	int count, pd_idx = sh->pd_idx, i;
1716 	struct page *xor_dest;
1717 	int prexor = 0;
1718 	unsigned long flags;
1719 	int j = 0;
1720 	struct stripe_head *head_sh = sh;
1721 	int last_stripe;
1722 
1723 	pr_debug("%s: stripe %llu\n", __func__,
1724 		(unsigned long long)sh->sector);
1725 
1726 	for (i = 0; i < sh->disks; i++) {
1727 		if (pd_idx == i)
1728 			continue;
1729 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1730 			break;
1731 	}
1732 	if (i >= sh->disks) {
1733 		atomic_inc(&sh->count);
1734 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1735 		ops_complete_reconstruct(sh);
1736 		return;
1737 	}
1738 again:
1739 	count = 0;
1740 	xor_srcs = to_addr_page(percpu, j);
1741 	/* check if prexor is active which means only process blocks
1742 	 * that are part of a read-modify-write (written)
1743 	 */
1744 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1745 		prexor = 1;
1746 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1747 		for (i = disks; i--; ) {
1748 			struct r5dev *dev = &sh->dev[i];
1749 			if (head_sh->dev[i].written)
1750 				xor_srcs[count++] = dev->page;
1751 		}
1752 	} else {
1753 		xor_dest = sh->dev[pd_idx].page;
1754 		for (i = disks; i--; ) {
1755 			struct r5dev *dev = &sh->dev[i];
1756 			if (i != pd_idx)
1757 				xor_srcs[count++] = dev->page;
1758 		}
1759 	}
1760 
1761 	/* 1/ if we prexor'd then the dest is reused as a source
1762 	 * 2/ if we did not prexor then we are redoing the parity
1763 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1764 	 * for the synchronous xor case
1765 	 */
1766 	last_stripe = !head_sh->batch_head ||
1767 		list_first_entry(&sh->batch_list,
1768 				 struct stripe_head, batch_list) == head_sh;
1769 	if (last_stripe) {
1770 		flags = ASYNC_TX_ACK |
1771 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1772 
1773 		atomic_inc(&head_sh->count);
1774 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1775 				  to_addr_conv(sh, percpu, j));
1776 	} else {
1777 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1778 		init_async_submit(&submit, flags, tx, NULL, NULL,
1779 				  to_addr_conv(sh, percpu, j));
1780 	}
1781 
1782 	if (unlikely(count == 1))
1783 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1784 	else
1785 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1786 	if (!last_stripe) {
1787 		j++;
1788 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1789 				      batch_list);
1790 		goto again;
1791 	}
1792 }
1793 
1794 static void
1795 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1796 		     struct dma_async_tx_descriptor *tx)
1797 {
1798 	struct async_submit_ctl submit;
1799 	struct page **blocks;
1800 	int count, i, j = 0;
1801 	struct stripe_head *head_sh = sh;
1802 	int last_stripe;
1803 	int synflags;
1804 	unsigned long txflags;
1805 
1806 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1807 
1808 	for (i = 0; i < sh->disks; i++) {
1809 		if (sh->pd_idx == i || sh->qd_idx == i)
1810 			continue;
1811 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1812 			break;
1813 	}
1814 	if (i >= sh->disks) {
1815 		atomic_inc(&sh->count);
1816 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1817 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1818 		ops_complete_reconstruct(sh);
1819 		return;
1820 	}
1821 
1822 again:
1823 	blocks = to_addr_page(percpu, j);
1824 
1825 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1826 		synflags = SYNDROME_SRC_WRITTEN;
1827 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1828 	} else {
1829 		synflags = SYNDROME_SRC_ALL;
1830 		txflags = ASYNC_TX_ACK;
1831 	}
1832 
1833 	count = set_syndrome_sources(blocks, sh, synflags);
1834 	last_stripe = !head_sh->batch_head ||
1835 		list_first_entry(&sh->batch_list,
1836 				 struct stripe_head, batch_list) == head_sh;
1837 
1838 	if (last_stripe) {
1839 		atomic_inc(&head_sh->count);
1840 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1841 				  head_sh, to_addr_conv(sh, percpu, j));
1842 	} else
1843 		init_async_submit(&submit, 0, tx, NULL, NULL,
1844 				  to_addr_conv(sh, percpu, j));
1845 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1846 	if (!last_stripe) {
1847 		j++;
1848 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1849 				      batch_list);
1850 		goto again;
1851 	}
1852 }
1853 
1854 static void ops_complete_check(void *stripe_head_ref)
1855 {
1856 	struct stripe_head *sh = stripe_head_ref;
1857 
1858 	pr_debug("%s: stripe %llu\n", __func__,
1859 		(unsigned long long)sh->sector);
1860 
1861 	sh->check_state = check_state_check_result;
1862 	set_bit(STRIPE_HANDLE, &sh->state);
1863 	raid5_release_stripe(sh);
1864 }
1865 
1866 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1867 {
1868 	int disks = sh->disks;
1869 	int pd_idx = sh->pd_idx;
1870 	int qd_idx = sh->qd_idx;
1871 	struct page *xor_dest;
1872 	struct page **xor_srcs = to_addr_page(percpu, 0);
1873 	struct dma_async_tx_descriptor *tx;
1874 	struct async_submit_ctl submit;
1875 	int count;
1876 	int i;
1877 
1878 	pr_debug("%s: stripe %llu\n", __func__,
1879 		(unsigned long long)sh->sector);
1880 
1881 	BUG_ON(sh->batch_head);
1882 	count = 0;
1883 	xor_dest = sh->dev[pd_idx].page;
1884 	xor_srcs[count++] = xor_dest;
1885 	for (i = disks; i--; ) {
1886 		if (i == pd_idx || i == qd_idx)
1887 			continue;
1888 		xor_srcs[count++] = sh->dev[i].page;
1889 	}
1890 
1891 	init_async_submit(&submit, 0, NULL, NULL, NULL,
1892 			  to_addr_conv(sh, percpu, 0));
1893 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1894 			   &sh->ops.zero_sum_result, &submit);
1895 
1896 	atomic_inc(&sh->count);
1897 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1898 	tx = async_trigger_callback(&submit);
1899 }
1900 
1901 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1902 {
1903 	struct page **srcs = to_addr_page(percpu, 0);
1904 	struct async_submit_ctl submit;
1905 	int count;
1906 
1907 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1908 		(unsigned long long)sh->sector, checkp);
1909 
1910 	BUG_ON(sh->batch_head);
1911 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1912 	if (!checkp)
1913 		srcs[count] = NULL;
1914 
1915 	atomic_inc(&sh->count);
1916 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1917 			  sh, to_addr_conv(sh, percpu, 0));
1918 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1919 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1920 }
1921 
1922 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1923 {
1924 	int overlap_clear = 0, i, disks = sh->disks;
1925 	struct dma_async_tx_descriptor *tx = NULL;
1926 	struct r5conf *conf = sh->raid_conf;
1927 	int level = conf->level;
1928 	struct raid5_percpu *percpu;
1929 	unsigned long cpu;
1930 
1931 	cpu = get_cpu();
1932 	percpu = per_cpu_ptr(conf->percpu, cpu);
1933 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1934 		ops_run_biofill(sh);
1935 		overlap_clear++;
1936 	}
1937 
1938 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1939 		if (level < 6)
1940 			tx = ops_run_compute5(sh, percpu);
1941 		else {
1942 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1943 				tx = ops_run_compute6_1(sh, percpu);
1944 			else
1945 				tx = ops_run_compute6_2(sh, percpu);
1946 		}
1947 		/* terminate the chain if reconstruct is not set to be run */
1948 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1949 			async_tx_ack(tx);
1950 	}
1951 
1952 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1953 		if (level < 6)
1954 			tx = ops_run_prexor5(sh, percpu, tx);
1955 		else
1956 			tx = ops_run_prexor6(sh, percpu, tx);
1957 	}
1958 
1959 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1960 		tx = ops_run_biodrain(sh, tx);
1961 		overlap_clear++;
1962 	}
1963 
1964 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1965 		if (level < 6)
1966 			ops_run_reconstruct5(sh, percpu, tx);
1967 		else
1968 			ops_run_reconstruct6(sh, percpu, tx);
1969 	}
1970 
1971 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1972 		if (sh->check_state == check_state_run)
1973 			ops_run_check_p(sh, percpu);
1974 		else if (sh->check_state == check_state_run_q)
1975 			ops_run_check_pq(sh, percpu, 0);
1976 		else if (sh->check_state == check_state_run_pq)
1977 			ops_run_check_pq(sh, percpu, 1);
1978 		else
1979 			BUG();
1980 	}
1981 
1982 	if (overlap_clear && !sh->batch_head)
1983 		for (i = disks; i--; ) {
1984 			struct r5dev *dev = &sh->dev[i];
1985 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1986 				wake_up(&sh->raid_conf->wait_for_overlap);
1987 		}
1988 	put_cpu();
1989 }
1990 
1991 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
1992 	int disks)
1993 {
1994 	struct stripe_head *sh;
1995 	int i;
1996 
1997 	sh = kmem_cache_zalloc(sc, gfp);
1998 	if (sh) {
1999 		spin_lock_init(&sh->stripe_lock);
2000 		spin_lock_init(&sh->batch_lock);
2001 		INIT_LIST_HEAD(&sh->batch_list);
2002 		INIT_LIST_HEAD(&sh->lru);
2003 		atomic_set(&sh->count, 1);
2004 		for (i = 0; i < disks; i++) {
2005 			struct r5dev *dev = &sh->dev[i];
2006 
2007 			bio_init(&dev->req, &dev->vec, 1);
2008 			bio_init(&dev->rreq, &dev->rvec, 1);
2009 		}
2010 	}
2011 	return sh;
2012 }
2013 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2014 {
2015 	struct stripe_head *sh;
2016 
2017 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2018 	if (!sh)
2019 		return 0;
2020 
2021 	sh->raid_conf = conf;
2022 
2023 	if (grow_buffers(sh, gfp)) {
2024 		shrink_buffers(sh);
2025 		kmem_cache_free(conf->slab_cache, sh);
2026 		return 0;
2027 	}
2028 	sh->hash_lock_index =
2029 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2030 	/* we just created an active stripe so... */
2031 	atomic_inc(&conf->active_stripes);
2032 
2033 	raid5_release_stripe(sh);
2034 	conf->max_nr_stripes++;
2035 	return 1;
2036 }
2037 
2038 static int grow_stripes(struct r5conf *conf, int num)
2039 {
2040 	struct kmem_cache *sc;
2041 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2042 
2043 	if (conf->mddev->gendisk)
2044 		sprintf(conf->cache_name[0],
2045 			"raid%d-%s", conf->level, mdname(conf->mddev));
2046 	else
2047 		sprintf(conf->cache_name[0],
2048 			"raid%d-%p", conf->level, conf->mddev);
2049 	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2050 
2051 	conf->active_name = 0;
2052 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2053 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2054 			       0, 0, NULL);
2055 	if (!sc)
2056 		return 1;
2057 	conf->slab_cache = sc;
2058 	conf->pool_size = devs;
2059 	while (num--)
2060 		if (!grow_one_stripe(conf, GFP_KERNEL))
2061 			return 1;
2062 
2063 	return 0;
2064 }
2065 
2066 /**
2067  * scribble_len - return the required size of the scribble region
2068  * @num - total number of disks in the array
2069  *
2070  * The size must be enough to contain:
2071  * 1/ a struct page pointer for each device in the array +2
2072  * 2/ room to convert each entry in (1) to its corresponding dma
2073  *    (dma_map_page()) or page (page_address()) address.
2074  *
2075  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2076  * calculate over all devices (not just the data blocks), using zeros in place
2077  * of the P and Q blocks.
2078  */
2079 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2080 {
2081 	struct flex_array *ret;
2082 	size_t len;
2083 
2084 	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2085 	ret = flex_array_alloc(len, cnt, flags);
2086 	if (!ret)
2087 		return NULL;
2088 	/* always prealloc all elements, so no locking is required */
2089 	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2090 		flex_array_free(ret);
2091 		return NULL;
2092 	}
2093 	return ret;
2094 }
2095 
2096 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2097 {
2098 	unsigned long cpu;
2099 	int err = 0;
2100 
2101 	/*
2102 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2103 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2104 	 * should equal to new_disks and new_sectors
2105 	 */
2106 	if (conf->scribble_disks >= new_disks &&
2107 	    conf->scribble_sectors >= new_sectors)
2108 		return 0;
2109 	mddev_suspend(conf->mddev);
2110 	get_online_cpus();
2111 	for_each_present_cpu(cpu) {
2112 		struct raid5_percpu *percpu;
2113 		struct flex_array *scribble;
2114 
2115 		percpu = per_cpu_ptr(conf->percpu, cpu);
2116 		scribble = scribble_alloc(new_disks,
2117 					  new_sectors / STRIPE_SECTORS,
2118 					  GFP_NOIO);
2119 
2120 		if (scribble) {
2121 			flex_array_free(percpu->scribble);
2122 			percpu->scribble = scribble;
2123 		} else {
2124 			err = -ENOMEM;
2125 			break;
2126 		}
2127 	}
2128 	put_online_cpus();
2129 	mddev_resume(conf->mddev);
2130 	if (!err) {
2131 		conf->scribble_disks = new_disks;
2132 		conf->scribble_sectors = new_sectors;
2133 	}
2134 	return err;
2135 }
2136 
2137 static int resize_stripes(struct r5conf *conf, int newsize)
2138 {
2139 	/* Make all the stripes able to hold 'newsize' devices.
2140 	 * New slots in each stripe get 'page' set to a new page.
2141 	 *
2142 	 * This happens in stages:
2143 	 * 1/ create a new kmem_cache and allocate the required number of
2144 	 *    stripe_heads.
2145 	 * 2/ gather all the old stripe_heads and transfer the pages across
2146 	 *    to the new stripe_heads.  This will have the side effect of
2147 	 *    freezing the array as once all stripe_heads have been collected,
2148 	 *    no IO will be possible.  Old stripe heads are freed once their
2149 	 *    pages have been transferred over, and the old kmem_cache is
2150 	 *    freed when all stripes are done.
2151 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2152 	 *    we simple return a failre status - no need to clean anything up.
2153 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2154 	 *    If this fails, we don't bother trying the shrink the
2155 	 *    stripe_heads down again, we just leave them as they are.
2156 	 *    As each stripe_head is processed the new one is released into
2157 	 *    active service.
2158 	 *
2159 	 * Once step2 is started, we cannot afford to wait for a write,
2160 	 * so we use GFP_NOIO allocations.
2161 	 */
2162 	struct stripe_head *osh, *nsh;
2163 	LIST_HEAD(newstripes);
2164 	struct disk_info *ndisks;
2165 	int err;
2166 	struct kmem_cache *sc;
2167 	int i;
2168 	int hash, cnt;
2169 
2170 	if (newsize <= conf->pool_size)
2171 		return 0; /* never bother to shrink */
2172 
2173 	err = md_allow_write(conf->mddev);
2174 	if (err)
2175 		return err;
2176 
2177 	/* Step 1 */
2178 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2179 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2180 			       0, 0, NULL);
2181 	if (!sc)
2182 		return -ENOMEM;
2183 
2184 	/* Need to ensure auto-resizing doesn't interfere */
2185 	mutex_lock(&conf->cache_size_mutex);
2186 
2187 	for (i = conf->max_nr_stripes; i; i--) {
2188 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2189 		if (!nsh)
2190 			break;
2191 
2192 		nsh->raid_conf = conf;
2193 		list_add(&nsh->lru, &newstripes);
2194 	}
2195 	if (i) {
2196 		/* didn't get enough, give up */
2197 		while (!list_empty(&newstripes)) {
2198 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2199 			list_del(&nsh->lru);
2200 			kmem_cache_free(sc, nsh);
2201 		}
2202 		kmem_cache_destroy(sc);
2203 		mutex_unlock(&conf->cache_size_mutex);
2204 		return -ENOMEM;
2205 	}
2206 	/* Step 2 - Must use GFP_NOIO now.
2207 	 * OK, we have enough stripes, start collecting inactive
2208 	 * stripes and copying them over
2209 	 */
2210 	hash = 0;
2211 	cnt = 0;
2212 	list_for_each_entry(nsh, &newstripes, lru) {
2213 		lock_device_hash_lock(conf, hash);
2214 		wait_event_cmd(conf->wait_for_stripe,
2215 				    !list_empty(conf->inactive_list + hash),
2216 				    unlock_device_hash_lock(conf, hash),
2217 				    lock_device_hash_lock(conf, hash));
2218 		osh = get_free_stripe(conf, hash);
2219 		unlock_device_hash_lock(conf, hash);
2220 
2221 		for(i=0; i<conf->pool_size; i++) {
2222 			nsh->dev[i].page = osh->dev[i].page;
2223 			nsh->dev[i].orig_page = osh->dev[i].page;
2224 		}
2225 		nsh->hash_lock_index = hash;
2226 		kmem_cache_free(conf->slab_cache, osh);
2227 		cnt++;
2228 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2229 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2230 			hash++;
2231 			cnt = 0;
2232 		}
2233 	}
2234 	kmem_cache_destroy(conf->slab_cache);
2235 
2236 	/* Step 3.
2237 	 * At this point, we are holding all the stripes so the array
2238 	 * is completely stalled, so now is a good time to resize
2239 	 * conf->disks and the scribble region
2240 	 */
2241 	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2242 	if (ndisks) {
2243 		for (i=0; i<conf->raid_disks; i++)
2244 			ndisks[i] = conf->disks[i];
2245 		kfree(conf->disks);
2246 		conf->disks = ndisks;
2247 	} else
2248 		err = -ENOMEM;
2249 
2250 	mutex_unlock(&conf->cache_size_mutex);
2251 	/* Step 4, return new stripes to service */
2252 	while(!list_empty(&newstripes)) {
2253 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2254 		list_del_init(&nsh->lru);
2255 
2256 		for (i=conf->raid_disks; i < newsize; i++)
2257 			if (nsh->dev[i].page == NULL) {
2258 				struct page *p = alloc_page(GFP_NOIO);
2259 				nsh->dev[i].page = p;
2260 				nsh->dev[i].orig_page = p;
2261 				if (!p)
2262 					err = -ENOMEM;
2263 			}
2264 		raid5_release_stripe(nsh);
2265 	}
2266 	/* critical section pass, GFP_NOIO no longer needed */
2267 
2268 	conf->slab_cache = sc;
2269 	conf->active_name = 1-conf->active_name;
2270 	if (!err)
2271 		conf->pool_size = newsize;
2272 	return err;
2273 }
2274 
2275 static int drop_one_stripe(struct r5conf *conf)
2276 {
2277 	struct stripe_head *sh;
2278 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2279 
2280 	spin_lock_irq(conf->hash_locks + hash);
2281 	sh = get_free_stripe(conf, hash);
2282 	spin_unlock_irq(conf->hash_locks + hash);
2283 	if (!sh)
2284 		return 0;
2285 	BUG_ON(atomic_read(&sh->count));
2286 	shrink_buffers(sh);
2287 	kmem_cache_free(conf->slab_cache, sh);
2288 	atomic_dec(&conf->active_stripes);
2289 	conf->max_nr_stripes--;
2290 	return 1;
2291 }
2292 
2293 static void shrink_stripes(struct r5conf *conf)
2294 {
2295 	while (conf->max_nr_stripes &&
2296 	       drop_one_stripe(conf))
2297 		;
2298 
2299 	kmem_cache_destroy(conf->slab_cache);
2300 	conf->slab_cache = NULL;
2301 }
2302 
2303 static void raid5_end_read_request(struct bio * bi)
2304 {
2305 	struct stripe_head *sh = bi->bi_private;
2306 	struct r5conf *conf = sh->raid_conf;
2307 	int disks = sh->disks, i;
2308 	char b[BDEVNAME_SIZE];
2309 	struct md_rdev *rdev = NULL;
2310 	sector_t s;
2311 
2312 	for (i=0 ; i<disks; i++)
2313 		if (bi == &sh->dev[i].req)
2314 			break;
2315 
2316 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2317 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2318 		bi->bi_error);
2319 	if (i == disks) {
2320 		bio_reset(bi);
2321 		BUG();
2322 		return;
2323 	}
2324 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2325 		/* If replacement finished while this request was outstanding,
2326 		 * 'replacement' might be NULL already.
2327 		 * In that case it moved down to 'rdev'.
2328 		 * rdev is not removed until all requests are finished.
2329 		 */
2330 		rdev = conf->disks[i].replacement;
2331 	if (!rdev)
2332 		rdev = conf->disks[i].rdev;
2333 
2334 	if (use_new_offset(conf, sh))
2335 		s = sh->sector + rdev->new_data_offset;
2336 	else
2337 		s = sh->sector + rdev->data_offset;
2338 	if (!bi->bi_error) {
2339 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2340 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2341 			/* Note that this cannot happen on a
2342 			 * replacement device.  We just fail those on
2343 			 * any error
2344 			 */
2345 			printk_ratelimited(
2346 				KERN_INFO
2347 				"md/raid:%s: read error corrected"
2348 				" (%lu sectors at %llu on %s)\n",
2349 				mdname(conf->mddev), STRIPE_SECTORS,
2350 				(unsigned long long)s,
2351 				bdevname(rdev->bdev, b));
2352 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2353 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2354 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2355 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2356 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2357 
2358 		if (atomic_read(&rdev->read_errors))
2359 			atomic_set(&rdev->read_errors, 0);
2360 	} else {
2361 		const char *bdn = bdevname(rdev->bdev, b);
2362 		int retry = 0;
2363 		int set_bad = 0;
2364 
2365 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2366 		atomic_inc(&rdev->read_errors);
2367 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2368 			printk_ratelimited(
2369 				KERN_WARNING
2370 				"md/raid:%s: read error on replacement device "
2371 				"(sector %llu on %s).\n",
2372 				mdname(conf->mddev),
2373 				(unsigned long long)s,
2374 				bdn);
2375 		else if (conf->mddev->degraded >= conf->max_degraded) {
2376 			set_bad = 1;
2377 			printk_ratelimited(
2378 				KERN_WARNING
2379 				"md/raid:%s: read error not correctable "
2380 				"(sector %llu on %s).\n",
2381 				mdname(conf->mddev),
2382 				(unsigned long long)s,
2383 				bdn);
2384 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2385 			/* Oh, no!!! */
2386 			set_bad = 1;
2387 			printk_ratelimited(
2388 				KERN_WARNING
2389 				"md/raid:%s: read error NOT corrected!! "
2390 				"(sector %llu on %s).\n",
2391 				mdname(conf->mddev),
2392 				(unsigned long long)s,
2393 				bdn);
2394 		} else if (atomic_read(&rdev->read_errors)
2395 			 > conf->max_nr_stripes)
2396 			printk(KERN_WARNING
2397 			       "md/raid:%s: Too many read errors, failing device %s.\n",
2398 			       mdname(conf->mddev), bdn);
2399 		else
2400 			retry = 1;
2401 		if (set_bad && test_bit(In_sync, &rdev->flags)
2402 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2403 			retry = 1;
2404 		if (retry)
2405 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2406 				set_bit(R5_ReadError, &sh->dev[i].flags);
2407 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2408 			} else
2409 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2410 		else {
2411 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2412 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2413 			if (!(set_bad
2414 			      && test_bit(In_sync, &rdev->flags)
2415 			      && rdev_set_badblocks(
2416 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2417 				md_error(conf->mddev, rdev);
2418 		}
2419 	}
2420 	rdev_dec_pending(rdev, conf->mddev);
2421 	bio_reset(bi);
2422 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2423 	set_bit(STRIPE_HANDLE, &sh->state);
2424 	raid5_release_stripe(sh);
2425 }
2426 
2427 static void raid5_end_write_request(struct bio *bi)
2428 {
2429 	struct stripe_head *sh = bi->bi_private;
2430 	struct r5conf *conf = sh->raid_conf;
2431 	int disks = sh->disks, i;
2432 	struct md_rdev *uninitialized_var(rdev);
2433 	sector_t first_bad;
2434 	int bad_sectors;
2435 	int replacement = 0;
2436 
2437 	for (i = 0 ; i < disks; i++) {
2438 		if (bi == &sh->dev[i].req) {
2439 			rdev = conf->disks[i].rdev;
2440 			break;
2441 		}
2442 		if (bi == &sh->dev[i].rreq) {
2443 			rdev = conf->disks[i].replacement;
2444 			if (rdev)
2445 				replacement = 1;
2446 			else
2447 				/* rdev was removed and 'replacement'
2448 				 * replaced it.  rdev is not removed
2449 				 * until all requests are finished.
2450 				 */
2451 				rdev = conf->disks[i].rdev;
2452 			break;
2453 		}
2454 	}
2455 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2456 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2457 		bi->bi_error);
2458 	if (i == disks) {
2459 		bio_reset(bi);
2460 		BUG();
2461 		return;
2462 	}
2463 
2464 	if (replacement) {
2465 		if (bi->bi_error)
2466 			md_error(conf->mddev, rdev);
2467 		else if (is_badblock(rdev, sh->sector,
2468 				     STRIPE_SECTORS,
2469 				     &first_bad, &bad_sectors))
2470 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2471 	} else {
2472 		if (bi->bi_error) {
2473 			set_bit(STRIPE_DEGRADED, &sh->state);
2474 			set_bit(WriteErrorSeen, &rdev->flags);
2475 			set_bit(R5_WriteError, &sh->dev[i].flags);
2476 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2477 				set_bit(MD_RECOVERY_NEEDED,
2478 					&rdev->mddev->recovery);
2479 		} else if (is_badblock(rdev, sh->sector,
2480 				       STRIPE_SECTORS,
2481 				       &first_bad, &bad_sectors)) {
2482 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2483 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2484 				/* That was a successful write so make
2485 				 * sure it looks like we already did
2486 				 * a re-write.
2487 				 */
2488 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2489 		}
2490 	}
2491 	rdev_dec_pending(rdev, conf->mddev);
2492 
2493 	if (sh->batch_head && bi->bi_error && !replacement)
2494 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2495 
2496 	bio_reset(bi);
2497 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2498 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2499 	set_bit(STRIPE_HANDLE, &sh->state);
2500 	raid5_release_stripe(sh);
2501 
2502 	if (sh->batch_head && sh != sh->batch_head)
2503 		raid5_release_stripe(sh->batch_head);
2504 }
2505 
2506 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2507 {
2508 	struct r5dev *dev = &sh->dev[i];
2509 
2510 	dev->flags = 0;
2511 	dev->sector = raid5_compute_blocknr(sh, i, previous);
2512 }
2513 
2514 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2515 {
2516 	char b[BDEVNAME_SIZE];
2517 	struct r5conf *conf = mddev->private;
2518 	unsigned long flags;
2519 	pr_debug("raid456: error called\n");
2520 
2521 	spin_lock_irqsave(&conf->device_lock, flags);
2522 	clear_bit(In_sync, &rdev->flags);
2523 	mddev->degraded = calc_degraded(conf);
2524 	spin_unlock_irqrestore(&conf->device_lock, flags);
2525 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2526 
2527 	set_bit(Blocked, &rdev->flags);
2528 	set_bit(Faulty, &rdev->flags);
2529 	set_mask_bits(&mddev->flags, 0,
2530 		      BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
2531 	printk(KERN_ALERT
2532 	       "md/raid:%s: Disk failure on %s, disabling device.\n"
2533 	       "md/raid:%s: Operation continuing on %d devices.\n",
2534 	       mdname(mddev),
2535 	       bdevname(rdev->bdev, b),
2536 	       mdname(mddev),
2537 	       conf->raid_disks - mddev->degraded);
2538 }
2539 
2540 /*
2541  * Input: a 'big' sector number,
2542  * Output: index of the data and parity disk, and the sector # in them.
2543  */
2544 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2545 			      int previous, int *dd_idx,
2546 			      struct stripe_head *sh)
2547 {
2548 	sector_t stripe, stripe2;
2549 	sector_t chunk_number;
2550 	unsigned int chunk_offset;
2551 	int pd_idx, qd_idx;
2552 	int ddf_layout = 0;
2553 	sector_t new_sector;
2554 	int algorithm = previous ? conf->prev_algo
2555 				 : conf->algorithm;
2556 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2557 					 : conf->chunk_sectors;
2558 	int raid_disks = previous ? conf->previous_raid_disks
2559 				  : conf->raid_disks;
2560 	int data_disks = raid_disks - conf->max_degraded;
2561 
2562 	/* First compute the information on this sector */
2563 
2564 	/*
2565 	 * Compute the chunk number and the sector offset inside the chunk
2566 	 */
2567 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2568 	chunk_number = r_sector;
2569 
2570 	/*
2571 	 * Compute the stripe number
2572 	 */
2573 	stripe = chunk_number;
2574 	*dd_idx = sector_div(stripe, data_disks);
2575 	stripe2 = stripe;
2576 	/*
2577 	 * Select the parity disk based on the user selected algorithm.
2578 	 */
2579 	pd_idx = qd_idx = -1;
2580 	switch(conf->level) {
2581 	case 4:
2582 		pd_idx = data_disks;
2583 		break;
2584 	case 5:
2585 		switch (algorithm) {
2586 		case ALGORITHM_LEFT_ASYMMETRIC:
2587 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2588 			if (*dd_idx >= pd_idx)
2589 				(*dd_idx)++;
2590 			break;
2591 		case ALGORITHM_RIGHT_ASYMMETRIC:
2592 			pd_idx = sector_div(stripe2, raid_disks);
2593 			if (*dd_idx >= pd_idx)
2594 				(*dd_idx)++;
2595 			break;
2596 		case ALGORITHM_LEFT_SYMMETRIC:
2597 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2598 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2599 			break;
2600 		case ALGORITHM_RIGHT_SYMMETRIC:
2601 			pd_idx = sector_div(stripe2, raid_disks);
2602 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2603 			break;
2604 		case ALGORITHM_PARITY_0:
2605 			pd_idx = 0;
2606 			(*dd_idx)++;
2607 			break;
2608 		case ALGORITHM_PARITY_N:
2609 			pd_idx = data_disks;
2610 			break;
2611 		default:
2612 			BUG();
2613 		}
2614 		break;
2615 	case 6:
2616 
2617 		switch (algorithm) {
2618 		case ALGORITHM_LEFT_ASYMMETRIC:
2619 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2620 			qd_idx = pd_idx + 1;
2621 			if (pd_idx == raid_disks-1) {
2622 				(*dd_idx)++;	/* Q D D D P */
2623 				qd_idx = 0;
2624 			} else if (*dd_idx >= pd_idx)
2625 				(*dd_idx) += 2; /* D D P Q D */
2626 			break;
2627 		case ALGORITHM_RIGHT_ASYMMETRIC:
2628 			pd_idx = sector_div(stripe2, raid_disks);
2629 			qd_idx = pd_idx + 1;
2630 			if (pd_idx == raid_disks-1) {
2631 				(*dd_idx)++;	/* Q D D D P */
2632 				qd_idx = 0;
2633 			} else if (*dd_idx >= pd_idx)
2634 				(*dd_idx) += 2; /* D D P Q D */
2635 			break;
2636 		case ALGORITHM_LEFT_SYMMETRIC:
2637 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2638 			qd_idx = (pd_idx + 1) % raid_disks;
2639 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2640 			break;
2641 		case ALGORITHM_RIGHT_SYMMETRIC:
2642 			pd_idx = sector_div(stripe2, raid_disks);
2643 			qd_idx = (pd_idx + 1) % raid_disks;
2644 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2645 			break;
2646 
2647 		case ALGORITHM_PARITY_0:
2648 			pd_idx = 0;
2649 			qd_idx = 1;
2650 			(*dd_idx) += 2;
2651 			break;
2652 		case ALGORITHM_PARITY_N:
2653 			pd_idx = data_disks;
2654 			qd_idx = data_disks + 1;
2655 			break;
2656 
2657 		case ALGORITHM_ROTATING_ZERO_RESTART:
2658 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2659 			 * of blocks for computing Q is different.
2660 			 */
2661 			pd_idx = sector_div(stripe2, raid_disks);
2662 			qd_idx = pd_idx + 1;
2663 			if (pd_idx == raid_disks-1) {
2664 				(*dd_idx)++;	/* Q D D D P */
2665 				qd_idx = 0;
2666 			} else if (*dd_idx >= pd_idx)
2667 				(*dd_idx) += 2; /* D D P Q D */
2668 			ddf_layout = 1;
2669 			break;
2670 
2671 		case ALGORITHM_ROTATING_N_RESTART:
2672 			/* Same a left_asymmetric, by first stripe is
2673 			 * D D D P Q  rather than
2674 			 * Q D D D P
2675 			 */
2676 			stripe2 += 1;
2677 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2678 			qd_idx = pd_idx + 1;
2679 			if (pd_idx == raid_disks-1) {
2680 				(*dd_idx)++;	/* Q D D D P */
2681 				qd_idx = 0;
2682 			} else if (*dd_idx >= pd_idx)
2683 				(*dd_idx) += 2; /* D D P Q D */
2684 			ddf_layout = 1;
2685 			break;
2686 
2687 		case ALGORITHM_ROTATING_N_CONTINUE:
2688 			/* Same as left_symmetric but Q is before P */
2689 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2690 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2691 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2692 			ddf_layout = 1;
2693 			break;
2694 
2695 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2696 			/* RAID5 left_asymmetric, with Q on last device */
2697 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2698 			if (*dd_idx >= pd_idx)
2699 				(*dd_idx)++;
2700 			qd_idx = raid_disks - 1;
2701 			break;
2702 
2703 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2704 			pd_idx = sector_div(stripe2, raid_disks-1);
2705 			if (*dd_idx >= pd_idx)
2706 				(*dd_idx)++;
2707 			qd_idx = raid_disks - 1;
2708 			break;
2709 
2710 		case ALGORITHM_LEFT_SYMMETRIC_6:
2711 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2712 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2713 			qd_idx = raid_disks - 1;
2714 			break;
2715 
2716 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2717 			pd_idx = sector_div(stripe2, raid_disks-1);
2718 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2719 			qd_idx = raid_disks - 1;
2720 			break;
2721 
2722 		case ALGORITHM_PARITY_0_6:
2723 			pd_idx = 0;
2724 			(*dd_idx)++;
2725 			qd_idx = raid_disks - 1;
2726 			break;
2727 
2728 		default:
2729 			BUG();
2730 		}
2731 		break;
2732 	}
2733 
2734 	if (sh) {
2735 		sh->pd_idx = pd_idx;
2736 		sh->qd_idx = qd_idx;
2737 		sh->ddf_layout = ddf_layout;
2738 	}
2739 	/*
2740 	 * Finally, compute the new sector number
2741 	 */
2742 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2743 	return new_sector;
2744 }
2745 
2746 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2747 {
2748 	struct r5conf *conf = sh->raid_conf;
2749 	int raid_disks = sh->disks;
2750 	int data_disks = raid_disks - conf->max_degraded;
2751 	sector_t new_sector = sh->sector, check;
2752 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2753 					 : conf->chunk_sectors;
2754 	int algorithm = previous ? conf->prev_algo
2755 				 : conf->algorithm;
2756 	sector_t stripe;
2757 	int chunk_offset;
2758 	sector_t chunk_number;
2759 	int dummy1, dd_idx = i;
2760 	sector_t r_sector;
2761 	struct stripe_head sh2;
2762 
2763 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2764 	stripe = new_sector;
2765 
2766 	if (i == sh->pd_idx)
2767 		return 0;
2768 	switch(conf->level) {
2769 	case 4: break;
2770 	case 5:
2771 		switch (algorithm) {
2772 		case ALGORITHM_LEFT_ASYMMETRIC:
2773 		case ALGORITHM_RIGHT_ASYMMETRIC:
2774 			if (i > sh->pd_idx)
2775 				i--;
2776 			break;
2777 		case ALGORITHM_LEFT_SYMMETRIC:
2778 		case ALGORITHM_RIGHT_SYMMETRIC:
2779 			if (i < sh->pd_idx)
2780 				i += raid_disks;
2781 			i -= (sh->pd_idx + 1);
2782 			break;
2783 		case ALGORITHM_PARITY_0:
2784 			i -= 1;
2785 			break;
2786 		case ALGORITHM_PARITY_N:
2787 			break;
2788 		default:
2789 			BUG();
2790 		}
2791 		break;
2792 	case 6:
2793 		if (i == sh->qd_idx)
2794 			return 0; /* It is the Q disk */
2795 		switch (algorithm) {
2796 		case ALGORITHM_LEFT_ASYMMETRIC:
2797 		case ALGORITHM_RIGHT_ASYMMETRIC:
2798 		case ALGORITHM_ROTATING_ZERO_RESTART:
2799 		case ALGORITHM_ROTATING_N_RESTART:
2800 			if (sh->pd_idx == raid_disks-1)
2801 				i--;	/* Q D D D P */
2802 			else if (i > sh->pd_idx)
2803 				i -= 2; /* D D P Q D */
2804 			break;
2805 		case ALGORITHM_LEFT_SYMMETRIC:
2806 		case ALGORITHM_RIGHT_SYMMETRIC:
2807 			if (sh->pd_idx == raid_disks-1)
2808 				i--; /* Q D D D P */
2809 			else {
2810 				/* D D P Q D */
2811 				if (i < sh->pd_idx)
2812 					i += raid_disks;
2813 				i -= (sh->pd_idx + 2);
2814 			}
2815 			break;
2816 		case ALGORITHM_PARITY_0:
2817 			i -= 2;
2818 			break;
2819 		case ALGORITHM_PARITY_N:
2820 			break;
2821 		case ALGORITHM_ROTATING_N_CONTINUE:
2822 			/* Like left_symmetric, but P is before Q */
2823 			if (sh->pd_idx == 0)
2824 				i--;	/* P D D D Q */
2825 			else {
2826 				/* D D Q P D */
2827 				if (i < sh->pd_idx)
2828 					i += raid_disks;
2829 				i -= (sh->pd_idx + 1);
2830 			}
2831 			break;
2832 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2833 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2834 			if (i > sh->pd_idx)
2835 				i--;
2836 			break;
2837 		case ALGORITHM_LEFT_SYMMETRIC_6:
2838 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2839 			if (i < sh->pd_idx)
2840 				i += data_disks + 1;
2841 			i -= (sh->pd_idx + 1);
2842 			break;
2843 		case ALGORITHM_PARITY_0_6:
2844 			i -= 1;
2845 			break;
2846 		default:
2847 			BUG();
2848 		}
2849 		break;
2850 	}
2851 
2852 	chunk_number = stripe * data_disks + i;
2853 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2854 
2855 	check = raid5_compute_sector(conf, r_sector,
2856 				     previous, &dummy1, &sh2);
2857 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2858 		|| sh2.qd_idx != sh->qd_idx) {
2859 		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2860 		       mdname(conf->mddev));
2861 		return 0;
2862 	}
2863 	return r_sector;
2864 }
2865 
2866 static void
2867 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2868 			 int rcw, int expand)
2869 {
2870 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2871 	struct r5conf *conf = sh->raid_conf;
2872 	int level = conf->level;
2873 
2874 	if (rcw) {
2875 
2876 		for (i = disks; i--; ) {
2877 			struct r5dev *dev = &sh->dev[i];
2878 
2879 			if (dev->towrite) {
2880 				set_bit(R5_LOCKED, &dev->flags);
2881 				set_bit(R5_Wantdrain, &dev->flags);
2882 				if (!expand)
2883 					clear_bit(R5_UPTODATE, &dev->flags);
2884 				s->locked++;
2885 			}
2886 		}
2887 		/* if we are not expanding this is a proper write request, and
2888 		 * there will be bios with new data to be drained into the
2889 		 * stripe cache
2890 		 */
2891 		if (!expand) {
2892 			if (!s->locked)
2893 				/* False alarm, nothing to do */
2894 				return;
2895 			sh->reconstruct_state = reconstruct_state_drain_run;
2896 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2897 		} else
2898 			sh->reconstruct_state = reconstruct_state_run;
2899 
2900 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2901 
2902 		if (s->locked + conf->max_degraded == disks)
2903 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2904 				atomic_inc(&conf->pending_full_writes);
2905 	} else {
2906 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2907 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2908 		BUG_ON(level == 6 &&
2909 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2910 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2911 
2912 		for (i = disks; i--; ) {
2913 			struct r5dev *dev = &sh->dev[i];
2914 			if (i == pd_idx || i == qd_idx)
2915 				continue;
2916 
2917 			if (dev->towrite &&
2918 			    (test_bit(R5_UPTODATE, &dev->flags) ||
2919 			     test_bit(R5_Wantcompute, &dev->flags))) {
2920 				set_bit(R5_Wantdrain, &dev->flags);
2921 				set_bit(R5_LOCKED, &dev->flags);
2922 				clear_bit(R5_UPTODATE, &dev->flags);
2923 				s->locked++;
2924 			}
2925 		}
2926 		if (!s->locked)
2927 			/* False alarm - nothing to do */
2928 			return;
2929 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2930 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2931 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2932 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2933 	}
2934 
2935 	/* keep the parity disk(s) locked while asynchronous operations
2936 	 * are in flight
2937 	 */
2938 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2939 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2940 	s->locked++;
2941 
2942 	if (level == 6) {
2943 		int qd_idx = sh->qd_idx;
2944 		struct r5dev *dev = &sh->dev[qd_idx];
2945 
2946 		set_bit(R5_LOCKED, &dev->flags);
2947 		clear_bit(R5_UPTODATE, &dev->flags);
2948 		s->locked++;
2949 	}
2950 
2951 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2952 		__func__, (unsigned long long)sh->sector,
2953 		s->locked, s->ops_request);
2954 }
2955 
2956 /*
2957  * Each stripe/dev can have one or more bion attached.
2958  * toread/towrite point to the first in a chain.
2959  * The bi_next chain must be in order.
2960  */
2961 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2962 			  int forwrite, int previous)
2963 {
2964 	struct bio **bip;
2965 	struct r5conf *conf = sh->raid_conf;
2966 	int firstwrite=0;
2967 
2968 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2969 		(unsigned long long)bi->bi_iter.bi_sector,
2970 		(unsigned long long)sh->sector);
2971 
2972 	/*
2973 	 * If several bio share a stripe. The bio bi_phys_segments acts as a
2974 	 * reference count to avoid race. The reference count should already be
2975 	 * increased before this function is called (for example, in
2976 	 * raid5_make_request()), so other bio sharing this stripe will not free the
2977 	 * stripe. If a stripe is owned by one stripe, the stripe lock will
2978 	 * protect it.
2979 	 */
2980 	spin_lock_irq(&sh->stripe_lock);
2981 	/* Don't allow new IO added to stripes in batch list */
2982 	if (sh->batch_head)
2983 		goto overlap;
2984 	if (forwrite) {
2985 		bip = &sh->dev[dd_idx].towrite;
2986 		if (*bip == NULL)
2987 			firstwrite = 1;
2988 	} else
2989 		bip = &sh->dev[dd_idx].toread;
2990 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2991 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2992 			goto overlap;
2993 		bip = & (*bip)->bi_next;
2994 	}
2995 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2996 		goto overlap;
2997 
2998 	if (!forwrite || previous)
2999 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3000 
3001 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3002 	if (*bip)
3003 		bi->bi_next = *bip;
3004 	*bip = bi;
3005 	raid5_inc_bi_active_stripes(bi);
3006 
3007 	if (forwrite) {
3008 		/* check if page is covered */
3009 		sector_t sector = sh->dev[dd_idx].sector;
3010 		for (bi=sh->dev[dd_idx].towrite;
3011 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3012 			     bi && bi->bi_iter.bi_sector <= sector;
3013 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3014 			if (bio_end_sector(bi) >= sector)
3015 				sector = bio_end_sector(bi);
3016 		}
3017 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3018 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3019 				sh->overwrite_disks++;
3020 	}
3021 
3022 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3023 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3024 		(unsigned long long)sh->sector, dd_idx);
3025 
3026 	if (conf->mddev->bitmap && firstwrite) {
3027 		/* Cannot hold spinlock over bitmap_startwrite,
3028 		 * but must ensure this isn't added to a batch until
3029 		 * we have added to the bitmap and set bm_seq.
3030 		 * So set STRIPE_BITMAP_PENDING to prevent
3031 		 * batching.
3032 		 * If multiple add_stripe_bio() calls race here they
3033 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3034 		 * to complete "bitmap_startwrite" gets to set
3035 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3036 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3037 		 * any more.
3038 		 */
3039 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3040 		spin_unlock_irq(&sh->stripe_lock);
3041 		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3042 				  STRIPE_SECTORS, 0);
3043 		spin_lock_irq(&sh->stripe_lock);
3044 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3045 		if (!sh->batch_head) {
3046 			sh->bm_seq = conf->seq_flush+1;
3047 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3048 		}
3049 	}
3050 	spin_unlock_irq(&sh->stripe_lock);
3051 
3052 	if (stripe_can_batch(sh))
3053 		stripe_add_to_batch_list(conf, sh);
3054 	return 1;
3055 
3056  overlap:
3057 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3058 	spin_unlock_irq(&sh->stripe_lock);
3059 	return 0;
3060 }
3061 
3062 static void end_reshape(struct r5conf *conf);
3063 
3064 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3065 			    struct stripe_head *sh)
3066 {
3067 	int sectors_per_chunk =
3068 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3069 	int dd_idx;
3070 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3071 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3072 
3073 	raid5_compute_sector(conf,
3074 			     stripe * (disks - conf->max_degraded)
3075 			     *sectors_per_chunk + chunk_offset,
3076 			     previous,
3077 			     &dd_idx, sh);
3078 }
3079 
3080 static void
3081 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3082 				struct stripe_head_state *s, int disks,
3083 				struct bio_list *return_bi)
3084 {
3085 	int i;
3086 	BUG_ON(sh->batch_head);
3087 	for (i = disks; i--; ) {
3088 		struct bio *bi;
3089 		int bitmap_end = 0;
3090 
3091 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3092 			struct md_rdev *rdev;
3093 			rcu_read_lock();
3094 			rdev = rcu_dereference(conf->disks[i].rdev);
3095 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3096 			    !test_bit(Faulty, &rdev->flags))
3097 				atomic_inc(&rdev->nr_pending);
3098 			else
3099 				rdev = NULL;
3100 			rcu_read_unlock();
3101 			if (rdev) {
3102 				if (!rdev_set_badblocks(
3103 					    rdev,
3104 					    sh->sector,
3105 					    STRIPE_SECTORS, 0))
3106 					md_error(conf->mddev, rdev);
3107 				rdev_dec_pending(rdev, conf->mddev);
3108 			}
3109 		}
3110 		spin_lock_irq(&sh->stripe_lock);
3111 		/* fail all writes first */
3112 		bi = sh->dev[i].towrite;
3113 		sh->dev[i].towrite = NULL;
3114 		sh->overwrite_disks = 0;
3115 		spin_unlock_irq(&sh->stripe_lock);
3116 		if (bi)
3117 			bitmap_end = 1;
3118 
3119 		r5l_stripe_write_finished(sh);
3120 
3121 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3122 			wake_up(&conf->wait_for_overlap);
3123 
3124 		while (bi && bi->bi_iter.bi_sector <
3125 			sh->dev[i].sector + STRIPE_SECTORS) {
3126 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3127 
3128 			bi->bi_error = -EIO;
3129 			if (!raid5_dec_bi_active_stripes(bi)) {
3130 				md_write_end(conf->mddev);
3131 				bio_list_add(return_bi, bi);
3132 			}
3133 			bi = nextbi;
3134 		}
3135 		if (bitmap_end)
3136 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3137 				STRIPE_SECTORS, 0, 0);
3138 		bitmap_end = 0;
3139 		/* and fail all 'written' */
3140 		bi = sh->dev[i].written;
3141 		sh->dev[i].written = NULL;
3142 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3143 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3144 			sh->dev[i].page = sh->dev[i].orig_page;
3145 		}
3146 
3147 		if (bi) bitmap_end = 1;
3148 		while (bi && bi->bi_iter.bi_sector <
3149 		       sh->dev[i].sector + STRIPE_SECTORS) {
3150 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3151 
3152 			bi->bi_error = -EIO;
3153 			if (!raid5_dec_bi_active_stripes(bi)) {
3154 				md_write_end(conf->mddev);
3155 				bio_list_add(return_bi, bi);
3156 			}
3157 			bi = bi2;
3158 		}
3159 
3160 		/* fail any reads if this device is non-operational and
3161 		 * the data has not reached the cache yet.
3162 		 */
3163 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3164 		    s->failed > conf->max_degraded &&
3165 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3166 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3167 			spin_lock_irq(&sh->stripe_lock);
3168 			bi = sh->dev[i].toread;
3169 			sh->dev[i].toread = NULL;
3170 			spin_unlock_irq(&sh->stripe_lock);
3171 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3172 				wake_up(&conf->wait_for_overlap);
3173 			if (bi)
3174 				s->to_read--;
3175 			while (bi && bi->bi_iter.bi_sector <
3176 			       sh->dev[i].sector + STRIPE_SECTORS) {
3177 				struct bio *nextbi =
3178 					r5_next_bio(bi, sh->dev[i].sector);
3179 
3180 				bi->bi_error = -EIO;
3181 				if (!raid5_dec_bi_active_stripes(bi))
3182 					bio_list_add(return_bi, bi);
3183 				bi = nextbi;
3184 			}
3185 		}
3186 		if (bitmap_end)
3187 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3188 					STRIPE_SECTORS, 0, 0);
3189 		/* If we were in the middle of a write the parity block might
3190 		 * still be locked - so just clear all R5_LOCKED flags
3191 		 */
3192 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3193 	}
3194 	s->to_write = 0;
3195 	s->written = 0;
3196 
3197 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3198 		if (atomic_dec_and_test(&conf->pending_full_writes))
3199 			md_wakeup_thread(conf->mddev->thread);
3200 }
3201 
3202 static void
3203 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3204 		   struct stripe_head_state *s)
3205 {
3206 	int abort = 0;
3207 	int i;
3208 
3209 	BUG_ON(sh->batch_head);
3210 	clear_bit(STRIPE_SYNCING, &sh->state);
3211 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3212 		wake_up(&conf->wait_for_overlap);
3213 	s->syncing = 0;
3214 	s->replacing = 0;
3215 	/* There is nothing more to do for sync/check/repair.
3216 	 * Don't even need to abort as that is handled elsewhere
3217 	 * if needed, and not always wanted e.g. if there is a known
3218 	 * bad block here.
3219 	 * For recover/replace we need to record a bad block on all
3220 	 * non-sync devices, or abort the recovery
3221 	 */
3222 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3223 		/* During recovery devices cannot be removed, so
3224 		 * locking and refcounting of rdevs is not needed
3225 		 */
3226 		rcu_read_lock();
3227 		for (i = 0; i < conf->raid_disks; i++) {
3228 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3229 			if (rdev
3230 			    && !test_bit(Faulty, &rdev->flags)
3231 			    && !test_bit(In_sync, &rdev->flags)
3232 			    && !rdev_set_badblocks(rdev, sh->sector,
3233 						   STRIPE_SECTORS, 0))
3234 				abort = 1;
3235 			rdev = rcu_dereference(conf->disks[i].replacement);
3236 			if (rdev
3237 			    && !test_bit(Faulty, &rdev->flags)
3238 			    && !test_bit(In_sync, &rdev->flags)
3239 			    && !rdev_set_badblocks(rdev, sh->sector,
3240 						   STRIPE_SECTORS, 0))
3241 				abort = 1;
3242 		}
3243 		rcu_read_unlock();
3244 		if (abort)
3245 			conf->recovery_disabled =
3246 				conf->mddev->recovery_disabled;
3247 	}
3248 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3249 }
3250 
3251 static int want_replace(struct stripe_head *sh, int disk_idx)
3252 {
3253 	struct md_rdev *rdev;
3254 	int rv = 0;
3255 
3256 	rcu_read_lock();
3257 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3258 	if (rdev
3259 	    && !test_bit(Faulty, &rdev->flags)
3260 	    && !test_bit(In_sync, &rdev->flags)
3261 	    && (rdev->recovery_offset <= sh->sector
3262 		|| rdev->mddev->recovery_cp <= sh->sector))
3263 		rv = 1;
3264 	rcu_read_unlock();
3265 	return rv;
3266 }
3267 
3268 /* fetch_block - checks the given member device to see if its data needs
3269  * to be read or computed to satisfy a request.
3270  *
3271  * Returns 1 when no more member devices need to be checked, otherwise returns
3272  * 0 to tell the loop in handle_stripe_fill to continue
3273  */
3274 
3275 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3276 			   int disk_idx, int disks)
3277 {
3278 	struct r5dev *dev = &sh->dev[disk_idx];
3279 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3280 				  &sh->dev[s->failed_num[1]] };
3281 	int i;
3282 
3283 
3284 	if (test_bit(R5_LOCKED, &dev->flags) ||
3285 	    test_bit(R5_UPTODATE, &dev->flags))
3286 		/* No point reading this as we already have it or have
3287 		 * decided to get it.
3288 		 */
3289 		return 0;
3290 
3291 	if (dev->toread ||
3292 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3293 		/* We need this block to directly satisfy a request */
3294 		return 1;
3295 
3296 	if (s->syncing || s->expanding ||
3297 	    (s->replacing && want_replace(sh, disk_idx)))
3298 		/* When syncing, or expanding we read everything.
3299 		 * When replacing, we need the replaced block.
3300 		 */
3301 		return 1;
3302 
3303 	if ((s->failed >= 1 && fdev[0]->toread) ||
3304 	    (s->failed >= 2 && fdev[1]->toread))
3305 		/* If we want to read from a failed device, then
3306 		 * we need to actually read every other device.
3307 		 */
3308 		return 1;
3309 
3310 	/* Sometimes neither read-modify-write nor reconstruct-write
3311 	 * cycles can work.  In those cases we read every block we
3312 	 * can.  Then the parity-update is certain to have enough to
3313 	 * work with.
3314 	 * This can only be a problem when we need to write something,
3315 	 * and some device has failed.  If either of those tests
3316 	 * fail we need look no further.
3317 	 */
3318 	if (!s->failed || !s->to_write)
3319 		return 0;
3320 
3321 	if (test_bit(R5_Insync, &dev->flags) &&
3322 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3323 		/* Pre-reads at not permitted until after short delay
3324 		 * to gather multiple requests.  However if this
3325 		 * device is no Insync, the block could only be be computed
3326 		 * and there is no need to delay that.
3327 		 */
3328 		return 0;
3329 
3330 	for (i = 0; i < s->failed && i < 2; i++) {
3331 		if (fdev[i]->towrite &&
3332 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3333 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3334 			/* If we have a partial write to a failed
3335 			 * device, then we will need to reconstruct
3336 			 * the content of that device, so all other
3337 			 * devices must be read.
3338 			 */
3339 			return 1;
3340 	}
3341 
3342 	/* If we are forced to do a reconstruct-write, either because
3343 	 * the current RAID6 implementation only supports that, or
3344 	 * or because parity cannot be trusted and we are currently
3345 	 * recovering it, there is extra need to be careful.
3346 	 * If one of the devices that we would need to read, because
3347 	 * it is not being overwritten (and maybe not written at all)
3348 	 * is missing/faulty, then we need to read everything we can.
3349 	 */
3350 	if (sh->raid_conf->level != 6 &&
3351 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3352 		/* reconstruct-write isn't being forced */
3353 		return 0;
3354 	for (i = 0; i < s->failed && i < 2; i++) {
3355 		if (s->failed_num[i] != sh->pd_idx &&
3356 		    s->failed_num[i] != sh->qd_idx &&
3357 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3358 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3359 			return 1;
3360 	}
3361 
3362 	return 0;
3363 }
3364 
3365 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3366 		       int disk_idx, int disks)
3367 {
3368 	struct r5dev *dev = &sh->dev[disk_idx];
3369 
3370 	/* is the data in this block needed, and can we get it? */
3371 	if (need_this_block(sh, s, disk_idx, disks)) {
3372 		/* we would like to get this block, possibly by computing it,
3373 		 * otherwise read it if the backing disk is insync
3374 		 */
3375 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3376 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3377 		BUG_ON(sh->batch_head);
3378 		if ((s->uptodate == disks - 1) &&
3379 		    (s->failed && (disk_idx == s->failed_num[0] ||
3380 				   disk_idx == s->failed_num[1]))) {
3381 			/* have disk failed, and we're requested to fetch it;
3382 			 * do compute it
3383 			 */
3384 			pr_debug("Computing stripe %llu block %d\n",
3385 			       (unsigned long long)sh->sector, disk_idx);
3386 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3387 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3388 			set_bit(R5_Wantcompute, &dev->flags);
3389 			sh->ops.target = disk_idx;
3390 			sh->ops.target2 = -1; /* no 2nd target */
3391 			s->req_compute = 1;
3392 			/* Careful: from this point on 'uptodate' is in the eye
3393 			 * of raid_run_ops which services 'compute' operations
3394 			 * before writes. R5_Wantcompute flags a block that will
3395 			 * be R5_UPTODATE by the time it is needed for a
3396 			 * subsequent operation.
3397 			 */
3398 			s->uptodate++;
3399 			return 1;
3400 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3401 			/* Computing 2-failure is *very* expensive; only
3402 			 * do it if failed >= 2
3403 			 */
3404 			int other;
3405 			for (other = disks; other--; ) {
3406 				if (other == disk_idx)
3407 					continue;
3408 				if (!test_bit(R5_UPTODATE,
3409 				      &sh->dev[other].flags))
3410 					break;
3411 			}
3412 			BUG_ON(other < 0);
3413 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3414 			       (unsigned long long)sh->sector,
3415 			       disk_idx, other);
3416 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3417 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3418 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3419 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3420 			sh->ops.target = disk_idx;
3421 			sh->ops.target2 = other;
3422 			s->uptodate += 2;
3423 			s->req_compute = 1;
3424 			return 1;
3425 		} else if (test_bit(R5_Insync, &dev->flags)) {
3426 			set_bit(R5_LOCKED, &dev->flags);
3427 			set_bit(R5_Wantread, &dev->flags);
3428 			s->locked++;
3429 			pr_debug("Reading block %d (sync=%d)\n",
3430 				disk_idx, s->syncing);
3431 		}
3432 	}
3433 
3434 	return 0;
3435 }
3436 
3437 /**
3438  * handle_stripe_fill - read or compute data to satisfy pending requests.
3439  */
3440 static void handle_stripe_fill(struct stripe_head *sh,
3441 			       struct stripe_head_state *s,
3442 			       int disks)
3443 {
3444 	int i;
3445 
3446 	/* look for blocks to read/compute, skip this if a compute
3447 	 * is already in flight, or if the stripe contents are in the
3448 	 * midst of changing due to a write
3449 	 */
3450 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3451 	    !sh->reconstruct_state)
3452 		for (i = disks; i--; )
3453 			if (fetch_block(sh, s, i, disks))
3454 				break;
3455 	set_bit(STRIPE_HANDLE, &sh->state);
3456 }
3457 
3458 static void break_stripe_batch_list(struct stripe_head *head_sh,
3459 				    unsigned long handle_flags);
3460 /* handle_stripe_clean_event
3461  * any written block on an uptodate or failed drive can be returned.
3462  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3463  * never LOCKED, so we don't need to test 'failed' directly.
3464  */
3465 static void handle_stripe_clean_event(struct r5conf *conf,
3466 	struct stripe_head *sh, int disks, struct bio_list *return_bi)
3467 {
3468 	int i;
3469 	struct r5dev *dev;
3470 	int discard_pending = 0;
3471 	struct stripe_head *head_sh = sh;
3472 	bool do_endio = false;
3473 
3474 	for (i = disks; i--; )
3475 		if (sh->dev[i].written) {
3476 			dev = &sh->dev[i];
3477 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3478 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3479 			     test_bit(R5_Discard, &dev->flags) ||
3480 			     test_bit(R5_SkipCopy, &dev->flags))) {
3481 				/* We can return any write requests */
3482 				struct bio *wbi, *wbi2;
3483 				pr_debug("Return write for disc %d\n", i);
3484 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3485 					clear_bit(R5_UPTODATE, &dev->flags);
3486 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3487 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3488 				}
3489 				do_endio = true;
3490 
3491 returnbi:
3492 				dev->page = dev->orig_page;
3493 				wbi = dev->written;
3494 				dev->written = NULL;
3495 				while (wbi && wbi->bi_iter.bi_sector <
3496 					dev->sector + STRIPE_SECTORS) {
3497 					wbi2 = r5_next_bio(wbi, dev->sector);
3498 					if (!raid5_dec_bi_active_stripes(wbi)) {
3499 						md_write_end(conf->mddev);
3500 						bio_list_add(return_bi, wbi);
3501 					}
3502 					wbi = wbi2;
3503 				}
3504 				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3505 						STRIPE_SECTORS,
3506 					 !test_bit(STRIPE_DEGRADED, &sh->state),
3507 						0);
3508 				if (head_sh->batch_head) {
3509 					sh = list_first_entry(&sh->batch_list,
3510 							      struct stripe_head,
3511 							      batch_list);
3512 					if (sh != head_sh) {
3513 						dev = &sh->dev[i];
3514 						goto returnbi;
3515 					}
3516 				}
3517 				sh = head_sh;
3518 				dev = &sh->dev[i];
3519 			} else if (test_bit(R5_Discard, &dev->flags))
3520 				discard_pending = 1;
3521 		}
3522 
3523 	r5l_stripe_write_finished(sh);
3524 
3525 	if (!discard_pending &&
3526 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3527 		int hash;
3528 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3529 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3530 		if (sh->qd_idx >= 0) {
3531 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3532 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3533 		}
3534 		/* now that discard is done we can proceed with any sync */
3535 		clear_bit(STRIPE_DISCARD, &sh->state);
3536 		/*
3537 		 * SCSI discard will change some bio fields and the stripe has
3538 		 * no updated data, so remove it from hash list and the stripe
3539 		 * will be reinitialized
3540 		 */
3541 unhash:
3542 		hash = sh->hash_lock_index;
3543 		spin_lock_irq(conf->hash_locks + hash);
3544 		remove_hash(sh);
3545 		spin_unlock_irq(conf->hash_locks + hash);
3546 		if (head_sh->batch_head) {
3547 			sh = list_first_entry(&sh->batch_list,
3548 					      struct stripe_head, batch_list);
3549 			if (sh != head_sh)
3550 					goto unhash;
3551 		}
3552 		sh = head_sh;
3553 
3554 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3555 			set_bit(STRIPE_HANDLE, &sh->state);
3556 
3557 	}
3558 
3559 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3560 		if (atomic_dec_and_test(&conf->pending_full_writes))
3561 			md_wakeup_thread(conf->mddev->thread);
3562 
3563 	if (head_sh->batch_head && do_endio)
3564 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3565 }
3566 
3567 static void handle_stripe_dirtying(struct r5conf *conf,
3568 				   struct stripe_head *sh,
3569 				   struct stripe_head_state *s,
3570 				   int disks)
3571 {
3572 	int rmw = 0, rcw = 0, i;
3573 	sector_t recovery_cp = conf->mddev->recovery_cp;
3574 
3575 	/* Check whether resync is now happening or should start.
3576 	 * If yes, then the array is dirty (after unclean shutdown or
3577 	 * initial creation), so parity in some stripes might be inconsistent.
3578 	 * In this case, we need to always do reconstruct-write, to ensure
3579 	 * that in case of drive failure or read-error correction, we
3580 	 * generate correct data from the parity.
3581 	 */
3582 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3583 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3584 	     s->failed == 0)) {
3585 		/* Calculate the real rcw later - for now make it
3586 		 * look like rcw is cheaper
3587 		 */
3588 		rcw = 1; rmw = 2;
3589 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3590 			 conf->rmw_level, (unsigned long long)recovery_cp,
3591 			 (unsigned long long)sh->sector);
3592 	} else for (i = disks; i--; ) {
3593 		/* would I have to read this buffer for read_modify_write */
3594 		struct r5dev *dev = &sh->dev[i];
3595 		if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3596 		    !test_bit(R5_LOCKED, &dev->flags) &&
3597 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3598 		      test_bit(R5_Wantcompute, &dev->flags))) {
3599 			if (test_bit(R5_Insync, &dev->flags))
3600 				rmw++;
3601 			else
3602 				rmw += 2*disks;  /* cannot read it */
3603 		}
3604 		/* Would I have to read this buffer for reconstruct_write */
3605 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3606 		    i != sh->pd_idx && i != sh->qd_idx &&
3607 		    !test_bit(R5_LOCKED, &dev->flags) &&
3608 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3609 		    test_bit(R5_Wantcompute, &dev->flags))) {
3610 			if (test_bit(R5_Insync, &dev->flags))
3611 				rcw++;
3612 			else
3613 				rcw += 2*disks;
3614 		}
3615 	}
3616 	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3617 		(unsigned long long)sh->sector, rmw, rcw);
3618 	set_bit(STRIPE_HANDLE, &sh->state);
3619 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3620 		/* prefer read-modify-write, but need to get some data */
3621 		if (conf->mddev->queue)
3622 			blk_add_trace_msg(conf->mddev->queue,
3623 					  "raid5 rmw %llu %d",
3624 					  (unsigned long long)sh->sector, rmw);
3625 		for (i = disks; i--; ) {
3626 			struct r5dev *dev = &sh->dev[i];
3627 			if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3628 			    !test_bit(R5_LOCKED, &dev->flags) &&
3629 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3630 			    test_bit(R5_Wantcompute, &dev->flags)) &&
3631 			    test_bit(R5_Insync, &dev->flags)) {
3632 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3633 					     &sh->state)) {
3634 					pr_debug("Read_old block %d for r-m-w\n",
3635 						 i);
3636 					set_bit(R5_LOCKED, &dev->flags);
3637 					set_bit(R5_Wantread, &dev->flags);
3638 					s->locked++;
3639 				} else {
3640 					set_bit(STRIPE_DELAYED, &sh->state);
3641 					set_bit(STRIPE_HANDLE, &sh->state);
3642 				}
3643 			}
3644 		}
3645 	}
3646 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3647 		/* want reconstruct write, but need to get some data */
3648 		int qread =0;
3649 		rcw = 0;
3650 		for (i = disks; i--; ) {
3651 			struct r5dev *dev = &sh->dev[i];
3652 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3653 			    i != sh->pd_idx && i != sh->qd_idx &&
3654 			    !test_bit(R5_LOCKED, &dev->flags) &&
3655 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3656 			      test_bit(R5_Wantcompute, &dev->flags))) {
3657 				rcw++;
3658 				if (test_bit(R5_Insync, &dev->flags) &&
3659 				    test_bit(STRIPE_PREREAD_ACTIVE,
3660 					     &sh->state)) {
3661 					pr_debug("Read_old block "
3662 						"%d for Reconstruct\n", i);
3663 					set_bit(R5_LOCKED, &dev->flags);
3664 					set_bit(R5_Wantread, &dev->flags);
3665 					s->locked++;
3666 					qread++;
3667 				} else {
3668 					set_bit(STRIPE_DELAYED, &sh->state);
3669 					set_bit(STRIPE_HANDLE, &sh->state);
3670 				}
3671 			}
3672 		}
3673 		if (rcw && conf->mddev->queue)
3674 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3675 					  (unsigned long long)sh->sector,
3676 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3677 	}
3678 
3679 	if (rcw > disks && rmw > disks &&
3680 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3681 		set_bit(STRIPE_DELAYED, &sh->state);
3682 
3683 	/* now if nothing is locked, and if we have enough data,
3684 	 * we can start a write request
3685 	 */
3686 	/* since handle_stripe can be called at any time we need to handle the
3687 	 * case where a compute block operation has been submitted and then a
3688 	 * subsequent call wants to start a write request.  raid_run_ops only
3689 	 * handles the case where compute block and reconstruct are requested
3690 	 * simultaneously.  If this is not the case then new writes need to be
3691 	 * held off until the compute completes.
3692 	 */
3693 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3694 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3695 	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3696 		schedule_reconstruction(sh, s, rcw == 0, 0);
3697 }
3698 
3699 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3700 				struct stripe_head_state *s, int disks)
3701 {
3702 	struct r5dev *dev = NULL;
3703 
3704 	BUG_ON(sh->batch_head);
3705 	set_bit(STRIPE_HANDLE, &sh->state);
3706 
3707 	switch (sh->check_state) {
3708 	case check_state_idle:
3709 		/* start a new check operation if there are no failures */
3710 		if (s->failed == 0) {
3711 			BUG_ON(s->uptodate != disks);
3712 			sh->check_state = check_state_run;
3713 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3714 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3715 			s->uptodate--;
3716 			break;
3717 		}
3718 		dev = &sh->dev[s->failed_num[0]];
3719 		/* fall through */
3720 	case check_state_compute_result:
3721 		sh->check_state = check_state_idle;
3722 		if (!dev)
3723 			dev = &sh->dev[sh->pd_idx];
3724 
3725 		/* check that a write has not made the stripe insync */
3726 		if (test_bit(STRIPE_INSYNC, &sh->state))
3727 			break;
3728 
3729 		/* either failed parity check, or recovery is happening */
3730 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3731 		BUG_ON(s->uptodate != disks);
3732 
3733 		set_bit(R5_LOCKED, &dev->flags);
3734 		s->locked++;
3735 		set_bit(R5_Wantwrite, &dev->flags);
3736 
3737 		clear_bit(STRIPE_DEGRADED, &sh->state);
3738 		set_bit(STRIPE_INSYNC, &sh->state);
3739 		break;
3740 	case check_state_run:
3741 		break; /* we will be called again upon completion */
3742 	case check_state_check_result:
3743 		sh->check_state = check_state_idle;
3744 
3745 		/* if a failure occurred during the check operation, leave
3746 		 * STRIPE_INSYNC not set and let the stripe be handled again
3747 		 */
3748 		if (s->failed)
3749 			break;
3750 
3751 		/* handle a successful check operation, if parity is correct
3752 		 * we are done.  Otherwise update the mismatch count and repair
3753 		 * parity if !MD_RECOVERY_CHECK
3754 		 */
3755 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3756 			/* parity is correct (on disc,
3757 			 * not in buffer any more)
3758 			 */
3759 			set_bit(STRIPE_INSYNC, &sh->state);
3760 		else {
3761 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3762 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3763 				/* don't try to repair!! */
3764 				set_bit(STRIPE_INSYNC, &sh->state);
3765 			else {
3766 				sh->check_state = check_state_compute_run;
3767 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3768 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3769 				set_bit(R5_Wantcompute,
3770 					&sh->dev[sh->pd_idx].flags);
3771 				sh->ops.target = sh->pd_idx;
3772 				sh->ops.target2 = -1;
3773 				s->uptodate++;
3774 			}
3775 		}
3776 		break;
3777 	case check_state_compute_run:
3778 		break;
3779 	default:
3780 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3781 		       __func__, sh->check_state,
3782 		       (unsigned long long) sh->sector);
3783 		BUG();
3784 	}
3785 }
3786 
3787 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3788 				  struct stripe_head_state *s,
3789 				  int disks)
3790 {
3791 	int pd_idx = sh->pd_idx;
3792 	int qd_idx = sh->qd_idx;
3793 	struct r5dev *dev;
3794 
3795 	BUG_ON(sh->batch_head);
3796 	set_bit(STRIPE_HANDLE, &sh->state);
3797 
3798 	BUG_ON(s->failed > 2);
3799 
3800 	/* Want to check and possibly repair P and Q.
3801 	 * However there could be one 'failed' device, in which
3802 	 * case we can only check one of them, possibly using the
3803 	 * other to generate missing data
3804 	 */
3805 
3806 	switch (sh->check_state) {
3807 	case check_state_idle:
3808 		/* start a new check operation if there are < 2 failures */
3809 		if (s->failed == s->q_failed) {
3810 			/* The only possible failed device holds Q, so it
3811 			 * makes sense to check P (If anything else were failed,
3812 			 * we would have used P to recreate it).
3813 			 */
3814 			sh->check_state = check_state_run;
3815 		}
3816 		if (!s->q_failed && s->failed < 2) {
3817 			/* Q is not failed, and we didn't use it to generate
3818 			 * anything, so it makes sense to check it
3819 			 */
3820 			if (sh->check_state == check_state_run)
3821 				sh->check_state = check_state_run_pq;
3822 			else
3823 				sh->check_state = check_state_run_q;
3824 		}
3825 
3826 		/* discard potentially stale zero_sum_result */
3827 		sh->ops.zero_sum_result = 0;
3828 
3829 		if (sh->check_state == check_state_run) {
3830 			/* async_xor_zero_sum destroys the contents of P */
3831 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3832 			s->uptodate--;
3833 		}
3834 		if (sh->check_state >= check_state_run &&
3835 		    sh->check_state <= check_state_run_pq) {
3836 			/* async_syndrome_zero_sum preserves P and Q, so
3837 			 * no need to mark them !uptodate here
3838 			 */
3839 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
3840 			break;
3841 		}
3842 
3843 		/* we have 2-disk failure */
3844 		BUG_ON(s->failed != 2);
3845 		/* fall through */
3846 	case check_state_compute_result:
3847 		sh->check_state = check_state_idle;
3848 
3849 		/* check that a write has not made the stripe insync */
3850 		if (test_bit(STRIPE_INSYNC, &sh->state))
3851 			break;
3852 
3853 		/* now write out any block on a failed drive,
3854 		 * or P or Q if they were recomputed
3855 		 */
3856 		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3857 		if (s->failed == 2) {
3858 			dev = &sh->dev[s->failed_num[1]];
3859 			s->locked++;
3860 			set_bit(R5_LOCKED, &dev->flags);
3861 			set_bit(R5_Wantwrite, &dev->flags);
3862 		}
3863 		if (s->failed >= 1) {
3864 			dev = &sh->dev[s->failed_num[0]];
3865 			s->locked++;
3866 			set_bit(R5_LOCKED, &dev->flags);
3867 			set_bit(R5_Wantwrite, &dev->flags);
3868 		}
3869 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3870 			dev = &sh->dev[pd_idx];
3871 			s->locked++;
3872 			set_bit(R5_LOCKED, &dev->flags);
3873 			set_bit(R5_Wantwrite, &dev->flags);
3874 		}
3875 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3876 			dev = &sh->dev[qd_idx];
3877 			s->locked++;
3878 			set_bit(R5_LOCKED, &dev->flags);
3879 			set_bit(R5_Wantwrite, &dev->flags);
3880 		}
3881 		clear_bit(STRIPE_DEGRADED, &sh->state);
3882 
3883 		set_bit(STRIPE_INSYNC, &sh->state);
3884 		break;
3885 	case check_state_run:
3886 	case check_state_run_q:
3887 	case check_state_run_pq:
3888 		break; /* we will be called again upon completion */
3889 	case check_state_check_result:
3890 		sh->check_state = check_state_idle;
3891 
3892 		/* handle a successful check operation, if parity is correct
3893 		 * we are done.  Otherwise update the mismatch count and repair
3894 		 * parity if !MD_RECOVERY_CHECK
3895 		 */
3896 		if (sh->ops.zero_sum_result == 0) {
3897 			/* both parities are correct */
3898 			if (!s->failed)
3899 				set_bit(STRIPE_INSYNC, &sh->state);
3900 			else {
3901 				/* in contrast to the raid5 case we can validate
3902 				 * parity, but still have a failure to write
3903 				 * back
3904 				 */
3905 				sh->check_state = check_state_compute_result;
3906 				/* Returning at this point means that we may go
3907 				 * off and bring p and/or q uptodate again so
3908 				 * we make sure to check zero_sum_result again
3909 				 * to verify if p or q need writeback
3910 				 */
3911 			}
3912 		} else {
3913 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3914 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3915 				/* don't try to repair!! */
3916 				set_bit(STRIPE_INSYNC, &sh->state);
3917 			else {
3918 				int *target = &sh->ops.target;
3919 
3920 				sh->ops.target = -1;
3921 				sh->ops.target2 = -1;
3922 				sh->check_state = check_state_compute_run;
3923 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3924 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3925 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3926 					set_bit(R5_Wantcompute,
3927 						&sh->dev[pd_idx].flags);
3928 					*target = pd_idx;
3929 					target = &sh->ops.target2;
3930 					s->uptodate++;
3931 				}
3932 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3933 					set_bit(R5_Wantcompute,
3934 						&sh->dev[qd_idx].flags);
3935 					*target = qd_idx;
3936 					s->uptodate++;
3937 				}
3938 			}
3939 		}
3940 		break;
3941 	case check_state_compute_run:
3942 		break;
3943 	default:
3944 		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3945 		       __func__, sh->check_state,
3946 		       (unsigned long long) sh->sector);
3947 		BUG();
3948 	}
3949 }
3950 
3951 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3952 {
3953 	int i;
3954 
3955 	/* We have read all the blocks in this stripe and now we need to
3956 	 * copy some of them into a target stripe for expand.
3957 	 */
3958 	struct dma_async_tx_descriptor *tx = NULL;
3959 	BUG_ON(sh->batch_head);
3960 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3961 	for (i = 0; i < sh->disks; i++)
3962 		if (i != sh->pd_idx && i != sh->qd_idx) {
3963 			int dd_idx, j;
3964 			struct stripe_head *sh2;
3965 			struct async_submit_ctl submit;
3966 
3967 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
3968 			sector_t s = raid5_compute_sector(conf, bn, 0,
3969 							  &dd_idx, NULL);
3970 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3971 			if (sh2 == NULL)
3972 				/* so far only the early blocks of this stripe
3973 				 * have been requested.  When later blocks
3974 				 * get requested, we will try again
3975 				 */
3976 				continue;
3977 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3978 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3979 				/* must have already done this block */
3980 				raid5_release_stripe(sh2);
3981 				continue;
3982 			}
3983 
3984 			/* place all the copies on one channel */
3985 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3986 			tx = async_memcpy(sh2->dev[dd_idx].page,
3987 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
3988 					  &submit);
3989 
3990 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3991 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3992 			for (j = 0; j < conf->raid_disks; j++)
3993 				if (j != sh2->pd_idx &&
3994 				    j != sh2->qd_idx &&
3995 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
3996 					break;
3997 			if (j == conf->raid_disks) {
3998 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
3999 				set_bit(STRIPE_HANDLE, &sh2->state);
4000 			}
4001 			raid5_release_stripe(sh2);
4002 
4003 		}
4004 	/* done submitting copies, wait for them to complete */
4005 	async_tx_quiesce(&tx);
4006 }
4007 
4008 /*
4009  * handle_stripe - do things to a stripe.
4010  *
4011  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4012  * state of various bits to see what needs to be done.
4013  * Possible results:
4014  *    return some read requests which now have data
4015  *    return some write requests which are safely on storage
4016  *    schedule a read on some buffers
4017  *    schedule a write of some buffers
4018  *    return confirmation of parity correctness
4019  *
4020  */
4021 
4022 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4023 {
4024 	struct r5conf *conf = sh->raid_conf;
4025 	int disks = sh->disks;
4026 	struct r5dev *dev;
4027 	int i;
4028 	int do_recovery = 0;
4029 
4030 	memset(s, 0, sizeof(*s));
4031 
4032 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4033 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4034 	s->failed_num[0] = -1;
4035 	s->failed_num[1] = -1;
4036 	s->log_failed = r5l_log_disk_error(conf);
4037 
4038 	/* Now to look around and see what can be done */
4039 	rcu_read_lock();
4040 	for (i=disks; i--; ) {
4041 		struct md_rdev *rdev;
4042 		sector_t first_bad;
4043 		int bad_sectors;
4044 		int is_bad = 0;
4045 
4046 		dev = &sh->dev[i];
4047 
4048 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4049 			 i, dev->flags,
4050 			 dev->toread, dev->towrite, dev->written);
4051 		/* maybe we can reply to a read
4052 		 *
4053 		 * new wantfill requests are only permitted while
4054 		 * ops_complete_biofill is guaranteed to be inactive
4055 		 */
4056 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4057 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4058 			set_bit(R5_Wantfill, &dev->flags);
4059 
4060 		/* now count some things */
4061 		if (test_bit(R5_LOCKED, &dev->flags))
4062 			s->locked++;
4063 		if (test_bit(R5_UPTODATE, &dev->flags))
4064 			s->uptodate++;
4065 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4066 			s->compute++;
4067 			BUG_ON(s->compute > 2);
4068 		}
4069 
4070 		if (test_bit(R5_Wantfill, &dev->flags))
4071 			s->to_fill++;
4072 		else if (dev->toread)
4073 			s->to_read++;
4074 		if (dev->towrite) {
4075 			s->to_write++;
4076 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4077 				s->non_overwrite++;
4078 		}
4079 		if (dev->written)
4080 			s->written++;
4081 		/* Prefer to use the replacement for reads, but only
4082 		 * if it is recovered enough and has no bad blocks.
4083 		 */
4084 		rdev = rcu_dereference(conf->disks[i].replacement);
4085 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4086 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4087 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4088 				 &first_bad, &bad_sectors))
4089 			set_bit(R5_ReadRepl, &dev->flags);
4090 		else {
4091 			if (rdev && !test_bit(Faulty, &rdev->flags))
4092 				set_bit(R5_NeedReplace, &dev->flags);
4093 			else
4094 				clear_bit(R5_NeedReplace, &dev->flags);
4095 			rdev = rcu_dereference(conf->disks[i].rdev);
4096 			clear_bit(R5_ReadRepl, &dev->flags);
4097 		}
4098 		if (rdev && test_bit(Faulty, &rdev->flags))
4099 			rdev = NULL;
4100 		if (rdev) {
4101 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4102 					     &first_bad, &bad_sectors);
4103 			if (s->blocked_rdev == NULL
4104 			    && (test_bit(Blocked, &rdev->flags)
4105 				|| is_bad < 0)) {
4106 				if (is_bad < 0)
4107 					set_bit(BlockedBadBlocks,
4108 						&rdev->flags);
4109 				s->blocked_rdev = rdev;
4110 				atomic_inc(&rdev->nr_pending);
4111 			}
4112 		}
4113 		clear_bit(R5_Insync, &dev->flags);
4114 		if (!rdev)
4115 			/* Not in-sync */;
4116 		else if (is_bad) {
4117 			/* also not in-sync */
4118 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4119 			    test_bit(R5_UPTODATE, &dev->flags)) {
4120 				/* treat as in-sync, but with a read error
4121 				 * which we can now try to correct
4122 				 */
4123 				set_bit(R5_Insync, &dev->flags);
4124 				set_bit(R5_ReadError, &dev->flags);
4125 			}
4126 		} else if (test_bit(In_sync, &rdev->flags))
4127 			set_bit(R5_Insync, &dev->flags);
4128 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4129 			/* in sync if before recovery_offset */
4130 			set_bit(R5_Insync, &dev->flags);
4131 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4132 			 test_bit(R5_Expanded, &dev->flags))
4133 			/* If we've reshaped into here, we assume it is Insync.
4134 			 * We will shortly update recovery_offset to make
4135 			 * it official.
4136 			 */
4137 			set_bit(R5_Insync, &dev->flags);
4138 
4139 		if (test_bit(R5_WriteError, &dev->flags)) {
4140 			/* This flag does not apply to '.replacement'
4141 			 * only to .rdev, so make sure to check that*/
4142 			struct md_rdev *rdev2 = rcu_dereference(
4143 				conf->disks[i].rdev);
4144 			if (rdev2 == rdev)
4145 				clear_bit(R5_Insync, &dev->flags);
4146 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4147 				s->handle_bad_blocks = 1;
4148 				atomic_inc(&rdev2->nr_pending);
4149 			} else
4150 				clear_bit(R5_WriteError, &dev->flags);
4151 		}
4152 		if (test_bit(R5_MadeGood, &dev->flags)) {
4153 			/* This flag does not apply to '.replacement'
4154 			 * only to .rdev, so make sure to check that*/
4155 			struct md_rdev *rdev2 = rcu_dereference(
4156 				conf->disks[i].rdev);
4157 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4158 				s->handle_bad_blocks = 1;
4159 				atomic_inc(&rdev2->nr_pending);
4160 			} else
4161 				clear_bit(R5_MadeGood, &dev->flags);
4162 		}
4163 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4164 			struct md_rdev *rdev2 = rcu_dereference(
4165 				conf->disks[i].replacement);
4166 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4167 				s->handle_bad_blocks = 1;
4168 				atomic_inc(&rdev2->nr_pending);
4169 			} else
4170 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4171 		}
4172 		if (!test_bit(R5_Insync, &dev->flags)) {
4173 			/* The ReadError flag will just be confusing now */
4174 			clear_bit(R5_ReadError, &dev->flags);
4175 			clear_bit(R5_ReWrite, &dev->flags);
4176 		}
4177 		if (test_bit(R5_ReadError, &dev->flags))
4178 			clear_bit(R5_Insync, &dev->flags);
4179 		if (!test_bit(R5_Insync, &dev->flags)) {
4180 			if (s->failed < 2)
4181 				s->failed_num[s->failed] = i;
4182 			s->failed++;
4183 			if (rdev && !test_bit(Faulty, &rdev->flags))
4184 				do_recovery = 1;
4185 		}
4186 	}
4187 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4188 		/* If there is a failed device being replaced,
4189 		 *     we must be recovering.
4190 		 * else if we are after recovery_cp, we must be syncing
4191 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4192 		 * else we can only be replacing
4193 		 * sync and recovery both need to read all devices, and so
4194 		 * use the same flag.
4195 		 */
4196 		if (do_recovery ||
4197 		    sh->sector >= conf->mddev->recovery_cp ||
4198 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4199 			s->syncing = 1;
4200 		else
4201 			s->replacing = 1;
4202 	}
4203 	rcu_read_unlock();
4204 }
4205 
4206 static int clear_batch_ready(struct stripe_head *sh)
4207 {
4208 	/* Return '1' if this is a member of batch, or
4209 	 * '0' if it is a lone stripe or a head which can now be
4210 	 * handled.
4211 	 */
4212 	struct stripe_head *tmp;
4213 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4214 		return (sh->batch_head && sh->batch_head != sh);
4215 	spin_lock(&sh->stripe_lock);
4216 	if (!sh->batch_head) {
4217 		spin_unlock(&sh->stripe_lock);
4218 		return 0;
4219 	}
4220 
4221 	/*
4222 	 * this stripe could be added to a batch list before we check
4223 	 * BATCH_READY, skips it
4224 	 */
4225 	if (sh->batch_head != sh) {
4226 		spin_unlock(&sh->stripe_lock);
4227 		return 1;
4228 	}
4229 	spin_lock(&sh->batch_lock);
4230 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4231 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4232 	spin_unlock(&sh->batch_lock);
4233 	spin_unlock(&sh->stripe_lock);
4234 
4235 	/*
4236 	 * BATCH_READY is cleared, no new stripes can be added.
4237 	 * batch_list can be accessed without lock
4238 	 */
4239 	return 0;
4240 }
4241 
4242 static void break_stripe_batch_list(struct stripe_head *head_sh,
4243 				    unsigned long handle_flags)
4244 {
4245 	struct stripe_head *sh, *next;
4246 	int i;
4247 	int do_wakeup = 0;
4248 
4249 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4250 
4251 		list_del_init(&sh->batch_list);
4252 
4253 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4254 					  (1 << STRIPE_SYNCING) |
4255 					  (1 << STRIPE_REPLACED) |
4256 					  (1 << STRIPE_DELAYED) |
4257 					  (1 << STRIPE_BIT_DELAY) |
4258 					  (1 << STRIPE_FULL_WRITE) |
4259 					  (1 << STRIPE_BIOFILL_RUN) |
4260 					  (1 << STRIPE_COMPUTE_RUN)  |
4261 					  (1 << STRIPE_OPS_REQ_PENDING) |
4262 					  (1 << STRIPE_DISCARD) |
4263 					  (1 << STRIPE_BATCH_READY) |
4264 					  (1 << STRIPE_BATCH_ERR) |
4265 					  (1 << STRIPE_BITMAP_PENDING)),
4266 			"stripe state: %lx\n", sh->state);
4267 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4268 					      (1 << STRIPE_REPLACED)),
4269 			"head stripe state: %lx\n", head_sh->state);
4270 
4271 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4272 					    (1 << STRIPE_PREREAD_ACTIVE) |
4273 					    (1 << STRIPE_DEGRADED)),
4274 			      head_sh->state & (1 << STRIPE_INSYNC));
4275 
4276 		sh->check_state = head_sh->check_state;
4277 		sh->reconstruct_state = head_sh->reconstruct_state;
4278 		for (i = 0; i < sh->disks; i++) {
4279 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4280 				do_wakeup = 1;
4281 			sh->dev[i].flags = head_sh->dev[i].flags &
4282 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4283 		}
4284 		spin_lock_irq(&sh->stripe_lock);
4285 		sh->batch_head = NULL;
4286 		spin_unlock_irq(&sh->stripe_lock);
4287 		if (handle_flags == 0 ||
4288 		    sh->state & handle_flags)
4289 			set_bit(STRIPE_HANDLE, &sh->state);
4290 		raid5_release_stripe(sh);
4291 	}
4292 	spin_lock_irq(&head_sh->stripe_lock);
4293 	head_sh->batch_head = NULL;
4294 	spin_unlock_irq(&head_sh->stripe_lock);
4295 	for (i = 0; i < head_sh->disks; i++)
4296 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4297 			do_wakeup = 1;
4298 	if (head_sh->state & handle_flags)
4299 		set_bit(STRIPE_HANDLE, &head_sh->state);
4300 
4301 	if (do_wakeup)
4302 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4303 }
4304 
4305 static void handle_stripe(struct stripe_head *sh)
4306 {
4307 	struct stripe_head_state s;
4308 	struct r5conf *conf = sh->raid_conf;
4309 	int i;
4310 	int prexor;
4311 	int disks = sh->disks;
4312 	struct r5dev *pdev, *qdev;
4313 
4314 	clear_bit(STRIPE_HANDLE, &sh->state);
4315 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4316 		/* already being handled, ensure it gets handled
4317 		 * again when current action finishes */
4318 		set_bit(STRIPE_HANDLE, &sh->state);
4319 		return;
4320 	}
4321 
4322 	if (clear_batch_ready(sh) ) {
4323 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4324 		return;
4325 	}
4326 
4327 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4328 		break_stripe_batch_list(sh, 0);
4329 
4330 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4331 		spin_lock(&sh->stripe_lock);
4332 		/* Cannot process 'sync' concurrently with 'discard' */
4333 		if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4334 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4335 			set_bit(STRIPE_SYNCING, &sh->state);
4336 			clear_bit(STRIPE_INSYNC, &sh->state);
4337 			clear_bit(STRIPE_REPLACED, &sh->state);
4338 		}
4339 		spin_unlock(&sh->stripe_lock);
4340 	}
4341 	clear_bit(STRIPE_DELAYED, &sh->state);
4342 
4343 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4344 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4345 	       (unsigned long long)sh->sector, sh->state,
4346 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4347 	       sh->check_state, sh->reconstruct_state);
4348 
4349 	analyse_stripe(sh, &s);
4350 
4351 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4352 		goto finish;
4353 
4354 	if (s.handle_bad_blocks) {
4355 		set_bit(STRIPE_HANDLE, &sh->state);
4356 		goto finish;
4357 	}
4358 
4359 	if (unlikely(s.blocked_rdev)) {
4360 		if (s.syncing || s.expanding || s.expanded ||
4361 		    s.replacing || s.to_write || s.written) {
4362 			set_bit(STRIPE_HANDLE, &sh->state);
4363 			goto finish;
4364 		}
4365 		/* There is nothing for the blocked_rdev to block */
4366 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4367 		s.blocked_rdev = NULL;
4368 	}
4369 
4370 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4371 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4372 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4373 	}
4374 
4375 	pr_debug("locked=%d uptodate=%d to_read=%d"
4376 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4377 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4378 	       s.failed_num[0], s.failed_num[1]);
4379 	/* check if the array has lost more than max_degraded devices and,
4380 	 * if so, some requests might need to be failed.
4381 	 */
4382 	if (s.failed > conf->max_degraded || s.log_failed) {
4383 		sh->check_state = 0;
4384 		sh->reconstruct_state = 0;
4385 		break_stripe_batch_list(sh, 0);
4386 		if (s.to_read+s.to_write+s.written)
4387 			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4388 		if (s.syncing + s.replacing)
4389 			handle_failed_sync(conf, sh, &s);
4390 	}
4391 
4392 	/* Now we check to see if any write operations have recently
4393 	 * completed
4394 	 */
4395 	prexor = 0;
4396 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4397 		prexor = 1;
4398 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4399 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4400 		sh->reconstruct_state = reconstruct_state_idle;
4401 
4402 		/* All the 'written' buffers and the parity block are ready to
4403 		 * be written back to disk
4404 		 */
4405 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4406 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4407 		BUG_ON(sh->qd_idx >= 0 &&
4408 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4409 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4410 		for (i = disks; i--; ) {
4411 			struct r5dev *dev = &sh->dev[i];
4412 			if (test_bit(R5_LOCKED, &dev->flags) &&
4413 				(i == sh->pd_idx || i == sh->qd_idx ||
4414 				 dev->written)) {
4415 				pr_debug("Writing block %d\n", i);
4416 				set_bit(R5_Wantwrite, &dev->flags);
4417 				if (prexor)
4418 					continue;
4419 				if (s.failed > 1)
4420 					continue;
4421 				if (!test_bit(R5_Insync, &dev->flags) ||
4422 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4423 				     s.failed == 0))
4424 					set_bit(STRIPE_INSYNC, &sh->state);
4425 			}
4426 		}
4427 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4428 			s.dec_preread_active = 1;
4429 	}
4430 
4431 	/*
4432 	 * might be able to return some write requests if the parity blocks
4433 	 * are safe, or on a failed drive
4434 	 */
4435 	pdev = &sh->dev[sh->pd_idx];
4436 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4437 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4438 	qdev = &sh->dev[sh->qd_idx];
4439 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4440 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4441 		|| conf->level < 6;
4442 
4443 	if (s.written &&
4444 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4445 			     && !test_bit(R5_LOCKED, &pdev->flags)
4446 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4447 				 test_bit(R5_Discard, &pdev->flags))))) &&
4448 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4449 			     && !test_bit(R5_LOCKED, &qdev->flags)
4450 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4451 				 test_bit(R5_Discard, &qdev->flags))))))
4452 		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4453 
4454 	/* Now we might consider reading some blocks, either to check/generate
4455 	 * parity, or to satisfy requests
4456 	 * or to load a block that is being partially written.
4457 	 */
4458 	if (s.to_read || s.non_overwrite
4459 	    || (conf->level == 6 && s.to_write && s.failed)
4460 	    || (s.syncing && (s.uptodate + s.compute < disks))
4461 	    || s.replacing
4462 	    || s.expanding)
4463 		handle_stripe_fill(sh, &s, disks);
4464 
4465 	/* Now to consider new write requests and what else, if anything
4466 	 * should be read.  We do not handle new writes when:
4467 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4468 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4469 	 *    block.
4470 	 */
4471 	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4472 		handle_stripe_dirtying(conf, sh, &s, disks);
4473 
4474 	/* maybe we need to check and possibly fix the parity for this stripe
4475 	 * Any reads will already have been scheduled, so we just see if enough
4476 	 * data is available.  The parity check is held off while parity
4477 	 * dependent operations are in flight.
4478 	 */
4479 	if (sh->check_state ||
4480 	    (s.syncing && s.locked == 0 &&
4481 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4482 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4483 		if (conf->level == 6)
4484 			handle_parity_checks6(conf, sh, &s, disks);
4485 		else
4486 			handle_parity_checks5(conf, sh, &s, disks);
4487 	}
4488 
4489 	if ((s.replacing || s.syncing) && s.locked == 0
4490 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4491 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4492 		/* Write out to replacement devices where possible */
4493 		for (i = 0; i < conf->raid_disks; i++)
4494 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4495 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4496 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4497 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4498 				s.locked++;
4499 			}
4500 		if (s.replacing)
4501 			set_bit(STRIPE_INSYNC, &sh->state);
4502 		set_bit(STRIPE_REPLACED, &sh->state);
4503 	}
4504 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4505 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4506 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4507 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4508 		clear_bit(STRIPE_SYNCING, &sh->state);
4509 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4510 			wake_up(&conf->wait_for_overlap);
4511 	}
4512 
4513 	/* If the failed drives are just a ReadError, then we might need
4514 	 * to progress the repair/check process
4515 	 */
4516 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4517 		for (i = 0; i < s.failed; i++) {
4518 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4519 			if (test_bit(R5_ReadError, &dev->flags)
4520 			    && !test_bit(R5_LOCKED, &dev->flags)
4521 			    && test_bit(R5_UPTODATE, &dev->flags)
4522 				) {
4523 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4524 					set_bit(R5_Wantwrite, &dev->flags);
4525 					set_bit(R5_ReWrite, &dev->flags);
4526 					set_bit(R5_LOCKED, &dev->flags);
4527 					s.locked++;
4528 				} else {
4529 					/* let's read it back */
4530 					set_bit(R5_Wantread, &dev->flags);
4531 					set_bit(R5_LOCKED, &dev->flags);
4532 					s.locked++;
4533 				}
4534 			}
4535 		}
4536 
4537 	/* Finish reconstruct operations initiated by the expansion process */
4538 	if (sh->reconstruct_state == reconstruct_state_result) {
4539 		struct stripe_head *sh_src
4540 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4541 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4542 			/* sh cannot be written until sh_src has been read.
4543 			 * so arrange for sh to be delayed a little
4544 			 */
4545 			set_bit(STRIPE_DELAYED, &sh->state);
4546 			set_bit(STRIPE_HANDLE, &sh->state);
4547 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4548 					      &sh_src->state))
4549 				atomic_inc(&conf->preread_active_stripes);
4550 			raid5_release_stripe(sh_src);
4551 			goto finish;
4552 		}
4553 		if (sh_src)
4554 			raid5_release_stripe(sh_src);
4555 
4556 		sh->reconstruct_state = reconstruct_state_idle;
4557 		clear_bit(STRIPE_EXPANDING, &sh->state);
4558 		for (i = conf->raid_disks; i--; ) {
4559 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4560 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4561 			s.locked++;
4562 		}
4563 	}
4564 
4565 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4566 	    !sh->reconstruct_state) {
4567 		/* Need to write out all blocks after computing parity */
4568 		sh->disks = conf->raid_disks;
4569 		stripe_set_idx(sh->sector, conf, 0, sh);
4570 		schedule_reconstruction(sh, &s, 1, 1);
4571 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4572 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4573 		atomic_dec(&conf->reshape_stripes);
4574 		wake_up(&conf->wait_for_overlap);
4575 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4576 	}
4577 
4578 	if (s.expanding && s.locked == 0 &&
4579 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4580 		handle_stripe_expansion(conf, sh);
4581 
4582 finish:
4583 	/* wait for this device to become unblocked */
4584 	if (unlikely(s.blocked_rdev)) {
4585 		if (conf->mddev->external)
4586 			md_wait_for_blocked_rdev(s.blocked_rdev,
4587 						 conf->mddev);
4588 		else
4589 			/* Internal metadata will immediately
4590 			 * be written by raid5d, so we don't
4591 			 * need to wait here.
4592 			 */
4593 			rdev_dec_pending(s.blocked_rdev,
4594 					 conf->mddev);
4595 	}
4596 
4597 	if (s.handle_bad_blocks)
4598 		for (i = disks; i--; ) {
4599 			struct md_rdev *rdev;
4600 			struct r5dev *dev = &sh->dev[i];
4601 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4602 				/* We own a safe reference to the rdev */
4603 				rdev = conf->disks[i].rdev;
4604 				if (!rdev_set_badblocks(rdev, sh->sector,
4605 							STRIPE_SECTORS, 0))
4606 					md_error(conf->mddev, rdev);
4607 				rdev_dec_pending(rdev, conf->mddev);
4608 			}
4609 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4610 				rdev = conf->disks[i].rdev;
4611 				rdev_clear_badblocks(rdev, sh->sector,
4612 						     STRIPE_SECTORS, 0);
4613 				rdev_dec_pending(rdev, conf->mddev);
4614 			}
4615 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4616 				rdev = conf->disks[i].replacement;
4617 				if (!rdev)
4618 					/* rdev have been moved down */
4619 					rdev = conf->disks[i].rdev;
4620 				rdev_clear_badblocks(rdev, sh->sector,
4621 						     STRIPE_SECTORS, 0);
4622 				rdev_dec_pending(rdev, conf->mddev);
4623 			}
4624 		}
4625 
4626 	if (s.ops_request)
4627 		raid_run_ops(sh, s.ops_request);
4628 
4629 	ops_run_io(sh, &s);
4630 
4631 	if (s.dec_preread_active) {
4632 		/* We delay this until after ops_run_io so that if make_request
4633 		 * is waiting on a flush, it won't continue until the writes
4634 		 * have actually been submitted.
4635 		 */
4636 		atomic_dec(&conf->preread_active_stripes);
4637 		if (atomic_read(&conf->preread_active_stripes) <
4638 		    IO_THRESHOLD)
4639 			md_wakeup_thread(conf->mddev->thread);
4640 	}
4641 
4642 	if (!bio_list_empty(&s.return_bi)) {
4643 		if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags) &&
4644 				(s.failed <= conf->max_degraded ||
4645 					conf->mddev->external == 0)) {
4646 			spin_lock_irq(&conf->device_lock);
4647 			bio_list_merge(&conf->return_bi, &s.return_bi);
4648 			spin_unlock_irq(&conf->device_lock);
4649 			md_wakeup_thread(conf->mddev->thread);
4650 		} else
4651 			return_io(&s.return_bi);
4652 	}
4653 
4654 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4655 }
4656 
4657 static void raid5_activate_delayed(struct r5conf *conf)
4658 {
4659 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4660 		while (!list_empty(&conf->delayed_list)) {
4661 			struct list_head *l = conf->delayed_list.next;
4662 			struct stripe_head *sh;
4663 			sh = list_entry(l, struct stripe_head, lru);
4664 			list_del_init(l);
4665 			clear_bit(STRIPE_DELAYED, &sh->state);
4666 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4667 				atomic_inc(&conf->preread_active_stripes);
4668 			list_add_tail(&sh->lru, &conf->hold_list);
4669 			raid5_wakeup_stripe_thread(sh);
4670 		}
4671 	}
4672 }
4673 
4674 static void activate_bit_delay(struct r5conf *conf,
4675 	struct list_head *temp_inactive_list)
4676 {
4677 	/* device_lock is held */
4678 	struct list_head head;
4679 	list_add(&head, &conf->bitmap_list);
4680 	list_del_init(&conf->bitmap_list);
4681 	while (!list_empty(&head)) {
4682 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4683 		int hash;
4684 		list_del_init(&sh->lru);
4685 		atomic_inc(&sh->count);
4686 		hash = sh->hash_lock_index;
4687 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
4688 	}
4689 }
4690 
4691 static int raid5_congested(struct mddev *mddev, int bits)
4692 {
4693 	struct r5conf *conf = mddev->private;
4694 
4695 	/* No difference between reads and writes.  Just check
4696 	 * how busy the stripe_cache is
4697 	 */
4698 
4699 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4700 		return 1;
4701 	if (conf->quiesce)
4702 		return 1;
4703 	if (atomic_read(&conf->empty_inactive_list_nr))
4704 		return 1;
4705 
4706 	return 0;
4707 }
4708 
4709 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4710 {
4711 	struct r5conf *conf = mddev->private;
4712 	sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4713 	unsigned int chunk_sectors;
4714 	unsigned int bio_sectors = bio_sectors(bio);
4715 
4716 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4717 	return  chunk_sectors >=
4718 		((sector & (chunk_sectors - 1)) + bio_sectors);
4719 }
4720 
4721 /*
4722  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4723  *  later sampled by raid5d.
4724  */
4725 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4726 {
4727 	unsigned long flags;
4728 
4729 	spin_lock_irqsave(&conf->device_lock, flags);
4730 
4731 	bi->bi_next = conf->retry_read_aligned_list;
4732 	conf->retry_read_aligned_list = bi;
4733 
4734 	spin_unlock_irqrestore(&conf->device_lock, flags);
4735 	md_wakeup_thread(conf->mddev->thread);
4736 }
4737 
4738 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4739 {
4740 	struct bio *bi;
4741 
4742 	bi = conf->retry_read_aligned;
4743 	if (bi) {
4744 		conf->retry_read_aligned = NULL;
4745 		return bi;
4746 	}
4747 	bi = conf->retry_read_aligned_list;
4748 	if(bi) {
4749 		conf->retry_read_aligned_list = bi->bi_next;
4750 		bi->bi_next = NULL;
4751 		/*
4752 		 * this sets the active strip count to 1 and the processed
4753 		 * strip count to zero (upper 8 bits)
4754 		 */
4755 		raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4756 	}
4757 
4758 	return bi;
4759 }
4760 
4761 /*
4762  *  The "raid5_align_endio" should check if the read succeeded and if it
4763  *  did, call bio_endio on the original bio (having bio_put the new bio
4764  *  first).
4765  *  If the read failed..
4766  */
4767 static void raid5_align_endio(struct bio *bi)
4768 {
4769 	struct bio* raid_bi  = bi->bi_private;
4770 	struct mddev *mddev;
4771 	struct r5conf *conf;
4772 	struct md_rdev *rdev;
4773 	int error = bi->bi_error;
4774 
4775 	bio_put(bi);
4776 
4777 	rdev = (void*)raid_bi->bi_next;
4778 	raid_bi->bi_next = NULL;
4779 	mddev = rdev->mddev;
4780 	conf = mddev->private;
4781 
4782 	rdev_dec_pending(rdev, conf->mddev);
4783 
4784 	if (!error) {
4785 		trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4786 					 raid_bi, 0);
4787 		bio_endio(raid_bi);
4788 		if (atomic_dec_and_test(&conf->active_aligned_reads))
4789 			wake_up(&conf->wait_for_quiescent);
4790 		return;
4791 	}
4792 
4793 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4794 
4795 	add_bio_to_retry(raid_bi, conf);
4796 }
4797 
4798 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4799 {
4800 	struct r5conf *conf = mddev->private;
4801 	int dd_idx;
4802 	struct bio* align_bi;
4803 	struct md_rdev *rdev;
4804 	sector_t end_sector;
4805 
4806 	if (!in_chunk_boundary(mddev, raid_bio)) {
4807 		pr_debug("%s: non aligned\n", __func__);
4808 		return 0;
4809 	}
4810 	/*
4811 	 * use bio_clone_mddev to make a copy of the bio
4812 	 */
4813 	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4814 	if (!align_bi)
4815 		return 0;
4816 	/*
4817 	 *   set bi_end_io to a new function, and set bi_private to the
4818 	 *     original bio.
4819 	 */
4820 	align_bi->bi_end_io  = raid5_align_endio;
4821 	align_bi->bi_private = raid_bio;
4822 	/*
4823 	 *	compute position
4824 	 */
4825 	align_bi->bi_iter.bi_sector =
4826 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4827 				     0, &dd_idx, NULL);
4828 
4829 	end_sector = bio_end_sector(align_bi);
4830 	rcu_read_lock();
4831 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4832 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
4833 	    rdev->recovery_offset < end_sector) {
4834 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4835 		if (rdev &&
4836 		    (test_bit(Faulty, &rdev->flags) ||
4837 		    !(test_bit(In_sync, &rdev->flags) ||
4838 		      rdev->recovery_offset >= end_sector)))
4839 			rdev = NULL;
4840 	}
4841 	if (rdev) {
4842 		sector_t first_bad;
4843 		int bad_sectors;
4844 
4845 		atomic_inc(&rdev->nr_pending);
4846 		rcu_read_unlock();
4847 		raid_bio->bi_next = (void*)rdev;
4848 		align_bi->bi_bdev =  rdev->bdev;
4849 		bio_clear_flag(align_bi, BIO_SEG_VALID);
4850 
4851 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4852 				bio_sectors(align_bi),
4853 				&first_bad, &bad_sectors)) {
4854 			bio_put(align_bi);
4855 			rdev_dec_pending(rdev, mddev);
4856 			return 0;
4857 		}
4858 
4859 		/* No reshape active, so we can trust rdev->data_offset */
4860 		align_bi->bi_iter.bi_sector += rdev->data_offset;
4861 
4862 		spin_lock_irq(&conf->device_lock);
4863 		wait_event_lock_irq(conf->wait_for_quiescent,
4864 				    conf->quiesce == 0,
4865 				    conf->device_lock);
4866 		atomic_inc(&conf->active_aligned_reads);
4867 		spin_unlock_irq(&conf->device_lock);
4868 
4869 		if (mddev->gendisk)
4870 			trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4871 					      align_bi, disk_devt(mddev->gendisk),
4872 					      raid_bio->bi_iter.bi_sector);
4873 		generic_make_request(align_bi);
4874 		return 1;
4875 	} else {
4876 		rcu_read_unlock();
4877 		bio_put(align_bi);
4878 		return 0;
4879 	}
4880 }
4881 
4882 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4883 {
4884 	struct bio *split;
4885 
4886 	do {
4887 		sector_t sector = raid_bio->bi_iter.bi_sector;
4888 		unsigned chunk_sects = mddev->chunk_sectors;
4889 		unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4890 
4891 		if (sectors < bio_sectors(raid_bio)) {
4892 			split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4893 			bio_chain(split, raid_bio);
4894 		} else
4895 			split = raid_bio;
4896 
4897 		if (!raid5_read_one_chunk(mddev, split)) {
4898 			if (split != raid_bio)
4899 				generic_make_request(raid_bio);
4900 			return split;
4901 		}
4902 	} while (split != raid_bio);
4903 
4904 	return NULL;
4905 }
4906 
4907 /* __get_priority_stripe - get the next stripe to process
4908  *
4909  * Full stripe writes are allowed to pass preread active stripes up until
4910  * the bypass_threshold is exceeded.  In general the bypass_count
4911  * increments when the handle_list is handled before the hold_list; however, it
4912  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4913  * stripe with in flight i/o.  The bypass_count will be reset when the
4914  * head of the hold_list has changed, i.e. the head was promoted to the
4915  * handle_list.
4916  */
4917 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4918 {
4919 	struct stripe_head *sh = NULL, *tmp;
4920 	struct list_head *handle_list = NULL;
4921 	struct r5worker_group *wg = NULL;
4922 
4923 	if (conf->worker_cnt_per_group == 0) {
4924 		handle_list = &conf->handle_list;
4925 	} else if (group != ANY_GROUP) {
4926 		handle_list = &conf->worker_groups[group].handle_list;
4927 		wg = &conf->worker_groups[group];
4928 	} else {
4929 		int i;
4930 		for (i = 0; i < conf->group_cnt; i++) {
4931 			handle_list = &conf->worker_groups[i].handle_list;
4932 			wg = &conf->worker_groups[i];
4933 			if (!list_empty(handle_list))
4934 				break;
4935 		}
4936 	}
4937 
4938 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4939 		  __func__,
4940 		  list_empty(handle_list) ? "empty" : "busy",
4941 		  list_empty(&conf->hold_list) ? "empty" : "busy",
4942 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
4943 
4944 	if (!list_empty(handle_list)) {
4945 		sh = list_entry(handle_list->next, typeof(*sh), lru);
4946 
4947 		if (list_empty(&conf->hold_list))
4948 			conf->bypass_count = 0;
4949 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4950 			if (conf->hold_list.next == conf->last_hold)
4951 				conf->bypass_count++;
4952 			else {
4953 				conf->last_hold = conf->hold_list.next;
4954 				conf->bypass_count -= conf->bypass_threshold;
4955 				if (conf->bypass_count < 0)
4956 					conf->bypass_count = 0;
4957 			}
4958 		}
4959 	} else if (!list_empty(&conf->hold_list) &&
4960 		   ((conf->bypass_threshold &&
4961 		     conf->bypass_count > conf->bypass_threshold) ||
4962 		    atomic_read(&conf->pending_full_writes) == 0)) {
4963 
4964 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
4965 			if (conf->worker_cnt_per_group == 0 ||
4966 			    group == ANY_GROUP ||
4967 			    !cpu_online(tmp->cpu) ||
4968 			    cpu_to_group(tmp->cpu) == group) {
4969 				sh = tmp;
4970 				break;
4971 			}
4972 		}
4973 
4974 		if (sh) {
4975 			conf->bypass_count -= conf->bypass_threshold;
4976 			if (conf->bypass_count < 0)
4977 				conf->bypass_count = 0;
4978 		}
4979 		wg = NULL;
4980 	}
4981 
4982 	if (!sh)
4983 		return NULL;
4984 
4985 	if (wg) {
4986 		wg->stripes_cnt--;
4987 		sh->group = NULL;
4988 	}
4989 	list_del_init(&sh->lru);
4990 	BUG_ON(atomic_inc_return(&sh->count) != 1);
4991 	return sh;
4992 }
4993 
4994 struct raid5_plug_cb {
4995 	struct blk_plug_cb	cb;
4996 	struct list_head	list;
4997 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4998 };
4999 
5000 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5001 {
5002 	struct raid5_plug_cb *cb = container_of(
5003 		blk_cb, struct raid5_plug_cb, cb);
5004 	struct stripe_head *sh;
5005 	struct mddev *mddev = cb->cb.data;
5006 	struct r5conf *conf = mddev->private;
5007 	int cnt = 0;
5008 	int hash;
5009 
5010 	if (cb->list.next && !list_empty(&cb->list)) {
5011 		spin_lock_irq(&conf->device_lock);
5012 		while (!list_empty(&cb->list)) {
5013 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5014 			list_del_init(&sh->lru);
5015 			/*
5016 			 * avoid race release_stripe_plug() sees
5017 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5018 			 * is still in our list
5019 			 */
5020 			smp_mb__before_atomic();
5021 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5022 			/*
5023 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5024 			 * case, the count is always > 1 here
5025 			 */
5026 			hash = sh->hash_lock_index;
5027 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5028 			cnt++;
5029 		}
5030 		spin_unlock_irq(&conf->device_lock);
5031 	}
5032 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5033 				     NR_STRIPE_HASH_LOCKS);
5034 	if (mddev->queue)
5035 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5036 	kfree(cb);
5037 }
5038 
5039 static void release_stripe_plug(struct mddev *mddev,
5040 				struct stripe_head *sh)
5041 {
5042 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5043 		raid5_unplug, mddev,
5044 		sizeof(struct raid5_plug_cb));
5045 	struct raid5_plug_cb *cb;
5046 
5047 	if (!blk_cb) {
5048 		raid5_release_stripe(sh);
5049 		return;
5050 	}
5051 
5052 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5053 
5054 	if (cb->list.next == NULL) {
5055 		int i;
5056 		INIT_LIST_HEAD(&cb->list);
5057 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5058 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5059 	}
5060 
5061 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5062 		list_add_tail(&sh->lru, &cb->list);
5063 	else
5064 		raid5_release_stripe(sh);
5065 }
5066 
5067 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5068 {
5069 	struct r5conf *conf = mddev->private;
5070 	sector_t logical_sector, last_sector;
5071 	struct stripe_head *sh;
5072 	int remaining;
5073 	int stripe_sectors;
5074 
5075 	if (mddev->reshape_position != MaxSector)
5076 		/* Skip discard while reshape is happening */
5077 		return;
5078 
5079 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5080 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5081 
5082 	bi->bi_next = NULL;
5083 	bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5084 
5085 	stripe_sectors = conf->chunk_sectors *
5086 		(conf->raid_disks - conf->max_degraded);
5087 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5088 					       stripe_sectors);
5089 	sector_div(last_sector, stripe_sectors);
5090 
5091 	logical_sector *= conf->chunk_sectors;
5092 	last_sector *= conf->chunk_sectors;
5093 
5094 	for (; logical_sector < last_sector;
5095 	     logical_sector += STRIPE_SECTORS) {
5096 		DEFINE_WAIT(w);
5097 		int d;
5098 	again:
5099 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5100 		prepare_to_wait(&conf->wait_for_overlap, &w,
5101 				TASK_UNINTERRUPTIBLE);
5102 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5103 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5104 			raid5_release_stripe(sh);
5105 			schedule();
5106 			goto again;
5107 		}
5108 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5109 		spin_lock_irq(&sh->stripe_lock);
5110 		for (d = 0; d < conf->raid_disks; d++) {
5111 			if (d == sh->pd_idx || d == sh->qd_idx)
5112 				continue;
5113 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5114 				set_bit(R5_Overlap, &sh->dev[d].flags);
5115 				spin_unlock_irq(&sh->stripe_lock);
5116 				raid5_release_stripe(sh);
5117 				schedule();
5118 				goto again;
5119 			}
5120 		}
5121 		set_bit(STRIPE_DISCARD, &sh->state);
5122 		finish_wait(&conf->wait_for_overlap, &w);
5123 		sh->overwrite_disks = 0;
5124 		for (d = 0; d < conf->raid_disks; d++) {
5125 			if (d == sh->pd_idx || d == sh->qd_idx)
5126 				continue;
5127 			sh->dev[d].towrite = bi;
5128 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5129 			raid5_inc_bi_active_stripes(bi);
5130 			sh->overwrite_disks++;
5131 		}
5132 		spin_unlock_irq(&sh->stripe_lock);
5133 		if (conf->mddev->bitmap) {
5134 			for (d = 0;
5135 			     d < conf->raid_disks - conf->max_degraded;
5136 			     d++)
5137 				bitmap_startwrite(mddev->bitmap,
5138 						  sh->sector,
5139 						  STRIPE_SECTORS,
5140 						  0);
5141 			sh->bm_seq = conf->seq_flush + 1;
5142 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5143 		}
5144 
5145 		set_bit(STRIPE_HANDLE, &sh->state);
5146 		clear_bit(STRIPE_DELAYED, &sh->state);
5147 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5148 			atomic_inc(&conf->preread_active_stripes);
5149 		release_stripe_plug(mddev, sh);
5150 	}
5151 
5152 	remaining = raid5_dec_bi_active_stripes(bi);
5153 	if (remaining == 0) {
5154 		md_write_end(mddev);
5155 		bio_endio(bi);
5156 	}
5157 }
5158 
5159 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5160 {
5161 	struct r5conf *conf = mddev->private;
5162 	int dd_idx;
5163 	sector_t new_sector;
5164 	sector_t logical_sector, last_sector;
5165 	struct stripe_head *sh;
5166 	const int rw = bio_data_dir(bi);
5167 	int remaining;
5168 	DEFINE_WAIT(w);
5169 	bool do_prepare;
5170 
5171 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5172 		int ret = r5l_handle_flush_request(conf->log, bi);
5173 
5174 		if (ret == 0)
5175 			return;
5176 		if (ret == -ENODEV) {
5177 			md_flush_request(mddev, bi);
5178 			return;
5179 		}
5180 		/* ret == -EAGAIN, fallback */
5181 	}
5182 
5183 	md_write_start(mddev, bi);
5184 
5185 	/*
5186 	 * If array is degraded, better not do chunk aligned read because
5187 	 * later we might have to read it again in order to reconstruct
5188 	 * data on failed drives.
5189 	 */
5190 	if (rw == READ && mddev->degraded == 0 &&
5191 	    mddev->reshape_position == MaxSector) {
5192 		bi = chunk_aligned_read(mddev, bi);
5193 		if (!bi)
5194 			return;
5195 	}
5196 
5197 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5198 		make_discard_request(mddev, bi);
5199 		return;
5200 	}
5201 
5202 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5203 	last_sector = bio_end_sector(bi);
5204 	bi->bi_next = NULL;
5205 	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
5206 
5207 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5208 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5209 		int previous;
5210 		int seq;
5211 
5212 		do_prepare = false;
5213 	retry:
5214 		seq = read_seqcount_begin(&conf->gen_lock);
5215 		previous = 0;
5216 		if (do_prepare)
5217 			prepare_to_wait(&conf->wait_for_overlap, &w,
5218 				TASK_UNINTERRUPTIBLE);
5219 		if (unlikely(conf->reshape_progress != MaxSector)) {
5220 			/* spinlock is needed as reshape_progress may be
5221 			 * 64bit on a 32bit platform, and so it might be
5222 			 * possible to see a half-updated value
5223 			 * Of course reshape_progress could change after
5224 			 * the lock is dropped, so once we get a reference
5225 			 * to the stripe that we think it is, we will have
5226 			 * to check again.
5227 			 */
5228 			spin_lock_irq(&conf->device_lock);
5229 			if (mddev->reshape_backwards
5230 			    ? logical_sector < conf->reshape_progress
5231 			    : logical_sector >= conf->reshape_progress) {
5232 				previous = 1;
5233 			} else {
5234 				if (mddev->reshape_backwards
5235 				    ? logical_sector < conf->reshape_safe
5236 				    : logical_sector >= conf->reshape_safe) {
5237 					spin_unlock_irq(&conf->device_lock);
5238 					schedule();
5239 					do_prepare = true;
5240 					goto retry;
5241 				}
5242 			}
5243 			spin_unlock_irq(&conf->device_lock);
5244 		}
5245 
5246 		new_sector = raid5_compute_sector(conf, logical_sector,
5247 						  previous,
5248 						  &dd_idx, NULL);
5249 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5250 			(unsigned long long)new_sector,
5251 			(unsigned long long)logical_sector);
5252 
5253 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5254 				       (bi->bi_opf & REQ_RAHEAD), 0);
5255 		if (sh) {
5256 			if (unlikely(previous)) {
5257 				/* expansion might have moved on while waiting for a
5258 				 * stripe, so we must do the range check again.
5259 				 * Expansion could still move past after this
5260 				 * test, but as we are holding a reference to
5261 				 * 'sh', we know that if that happens,
5262 				 *  STRIPE_EXPANDING will get set and the expansion
5263 				 * won't proceed until we finish with the stripe.
5264 				 */
5265 				int must_retry = 0;
5266 				spin_lock_irq(&conf->device_lock);
5267 				if (mddev->reshape_backwards
5268 				    ? logical_sector >= conf->reshape_progress
5269 				    : logical_sector < conf->reshape_progress)
5270 					/* mismatch, need to try again */
5271 					must_retry = 1;
5272 				spin_unlock_irq(&conf->device_lock);
5273 				if (must_retry) {
5274 					raid5_release_stripe(sh);
5275 					schedule();
5276 					do_prepare = true;
5277 					goto retry;
5278 				}
5279 			}
5280 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5281 				/* Might have got the wrong stripe_head
5282 				 * by accident
5283 				 */
5284 				raid5_release_stripe(sh);
5285 				goto retry;
5286 			}
5287 
5288 			if (rw == WRITE &&
5289 			    logical_sector >= mddev->suspend_lo &&
5290 			    logical_sector < mddev->suspend_hi) {
5291 				raid5_release_stripe(sh);
5292 				/* As the suspend_* range is controlled by
5293 				 * userspace, we want an interruptible
5294 				 * wait.
5295 				 */
5296 				flush_signals(current);
5297 				prepare_to_wait(&conf->wait_for_overlap,
5298 						&w, TASK_INTERRUPTIBLE);
5299 				if (logical_sector >= mddev->suspend_lo &&
5300 				    logical_sector < mddev->suspend_hi) {
5301 					schedule();
5302 					do_prepare = true;
5303 				}
5304 				goto retry;
5305 			}
5306 
5307 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5308 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5309 				/* Stripe is busy expanding or
5310 				 * add failed due to overlap.  Flush everything
5311 				 * and wait a while
5312 				 */
5313 				md_wakeup_thread(mddev->thread);
5314 				raid5_release_stripe(sh);
5315 				schedule();
5316 				do_prepare = true;
5317 				goto retry;
5318 			}
5319 			set_bit(STRIPE_HANDLE, &sh->state);
5320 			clear_bit(STRIPE_DELAYED, &sh->state);
5321 			if ((!sh->batch_head || sh == sh->batch_head) &&
5322 			    (bi->bi_opf & REQ_SYNC) &&
5323 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5324 				atomic_inc(&conf->preread_active_stripes);
5325 			release_stripe_plug(mddev, sh);
5326 		} else {
5327 			/* cannot get stripe for read-ahead, just give-up */
5328 			bi->bi_error = -EIO;
5329 			break;
5330 		}
5331 	}
5332 	finish_wait(&conf->wait_for_overlap, &w);
5333 
5334 	remaining = raid5_dec_bi_active_stripes(bi);
5335 	if (remaining == 0) {
5336 
5337 		if ( rw == WRITE )
5338 			md_write_end(mddev);
5339 
5340 		trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5341 					 bi, 0);
5342 		bio_endio(bi);
5343 	}
5344 }
5345 
5346 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5347 
5348 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5349 {
5350 	/* reshaping is quite different to recovery/resync so it is
5351 	 * handled quite separately ... here.
5352 	 *
5353 	 * On each call to sync_request, we gather one chunk worth of
5354 	 * destination stripes and flag them as expanding.
5355 	 * Then we find all the source stripes and request reads.
5356 	 * As the reads complete, handle_stripe will copy the data
5357 	 * into the destination stripe and release that stripe.
5358 	 */
5359 	struct r5conf *conf = mddev->private;
5360 	struct stripe_head *sh;
5361 	sector_t first_sector, last_sector;
5362 	int raid_disks = conf->previous_raid_disks;
5363 	int data_disks = raid_disks - conf->max_degraded;
5364 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5365 	int i;
5366 	int dd_idx;
5367 	sector_t writepos, readpos, safepos;
5368 	sector_t stripe_addr;
5369 	int reshape_sectors;
5370 	struct list_head stripes;
5371 	sector_t retn;
5372 
5373 	if (sector_nr == 0) {
5374 		/* If restarting in the middle, skip the initial sectors */
5375 		if (mddev->reshape_backwards &&
5376 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5377 			sector_nr = raid5_size(mddev, 0, 0)
5378 				- conf->reshape_progress;
5379 		} else if (mddev->reshape_backwards &&
5380 			   conf->reshape_progress == MaxSector) {
5381 			/* shouldn't happen, but just in case, finish up.*/
5382 			sector_nr = MaxSector;
5383 		} else if (!mddev->reshape_backwards &&
5384 			   conf->reshape_progress > 0)
5385 			sector_nr = conf->reshape_progress;
5386 		sector_div(sector_nr, new_data_disks);
5387 		if (sector_nr) {
5388 			mddev->curr_resync_completed = sector_nr;
5389 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5390 			*skipped = 1;
5391 			retn = sector_nr;
5392 			goto finish;
5393 		}
5394 	}
5395 
5396 	/* We need to process a full chunk at a time.
5397 	 * If old and new chunk sizes differ, we need to process the
5398 	 * largest of these
5399 	 */
5400 
5401 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5402 
5403 	/* We update the metadata at least every 10 seconds, or when
5404 	 * the data about to be copied would over-write the source of
5405 	 * the data at the front of the range.  i.e. one new_stripe
5406 	 * along from reshape_progress new_maps to after where
5407 	 * reshape_safe old_maps to
5408 	 */
5409 	writepos = conf->reshape_progress;
5410 	sector_div(writepos, new_data_disks);
5411 	readpos = conf->reshape_progress;
5412 	sector_div(readpos, data_disks);
5413 	safepos = conf->reshape_safe;
5414 	sector_div(safepos, data_disks);
5415 	if (mddev->reshape_backwards) {
5416 		BUG_ON(writepos < reshape_sectors);
5417 		writepos -= reshape_sectors;
5418 		readpos += reshape_sectors;
5419 		safepos += reshape_sectors;
5420 	} else {
5421 		writepos += reshape_sectors;
5422 		/* readpos and safepos are worst-case calculations.
5423 		 * A negative number is overly pessimistic, and causes
5424 		 * obvious problems for unsigned storage.  So clip to 0.
5425 		 */
5426 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5427 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5428 	}
5429 
5430 	/* Having calculated the 'writepos' possibly use it
5431 	 * to set 'stripe_addr' which is where we will write to.
5432 	 */
5433 	if (mddev->reshape_backwards) {
5434 		BUG_ON(conf->reshape_progress == 0);
5435 		stripe_addr = writepos;
5436 		BUG_ON((mddev->dev_sectors &
5437 			~((sector_t)reshape_sectors - 1))
5438 		       - reshape_sectors - stripe_addr
5439 		       != sector_nr);
5440 	} else {
5441 		BUG_ON(writepos != sector_nr + reshape_sectors);
5442 		stripe_addr = sector_nr;
5443 	}
5444 
5445 	/* 'writepos' is the most advanced device address we might write.
5446 	 * 'readpos' is the least advanced device address we might read.
5447 	 * 'safepos' is the least address recorded in the metadata as having
5448 	 *     been reshaped.
5449 	 * If there is a min_offset_diff, these are adjusted either by
5450 	 * increasing the safepos/readpos if diff is negative, or
5451 	 * increasing writepos if diff is positive.
5452 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5453 	 * ensure safety in the face of a crash - that must be done by userspace
5454 	 * making a backup of the data.  So in that case there is no particular
5455 	 * rush to update metadata.
5456 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5457 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5458 	 * we can be safe in the event of a crash.
5459 	 * So we insist on updating metadata if safepos is behind writepos and
5460 	 * readpos is beyond writepos.
5461 	 * In any case, update the metadata every 10 seconds.
5462 	 * Maybe that number should be configurable, but I'm not sure it is
5463 	 * worth it.... maybe it could be a multiple of safemode_delay???
5464 	 */
5465 	if (conf->min_offset_diff < 0) {
5466 		safepos += -conf->min_offset_diff;
5467 		readpos += -conf->min_offset_diff;
5468 	} else
5469 		writepos += conf->min_offset_diff;
5470 
5471 	if ((mddev->reshape_backwards
5472 	     ? (safepos > writepos && readpos < writepos)
5473 	     : (safepos < writepos && readpos > writepos)) ||
5474 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5475 		/* Cannot proceed until we've updated the superblock... */
5476 		wait_event(conf->wait_for_overlap,
5477 			   atomic_read(&conf->reshape_stripes)==0
5478 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5479 		if (atomic_read(&conf->reshape_stripes) != 0)
5480 			return 0;
5481 		mddev->reshape_position = conf->reshape_progress;
5482 		mddev->curr_resync_completed = sector_nr;
5483 		conf->reshape_checkpoint = jiffies;
5484 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5485 		md_wakeup_thread(mddev->thread);
5486 		wait_event(mddev->sb_wait, mddev->flags == 0 ||
5487 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5488 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5489 			return 0;
5490 		spin_lock_irq(&conf->device_lock);
5491 		conf->reshape_safe = mddev->reshape_position;
5492 		spin_unlock_irq(&conf->device_lock);
5493 		wake_up(&conf->wait_for_overlap);
5494 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5495 	}
5496 
5497 	INIT_LIST_HEAD(&stripes);
5498 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5499 		int j;
5500 		int skipped_disk = 0;
5501 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5502 		set_bit(STRIPE_EXPANDING, &sh->state);
5503 		atomic_inc(&conf->reshape_stripes);
5504 		/* If any of this stripe is beyond the end of the old
5505 		 * array, then we need to zero those blocks
5506 		 */
5507 		for (j=sh->disks; j--;) {
5508 			sector_t s;
5509 			if (j == sh->pd_idx)
5510 				continue;
5511 			if (conf->level == 6 &&
5512 			    j == sh->qd_idx)
5513 				continue;
5514 			s = raid5_compute_blocknr(sh, j, 0);
5515 			if (s < raid5_size(mddev, 0, 0)) {
5516 				skipped_disk = 1;
5517 				continue;
5518 			}
5519 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5520 			set_bit(R5_Expanded, &sh->dev[j].flags);
5521 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5522 		}
5523 		if (!skipped_disk) {
5524 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5525 			set_bit(STRIPE_HANDLE, &sh->state);
5526 		}
5527 		list_add(&sh->lru, &stripes);
5528 	}
5529 	spin_lock_irq(&conf->device_lock);
5530 	if (mddev->reshape_backwards)
5531 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5532 	else
5533 		conf->reshape_progress += reshape_sectors * new_data_disks;
5534 	spin_unlock_irq(&conf->device_lock);
5535 	/* Ok, those stripe are ready. We can start scheduling
5536 	 * reads on the source stripes.
5537 	 * The source stripes are determined by mapping the first and last
5538 	 * block on the destination stripes.
5539 	 */
5540 	first_sector =
5541 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5542 				     1, &dd_idx, NULL);
5543 	last_sector =
5544 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5545 					    * new_data_disks - 1),
5546 				     1, &dd_idx, NULL);
5547 	if (last_sector >= mddev->dev_sectors)
5548 		last_sector = mddev->dev_sectors - 1;
5549 	while (first_sector <= last_sector) {
5550 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5551 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5552 		set_bit(STRIPE_HANDLE, &sh->state);
5553 		raid5_release_stripe(sh);
5554 		first_sector += STRIPE_SECTORS;
5555 	}
5556 	/* Now that the sources are clearly marked, we can release
5557 	 * the destination stripes
5558 	 */
5559 	while (!list_empty(&stripes)) {
5560 		sh = list_entry(stripes.next, struct stripe_head, lru);
5561 		list_del_init(&sh->lru);
5562 		raid5_release_stripe(sh);
5563 	}
5564 	/* If this takes us to the resync_max point where we have to pause,
5565 	 * then we need to write out the superblock.
5566 	 */
5567 	sector_nr += reshape_sectors;
5568 	retn = reshape_sectors;
5569 finish:
5570 	if (mddev->curr_resync_completed > mddev->resync_max ||
5571 	    (sector_nr - mddev->curr_resync_completed) * 2
5572 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5573 		/* Cannot proceed until we've updated the superblock... */
5574 		wait_event(conf->wait_for_overlap,
5575 			   atomic_read(&conf->reshape_stripes) == 0
5576 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5577 		if (atomic_read(&conf->reshape_stripes) != 0)
5578 			goto ret;
5579 		mddev->reshape_position = conf->reshape_progress;
5580 		mddev->curr_resync_completed = sector_nr;
5581 		conf->reshape_checkpoint = jiffies;
5582 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5583 		md_wakeup_thread(mddev->thread);
5584 		wait_event(mddev->sb_wait,
5585 			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5586 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5587 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5588 			goto ret;
5589 		spin_lock_irq(&conf->device_lock);
5590 		conf->reshape_safe = mddev->reshape_position;
5591 		spin_unlock_irq(&conf->device_lock);
5592 		wake_up(&conf->wait_for_overlap);
5593 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5594 	}
5595 ret:
5596 	return retn;
5597 }
5598 
5599 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5600 					  int *skipped)
5601 {
5602 	struct r5conf *conf = mddev->private;
5603 	struct stripe_head *sh;
5604 	sector_t max_sector = mddev->dev_sectors;
5605 	sector_t sync_blocks;
5606 	int still_degraded = 0;
5607 	int i;
5608 
5609 	if (sector_nr >= max_sector) {
5610 		/* just being told to finish up .. nothing much to do */
5611 
5612 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5613 			end_reshape(conf);
5614 			return 0;
5615 		}
5616 
5617 		if (mddev->curr_resync < max_sector) /* aborted */
5618 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5619 					&sync_blocks, 1);
5620 		else /* completed sync */
5621 			conf->fullsync = 0;
5622 		bitmap_close_sync(mddev->bitmap);
5623 
5624 		return 0;
5625 	}
5626 
5627 	/* Allow raid5_quiesce to complete */
5628 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5629 
5630 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5631 		return reshape_request(mddev, sector_nr, skipped);
5632 
5633 	/* No need to check resync_max as we never do more than one
5634 	 * stripe, and as resync_max will always be on a chunk boundary,
5635 	 * if the check in md_do_sync didn't fire, there is no chance
5636 	 * of overstepping resync_max here
5637 	 */
5638 
5639 	/* if there is too many failed drives and we are trying
5640 	 * to resync, then assert that we are finished, because there is
5641 	 * nothing we can do.
5642 	 */
5643 	if (mddev->degraded >= conf->max_degraded &&
5644 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5645 		sector_t rv = mddev->dev_sectors - sector_nr;
5646 		*skipped = 1;
5647 		return rv;
5648 	}
5649 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5650 	    !conf->fullsync &&
5651 	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5652 	    sync_blocks >= STRIPE_SECTORS) {
5653 		/* we can skip this block, and probably more */
5654 		sync_blocks /= STRIPE_SECTORS;
5655 		*skipped = 1;
5656 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5657 	}
5658 
5659 	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5660 
5661 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5662 	if (sh == NULL) {
5663 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5664 		/* make sure we don't swamp the stripe cache if someone else
5665 		 * is trying to get access
5666 		 */
5667 		schedule_timeout_uninterruptible(1);
5668 	}
5669 	/* Need to check if array will still be degraded after recovery/resync
5670 	 * Note in case of > 1 drive failures it's possible we're rebuilding
5671 	 * one drive while leaving another faulty drive in array.
5672 	 */
5673 	rcu_read_lock();
5674 	for (i = 0; i < conf->raid_disks; i++) {
5675 		struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5676 
5677 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5678 			still_degraded = 1;
5679 	}
5680 	rcu_read_unlock();
5681 
5682 	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5683 
5684 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5685 	set_bit(STRIPE_HANDLE, &sh->state);
5686 
5687 	raid5_release_stripe(sh);
5688 
5689 	return STRIPE_SECTORS;
5690 }
5691 
5692 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5693 {
5694 	/* We may not be able to submit a whole bio at once as there
5695 	 * may not be enough stripe_heads available.
5696 	 * We cannot pre-allocate enough stripe_heads as we may need
5697 	 * more than exist in the cache (if we allow ever large chunks).
5698 	 * So we do one stripe head at a time and record in
5699 	 * ->bi_hw_segments how many have been done.
5700 	 *
5701 	 * We *know* that this entire raid_bio is in one chunk, so
5702 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5703 	 */
5704 	struct stripe_head *sh;
5705 	int dd_idx;
5706 	sector_t sector, logical_sector, last_sector;
5707 	int scnt = 0;
5708 	int remaining;
5709 	int handled = 0;
5710 
5711 	logical_sector = raid_bio->bi_iter.bi_sector &
5712 		~((sector_t)STRIPE_SECTORS-1);
5713 	sector = raid5_compute_sector(conf, logical_sector,
5714 				      0, &dd_idx, NULL);
5715 	last_sector = bio_end_sector(raid_bio);
5716 
5717 	for (; logical_sector < last_sector;
5718 	     logical_sector += STRIPE_SECTORS,
5719 		     sector += STRIPE_SECTORS,
5720 		     scnt++) {
5721 
5722 		if (scnt < raid5_bi_processed_stripes(raid_bio))
5723 			/* already done this stripe */
5724 			continue;
5725 
5726 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5727 
5728 		if (!sh) {
5729 			/* failed to get a stripe - must wait */
5730 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5731 			conf->retry_read_aligned = raid_bio;
5732 			return handled;
5733 		}
5734 
5735 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5736 			raid5_release_stripe(sh);
5737 			raid5_set_bi_processed_stripes(raid_bio, scnt);
5738 			conf->retry_read_aligned = raid_bio;
5739 			return handled;
5740 		}
5741 
5742 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5743 		handle_stripe(sh);
5744 		raid5_release_stripe(sh);
5745 		handled++;
5746 	}
5747 	remaining = raid5_dec_bi_active_stripes(raid_bio);
5748 	if (remaining == 0) {
5749 		trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5750 					 raid_bio, 0);
5751 		bio_endio(raid_bio);
5752 	}
5753 	if (atomic_dec_and_test(&conf->active_aligned_reads))
5754 		wake_up(&conf->wait_for_quiescent);
5755 	return handled;
5756 }
5757 
5758 static int handle_active_stripes(struct r5conf *conf, int group,
5759 				 struct r5worker *worker,
5760 				 struct list_head *temp_inactive_list)
5761 {
5762 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5763 	int i, batch_size = 0, hash;
5764 	bool release_inactive = false;
5765 
5766 	while (batch_size < MAX_STRIPE_BATCH &&
5767 			(sh = __get_priority_stripe(conf, group)) != NULL)
5768 		batch[batch_size++] = sh;
5769 
5770 	if (batch_size == 0) {
5771 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5772 			if (!list_empty(temp_inactive_list + i))
5773 				break;
5774 		if (i == NR_STRIPE_HASH_LOCKS) {
5775 			spin_unlock_irq(&conf->device_lock);
5776 			r5l_flush_stripe_to_raid(conf->log);
5777 			spin_lock_irq(&conf->device_lock);
5778 			return batch_size;
5779 		}
5780 		release_inactive = true;
5781 	}
5782 	spin_unlock_irq(&conf->device_lock);
5783 
5784 	release_inactive_stripe_list(conf, temp_inactive_list,
5785 				     NR_STRIPE_HASH_LOCKS);
5786 
5787 	r5l_flush_stripe_to_raid(conf->log);
5788 	if (release_inactive) {
5789 		spin_lock_irq(&conf->device_lock);
5790 		return 0;
5791 	}
5792 
5793 	for (i = 0; i < batch_size; i++)
5794 		handle_stripe(batch[i]);
5795 	r5l_write_stripe_run(conf->log);
5796 
5797 	cond_resched();
5798 
5799 	spin_lock_irq(&conf->device_lock);
5800 	for (i = 0; i < batch_size; i++) {
5801 		hash = batch[i]->hash_lock_index;
5802 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5803 	}
5804 	return batch_size;
5805 }
5806 
5807 static void raid5_do_work(struct work_struct *work)
5808 {
5809 	struct r5worker *worker = container_of(work, struct r5worker, work);
5810 	struct r5worker_group *group = worker->group;
5811 	struct r5conf *conf = group->conf;
5812 	int group_id = group - conf->worker_groups;
5813 	int handled;
5814 	struct blk_plug plug;
5815 
5816 	pr_debug("+++ raid5worker active\n");
5817 
5818 	blk_start_plug(&plug);
5819 	handled = 0;
5820 	spin_lock_irq(&conf->device_lock);
5821 	while (1) {
5822 		int batch_size, released;
5823 
5824 		released = release_stripe_list(conf, worker->temp_inactive_list);
5825 
5826 		batch_size = handle_active_stripes(conf, group_id, worker,
5827 						   worker->temp_inactive_list);
5828 		worker->working = false;
5829 		if (!batch_size && !released)
5830 			break;
5831 		handled += batch_size;
5832 	}
5833 	pr_debug("%d stripes handled\n", handled);
5834 
5835 	spin_unlock_irq(&conf->device_lock);
5836 	blk_finish_plug(&plug);
5837 
5838 	pr_debug("--- raid5worker inactive\n");
5839 }
5840 
5841 /*
5842  * This is our raid5 kernel thread.
5843  *
5844  * We scan the hash table for stripes which can be handled now.
5845  * During the scan, completed stripes are saved for us by the interrupt
5846  * handler, so that they will not have to wait for our next wakeup.
5847  */
5848 static void raid5d(struct md_thread *thread)
5849 {
5850 	struct mddev *mddev = thread->mddev;
5851 	struct r5conf *conf = mddev->private;
5852 	int handled;
5853 	struct blk_plug plug;
5854 
5855 	pr_debug("+++ raid5d active\n");
5856 
5857 	md_check_recovery(mddev);
5858 
5859 	if (!bio_list_empty(&conf->return_bi) &&
5860 	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5861 		struct bio_list tmp = BIO_EMPTY_LIST;
5862 		spin_lock_irq(&conf->device_lock);
5863 		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5864 			bio_list_merge(&tmp, &conf->return_bi);
5865 			bio_list_init(&conf->return_bi);
5866 		}
5867 		spin_unlock_irq(&conf->device_lock);
5868 		return_io(&tmp);
5869 	}
5870 
5871 	blk_start_plug(&plug);
5872 	handled = 0;
5873 	spin_lock_irq(&conf->device_lock);
5874 	while (1) {
5875 		struct bio *bio;
5876 		int batch_size, released;
5877 
5878 		released = release_stripe_list(conf, conf->temp_inactive_list);
5879 		if (released)
5880 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
5881 
5882 		if (
5883 		    !list_empty(&conf->bitmap_list)) {
5884 			/* Now is a good time to flush some bitmap updates */
5885 			conf->seq_flush++;
5886 			spin_unlock_irq(&conf->device_lock);
5887 			bitmap_unplug(mddev->bitmap);
5888 			spin_lock_irq(&conf->device_lock);
5889 			conf->seq_write = conf->seq_flush;
5890 			activate_bit_delay(conf, conf->temp_inactive_list);
5891 		}
5892 		raid5_activate_delayed(conf);
5893 
5894 		while ((bio = remove_bio_from_retry(conf))) {
5895 			int ok;
5896 			spin_unlock_irq(&conf->device_lock);
5897 			ok = retry_aligned_read(conf, bio);
5898 			spin_lock_irq(&conf->device_lock);
5899 			if (!ok)
5900 				break;
5901 			handled++;
5902 		}
5903 
5904 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5905 						   conf->temp_inactive_list);
5906 		if (!batch_size && !released)
5907 			break;
5908 		handled += batch_size;
5909 
5910 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5911 			spin_unlock_irq(&conf->device_lock);
5912 			md_check_recovery(mddev);
5913 			spin_lock_irq(&conf->device_lock);
5914 		}
5915 	}
5916 	pr_debug("%d stripes handled\n", handled);
5917 
5918 	spin_unlock_irq(&conf->device_lock);
5919 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5920 	    mutex_trylock(&conf->cache_size_mutex)) {
5921 		grow_one_stripe(conf, __GFP_NOWARN);
5922 		/* Set flag even if allocation failed.  This helps
5923 		 * slow down allocation requests when mem is short
5924 		 */
5925 		set_bit(R5_DID_ALLOC, &conf->cache_state);
5926 		mutex_unlock(&conf->cache_size_mutex);
5927 	}
5928 
5929 	r5l_flush_stripe_to_raid(conf->log);
5930 
5931 	async_tx_issue_pending_all();
5932 	blk_finish_plug(&plug);
5933 
5934 	pr_debug("--- raid5d inactive\n");
5935 }
5936 
5937 static ssize_t
5938 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5939 {
5940 	struct r5conf *conf;
5941 	int ret = 0;
5942 	spin_lock(&mddev->lock);
5943 	conf = mddev->private;
5944 	if (conf)
5945 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5946 	spin_unlock(&mddev->lock);
5947 	return ret;
5948 }
5949 
5950 int
5951 raid5_set_cache_size(struct mddev *mddev, int size)
5952 {
5953 	struct r5conf *conf = mddev->private;
5954 	int err;
5955 
5956 	if (size <= 16 || size > 32768)
5957 		return -EINVAL;
5958 
5959 	conf->min_nr_stripes = size;
5960 	mutex_lock(&conf->cache_size_mutex);
5961 	while (size < conf->max_nr_stripes &&
5962 	       drop_one_stripe(conf))
5963 		;
5964 	mutex_unlock(&conf->cache_size_mutex);
5965 
5966 
5967 	err = md_allow_write(mddev);
5968 	if (err)
5969 		return err;
5970 
5971 	mutex_lock(&conf->cache_size_mutex);
5972 	while (size > conf->max_nr_stripes)
5973 		if (!grow_one_stripe(conf, GFP_KERNEL))
5974 			break;
5975 	mutex_unlock(&conf->cache_size_mutex);
5976 
5977 	return 0;
5978 }
5979 EXPORT_SYMBOL(raid5_set_cache_size);
5980 
5981 static ssize_t
5982 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5983 {
5984 	struct r5conf *conf;
5985 	unsigned long new;
5986 	int err;
5987 
5988 	if (len >= PAGE_SIZE)
5989 		return -EINVAL;
5990 	if (kstrtoul(page, 10, &new))
5991 		return -EINVAL;
5992 	err = mddev_lock(mddev);
5993 	if (err)
5994 		return err;
5995 	conf = mddev->private;
5996 	if (!conf)
5997 		err = -ENODEV;
5998 	else
5999 		err = raid5_set_cache_size(mddev, new);
6000 	mddev_unlock(mddev);
6001 
6002 	return err ?: len;
6003 }
6004 
6005 static struct md_sysfs_entry
6006 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6007 				raid5_show_stripe_cache_size,
6008 				raid5_store_stripe_cache_size);
6009 
6010 static ssize_t
6011 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6012 {
6013 	struct r5conf *conf = mddev->private;
6014 	if (conf)
6015 		return sprintf(page, "%d\n", conf->rmw_level);
6016 	else
6017 		return 0;
6018 }
6019 
6020 static ssize_t
6021 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6022 {
6023 	struct r5conf *conf = mddev->private;
6024 	unsigned long new;
6025 
6026 	if (!conf)
6027 		return -ENODEV;
6028 
6029 	if (len >= PAGE_SIZE)
6030 		return -EINVAL;
6031 
6032 	if (kstrtoul(page, 10, &new))
6033 		return -EINVAL;
6034 
6035 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6036 		return -EINVAL;
6037 
6038 	if (new != PARITY_DISABLE_RMW &&
6039 	    new != PARITY_ENABLE_RMW &&
6040 	    new != PARITY_PREFER_RMW)
6041 		return -EINVAL;
6042 
6043 	conf->rmw_level = new;
6044 	return len;
6045 }
6046 
6047 static struct md_sysfs_entry
6048 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6049 			 raid5_show_rmw_level,
6050 			 raid5_store_rmw_level);
6051 
6052 
6053 static ssize_t
6054 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6055 {
6056 	struct r5conf *conf;
6057 	int ret = 0;
6058 	spin_lock(&mddev->lock);
6059 	conf = mddev->private;
6060 	if (conf)
6061 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6062 	spin_unlock(&mddev->lock);
6063 	return ret;
6064 }
6065 
6066 static ssize_t
6067 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6068 {
6069 	struct r5conf *conf;
6070 	unsigned long new;
6071 	int err;
6072 
6073 	if (len >= PAGE_SIZE)
6074 		return -EINVAL;
6075 	if (kstrtoul(page, 10, &new))
6076 		return -EINVAL;
6077 
6078 	err = mddev_lock(mddev);
6079 	if (err)
6080 		return err;
6081 	conf = mddev->private;
6082 	if (!conf)
6083 		err = -ENODEV;
6084 	else if (new > conf->min_nr_stripes)
6085 		err = -EINVAL;
6086 	else
6087 		conf->bypass_threshold = new;
6088 	mddev_unlock(mddev);
6089 	return err ?: len;
6090 }
6091 
6092 static struct md_sysfs_entry
6093 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6094 					S_IRUGO | S_IWUSR,
6095 					raid5_show_preread_threshold,
6096 					raid5_store_preread_threshold);
6097 
6098 static ssize_t
6099 raid5_show_skip_copy(struct mddev *mddev, char *page)
6100 {
6101 	struct r5conf *conf;
6102 	int ret = 0;
6103 	spin_lock(&mddev->lock);
6104 	conf = mddev->private;
6105 	if (conf)
6106 		ret = sprintf(page, "%d\n", conf->skip_copy);
6107 	spin_unlock(&mddev->lock);
6108 	return ret;
6109 }
6110 
6111 static ssize_t
6112 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6113 {
6114 	struct r5conf *conf;
6115 	unsigned long new;
6116 	int err;
6117 
6118 	if (len >= PAGE_SIZE)
6119 		return -EINVAL;
6120 	if (kstrtoul(page, 10, &new))
6121 		return -EINVAL;
6122 	new = !!new;
6123 
6124 	err = mddev_lock(mddev);
6125 	if (err)
6126 		return err;
6127 	conf = mddev->private;
6128 	if (!conf)
6129 		err = -ENODEV;
6130 	else if (new != conf->skip_copy) {
6131 		mddev_suspend(mddev);
6132 		conf->skip_copy = new;
6133 		if (new)
6134 			mddev->queue->backing_dev_info.capabilities |=
6135 				BDI_CAP_STABLE_WRITES;
6136 		else
6137 			mddev->queue->backing_dev_info.capabilities &=
6138 				~BDI_CAP_STABLE_WRITES;
6139 		mddev_resume(mddev);
6140 	}
6141 	mddev_unlock(mddev);
6142 	return err ?: len;
6143 }
6144 
6145 static struct md_sysfs_entry
6146 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6147 					raid5_show_skip_copy,
6148 					raid5_store_skip_copy);
6149 
6150 static ssize_t
6151 stripe_cache_active_show(struct mddev *mddev, char *page)
6152 {
6153 	struct r5conf *conf = mddev->private;
6154 	if (conf)
6155 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6156 	else
6157 		return 0;
6158 }
6159 
6160 static struct md_sysfs_entry
6161 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6162 
6163 static ssize_t
6164 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6165 {
6166 	struct r5conf *conf;
6167 	int ret = 0;
6168 	spin_lock(&mddev->lock);
6169 	conf = mddev->private;
6170 	if (conf)
6171 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6172 	spin_unlock(&mddev->lock);
6173 	return ret;
6174 }
6175 
6176 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6177 			       int *group_cnt,
6178 			       int *worker_cnt_per_group,
6179 			       struct r5worker_group **worker_groups);
6180 static ssize_t
6181 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6182 {
6183 	struct r5conf *conf;
6184 	unsigned long new;
6185 	int err;
6186 	struct r5worker_group *new_groups, *old_groups;
6187 	int group_cnt, worker_cnt_per_group;
6188 
6189 	if (len >= PAGE_SIZE)
6190 		return -EINVAL;
6191 	if (kstrtoul(page, 10, &new))
6192 		return -EINVAL;
6193 
6194 	err = mddev_lock(mddev);
6195 	if (err)
6196 		return err;
6197 	conf = mddev->private;
6198 	if (!conf)
6199 		err = -ENODEV;
6200 	else if (new != conf->worker_cnt_per_group) {
6201 		mddev_suspend(mddev);
6202 
6203 		old_groups = conf->worker_groups;
6204 		if (old_groups)
6205 			flush_workqueue(raid5_wq);
6206 
6207 		err = alloc_thread_groups(conf, new,
6208 					  &group_cnt, &worker_cnt_per_group,
6209 					  &new_groups);
6210 		if (!err) {
6211 			spin_lock_irq(&conf->device_lock);
6212 			conf->group_cnt = group_cnt;
6213 			conf->worker_cnt_per_group = worker_cnt_per_group;
6214 			conf->worker_groups = new_groups;
6215 			spin_unlock_irq(&conf->device_lock);
6216 
6217 			if (old_groups)
6218 				kfree(old_groups[0].workers);
6219 			kfree(old_groups);
6220 		}
6221 		mddev_resume(mddev);
6222 	}
6223 	mddev_unlock(mddev);
6224 
6225 	return err ?: len;
6226 }
6227 
6228 static struct md_sysfs_entry
6229 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6230 				raid5_show_group_thread_cnt,
6231 				raid5_store_group_thread_cnt);
6232 
6233 static struct attribute *raid5_attrs[] =  {
6234 	&raid5_stripecache_size.attr,
6235 	&raid5_stripecache_active.attr,
6236 	&raid5_preread_bypass_threshold.attr,
6237 	&raid5_group_thread_cnt.attr,
6238 	&raid5_skip_copy.attr,
6239 	&raid5_rmw_level.attr,
6240 	NULL,
6241 };
6242 static struct attribute_group raid5_attrs_group = {
6243 	.name = NULL,
6244 	.attrs = raid5_attrs,
6245 };
6246 
6247 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6248 			       int *group_cnt,
6249 			       int *worker_cnt_per_group,
6250 			       struct r5worker_group **worker_groups)
6251 {
6252 	int i, j, k;
6253 	ssize_t size;
6254 	struct r5worker *workers;
6255 
6256 	*worker_cnt_per_group = cnt;
6257 	if (cnt == 0) {
6258 		*group_cnt = 0;
6259 		*worker_groups = NULL;
6260 		return 0;
6261 	}
6262 	*group_cnt = num_possible_nodes();
6263 	size = sizeof(struct r5worker) * cnt;
6264 	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6265 	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6266 				*group_cnt, GFP_NOIO);
6267 	if (!*worker_groups || !workers) {
6268 		kfree(workers);
6269 		kfree(*worker_groups);
6270 		return -ENOMEM;
6271 	}
6272 
6273 	for (i = 0; i < *group_cnt; i++) {
6274 		struct r5worker_group *group;
6275 
6276 		group = &(*worker_groups)[i];
6277 		INIT_LIST_HEAD(&group->handle_list);
6278 		group->conf = conf;
6279 		group->workers = workers + i * cnt;
6280 
6281 		for (j = 0; j < cnt; j++) {
6282 			struct r5worker *worker = group->workers + j;
6283 			worker->group = group;
6284 			INIT_WORK(&worker->work, raid5_do_work);
6285 
6286 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6287 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6288 		}
6289 	}
6290 
6291 	return 0;
6292 }
6293 
6294 static void free_thread_groups(struct r5conf *conf)
6295 {
6296 	if (conf->worker_groups)
6297 		kfree(conf->worker_groups[0].workers);
6298 	kfree(conf->worker_groups);
6299 	conf->worker_groups = NULL;
6300 }
6301 
6302 static sector_t
6303 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6304 {
6305 	struct r5conf *conf = mddev->private;
6306 
6307 	if (!sectors)
6308 		sectors = mddev->dev_sectors;
6309 	if (!raid_disks)
6310 		/* size is defined by the smallest of previous and new size */
6311 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6312 
6313 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6314 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6315 	return sectors * (raid_disks - conf->max_degraded);
6316 }
6317 
6318 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6319 {
6320 	safe_put_page(percpu->spare_page);
6321 	if (percpu->scribble)
6322 		flex_array_free(percpu->scribble);
6323 	percpu->spare_page = NULL;
6324 	percpu->scribble = NULL;
6325 }
6326 
6327 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6328 {
6329 	if (conf->level == 6 && !percpu->spare_page)
6330 		percpu->spare_page = alloc_page(GFP_KERNEL);
6331 	if (!percpu->scribble)
6332 		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6333 						      conf->previous_raid_disks),
6334 						  max(conf->chunk_sectors,
6335 						      conf->prev_chunk_sectors)
6336 						   / STRIPE_SECTORS,
6337 						  GFP_KERNEL);
6338 
6339 	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6340 		free_scratch_buffer(conf, percpu);
6341 		return -ENOMEM;
6342 	}
6343 
6344 	return 0;
6345 }
6346 
6347 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6348 {
6349 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6350 
6351 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6352 	return 0;
6353 }
6354 
6355 static void raid5_free_percpu(struct r5conf *conf)
6356 {
6357 	if (!conf->percpu)
6358 		return;
6359 
6360 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6361 	free_percpu(conf->percpu);
6362 }
6363 
6364 static void free_conf(struct r5conf *conf)
6365 {
6366 	if (conf->log)
6367 		r5l_exit_log(conf->log);
6368 	if (conf->shrinker.nr_deferred)
6369 		unregister_shrinker(&conf->shrinker);
6370 
6371 	free_thread_groups(conf);
6372 	shrink_stripes(conf);
6373 	raid5_free_percpu(conf);
6374 	kfree(conf->disks);
6375 	kfree(conf->stripe_hashtbl);
6376 	kfree(conf);
6377 }
6378 
6379 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6380 {
6381 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6382 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6383 
6384 	if (alloc_scratch_buffer(conf, percpu)) {
6385 		pr_err("%s: failed memory allocation for cpu%u\n",
6386 		       __func__, cpu);
6387 		return -ENOMEM;
6388 	}
6389 	return 0;
6390 }
6391 
6392 static int raid5_alloc_percpu(struct r5conf *conf)
6393 {
6394 	int err = 0;
6395 
6396 	conf->percpu = alloc_percpu(struct raid5_percpu);
6397 	if (!conf->percpu)
6398 		return -ENOMEM;
6399 
6400 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6401 	if (!err) {
6402 		conf->scribble_disks = max(conf->raid_disks,
6403 			conf->previous_raid_disks);
6404 		conf->scribble_sectors = max(conf->chunk_sectors,
6405 			conf->prev_chunk_sectors);
6406 	}
6407 	return err;
6408 }
6409 
6410 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6411 				      struct shrink_control *sc)
6412 {
6413 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6414 	unsigned long ret = SHRINK_STOP;
6415 
6416 	if (mutex_trylock(&conf->cache_size_mutex)) {
6417 		ret= 0;
6418 		while (ret < sc->nr_to_scan &&
6419 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6420 			if (drop_one_stripe(conf) == 0) {
6421 				ret = SHRINK_STOP;
6422 				break;
6423 			}
6424 			ret++;
6425 		}
6426 		mutex_unlock(&conf->cache_size_mutex);
6427 	}
6428 	return ret;
6429 }
6430 
6431 static unsigned long raid5_cache_count(struct shrinker *shrink,
6432 				       struct shrink_control *sc)
6433 {
6434 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6435 
6436 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6437 		/* unlikely, but not impossible */
6438 		return 0;
6439 	return conf->max_nr_stripes - conf->min_nr_stripes;
6440 }
6441 
6442 static struct r5conf *setup_conf(struct mddev *mddev)
6443 {
6444 	struct r5conf *conf;
6445 	int raid_disk, memory, max_disks;
6446 	struct md_rdev *rdev;
6447 	struct disk_info *disk;
6448 	char pers_name[6];
6449 	int i;
6450 	int group_cnt, worker_cnt_per_group;
6451 	struct r5worker_group *new_group;
6452 
6453 	if (mddev->new_level != 5
6454 	    && mddev->new_level != 4
6455 	    && mddev->new_level != 6) {
6456 		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6457 		       mdname(mddev), mddev->new_level);
6458 		return ERR_PTR(-EIO);
6459 	}
6460 	if ((mddev->new_level == 5
6461 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6462 	    (mddev->new_level == 6
6463 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6464 		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6465 		       mdname(mddev), mddev->new_layout);
6466 		return ERR_PTR(-EIO);
6467 	}
6468 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6469 		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6470 		       mdname(mddev), mddev->raid_disks);
6471 		return ERR_PTR(-EINVAL);
6472 	}
6473 
6474 	if (!mddev->new_chunk_sectors ||
6475 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6476 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6477 		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6478 		       mdname(mddev), mddev->new_chunk_sectors << 9);
6479 		return ERR_PTR(-EINVAL);
6480 	}
6481 
6482 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6483 	if (conf == NULL)
6484 		goto abort;
6485 	/* Don't enable multi-threading by default*/
6486 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6487 				 &new_group)) {
6488 		conf->group_cnt = group_cnt;
6489 		conf->worker_cnt_per_group = worker_cnt_per_group;
6490 		conf->worker_groups = new_group;
6491 	} else
6492 		goto abort;
6493 	spin_lock_init(&conf->device_lock);
6494 	seqcount_init(&conf->gen_lock);
6495 	mutex_init(&conf->cache_size_mutex);
6496 	init_waitqueue_head(&conf->wait_for_quiescent);
6497 	init_waitqueue_head(&conf->wait_for_stripe);
6498 	init_waitqueue_head(&conf->wait_for_overlap);
6499 	INIT_LIST_HEAD(&conf->handle_list);
6500 	INIT_LIST_HEAD(&conf->hold_list);
6501 	INIT_LIST_HEAD(&conf->delayed_list);
6502 	INIT_LIST_HEAD(&conf->bitmap_list);
6503 	bio_list_init(&conf->return_bi);
6504 	init_llist_head(&conf->released_stripes);
6505 	atomic_set(&conf->active_stripes, 0);
6506 	atomic_set(&conf->preread_active_stripes, 0);
6507 	atomic_set(&conf->active_aligned_reads, 0);
6508 	conf->bypass_threshold = BYPASS_THRESHOLD;
6509 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6510 
6511 	conf->raid_disks = mddev->raid_disks;
6512 	if (mddev->reshape_position == MaxSector)
6513 		conf->previous_raid_disks = mddev->raid_disks;
6514 	else
6515 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6516 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6517 
6518 	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6519 			      GFP_KERNEL);
6520 	if (!conf->disks)
6521 		goto abort;
6522 
6523 	conf->mddev = mddev;
6524 
6525 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6526 		goto abort;
6527 
6528 	/* We init hash_locks[0] separately to that it can be used
6529 	 * as the reference lock in the spin_lock_nest_lock() call
6530 	 * in lock_all_device_hash_locks_irq in order to convince
6531 	 * lockdep that we know what we are doing.
6532 	 */
6533 	spin_lock_init(conf->hash_locks);
6534 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6535 		spin_lock_init(conf->hash_locks + i);
6536 
6537 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6538 		INIT_LIST_HEAD(conf->inactive_list + i);
6539 
6540 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6541 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6542 
6543 	conf->level = mddev->new_level;
6544 	conf->chunk_sectors = mddev->new_chunk_sectors;
6545 	if (raid5_alloc_percpu(conf) != 0)
6546 		goto abort;
6547 
6548 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6549 
6550 	rdev_for_each(rdev, mddev) {
6551 		raid_disk = rdev->raid_disk;
6552 		if (raid_disk >= max_disks
6553 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6554 			continue;
6555 		disk = conf->disks + raid_disk;
6556 
6557 		if (test_bit(Replacement, &rdev->flags)) {
6558 			if (disk->replacement)
6559 				goto abort;
6560 			disk->replacement = rdev;
6561 		} else {
6562 			if (disk->rdev)
6563 				goto abort;
6564 			disk->rdev = rdev;
6565 		}
6566 
6567 		if (test_bit(In_sync, &rdev->flags)) {
6568 			char b[BDEVNAME_SIZE];
6569 			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6570 			       " disk %d\n",
6571 			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6572 		} else if (rdev->saved_raid_disk != raid_disk)
6573 			/* Cannot rely on bitmap to complete recovery */
6574 			conf->fullsync = 1;
6575 	}
6576 
6577 	conf->level = mddev->new_level;
6578 	if (conf->level == 6) {
6579 		conf->max_degraded = 2;
6580 		if (raid6_call.xor_syndrome)
6581 			conf->rmw_level = PARITY_ENABLE_RMW;
6582 		else
6583 			conf->rmw_level = PARITY_DISABLE_RMW;
6584 	} else {
6585 		conf->max_degraded = 1;
6586 		conf->rmw_level = PARITY_ENABLE_RMW;
6587 	}
6588 	conf->algorithm = mddev->new_layout;
6589 	conf->reshape_progress = mddev->reshape_position;
6590 	if (conf->reshape_progress != MaxSector) {
6591 		conf->prev_chunk_sectors = mddev->chunk_sectors;
6592 		conf->prev_algo = mddev->layout;
6593 	} else {
6594 		conf->prev_chunk_sectors = conf->chunk_sectors;
6595 		conf->prev_algo = conf->algorithm;
6596 	}
6597 
6598 	conf->min_nr_stripes = NR_STRIPES;
6599 	if (mddev->reshape_position != MaxSector) {
6600 		int stripes = max_t(int,
6601 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6602 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6603 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
6604 		if (conf->min_nr_stripes != NR_STRIPES)
6605 			printk(KERN_INFO
6606 				"md/raid:%s: force stripe size %d for reshape\n",
6607 				mdname(mddev), conf->min_nr_stripes);
6608 	}
6609 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6610 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6611 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6612 	if (grow_stripes(conf, conf->min_nr_stripes)) {
6613 		printk(KERN_ERR
6614 		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
6615 		       mdname(mddev), memory);
6616 		goto abort;
6617 	} else
6618 		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6619 		       mdname(mddev), memory);
6620 	/*
6621 	 * Losing a stripe head costs more than the time to refill it,
6622 	 * it reduces the queue depth and so can hurt throughput.
6623 	 * So set it rather large, scaled by number of devices.
6624 	 */
6625 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6626 	conf->shrinker.scan_objects = raid5_cache_scan;
6627 	conf->shrinker.count_objects = raid5_cache_count;
6628 	conf->shrinker.batch = 128;
6629 	conf->shrinker.flags = 0;
6630 	if (register_shrinker(&conf->shrinker)) {
6631 		printk(KERN_ERR
6632 		       "md/raid:%s: couldn't register shrinker.\n",
6633 		       mdname(mddev));
6634 		goto abort;
6635 	}
6636 
6637 	sprintf(pers_name, "raid%d", mddev->new_level);
6638 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
6639 	if (!conf->thread) {
6640 		printk(KERN_ERR
6641 		       "md/raid:%s: couldn't allocate thread.\n",
6642 		       mdname(mddev));
6643 		goto abort;
6644 	}
6645 
6646 	return conf;
6647 
6648  abort:
6649 	if (conf) {
6650 		free_conf(conf);
6651 		return ERR_PTR(-EIO);
6652 	} else
6653 		return ERR_PTR(-ENOMEM);
6654 }
6655 
6656 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6657 {
6658 	switch (algo) {
6659 	case ALGORITHM_PARITY_0:
6660 		if (raid_disk < max_degraded)
6661 			return 1;
6662 		break;
6663 	case ALGORITHM_PARITY_N:
6664 		if (raid_disk >= raid_disks - max_degraded)
6665 			return 1;
6666 		break;
6667 	case ALGORITHM_PARITY_0_6:
6668 		if (raid_disk == 0 ||
6669 		    raid_disk == raid_disks - 1)
6670 			return 1;
6671 		break;
6672 	case ALGORITHM_LEFT_ASYMMETRIC_6:
6673 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
6674 	case ALGORITHM_LEFT_SYMMETRIC_6:
6675 	case ALGORITHM_RIGHT_SYMMETRIC_6:
6676 		if (raid_disk == raid_disks - 1)
6677 			return 1;
6678 	}
6679 	return 0;
6680 }
6681 
6682 static int raid5_run(struct mddev *mddev)
6683 {
6684 	struct r5conf *conf;
6685 	int working_disks = 0;
6686 	int dirty_parity_disks = 0;
6687 	struct md_rdev *rdev;
6688 	struct md_rdev *journal_dev = NULL;
6689 	sector_t reshape_offset = 0;
6690 	int i;
6691 	long long min_offset_diff = 0;
6692 	int first = 1;
6693 
6694 	if (mddev->recovery_cp != MaxSector)
6695 		printk(KERN_NOTICE "md/raid:%s: not clean"
6696 		       " -- starting background reconstruction\n",
6697 		       mdname(mddev));
6698 
6699 	rdev_for_each(rdev, mddev) {
6700 		long long diff;
6701 
6702 		if (test_bit(Journal, &rdev->flags)) {
6703 			journal_dev = rdev;
6704 			continue;
6705 		}
6706 		if (rdev->raid_disk < 0)
6707 			continue;
6708 		diff = (rdev->new_data_offset - rdev->data_offset);
6709 		if (first) {
6710 			min_offset_diff = diff;
6711 			first = 0;
6712 		} else if (mddev->reshape_backwards &&
6713 			 diff < min_offset_diff)
6714 			min_offset_diff = diff;
6715 		else if (!mddev->reshape_backwards &&
6716 			 diff > min_offset_diff)
6717 			min_offset_diff = diff;
6718 	}
6719 
6720 	if (mddev->reshape_position != MaxSector) {
6721 		/* Check that we can continue the reshape.
6722 		 * Difficulties arise if the stripe we would write to
6723 		 * next is at or after the stripe we would read from next.
6724 		 * For a reshape that changes the number of devices, this
6725 		 * is only possible for a very short time, and mdadm makes
6726 		 * sure that time appears to have past before assembling
6727 		 * the array.  So we fail if that time hasn't passed.
6728 		 * For a reshape that keeps the number of devices the same
6729 		 * mdadm must be monitoring the reshape can keeping the
6730 		 * critical areas read-only and backed up.  It will start
6731 		 * the array in read-only mode, so we check for that.
6732 		 */
6733 		sector_t here_new, here_old;
6734 		int old_disks;
6735 		int max_degraded = (mddev->level == 6 ? 2 : 1);
6736 		int chunk_sectors;
6737 		int new_data_disks;
6738 
6739 		if (journal_dev) {
6740 			printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6741 			       mdname(mddev));
6742 			return -EINVAL;
6743 		}
6744 
6745 		if (mddev->new_level != mddev->level) {
6746 			printk(KERN_ERR "md/raid:%s: unsupported reshape "
6747 			       "required - aborting.\n",
6748 			       mdname(mddev));
6749 			return -EINVAL;
6750 		}
6751 		old_disks = mddev->raid_disks - mddev->delta_disks;
6752 		/* reshape_position must be on a new-stripe boundary, and one
6753 		 * further up in new geometry must map after here in old
6754 		 * geometry.
6755 		 * If the chunk sizes are different, then as we perform reshape
6756 		 * in units of the largest of the two, reshape_position needs
6757 		 * be a multiple of the largest chunk size times new data disks.
6758 		 */
6759 		here_new = mddev->reshape_position;
6760 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6761 		new_data_disks = mddev->raid_disks - max_degraded;
6762 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6763 			printk(KERN_ERR "md/raid:%s: reshape_position not "
6764 			       "on a stripe boundary\n", mdname(mddev));
6765 			return -EINVAL;
6766 		}
6767 		reshape_offset = here_new * chunk_sectors;
6768 		/* here_new is the stripe we will write to */
6769 		here_old = mddev->reshape_position;
6770 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6771 		/* here_old is the first stripe that we might need to read
6772 		 * from */
6773 		if (mddev->delta_disks == 0) {
6774 			/* We cannot be sure it is safe to start an in-place
6775 			 * reshape.  It is only safe if user-space is monitoring
6776 			 * and taking constant backups.
6777 			 * mdadm always starts a situation like this in
6778 			 * readonly mode so it can take control before
6779 			 * allowing any writes.  So just check for that.
6780 			 */
6781 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6782 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
6783 				/* not really in-place - so OK */;
6784 			else if (mddev->ro == 0) {
6785 				printk(KERN_ERR "md/raid:%s: in-place reshape "
6786 				       "must be started in read-only mode "
6787 				       "- aborting\n",
6788 				       mdname(mddev));
6789 				return -EINVAL;
6790 			}
6791 		} else if (mddev->reshape_backwards
6792 		    ? (here_new * chunk_sectors + min_offset_diff <=
6793 		       here_old * chunk_sectors)
6794 		    : (here_new * chunk_sectors >=
6795 		       here_old * chunk_sectors + (-min_offset_diff))) {
6796 			/* Reading from the same stripe as writing to - bad */
6797 			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6798 			       "auto-recovery - aborting.\n",
6799 			       mdname(mddev));
6800 			return -EINVAL;
6801 		}
6802 		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6803 		       mdname(mddev));
6804 		/* OK, we should be able to continue; */
6805 	} else {
6806 		BUG_ON(mddev->level != mddev->new_level);
6807 		BUG_ON(mddev->layout != mddev->new_layout);
6808 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6809 		BUG_ON(mddev->delta_disks != 0);
6810 	}
6811 
6812 	if (mddev->private == NULL)
6813 		conf = setup_conf(mddev);
6814 	else
6815 		conf = mddev->private;
6816 
6817 	if (IS_ERR(conf))
6818 		return PTR_ERR(conf);
6819 
6820 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
6821 		if (!journal_dev) {
6822 			pr_err("md/raid:%s: journal disk is missing, force array readonly\n",
6823 			       mdname(mddev));
6824 			mddev->ro = 1;
6825 			set_disk_ro(mddev->gendisk, 1);
6826 		} else if (mddev->recovery_cp == MaxSector)
6827 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
6828 	}
6829 
6830 	conf->min_offset_diff = min_offset_diff;
6831 	mddev->thread = conf->thread;
6832 	conf->thread = NULL;
6833 	mddev->private = conf;
6834 
6835 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6836 	     i++) {
6837 		rdev = conf->disks[i].rdev;
6838 		if (!rdev && conf->disks[i].replacement) {
6839 			/* The replacement is all we have yet */
6840 			rdev = conf->disks[i].replacement;
6841 			conf->disks[i].replacement = NULL;
6842 			clear_bit(Replacement, &rdev->flags);
6843 			conf->disks[i].rdev = rdev;
6844 		}
6845 		if (!rdev)
6846 			continue;
6847 		if (conf->disks[i].replacement &&
6848 		    conf->reshape_progress != MaxSector) {
6849 			/* replacements and reshape simply do not mix. */
6850 			printk(KERN_ERR "md: cannot handle concurrent "
6851 			       "replacement and reshape.\n");
6852 			goto abort;
6853 		}
6854 		if (test_bit(In_sync, &rdev->flags)) {
6855 			working_disks++;
6856 			continue;
6857 		}
6858 		/* This disc is not fully in-sync.  However if it
6859 		 * just stored parity (beyond the recovery_offset),
6860 		 * when we don't need to be concerned about the
6861 		 * array being dirty.
6862 		 * When reshape goes 'backwards', we never have
6863 		 * partially completed devices, so we only need
6864 		 * to worry about reshape going forwards.
6865 		 */
6866 		/* Hack because v0.91 doesn't store recovery_offset properly. */
6867 		if (mddev->major_version == 0 &&
6868 		    mddev->minor_version > 90)
6869 			rdev->recovery_offset = reshape_offset;
6870 
6871 		if (rdev->recovery_offset < reshape_offset) {
6872 			/* We need to check old and new layout */
6873 			if (!only_parity(rdev->raid_disk,
6874 					 conf->algorithm,
6875 					 conf->raid_disks,
6876 					 conf->max_degraded))
6877 				continue;
6878 		}
6879 		if (!only_parity(rdev->raid_disk,
6880 				 conf->prev_algo,
6881 				 conf->previous_raid_disks,
6882 				 conf->max_degraded))
6883 			continue;
6884 		dirty_parity_disks++;
6885 	}
6886 
6887 	/*
6888 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
6889 	 */
6890 	mddev->degraded = calc_degraded(conf);
6891 
6892 	if (has_failed(conf)) {
6893 		printk(KERN_ERR "md/raid:%s: not enough operational devices"
6894 			" (%d/%d failed)\n",
6895 			mdname(mddev), mddev->degraded, conf->raid_disks);
6896 		goto abort;
6897 	}
6898 
6899 	/* device size must be a multiple of chunk size */
6900 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6901 	mddev->resync_max_sectors = mddev->dev_sectors;
6902 
6903 	if (mddev->degraded > dirty_parity_disks &&
6904 	    mddev->recovery_cp != MaxSector) {
6905 		if (mddev->ok_start_degraded)
6906 			printk(KERN_WARNING
6907 			       "md/raid:%s: starting dirty degraded array"
6908 			       " - data corruption possible.\n",
6909 			       mdname(mddev));
6910 		else {
6911 			printk(KERN_ERR
6912 			       "md/raid:%s: cannot start dirty degraded array.\n",
6913 			       mdname(mddev));
6914 			goto abort;
6915 		}
6916 	}
6917 
6918 	if (mddev->degraded == 0)
6919 		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6920 		       " devices, algorithm %d\n", mdname(mddev), conf->level,
6921 		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6922 		       mddev->new_layout);
6923 	else
6924 		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6925 		       " out of %d devices, algorithm %d\n",
6926 		       mdname(mddev), conf->level,
6927 		       mddev->raid_disks - mddev->degraded,
6928 		       mddev->raid_disks, mddev->new_layout);
6929 
6930 	print_raid5_conf(conf);
6931 
6932 	if (conf->reshape_progress != MaxSector) {
6933 		conf->reshape_safe = conf->reshape_progress;
6934 		atomic_set(&conf->reshape_stripes, 0);
6935 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6936 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6937 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6938 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6939 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6940 							"reshape");
6941 	}
6942 
6943 	/* Ok, everything is just fine now */
6944 	if (mddev->to_remove == &raid5_attrs_group)
6945 		mddev->to_remove = NULL;
6946 	else if (mddev->kobj.sd &&
6947 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6948 		printk(KERN_WARNING
6949 		       "raid5: failed to create sysfs attributes for %s\n",
6950 		       mdname(mddev));
6951 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6952 
6953 	if (mddev->queue) {
6954 		int chunk_size;
6955 		bool discard_supported = true;
6956 		/* read-ahead size must cover two whole stripes, which
6957 		 * is 2 * (datadisks) * chunksize where 'n' is the
6958 		 * number of raid devices
6959 		 */
6960 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
6961 		int stripe = data_disks *
6962 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
6963 		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6964 			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6965 
6966 		chunk_size = mddev->chunk_sectors << 9;
6967 		blk_queue_io_min(mddev->queue, chunk_size);
6968 		blk_queue_io_opt(mddev->queue, chunk_size *
6969 				 (conf->raid_disks - conf->max_degraded));
6970 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
6971 		/*
6972 		 * We can only discard a whole stripe. It doesn't make sense to
6973 		 * discard data disk but write parity disk
6974 		 */
6975 		stripe = stripe * PAGE_SIZE;
6976 		/* Round up to power of 2, as discard handling
6977 		 * currently assumes that */
6978 		while ((stripe-1) & stripe)
6979 			stripe = (stripe | (stripe-1)) + 1;
6980 		mddev->queue->limits.discard_alignment = stripe;
6981 		mddev->queue->limits.discard_granularity = stripe;
6982 		/*
6983 		 * unaligned part of discard request will be ignored, so can't
6984 		 * guarantee discard_zeroes_data
6985 		 */
6986 		mddev->queue->limits.discard_zeroes_data = 0;
6987 
6988 		blk_queue_max_write_same_sectors(mddev->queue, 0);
6989 
6990 		rdev_for_each(rdev, mddev) {
6991 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6992 					  rdev->data_offset << 9);
6993 			disk_stack_limits(mddev->gendisk, rdev->bdev,
6994 					  rdev->new_data_offset << 9);
6995 			/*
6996 			 * discard_zeroes_data is required, otherwise data
6997 			 * could be lost. Consider a scenario: discard a stripe
6998 			 * (the stripe could be inconsistent if
6999 			 * discard_zeroes_data is 0); write one disk of the
7000 			 * stripe (the stripe could be inconsistent again
7001 			 * depending on which disks are used to calculate
7002 			 * parity); the disk is broken; The stripe data of this
7003 			 * disk is lost.
7004 			 */
7005 			if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7006 			    !bdev_get_queue(rdev->bdev)->
7007 						limits.discard_zeroes_data)
7008 				discard_supported = false;
7009 			/* Unfortunately, discard_zeroes_data is not currently
7010 			 * a guarantee - just a hint.  So we only allow DISCARD
7011 			 * if the sysadmin has confirmed that only safe devices
7012 			 * are in use by setting a module parameter.
7013 			 */
7014 			if (!devices_handle_discard_safely) {
7015 				if (discard_supported) {
7016 					pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7017 					pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7018 				}
7019 				discard_supported = false;
7020 			}
7021 		}
7022 
7023 		if (discard_supported &&
7024 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7025 		    mddev->queue->limits.discard_granularity >= stripe)
7026 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7027 						mddev->queue);
7028 		else
7029 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7030 						mddev->queue);
7031 
7032 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7033 	}
7034 
7035 	if (journal_dev) {
7036 		char b[BDEVNAME_SIZE];
7037 
7038 		printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7039 		       mdname(mddev), bdevname(journal_dev->bdev, b));
7040 		r5l_init_log(conf, journal_dev);
7041 	}
7042 
7043 	return 0;
7044 abort:
7045 	md_unregister_thread(&mddev->thread);
7046 	print_raid5_conf(conf);
7047 	free_conf(conf);
7048 	mddev->private = NULL;
7049 	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7050 	return -EIO;
7051 }
7052 
7053 static void raid5_free(struct mddev *mddev, void *priv)
7054 {
7055 	struct r5conf *conf = priv;
7056 
7057 	free_conf(conf);
7058 	mddev->to_remove = &raid5_attrs_group;
7059 }
7060 
7061 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7062 {
7063 	struct r5conf *conf = mddev->private;
7064 	int i;
7065 
7066 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7067 		conf->chunk_sectors / 2, mddev->layout);
7068 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7069 	rcu_read_lock();
7070 	for (i = 0; i < conf->raid_disks; i++) {
7071 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7072 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7073 	}
7074 	rcu_read_unlock();
7075 	seq_printf (seq, "]");
7076 }
7077 
7078 static void print_raid5_conf (struct r5conf *conf)
7079 {
7080 	int i;
7081 	struct disk_info *tmp;
7082 
7083 	printk(KERN_DEBUG "RAID conf printout:\n");
7084 	if (!conf) {
7085 		printk("(conf==NULL)\n");
7086 		return;
7087 	}
7088 	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7089 	       conf->raid_disks,
7090 	       conf->raid_disks - conf->mddev->degraded);
7091 
7092 	for (i = 0; i < conf->raid_disks; i++) {
7093 		char b[BDEVNAME_SIZE];
7094 		tmp = conf->disks + i;
7095 		if (tmp->rdev)
7096 			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7097 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7098 			       bdevname(tmp->rdev->bdev, b));
7099 	}
7100 }
7101 
7102 static int raid5_spare_active(struct mddev *mddev)
7103 {
7104 	int i;
7105 	struct r5conf *conf = mddev->private;
7106 	struct disk_info *tmp;
7107 	int count = 0;
7108 	unsigned long flags;
7109 
7110 	for (i = 0; i < conf->raid_disks; i++) {
7111 		tmp = conf->disks + i;
7112 		if (tmp->replacement
7113 		    && tmp->replacement->recovery_offset == MaxSector
7114 		    && !test_bit(Faulty, &tmp->replacement->flags)
7115 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7116 			/* Replacement has just become active. */
7117 			if (!tmp->rdev
7118 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7119 				count++;
7120 			if (tmp->rdev) {
7121 				/* Replaced device not technically faulty,
7122 				 * but we need to be sure it gets removed
7123 				 * and never re-added.
7124 				 */
7125 				set_bit(Faulty, &tmp->rdev->flags);
7126 				sysfs_notify_dirent_safe(
7127 					tmp->rdev->sysfs_state);
7128 			}
7129 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7130 		} else if (tmp->rdev
7131 		    && tmp->rdev->recovery_offset == MaxSector
7132 		    && !test_bit(Faulty, &tmp->rdev->flags)
7133 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7134 			count++;
7135 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7136 		}
7137 	}
7138 	spin_lock_irqsave(&conf->device_lock, flags);
7139 	mddev->degraded = calc_degraded(conf);
7140 	spin_unlock_irqrestore(&conf->device_lock, flags);
7141 	print_raid5_conf(conf);
7142 	return count;
7143 }
7144 
7145 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7146 {
7147 	struct r5conf *conf = mddev->private;
7148 	int err = 0;
7149 	int number = rdev->raid_disk;
7150 	struct md_rdev **rdevp;
7151 	struct disk_info *p = conf->disks + number;
7152 
7153 	print_raid5_conf(conf);
7154 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7155 		struct r5l_log *log;
7156 		/*
7157 		 * we can't wait pending write here, as this is called in
7158 		 * raid5d, wait will deadlock.
7159 		 */
7160 		if (atomic_read(&mddev->writes_pending))
7161 			return -EBUSY;
7162 		log = conf->log;
7163 		conf->log = NULL;
7164 		synchronize_rcu();
7165 		r5l_exit_log(log);
7166 		return 0;
7167 	}
7168 	if (rdev == p->rdev)
7169 		rdevp = &p->rdev;
7170 	else if (rdev == p->replacement)
7171 		rdevp = &p->replacement;
7172 	else
7173 		return 0;
7174 
7175 	if (number >= conf->raid_disks &&
7176 	    conf->reshape_progress == MaxSector)
7177 		clear_bit(In_sync, &rdev->flags);
7178 
7179 	if (test_bit(In_sync, &rdev->flags) ||
7180 	    atomic_read(&rdev->nr_pending)) {
7181 		err = -EBUSY;
7182 		goto abort;
7183 	}
7184 	/* Only remove non-faulty devices if recovery
7185 	 * isn't possible.
7186 	 */
7187 	if (!test_bit(Faulty, &rdev->flags) &&
7188 	    mddev->recovery_disabled != conf->recovery_disabled &&
7189 	    !has_failed(conf) &&
7190 	    (!p->replacement || p->replacement == rdev) &&
7191 	    number < conf->raid_disks) {
7192 		err = -EBUSY;
7193 		goto abort;
7194 	}
7195 	*rdevp = NULL;
7196 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7197 		synchronize_rcu();
7198 		if (atomic_read(&rdev->nr_pending)) {
7199 			/* lost the race, try later */
7200 			err = -EBUSY;
7201 			*rdevp = rdev;
7202 		}
7203 	}
7204 	if (p->replacement) {
7205 		/* We must have just cleared 'rdev' */
7206 		p->rdev = p->replacement;
7207 		clear_bit(Replacement, &p->replacement->flags);
7208 		smp_mb(); /* Make sure other CPUs may see both as identical
7209 			   * but will never see neither - if they are careful
7210 			   */
7211 		p->replacement = NULL;
7212 		clear_bit(WantReplacement, &rdev->flags);
7213 	} else
7214 		/* We might have just removed the Replacement as faulty-
7215 		 * clear the bit just in case
7216 		 */
7217 		clear_bit(WantReplacement, &rdev->flags);
7218 abort:
7219 
7220 	print_raid5_conf(conf);
7221 	return err;
7222 }
7223 
7224 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7225 {
7226 	struct r5conf *conf = mddev->private;
7227 	int err = -EEXIST;
7228 	int disk;
7229 	struct disk_info *p;
7230 	int first = 0;
7231 	int last = conf->raid_disks - 1;
7232 
7233 	if (test_bit(Journal, &rdev->flags)) {
7234 		char b[BDEVNAME_SIZE];
7235 		if (conf->log)
7236 			return -EBUSY;
7237 
7238 		rdev->raid_disk = 0;
7239 		/*
7240 		 * The array is in readonly mode if journal is missing, so no
7241 		 * write requests running. We should be safe
7242 		 */
7243 		r5l_init_log(conf, rdev);
7244 		printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7245 		       mdname(mddev), bdevname(rdev->bdev, b));
7246 		return 0;
7247 	}
7248 	if (mddev->recovery_disabled == conf->recovery_disabled)
7249 		return -EBUSY;
7250 
7251 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7252 		/* no point adding a device */
7253 		return -EINVAL;
7254 
7255 	if (rdev->raid_disk >= 0)
7256 		first = last = rdev->raid_disk;
7257 
7258 	/*
7259 	 * find the disk ... but prefer rdev->saved_raid_disk
7260 	 * if possible.
7261 	 */
7262 	if (rdev->saved_raid_disk >= 0 &&
7263 	    rdev->saved_raid_disk >= first &&
7264 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7265 		first = rdev->saved_raid_disk;
7266 
7267 	for (disk = first; disk <= last; disk++) {
7268 		p = conf->disks + disk;
7269 		if (p->rdev == NULL) {
7270 			clear_bit(In_sync, &rdev->flags);
7271 			rdev->raid_disk = disk;
7272 			err = 0;
7273 			if (rdev->saved_raid_disk != disk)
7274 				conf->fullsync = 1;
7275 			rcu_assign_pointer(p->rdev, rdev);
7276 			goto out;
7277 		}
7278 	}
7279 	for (disk = first; disk <= last; disk++) {
7280 		p = conf->disks + disk;
7281 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7282 		    p->replacement == NULL) {
7283 			clear_bit(In_sync, &rdev->flags);
7284 			set_bit(Replacement, &rdev->flags);
7285 			rdev->raid_disk = disk;
7286 			err = 0;
7287 			conf->fullsync = 1;
7288 			rcu_assign_pointer(p->replacement, rdev);
7289 			break;
7290 		}
7291 	}
7292 out:
7293 	print_raid5_conf(conf);
7294 	return err;
7295 }
7296 
7297 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7298 {
7299 	/* no resync is happening, and there is enough space
7300 	 * on all devices, so we can resize.
7301 	 * We need to make sure resync covers any new space.
7302 	 * If the array is shrinking we should possibly wait until
7303 	 * any io in the removed space completes, but it hardly seems
7304 	 * worth it.
7305 	 */
7306 	sector_t newsize;
7307 	struct r5conf *conf = mddev->private;
7308 
7309 	if (conf->log)
7310 		return -EINVAL;
7311 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7312 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7313 	if (mddev->external_size &&
7314 	    mddev->array_sectors > newsize)
7315 		return -EINVAL;
7316 	if (mddev->bitmap) {
7317 		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7318 		if (ret)
7319 			return ret;
7320 	}
7321 	md_set_array_sectors(mddev, newsize);
7322 	set_capacity(mddev->gendisk, mddev->array_sectors);
7323 	revalidate_disk(mddev->gendisk);
7324 	if (sectors > mddev->dev_sectors &&
7325 	    mddev->recovery_cp > mddev->dev_sectors) {
7326 		mddev->recovery_cp = mddev->dev_sectors;
7327 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7328 	}
7329 	mddev->dev_sectors = sectors;
7330 	mddev->resync_max_sectors = sectors;
7331 	return 0;
7332 }
7333 
7334 static int check_stripe_cache(struct mddev *mddev)
7335 {
7336 	/* Can only proceed if there are plenty of stripe_heads.
7337 	 * We need a minimum of one full stripe,, and for sensible progress
7338 	 * it is best to have about 4 times that.
7339 	 * If we require 4 times, then the default 256 4K stripe_heads will
7340 	 * allow for chunk sizes up to 256K, which is probably OK.
7341 	 * If the chunk size is greater, user-space should request more
7342 	 * stripe_heads first.
7343 	 */
7344 	struct r5conf *conf = mddev->private;
7345 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7346 	    > conf->min_nr_stripes ||
7347 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7348 	    > conf->min_nr_stripes) {
7349 		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7350 		       mdname(mddev),
7351 		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7352 			/ STRIPE_SIZE)*4);
7353 		return 0;
7354 	}
7355 	return 1;
7356 }
7357 
7358 static int check_reshape(struct mddev *mddev)
7359 {
7360 	struct r5conf *conf = mddev->private;
7361 
7362 	if (conf->log)
7363 		return -EINVAL;
7364 	if (mddev->delta_disks == 0 &&
7365 	    mddev->new_layout == mddev->layout &&
7366 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7367 		return 0; /* nothing to do */
7368 	if (has_failed(conf))
7369 		return -EINVAL;
7370 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7371 		/* We might be able to shrink, but the devices must
7372 		 * be made bigger first.
7373 		 * For raid6, 4 is the minimum size.
7374 		 * Otherwise 2 is the minimum
7375 		 */
7376 		int min = 2;
7377 		if (mddev->level == 6)
7378 			min = 4;
7379 		if (mddev->raid_disks + mddev->delta_disks < min)
7380 			return -EINVAL;
7381 	}
7382 
7383 	if (!check_stripe_cache(mddev))
7384 		return -ENOSPC;
7385 
7386 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7387 	    mddev->delta_disks > 0)
7388 		if (resize_chunks(conf,
7389 				  conf->previous_raid_disks
7390 				  + max(0, mddev->delta_disks),
7391 				  max(mddev->new_chunk_sectors,
7392 				      mddev->chunk_sectors)
7393 			    ) < 0)
7394 			return -ENOMEM;
7395 	return resize_stripes(conf, (conf->previous_raid_disks
7396 				     + mddev->delta_disks));
7397 }
7398 
7399 static int raid5_start_reshape(struct mddev *mddev)
7400 {
7401 	struct r5conf *conf = mddev->private;
7402 	struct md_rdev *rdev;
7403 	int spares = 0;
7404 	unsigned long flags;
7405 
7406 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7407 		return -EBUSY;
7408 
7409 	if (!check_stripe_cache(mddev))
7410 		return -ENOSPC;
7411 
7412 	if (has_failed(conf))
7413 		return -EINVAL;
7414 
7415 	rdev_for_each(rdev, mddev) {
7416 		if (!test_bit(In_sync, &rdev->flags)
7417 		    && !test_bit(Faulty, &rdev->flags))
7418 			spares++;
7419 	}
7420 
7421 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7422 		/* Not enough devices even to make a degraded array
7423 		 * of that size
7424 		 */
7425 		return -EINVAL;
7426 
7427 	/* Refuse to reduce size of the array.  Any reductions in
7428 	 * array size must be through explicit setting of array_size
7429 	 * attribute.
7430 	 */
7431 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7432 	    < mddev->array_sectors) {
7433 		printk(KERN_ERR "md/raid:%s: array size must be reduced "
7434 		       "before number of disks\n", mdname(mddev));
7435 		return -EINVAL;
7436 	}
7437 
7438 	atomic_set(&conf->reshape_stripes, 0);
7439 	spin_lock_irq(&conf->device_lock);
7440 	write_seqcount_begin(&conf->gen_lock);
7441 	conf->previous_raid_disks = conf->raid_disks;
7442 	conf->raid_disks += mddev->delta_disks;
7443 	conf->prev_chunk_sectors = conf->chunk_sectors;
7444 	conf->chunk_sectors = mddev->new_chunk_sectors;
7445 	conf->prev_algo = conf->algorithm;
7446 	conf->algorithm = mddev->new_layout;
7447 	conf->generation++;
7448 	/* Code that selects data_offset needs to see the generation update
7449 	 * if reshape_progress has been set - so a memory barrier needed.
7450 	 */
7451 	smp_mb();
7452 	if (mddev->reshape_backwards)
7453 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7454 	else
7455 		conf->reshape_progress = 0;
7456 	conf->reshape_safe = conf->reshape_progress;
7457 	write_seqcount_end(&conf->gen_lock);
7458 	spin_unlock_irq(&conf->device_lock);
7459 
7460 	/* Now make sure any requests that proceeded on the assumption
7461 	 * the reshape wasn't running - like Discard or Read - have
7462 	 * completed.
7463 	 */
7464 	mddev_suspend(mddev);
7465 	mddev_resume(mddev);
7466 
7467 	/* Add some new drives, as many as will fit.
7468 	 * We know there are enough to make the newly sized array work.
7469 	 * Don't add devices if we are reducing the number of
7470 	 * devices in the array.  This is because it is not possible
7471 	 * to correctly record the "partially reconstructed" state of
7472 	 * such devices during the reshape and confusion could result.
7473 	 */
7474 	if (mddev->delta_disks >= 0) {
7475 		rdev_for_each(rdev, mddev)
7476 			if (rdev->raid_disk < 0 &&
7477 			    !test_bit(Faulty, &rdev->flags)) {
7478 				if (raid5_add_disk(mddev, rdev) == 0) {
7479 					if (rdev->raid_disk
7480 					    >= conf->previous_raid_disks)
7481 						set_bit(In_sync, &rdev->flags);
7482 					else
7483 						rdev->recovery_offset = 0;
7484 
7485 					if (sysfs_link_rdev(mddev, rdev))
7486 						/* Failure here is OK */;
7487 				}
7488 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7489 				   && !test_bit(Faulty, &rdev->flags)) {
7490 				/* This is a spare that was manually added */
7491 				set_bit(In_sync, &rdev->flags);
7492 			}
7493 
7494 		/* When a reshape changes the number of devices,
7495 		 * ->degraded is measured against the larger of the
7496 		 * pre and post number of devices.
7497 		 */
7498 		spin_lock_irqsave(&conf->device_lock, flags);
7499 		mddev->degraded = calc_degraded(conf);
7500 		spin_unlock_irqrestore(&conf->device_lock, flags);
7501 	}
7502 	mddev->raid_disks = conf->raid_disks;
7503 	mddev->reshape_position = conf->reshape_progress;
7504 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7505 
7506 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7507 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7508 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7509 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7510 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7511 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7512 						"reshape");
7513 	if (!mddev->sync_thread) {
7514 		mddev->recovery = 0;
7515 		spin_lock_irq(&conf->device_lock);
7516 		write_seqcount_begin(&conf->gen_lock);
7517 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7518 		mddev->new_chunk_sectors =
7519 			conf->chunk_sectors = conf->prev_chunk_sectors;
7520 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7521 		rdev_for_each(rdev, mddev)
7522 			rdev->new_data_offset = rdev->data_offset;
7523 		smp_wmb();
7524 		conf->generation --;
7525 		conf->reshape_progress = MaxSector;
7526 		mddev->reshape_position = MaxSector;
7527 		write_seqcount_end(&conf->gen_lock);
7528 		spin_unlock_irq(&conf->device_lock);
7529 		return -EAGAIN;
7530 	}
7531 	conf->reshape_checkpoint = jiffies;
7532 	md_wakeup_thread(mddev->sync_thread);
7533 	md_new_event(mddev);
7534 	return 0;
7535 }
7536 
7537 /* This is called from the reshape thread and should make any
7538  * changes needed in 'conf'
7539  */
7540 static void end_reshape(struct r5conf *conf)
7541 {
7542 
7543 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7544 		struct md_rdev *rdev;
7545 
7546 		spin_lock_irq(&conf->device_lock);
7547 		conf->previous_raid_disks = conf->raid_disks;
7548 		rdev_for_each(rdev, conf->mddev)
7549 			rdev->data_offset = rdev->new_data_offset;
7550 		smp_wmb();
7551 		conf->reshape_progress = MaxSector;
7552 		conf->mddev->reshape_position = MaxSector;
7553 		spin_unlock_irq(&conf->device_lock);
7554 		wake_up(&conf->wait_for_overlap);
7555 
7556 		/* read-ahead size must cover two whole stripes, which is
7557 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7558 		 */
7559 		if (conf->mddev->queue) {
7560 			int data_disks = conf->raid_disks - conf->max_degraded;
7561 			int stripe = data_disks * ((conf->chunk_sectors << 9)
7562 						   / PAGE_SIZE);
7563 			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7564 				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7565 		}
7566 	}
7567 }
7568 
7569 /* This is called from the raid5d thread with mddev_lock held.
7570  * It makes config changes to the device.
7571  */
7572 static void raid5_finish_reshape(struct mddev *mddev)
7573 {
7574 	struct r5conf *conf = mddev->private;
7575 
7576 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7577 
7578 		if (mddev->delta_disks > 0) {
7579 			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7580 			if (mddev->queue) {
7581 				set_capacity(mddev->gendisk, mddev->array_sectors);
7582 				revalidate_disk(mddev->gendisk);
7583 			}
7584 		} else {
7585 			int d;
7586 			spin_lock_irq(&conf->device_lock);
7587 			mddev->degraded = calc_degraded(conf);
7588 			spin_unlock_irq(&conf->device_lock);
7589 			for (d = conf->raid_disks ;
7590 			     d < conf->raid_disks - mddev->delta_disks;
7591 			     d++) {
7592 				struct md_rdev *rdev = conf->disks[d].rdev;
7593 				if (rdev)
7594 					clear_bit(In_sync, &rdev->flags);
7595 				rdev = conf->disks[d].replacement;
7596 				if (rdev)
7597 					clear_bit(In_sync, &rdev->flags);
7598 			}
7599 		}
7600 		mddev->layout = conf->algorithm;
7601 		mddev->chunk_sectors = conf->chunk_sectors;
7602 		mddev->reshape_position = MaxSector;
7603 		mddev->delta_disks = 0;
7604 		mddev->reshape_backwards = 0;
7605 	}
7606 }
7607 
7608 static void raid5_quiesce(struct mddev *mddev, int state)
7609 {
7610 	struct r5conf *conf = mddev->private;
7611 
7612 	switch(state) {
7613 	case 2: /* resume for a suspend */
7614 		wake_up(&conf->wait_for_overlap);
7615 		break;
7616 
7617 	case 1: /* stop all writes */
7618 		lock_all_device_hash_locks_irq(conf);
7619 		/* '2' tells resync/reshape to pause so that all
7620 		 * active stripes can drain
7621 		 */
7622 		conf->quiesce = 2;
7623 		wait_event_cmd(conf->wait_for_quiescent,
7624 				    atomic_read(&conf->active_stripes) == 0 &&
7625 				    atomic_read(&conf->active_aligned_reads) == 0,
7626 				    unlock_all_device_hash_locks_irq(conf),
7627 				    lock_all_device_hash_locks_irq(conf));
7628 		conf->quiesce = 1;
7629 		unlock_all_device_hash_locks_irq(conf);
7630 		/* allow reshape to continue */
7631 		wake_up(&conf->wait_for_overlap);
7632 		break;
7633 
7634 	case 0: /* re-enable writes */
7635 		lock_all_device_hash_locks_irq(conf);
7636 		conf->quiesce = 0;
7637 		wake_up(&conf->wait_for_quiescent);
7638 		wake_up(&conf->wait_for_overlap);
7639 		unlock_all_device_hash_locks_irq(conf);
7640 		break;
7641 	}
7642 	r5l_quiesce(conf->log, state);
7643 }
7644 
7645 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7646 {
7647 	struct r0conf *raid0_conf = mddev->private;
7648 	sector_t sectors;
7649 
7650 	/* for raid0 takeover only one zone is supported */
7651 	if (raid0_conf->nr_strip_zones > 1) {
7652 		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7653 		       mdname(mddev));
7654 		return ERR_PTR(-EINVAL);
7655 	}
7656 
7657 	sectors = raid0_conf->strip_zone[0].zone_end;
7658 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7659 	mddev->dev_sectors = sectors;
7660 	mddev->new_level = level;
7661 	mddev->new_layout = ALGORITHM_PARITY_N;
7662 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7663 	mddev->raid_disks += 1;
7664 	mddev->delta_disks = 1;
7665 	/* make sure it will be not marked as dirty */
7666 	mddev->recovery_cp = MaxSector;
7667 
7668 	return setup_conf(mddev);
7669 }
7670 
7671 static void *raid5_takeover_raid1(struct mddev *mddev)
7672 {
7673 	int chunksect;
7674 
7675 	if (mddev->raid_disks != 2 ||
7676 	    mddev->degraded > 1)
7677 		return ERR_PTR(-EINVAL);
7678 
7679 	/* Should check if there are write-behind devices? */
7680 
7681 	chunksect = 64*2; /* 64K by default */
7682 
7683 	/* The array must be an exact multiple of chunksize */
7684 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
7685 		chunksect >>= 1;
7686 
7687 	if ((chunksect<<9) < STRIPE_SIZE)
7688 		/* array size does not allow a suitable chunk size */
7689 		return ERR_PTR(-EINVAL);
7690 
7691 	mddev->new_level = 5;
7692 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7693 	mddev->new_chunk_sectors = chunksect;
7694 
7695 	return setup_conf(mddev);
7696 }
7697 
7698 static void *raid5_takeover_raid6(struct mddev *mddev)
7699 {
7700 	int new_layout;
7701 
7702 	switch (mddev->layout) {
7703 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7704 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7705 		break;
7706 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7707 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7708 		break;
7709 	case ALGORITHM_LEFT_SYMMETRIC_6:
7710 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
7711 		break;
7712 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7713 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7714 		break;
7715 	case ALGORITHM_PARITY_0_6:
7716 		new_layout = ALGORITHM_PARITY_0;
7717 		break;
7718 	case ALGORITHM_PARITY_N:
7719 		new_layout = ALGORITHM_PARITY_N;
7720 		break;
7721 	default:
7722 		return ERR_PTR(-EINVAL);
7723 	}
7724 	mddev->new_level = 5;
7725 	mddev->new_layout = new_layout;
7726 	mddev->delta_disks = -1;
7727 	mddev->raid_disks -= 1;
7728 	return setup_conf(mddev);
7729 }
7730 
7731 static int raid5_check_reshape(struct mddev *mddev)
7732 {
7733 	/* For a 2-drive array, the layout and chunk size can be changed
7734 	 * immediately as not restriping is needed.
7735 	 * For larger arrays we record the new value - after validation
7736 	 * to be used by a reshape pass.
7737 	 */
7738 	struct r5conf *conf = mddev->private;
7739 	int new_chunk = mddev->new_chunk_sectors;
7740 
7741 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7742 		return -EINVAL;
7743 	if (new_chunk > 0) {
7744 		if (!is_power_of_2(new_chunk))
7745 			return -EINVAL;
7746 		if (new_chunk < (PAGE_SIZE>>9))
7747 			return -EINVAL;
7748 		if (mddev->array_sectors & (new_chunk-1))
7749 			/* not factor of array size */
7750 			return -EINVAL;
7751 	}
7752 
7753 	/* They look valid */
7754 
7755 	if (mddev->raid_disks == 2) {
7756 		/* can make the change immediately */
7757 		if (mddev->new_layout >= 0) {
7758 			conf->algorithm = mddev->new_layout;
7759 			mddev->layout = mddev->new_layout;
7760 		}
7761 		if (new_chunk > 0) {
7762 			conf->chunk_sectors = new_chunk ;
7763 			mddev->chunk_sectors = new_chunk;
7764 		}
7765 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7766 		md_wakeup_thread(mddev->thread);
7767 	}
7768 	return check_reshape(mddev);
7769 }
7770 
7771 static int raid6_check_reshape(struct mddev *mddev)
7772 {
7773 	int new_chunk = mddev->new_chunk_sectors;
7774 
7775 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7776 		return -EINVAL;
7777 	if (new_chunk > 0) {
7778 		if (!is_power_of_2(new_chunk))
7779 			return -EINVAL;
7780 		if (new_chunk < (PAGE_SIZE >> 9))
7781 			return -EINVAL;
7782 		if (mddev->array_sectors & (new_chunk-1))
7783 			/* not factor of array size */
7784 			return -EINVAL;
7785 	}
7786 
7787 	/* They look valid */
7788 	return check_reshape(mddev);
7789 }
7790 
7791 static void *raid5_takeover(struct mddev *mddev)
7792 {
7793 	/* raid5 can take over:
7794 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
7795 	 *  raid1 - if there are two drives.  We need to know the chunk size
7796 	 *  raid4 - trivial - just use a raid4 layout.
7797 	 *  raid6 - Providing it is a *_6 layout
7798 	 */
7799 	if (mddev->level == 0)
7800 		return raid45_takeover_raid0(mddev, 5);
7801 	if (mddev->level == 1)
7802 		return raid5_takeover_raid1(mddev);
7803 	if (mddev->level == 4) {
7804 		mddev->new_layout = ALGORITHM_PARITY_N;
7805 		mddev->new_level = 5;
7806 		return setup_conf(mddev);
7807 	}
7808 	if (mddev->level == 6)
7809 		return raid5_takeover_raid6(mddev);
7810 
7811 	return ERR_PTR(-EINVAL);
7812 }
7813 
7814 static void *raid4_takeover(struct mddev *mddev)
7815 {
7816 	/* raid4 can take over:
7817 	 *  raid0 - if there is only one strip zone
7818 	 *  raid5 - if layout is right
7819 	 */
7820 	if (mddev->level == 0)
7821 		return raid45_takeover_raid0(mddev, 4);
7822 	if (mddev->level == 5 &&
7823 	    mddev->layout == ALGORITHM_PARITY_N) {
7824 		mddev->new_layout = 0;
7825 		mddev->new_level = 4;
7826 		return setup_conf(mddev);
7827 	}
7828 	return ERR_PTR(-EINVAL);
7829 }
7830 
7831 static struct md_personality raid5_personality;
7832 
7833 static void *raid6_takeover(struct mddev *mddev)
7834 {
7835 	/* Currently can only take over a raid5.  We map the
7836 	 * personality to an equivalent raid6 personality
7837 	 * with the Q block at the end.
7838 	 */
7839 	int new_layout;
7840 
7841 	if (mddev->pers != &raid5_personality)
7842 		return ERR_PTR(-EINVAL);
7843 	if (mddev->degraded > 1)
7844 		return ERR_PTR(-EINVAL);
7845 	if (mddev->raid_disks > 253)
7846 		return ERR_PTR(-EINVAL);
7847 	if (mddev->raid_disks < 3)
7848 		return ERR_PTR(-EINVAL);
7849 
7850 	switch (mddev->layout) {
7851 	case ALGORITHM_LEFT_ASYMMETRIC:
7852 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7853 		break;
7854 	case ALGORITHM_RIGHT_ASYMMETRIC:
7855 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7856 		break;
7857 	case ALGORITHM_LEFT_SYMMETRIC:
7858 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7859 		break;
7860 	case ALGORITHM_RIGHT_SYMMETRIC:
7861 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7862 		break;
7863 	case ALGORITHM_PARITY_0:
7864 		new_layout = ALGORITHM_PARITY_0_6;
7865 		break;
7866 	case ALGORITHM_PARITY_N:
7867 		new_layout = ALGORITHM_PARITY_N;
7868 		break;
7869 	default:
7870 		return ERR_PTR(-EINVAL);
7871 	}
7872 	mddev->new_level = 6;
7873 	mddev->new_layout = new_layout;
7874 	mddev->delta_disks = 1;
7875 	mddev->raid_disks += 1;
7876 	return setup_conf(mddev);
7877 }
7878 
7879 static struct md_personality raid6_personality =
7880 {
7881 	.name		= "raid6",
7882 	.level		= 6,
7883 	.owner		= THIS_MODULE,
7884 	.make_request	= raid5_make_request,
7885 	.run		= raid5_run,
7886 	.free		= raid5_free,
7887 	.status		= raid5_status,
7888 	.error_handler	= raid5_error,
7889 	.hot_add_disk	= raid5_add_disk,
7890 	.hot_remove_disk= raid5_remove_disk,
7891 	.spare_active	= raid5_spare_active,
7892 	.sync_request	= raid5_sync_request,
7893 	.resize		= raid5_resize,
7894 	.size		= raid5_size,
7895 	.check_reshape	= raid6_check_reshape,
7896 	.start_reshape  = raid5_start_reshape,
7897 	.finish_reshape = raid5_finish_reshape,
7898 	.quiesce	= raid5_quiesce,
7899 	.takeover	= raid6_takeover,
7900 	.congested	= raid5_congested,
7901 };
7902 static struct md_personality raid5_personality =
7903 {
7904 	.name		= "raid5",
7905 	.level		= 5,
7906 	.owner		= THIS_MODULE,
7907 	.make_request	= raid5_make_request,
7908 	.run		= raid5_run,
7909 	.free		= raid5_free,
7910 	.status		= raid5_status,
7911 	.error_handler	= raid5_error,
7912 	.hot_add_disk	= raid5_add_disk,
7913 	.hot_remove_disk= raid5_remove_disk,
7914 	.spare_active	= raid5_spare_active,
7915 	.sync_request	= raid5_sync_request,
7916 	.resize		= raid5_resize,
7917 	.size		= raid5_size,
7918 	.check_reshape	= raid5_check_reshape,
7919 	.start_reshape  = raid5_start_reshape,
7920 	.finish_reshape = raid5_finish_reshape,
7921 	.quiesce	= raid5_quiesce,
7922 	.takeover	= raid5_takeover,
7923 	.congested	= raid5_congested,
7924 };
7925 
7926 static struct md_personality raid4_personality =
7927 {
7928 	.name		= "raid4",
7929 	.level		= 4,
7930 	.owner		= THIS_MODULE,
7931 	.make_request	= raid5_make_request,
7932 	.run		= raid5_run,
7933 	.free		= raid5_free,
7934 	.status		= raid5_status,
7935 	.error_handler	= raid5_error,
7936 	.hot_add_disk	= raid5_add_disk,
7937 	.hot_remove_disk= raid5_remove_disk,
7938 	.spare_active	= raid5_spare_active,
7939 	.sync_request	= raid5_sync_request,
7940 	.resize		= raid5_resize,
7941 	.size		= raid5_size,
7942 	.check_reshape	= raid5_check_reshape,
7943 	.start_reshape  = raid5_start_reshape,
7944 	.finish_reshape = raid5_finish_reshape,
7945 	.quiesce	= raid5_quiesce,
7946 	.takeover	= raid4_takeover,
7947 	.congested	= raid5_congested,
7948 };
7949 
7950 static int __init raid5_init(void)
7951 {
7952 	int ret;
7953 
7954 	raid5_wq = alloc_workqueue("raid5wq",
7955 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7956 	if (!raid5_wq)
7957 		return -ENOMEM;
7958 
7959 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
7960 				      "md/raid5:prepare",
7961 				      raid456_cpu_up_prepare,
7962 				      raid456_cpu_dead);
7963 	if (ret) {
7964 		destroy_workqueue(raid5_wq);
7965 		return ret;
7966 	}
7967 	register_md_personality(&raid6_personality);
7968 	register_md_personality(&raid5_personality);
7969 	register_md_personality(&raid4_personality);
7970 	return 0;
7971 }
7972 
7973 static void raid5_exit(void)
7974 {
7975 	unregister_md_personality(&raid6_personality);
7976 	unregister_md_personality(&raid5_personality);
7977 	unregister_md_personality(&raid4_personality);
7978 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
7979 	destroy_workqueue(raid5_wq);
7980 }
7981 
7982 module_init(raid5_init);
7983 module_exit(raid5_exit);
7984 MODULE_LICENSE("GPL");
7985 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7986 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7987 MODULE_ALIAS("md-raid5");
7988 MODULE_ALIAS("md-raid4");
7989 MODULE_ALIAS("md-level-5");
7990 MODULE_ALIAS("md-level-4");
7991 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7992 MODULE_ALIAS("md-raid6");
7993 MODULE_ALIAS("md-level-6");
7994 
7995 /* This used to be two separate modules, they were: */
7996 MODULE_ALIAS("raid5");
7997 MODULE_ALIAS("raid6");
7998