1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * Copyright (C) 2002, 2003 H. Peter Anvin 6 * 7 * RAID-4/5/6 management functions. 8 * Thanks to Penguin Computing for making the RAID-6 development possible 9 * by donating a test server! 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 /* 22 * BITMAP UNPLUGGING: 23 * 24 * The sequencing for updating the bitmap reliably is a little 25 * subtle (and I got it wrong the first time) so it deserves some 26 * explanation. 27 * 28 * We group bitmap updates into batches. Each batch has a number. 29 * We may write out several batches at once, but that isn't very important. 30 * conf->seq_write is the number of the last batch successfully written. 31 * conf->seq_flush is the number of the last batch that was closed to 32 * new additions. 33 * When we discover that we will need to write to any block in a stripe 34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq 35 * the number of the batch it will be in. This is seq_flush+1. 36 * When we are ready to do a write, if that batch hasn't been written yet, 37 * we plug the array and queue the stripe for later. 38 * When an unplug happens, we increment bm_flush, thus closing the current 39 * batch. 40 * When we notice that bm_flush > bm_write, we write out all pending updates 41 * to the bitmap, and advance bm_write to where bm_flush was. 42 * This may occasionally write a bit out twice, but is sure never to 43 * miss any bits. 44 */ 45 46 #include <linux/blkdev.h> 47 #include <linux/kthread.h> 48 #include <linux/raid/pq.h> 49 #include <linux/async_tx.h> 50 #include <linux/module.h> 51 #include <linux/async.h> 52 #include <linux/seq_file.h> 53 #include <linux/cpu.h> 54 #include <linux/slab.h> 55 #include <linux/ratelimit.h> 56 #include <linux/nodemask.h> 57 #include <linux/flex_array.h> 58 #include <trace/events/block.h> 59 60 #include "md.h" 61 #include "raid5.h" 62 #include "raid0.h" 63 #include "bitmap.h" 64 65 #define cpu_to_group(cpu) cpu_to_node(cpu) 66 #define ANY_GROUP NUMA_NO_NODE 67 68 static bool devices_handle_discard_safely = false; 69 module_param(devices_handle_discard_safely, bool, 0644); 70 MODULE_PARM_DESC(devices_handle_discard_safely, 71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); 72 static struct workqueue_struct *raid5_wq; 73 /* 74 * Stripe cache 75 */ 76 77 #define NR_STRIPES 256 78 #define STRIPE_SIZE PAGE_SIZE 79 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 80 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 81 #define IO_THRESHOLD 1 82 #define BYPASS_THRESHOLD 1 83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head)) 84 #define HASH_MASK (NR_HASH - 1) 85 #define MAX_STRIPE_BATCH 8 86 87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) 88 { 89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; 90 return &conf->stripe_hashtbl[hash]; 91 } 92 93 static inline int stripe_hash_locks_hash(sector_t sect) 94 { 95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; 96 } 97 98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash) 99 { 100 spin_lock_irq(conf->hash_locks + hash); 101 spin_lock(&conf->device_lock); 102 } 103 104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) 105 { 106 spin_unlock(&conf->device_lock); 107 spin_unlock_irq(conf->hash_locks + hash); 108 } 109 110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) 111 { 112 int i; 113 local_irq_disable(); 114 spin_lock(conf->hash_locks); 115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); 117 spin_lock(&conf->device_lock); 118 } 119 120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) 121 { 122 int i; 123 spin_unlock(&conf->device_lock); 124 for (i = NR_STRIPE_HASH_LOCKS; i; i--) 125 spin_unlock(conf->hash_locks + i - 1); 126 local_irq_enable(); 127 } 128 129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 130 * order without overlap. There may be several bio's per stripe+device, and 131 * a bio could span several devices. 132 * When walking this list for a particular stripe+device, we must never proceed 133 * beyond a bio that extends past this device, as the next bio might no longer 134 * be valid. 135 * This function is used to determine the 'next' bio in the list, given the sector 136 * of the current stripe+device 137 */ 138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector) 139 { 140 int sectors = bio_sectors(bio); 141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS) 142 return bio->bi_next; 143 else 144 return NULL; 145 } 146 147 /* 148 * We maintain a biased count of active stripes in the bottom 16 bits of 149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits 150 */ 151 static inline int raid5_bi_processed_stripes(struct bio *bio) 152 { 153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 154 return (atomic_read(segments) >> 16) & 0xffff; 155 } 156 157 static inline int raid5_dec_bi_active_stripes(struct bio *bio) 158 { 159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 160 return atomic_sub_return(1, segments) & 0xffff; 161 } 162 163 static inline void raid5_inc_bi_active_stripes(struct bio *bio) 164 { 165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 166 atomic_inc(segments); 167 } 168 169 static inline void raid5_set_bi_processed_stripes(struct bio *bio, 170 unsigned int cnt) 171 { 172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 173 int old, new; 174 175 do { 176 old = atomic_read(segments); 177 new = (old & 0xffff) | (cnt << 16); 178 } while (atomic_cmpxchg(segments, old, new) != old); 179 } 180 181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt) 182 { 183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments; 184 atomic_set(segments, cnt); 185 } 186 187 /* Find first data disk in a raid6 stripe */ 188 static inline int raid6_d0(struct stripe_head *sh) 189 { 190 if (sh->ddf_layout) 191 /* ddf always start from first device */ 192 return 0; 193 /* md starts just after Q block */ 194 if (sh->qd_idx == sh->disks - 1) 195 return 0; 196 else 197 return sh->qd_idx + 1; 198 } 199 static inline int raid6_next_disk(int disk, int raid_disks) 200 { 201 disk++; 202 return (disk < raid_disks) ? disk : 0; 203 } 204 205 /* When walking through the disks in a raid5, starting at raid6_d0, 206 * We need to map each disk to a 'slot', where the data disks are slot 207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk 208 * is raid_disks-1. This help does that mapping. 209 */ 210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, 211 int *count, int syndrome_disks) 212 { 213 int slot = *count; 214 215 if (sh->ddf_layout) 216 (*count)++; 217 if (idx == sh->pd_idx) 218 return syndrome_disks; 219 if (idx == sh->qd_idx) 220 return syndrome_disks + 1; 221 if (!sh->ddf_layout) 222 (*count)++; 223 return slot; 224 } 225 226 static void return_io(struct bio_list *return_bi) 227 { 228 struct bio *bi; 229 while ((bi = bio_list_pop(return_bi)) != NULL) { 230 bi->bi_iter.bi_size = 0; 231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 232 bi, 0); 233 bio_endio(bi); 234 } 235 } 236 237 static void print_raid5_conf (struct r5conf *conf); 238 239 static int stripe_operations_active(struct stripe_head *sh) 240 { 241 return sh->check_state || sh->reconstruct_state || 242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) || 243 test_bit(STRIPE_COMPUTE_RUN, &sh->state); 244 } 245 246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh) 247 { 248 struct r5conf *conf = sh->raid_conf; 249 struct r5worker_group *group; 250 int thread_cnt; 251 int i, cpu = sh->cpu; 252 253 if (!cpu_online(cpu)) { 254 cpu = cpumask_any(cpu_online_mask); 255 sh->cpu = cpu; 256 } 257 258 if (list_empty(&sh->lru)) { 259 struct r5worker_group *group; 260 group = conf->worker_groups + cpu_to_group(cpu); 261 list_add_tail(&sh->lru, &group->handle_list); 262 group->stripes_cnt++; 263 sh->group = group; 264 } 265 266 if (conf->worker_cnt_per_group == 0) { 267 md_wakeup_thread(conf->mddev->thread); 268 return; 269 } 270 271 group = conf->worker_groups + cpu_to_group(sh->cpu); 272 273 group->workers[0].working = true; 274 /* at least one worker should run to avoid race */ 275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); 276 277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; 278 /* wakeup more workers */ 279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { 280 if (group->workers[i].working == false) { 281 group->workers[i].working = true; 282 queue_work_on(sh->cpu, raid5_wq, 283 &group->workers[i].work); 284 thread_cnt--; 285 } 286 } 287 } 288 289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, 290 struct list_head *temp_inactive_list) 291 { 292 BUG_ON(!list_empty(&sh->lru)); 293 BUG_ON(atomic_read(&conf->active_stripes)==0); 294 if (test_bit(STRIPE_HANDLE, &sh->state)) { 295 if (test_bit(STRIPE_DELAYED, &sh->state) && 296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 297 list_add_tail(&sh->lru, &conf->delayed_list); 298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && 299 sh->bm_seq - conf->seq_write > 0) 300 list_add_tail(&sh->lru, &conf->bitmap_list); 301 else { 302 clear_bit(STRIPE_DELAYED, &sh->state); 303 clear_bit(STRIPE_BIT_DELAY, &sh->state); 304 if (conf->worker_cnt_per_group == 0) { 305 list_add_tail(&sh->lru, &conf->handle_list); 306 } else { 307 raid5_wakeup_stripe_thread(sh); 308 return; 309 } 310 } 311 md_wakeup_thread(conf->mddev->thread); 312 } else { 313 BUG_ON(stripe_operations_active(sh)); 314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 315 if (atomic_dec_return(&conf->preread_active_stripes) 316 < IO_THRESHOLD) 317 md_wakeup_thread(conf->mddev->thread); 318 atomic_dec(&conf->active_stripes); 319 if (!test_bit(STRIPE_EXPANDING, &sh->state)) 320 list_add_tail(&sh->lru, temp_inactive_list); 321 } 322 } 323 324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, 325 struct list_head *temp_inactive_list) 326 { 327 if (atomic_dec_and_test(&sh->count)) 328 do_release_stripe(conf, sh, temp_inactive_list); 329 } 330 331 /* 332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list 333 * 334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at 335 * given time. Adding stripes only takes device lock, while deleting stripes 336 * only takes hash lock. 337 */ 338 static void release_inactive_stripe_list(struct r5conf *conf, 339 struct list_head *temp_inactive_list, 340 int hash) 341 { 342 int size; 343 bool do_wakeup = false; 344 unsigned long flags; 345 346 if (hash == NR_STRIPE_HASH_LOCKS) { 347 size = NR_STRIPE_HASH_LOCKS; 348 hash = NR_STRIPE_HASH_LOCKS - 1; 349 } else 350 size = 1; 351 while (size) { 352 struct list_head *list = &temp_inactive_list[size - 1]; 353 354 /* 355 * We don't hold any lock here yet, raid5_get_active_stripe() might 356 * remove stripes from the list 357 */ 358 if (!list_empty_careful(list)) { 359 spin_lock_irqsave(conf->hash_locks + hash, flags); 360 if (list_empty(conf->inactive_list + hash) && 361 !list_empty(list)) 362 atomic_dec(&conf->empty_inactive_list_nr); 363 list_splice_tail_init(list, conf->inactive_list + hash); 364 do_wakeup = true; 365 spin_unlock_irqrestore(conf->hash_locks + hash, flags); 366 } 367 size--; 368 hash--; 369 } 370 371 if (do_wakeup) { 372 wake_up(&conf->wait_for_stripe); 373 if (atomic_read(&conf->active_stripes) == 0) 374 wake_up(&conf->wait_for_quiescent); 375 if (conf->retry_read_aligned) 376 md_wakeup_thread(conf->mddev->thread); 377 } 378 } 379 380 /* should hold conf->device_lock already */ 381 static int release_stripe_list(struct r5conf *conf, 382 struct list_head *temp_inactive_list) 383 { 384 struct stripe_head *sh; 385 int count = 0; 386 struct llist_node *head; 387 388 head = llist_del_all(&conf->released_stripes); 389 head = llist_reverse_order(head); 390 while (head) { 391 int hash; 392 393 sh = llist_entry(head, struct stripe_head, release_list); 394 head = llist_next(head); 395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ 396 smp_mb(); 397 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); 398 /* 399 * Don't worry the bit is set here, because if the bit is set 400 * again, the count is always > 1. This is true for 401 * STRIPE_ON_UNPLUG_LIST bit too. 402 */ 403 hash = sh->hash_lock_index; 404 __release_stripe(conf, sh, &temp_inactive_list[hash]); 405 count++; 406 } 407 408 return count; 409 } 410 411 void raid5_release_stripe(struct stripe_head *sh) 412 { 413 struct r5conf *conf = sh->raid_conf; 414 unsigned long flags; 415 struct list_head list; 416 int hash; 417 bool wakeup; 418 419 /* Avoid release_list until the last reference. 420 */ 421 if (atomic_add_unless(&sh->count, -1, 1)) 422 return; 423 424 if (unlikely(!conf->mddev->thread) || 425 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) 426 goto slow_path; 427 wakeup = llist_add(&sh->release_list, &conf->released_stripes); 428 if (wakeup) 429 md_wakeup_thread(conf->mddev->thread); 430 return; 431 slow_path: 432 local_irq_save(flags); 433 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ 434 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) { 435 INIT_LIST_HEAD(&list); 436 hash = sh->hash_lock_index; 437 do_release_stripe(conf, sh, &list); 438 spin_unlock(&conf->device_lock); 439 release_inactive_stripe_list(conf, &list, hash); 440 } 441 local_irq_restore(flags); 442 } 443 444 static inline void remove_hash(struct stripe_head *sh) 445 { 446 pr_debug("remove_hash(), stripe %llu\n", 447 (unsigned long long)sh->sector); 448 449 hlist_del_init(&sh->hash); 450 } 451 452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) 453 { 454 struct hlist_head *hp = stripe_hash(conf, sh->sector); 455 456 pr_debug("insert_hash(), stripe %llu\n", 457 (unsigned long long)sh->sector); 458 459 hlist_add_head(&sh->hash, hp); 460 } 461 462 /* find an idle stripe, make sure it is unhashed, and return it. */ 463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) 464 { 465 struct stripe_head *sh = NULL; 466 struct list_head *first; 467 468 if (list_empty(conf->inactive_list + hash)) 469 goto out; 470 first = (conf->inactive_list + hash)->next; 471 sh = list_entry(first, struct stripe_head, lru); 472 list_del_init(first); 473 remove_hash(sh); 474 atomic_inc(&conf->active_stripes); 475 BUG_ON(hash != sh->hash_lock_index); 476 if (list_empty(conf->inactive_list + hash)) 477 atomic_inc(&conf->empty_inactive_list_nr); 478 out: 479 return sh; 480 } 481 482 static void shrink_buffers(struct stripe_head *sh) 483 { 484 struct page *p; 485 int i; 486 int num = sh->raid_conf->pool_size; 487 488 for (i = 0; i < num ; i++) { 489 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); 490 p = sh->dev[i].page; 491 if (!p) 492 continue; 493 sh->dev[i].page = NULL; 494 put_page(p); 495 } 496 } 497 498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp) 499 { 500 int i; 501 int num = sh->raid_conf->pool_size; 502 503 for (i = 0; i < num; i++) { 504 struct page *page; 505 506 if (!(page = alloc_page(gfp))) { 507 return 1; 508 } 509 sh->dev[i].page = page; 510 sh->dev[i].orig_page = page; 511 } 512 return 0; 513 } 514 515 static void raid5_build_block(struct stripe_head *sh, int i, int previous); 516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 517 struct stripe_head *sh); 518 519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) 520 { 521 struct r5conf *conf = sh->raid_conf; 522 int i, seq; 523 524 BUG_ON(atomic_read(&sh->count) != 0); 525 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); 526 BUG_ON(stripe_operations_active(sh)); 527 BUG_ON(sh->batch_head); 528 529 pr_debug("init_stripe called, stripe %llu\n", 530 (unsigned long long)sector); 531 retry: 532 seq = read_seqcount_begin(&conf->gen_lock); 533 sh->generation = conf->generation - previous; 534 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; 535 sh->sector = sector; 536 stripe_set_idx(sector, conf, previous, sh); 537 sh->state = 0; 538 539 for (i = sh->disks; i--; ) { 540 struct r5dev *dev = &sh->dev[i]; 541 542 if (dev->toread || dev->read || dev->towrite || dev->written || 543 test_bit(R5_LOCKED, &dev->flags)) { 544 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n", 545 (unsigned long long)sh->sector, i, dev->toread, 546 dev->read, dev->towrite, dev->written, 547 test_bit(R5_LOCKED, &dev->flags)); 548 WARN_ON(1); 549 } 550 dev->flags = 0; 551 raid5_build_block(sh, i, previous); 552 } 553 if (read_seqcount_retry(&conf->gen_lock, seq)) 554 goto retry; 555 sh->overwrite_disks = 0; 556 insert_hash(conf, sh); 557 sh->cpu = smp_processor_id(); 558 set_bit(STRIPE_BATCH_READY, &sh->state); 559 } 560 561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, 562 short generation) 563 { 564 struct stripe_head *sh; 565 566 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); 567 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) 568 if (sh->sector == sector && sh->generation == generation) 569 return sh; 570 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); 571 return NULL; 572 } 573 574 /* 575 * Need to check if array has failed when deciding whether to: 576 * - start an array 577 * - remove non-faulty devices 578 * - add a spare 579 * - allow a reshape 580 * This determination is simple when no reshape is happening. 581 * However if there is a reshape, we need to carefully check 582 * both the before and after sections. 583 * This is because some failed devices may only affect one 584 * of the two sections, and some non-in_sync devices may 585 * be insync in the section most affected by failed devices. 586 */ 587 static int calc_degraded(struct r5conf *conf) 588 { 589 int degraded, degraded2; 590 int i; 591 592 rcu_read_lock(); 593 degraded = 0; 594 for (i = 0; i < conf->previous_raid_disks; i++) { 595 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 596 if (rdev && test_bit(Faulty, &rdev->flags)) 597 rdev = rcu_dereference(conf->disks[i].replacement); 598 if (!rdev || test_bit(Faulty, &rdev->flags)) 599 degraded++; 600 else if (test_bit(In_sync, &rdev->flags)) 601 ; 602 else 603 /* not in-sync or faulty. 604 * If the reshape increases the number of devices, 605 * this is being recovered by the reshape, so 606 * this 'previous' section is not in_sync. 607 * If the number of devices is being reduced however, 608 * the device can only be part of the array if 609 * we are reverting a reshape, so this section will 610 * be in-sync. 611 */ 612 if (conf->raid_disks >= conf->previous_raid_disks) 613 degraded++; 614 } 615 rcu_read_unlock(); 616 if (conf->raid_disks == conf->previous_raid_disks) 617 return degraded; 618 rcu_read_lock(); 619 degraded2 = 0; 620 for (i = 0; i < conf->raid_disks; i++) { 621 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 622 if (rdev && test_bit(Faulty, &rdev->flags)) 623 rdev = rcu_dereference(conf->disks[i].replacement); 624 if (!rdev || test_bit(Faulty, &rdev->flags)) 625 degraded2++; 626 else if (test_bit(In_sync, &rdev->flags)) 627 ; 628 else 629 /* not in-sync or faulty. 630 * If reshape increases the number of devices, this 631 * section has already been recovered, else it 632 * almost certainly hasn't. 633 */ 634 if (conf->raid_disks <= conf->previous_raid_disks) 635 degraded2++; 636 } 637 rcu_read_unlock(); 638 if (degraded2 > degraded) 639 return degraded2; 640 return degraded; 641 } 642 643 static int has_failed(struct r5conf *conf) 644 { 645 int degraded; 646 647 if (conf->mddev->reshape_position == MaxSector) 648 return conf->mddev->degraded > conf->max_degraded; 649 650 degraded = calc_degraded(conf); 651 if (degraded > conf->max_degraded) 652 return 1; 653 return 0; 654 } 655 656 struct stripe_head * 657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector, 658 int previous, int noblock, int noquiesce) 659 { 660 struct stripe_head *sh; 661 int hash = stripe_hash_locks_hash(sector); 662 int inc_empty_inactive_list_flag; 663 664 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); 665 666 spin_lock_irq(conf->hash_locks + hash); 667 668 do { 669 wait_event_lock_irq(conf->wait_for_quiescent, 670 conf->quiesce == 0 || noquiesce, 671 *(conf->hash_locks + hash)); 672 sh = __find_stripe(conf, sector, conf->generation - previous); 673 if (!sh) { 674 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { 675 sh = get_free_stripe(conf, hash); 676 if (!sh && !test_bit(R5_DID_ALLOC, 677 &conf->cache_state)) 678 set_bit(R5_ALLOC_MORE, 679 &conf->cache_state); 680 } 681 if (noblock && sh == NULL) 682 break; 683 if (!sh) { 684 set_bit(R5_INACTIVE_BLOCKED, 685 &conf->cache_state); 686 wait_event_lock_irq( 687 conf->wait_for_stripe, 688 !list_empty(conf->inactive_list + hash) && 689 (atomic_read(&conf->active_stripes) 690 < (conf->max_nr_stripes * 3 / 4) 691 || !test_bit(R5_INACTIVE_BLOCKED, 692 &conf->cache_state)), 693 *(conf->hash_locks + hash)); 694 clear_bit(R5_INACTIVE_BLOCKED, 695 &conf->cache_state); 696 } else { 697 init_stripe(sh, sector, previous); 698 atomic_inc(&sh->count); 699 } 700 } else if (!atomic_inc_not_zero(&sh->count)) { 701 spin_lock(&conf->device_lock); 702 if (!atomic_read(&sh->count)) { 703 if (!test_bit(STRIPE_HANDLE, &sh->state)) 704 atomic_inc(&conf->active_stripes); 705 BUG_ON(list_empty(&sh->lru) && 706 !test_bit(STRIPE_EXPANDING, &sh->state)); 707 inc_empty_inactive_list_flag = 0; 708 if (!list_empty(conf->inactive_list + hash)) 709 inc_empty_inactive_list_flag = 1; 710 list_del_init(&sh->lru); 711 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 712 atomic_inc(&conf->empty_inactive_list_nr); 713 if (sh->group) { 714 sh->group->stripes_cnt--; 715 sh->group = NULL; 716 } 717 } 718 atomic_inc(&sh->count); 719 spin_unlock(&conf->device_lock); 720 } 721 } while (sh == NULL); 722 723 spin_unlock_irq(conf->hash_locks + hash); 724 return sh; 725 } 726 727 static bool is_full_stripe_write(struct stripe_head *sh) 728 { 729 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); 730 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); 731 } 732 733 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 734 { 735 local_irq_disable(); 736 if (sh1 > sh2) { 737 spin_lock(&sh2->stripe_lock); 738 spin_lock_nested(&sh1->stripe_lock, 1); 739 } else { 740 spin_lock(&sh1->stripe_lock); 741 spin_lock_nested(&sh2->stripe_lock, 1); 742 } 743 } 744 745 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) 746 { 747 spin_unlock(&sh1->stripe_lock); 748 spin_unlock(&sh2->stripe_lock); 749 local_irq_enable(); 750 } 751 752 /* Only freshly new full stripe normal write stripe can be added to a batch list */ 753 static bool stripe_can_batch(struct stripe_head *sh) 754 { 755 struct r5conf *conf = sh->raid_conf; 756 757 if (conf->log) 758 return false; 759 return test_bit(STRIPE_BATCH_READY, &sh->state) && 760 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && 761 is_full_stripe_write(sh); 762 } 763 764 /* we only do back search */ 765 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) 766 { 767 struct stripe_head *head; 768 sector_t head_sector, tmp_sec; 769 int hash; 770 int dd_idx; 771 int inc_empty_inactive_list_flag; 772 773 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ 774 tmp_sec = sh->sector; 775 if (!sector_div(tmp_sec, conf->chunk_sectors)) 776 return; 777 head_sector = sh->sector - STRIPE_SECTORS; 778 779 hash = stripe_hash_locks_hash(head_sector); 780 spin_lock_irq(conf->hash_locks + hash); 781 head = __find_stripe(conf, head_sector, conf->generation); 782 if (head && !atomic_inc_not_zero(&head->count)) { 783 spin_lock(&conf->device_lock); 784 if (!atomic_read(&head->count)) { 785 if (!test_bit(STRIPE_HANDLE, &head->state)) 786 atomic_inc(&conf->active_stripes); 787 BUG_ON(list_empty(&head->lru) && 788 !test_bit(STRIPE_EXPANDING, &head->state)); 789 inc_empty_inactive_list_flag = 0; 790 if (!list_empty(conf->inactive_list + hash)) 791 inc_empty_inactive_list_flag = 1; 792 list_del_init(&head->lru); 793 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) 794 atomic_inc(&conf->empty_inactive_list_nr); 795 if (head->group) { 796 head->group->stripes_cnt--; 797 head->group = NULL; 798 } 799 } 800 atomic_inc(&head->count); 801 spin_unlock(&conf->device_lock); 802 } 803 spin_unlock_irq(conf->hash_locks + hash); 804 805 if (!head) 806 return; 807 if (!stripe_can_batch(head)) 808 goto out; 809 810 lock_two_stripes(head, sh); 811 /* clear_batch_ready clear the flag */ 812 if (!stripe_can_batch(head) || !stripe_can_batch(sh)) 813 goto unlock_out; 814 815 if (sh->batch_head) 816 goto unlock_out; 817 818 dd_idx = 0; 819 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) 820 dd_idx++; 821 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || 822 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) 823 goto unlock_out; 824 825 if (head->batch_head) { 826 spin_lock(&head->batch_head->batch_lock); 827 /* This batch list is already running */ 828 if (!stripe_can_batch(head)) { 829 spin_unlock(&head->batch_head->batch_lock); 830 goto unlock_out; 831 } 832 833 /* 834 * at this point, head's BATCH_READY could be cleared, but we 835 * can still add the stripe to batch list 836 */ 837 list_add(&sh->batch_list, &head->batch_list); 838 spin_unlock(&head->batch_head->batch_lock); 839 840 sh->batch_head = head->batch_head; 841 } else { 842 head->batch_head = head; 843 sh->batch_head = head->batch_head; 844 spin_lock(&head->batch_lock); 845 list_add_tail(&sh->batch_list, &head->batch_list); 846 spin_unlock(&head->batch_lock); 847 } 848 849 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 850 if (atomic_dec_return(&conf->preread_active_stripes) 851 < IO_THRESHOLD) 852 md_wakeup_thread(conf->mddev->thread); 853 854 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { 855 int seq = sh->bm_seq; 856 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && 857 sh->batch_head->bm_seq > seq) 858 seq = sh->batch_head->bm_seq; 859 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); 860 sh->batch_head->bm_seq = seq; 861 } 862 863 atomic_inc(&sh->count); 864 unlock_out: 865 unlock_two_stripes(head, sh); 866 out: 867 raid5_release_stripe(head); 868 } 869 870 /* Determine if 'data_offset' or 'new_data_offset' should be used 871 * in this stripe_head. 872 */ 873 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) 874 { 875 sector_t progress = conf->reshape_progress; 876 /* Need a memory barrier to make sure we see the value 877 * of conf->generation, or ->data_offset that was set before 878 * reshape_progress was updated. 879 */ 880 smp_rmb(); 881 if (progress == MaxSector) 882 return 0; 883 if (sh->generation == conf->generation - 1) 884 return 0; 885 /* We are in a reshape, and this is a new-generation stripe, 886 * so use new_data_offset. 887 */ 888 return 1; 889 } 890 891 static void 892 raid5_end_read_request(struct bio *bi); 893 static void 894 raid5_end_write_request(struct bio *bi); 895 896 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) 897 { 898 struct r5conf *conf = sh->raid_conf; 899 int i, disks = sh->disks; 900 struct stripe_head *head_sh = sh; 901 902 might_sleep(); 903 904 if (r5l_write_stripe(conf->log, sh) == 0) 905 return; 906 for (i = disks; i--; ) { 907 int op, op_flags = 0; 908 int replace_only = 0; 909 struct bio *bi, *rbi; 910 struct md_rdev *rdev, *rrdev = NULL; 911 912 sh = head_sh; 913 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { 914 op = REQ_OP_WRITE; 915 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) 916 op_flags = REQ_FUA; 917 if (test_bit(R5_Discard, &sh->dev[i].flags)) 918 op = REQ_OP_DISCARD; 919 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 920 op = REQ_OP_READ; 921 else if (test_and_clear_bit(R5_WantReplace, 922 &sh->dev[i].flags)) { 923 op = REQ_OP_WRITE; 924 replace_only = 1; 925 } else 926 continue; 927 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) 928 op_flags |= REQ_SYNC; 929 930 again: 931 bi = &sh->dev[i].req; 932 rbi = &sh->dev[i].rreq; /* For writing to replacement */ 933 934 rcu_read_lock(); 935 rrdev = rcu_dereference(conf->disks[i].replacement); 936 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ 937 rdev = rcu_dereference(conf->disks[i].rdev); 938 if (!rdev) { 939 rdev = rrdev; 940 rrdev = NULL; 941 } 942 if (op_is_write(op)) { 943 if (replace_only) 944 rdev = NULL; 945 if (rdev == rrdev) 946 /* We raced and saw duplicates */ 947 rrdev = NULL; 948 } else { 949 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) 950 rdev = rrdev; 951 rrdev = NULL; 952 } 953 954 if (rdev && test_bit(Faulty, &rdev->flags)) 955 rdev = NULL; 956 if (rdev) 957 atomic_inc(&rdev->nr_pending); 958 if (rrdev && test_bit(Faulty, &rrdev->flags)) 959 rrdev = NULL; 960 if (rrdev) 961 atomic_inc(&rrdev->nr_pending); 962 rcu_read_unlock(); 963 964 /* We have already checked bad blocks for reads. Now 965 * need to check for writes. We never accept write errors 966 * on the replacement, so we don't to check rrdev. 967 */ 968 while (op_is_write(op) && rdev && 969 test_bit(WriteErrorSeen, &rdev->flags)) { 970 sector_t first_bad; 971 int bad_sectors; 972 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 973 &first_bad, &bad_sectors); 974 if (!bad) 975 break; 976 977 if (bad < 0) { 978 set_bit(BlockedBadBlocks, &rdev->flags); 979 if (!conf->mddev->external && 980 conf->mddev->flags) { 981 /* It is very unlikely, but we might 982 * still need to write out the 983 * bad block log - better give it 984 * a chance*/ 985 md_check_recovery(conf->mddev); 986 } 987 /* 988 * Because md_wait_for_blocked_rdev 989 * will dec nr_pending, we must 990 * increment it first. 991 */ 992 atomic_inc(&rdev->nr_pending); 993 md_wait_for_blocked_rdev(rdev, conf->mddev); 994 } else { 995 /* Acknowledged bad block - skip the write */ 996 rdev_dec_pending(rdev, conf->mddev); 997 rdev = NULL; 998 } 999 } 1000 1001 if (rdev) { 1002 if (s->syncing || s->expanding || s->expanded 1003 || s->replacing) 1004 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1005 1006 set_bit(STRIPE_IO_STARTED, &sh->state); 1007 1008 bi->bi_bdev = rdev->bdev; 1009 bio_set_op_attrs(bi, op, op_flags); 1010 bi->bi_end_io = op_is_write(op) 1011 ? raid5_end_write_request 1012 : raid5_end_read_request; 1013 bi->bi_private = sh; 1014 1015 pr_debug("%s: for %llu schedule op %d on disc %d\n", 1016 __func__, (unsigned long long)sh->sector, 1017 bi->bi_opf, i); 1018 atomic_inc(&sh->count); 1019 if (sh != head_sh) 1020 atomic_inc(&head_sh->count); 1021 if (use_new_offset(conf, sh)) 1022 bi->bi_iter.bi_sector = (sh->sector 1023 + rdev->new_data_offset); 1024 else 1025 bi->bi_iter.bi_sector = (sh->sector 1026 + rdev->data_offset); 1027 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) 1028 bi->bi_opf |= REQ_NOMERGE; 1029 1030 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1031 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1032 sh->dev[i].vec.bv_page = sh->dev[i].page; 1033 bi->bi_vcnt = 1; 1034 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1035 bi->bi_io_vec[0].bv_offset = 0; 1036 bi->bi_iter.bi_size = STRIPE_SIZE; 1037 /* 1038 * If this is discard request, set bi_vcnt 0. We don't 1039 * want to confuse SCSI because SCSI will replace payload 1040 */ 1041 if (op == REQ_OP_DISCARD) 1042 bi->bi_vcnt = 0; 1043 if (rrdev) 1044 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); 1045 1046 if (conf->mddev->gendisk) 1047 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev), 1048 bi, disk_devt(conf->mddev->gendisk), 1049 sh->dev[i].sector); 1050 generic_make_request(bi); 1051 } 1052 if (rrdev) { 1053 if (s->syncing || s->expanding || s->expanded 1054 || s->replacing) 1055 md_sync_acct(rrdev->bdev, STRIPE_SECTORS); 1056 1057 set_bit(STRIPE_IO_STARTED, &sh->state); 1058 1059 rbi->bi_bdev = rrdev->bdev; 1060 bio_set_op_attrs(rbi, op, op_flags); 1061 BUG_ON(!op_is_write(op)); 1062 rbi->bi_end_io = raid5_end_write_request; 1063 rbi->bi_private = sh; 1064 1065 pr_debug("%s: for %llu schedule op %d on " 1066 "replacement disc %d\n", 1067 __func__, (unsigned long long)sh->sector, 1068 rbi->bi_opf, i); 1069 atomic_inc(&sh->count); 1070 if (sh != head_sh) 1071 atomic_inc(&head_sh->count); 1072 if (use_new_offset(conf, sh)) 1073 rbi->bi_iter.bi_sector = (sh->sector 1074 + rrdev->new_data_offset); 1075 else 1076 rbi->bi_iter.bi_sector = (sh->sector 1077 + rrdev->data_offset); 1078 if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) 1079 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 1080 sh->dev[i].rvec.bv_page = sh->dev[i].page; 1081 rbi->bi_vcnt = 1; 1082 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1083 rbi->bi_io_vec[0].bv_offset = 0; 1084 rbi->bi_iter.bi_size = STRIPE_SIZE; 1085 /* 1086 * If this is discard request, set bi_vcnt 0. We don't 1087 * want to confuse SCSI because SCSI will replace payload 1088 */ 1089 if (op == REQ_OP_DISCARD) 1090 rbi->bi_vcnt = 0; 1091 if (conf->mddev->gendisk) 1092 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev), 1093 rbi, disk_devt(conf->mddev->gendisk), 1094 sh->dev[i].sector); 1095 generic_make_request(rbi); 1096 } 1097 if (!rdev && !rrdev) { 1098 if (op_is_write(op)) 1099 set_bit(STRIPE_DEGRADED, &sh->state); 1100 pr_debug("skip op %d on disc %d for sector %llu\n", 1101 bi->bi_opf, i, (unsigned long long)sh->sector); 1102 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1103 set_bit(STRIPE_HANDLE, &sh->state); 1104 } 1105 1106 if (!head_sh->batch_head) 1107 continue; 1108 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1109 batch_list); 1110 if (sh != head_sh) 1111 goto again; 1112 } 1113 } 1114 1115 static struct dma_async_tx_descriptor * 1116 async_copy_data(int frombio, struct bio *bio, struct page **page, 1117 sector_t sector, struct dma_async_tx_descriptor *tx, 1118 struct stripe_head *sh) 1119 { 1120 struct bio_vec bvl; 1121 struct bvec_iter iter; 1122 struct page *bio_page; 1123 int page_offset; 1124 struct async_submit_ctl submit; 1125 enum async_tx_flags flags = 0; 1126 1127 if (bio->bi_iter.bi_sector >= sector) 1128 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; 1129 else 1130 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; 1131 1132 if (frombio) 1133 flags |= ASYNC_TX_FENCE; 1134 init_async_submit(&submit, flags, tx, NULL, NULL, NULL); 1135 1136 bio_for_each_segment(bvl, bio, iter) { 1137 int len = bvl.bv_len; 1138 int clen; 1139 int b_offset = 0; 1140 1141 if (page_offset < 0) { 1142 b_offset = -page_offset; 1143 page_offset += b_offset; 1144 len -= b_offset; 1145 } 1146 1147 if (len > 0 && page_offset + len > STRIPE_SIZE) 1148 clen = STRIPE_SIZE - page_offset; 1149 else 1150 clen = len; 1151 1152 if (clen > 0) { 1153 b_offset += bvl.bv_offset; 1154 bio_page = bvl.bv_page; 1155 if (frombio) { 1156 if (sh->raid_conf->skip_copy && 1157 b_offset == 0 && page_offset == 0 && 1158 clen == STRIPE_SIZE) 1159 *page = bio_page; 1160 else 1161 tx = async_memcpy(*page, bio_page, page_offset, 1162 b_offset, clen, &submit); 1163 } else 1164 tx = async_memcpy(bio_page, *page, b_offset, 1165 page_offset, clen, &submit); 1166 } 1167 /* chain the operations */ 1168 submit.depend_tx = tx; 1169 1170 if (clen < len) /* hit end of page */ 1171 break; 1172 page_offset += len; 1173 } 1174 1175 return tx; 1176 } 1177 1178 static void ops_complete_biofill(void *stripe_head_ref) 1179 { 1180 struct stripe_head *sh = stripe_head_ref; 1181 struct bio_list return_bi = BIO_EMPTY_LIST; 1182 int i; 1183 1184 pr_debug("%s: stripe %llu\n", __func__, 1185 (unsigned long long)sh->sector); 1186 1187 /* clear completed biofills */ 1188 for (i = sh->disks; i--; ) { 1189 struct r5dev *dev = &sh->dev[i]; 1190 1191 /* acknowledge completion of a biofill operation */ 1192 /* and check if we need to reply to a read request, 1193 * new R5_Wantfill requests are held off until 1194 * !STRIPE_BIOFILL_RUN 1195 */ 1196 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { 1197 struct bio *rbi, *rbi2; 1198 1199 BUG_ON(!dev->read); 1200 rbi = dev->read; 1201 dev->read = NULL; 1202 while (rbi && rbi->bi_iter.bi_sector < 1203 dev->sector + STRIPE_SECTORS) { 1204 rbi2 = r5_next_bio(rbi, dev->sector); 1205 if (!raid5_dec_bi_active_stripes(rbi)) 1206 bio_list_add(&return_bi, rbi); 1207 rbi = rbi2; 1208 } 1209 } 1210 } 1211 clear_bit(STRIPE_BIOFILL_RUN, &sh->state); 1212 1213 return_io(&return_bi); 1214 1215 set_bit(STRIPE_HANDLE, &sh->state); 1216 raid5_release_stripe(sh); 1217 } 1218 1219 static void ops_run_biofill(struct stripe_head *sh) 1220 { 1221 struct dma_async_tx_descriptor *tx = NULL; 1222 struct async_submit_ctl submit; 1223 int i; 1224 1225 BUG_ON(sh->batch_head); 1226 pr_debug("%s: stripe %llu\n", __func__, 1227 (unsigned long long)sh->sector); 1228 1229 for (i = sh->disks; i--; ) { 1230 struct r5dev *dev = &sh->dev[i]; 1231 if (test_bit(R5_Wantfill, &dev->flags)) { 1232 struct bio *rbi; 1233 spin_lock_irq(&sh->stripe_lock); 1234 dev->read = rbi = dev->toread; 1235 dev->toread = NULL; 1236 spin_unlock_irq(&sh->stripe_lock); 1237 while (rbi && rbi->bi_iter.bi_sector < 1238 dev->sector + STRIPE_SECTORS) { 1239 tx = async_copy_data(0, rbi, &dev->page, 1240 dev->sector, tx, sh); 1241 rbi = r5_next_bio(rbi, dev->sector); 1242 } 1243 } 1244 } 1245 1246 atomic_inc(&sh->count); 1247 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); 1248 async_trigger_callback(&submit); 1249 } 1250 1251 static void mark_target_uptodate(struct stripe_head *sh, int target) 1252 { 1253 struct r5dev *tgt; 1254 1255 if (target < 0) 1256 return; 1257 1258 tgt = &sh->dev[target]; 1259 set_bit(R5_UPTODATE, &tgt->flags); 1260 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1261 clear_bit(R5_Wantcompute, &tgt->flags); 1262 } 1263 1264 static void ops_complete_compute(void *stripe_head_ref) 1265 { 1266 struct stripe_head *sh = stripe_head_ref; 1267 1268 pr_debug("%s: stripe %llu\n", __func__, 1269 (unsigned long long)sh->sector); 1270 1271 /* mark the computed target(s) as uptodate */ 1272 mark_target_uptodate(sh, sh->ops.target); 1273 mark_target_uptodate(sh, sh->ops.target2); 1274 1275 clear_bit(STRIPE_COMPUTE_RUN, &sh->state); 1276 if (sh->check_state == check_state_compute_run) 1277 sh->check_state = check_state_compute_result; 1278 set_bit(STRIPE_HANDLE, &sh->state); 1279 raid5_release_stripe(sh); 1280 } 1281 1282 /* return a pointer to the address conversion region of the scribble buffer */ 1283 static addr_conv_t *to_addr_conv(struct stripe_head *sh, 1284 struct raid5_percpu *percpu, int i) 1285 { 1286 void *addr; 1287 1288 addr = flex_array_get(percpu->scribble, i); 1289 return addr + sizeof(struct page *) * (sh->disks + 2); 1290 } 1291 1292 /* return a pointer to the address conversion region of the scribble buffer */ 1293 static struct page **to_addr_page(struct raid5_percpu *percpu, int i) 1294 { 1295 void *addr; 1296 1297 addr = flex_array_get(percpu->scribble, i); 1298 return addr; 1299 } 1300 1301 static struct dma_async_tx_descriptor * 1302 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) 1303 { 1304 int disks = sh->disks; 1305 struct page **xor_srcs = to_addr_page(percpu, 0); 1306 int target = sh->ops.target; 1307 struct r5dev *tgt = &sh->dev[target]; 1308 struct page *xor_dest = tgt->page; 1309 int count = 0; 1310 struct dma_async_tx_descriptor *tx; 1311 struct async_submit_ctl submit; 1312 int i; 1313 1314 BUG_ON(sh->batch_head); 1315 1316 pr_debug("%s: stripe %llu block: %d\n", 1317 __func__, (unsigned long long)sh->sector, target); 1318 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1319 1320 for (i = disks; i--; ) 1321 if (i != target) 1322 xor_srcs[count++] = sh->dev[i].page; 1323 1324 atomic_inc(&sh->count); 1325 1326 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, 1327 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); 1328 if (unlikely(count == 1)) 1329 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1330 else 1331 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1332 1333 return tx; 1334 } 1335 1336 /* set_syndrome_sources - populate source buffers for gen_syndrome 1337 * @srcs - (struct page *) array of size sh->disks 1338 * @sh - stripe_head to parse 1339 * 1340 * Populates srcs in proper layout order for the stripe and returns the 1341 * 'count' of sources to be used in a call to async_gen_syndrome. The P 1342 * destination buffer is recorded in srcs[count] and the Q destination 1343 * is recorded in srcs[count+1]]. 1344 */ 1345 static int set_syndrome_sources(struct page **srcs, 1346 struct stripe_head *sh, 1347 int srctype) 1348 { 1349 int disks = sh->disks; 1350 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); 1351 int d0_idx = raid6_d0(sh); 1352 int count; 1353 int i; 1354 1355 for (i = 0; i < disks; i++) 1356 srcs[i] = NULL; 1357 1358 count = 0; 1359 i = d0_idx; 1360 do { 1361 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1362 struct r5dev *dev = &sh->dev[i]; 1363 1364 if (i == sh->qd_idx || i == sh->pd_idx || 1365 (srctype == SYNDROME_SRC_ALL) || 1366 (srctype == SYNDROME_SRC_WANT_DRAIN && 1367 test_bit(R5_Wantdrain, &dev->flags)) || 1368 (srctype == SYNDROME_SRC_WRITTEN && 1369 dev->written)) 1370 srcs[slot] = sh->dev[i].page; 1371 i = raid6_next_disk(i, disks); 1372 } while (i != d0_idx); 1373 1374 return syndrome_disks; 1375 } 1376 1377 static struct dma_async_tx_descriptor * 1378 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) 1379 { 1380 int disks = sh->disks; 1381 struct page **blocks = to_addr_page(percpu, 0); 1382 int target; 1383 int qd_idx = sh->qd_idx; 1384 struct dma_async_tx_descriptor *tx; 1385 struct async_submit_ctl submit; 1386 struct r5dev *tgt; 1387 struct page *dest; 1388 int i; 1389 int count; 1390 1391 BUG_ON(sh->batch_head); 1392 if (sh->ops.target < 0) 1393 target = sh->ops.target2; 1394 else if (sh->ops.target2 < 0) 1395 target = sh->ops.target; 1396 else 1397 /* we should only have one valid target */ 1398 BUG(); 1399 BUG_ON(target < 0); 1400 pr_debug("%s: stripe %llu block: %d\n", 1401 __func__, (unsigned long long)sh->sector, target); 1402 1403 tgt = &sh->dev[target]; 1404 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1405 dest = tgt->page; 1406 1407 atomic_inc(&sh->count); 1408 1409 if (target == qd_idx) { 1410 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1411 blocks[count] = NULL; /* regenerating p is not necessary */ 1412 BUG_ON(blocks[count+1] != dest); /* q should already be set */ 1413 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1414 ops_complete_compute, sh, 1415 to_addr_conv(sh, percpu, 0)); 1416 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1417 } else { 1418 /* Compute any data- or p-drive using XOR */ 1419 count = 0; 1420 for (i = disks; i-- ; ) { 1421 if (i == target || i == qd_idx) 1422 continue; 1423 blocks[count++] = sh->dev[i].page; 1424 } 1425 1426 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1427 NULL, ops_complete_compute, sh, 1428 to_addr_conv(sh, percpu, 0)); 1429 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); 1430 } 1431 1432 return tx; 1433 } 1434 1435 static struct dma_async_tx_descriptor * 1436 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) 1437 { 1438 int i, count, disks = sh->disks; 1439 int syndrome_disks = sh->ddf_layout ? disks : disks-2; 1440 int d0_idx = raid6_d0(sh); 1441 int faila = -1, failb = -1; 1442 int target = sh->ops.target; 1443 int target2 = sh->ops.target2; 1444 struct r5dev *tgt = &sh->dev[target]; 1445 struct r5dev *tgt2 = &sh->dev[target2]; 1446 struct dma_async_tx_descriptor *tx; 1447 struct page **blocks = to_addr_page(percpu, 0); 1448 struct async_submit_ctl submit; 1449 1450 BUG_ON(sh->batch_head); 1451 pr_debug("%s: stripe %llu block1: %d block2: %d\n", 1452 __func__, (unsigned long long)sh->sector, target, target2); 1453 BUG_ON(target < 0 || target2 < 0); 1454 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); 1455 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); 1456 1457 /* we need to open-code set_syndrome_sources to handle the 1458 * slot number conversion for 'faila' and 'failb' 1459 */ 1460 for (i = 0; i < disks ; i++) 1461 blocks[i] = NULL; 1462 count = 0; 1463 i = d0_idx; 1464 do { 1465 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); 1466 1467 blocks[slot] = sh->dev[i].page; 1468 1469 if (i == target) 1470 faila = slot; 1471 if (i == target2) 1472 failb = slot; 1473 i = raid6_next_disk(i, disks); 1474 } while (i != d0_idx); 1475 1476 BUG_ON(faila == failb); 1477 if (failb < faila) 1478 swap(faila, failb); 1479 pr_debug("%s: stripe: %llu faila: %d failb: %d\n", 1480 __func__, (unsigned long long)sh->sector, faila, failb); 1481 1482 atomic_inc(&sh->count); 1483 1484 if (failb == syndrome_disks+1) { 1485 /* Q disk is one of the missing disks */ 1486 if (faila == syndrome_disks) { 1487 /* Missing P+Q, just recompute */ 1488 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1489 ops_complete_compute, sh, 1490 to_addr_conv(sh, percpu, 0)); 1491 return async_gen_syndrome(blocks, 0, syndrome_disks+2, 1492 STRIPE_SIZE, &submit); 1493 } else { 1494 struct page *dest; 1495 int data_target; 1496 int qd_idx = sh->qd_idx; 1497 1498 /* Missing D+Q: recompute D from P, then recompute Q */ 1499 if (target == qd_idx) 1500 data_target = target2; 1501 else 1502 data_target = target; 1503 1504 count = 0; 1505 for (i = disks; i-- ; ) { 1506 if (i == data_target || i == qd_idx) 1507 continue; 1508 blocks[count++] = sh->dev[i].page; 1509 } 1510 dest = sh->dev[data_target].page; 1511 init_async_submit(&submit, 1512 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, 1513 NULL, NULL, NULL, 1514 to_addr_conv(sh, percpu, 0)); 1515 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, 1516 &submit); 1517 1518 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); 1519 init_async_submit(&submit, ASYNC_TX_FENCE, tx, 1520 ops_complete_compute, sh, 1521 to_addr_conv(sh, percpu, 0)); 1522 return async_gen_syndrome(blocks, 0, count+2, 1523 STRIPE_SIZE, &submit); 1524 } 1525 } else { 1526 init_async_submit(&submit, ASYNC_TX_FENCE, NULL, 1527 ops_complete_compute, sh, 1528 to_addr_conv(sh, percpu, 0)); 1529 if (failb == syndrome_disks) { 1530 /* We're missing D+P. */ 1531 return async_raid6_datap_recov(syndrome_disks+2, 1532 STRIPE_SIZE, faila, 1533 blocks, &submit); 1534 } else { 1535 /* We're missing D+D. */ 1536 return async_raid6_2data_recov(syndrome_disks+2, 1537 STRIPE_SIZE, faila, failb, 1538 blocks, &submit); 1539 } 1540 } 1541 } 1542 1543 static void ops_complete_prexor(void *stripe_head_ref) 1544 { 1545 struct stripe_head *sh = stripe_head_ref; 1546 1547 pr_debug("%s: stripe %llu\n", __func__, 1548 (unsigned long long)sh->sector); 1549 } 1550 1551 static struct dma_async_tx_descriptor * 1552 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, 1553 struct dma_async_tx_descriptor *tx) 1554 { 1555 int disks = sh->disks; 1556 struct page **xor_srcs = to_addr_page(percpu, 0); 1557 int count = 0, pd_idx = sh->pd_idx, i; 1558 struct async_submit_ctl submit; 1559 1560 /* existing parity data subtracted */ 1561 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1562 1563 BUG_ON(sh->batch_head); 1564 pr_debug("%s: stripe %llu\n", __func__, 1565 (unsigned long long)sh->sector); 1566 1567 for (i = disks; i--; ) { 1568 struct r5dev *dev = &sh->dev[i]; 1569 /* Only process blocks that are known to be uptodate */ 1570 if (test_bit(R5_Wantdrain, &dev->flags)) 1571 xor_srcs[count++] = dev->page; 1572 } 1573 1574 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, 1575 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1576 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1577 1578 return tx; 1579 } 1580 1581 static struct dma_async_tx_descriptor * 1582 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, 1583 struct dma_async_tx_descriptor *tx) 1584 { 1585 struct page **blocks = to_addr_page(percpu, 0); 1586 int count; 1587 struct async_submit_ctl submit; 1588 1589 pr_debug("%s: stripe %llu\n", __func__, 1590 (unsigned long long)sh->sector); 1591 1592 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); 1593 1594 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, 1595 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); 1596 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1597 1598 return tx; 1599 } 1600 1601 static struct dma_async_tx_descriptor * 1602 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) 1603 { 1604 int disks = sh->disks; 1605 int i; 1606 struct stripe_head *head_sh = sh; 1607 1608 pr_debug("%s: stripe %llu\n", __func__, 1609 (unsigned long long)sh->sector); 1610 1611 for (i = disks; i--; ) { 1612 struct r5dev *dev; 1613 struct bio *chosen; 1614 1615 sh = head_sh; 1616 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { 1617 struct bio *wbi; 1618 1619 again: 1620 dev = &sh->dev[i]; 1621 spin_lock_irq(&sh->stripe_lock); 1622 chosen = dev->towrite; 1623 dev->towrite = NULL; 1624 sh->overwrite_disks = 0; 1625 BUG_ON(dev->written); 1626 wbi = dev->written = chosen; 1627 spin_unlock_irq(&sh->stripe_lock); 1628 WARN_ON(dev->page != dev->orig_page); 1629 1630 while (wbi && wbi->bi_iter.bi_sector < 1631 dev->sector + STRIPE_SECTORS) { 1632 if (wbi->bi_opf & REQ_FUA) 1633 set_bit(R5_WantFUA, &dev->flags); 1634 if (wbi->bi_opf & REQ_SYNC) 1635 set_bit(R5_SyncIO, &dev->flags); 1636 if (bio_op(wbi) == REQ_OP_DISCARD) 1637 set_bit(R5_Discard, &dev->flags); 1638 else { 1639 tx = async_copy_data(1, wbi, &dev->page, 1640 dev->sector, tx, sh); 1641 if (dev->page != dev->orig_page) { 1642 set_bit(R5_SkipCopy, &dev->flags); 1643 clear_bit(R5_UPTODATE, &dev->flags); 1644 clear_bit(R5_OVERWRITE, &dev->flags); 1645 } 1646 } 1647 wbi = r5_next_bio(wbi, dev->sector); 1648 } 1649 1650 if (head_sh->batch_head) { 1651 sh = list_first_entry(&sh->batch_list, 1652 struct stripe_head, 1653 batch_list); 1654 if (sh == head_sh) 1655 continue; 1656 goto again; 1657 } 1658 } 1659 } 1660 1661 return tx; 1662 } 1663 1664 static void ops_complete_reconstruct(void *stripe_head_ref) 1665 { 1666 struct stripe_head *sh = stripe_head_ref; 1667 int disks = sh->disks; 1668 int pd_idx = sh->pd_idx; 1669 int qd_idx = sh->qd_idx; 1670 int i; 1671 bool fua = false, sync = false, discard = false; 1672 1673 pr_debug("%s: stripe %llu\n", __func__, 1674 (unsigned long long)sh->sector); 1675 1676 for (i = disks; i--; ) { 1677 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); 1678 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); 1679 discard |= test_bit(R5_Discard, &sh->dev[i].flags); 1680 } 1681 1682 for (i = disks; i--; ) { 1683 struct r5dev *dev = &sh->dev[i]; 1684 1685 if (dev->written || i == pd_idx || i == qd_idx) { 1686 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) 1687 set_bit(R5_UPTODATE, &dev->flags); 1688 if (fua) 1689 set_bit(R5_WantFUA, &dev->flags); 1690 if (sync) 1691 set_bit(R5_SyncIO, &dev->flags); 1692 } 1693 } 1694 1695 if (sh->reconstruct_state == reconstruct_state_drain_run) 1696 sh->reconstruct_state = reconstruct_state_drain_result; 1697 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) 1698 sh->reconstruct_state = reconstruct_state_prexor_drain_result; 1699 else { 1700 BUG_ON(sh->reconstruct_state != reconstruct_state_run); 1701 sh->reconstruct_state = reconstruct_state_result; 1702 } 1703 1704 set_bit(STRIPE_HANDLE, &sh->state); 1705 raid5_release_stripe(sh); 1706 } 1707 1708 static void 1709 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, 1710 struct dma_async_tx_descriptor *tx) 1711 { 1712 int disks = sh->disks; 1713 struct page **xor_srcs; 1714 struct async_submit_ctl submit; 1715 int count, pd_idx = sh->pd_idx, i; 1716 struct page *xor_dest; 1717 int prexor = 0; 1718 unsigned long flags; 1719 int j = 0; 1720 struct stripe_head *head_sh = sh; 1721 int last_stripe; 1722 1723 pr_debug("%s: stripe %llu\n", __func__, 1724 (unsigned long long)sh->sector); 1725 1726 for (i = 0; i < sh->disks; i++) { 1727 if (pd_idx == i) 1728 continue; 1729 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1730 break; 1731 } 1732 if (i >= sh->disks) { 1733 atomic_inc(&sh->count); 1734 set_bit(R5_Discard, &sh->dev[pd_idx].flags); 1735 ops_complete_reconstruct(sh); 1736 return; 1737 } 1738 again: 1739 count = 0; 1740 xor_srcs = to_addr_page(percpu, j); 1741 /* check if prexor is active which means only process blocks 1742 * that are part of a read-modify-write (written) 1743 */ 1744 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1745 prexor = 1; 1746 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; 1747 for (i = disks; i--; ) { 1748 struct r5dev *dev = &sh->dev[i]; 1749 if (head_sh->dev[i].written) 1750 xor_srcs[count++] = dev->page; 1751 } 1752 } else { 1753 xor_dest = sh->dev[pd_idx].page; 1754 for (i = disks; i--; ) { 1755 struct r5dev *dev = &sh->dev[i]; 1756 if (i != pd_idx) 1757 xor_srcs[count++] = dev->page; 1758 } 1759 } 1760 1761 /* 1/ if we prexor'd then the dest is reused as a source 1762 * 2/ if we did not prexor then we are redoing the parity 1763 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST 1764 * for the synchronous xor case 1765 */ 1766 last_stripe = !head_sh->batch_head || 1767 list_first_entry(&sh->batch_list, 1768 struct stripe_head, batch_list) == head_sh; 1769 if (last_stripe) { 1770 flags = ASYNC_TX_ACK | 1771 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); 1772 1773 atomic_inc(&head_sh->count); 1774 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, 1775 to_addr_conv(sh, percpu, j)); 1776 } else { 1777 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; 1778 init_async_submit(&submit, flags, tx, NULL, NULL, 1779 to_addr_conv(sh, percpu, j)); 1780 } 1781 1782 if (unlikely(count == 1)) 1783 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); 1784 else 1785 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); 1786 if (!last_stripe) { 1787 j++; 1788 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1789 batch_list); 1790 goto again; 1791 } 1792 } 1793 1794 static void 1795 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, 1796 struct dma_async_tx_descriptor *tx) 1797 { 1798 struct async_submit_ctl submit; 1799 struct page **blocks; 1800 int count, i, j = 0; 1801 struct stripe_head *head_sh = sh; 1802 int last_stripe; 1803 int synflags; 1804 unsigned long txflags; 1805 1806 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); 1807 1808 for (i = 0; i < sh->disks; i++) { 1809 if (sh->pd_idx == i || sh->qd_idx == i) 1810 continue; 1811 if (!test_bit(R5_Discard, &sh->dev[i].flags)) 1812 break; 1813 } 1814 if (i >= sh->disks) { 1815 atomic_inc(&sh->count); 1816 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 1817 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 1818 ops_complete_reconstruct(sh); 1819 return; 1820 } 1821 1822 again: 1823 blocks = to_addr_page(percpu, j); 1824 1825 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { 1826 synflags = SYNDROME_SRC_WRITTEN; 1827 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; 1828 } else { 1829 synflags = SYNDROME_SRC_ALL; 1830 txflags = ASYNC_TX_ACK; 1831 } 1832 1833 count = set_syndrome_sources(blocks, sh, synflags); 1834 last_stripe = !head_sh->batch_head || 1835 list_first_entry(&sh->batch_list, 1836 struct stripe_head, batch_list) == head_sh; 1837 1838 if (last_stripe) { 1839 atomic_inc(&head_sh->count); 1840 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, 1841 head_sh, to_addr_conv(sh, percpu, j)); 1842 } else 1843 init_async_submit(&submit, 0, tx, NULL, NULL, 1844 to_addr_conv(sh, percpu, j)); 1845 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); 1846 if (!last_stripe) { 1847 j++; 1848 sh = list_first_entry(&sh->batch_list, struct stripe_head, 1849 batch_list); 1850 goto again; 1851 } 1852 } 1853 1854 static void ops_complete_check(void *stripe_head_ref) 1855 { 1856 struct stripe_head *sh = stripe_head_ref; 1857 1858 pr_debug("%s: stripe %llu\n", __func__, 1859 (unsigned long long)sh->sector); 1860 1861 sh->check_state = check_state_check_result; 1862 set_bit(STRIPE_HANDLE, &sh->state); 1863 raid5_release_stripe(sh); 1864 } 1865 1866 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) 1867 { 1868 int disks = sh->disks; 1869 int pd_idx = sh->pd_idx; 1870 int qd_idx = sh->qd_idx; 1871 struct page *xor_dest; 1872 struct page **xor_srcs = to_addr_page(percpu, 0); 1873 struct dma_async_tx_descriptor *tx; 1874 struct async_submit_ctl submit; 1875 int count; 1876 int i; 1877 1878 pr_debug("%s: stripe %llu\n", __func__, 1879 (unsigned long long)sh->sector); 1880 1881 BUG_ON(sh->batch_head); 1882 count = 0; 1883 xor_dest = sh->dev[pd_idx].page; 1884 xor_srcs[count++] = xor_dest; 1885 for (i = disks; i--; ) { 1886 if (i == pd_idx || i == qd_idx) 1887 continue; 1888 xor_srcs[count++] = sh->dev[i].page; 1889 } 1890 1891 init_async_submit(&submit, 0, NULL, NULL, NULL, 1892 to_addr_conv(sh, percpu, 0)); 1893 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, 1894 &sh->ops.zero_sum_result, &submit); 1895 1896 atomic_inc(&sh->count); 1897 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); 1898 tx = async_trigger_callback(&submit); 1899 } 1900 1901 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) 1902 { 1903 struct page **srcs = to_addr_page(percpu, 0); 1904 struct async_submit_ctl submit; 1905 int count; 1906 1907 pr_debug("%s: stripe %llu checkp: %d\n", __func__, 1908 (unsigned long long)sh->sector, checkp); 1909 1910 BUG_ON(sh->batch_head); 1911 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); 1912 if (!checkp) 1913 srcs[count] = NULL; 1914 1915 atomic_inc(&sh->count); 1916 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, 1917 sh, to_addr_conv(sh, percpu, 0)); 1918 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, 1919 &sh->ops.zero_sum_result, percpu->spare_page, &submit); 1920 } 1921 1922 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) 1923 { 1924 int overlap_clear = 0, i, disks = sh->disks; 1925 struct dma_async_tx_descriptor *tx = NULL; 1926 struct r5conf *conf = sh->raid_conf; 1927 int level = conf->level; 1928 struct raid5_percpu *percpu; 1929 unsigned long cpu; 1930 1931 cpu = get_cpu(); 1932 percpu = per_cpu_ptr(conf->percpu, cpu); 1933 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { 1934 ops_run_biofill(sh); 1935 overlap_clear++; 1936 } 1937 1938 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { 1939 if (level < 6) 1940 tx = ops_run_compute5(sh, percpu); 1941 else { 1942 if (sh->ops.target2 < 0 || sh->ops.target < 0) 1943 tx = ops_run_compute6_1(sh, percpu); 1944 else 1945 tx = ops_run_compute6_2(sh, percpu); 1946 } 1947 /* terminate the chain if reconstruct is not set to be run */ 1948 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) 1949 async_tx_ack(tx); 1950 } 1951 1952 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { 1953 if (level < 6) 1954 tx = ops_run_prexor5(sh, percpu, tx); 1955 else 1956 tx = ops_run_prexor6(sh, percpu, tx); 1957 } 1958 1959 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { 1960 tx = ops_run_biodrain(sh, tx); 1961 overlap_clear++; 1962 } 1963 1964 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { 1965 if (level < 6) 1966 ops_run_reconstruct5(sh, percpu, tx); 1967 else 1968 ops_run_reconstruct6(sh, percpu, tx); 1969 } 1970 1971 if (test_bit(STRIPE_OP_CHECK, &ops_request)) { 1972 if (sh->check_state == check_state_run) 1973 ops_run_check_p(sh, percpu); 1974 else if (sh->check_state == check_state_run_q) 1975 ops_run_check_pq(sh, percpu, 0); 1976 else if (sh->check_state == check_state_run_pq) 1977 ops_run_check_pq(sh, percpu, 1); 1978 else 1979 BUG(); 1980 } 1981 1982 if (overlap_clear && !sh->batch_head) 1983 for (i = disks; i--; ) { 1984 struct r5dev *dev = &sh->dev[i]; 1985 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 1986 wake_up(&sh->raid_conf->wait_for_overlap); 1987 } 1988 put_cpu(); 1989 } 1990 1991 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, 1992 int disks) 1993 { 1994 struct stripe_head *sh; 1995 int i; 1996 1997 sh = kmem_cache_zalloc(sc, gfp); 1998 if (sh) { 1999 spin_lock_init(&sh->stripe_lock); 2000 spin_lock_init(&sh->batch_lock); 2001 INIT_LIST_HEAD(&sh->batch_list); 2002 INIT_LIST_HEAD(&sh->lru); 2003 atomic_set(&sh->count, 1); 2004 for (i = 0; i < disks; i++) { 2005 struct r5dev *dev = &sh->dev[i]; 2006 2007 bio_init(&dev->req, &dev->vec, 1); 2008 bio_init(&dev->rreq, &dev->rvec, 1); 2009 } 2010 } 2011 return sh; 2012 } 2013 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) 2014 { 2015 struct stripe_head *sh; 2016 2017 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size); 2018 if (!sh) 2019 return 0; 2020 2021 sh->raid_conf = conf; 2022 2023 if (grow_buffers(sh, gfp)) { 2024 shrink_buffers(sh); 2025 kmem_cache_free(conf->slab_cache, sh); 2026 return 0; 2027 } 2028 sh->hash_lock_index = 2029 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; 2030 /* we just created an active stripe so... */ 2031 atomic_inc(&conf->active_stripes); 2032 2033 raid5_release_stripe(sh); 2034 conf->max_nr_stripes++; 2035 return 1; 2036 } 2037 2038 static int grow_stripes(struct r5conf *conf, int num) 2039 { 2040 struct kmem_cache *sc; 2041 int devs = max(conf->raid_disks, conf->previous_raid_disks); 2042 2043 if (conf->mddev->gendisk) 2044 sprintf(conf->cache_name[0], 2045 "raid%d-%s", conf->level, mdname(conf->mddev)); 2046 else 2047 sprintf(conf->cache_name[0], 2048 "raid%d-%p", conf->level, conf->mddev); 2049 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]); 2050 2051 conf->active_name = 0; 2052 sc = kmem_cache_create(conf->cache_name[conf->active_name], 2053 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 2054 0, 0, NULL); 2055 if (!sc) 2056 return 1; 2057 conf->slab_cache = sc; 2058 conf->pool_size = devs; 2059 while (num--) 2060 if (!grow_one_stripe(conf, GFP_KERNEL)) 2061 return 1; 2062 2063 return 0; 2064 } 2065 2066 /** 2067 * scribble_len - return the required size of the scribble region 2068 * @num - total number of disks in the array 2069 * 2070 * The size must be enough to contain: 2071 * 1/ a struct page pointer for each device in the array +2 2072 * 2/ room to convert each entry in (1) to its corresponding dma 2073 * (dma_map_page()) or page (page_address()) address. 2074 * 2075 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we 2076 * calculate over all devices (not just the data blocks), using zeros in place 2077 * of the P and Q blocks. 2078 */ 2079 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) 2080 { 2081 struct flex_array *ret; 2082 size_t len; 2083 2084 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); 2085 ret = flex_array_alloc(len, cnt, flags); 2086 if (!ret) 2087 return NULL; 2088 /* always prealloc all elements, so no locking is required */ 2089 if (flex_array_prealloc(ret, 0, cnt, flags)) { 2090 flex_array_free(ret); 2091 return NULL; 2092 } 2093 return ret; 2094 } 2095 2096 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) 2097 { 2098 unsigned long cpu; 2099 int err = 0; 2100 2101 /* 2102 * Never shrink. And mddev_suspend() could deadlock if this is called 2103 * from raid5d. In that case, scribble_disks and scribble_sectors 2104 * should equal to new_disks and new_sectors 2105 */ 2106 if (conf->scribble_disks >= new_disks && 2107 conf->scribble_sectors >= new_sectors) 2108 return 0; 2109 mddev_suspend(conf->mddev); 2110 get_online_cpus(); 2111 for_each_present_cpu(cpu) { 2112 struct raid5_percpu *percpu; 2113 struct flex_array *scribble; 2114 2115 percpu = per_cpu_ptr(conf->percpu, cpu); 2116 scribble = scribble_alloc(new_disks, 2117 new_sectors / STRIPE_SECTORS, 2118 GFP_NOIO); 2119 2120 if (scribble) { 2121 flex_array_free(percpu->scribble); 2122 percpu->scribble = scribble; 2123 } else { 2124 err = -ENOMEM; 2125 break; 2126 } 2127 } 2128 put_online_cpus(); 2129 mddev_resume(conf->mddev); 2130 if (!err) { 2131 conf->scribble_disks = new_disks; 2132 conf->scribble_sectors = new_sectors; 2133 } 2134 return err; 2135 } 2136 2137 static int resize_stripes(struct r5conf *conf, int newsize) 2138 { 2139 /* Make all the stripes able to hold 'newsize' devices. 2140 * New slots in each stripe get 'page' set to a new page. 2141 * 2142 * This happens in stages: 2143 * 1/ create a new kmem_cache and allocate the required number of 2144 * stripe_heads. 2145 * 2/ gather all the old stripe_heads and transfer the pages across 2146 * to the new stripe_heads. This will have the side effect of 2147 * freezing the array as once all stripe_heads have been collected, 2148 * no IO will be possible. Old stripe heads are freed once their 2149 * pages have been transferred over, and the old kmem_cache is 2150 * freed when all stripes are done. 2151 * 3/ reallocate conf->disks to be suitable bigger. If this fails, 2152 * we simple return a failre status - no need to clean anything up. 2153 * 4/ allocate new pages for the new slots in the new stripe_heads. 2154 * If this fails, we don't bother trying the shrink the 2155 * stripe_heads down again, we just leave them as they are. 2156 * As each stripe_head is processed the new one is released into 2157 * active service. 2158 * 2159 * Once step2 is started, we cannot afford to wait for a write, 2160 * so we use GFP_NOIO allocations. 2161 */ 2162 struct stripe_head *osh, *nsh; 2163 LIST_HEAD(newstripes); 2164 struct disk_info *ndisks; 2165 int err; 2166 struct kmem_cache *sc; 2167 int i; 2168 int hash, cnt; 2169 2170 if (newsize <= conf->pool_size) 2171 return 0; /* never bother to shrink */ 2172 2173 err = md_allow_write(conf->mddev); 2174 if (err) 2175 return err; 2176 2177 /* Step 1 */ 2178 sc = kmem_cache_create(conf->cache_name[1-conf->active_name], 2179 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), 2180 0, 0, NULL); 2181 if (!sc) 2182 return -ENOMEM; 2183 2184 /* Need to ensure auto-resizing doesn't interfere */ 2185 mutex_lock(&conf->cache_size_mutex); 2186 2187 for (i = conf->max_nr_stripes; i; i--) { 2188 nsh = alloc_stripe(sc, GFP_KERNEL, newsize); 2189 if (!nsh) 2190 break; 2191 2192 nsh->raid_conf = conf; 2193 list_add(&nsh->lru, &newstripes); 2194 } 2195 if (i) { 2196 /* didn't get enough, give up */ 2197 while (!list_empty(&newstripes)) { 2198 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2199 list_del(&nsh->lru); 2200 kmem_cache_free(sc, nsh); 2201 } 2202 kmem_cache_destroy(sc); 2203 mutex_unlock(&conf->cache_size_mutex); 2204 return -ENOMEM; 2205 } 2206 /* Step 2 - Must use GFP_NOIO now. 2207 * OK, we have enough stripes, start collecting inactive 2208 * stripes and copying them over 2209 */ 2210 hash = 0; 2211 cnt = 0; 2212 list_for_each_entry(nsh, &newstripes, lru) { 2213 lock_device_hash_lock(conf, hash); 2214 wait_event_cmd(conf->wait_for_stripe, 2215 !list_empty(conf->inactive_list + hash), 2216 unlock_device_hash_lock(conf, hash), 2217 lock_device_hash_lock(conf, hash)); 2218 osh = get_free_stripe(conf, hash); 2219 unlock_device_hash_lock(conf, hash); 2220 2221 for(i=0; i<conf->pool_size; i++) { 2222 nsh->dev[i].page = osh->dev[i].page; 2223 nsh->dev[i].orig_page = osh->dev[i].page; 2224 } 2225 nsh->hash_lock_index = hash; 2226 kmem_cache_free(conf->slab_cache, osh); 2227 cnt++; 2228 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + 2229 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { 2230 hash++; 2231 cnt = 0; 2232 } 2233 } 2234 kmem_cache_destroy(conf->slab_cache); 2235 2236 /* Step 3. 2237 * At this point, we are holding all the stripes so the array 2238 * is completely stalled, so now is a good time to resize 2239 * conf->disks and the scribble region 2240 */ 2241 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO); 2242 if (ndisks) { 2243 for (i=0; i<conf->raid_disks; i++) 2244 ndisks[i] = conf->disks[i]; 2245 kfree(conf->disks); 2246 conf->disks = ndisks; 2247 } else 2248 err = -ENOMEM; 2249 2250 mutex_unlock(&conf->cache_size_mutex); 2251 /* Step 4, return new stripes to service */ 2252 while(!list_empty(&newstripes)) { 2253 nsh = list_entry(newstripes.next, struct stripe_head, lru); 2254 list_del_init(&nsh->lru); 2255 2256 for (i=conf->raid_disks; i < newsize; i++) 2257 if (nsh->dev[i].page == NULL) { 2258 struct page *p = alloc_page(GFP_NOIO); 2259 nsh->dev[i].page = p; 2260 nsh->dev[i].orig_page = p; 2261 if (!p) 2262 err = -ENOMEM; 2263 } 2264 raid5_release_stripe(nsh); 2265 } 2266 /* critical section pass, GFP_NOIO no longer needed */ 2267 2268 conf->slab_cache = sc; 2269 conf->active_name = 1-conf->active_name; 2270 if (!err) 2271 conf->pool_size = newsize; 2272 return err; 2273 } 2274 2275 static int drop_one_stripe(struct r5conf *conf) 2276 { 2277 struct stripe_head *sh; 2278 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; 2279 2280 spin_lock_irq(conf->hash_locks + hash); 2281 sh = get_free_stripe(conf, hash); 2282 spin_unlock_irq(conf->hash_locks + hash); 2283 if (!sh) 2284 return 0; 2285 BUG_ON(atomic_read(&sh->count)); 2286 shrink_buffers(sh); 2287 kmem_cache_free(conf->slab_cache, sh); 2288 atomic_dec(&conf->active_stripes); 2289 conf->max_nr_stripes--; 2290 return 1; 2291 } 2292 2293 static void shrink_stripes(struct r5conf *conf) 2294 { 2295 while (conf->max_nr_stripes && 2296 drop_one_stripe(conf)) 2297 ; 2298 2299 kmem_cache_destroy(conf->slab_cache); 2300 conf->slab_cache = NULL; 2301 } 2302 2303 static void raid5_end_read_request(struct bio * bi) 2304 { 2305 struct stripe_head *sh = bi->bi_private; 2306 struct r5conf *conf = sh->raid_conf; 2307 int disks = sh->disks, i; 2308 char b[BDEVNAME_SIZE]; 2309 struct md_rdev *rdev = NULL; 2310 sector_t s; 2311 2312 for (i=0 ; i<disks; i++) 2313 if (bi == &sh->dev[i].req) 2314 break; 2315 2316 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", 2317 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2318 bi->bi_error); 2319 if (i == disks) { 2320 bio_reset(bi); 2321 BUG(); 2322 return; 2323 } 2324 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2325 /* If replacement finished while this request was outstanding, 2326 * 'replacement' might be NULL already. 2327 * In that case it moved down to 'rdev'. 2328 * rdev is not removed until all requests are finished. 2329 */ 2330 rdev = conf->disks[i].replacement; 2331 if (!rdev) 2332 rdev = conf->disks[i].rdev; 2333 2334 if (use_new_offset(conf, sh)) 2335 s = sh->sector + rdev->new_data_offset; 2336 else 2337 s = sh->sector + rdev->data_offset; 2338 if (!bi->bi_error) { 2339 set_bit(R5_UPTODATE, &sh->dev[i].flags); 2340 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 2341 /* Note that this cannot happen on a 2342 * replacement device. We just fail those on 2343 * any error 2344 */ 2345 printk_ratelimited( 2346 KERN_INFO 2347 "md/raid:%s: read error corrected" 2348 " (%lu sectors at %llu on %s)\n", 2349 mdname(conf->mddev), STRIPE_SECTORS, 2350 (unsigned long long)s, 2351 bdevname(rdev->bdev, b)); 2352 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); 2353 clear_bit(R5_ReadError, &sh->dev[i].flags); 2354 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2355 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2356 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2357 2358 if (atomic_read(&rdev->read_errors)) 2359 atomic_set(&rdev->read_errors, 0); 2360 } else { 2361 const char *bdn = bdevname(rdev->bdev, b); 2362 int retry = 0; 2363 int set_bad = 0; 2364 2365 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 2366 atomic_inc(&rdev->read_errors); 2367 if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) 2368 printk_ratelimited( 2369 KERN_WARNING 2370 "md/raid:%s: read error on replacement device " 2371 "(sector %llu on %s).\n", 2372 mdname(conf->mddev), 2373 (unsigned long long)s, 2374 bdn); 2375 else if (conf->mddev->degraded >= conf->max_degraded) { 2376 set_bad = 1; 2377 printk_ratelimited( 2378 KERN_WARNING 2379 "md/raid:%s: read error not correctable " 2380 "(sector %llu on %s).\n", 2381 mdname(conf->mddev), 2382 (unsigned long long)s, 2383 bdn); 2384 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { 2385 /* Oh, no!!! */ 2386 set_bad = 1; 2387 printk_ratelimited( 2388 KERN_WARNING 2389 "md/raid:%s: read error NOT corrected!! " 2390 "(sector %llu on %s).\n", 2391 mdname(conf->mddev), 2392 (unsigned long long)s, 2393 bdn); 2394 } else if (atomic_read(&rdev->read_errors) 2395 > conf->max_nr_stripes) 2396 printk(KERN_WARNING 2397 "md/raid:%s: Too many read errors, failing device %s.\n", 2398 mdname(conf->mddev), bdn); 2399 else 2400 retry = 1; 2401 if (set_bad && test_bit(In_sync, &rdev->flags) 2402 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) 2403 retry = 1; 2404 if (retry) 2405 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { 2406 set_bit(R5_ReadError, &sh->dev[i].flags); 2407 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2408 } else 2409 set_bit(R5_ReadNoMerge, &sh->dev[i].flags); 2410 else { 2411 clear_bit(R5_ReadError, &sh->dev[i].flags); 2412 clear_bit(R5_ReWrite, &sh->dev[i].flags); 2413 if (!(set_bad 2414 && test_bit(In_sync, &rdev->flags) 2415 && rdev_set_badblocks( 2416 rdev, sh->sector, STRIPE_SECTORS, 0))) 2417 md_error(conf->mddev, rdev); 2418 } 2419 } 2420 rdev_dec_pending(rdev, conf->mddev); 2421 bio_reset(bi); 2422 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2423 set_bit(STRIPE_HANDLE, &sh->state); 2424 raid5_release_stripe(sh); 2425 } 2426 2427 static void raid5_end_write_request(struct bio *bi) 2428 { 2429 struct stripe_head *sh = bi->bi_private; 2430 struct r5conf *conf = sh->raid_conf; 2431 int disks = sh->disks, i; 2432 struct md_rdev *uninitialized_var(rdev); 2433 sector_t first_bad; 2434 int bad_sectors; 2435 int replacement = 0; 2436 2437 for (i = 0 ; i < disks; i++) { 2438 if (bi == &sh->dev[i].req) { 2439 rdev = conf->disks[i].rdev; 2440 break; 2441 } 2442 if (bi == &sh->dev[i].rreq) { 2443 rdev = conf->disks[i].replacement; 2444 if (rdev) 2445 replacement = 1; 2446 else 2447 /* rdev was removed and 'replacement' 2448 * replaced it. rdev is not removed 2449 * until all requests are finished. 2450 */ 2451 rdev = conf->disks[i].rdev; 2452 break; 2453 } 2454 } 2455 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", 2456 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 2457 bi->bi_error); 2458 if (i == disks) { 2459 bio_reset(bi); 2460 BUG(); 2461 return; 2462 } 2463 2464 if (replacement) { 2465 if (bi->bi_error) 2466 md_error(conf->mddev, rdev); 2467 else if (is_badblock(rdev, sh->sector, 2468 STRIPE_SECTORS, 2469 &first_bad, &bad_sectors)) 2470 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); 2471 } else { 2472 if (bi->bi_error) { 2473 set_bit(STRIPE_DEGRADED, &sh->state); 2474 set_bit(WriteErrorSeen, &rdev->flags); 2475 set_bit(R5_WriteError, &sh->dev[i].flags); 2476 if (!test_and_set_bit(WantReplacement, &rdev->flags)) 2477 set_bit(MD_RECOVERY_NEEDED, 2478 &rdev->mddev->recovery); 2479 } else if (is_badblock(rdev, sh->sector, 2480 STRIPE_SECTORS, 2481 &first_bad, &bad_sectors)) { 2482 set_bit(R5_MadeGood, &sh->dev[i].flags); 2483 if (test_bit(R5_ReadError, &sh->dev[i].flags)) 2484 /* That was a successful write so make 2485 * sure it looks like we already did 2486 * a re-write. 2487 */ 2488 set_bit(R5_ReWrite, &sh->dev[i].flags); 2489 } 2490 } 2491 rdev_dec_pending(rdev, conf->mddev); 2492 2493 if (sh->batch_head && bi->bi_error && !replacement) 2494 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); 2495 2496 bio_reset(bi); 2497 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) 2498 clear_bit(R5_LOCKED, &sh->dev[i].flags); 2499 set_bit(STRIPE_HANDLE, &sh->state); 2500 raid5_release_stripe(sh); 2501 2502 if (sh->batch_head && sh != sh->batch_head) 2503 raid5_release_stripe(sh->batch_head); 2504 } 2505 2506 static void raid5_build_block(struct stripe_head *sh, int i, int previous) 2507 { 2508 struct r5dev *dev = &sh->dev[i]; 2509 2510 dev->flags = 0; 2511 dev->sector = raid5_compute_blocknr(sh, i, previous); 2512 } 2513 2514 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) 2515 { 2516 char b[BDEVNAME_SIZE]; 2517 struct r5conf *conf = mddev->private; 2518 unsigned long flags; 2519 pr_debug("raid456: error called\n"); 2520 2521 spin_lock_irqsave(&conf->device_lock, flags); 2522 clear_bit(In_sync, &rdev->flags); 2523 mddev->degraded = calc_degraded(conf); 2524 spin_unlock_irqrestore(&conf->device_lock, flags); 2525 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2526 2527 set_bit(Blocked, &rdev->flags); 2528 set_bit(Faulty, &rdev->flags); 2529 set_mask_bits(&mddev->flags, 0, 2530 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING)); 2531 printk(KERN_ALERT 2532 "md/raid:%s: Disk failure on %s, disabling device.\n" 2533 "md/raid:%s: Operation continuing on %d devices.\n", 2534 mdname(mddev), 2535 bdevname(rdev->bdev, b), 2536 mdname(mddev), 2537 conf->raid_disks - mddev->degraded); 2538 } 2539 2540 /* 2541 * Input: a 'big' sector number, 2542 * Output: index of the data and parity disk, and the sector # in them. 2543 */ 2544 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, 2545 int previous, int *dd_idx, 2546 struct stripe_head *sh) 2547 { 2548 sector_t stripe, stripe2; 2549 sector_t chunk_number; 2550 unsigned int chunk_offset; 2551 int pd_idx, qd_idx; 2552 int ddf_layout = 0; 2553 sector_t new_sector; 2554 int algorithm = previous ? conf->prev_algo 2555 : conf->algorithm; 2556 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2557 : conf->chunk_sectors; 2558 int raid_disks = previous ? conf->previous_raid_disks 2559 : conf->raid_disks; 2560 int data_disks = raid_disks - conf->max_degraded; 2561 2562 /* First compute the information on this sector */ 2563 2564 /* 2565 * Compute the chunk number and the sector offset inside the chunk 2566 */ 2567 chunk_offset = sector_div(r_sector, sectors_per_chunk); 2568 chunk_number = r_sector; 2569 2570 /* 2571 * Compute the stripe number 2572 */ 2573 stripe = chunk_number; 2574 *dd_idx = sector_div(stripe, data_disks); 2575 stripe2 = stripe; 2576 /* 2577 * Select the parity disk based on the user selected algorithm. 2578 */ 2579 pd_idx = qd_idx = -1; 2580 switch(conf->level) { 2581 case 4: 2582 pd_idx = data_disks; 2583 break; 2584 case 5: 2585 switch (algorithm) { 2586 case ALGORITHM_LEFT_ASYMMETRIC: 2587 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2588 if (*dd_idx >= pd_idx) 2589 (*dd_idx)++; 2590 break; 2591 case ALGORITHM_RIGHT_ASYMMETRIC: 2592 pd_idx = sector_div(stripe2, raid_disks); 2593 if (*dd_idx >= pd_idx) 2594 (*dd_idx)++; 2595 break; 2596 case ALGORITHM_LEFT_SYMMETRIC: 2597 pd_idx = data_disks - sector_div(stripe2, raid_disks); 2598 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2599 break; 2600 case ALGORITHM_RIGHT_SYMMETRIC: 2601 pd_idx = sector_div(stripe2, raid_disks); 2602 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2603 break; 2604 case ALGORITHM_PARITY_0: 2605 pd_idx = 0; 2606 (*dd_idx)++; 2607 break; 2608 case ALGORITHM_PARITY_N: 2609 pd_idx = data_disks; 2610 break; 2611 default: 2612 BUG(); 2613 } 2614 break; 2615 case 6: 2616 2617 switch (algorithm) { 2618 case ALGORITHM_LEFT_ASYMMETRIC: 2619 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2620 qd_idx = pd_idx + 1; 2621 if (pd_idx == raid_disks-1) { 2622 (*dd_idx)++; /* Q D D D P */ 2623 qd_idx = 0; 2624 } else if (*dd_idx >= pd_idx) 2625 (*dd_idx) += 2; /* D D P Q D */ 2626 break; 2627 case ALGORITHM_RIGHT_ASYMMETRIC: 2628 pd_idx = sector_div(stripe2, raid_disks); 2629 qd_idx = pd_idx + 1; 2630 if (pd_idx == raid_disks-1) { 2631 (*dd_idx)++; /* Q D D D P */ 2632 qd_idx = 0; 2633 } else if (*dd_idx >= pd_idx) 2634 (*dd_idx) += 2; /* D D P Q D */ 2635 break; 2636 case ALGORITHM_LEFT_SYMMETRIC: 2637 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2638 qd_idx = (pd_idx + 1) % raid_disks; 2639 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2640 break; 2641 case ALGORITHM_RIGHT_SYMMETRIC: 2642 pd_idx = sector_div(stripe2, raid_disks); 2643 qd_idx = (pd_idx + 1) % raid_disks; 2644 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; 2645 break; 2646 2647 case ALGORITHM_PARITY_0: 2648 pd_idx = 0; 2649 qd_idx = 1; 2650 (*dd_idx) += 2; 2651 break; 2652 case ALGORITHM_PARITY_N: 2653 pd_idx = data_disks; 2654 qd_idx = data_disks + 1; 2655 break; 2656 2657 case ALGORITHM_ROTATING_ZERO_RESTART: 2658 /* Exactly the same as RIGHT_ASYMMETRIC, but or 2659 * of blocks for computing Q is different. 2660 */ 2661 pd_idx = sector_div(stripe2, raid_disks); 2662 qd_idx = pd_idx + 1; 2663 if (pd_idx == raid_disks-1) { 2664 (*dd_idx)++; /* Q D D D P */ 2665 qd_idx = 0; 2666 } else if (*dd_idx >= pd_idx) 2667 (*dd_idx) += 2; /* D D P Q D */ 2668 ddf_layout = 1; 2669 break; 2670 2671 case ALGORITHM_ROTATING_N_RESTART: 2672 /* Same a left_asymmetric, by first stripe is 2673 * D D D P Q rather than 2674 * Q D D D P 2675 */ 2676 stripe2 += 1; 2677 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2678 qd_idx = pd_idx + 1; 2679 if (pd_idx == raid_disks-1) { 2680 (*dd_idx)++; /* Q D D D P */ 2681 qd_idx = 0; 2682 } else if (*dd_idx >= pd_idx) 2683 (*dd_idx) += 2; /* D D P Q D */ 2684 ddf_layout = 1; 2685 break; 2686 2687 case ALGORITHM_ROTATING_N_CONTINUE: 2688 /* Same as left_symmetric but Q is before P */ 2689 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); 2690 qd_idx = (pd_idx + raid_disks - 1) % raid_disks; 2691 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; 2692 ddf_layout = 1; 2693 break; 2694 2695 case ALGORITHM_LEFT_ASYMMETRIC_6: 2696 /* RAID5 left_asymmetric, with Q on last device */ 2697 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2698 if (*dd_idx >= pd_idx) 2699 (*dd_idx)++; 2700 qd_idx = raid_disks - 1; 2701 break; 2702 2703 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2704 pd_idx = sector_div(stripe2, raid_disks-1); 2705 if (*dd_idx >= pd_idx) 2706 (*dd_idx)++; 2707 qd_idx = raid_disks - 1; 2708 break; 2709 2710 case ALGORITHM_LEFT_SYMMETRIC_6: 2711 pd_idx = data_disks - sector_div(stripe2, raid_disks-1); 2712 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2713 qd_idx = raid_disks - 1; 2714 break; 2715 2716 case ALGORITHM_RIGHT_SYMMETRIC_6: 2717 pd_idx = sector_div(stripe2, raid_disks-1); 2718 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); 2719 qd_idx = raid_disks - 1; 2720 break; 2721 2722 case ALGORITHM_PARITY_0_6: 2723 pd_idx = 0; 2724 (*dd_idx)++; 2725 qd_idx = raid_disks - 1; 2726 break; 2727 2728 default: 2729 BUG(); 2730 } 2731 break; 2732 } 2733 2734 if (sh) { 2735 sh->pd_idx = pd_idx; 2736 sh->qd_idx = qd_idx; 2737 sh->ddf_layout = ddf_layout; 2738 } 2739 /* 2740 * Finally, compute the new sector number 2741 */ 2742 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 2743 return new_sector; 2744 } 2745 2746 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) 2747 { 2748 struct r5conf *conf = sh->raid_conf; 2749 int raid_disks = sh->disks; 2750 int data_disks = raid_disks - conf->max_degraded; 2751 sector_t new_sector = sh->sector, check; 2752 int sectors_per_chunk = previous ? conf->prev_chunk_sectors 2753 : conf->chunk_sectors; 2754 int algorithm = previous ? conf->prev_algo 2755 : conf->algorithm; 2756 sector_t stripe; 2757 int chunk_offset; 2758 sector_t chunk_number; 2759 int dummy1, dd_idx = i; 2760 sector_t r_sector; 2761 struct stripe_head sh2; 2762 2763 chunk_offset = sector_div(new_sector, sectors_per_chunk); 2764 stripe = new_sector; 2765 2766 if (i == sh->pd_idx) 2767 return 0; 2768 switch(conf->level) { 2769 case 4: break; 2770 case 5: 2771 switch (algorithm) { 2772 case ALGORITHM_LEFT_ASYMMETRIC: 2773 case ALGORITHM_RIGHT_ASYMMETRIC: 2774 if (i > sh->pd_idx) 2775 i--; 2776 break; 2777 case ALGORITHM_LEFT_SYMMETRIC: 2778 case ALGORITHM_RIGHT_SYMMETRIC: 2779 if (i < sh->pd_idx) 2780 i += raid_disks; 2781 i -= (sh->pd_idx + 1); 2782 break; 2783 case ALGORITHM_PARITY_0: 2784 i -= 1; 2785 break; 2786 case ALGORITHM_PARITY_N: 2787 break; 2788 default: 2789 BUG(); 2790 } 2791 break; 2792 case 6: 2793 if (i == sh->qd_idx) 2794 return 0; /* It is the Q disk */ 2795 switch (algorithm) { 2796 case ALGORITHM_LEFT_ASYMMETRIC: 2797 case ALGORITHM_RIGHT_ASYMMETRIC: 2798 case ALGORITHM_ROTATING_ZERO_RESTART: 2799 case ALGORITHM_ROTATING_N_RESTART: 2800 if (sh->pd_idx == raid_disks-1) 2801 i--; /* Q D D D P */ 2802 else if (i > sh->pd_idx) 2803 i -= 2; /* D D P Q D */ 2804 break; 2805 case ALGORITHM_LEFT_SYMMETRIC: 2806 case ALGORITHM_RIGHT_SYMMETRIC: 2807 if (sh->pd_idx == raid_disks-1) 2808 i--; /* Q D D D P */ 2809 else { 2810 /* D D P Q D */ 2811 if (i < sh->pd_idx) 2812 i += raid_disks; 2813 i -= (sh->pd_idx + 2); 2814 } 2815 break; 2816 case ALGORITHM_PARITY_0: 2817 i -= 2; 2818 break; 2819 case ALGORITHM_PARITY_N: 2820 break; 2821 case ALGORITHM_ROTATING_N_CONTINUE: 2822 /* Like left_symmetric, but P is before Q */ 2823 if (sh->pd_idx == 0) 2824 i--; /* P D D D Q */ 2825 else { 2826 /* D D Q P D */ 2827 if (i < sh->pd_idx) 2828 i += raid_disks; 2829 i -= (sh->pd_idx + 1); 2830 } 2831 break; 2832 case ALGORITHM_LEFT_ASYMMETRIC_6: 2833 case ALGORITHM_RIGHT_ASYMMETRIC_6: 2834 if (i > sh->pd_idx) 2835 i--; 2836 break; 2837 case ALGORITHM_LEFT_SYMMETRIC_6: 2838 case ALGORITHM_RIGHT_SYMMETRIC_6: 2839 if (i < sh->pd_idx) 2840 i += data_disks + 1; 2841 i -= (sh->pd_idx + 1); 2842 break; 2843 case ALGORITHM_PARITY_0_6: 2844 i -= 1; 2845 break; 2846 default: 2847 BUG(); 2848 } 2849 break; 2850 } 2851 2852 chunk_number = stripe * data_disks + i; 2853 r_sector = chunk_number * sectors_per_chunk + chunk_offset; 2854 2855 check = raid5_compute_sector(conf, r_sector, 2856 previous, &dummy1, &sh2); 2857 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx 2858 || sh2.qd_idx != sh->qd_idx) { 2859 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n", 2860 mdname(conf->mddev)); 2861 return 0; 2862 } 2863 return r_sector; 2864 } 2865 2866 static void 2867 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, 2868 int rcw, int expand) 2869 { 2870 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; 2871 struct r5conf *conf = sh->raid_conf; 2872 int level = conf->level; 2873 2874 if (rcw) { 2875 2876 for (i = disks; i--; ) { 2877 struct r5dev *dev = &sh->dev[i]; 2878 2879 if (dev->towrite) { 2880 set_bit(R5_LOCKED, &dev->flags); 2881 set_bit(R5_Wantdrain, &dev->flags); 2882 if (!expand) 2883 clear_bit(R5_UPTODATE, &dev->flags); 2884 s->locked++; 2885 } 2886 } 2887 /* if we are not expanding this is a proper write request, and 2888 * there will be bios with new data to be drained into the 2889 * stripe cache 2890 */ 2891 if (!expand) { 2892 if (!s->locked) 2893 /* False alarm, nothing to do */ 2894 return; 2895 sh->reconstruct_state = reconstruct_state_drain_run; 2896 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2897 } else 2898 sh->reconstruct_state = reconstruct_state_run; 2899 2900 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2901 2902 if (s->locked + conf->max_degraded == disks) 2903 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) 2904 atomic_inc(&conf->pending_full_writes); 2905 } else { 2906 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || 2907 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); 2908 BUG_ON(level == 6 && 2909 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || 2910 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); 2911 2912 for (i = disks; i--; ) { 2913 struct r5dev *dev = &sh->dev[i]; 2914 if (i == pd_idx || i == qd_idx) 2915 continue; 2916 2917 if (dev->towrite && 2918 (test_bit(R5_UPTODATE, &dev->flags) || 2919 test_bit(R5_Wantcompute, &dev->flags))) { 2920 set_bit(R5_Wantdrain, &dev->flags); 2921 set_bit(R5_LOCKED, &dev->flags); 2922 clear_bit(R5_UPTODATE, &dev->flags); 2923 s->locked++; 2924 } 2925 } 2926 if (!s->locked) 2927 /* False alarm - nothing to do */ 2928 return; 2929 sh->reconstruct_state = reconstruct_state_prexor_drain_run; 2930 set_bit(STRIPE_OP_PREXOR, &s->ops_request); 2931 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); 2932 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); 2933 } 2934 2935 /* keep the parity disk(s) locked while asynchronous operations 2936 * are in flight 2937 */ 2938 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 2939 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 2940 s->locked++; 2941 2942 if (level == 6) { 2943 int qd_idx = sh->qd_idx; 2944 struct r5dev *dev = &sh->dev[qd_idx]; 2945 2946 set_bit(R5_LOCKED, &dev->flags); 2947 clear_bit(R5_UPTODATE, &dev->flags); 2948 s->locked++; 2949 } 2950 2951 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", 2952 __func__, (unsigned long long)sh->sector, 2953 s->locked, s->ops_request); 2954 } 2955 2956 /* 2957 * Each stripe/dev can have one or more bion attached. 2958 * toread/towrite point to the first in a chain. 2959 * The bi_next chain must be in order. 2960 */ 2961 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, 2962 int forwrite, int previous) 2963 { 2964 struct bio **bip; 2965 struct r5conf *conf = sh->raid_conf; 2966 int firstwrite=0; 2967 2968 pr_debug("adding bi b#%llu to stripe s#%llu\n", 2969 (unsigned long long)bi->bi_iter.bi_sector, 2970 (unsigned long long)sh->sector); 2971 2972 /* 2973 * If several bio share a stripe. The bio bi_phys_segments acts as a 2974 * reference count to avoid race. The reference count should already be 2975 * increased before this function is called (for example, in 2976 * raid5_make_request()), so other bio sharing this stripe will not free the 2977 * stripe. If a stripe is owned by one stripe, the stripe lock will 2978 * protect it. 2979 */ 2980 spin_lock_irq(&sh->stripe_lock); 2981 /* Don't allow new IO added to stripes in batch list */ 2982 if (sh->batch_head) 2983 goto overlap; 2984 if (forwrite) { 2985 bip = &sh->dev[dd_idx].towrite; 2986 if (*bip == NULL) 2987 firstwrite = 1; 2988 } else 2989 bip = &sh->dev[dd_idx].toread; 2990 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { 2991 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) 2992 goto overlap; 2993 bip = & (*bip)->bi_next; 2994 } 2995 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) 2996 goto overlap; 2997 2998 if (!forwrite || previous) 2999 clear_bit(STRIPE_BATCH_READY, &sh->state); 3000 3001 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); 3002 if (*bip) 3003 bi->bi_next = *bip; 3004 *bip = bi; 3005 raid5_inc_bi_active_stripes(bi); 3006 3007 if (forwrite) { 3008 /* check if page is covered */ 3009 sector_t sector = sh->dev[dd_idx].sector; 3010 for (bi=sh->dev[dd_idx].towrite; 3011 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 3012 bi && bi->bi_iter.bi_sector <= sector; 3013 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 3014 if (bio_end_sector(bi) >= sector) 3015 sector = bio_end_sector(bi); 3016 } 3017 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 3018 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) 3019 sh->overwrite_disks++; 3020 } 3021 3022 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", 3023 (unsigned long long)(*bip)->bi_iter.bi_sector, 3024 (unsigned long long)sh->sector, dd_idx); 3025 3026 if (conf->mddev->bitmap && firstwrite) { 3027 /* Cannot hold spinlock over bitmap_startwrite, 3028 * but must ensure this isn't added to a batch until 3029 * we have added to the bitmap and set bm_seq. 3030 * So set STRIPE_BITMAP_PENDING to prevent 3031 * batching. 3032 * If multiple add_stripe_bio() calls race here they 3033 * much all set STRIPE_BITMAP_PENDING. So only the first one 3034 * to complete "bitmap_startwrite" gets to set 3035 * STRIPE_BIT_DELAY. This is important as once a stripe 3036 * is added to a batch, STRIPE_BIT_DELAY cannot be changed 3037 * any more. 3038 */ 3039 set_bit(STRIPE_BITMAP_PENDING, &sh->state); 3040 spin_unlock_irq(&sh->stripe_lock); 3041 bitmap_startwrite(conf->mddev->bitmap, sh->sector, 3042 STRIPE_SECTORS, 0); 3043 spin_lock_irq(&sh->stripe_lock); 3044 clear_bit(STRIPE_BITMAP_PENDING, &sh->state); 3045 if (!sh->batch_head) { 3046 sh->bm_seq = conf->seq_flush+1; 3047 set_bit(STRIPE_BIT_DELAY, &sh->state); 3048 } 3049 } 3050 spin_unlock_irq(&sh->stripe_lock); 3051 3052 if (stripe_can_batch(sh)) 3053 stripe_add_to_batch_list(conf, sh); 3054 return 1; 3055 3056 overlap: 3057 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 3058 spin_unlock_irq(&sh->stripe_lock); 3059 return 0; 3060 } 3061 3062 static void end_reshape(struct r5conf *conf); 3063 3064 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, 3065 struct stripe_head *sh) 3066 { 3067 int sectors_per_chunk = 3068 previous ? conf->prev_chunk_sectors : conf->chunk_sectors; 3069 int dd_idx; 3070 int chunk_offset = sector_div(stripe, sectors_per_chunk); 3071 int disks = previous ? conf->previous_raid_disks : conf->raid_disks; 3072 3073 raid5_compute_sector(conf, 3074 stripe * (disks - conf->max_degraded) 3075 *sectors_per_chunk + chunk_offset, 3076 previous, 3077 &dd_idx, sh); 3078 } 3079 3080 static void 3081 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, 3082 struct stripe_head_state *s, int disks, 3083 struct bio_list *return_bi) 3084 { 3085 int i; 3086 BUG_ON(sh->batch_head); 3087 for (i = disks; i--; ) { 3088 struct bio *bi; 3089 int bitmap_end = 0; 3090 3091 if (test_bit(R5_ReadError, &sh->dev[i].flags)) { 3092 struct md_rdev *rdev; 3093 rcu_read_lock(); 3094 rdev = rcu_dereference(conf->disks[i].rdev); 3095 if (rdev && test_bit(In_sync, &rdev->flags) && 3096 !test_bit(Faulty, &rdev->flags)) 3097 atomic_inc(&rdev->nr_pending); 3098 else 3099 rdev = NULL; 3100 rcu_read_unlock(); 3101 if (rdev) { 3102 if (!rdev_set_badblocks( 3103 rdev, 3104 sh->sector, 3105 STRIPE_SECTORS, 0)) 3106 md_error(conf->mddev, rdev); 3107 rdev_dec_pending(rdev, conf->mddev); 3108 } 3109 } 3110 spin_lock_irq(&sh->stripe_lock); 3111 /* fail all writes first */ 3112 bi = sh->dev[i].towrite; 3113 sh->dev[i].towrite = NULL; 3114 sh->overwrite_disks = 0; 3115 spin_unlock_irq(&sh->stripe_lock); 3116 if (bi) 3117 bitmap_end = 1; 3118 3119 r5l_stripe_write_finished(sh); 3120 3121 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3122 wake_up(&conf->wait_for_overlap); 3123 3124 while (bi && bi->bi_iter.bi_sector < 3125 sh->dev[i].sector + STRIPE_SECTORS) { 3126 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 3127 3128 bi->bi_error = -EIO; 3129 if (!raid5_dec_bi_active_stripes(bi)) { 3130 md_write_end(conf->mddev); 3131 bio_list_add(return_bi, bi); 3132 } 3133 bi = nextbi; 3134 } 3135 if (bitmap_end) 3136 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3137 STRIPE_SECTORS, 0, 0); 3138 bitmap_end = 0; 3139 /* and fail all 'written' */ 3140 bi = sh->dev[i].written; 3141 sh->dev[i].written = NULL; 3142 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { 3143 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); 3144 sh->dev[i].page = sh->dev[i].orig_page; 3145 } 3146 3147 if (bi) bitmap_end = 1; 3148 while (bi && bi->bi_iter.bi_sector < 3149 sh->dev[i].sector + STRIPE_SECTORS) { 3150 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 3151 3152 bi->bi_error = -EIO; 3153 if (!raid5_dec_bi_active_stripes(bi)) { 3154 md_write_end(conf->mddev); 3155 bio_list_add(return_bi, bi); 3156 } 3157 bi = bi2; 3158 } 3159 3160 /* fail any reads if this device is non-operational and 3161 * the data has not reached the cache yet. 3162 */ 3163 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && 3164 s->failed > conf->max_degraded && 3165 (!test_bit(R5_Insync, &sh->dev[i].flags) || 3166 test_bit(R5_ReadError, &sh->dev[i].flags))) { 3167 spin_lock_irq(&sh->stripe_lock); 3168 bi = sh->dev[i].toread; 3169 sh->dev[i].toread = NULL; 3170 spin_unlock_irq(&sh->stripe_lock); 3171 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 3172 wake_up(&conf->wait_for_overlap); 3173 if (bi) 3174 s->to_read--; 3175 while (bi && bi->bi_iter.bi_sector < 3176 sh->dev[i].sector + STRIPE_SECTORS) { 3177 struct bio *nextbi = 3178 r5_next_bio(bi, sh->dev[i].sector); 3179 3180 bi->bi_error = -EIO; 3181 if (!raid5_dec_bi_active_stripes(bi)) 3182 bio_list_add(return_bi, bi); 3183 bi = nextbi; 3184 } 3185 } 3186 if (bitmap_end) 3187 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3188 STRIPE_SECTORS, 0, 0); 3189 /* If we were in the middle of a write the parity block might 3190 * still be locked - so just clear all R5_LOCKED flags 3191 */ 3192 clear_bit(R5_LOCKED, &sh->dev[i].flags); 3193 } 3194 s->to_write = 0; 3195 s->written = 0; 3196 3197 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3198 if (atomic_dec_and_test(&conf->pending_full_writes)) 3199 md_wakeup_thread(conf->mddev->thread); 3200 } 3201 3202 static void 3203 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, 3204 struct stripe_head_state *s) 3205 { 3206 int abort = 0; 3207 int i; 3208 3209 BUG_ON(sh->batch_head); 3210 clear_bit(STRIPE_SYNCING, &sh->state); 3211 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 3212 wake_up(&conf->wait_for_overlap); 3213 s->syncing = 0; 3214 s->replacing = 0; 3215 /* There is nothing more to do for sync/check/repair. 3216 * Don't even need to abort as that is handled elsewhere 3217 * if needed, and not always wanted e.g. if there is a known 3218 * bad block here. 3219 * For recover/replace we need to record a bad block on all 3220 * non-sync devices, or abort the recovery 3221 */ 3222 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { 3223 /* During recovery devices cannot be removed, so 3224 * locking and refcounting of rdevs is not needed 3225 */ 3226 rcu_read_lock(); 3227 for (i = 0; i < conf->raid_disks; i++) { 3228 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 3229 if (rdev 3230 && !test_bit(Faulty, &rdev->flags) 3231 && !test_bit(In_sync, &rdev->flags) 3232 && !rdev_set_badblocks(rdev, sh->sector, 3233 STRIPE_SECTORS, 0)) 3234 abort = 1; 3235 rdev = rcu_dereference(conf->disks[i].replacement); 3236 if (rdev 3237 && !test_bit(Faulty, &rdev->flags) 3238 && !test_bit(In_sync, &rdev->flags) 3239 && !rdev_set_badblocks(rdev, sh->sector, 3240 STRIPE_SECTORS, 0)) 3241 abort = 1; 3242 } 3243 rcu_read_unlock(); 3244 if (abort) 3245 conf->recovery_disabled = 3246 conf->mddev->recovery_disabled; 3247 } 3248 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); 3249 } 3250 3251 static int want_replace(struct stripe_head *sh, int disk_idx) 3252 { 3253 struct md_rdev *rdev; 3254 int rv = 0; 3255 3256 rcu_read_lock(); 3257 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); 3258 if (rdev 3259 && !test_bit(Faulty, &rdev->flags) 3260 && !test_bit(In_sync, &rdev->flags) 3261 && (rdev->recovery_offset <= sh->sector 3262 || rdev->mddev->recovery_cp <= sh->sector)) 3263 rv = 1; 3264 rcu_read_unlock(); 3265 return rv; 3266 } 3267 3268 /* fetch_block - checks the given member device to see if its data needs 3269 * to be read or computed to satisfy a request. 3270 * 3271 * Returns 1 when no more member devices need to be checked, otherwise returns 3272 * 0 to tell the loop in handle_stripe_fill to continue 3273 */ 3274 3275 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, 3276 int disk_idx, int disks) 3277 { 3278 struct r5dev *dev = &sh->dev[disk_idx]; 3279 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], 3280 &sh->dev[s->failed_num[1]] }; 3281 int i; 3282 3283 3284 if (test_bit(R5_LOCKED, &dev->flags) || 3285 test_bit(R5_UPTODATE, &dev->flags)) 3286 /* No point reading this as we already have it or have 3287 * decided to get it. 3288 */ 3289 return 0; 3290 3291 if (dev->toread || 3292 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) 3293 /* We need this block to directly satisfy a request */ 3294 return 1; 3295 3296 if (s->syncing || s->expanding || 3297 (s->replacing && want_replace(sh, disk_idx))) 3298 /* When syncing, or expanding we read everything. 3299 * When replacing, we need the replaced block. 3300 */ 3301 return 1; 3302 3303 if ((s->failed >= 1 && fdev[0]->toread) || 3304 (s->failed >= 2 && fdev[1]->toread)) 3305 /* If we want to read from a failed device, then 3306 * we need to actually read every other device. 3307 */ 3308 return 1; 3309 3310 /* Sometimes neither read-modify-write nor reconstruct-write 3311 * cycles can work. In those cases we read every block we 3312 * can. Then the parity-update is certain to have enough to 3313 * work with. 3314 * This can only be a problem when we need to write something, 3315 * and some device has failed. If either of those tests 3316 * fail we need look no further. 3317 */ 3318 if (!s->failed || !s->to_write) 3319 return 0; 3320 3321 if (test_bit(R5_Insync, &dev->flags) && 3322 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3323 /* Pre-reads at not permitted until after short delay 3324 * to gather multiple requests. However if this 3325 * device is no Insync, the block could only be be computed 3326 * and there is no need to delay that. 3327 */ 3328 return 0; 3329 3330 for (i = 0; i < s->failed && i < 2; i++) { 3331 if (fdev[i]->towrite && 3332 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3333 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3334 /* If we have a partial write to a failed 3335 * device, then we will need to reconstruct 3336 * the content of that device, so all other 3337 * devices must be read. 3338 */ 3339 return 1; 3340 } 3341 3342 /* If we are forced to do a reconstruct-write, either because 3343 * the current RAID6 implementation only supports that, or 3344 * or because parity cannot be trusted and we are currently 3345 * recovering it, there is extra need to be careful. 3346 * If one of the devices that we would need to read, because 3347 * it is not being overwritten (and maybe not written at all) 3348 * is missing/faulty, then we need to read everything we can. 3349 */ 3350 if (sh->raid_conf->level != 6 && 3351 sh->sector < sh->raid_conf->mddev->recovery_cp) 3352 /* reconstruct-write isn't being forced */ 3353 return 0; 3354 for (i = 0; i < s->failed && i < 2; i++) { 3355 if (s->failed_num[i] != sh->pd_idx && 3356 s->failed_num[i] != sh->qd_idx && 3357 !test_bit(R5_UPTODATE, &fdev[i]->flags) && 3358 !test_bit(R5_OVERWRITE, &fdev[i]->flags)) 3359 return 1; 3360 } 3361 3362 return 0; 3363 } 3364 3365 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, 3366 int disk_idx, int disks) 3367 { 3368 struct r5dev *dev = &sh->dev[disk_idx]; 3369 3370 /* is the data in this block needed, and can we get it? */ 3371 if (need_this_block(sh, s, disk_idx, disks)) { 3372 /* we would like to get this block, possibly by computing it, 3373 * otherwise read it if the backing disk is insync 3374 */ 3375 BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); 3376 BUG_ON(test_bit(R5_Wantread, &dev->flags)); 3377 BUG_ON(sh->batch_head); 3378 if ((s->uptodate == disks - 1) && 3379 (s->failed && (disk_idx == s->failed_num[0] || 3380 disk_idx == s->failed_num[1]))) { 3381 /* have disk failed, and we're requested to fetch it; 3382 * do compute it 3383 */ 3384 pr_debug("Computing stripe %llu block %d\n", 3385 (unsigned long long)sh->sector, disk_idx); 3386 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3387 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3388 set_bit(R5_Wantcompute, &dev->flags); 3389 sh->ops.target = disk_idx; 3390 sh->ops.target2 = -1; /* no 2nd target */ 3391 s->req_compute = 1; 3392 /* Careful: from this point on 'uptodate' is in the eye 3393 * of raid_run_ops which services 'compute' operations 3394 * before writes. R5_Wantcompute flags a block that will 3395 * be R5_UPTODATE by the time it is needed for a 3396 * subsequent operation. 3397 */ 3398 s->uptodate++; 3399 return 1; 3400 } else if (s->uptodate == disks-2 && s->failed >= 2) { 3401 /* Computing 2-failure is *very* expensive; only 3402 * do it if failed >= 2 3403 */ 3404 int other; 3405 for (other = disks; other--; ) { 3406 if (other == disk_idx) 3407 continue; 3408 if (!test_bit(R5_UPTODATE, 3409 &sh->dev[other].flags)) 3410 break; 3411 } 3412 BUG_ON(other < 0); 3413 pr_debug("Computing stripe %llu blocks %d,%d\n", 3414 (unsigned long long)sh->sector, 3415 disk_idx, other); 3416 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3417 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3418 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); 3419 set_bit(R5_Wantcompute, &sh->dev[other].flags); 3420 sh->ops.target = disk_idx; 3421 sh->ops.target2 = other; 3422 s->uptodate += 2; 3423 s->req_compute = 1; 3424 return 1; 3425 } else if (test_bit(R5_Insync, &dev->flags)) { 3426 set_bit(R5_LOCKED, &dev->flags); 3427 set_bit(R5_Wantread, &dev->flags); 3428 s->locked++; 3429 pr_debug("Reading block %d (sync=%d)\n", 3430 disk_idx, s->syncing); 3431 } 3432 } 3433 3434 return 0; 3435 } 3436 3437 /** 3438 * handle_stripe_fill - read or compute data to satisfy pending requests. 3439 */ 3440 static void handle_stripe_fill(struct stripe_head *sh, 3441 struct stripe_head_state *s, 3442 int disks) 3443 { 3444 int i; 3445 3446 /* look for blocks to read/compute, skip this if a compute 3447 * is already in flight, or if the stripe contents are in the 3448 * midst of changing due to a write 3449 */ 3450 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && 3451 !sh->reconstruct_state) 3452 for (i = disks; i--; ) 3453 if (fetch_block(sh, s, i, disks)) 3454 break; 3455 set_bit(STRIPE_HANDLE, &sh->state); 3456 } 3457 3458 static void break_stripe_batch_list(struct stripe_head *head_sh, 3459 unsigned long handle_flags); 3460 /* handle_stripe_clean_event 3461 * any written block on an uptodate or failed drive can be returned. 3462 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 3463 * never LOCKED, so we don't need to test 'failed' directly. 3464 */ 3465 static void handle_stripe_clean_event(struct r5conf *conf, 3466 struct stripe_head *sh, int disks, struct bio_list *return_bi) 3467 { 3468 int i; 3469 struct r5dev *dev; 3470 int discard_pending = 0; 3471 struct stripe_head *head_sh = sh; 3472 bool do_endio = false; 3473 3474 for (i = disks; i--; ) 3475 if (sh->dev[i].written) { 3476 dev = &sh->dev[i]; 3477 if (!test_bit(R5_LOCKED, &dev->flags) && 3478 (test_bit(R5_UPTODATE, &dev->flags) || 3479 test_bit(R5_Discard, &dev->flags) || 3480 test_bit(R5_SkipCopy, &dev->flags))) { 3481 /* We can return any write requests */ 3482 struct bio *wbi, *wbi2; 3483 pr_debug("Return write for disc %d\n", i); 3484 if (test_and_clear_bit(R5_Discard, &dev->flags)) 3485 clear_bit(R5_UPTODATE, &dev->flags); 3486 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { 3487 WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); 3488 } 3489 do_endio = true; 3490 3491 returnbi: 3492 dev->page = dev->orig_page; 3493 wbi = dev->written; 3494 dev->written = NULL; 3495 while (wbi && wbi->bi_iter.bi_sector < 3496 dev->sector + STRIPE_SECTORS) { 3497 wbi2 = r5_next_bio(wbi, dev->sector); 3498 if (!raid5_dec_bi_active_stripes(wbi)) { 3499 md_write_end(conf->mddev); 3500 bio_list_add(return_bi, wbi); 3501 } 3502 wbi = wbi2; 3503 } 3504 bitmap_endwrite(conf->mddev->bitmap, sh->sector, 3505 STRIPE_SECTORS, 3506 !test_bit(STRIPE_DEGRADED, &sh->state), 3507 0); 3508 if (head_sh->batch_head) { 3509 sh = list_first_entry(&sh->batch_list, 3510 struct stripe_head, 3511 batch_list); 3512 if (sh != head_sh) { 3513 dev = &sh->dev[i]; 3514 goto returnbi; 3515 } 3516 } 3517 sh = head_sh; 3518 dev = &sh->dev[i]; 3519 } else if (test_bit(R5_Discard, &dev->flags)) 3520 discard_pending = 1; 3521 } 3522 3523 r5l_stripe_write_finished(sh); 3524 3525 if (!discard_pending && 3526 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { 3527 int hash; 3528 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); 3529 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3530 if (sh->qd_idx >= 0) { 3531 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); 3532 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); 3533 } 3534 /* now that discard is done we can proceed with any sync */ 3535 clear_bit(STRIPE_DISCARD, &sh->state); 3536 /* 3537 * SCSI discard will change some bio fields and the stripe has 3538 * no updated data, so remove it from hash list and the stripe 3539 * will be reinitialized 3540 */ 3541 unhash: 3542 hash = sh->hash_lock_index; 3543 spin_lock_irq(conf->hash_locks + hash); 3544 remove_hash(sh); 3545 spin_unlock_irq(conf->hash_locks + hash); 3546 if (head_sh->batch_head) { 3547 sh = list_first_entry(&sh->batch_list, 3548 struct stripe_head, batch_list); 3549 if (sh != head_sh) 3550 goto unhash; 3551 } 3552 sh = head_sh; 3553 3554 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) 3555 set_bit(STRIPE_HANDLE, &sh->state); 3556 3557 } 3558 3559 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) 3560 if (atomic_dec_and_test(&conf->pending_full_writes)) 3561 md_wakeup_thread(conf->mddev->thread); 3562 3563 if (head_sh->batch_head && do_endio) 3564 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); 3565 } 3566 3567 static void handle_stripe_dirtying(struct r5conf *conf, 3568 struct stripe_head *sh, 3569 struct stripe_head_state *s, 3570 int disks) 3571 { 3572 int rmw = 0, rcw = 0, i; 3573 sector_t recovery_cp = conf->mddev->recovery_cp; 3574 3575 /* Check whether resync is now happening or should start. 3576 * If yes, then the array is dirty (after unclean shutdown or 3577 * initial creation), so parity in some stripes might be inconsistent. 3578 * In this case, we need to always do reconstruct-write, to ensure 3579 * that in case of drive failure or read-error correction, we 3580 * generate correct data from the parity. 3581 */ 3582 if (conf->rmw_level == PARITY_DISABLE_RMW || 3583 (recovery_cp < MaxSector && sh->sector >= recovery_cp && 3584 s->failed == 0)) { 3585 /* Calculate the real rcw later - for now make it 3586 * look like rcw is cheaper 3587 */ 3588 rcw = 1; rmw = 2; 3589 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", 3590 conf->rmw_level, (unsigned long long)recovery_cp, 3591 (unsigned long long)sh->sector); 3592 } else for (i = disks; i--; ) { 3593 /* would I have to read this buffer for read_modify_write */ 3594 struct r5dev *dev = &sh->dev[i]; 3595 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3596 !test_bit(R5_LOCKED, &dev->flags) && 3597 !(test_bit(R5_UPTODATE, &dev->flags) || 3598 test_bit(R5_Wantcompute, &dev->flags))) { 3599 if (test_bit(R5_Insync, &dev->flags)) 3600 rmw++; 3601 else 3602 rmw += 2*disks; /* cannot read it */ 3603 } 3604 /* Would I have to read this buffer for reconstruct_write */ 3605 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3606 i != sh->pd_idx && i != sh->qd_idx && 3607 !test_bit(R5_LOCKED, &dev->flags) && 3608 !(test_bit(R5_UPTODATE, &dev->flags) || 3609 test_bit(R5_Wantcompute, &dev->flags))) { 3610 if (test_bit(R5_Insync, &dev->flags)) 3611 rcw++; 3612 else 3613 rcw += 2*disks; 3614 } 3615 } 3616 pr_debug("for sector %llu, rmw=%d rcw=%d\n", 3617 (unsigned long long)sh->sector, rmw, rcw); 3618 set_bit(STRIPE_HANDLE, &sh->state); 3619 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { 3620 /* prefer read-modify-write, but need to get some data */ 3621 if (conf->mddev->queue) 3622 blk_add_trace_msg(conf->mddev->queue, 3623 "raid5 rmw %llu %d", 3624 (unsigned long long)sh->sector, rmw); 3625 for (i = disks; i--; ) { 3626 struct r5dev *dev = &sh->dev[i]; 3627 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) && 3628 !test_bit(R5_LOCKED, &dev->flags) && 3629 !(test_bit(R5_UPTODATE, &dev->flags) || 3630 test_bit(R5_Wantcompute, &dev->flags)) && 3631 test_bit(R5_Insync, &dev->flags)) { 3632 if (test_bit(STRIPE_PREREAD_ACTIVE, 3633 &sh->state)) { 3634 pr_debug("Read_old block %d for r-m-w\n", 3635 i); 3636 set_bit(R5_LOCKED, &dev->flags); 3637 set_bit(R5_Wantread, &dev->flags); 3638 s->locked++; 3639 } else { 3640 set_bit(STRIPE_DELAYED, &sh->state); 3641 set_bit(STRIPE_HANDLE, &sh->state); 3642 } 3643 } 3644 } 3645 } 3646 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { 3647 /* want reconstruct write, but need to get some data */ 3648 int qread =0; 3649 rcw = 0; 3650 for (i = disks; i--; ) { 3651 struct r5dev *dev = &sh->dev[i]; 3652 if (!test_bit(R5_OVERWRITE, &dev->flags) && 3653 i != sh->pd_idx && i != sh->qd_idx && 3654 !test_bit(R5_LOCKED, &dev->flags) && 3655 !(test_bit(R5_UPTODATE, &dev->flags) || 3656 test_bit(R5_Wantcompute, &dev->flags))) { 3657 rcw++; 3658 if (test_bit(R5_Insync, &dev->flags) && 3659 test_bit(STRIPE_PREREAD_ACTIVE, 3660 &sh->state)) { 3661 pr_debug("Read_old block " 3662 "%d for Reconstruct\n", i); 3663 set_bit(R5_LOCKED, &dev->flags); 3664 set_bit(R5_Wantread, &dev->flags); 3665 s->locked++; 3666 qread++; 3667 } else { 3668 set_bit(STRIPE_DELAYED, &sh->state); 3669 set_bit(STRIPE_HANDLE, &sh->state); 3670 } 3671 } 3672 } 3673 if (rcw && conf->mddev->queue) 3674 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", 3675 (unsigned long long)sh->sector, 3676 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); 3677 } 3678 3679 if (rcw > disks && rmw > disks && 3680 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 3681 set_bit(STRIPE_DELAYED, &sh->state); 3682 3683 /* now if nothing is locked, and if we have enough data, 3684 * we can start a write request 3685 */ 3686 /* since handle_stripe can be called at any time we need to handle the 3687 * case where a compute block operation has been submitted and then a 3688 * subsequent call wants to start a write request. raid_run_ops only 3689 * handles the case where compute block and reconstruct are requested 3690 * simultaneously. If this is not the case then new writes need to be 3691 * held off until the compute completes. 3692 */ 3693 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && 3694 (s->locked == 0 && (rcw == 0 || rmw == 0) && 3695 !test_bit(STRIPE_BIT_DELAY, &sh->state))) 3696 schedule_reconstruction(sh, s, rcw == 0, 0); 3697 } 3698 3699 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, 3700 struct stripe_head_state *s, int disks) 3701 { 3702 struct r5dev *dev = NULL; 3703 3704 BUG_ON(sh->batch_head); 3705 set_bit(STRIPE_HANDLE, &sh->state); 3706 3707 switch (sh->check_state) { 3708 case check_state_idle: 3709 /* start a new check operation if there are no failures */ 3710 if (s->failed == 0) { 3711 BUG_ON(s->uptodate != disks); 3712 sh->check_state = check_state_run; 3713 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3714 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); 3715 s->uptodate--; 3716 break; 3717 } 3718 dev = &sh->dev[s->failed_num[0]]; 3719 /* fall through */ 3720 case check_state_compute_result: 3721 sh->check_state = check_state_idle; 3722 if (!dev) 3723 dev = &sh->dev[sh->pd_idx]; 3724 3725 /* check that a write has not made the stripe insync */ 3726 if (test_bit(STRIPE_INSYNC, &sh->state)) 3727 break; 3728 3729 /* either failed parity check, or recovery is happening */ 3730 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); 3731 BUG_ON(s->uptodate != disks); 3732 3733 set_bit(R5_LOCKED, &dev->flags); 3734 s->locked++; 3735 set_bit(R5_Wantwrite, &dev->flags); 3736 3737 clear_bit(STRIPE_DEGRADED, &sh->state); 3738 set_bit(STRIPE_INSYNC, &sh->state); 3739 break; 3740 case check_state_run: 3741 break; /* we will be called again upon completion */ 3742 case check_state_check_result: 3743 sh->check_state = check_state_idle; 3744 3745 /* if a failure occurred during the check operation, leave 3746 * STRIPE_INSYNC not set and let the stripe be handled again 3747 */ 3748 if (s->failed) 3749 break; 3750 3751 /* handle a successful check operation, if parity is correct 3752 * we are done. Otherwise update the mismatch count and repair 3753 * parity if !MD_RECOVERY_CHECK 3754 */ 3755 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) 3756 /* parity is correct (on disc, 3757 * not in buffer any more) 3758 */ 3759 set_bit(STRIPE_INSYNC, &sh->state); 3760 else { 3761 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3762 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3763 /* don't try to repair!! */ 3764 set_bit(STRIPE_INSYNC, &sh->state); 3765 else { 3766 sh->check_state = check_state_compute_run; 3767 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3768 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3769 set_bit(R5_Wantcompute, 3770 &sh->dev[sh->pd_idx].flags); 3771 sh->ops.target = sh->pd_idx; 3772 sh->ops.target2 = -1; 3773 s->uptodate++; 3774 } 3775 } 3776 break; 3777 case check_state_compute_run: 3778 break; 3779 default: 3780 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3781 __func__, sh->check_state, 3782 (unsigned long long) sh->sector); 3783 BUG(); 3784 } 3785 } 3786 3787 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, 3788 struct stripe_head_state *s, 3789 int disks) 3790 { 3791 int pd_idx = sh->pd_idx; 3792 int qd_idx = sh->qd_idx; 3793 struct r5dev *dev; 3794 3795 BUG_ON(sh->batch_head); 3796 set_bit(STRIPE_HANDLE, &sh->state); 3797 3798 BUG_ON(s->failed > 2); 3799 3800 /* Want to check and possibly repair P and Q. 3801 * However there could be one 'failed' device, in which 3802 * case we can only check one of them, possibly using the 3803 * other to generate missing data 3804 */ 3805 3806 switch (sh->check_state) { 3807 case check_state_idle: 3808 /* start a new check operation if there are < 2 failures */ 3809 if (s->failed == s->q_failed) { 3810 /* The only possible failed device holds Q, so it 3811 * makes sense to check P (If anything else were failed, 3812 * we would have used P to recreate it). 3813 */ 3814 sh->check_state = check_state_run; 3815 } 3816 if (!s->q_failed && s->failed < 2) { 3817 /* Q is not failed, and we didn't use it to generate 3818 * anything, so it makes sense to check it 3819 */ 3820 if (sh->check_state == check_state_run) 3821 sh->check_state = check_state_run_pq; 3822 else 3823 sh->check_state = check_state_run_q; 3824 } 3825 3826 /* discard potentially stale zero_sum_result */ 3827 sh->ops.zero_sum_result = 0; 3828 3829 if (sh->check_state == check_state_run) { 3830 /* async_xor_zero_sum destroys the contents of P */ 3831 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 3832 s->uptodate--; 3833 } 3834 if (sh->check_state >= check_state_run && 3835 sh->check_state <= check_state_run_pq) { 3836 /* async_syndrome_zero_sum preserves P and Q, so 3837 * no need to mark them !uptodate here 3838 */ 3839 set_bit(STRIPE_OP_CHECK, &s->ops_request); 3840 break; 3841 } 3842 3843 /* we have 2-disk failure */ 3844 BUG_ON(s->failed != 2); 3845 /* fall through */ 3846 case check_state_compute_result: 3847 sh->check_state = check_state_idle; 3848 3849 /* check that a write has not made the stripe insync */ 3850 if (test_bit(STRIPE_INSYNC, &sh->state)) 3851 break; 3852 3853 /* now write out any block on a failed drive, 3854 * or P or Q if they were recomputed 3855 */ 3856 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */ 3857 if (s->failed == 2) { 3858 dev = &sh->dev[s->failed_num[1]]; 3859 s->locked++; 3860 set_bit(R5_LOCKED, &dev->flags); 3861 set_bit(R5_Wantwrite, &dev->flags); 3862 } 3863 if (s->failed >= 1) { 3864 dev = &sh->dev[s->failed_num[0]]; 3865 s->locked++; 3866 set_bit(R5_LOCKED, &dev->flags); 3867 set_bit(R5_Wantwrite, &dev->flags); 3868 } 3869 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3870 dev = &sh->dev[pd_idx]; 3871 s->locked++; 3872 set_bit(R5_LOCKED, &dev->flags); 3873 set_bit(R5_Wantwrite, &dev->flags); 3874 } 3875 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3876 dev = &sh->dev[qd_idx]; 3877 s->locked++; 3878 set_bit(R5_LOCKED, &dev->flags); 3879 set_bit(R5_Wantwrite, &dev->flags); 3880 } 3881 clear_bit(STRIPE_DEGRADED, &sh->state); 3882 3883 set_bit(STRIPE_INSYNC, &sh->state); 3884 break; 3885 case check_state_run: 3886 case check_state_run_q: 3887 case check_state_run_pq: 3888 break; /* we will be called again upon completion */ 3889 case check_state_check_result: 3890 sh->check_state = check_state_idle; 3891 3892 /* handle a successful check operation, if parity is correct 3893 * we are done. Otherwise update the mismatch count and repair 3894 * parity if !MD_RECOVERY_CHECK 3895 */ 3896 if (sh->ops.zero_sum_result == 0) { 3897 /* both parities are correct */ 3898 if (!s->failed) 3899 set_bit(STRIPE_INSYNC, &sh->state); 3900 else { 3901 /* in contrast to the raid5 case we can validate 3902 * parity, but still have a failure to write 3903 * back 3904 */ 3905 sh->check_state = check_state_compute_result; 3906 /* Returning at this point means that we may go 3907 * off and bring p and/or q uptodate again so 3908 * we make sure to check zero_sum_result again 3909 * to verify if p or q need writeback 3910 */ 3911 } 3912 } else { 3913 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); 3914 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) 3915 /* don't try to repair!! */ 3916 set_bit(STRIPE_INSYNC, &sh->state); 3917 else { 3918 int *target = &sh->ops.target; 3919 3920 sh->ops.target = -1; 3921 sh->ops.target2 = -1; 3922 sh->check_state = check_state_compute_run; 3923 set_bit(STRIPE_COMPUTE_RUN, &sh->state); 3924 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); 3925 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { 3926 set_bit(R5_Wantcompute, 3927 &sh->dev[pd_idx].flags); 3928 *target = pd_idx; 3929 target = &sh->ops.target2; 3930 s->uptodate++; 3931 } 3932 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { 3933 set_bit(R5_Wantcompute, 3934 &sh->dev[qd_idx].flags); 3935 *target = qd_idx; 3936 s->uptodate++; 3937 } 3938 } 3939 } 3940 break; 3941 case check_state_compute_run: 3942 break; 3943 default: 3944 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n", 3945 __func__, sh->check_state, 3946 (unsigned long long) sh->sector); 3947 BUG(); 3948 } 3949 } 3950 3951 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) 3952 { 3953 int i; 3954 3955 /* We have read all the blocks in this stripe and now we need to 3956 * copy some of them into a target stripe for expand. 3957 */ 3958 struct dma_async_tx_descriptor *tx = NULL; 3959 BUG_ON(sh->batch_head); 3960 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); 3961 for (i = 0; i < sh->disks; i++) 3962 if (i != sh->pd_idx && i != sh->qd_idx) { 3963 int dd_idx, j; 3964 struct stripe_head *sh2; 3965 struct async_submit_ctl submit; 3966 3967 sector_t bn = raid5_compute_blocknr(sh, i, 1); 3968 sector_t s = raid5_compute_sector(conf, bn, 0, 3969 &dd_idx, NULL); 3970 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); 3971 if (sh2 == NULL) 3972 /* so far only the early blocks of this stripe 3973 * have been requested. When later blocks 3974 * get requested, we will try again 3975 */ 3976 continue; 3977 if (!test_bit(STRIPE_EXPANDING, &sh2->state) || 3978 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { 3979 /* must have already done this block */ 3980 raid5_release_stripe(sh2); 3981 continue; 3982 } 3983 3984 /* place all the copies on one channel */ 3985 init_async_submit(&submit, 0, tx, NULL, NULL, NULL); 3986 tx = async_memcpy(sh2->dev[dd_idx].page, 3987 sh->dev[i].page, 0, 0, STRIPE_SIZE, 3988 &submit); 3989 3990 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); 3991 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); 3992 for (j = 0; j < conf->raid_disks; j++) 3993 if (j != sh2->pd_idx && 3994 j != sh2->qd_idx && 3995 !test_bit(R5_Expanded, &sh2->dev[j].flags)) 3996 break; 3997 if (j == conf->raid_disks) { 3998 set_bit(STRIPE_EXPAND_READY, &sh2->state); 3999 set_bit(STRIPE_HANDLE, &sh2->state); 4000 } 4001 raid5_release_stripe(sh2); 4002 4003 } 4004 /* done submitting copies, wait for them to complete */ 4005 async_tx_quiesce(&tx); 4006 } 4007 4008 /* 4009 * handle_stripe - do things to a stripe. 4010 * 4011 * We lock the stripe by setting STRIPE_ACTIVE and then examine the 4012 * state of various bits to see what needs to be done. 4013 * Possible results: 4014 * return some read requests which now have data 4015 * return some write requests which are safely on storage 4016 * schedule a read on some buffers 4017 * schedule a write of some buffers 4018 * return confirmation of parity correctness 4019 * 4020 */ 4021 4022 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) 4023 { 4024 struct r5conf *conf = sh->raid_conf; 4025 int disks = sh->disks; 4026 struct r5dev *dev; 4027 int i; 4028 int do_recovery = 0; 4029 4030 memset(s, 0, sizeof(*s)); 4031 4032 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; 4033 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; 4034 s->failed_num[0] = -1; 4035 s->failed_num[1] = -1; 4036 s->log_failed = r5l_log_disk_error(conf); 4037 4038 /* Now to look around and see what can be done */ 4039 rcu_read_lock(); 4040 for (i=disks; i--; ) { 4041 struct md_rdev *rdev; 4042 sector_t first_bad; 4043 int bad_sectors; 4044 int is_bad = 0; 4045 4046 dev = &sh->dev[i]; 4047 4048 pr_debug("check %d: state 0x%lx read %p write %p written %p\n", 4049 i, dev->flags, 4050 dev->toread, dev->towrite, dev->written); 4051 /* maybe we can reply to a read 4052 * 4053 * new wantfill requests are only permitted while 4054 * ops_complete_biofill is guaranteed to be inactive 4055 */ 4056 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && 4057 !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) 4058 set_bit(R5_Wantfill, &dev->flags); 4059 4060 /* now count some things */ 4061 if (test_bit(R5_LOCKED, &dev->flags)) 4062 s->locked++; 4063 if (test_bit(R5_UPTODATE, &dev->flags)) 4064 s->uptodate++; 4065 if (test_bit(R5_Wantcompute, &dev->flags)) { 4066 s->compute++; 4067 BUG_ON(s->compute > 2); 4068 } 4069 4070 if (test_bit(R5_Wantfill, &dev->flags)) 4071 s->to_fill++; 4072 else if (dev->toread) 4073 s->to_read++; 4074 if (dev->towrite) { 4075 s->to_write++; 4076 if (!test_bit(R5_OVERWRITE, &dev->flags)) 4077 s->non_overwrite++; 4078 } 4079 if (dev->written) 4080 s->written++; 4081 /* Prefer to use the replacement for reads, but only 4082 * if it is recovered enough and has no bad blocks. 4083 */ 4084 rdev = rcu_dereference(conf->disks[i].replacement); 4085 if (rdev && !test_bit(Faulty, &rdev->flags) && 4086 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && 4087 !is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4088 &first_bad, &bad_sectors)) 4089 set_bit(R5_ReadRepl, &dev->flags); 4090 else { 4091 if (rdev && !test_bit(Faulty, &rdev->flags)) 4092 set_bit(R5_NeedReplace, &dev->flags); 4093 else 4094 clear_bit(R5_NeedReplace, &dev->flags); 4095 rdev = rcu_dereference(conf->disks[i].rdev); 4096 clear_bit(R5_ReadRepl, &dev->flags); 4097 } 4098 if (rdev && test_bit(Faulty, &rdev->flags)) 4099 rdev = NULL; 4100 if (rdev) { 4101 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, 4102 &first_bad, &bad_sectors); 4103 if (s->blocked_rdev == NULL 4104 && (test_bit(Blocked, &rdev->flags) 4105 || is_bad < 0)) { 4106 if (is_bad < 0) 4107 set_bit(BlockedBadBlocks, 4108 &rdev->flags); 4109 s->blocked_rdev = rdev; 4110 atomic_inc(&rdev->nr_pending); 4111 } 4112 } 4113 clear_bit(R5_Insync, &dev->flags); 4114 if (!rdev) 4115 /* Not in-sync */; 4116 else if (is_bad) { 4117 /* also not in-sync */ 4118 if (!test_bit(WriteErrorSeen, &rdev->flags) && 4119 test_bit(R5_UPTODATE, &dev->flags)) { 4120 /* treat as in-sync, but with a read error 4121 * which we can now try to correct 4122 */ 4123 set_bit(R5_Insync, &dev->flags); 4124 set_bit(R5_ReadError, &dev->flags); 4125 } 4126 } else if (test_bit(In_sync, &rdev->flags)) 4127 set_bit(R5_Insync, &dev->flags); 4128 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) 4129 /* in sync if before recovery_offset */ 4130 set_bit(R5_Insync, &dev->flags); 4131 else if (test_bit(R5_UPTODATE, &dev->flags) && 4132 test_bit(R5_Expanded, &dev->flags)) 4133 /* If we've reshaped into here, we assume it is Insync. 4134 * We will shortly update recovery_offset to make 4135 * it official. 4136 */ 4137 set_bit(R5_Insync, &dev->flags); 4138 4139 if (test_bit(R5_WriteError, &dev->flags)) { 4140 /* This flag does not apply to '.replacement' 4141 * only to .rdev, so make sure to check that*/ 4142 struct md_rdev *rdev2 = rcu_dereference( 4143 conf->disks[i].rdev); 4144 if (rdev2 == rdev) 4145 clear_bit(R5_Insync, &dev->flags); 4146 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4147 s->handle_bad_blocks = 1; 4148 atomic_inc(&rdev2->nr_pending); 4149 } else 4150 clear_bit(R5_WriteError, &dev->flags); 4151 } 4152 if (test_bit(R5_MadeGood, &dev->flags)) { 4153 /* This flag does not apply to '.replacement' 4154 * only to .rdev, so make sure to check that*/ 4155 struct md_rdev *rdev2 = rcu_dereference( 4156 conf->disks[i].rdev); 4157 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4158 s->handle_bad_blocks = 1; 4159 atomic_inc(&rdev2->nr_pending); 4160 } else 4161 clear_bit(R5_MadeGood, &dev->flags); 4162 } 4163 if (test_bit(R5_MadeGoodRepl, &dev->flags)) { 4164 struct md_rdev *rdev2 = rcu_dereference( 4165 conf->disks[i].replacement); 4166 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { 4167 s->handle_bad_blocks = 1; 4168 atomic_inc(&rdev2->nr_pending); 4169 } else 4170 clear_bit(R5_MadeGoodRepl, &dev->flags); 4171 } 4172 if (!test_bit(R5_Insync, &dev->flags)) { 4173 /* The ReadError flag will just be confusing now */ 4174 clear_bit(R5_ReadError, &dev->flags); 4175 clear_bit(R5_ReWrite, &dev->flags); 4176 } 4177 if (test_bit(R5_ReadError, &dev->flags)) 4178 clear_bit(R5_Insync, &dev->flags); 4179 if (!test_bit(R5_Insync, &dev->flags)) { 4180 if (s->failed < 2) 4181 s->failed_num[s->failed] = i; 4182 s->failed++; 4183 if (rdev && !test_bit(Faulty, &rdev->flags)) 4184 do_recovery = 1; 4185 } 4186 } 4187 if (test_bit(STRIPE_SYNCING, &sh->state)) { 4188 /* If there is a failed device being replaced, 4189 * we must be recovering. 4190 * else if we are after recovery_cp, we must be syncing 4191 * else if MD_RECOVERY_REQUESTED is set, we also are syncing. 4192 * else we can only be replacing 4193 * sync and recovery both need to read all devices, and so 4194 * use the same flag. 4195 */ 4196 if (do_recovery || 4197 sh->sector >= conf->mddev->recovery_cp || 4198 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) 4199 s->syncing = 1; 4200 else 4201 s->replacing = 1; 4202 } 4203 rcu_read_unlock(); 4204 } 4205 4206 static int clear_batch_ready(struct stripe_head *sh) 4207 { 4208 /* Return '1' if this is a member of batch, or 4209 * '0' if it is a lone stripe or a head which can now be 4210 * handled. 4211 */ 4212 struct stripe_head *tmp; 4213 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) 4214 return (sh->batch_head && sh->batch_head != sh); 4215 spin_lock(&sh->stripe_lock); 4216 if (!sh->batch_head) { 4217 spin_unlock(&sh->stripe_lock); 4218 return 0; 4219 } 4220 4221 /* 4222 * this stripe could be added to a batch list before we check 4223 * BATCH_READY, skips it 4224 */ 4225 if (sh->batch_head != sh) { 4226 spin_unlock(&sh->stripe_lock); 4227 return 1; 4228 } 4229 spin_lock(&sh->batch_lock); 4230 list_for_each_entry(tmp, &sh->batch_list, batch_list) 4231 clear_bit(STRIPE_BATCH_READY, &tmp->state); 4232 spin_unlock(&sh->batch_lock); 4233 spin_unlock(&sh->stripe_lock); 4234 4235 /* 4236 * BATCH_READY is cleared, no new stripes can be added. 4237 * batch_list can be accessed without lock 4238 */ 4239 return 0; 4240 } 4241 4242 static void break_stripe_batch_list(struct stripe_head *head_sh, 4243 unsigned long handle_flags) 4244 { 4245 struct stripe_head *sh, *next; 4246 int i; 4247 int do_wakeup = 0; 4248 4249 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { 4250 4251 list_del_init(&sh->batch_list); 4252 4253 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | 4254 (1 << STRIPE_SYNCING) | 4255 (1 << STRIPE_REPLACED) | 4256 (1 << STRIPE_DELAYED) | 4257 (1 << STRIPE_BIT_DELAY) | 4258 (1 << STRIPE_FULL_WRITE) | 4259 (1 << STRIPE_BIOFILL_RUN) | 4260 (1 << STRIPE_COMPUTE_RUN) | 4261 (1 << STRIPE_OPS_REQ_PENDING) | 4262 (1 << STRIPE_DISCARD) | 4263 (1 << STRIPE_BATCH_READY) | 4264 (1 << STRIPE_BATCH_ERR) | 4265 (1 << STRIPE_BITMAP_PENDING)), 4266 "stripe state: %lx\n", sh->state); 4267 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | 4268 (1 << STRIPE_REPLACED)), 4269 "head stripe state: %lx\n", head_sh->state); 4270 4271 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | 4272 (1 << STRIPE_PREREAD_ACTIVE) | 4273 (1 << STRIPE_DEGRADED)), 4274 head_sh->state & (1 << STRIPE_INSYNC)); 4275 4276 sh->check_state = head_sh->check_state; 4277 sh->reconstruct_state = head_sh->reconstruct_state; 4278 for (i = 0; i < sh->disks; i++) { 4279 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 4280 do_wakeup = 1; 4281 sh->dev[i].flags = head_sh->dev[i].flags & 4282 (~((1 << R5_WriteError) | (1 << R5_Overlap))); 4283 } 4284 spin_lock_irq(&sh->stripe_lock); 4285 sh->batch_head = NULL; 4286 spin_unlock_irq(&sh->stripe_lock); 4287 if (handle_flags == 0 || 4288 sh->state & handle_flags) 4289 set_bit(STRIPE_HANDLE, &sh->state); 4290 raid5_release_stripe(sh); 4291 } 4292 spin_lock_irq(&head_sh->stripe_lock); 4293 head_sh->batch_head = NULL; 4294 spin_unlock_irq(&head_sh->stripe_lock); 4295 for (i = 0; i < head_sh->disks; i++) 4296 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) 4297 do_wakeup = 1; 4298 if (head_sh->state & handle_flags) 4299 set_bit(STRIPE_HANDLE, &head_sh->state); 4300 4301 if (do_wakeup) 4302 wake_up(&head_sh->raid_conf->wait_for_overlap); 4303 } 4304 4305 static void handle_stripe(struct stripe_head *sh) 4306 { 4307 struct stripe_head_state s; 4308 struct r5conf *conf = sh->raid_conf; 4309 int i; 4310 int prexor; 4311 int disks = sh->disks; 4312 struct r5dev *pdev, *qdev; 4313 4314 clear_bit(STRIPE_HANDLE, &sh->state); 4315 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { 4316 /* already being handled, ensure it gets handled 4317 * again when current action finishes */ 4318 set_bit(STRIPE_HANDLE, &sh->state); 4319 return; 4320 } 4321 4322 if (clear_batch_ready(sh) ) { 4323 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4324 return; 4325 } 4326 4327 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) 4328 break_stripe_batch_list(sh, 0); 4329 4330 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { 4331 spin_lock(&sh->stripe_lock); 4332 /* Cannot process 'sync' concurrently with 'discard' */ 4333 if (!test_bit(STRIPE_DISCARD, &sh->state) && 4334 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { 4335 set_bit(STRIPE_SYNCING, &sh->state); 4336 clear_bit(STRIPE_INSYNC, &sh->state); 4337 clear_bit(STRIPE_REPLACED, &sh->state); 4338 } 4339 spin_unlock(&sh->stripe_lock); 4340 } 4341 clear_bit(STRIPE_DELAYED, &sh->state); 4342 4343 pr_debug("handling stripe %llu, state=%#lx cnt=%d, " 4344 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", 4345 (unsigned long long)sh->sector, sh->state, 4346 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, 4347 sh->check_state, sh->reconstruct_state); 4348 4349 analyse_stripe(sh, &s); 4350 4351 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) 4352 goto finish; 4353 4354 if (s.handle_bad_blocks) { 4355 set_bit(STRIPE_HANDLE, &sh->state); 4356 goto finish; 4357 } 4358 4359 if (unlikely(s.blocked_rdev)) { 4360 if (s.syncing || s.expanding || s.expanded || 4361 s.replacing || s.to_write || s.written) { 4362 set_bit(STRIPE_HANDLE, &sh->state); 4363 goto finish; 4364 } 4365 /* There is nothing for the blocked_rdev to block */ 4366 rdev_dec_pending(s.blocked_rdev, conf->mddev); 4367 s.blocked_rdev = NULL; 4368 } 4369 4370 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { 4371 set_bit(STRIPE_OP_BIOFILL, &s.ops_request); 4372 set_bit(STRIPE_BIOFILL_RUN, &sh->state); 4373 } 4374 4375 pr_debug("locked=%d uptodate=%d to_read=%d" 4376 " to_write=%d failed=%d failed_num=%d,%d\n", 4377 s.locked, s.uptodate, s.to_read, s.to_write, s.failed, 4378 s.failed_num[0], s.failed_num[1]); 4379 /* check if the array has lost more than max_degraded devices and, 4380 * if so, some requests might need to be failed. 4381 */ 4382 if (s.failed > conf->max_degraded || s.log_failed) { 4383 sh->check_state = 0; 4384 sh->reconstruct_state = 0; 4385 break_stripe_batch_list(sh, 0); 4386 if (s.to_read+s.to_write+s.written) 4387 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi); 4388 if (s.syncing + s.replacing) 4389 handle_failed_sync(conf, sh, &s); 4390 } 4391 4392 /* Now we check to see if any write operations have recently 4393 * completed 4394 */ 4395 prexor = 0; 4396 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) 4397 prexor = 1; 4398 if (sh->reconstruct_state == reconstruct_state_drain_result || 4399 sh->reconstruct_state == reconstruct_state_prexor_drain_result) { 4400 sh->reconstruct_state = reconstruct_state_idle; 4401 4402 /* All the 'written' buffers and the parity block are ready to 4403 * be written back to disk 4404 */ 4405 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && 4406 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); 4407 BUG_ON(sh->qd_idx >= 0 && 4408 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && 4409 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); 4410 for (i = disks; i--; ) { 4411 struct r5dev *dev = &sh->dev[i]; 4412 if (test_bit(R5_LOCKED, &dev->flags) && 4413 (i == sh->pd_idx || i == sh->qd_idx || 4414 dev->written)) { 4415 pr_debug("Writing block %d\n", i); 4416 set_bit(R5_Wantwrite, &dev->flags); 4417 if (prexor) 4418 continue; 4419 if (s.failed > 1) 4420 continue; 4421 if (!test_bit(R5_Insync, &dev->flags) || 4422 ((i == sh->pd_idx || i == sh->qd_idx) && 4423 s.failed == 0)) 4424 set_bit(STRIPE_INSYNC, &sh->state); 4425 } 4426 } 4427 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4428 s.dec_preread_active = 1; 4429 } 4430 4431 /* 4432 * might be able to return some write requests if the parity blocks 4433 * are safe, or on a failed drive 4434 */ 4435 pdev = &sh->dev[sh->pd_idx]; 4436 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) 4437 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); 4438 qdev = &sh->dev[sh->qd_idx]; 4439 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) 4440 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) 4441 || conf->level < 6; 4442 4443 if (s.written && 4444 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) 4445 && !test_bit(R5_LOCKED, &pdev->flags) 4446 && (test_bit(R5_UPTODATE, &pdev->flags) || 4447 test_bit(R5_Discard, &pdev->flags))))) && 4448 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) 4449 && !test_bit(R5_LOCKED, &qdev->flags) 4450 && (test_bit(R5_UPTODATE, &qdev->flags) || 4451 test_bit(R5_Discard, &qdev->flags)))))) 4452 handle_stripe_clean_event(conf, sh, disks, &s.return_bi); 4453 4454 /* Now we might consider reading some blocks, either to check/generate 4455 * parity, or to satisfy requests 4456 * or to load a block that is being partially written. 4457 */ 4458 if (s.to_read || s.non_overwrite 4459 || (conf->level == 6 && s.to_write && s.failed) 4460 || (s.syncing && (s.uptodate + s.compute < disks)) 4461 || s.replacing 4462 || s.expanding) 4463 handle_stripe_fill(sh, &s, disks); 4464 4465 /* Now to consider new write requests and what else, if anything 4466 * should be read. We do not handle new writes when: 4467 * 1/ A 'write' operation (copy+xor) is already in flight. 4468 * 2/ A 'check' operation is in flight, as it may clobber the parity 4469 * block. 4470 */ 4471 if (s.to_write && !sh->reconstruct_state && !sh->check_state) 4472 handle_stripe_dirtying(conf, sh, &s, disks); 4473 4474 /* maybe we need to check and possibly fix the parity for this stripe 4475 * Any reads will already have been scheduled, so we just see if enough 4476 * data is available. The parity check is held off while parity 4477 * dependent operations are in flight. 4478 */ 4479 if (sh->check_state || 4480 (s.syncing && s.locked == 0 && 4481 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4482 !test_bit(STRIPE_INSYNC, &sh->state))) { 4483 if (conf->level == 6) 4484 handle_parity_checks6(conf, sh, &s, disks); 4485 else 4486 handle_parity_checks5(conf, sh, &s, disks); 4487 } 4488 4489 if ((s.replacing || s.syncing) && s.locked == 0 4490 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) 4491 && !test_bit(STRIPE_REPLACED, &sh->state)) { 4492 /* Write out to replacement devices where possible */ 4493 for (i = 0; i < conf->raid_disks; i++) 4494 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { 4495 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); 4496 set_bit(R5_WantReplace, &sh->dev[i].flags); 4497 set_bit(R5_LOCKED, &sh->dev[i].flags); 4498 s.locked++; 4499 } 4500 if (s.replacing) 4501 set_bit(STRIPE_INSYNC, &sh->state); 4502 set_bit(STRIPE_REPLACED, &sh->state); 4503 } 4504 if ((s.syncing || s.replacing) && s.locked == 0 && 4505 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && 4506 test_bit(STRIPE_INSYNC, &sh->state)) { 4507 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4508 clear_bit(STRIPE_SYNCING, &sh->state); 4509 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) 4510 wake_up(&conf->wait_for_overlap); 4511 } 4512 4513 /* If the failed drives are just a ReadError, then we might need 4514 * to progress the repair/check process 4515 */ 4516 if (s.failed <= conf->max_degraded && !conf->mddev->ro) 4517 for (i = 0; i < s.failed; i++) { 4518 struct r5dev *dev = &sh->dev[s.failed_num[i]]; 4519 if (test_bit(R5_ReadError, &dev->flags) 4520 && !test_bit(R5_LOCKED, &dev->flags) 4521 && test_bit(R5_UPTODATE, &dev->flags) 4522 ) { 4523 if (!test_bit(R5_ReWrite, &dev->flags)) { 4524 set_bit(R5_Wantwrite, &dev->flags); 4525 set_bit(R5_ReWrite, &dev->flags); 4526 set_bit(R5_LOCKED, &dev->flags); 4527 s.locked++; 4528 } else { 4529 /* let's read it back */ 4530 set_bit(R5_Wantread, &dev->flags); 4531 set_bit(R5_LOCKED, &dev->flags); 4532 s.locked++; 4533 } 4534 } 4535 } 4536 4537 /* Finish reconstruct operations initiated by the expansion process */ 4538 if (sh->reconstruct_state == reconstruct_state_result) { 4539 struct stripe_head *sh_src 4540 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); 4541 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { 4542 /* sh cannot be written until sh_src has been read. 4543 * so arrange for sh to be delayed a little 4544 */ 4545 set_bit(STRIPE_DELAYED, &sh->state); 4546 set_bit(STRIPE_HANDLE, &sh->state); 4547 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, 4548 &sh_src->state)) 4549 atomic_inc(&conf->preread_active_stripes); 4550 raid5_release_stripe(sh_src); 4551 goto finish; 4552 } 4553 if (sh_src) 4554 raid5_release_stripe(sh_src); 4555 4556 sh->reconstruct_state = reconstruct_state_idle; 4557 clear_bit(STRIPE_EXPANDING, &sh->state); 4558 for (i = conf->raid_disks; i--; ) { 4559 set_bit(R5_Wantwrite, &sh->dev[i].flags); 4560 set_bit(R5_LOCKED, &sh->dev[i].flags); 4561 s.locked++; 4562 } 4563 } 4564 4565 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && 4566 !sh->reconstruct_state) { 4567 /* Need to write out all blocks after computing parity */ 4568 sh->disks = conf->raid_disks; 4569 stripe_set_idx(sh->sector, conf, 0, sh); 4570 schedule_reconstruction(sh, &s, 1, 1); 4571 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { 4572 clear_bit(STRIPE_EXPAND_READY, &sh->state); 4573 atomic_dec(&conf->reshape_stripes); 4574 wake_up(&conf->wait_for_overlap); 4575 md_done_sync(conf->mddev, STRIPE_SECTORS, 1); 4576 } 4577 4578 if (s.expanding && s.locked == 0 && 4579 !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) 4580 handle_stripe_expansion(conf, sh); 4581 4582 finish: 4583 /* wait for this device to become unblocked */ 4584 if (unlikely(s.blocked_rdev)) { 4585 if (conf->mddev->external) 4586 md_wait_for_blocked_rdev(s.blocked_rdev, 4587 conf->mddev); 4588 else 4589 /* Internal metadata will immediately 4590 * be written by raid5d, so we don't 4591 * need to wait here. 4592 */ 4593 rdev_dec_pending(s.blocked_rdev, 4594 conf->mddev); 4595 } 4596 4597 if (s.handle_bad_blocks) 4598 for (i = disks; i--; ) { 4599 struct md_rdev *rdev; 4600 struct r5dev *dev = &sh->dev[i]; 4601 if (test_and_clear_bit(R5_WriteError, &dev->flags)) { 4602 /* We own a safe reference to the rdev */ 4603 rdev = conf->disks[i].rdev; 4604 if (!rdev_set_badblocks(rdev, sh->sector, 4605 STRIPE_SECTORS, 0)) 4606 md_error(conf->mddev, rdev); 4607 rdev_dec_pending(rdev, conf->mddev); 4608 } 4609 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { 4610 rdev = conf->disks[i].rdev; 4611 rdev_clear_badblocks(rdev, sh->sector, 4612 STRIPE_SECTORS, 0); 4613 rdev_dec_pending(rdev, conf->mddev); 4614 } 4615 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { 4616 rdev = conf->disks[i].replacement; 4617 if (!rdev) 4618 /* rdev have been moved down */ 4619 rdev = conf->disks[i].rdev; 4620 rdev_clear_badblocks(rdev, sh->sector, 4621 STRIPE_SECTORS, 0); 4622 rdev_dec_pending(rdev, conf->mddev); 4623 } 4624 } 4625 4626 if (s.ops_request) 4627 raid_run_ops(sh, s.ops_request); 4628 4629 ops_run_io(sh, &s); 4630 4631 if (s.dec_preread_active) { 4632 /* We delay this until after ops_run_io so that if make_request 4633 * is waiting on a flush, it won't continue until the writes 4634 * have actually been submitted. 4635 */ 4636 atomic_dec(&conf->preread_active_stripes); 4637 if (atomic_read(&conf->preread_active_stripes) < 4638 IO_THRESHOLD) 4639 md_wakeup_thread(conf->mddev->thread); 4640 } 4641 4642 if (!bio_list_empty(&s.return_bi)) { 4643 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags) && 4644 (s.failed <= conf->max_degraded || 4645 conf->mddev->external == 0)) { 4646 spin_lock_irq(&conf->device_lock); 4647 bio_list_merge(&conf->return_bi, &s.return_bi); 4648 spin_unlock_irq(&conf->device_lock); 4649 md_wakeup_thread(conf->mddev->thread); 4650 } else 4651 return_io(&s.return_bi); 4652 } 4653 4654 clear_bit_unlock(STRIPE_ACTIVE, &sh->state); 4655 } 4656 4657 static void raid5_activate_delayed(struct r5conf *conf) 4658 { 4659 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 4660 while (!list_empty(&conf->delayed_list)) { 4661 struct list_head *l = conf->delayed_list.next; 4662 struct stripe_head *sh; 4663 sh = list_entry(l, struct stripe_head, lru); 4664 list_del_init(l); 4665 clear_bit(STRIPE_DELAYED, &sh->state); 4666 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 4667 atomic_inc(&conf->preread_active_stripes); 4668 list_add_tail(&sh->lru, &conf->hold_list); 4669 raid5_wakeup_stripe_thread(sh); 4670 } 4671 } 4672 } 4673 4674 static void activate_bit_delay(struct r5conf *conf, 4675 struct list_head *temp_inactive_list) 4676 { 4677 /* device_lock is held */ 4678 struct list_head head; 4679 list_add(&head, &conf->bitmap_list); 4680 list_del_init(&conf->bitmap_list); 4681 while (!list_empty(&head)) { 4682 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); 4683 int hash; 4684 list_del_init(&sh->lru); 4685 atomic_inc(&sh->count); 4686 hash = sh->hash_lock_index; 4687 __release_stripe(conf, sh, &temp_inactive_list[hash]); 4688 } 4689 } 4690 4691 static int raid5_congested(struct mddev *mddev, int bits) 4692 { 4693 struct r5conf *conf = mddev->private; 4694 4695 /* No difference between reads and writes. Just check 4696 * how busy the stripe_cache is 4697 */ 4698 4699 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) 4700 return 1; 4701 if (conf->quiesce) 4702 return 1; 4703 if (atomic_read(&conf->empty_inactive_list_nr)) 4704 return 1; 4705 4706 return 0; 4707 } 4708 4709 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) 4710 { 4711 struct r5conf *conf = mddev->private; 4712 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev); 4713 unsigned int chunk_sectors; 4714 unsigned int bio_sectors = bio_sectors(bio); 4715 4716 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); 4717 return chunk_sectors >= 4718 ((sector & (chunk_sectors - 1)) + bio_sectors); 4719 } 4720 4721 /* 4722 * add bio to the retry LIFO ( in O(1) ... we are in interrupt ) 4723 * later sampled by raid5d. 4724 */ 4725 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) 4726 { 4727 unsigned long flags; 4728 4729 spin_lock_irqsave(&conf->device_lock, flags); 4730 4731 bi->bi_next = conf->retry_read_aligned_list; 4732 conf->retry_read_aligned_list = bi; 4733 4734 spin_unlock_irqrestore(&conf->device_lock, flags); 4735 md_wakeup_thread(conf->mddev->thread); 4736 } 4737 4738 static struct bio *remove_bio_from_retry(struct r5conf *conf) 4739 { 4740 struct bio *bi; 4741 4742 bi = conf->retry_read_aligned; 4743 if (bi) { 4744 conf->retry_read_aligned = NULL; 4745 return bi; 4746 } 4747 bi = conf->retry_read_aligned_list; 4748 if(bi) { 4749 conf->retry_read_aligned_list = bi->bi_next; 4750 bi->bi_next = NULL; 4751 /* 4752 * this sets the active strip count to 1 and the processed 4753 * strip count to zero (upper 8 bits) 4754 */ 4755 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */ 4756 } 4757 4758 return bi; 4759 } 4760 4761 /* 4762 * The "raid5_align_endio" should check if the read succeeded and if it 4763 * did, call bio_endio on the original bio (having bio_put the new bio 4764 * first). 4765 * If the read failed.. 4766 */ 4767 static void raid5_align_endio(struct bio *bi) 4768 { 4769 struct bio* raid_bi = bi->bi_private; 4770 struct mddev *mddev; 4771 struct r5conf *conf; 4772 struct md_rdev *rdev; 4773 int error = bi->bi_error; 4774 4775 bio_put(bi); 4776 4777 rdev = (void*)raid_bi->bi_next; 4778 raid_bi->bi_next = NULL; 4779 mddev = rdev->mddev; 4780 conf = mddev->private; 4781 4782 rdev_dec_pending(rdev, conf->mddev); 4783 4784 if (!error) { 4785 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev), 4786 raid_bi, 0); 4787 bio_endio(raid_bi); 4788 if (atomic_dec_and_test(&conf->active_aligned_reads)) 4789 wake_up(&conf->wait_for_quiescent); 4790 return; 4791 } 4792 4793 pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); 4794 4795 add_bio_to_retry(raid_bi, conf); 4796 } 4797 4798 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) 4799 { 4800 struct r5conf *conf = mddev->private; 4801 int dd_idx; 4802 struct bio* align_bi; 4803 struct md_rdev *rdev; 4804 sector_t end_sector; 4805 4806 if (!in_chunk_boundary(mddev, raid_bio)) { 4807 pr_debug("%s: non aligned\n", __func__); 4808 return 0; 4809 } 4810 /* 4811 * use bio_clone_mddev to make a copy of the bio 4812 */ 4813 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev); 4814 if (!align_bi) 4815 return 0; 4816 /* 4817 * set bi_end_io to a new function, and set bi_private to the 4818 * original bio. 4819 */ 4820 align_bi->bi_end_io = raid5_align_endio; 4821 align_bi->bi_private = raid_bio; 4822 /* 4823 * compute position 4824 */ 4825 align_bi->bi_iter.bi_sector = 4826 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 4827 0, &dd_idx, NULL); 4828 4829 end_sector = bio_end_sector(align_bi); 4830 rcu_read_lock(); 4831 rdev = rcu_dereference(conf->disks[dd_idx].replacement); 4832 if (!rdev || test_bit(Faulty, &rdev->flags) || 4833 rdev->recovery_offset < end_sector) { 4834 rdev = rcu_dereference(conf->disks[dd_idx].rdev); 4835 if (rdev && 4836 (test_bit(Faulty, &rdev->flags) || 4837 !(test_bit(In_sync, &rdev->flags) || 4838 rdev->recovery_offset >= end_sector))) 4839 rdev = NULL; 4840 } 4841 if (rdev) { 4842 sector_t first_bad; 4843 int bad_sectors; 4844 4845 atomic_inc(&rdev->nr_pending); 4846 rcu_read_unlock(); 4847 raid_bio->bi_next = (void*)rdev; 4848 align_bi->bi_bdev = rdev->bdev; 4849 bio_clear_flag(align_bi, BIO_SEG_VALID); 4850 4851 if (is_badblock(rdev, align_bi->bi_iter.bi_sector, 4852 bio_sectors(align_bi), 4853 &first_bad, &bad_sectors)) { 4854 bio_put(align_bi); 4855 rdev_dec_pending(rdev, mddev); 4856 return 0; 4857 } 4858 4859 /* No reshape active, so we can trust rdev->data_offset */ 4860 align_bi->bi_iter.bi_sector += rdev->data_offset; 4861 4862 spin_lock_irq(&conf->device_lock); 4863 wait_event_lock_irq(conf->wait_for_quiescent, 4864 conf->quiesce == 0, 4865 conf->device_lock); 4866 atomic_inc(&conf->active_aligned_reads); 4867 spin_unlock_irq(&conf->device_lock); 4868 4869 if (mddev->gendisk) 4870 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev), 4871 align_bi, disk_devt(mddev->gendisk), 4872 raid_bio->bi_iter.bi_sector); 4873 generic_make_request(align_bi); 4874 return 1; 4875 } else { 4876 rcu_read_unlock(); 4877 bio_put(align_bi); 4878 return 0; 4879 } 4880 } 4881 4882 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) 4883 { 4884 struct bio *split; 4885 4886 do { 4887 sector_t sector = raid_bio->bi_iter.bi_sector; 4888 unsigned chunk_sects = mddev->chunk_sectors; 4889 unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); 4890 4891 if (sectors < bio_sectors(raid_bio)) { 4892 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set); 4893 bio_chain(split, raid_bio); 4894 } else 4895 split = raid_bio; 4896 4897 if (!raid5_read_one_chunk(mddev, split)) { 4898 if (split != raid_bio) 4899 generic_make_request(raid_bio); 4900 return split; 4901 } 4902 } while (split != raid_bio); 4903 4904 return NULL; 4905 } 4906 4907 /* __get_priority_stripe - get the next stripe to process 4908 * 4909 * Full stripe writes are allowed to pass preread active stripes up until 4910 * the bypass_threshold is exceeded. In general the bypass_count 4911 * increments when the handle_list is handled before the hold_list; however, it 4912 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a 4913 * stripe with in flight i/o. The bypass_count will be reset when the 4914 * head of the hold_list has changed, i.e. the head was promoted to the 4915 * handle_list. 4916 */ 4917 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) 4918 { 4919 struct stripe_head *sh = NULL, *tmp; 4920 struct list_head *handle_list = NULL; 4921 struct r5worker_group *wg = NULL; 4922 4923 if (conf->worker_cnt_per_group == 0) { 4924 handle_list = &conf->handle_list; 4925 } else if (group != ANY_GROUP) { 4926 handle_list = &conf->worker_groups[group].handle_list; 4927 wg = &conf->worker_groups[group]; 4928 } else { 4929 int i; 4930 for (i = 0; i < conf->group_cnt; i++) { 4931 handle_list = &conf->worker_groups[i].handle_list; 4932 wg = &conf->worker_groups[i]; 4933 if (!list_empty(handle_list)) 4934 break; 4935 } 4936 } 4937 4938 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", 4939 __func__, 4940 list_empty(handle_list) ? "empty" : "busy", 4941 list_empty(&conf->hold_list) ? "empty" : "busy", 4942 atomic_read(&conf->pending_full_writes), conf->bypass_count); 4943 4944 if (!list_empty(handle_list)) { 4945 sh = list_entry(handle_list->next, typeof(*sh), lru); 4946 4947 if (list_empty(&conf->hold_list)) 4948 conf->bypass_count = 0; 4949 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { 4950 if (conf->hold_list.next == conf->last_hold) 4951 conf->bypass_count++; 4952 else { 4953 conf->last_hold = conf->hold_list.next; 4954 conf->bypass_count -= conf->bypass_threshold; 4955 if (conf->bypass_count < 0) 4956 conf->bypass_count = 0; 4957 } 4958 } 4959 } else if (!list_empty(&conf->hold_list) && 4960 ((conf->bypass_threshold && 4961 conf->bypass_count > conf->bypass_threshold) || 4962 atomic_read(&conf->pending_full_writes) == 0)) { 4963 4964 list_for_each_entry(tmp, &conf->hold_list, lru) { 4965 if (conf->worker_cnt_per_group == 0 || 4966 group == ANY_GROUP || 4967 !cpu_online(tmp->cpu) || 4968 cpu_to_group(tmp->cpu) == group) { 4969 sh = tmp; 4970 break; 4971 } 4972 } 4973 4974 if (sh) { 4975 conf->bypass_count -= conf->bypass_threshold; 4976 if (conf->bypass_count < 0) 4977 conf->bypass_count = 0; 4978 } 4979 wg = NULL; 4980 } 4981 4982 if (!sh) 4983 return NULL; 4984 4985 if (wg) { 4986 wg->stripes_cnt--; 4987 sh->group = NULL; 4988 } 4989 list_del_init(&sh->lru); 4990 BUG_ON(atomic_inc_return(&sh->count) != 1); 4991 return sh; 4992 } 4993 4994 struct raid5_plug_cb { 4995 struct blk_plug_cb cb; 4996 struct list_head list; 4997 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS]; 4998 }; 4999 5000 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) 5001 { 5002 struct raid5_plug_cb *cb = container_of( 5003 blk_cb, struct raid5_plug_cb, cb); 5004 struct stripe_head *sh; 5005 struct mddev *mddev = cb->cb.data; 5006 struct r5conf *conf = mddev->private; 5007 int cnt = 0; 5008 int hash; 5009 5010 if (cb->list.next && !list_empty(&cb->list)) { 5011 spin_lock_irq(&conf->device_lock); 5012 while (!list_empty(&cb->list)) { 5013 sh = list_first_entry(&cb->list, struct stripe_head, lru); 5014 list_del_init(&sh->lru); 5015 /* 5016 * avoid race release_stripe_plug() sees 5017 * STRIPE_ON_UNPLUG_LIST clear but the stripe 5018 * is still in our list 5019 */ 5020 smp_mb__before_atomic(); 5021 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); 5022 /* 5023 * STRIPE_ON_RELEASE_LIST could be set here. In that 5024 * case, the count is always > 1 here 5025 */ 5026 hash = sh->hash_lock_index; 5027 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); 5028 cnt++; 5029 } 5030 spin_unlock_irq(&conf->device_lock); 5031 } 5032 release_inactive_stripe_list(conf, cb->temp_inactive_list, 5033 NR_STRIPE_HASH_LOCKS); 5034 if (mddev->queue) 5035 trace_block_unplug(mddev->queue, cnt, !from_schedule); 5036 kfree(cb); 5037 } 5038 5039 static void release_stripe_plug(struct mddev *mddev, 5040 struct stripe_head *sh) 5041 { 5042 struct blk_plug_cb *blk_cb = blk_check_plugged( 5043 raid5_unplug, mddev, 5044 sizeof(struct raid5_plug_cb)); 5045 struct raid5_plug_cb *cb; 5046 5047 if (!blk_cb) { 5048 raid5_release_stripe(sh); 5049 return; 5050 } 5051 5052 cb = container_of(blk_cb, struct raid5_plug_cb, cb); 5053 5054 if (cb->list.next == NULL) { 5055 int i; 5056 INIT_LIST_HEAD(&cb->list); 5057 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5058 INIT_LIST_HEAD(cb->temp_inactive_list + i); 5059 } 5060 5061 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) 5062 list_add_tail(&sh->lru, &cb->list); 5063 else 5064 raid5_release_stripe(sh); 5065 } 5066 5067 static void make_discard_request(struct mddev *mddev, struct bio *bi) 5068 { 5069 struct r5conf *conf = mddev->private; 5070 sector_t logical_sector, last_sector; 5071 struct stripe_head *sh; 5072 int remaining; 5073 int stripe_sectors; 5074 5075 if (mddev->reshape_position != MaxSector) 5076 /* Skip discard while reshape is happening */ 5077 return; 5078 5079 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5080 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); 5081 5082 bi->bi_next = NULL; 5083 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5084 5085 stripe_sectors = conf->chunk_sectors * 5086 (conf->raid_disks - conf->max_degraded); 5087 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, 5088 stripe_sectors); 5089 sector_div(last_sector, stripe_sectors); 5090 5091 logical_sector *= conf->chunk_sectors; 5092 last_sector *= conf->chunk_sectors; 5093 5094 for (; logical_sector < last_sector; 5095 logical_sector += STRIPE_SECTORS) { 5096 DEFINE_WAIT(w); 5097 int d; 5098 again: 5099 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); 5100 prepare_to_wait(&conf->wait_for_overlap, &w, 5101 TASK_UNINTERRUPTIBLE); 5102 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5103 if (test_bit(STRIPE_SYNCING, &sh->state)) { 5104 raid5_release_stripe(sh); 5105 schedule(); 5106 goto again; 5107 } 5108 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); 5109 spin_lock_irq(&sh->stripe_lock); 5110 for (d = 0; d < conf->raid_disks; d++) { 5111 if (d == sh->pd_idx || d == sh->qd_idx) 5112 continue; 5113 if (sh->dev[d].towrite || sh->dev[d].toread) { 5114 set_bit(R5_Overlap, &sh->dev[d].flags); 5115 spin_unlock_irq(&sh->stripe_lock); 5116 raid5_release_stripe(sh); 5117 schedule(); 5118 goto again; 5119 } 5120 } 5121 set_bit(STRIPE_DISCARD, &sh->state); 5122 finish_wait(&conf->wait_for_overlap, &w); 5123 sh->overwrite_disks = 0; 5124 for (d = 0; d < conf->raid_disks; d++) { 5125 if (d == sh->pd_idx || d == sh->qd_idx) 5126 continue; 5127 sh->dev[d].towrite = bi; 5128 set_bit(R5_OVERWRITE, &sh->dev[d].flags); 5129 raid5_inc_bi_active_stripes(bi); 5130 sh->overwrite_disks++; 5131 } 5132 spin_unlock_irq(&sh->stripe_lock); 5133 if (conf->mddev->bitmap) { 5134 for (d = 0; 5135 d < conf->raid_disks - conf->max_degraded; 5136 d++) 5137 bitmap_startwrite(mddev->bitmap, 5138 sh->sector, 5139 STRIPE_SECTORS, 5140 0); 5141 sh->bm_seq = conf->seq_flush + 1; 5142 set_bit(STRIPE_BIT_DELAY, &sh->state); 5143 } 5144 5145 set_bit(STRIPE_HANDLE, &sh->state); 5146 clear_bit(STRIPE_DELAYED, &sh->state); 5147 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5148 atomic_inc(&conf->preread_active_stripes); 5149 release_stripe_plug(mddev, sh); 5150 } 5151 5152 remaining = raid5_dec_bi_active_stripes(bi); 5153 if (remaining == 0) { 5154 md_write_end(mddev); 5155 bio_endio(bi); 5156 } 5157 } 5158 5159 static void raid5_make_request(struct mddev *mddev, struct bio * bi) 5160 { 5161 struct r5conf *conf = mddev->private; 5162 int dd_idx; 5163 sector_t new_sector; 5164 sector_t logical_sector, last_sector; 5165 struct stripe_head *sh; 5166 const int rw = bio_data_dir(bi); 5167 int remaining; 5168 DEFINE_WAIT(w); 5169 bool do_prepare; 5170 5171 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { 5172 int ret = r5l_handle_flush_request(conf->log, bi); 5173 5174 if (ret == 0) 5175 return; 5176 if (ret == -ENODEV) { 5177 md_flush_request(mddev, bi); 5178 return; 5179 } 5180 /* ret == -EAGAIN, fallback */ 5181 } 5182 5183 md_write_start(mddev, bi); 5184 5185 /* 5186 * If array is degraded, better not do chunk aligned read because 5187 * later we might have to read it again in order to reconstruct 5188 * data on failed drives. 5189 */ 5190 if (rw == READ && mddev->degraded == 0 && 5191 mddev->reshape_position == MaxSector) { 5192 bi = chunk_aligned_read(mddev, bi); 5193 if (!bi) 5194 return; 5195 } 5196 5197 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { 5198 make_discard_request(mddev, bi); 5199 return; 5200 } 5201 5202 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); 5203 last_sector = bio_end_sector(bi); 5204 bi->bi_next = NULL; 5205 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 5206 5207 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 5208 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 5209 int previous; 5210 int seq; 5211 5212 do_prepare = false; 5213 retry: 5214 seq = read_seqcount_begin(&conf->gen_lock); 5215 previous = 0; 5216 if (do_prepare) 5217 prepare_to_wait(&conf->wait_for_overlap, &w, 5218 TASK_UNINTERRUPTIBLE); 5219 if (unlikely(conf->reshape_progress != MaxSector)) { 5220 /* spinlock is needed as reshape_progress may be 5221 * 64bit on a 32bit platform, and so it might be 5222 * possible to see a half-updated value 5223 * Of course reshape_progress could change after 5224 * the lock is dropped, so once we get a reference 5225 * to the stripe that we think it is, we will have 5226 * to check again. 5227 */ 5228 spin_lock_irq(&conf->device_lock); 5229 if (mddev->reshape_backwards 5230 ? logical_sector < conf->reshape_progress 5231 : logical_sector >= conf->reshape_progress) { 5232 previous = 1; 5233 } else { 5234 if (mddev->reshape_backwards 5235 ? logical_sector < conf->reshape_safe 5236 : logical_sector >= conf->reshape_safe) { 5237 spin_unlock_irq(&conf->device_lock); 5238 schedule(); 5239 do_prepare = true; 5240 goto retry; 5241 } 5242 } 5243 spin_unlock_irq(&conf->device_lock); 5244 } 5245 5246 new_sector = raid5_compute_sector(conf, logical_sector, 5247 previous, 5248 &dd_idx, NULL); 5249 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", 5250 (unsigned long long)new_sector, 5251 (unsigned long long)logical_sector); 5252 5253 sh = raid5_get_active_stripe(conf, new_sector, previous, 5254 (bi->bi_opf & REQ_RAHEAD), 0); 5255 if (sh) { 5256 if (unlikely(previous)) { 5257 /* expansion might have moved on while waiting for a 5258 * stripe, so we must do the range check again. 5259 * Expansion could still move past after this 5260 * test, but as we are holding a reference to 5261 * 'sh', we know that if that happens, 5262 * STRIPE_EXPANDING will get set and the expansion 5263 * won't proceed until we finish with the stripe. 5264 */ 5265 int must_retry = 0; 5266 spin_lock_irq(&conf->device_lock); 5267 if (mddev->reshape_backwards 5268 ? logical_sector >= conf->reshape_progress 5269 : logical_sector < conf->reshape_progress) 5270 /* mismatch, need to try again */ 5271 must_retry = 1; 5272 spin_unlock_irq(&conf->device_lock); 5273 if (must_retry) { 5274 raid5_release_stripe(sh); 5275 schedule(); 5276 do_prepare = true; 5277 goto retry; 5278 } 5279 } 5280 if (read_seqcount_retry(&conf->gen_lock, seq)) { 5281 /* Might have got the wrong stripe_head 5282 * by accident 5283 */ 5284 raid5_release_stripe(sh); 5285 goto retry; 5286 } 5287 5288 if (rw == WRITE && 5289 logical_sector >= mddev->suspend_lo && 5290 logical_sector < mddev->suspend_hi) { 5291 raid5_release_stripe(sh); 5292 /* As the suspend_* range is controlled by 5293 * userspace, we want an interruptible 5294 * wait. 5295 */ 5296 flush_signals(current); 5297 prepare_to_wait(&conf->wait_for_overlap, 5298 &w, TASK_INTERRUPTIBLE); 5299 if (logical_sector >= mddev->suspend_lo && 5300 logical_sector < mddev->suspend_hi) { 5301 schedule(); 5302 do_prepare = true; 5303 } 5304 goto retry; 5305 } 5306 5307 if (test_bit(STRIPE_EXPANDING, &sh->state) || 5308 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { 5309 /* Stripe is busy expanding or 5310 * add failed due to overlap. Flush everything 5311 * and wait a while 5312 */ 5313 md_wakeup_thread(mddev->thread); 5314 raid5_release_stripe(sh); 5315 schedule(); 5316 do_prepare = true; 5317 goto retry; 5318 } 5319 set_bit(STRIPE_HANDLE, &sh->state); 5320 clear_bit(STRIPE_DELAYED, &sh->state); 5321 if ((!sh->batch_head || sh == sh->batch_head) && 5322 (bi->bi_opf & REQ_SYNC) && 5323 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 5324 atomic_inc(&conf->preread_active_stripes); 5325 release_stripe_plug(mddev, sh); 5326 } else { 5327 /* cannot get stripe for read-ahead, just give-up */ 5328 bi->bi_error = -EIO; 5329 break; 5330 } 5331 } 5332 finish_wait(&conf->wait_for_overlap, &w); 5333 5334 remaining = raid5_dec_bi_active_stripes(bi); 5335 if (remaining == 0) { 5336 5337 if ( rw == WRITE ) 5338 md_write_end(mddev); 5339 5340 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev), 5341 bi, 0); 5342 bio_endio(bi); 5343 } 5344 } 5345 5346 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); 5347 5348 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) 5349 { 5350 /* reshaping is quite different to recovery/resync so it is 5351 * handled quite separately ... here. 5352 * 5353 * On each call to sync_request, we gather one chunk worth of 5354 * destination stripes and flag them as expanding. 5355 * Then we find all the source stripes and request reads. 5356 * As the reads complete, handle_stripe will copy the data 5357 * into the destination stripe and release that stripe. 5358 */ 5359 struct r5conf *conf = mddev->private; 5360 struct stripe_head *sh; 5361 sector_t first_sector, last_sector; 5362 int raid_disks = conf->previous_raid_disks; 5363 int data_disks = raid_disks - conf->max_degraded; 5364 int new_data_disks = conf->raid_disks - conf->max_degraded; 5365 int i; 5366 int dd_idx; 5367 sector_t writepos, readpos, safepos; 5368 sector_t stripe_addr; 5369 int reshape_sectors; 5370 struct list_head stripes; 5371 sector_t retn; 5372 5373 if (sector_nr == 0) { 5374 /* If restarting in the middle, skip the initial sectors */ 5375 if (mddev->reshape_backwards && 5376 conf->reshape_progress < raid5_size(mddev, 0, 0)) { 5377 sector_nr = raid5_size(mddev, 0, 0) 5378 - conf->reshape_progress; 5379 } else if (mddev->reshape_backwards && 5380 conf->reshape_progress == MaxSector) { 5381 /* shouldn't happen, but just in case, finish up.*/ 5382 sector_nr = MaxSector; 5383 } else if (!mddev->reshape_backwards && 5384 conf->reshape_progress > 0) 5385 sector_nr = conf->reshape_progress; 5386 sector_div(sector_nr, new_data_disks); 5387 if (sector_nr) { 5388 mddev->curr_resync_completed = sector_nr; 5389 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5390 *skipped = 1; 5391 retn = sector_nr; 5392 goto finish; 5393 } 5394 } 5395 5396 /* We need to process a full chunk at a time. 5397 * If old and new chunk sizes differ, we need to process the 5398 * largest of these 5399 */ 5400 5401 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); 5402 5403 /* We update the metadata at least every 10 seconds, or when 5404 * the data about to be copied would over-write the source of 5405 * the data at the front of the range. i.e. one new_stripe 5406 * along from reshape_progress new_maps to after where 5407 * reshape_safe old_maps to 5408 */ 5409 writepos = conf->reshape_progress; 5410 sector_div(writepos, new_data_disks); 5411 readpos = conf->reshape_progress; 5412 sector_div(readpos, data_disks); 5413 safepos = conf->reshape_safe; 5414 sector_div(safepos, data_disks); 5415 if (mddev->reshape_backwards) { 5416 BUG_ON(writepos < reshape_sectors); 5417 writepos -= reshape_sectors; 5418 readpos += reshape_sectors; 5419 safepos += reshape_sectors; 5420 } else { 5421 writepos += reshape_sectors; 5422 /* readpos and safepos are worst-case calculations. 5423 * A negative number is overly pessimistic, and causes 5424 * obvious problems for unsigned storage. So clip to 0. 5425 */ 5426 readpos -= min_t(sector_t, reshape_sectors, readpos); 5427 safepos -= min_t(sector_t, reshape_sectors, safepos); 5428 } 5429 5430 /* Having calculated the 'writepos' possibly use it 5431 * to set 'stripe_addr' which is where we will write to. 5432 */ 5433 if (mddev->reshape_backwards) { 5434 BUG_ON(conf->reshape_progress == 0); 5435 stripe_addr = writepos; 5436 BUG_ON((mddev->dev_sectors & 5437 ~((sector_t)reshape_sectors - 1)) 5438 - reshape_sectors - stripe_addr 5439 != sector_nr); 5440 } else { 5441 BUG_ON(writepos != sector_nr + reshape_sectors); 5442 stripe_addr = sector_nr; 5443 } 5444 5445 /* 'writepos' is the most advanced device address we might write. 5446 * 'readpos' is the least advanced device address we might read. 5447 * 'safepos' is the least address recorded in the metadata as having 5448 * been reshaped. 5449 * If there is a min_offset_diff, these are adjusted either by 5450 * increasing the safepos/readpos if diff is negative, or 5451 * increasing writepos if diff is positive. 5452 * If 'readpos' is then behind 'writepos', there is no way that we can 5453 * ensure safety in the face of a crash - that must be done by userspace 5454 * making a backup of the data. So in that case there is no particular 5455 * rush to update metadata. 5456 * Otherwise if 'safepos' is behind 'writepos', then we really need to 5457 * update the metadata to advance 'safepos' to match 'readpos' so that 5458 * we can be safe in the event of a crash. 5459 * So we insist on updating metadata if safepos is behind writepos and 5460 * readpos is beyond writepos. 5461 * In any case, update the metadata every 10 seconds. 5462 * Maybe that number should be configurable, but I'm not sure it is 5463 * worth it.... maybe it could be a multiple of safemode_delay??? 5464 */ 5465 if (conf->min_offset_diff < 0) { 5466 safepos += -conf->min_offset_diff; 5467 readpos += -conf->min_offset_diff; 5468 } else 5469 writepos += conf->min_offset_diff; 5470 5471 if ((mddev->reshape_backwards 5472 ? (safepos > writepos && readpos < writepos) 5473 : (safepos < writepos && readpos > writepos)) || 5474 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { 5475 /* Cannot proceed until we've updated the superblock... */ 5476 wait_event(conf->wait_for_overlap, 5477 atomic_read(&conf->reshape_stripes)==0 5478 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5479 if (atomic_read(&conf->reshape_stripes) != 0) 5480 return 0; 5481 mddev->reshape_position = conf->reshape_progress; 5482 mddev->curr_resync_completed = sector_nr; 5483 conf->reshape_checkpoint = jiffies; 5484 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5485 md_wakeup_thread(mddev->thread); 5486 wait_event(mddev->sb_wait, mddev->flags == 0 || 5487 test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5488 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5489 return 0; 5490 spin_lock_irq(&conf->device_lock); 5491 conf->reshape_safe = mddev->reshape_position; 5492 spin_unlock_irq(&conf->device_lock); 5493 wake_up(&conf->wait_for_overlap); 5494 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5495 } 5496 5497 INIT_LIST_HEAD(&stripes); 5498 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { 5499 int j; 5500 int skipped_disk = 0; 5501 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); 5502 set_bit(STRIPE_EXPANDING, &sh->state); 5503 atomic_inc(&conf->reshape_stripes); 5504 /* If any of this stripe is beyond the end of the old 5505 * array, then we need to zero those blocks 5506 */ 5507 for (j=sh->disks; j--;) { 5508 sector_t s; 5509 if (j == sh->pd_idx) 5510 continue; 5511 if (conf->level == 6 && 5512 j == sh->qd_idx) 5513 continue; 5514 s = raid5_compute_blocknr(sh, j, 0); 5515 if (s < raid5_size(mddev, 0, 0)) { 5516 skipped_disk = 1; 5517 continue; 5518 } 5519 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); 5520 set_bit(R5_Expanded, &sh->dev[j].flags); 5521 set_bit(R5_UPTODATE, &sh->dev[j].flags); 5522 } 5523 if (!skipped_disk) { 5524 set_bit(STRIPE_EXPAND_READY, &sh->state); 5525 set_bit(STRIPE_HANDLE, &sh->state); 5526 } 5527 list_add(&sh->lru, &stripes); 5528 } 5529 spin_lock_irq(&conf->device_lock); 5530 if (mddev->reshape_backwards) 5531 conf->reshape_progress -= reshape_sectors * new_data_disks; 5532 else 5533 conf->reshape_progress += reshape_sectors * new_data_disks; 5534 spin_unlock_irq(&conf->device_lock); 5535 /* Ok, those stripe are ready. We can start scheduling 5536 * reads on the source stripes. 5537 * The source stripes are determined by mapping the first and last 5538 * block on the destination stripes. 5539 */ 5540 first_sector = 5541 raid5_compute_sector(conf, stripe_addr*(new_data_disks), 5542 1, &dd_idx, NULL); 5543 last_sector = 5544 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) 5545 * new_data_disks - 1), 5546 1, &dd_idx, NULL); 5547 if (last_sector >= mddev->dev_sectors) 5548 last_sector = mddev->dev_sectors - 1; 5549 while (first_sector <= last_sector) { 5550 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); 5551 set_bit(STRIPE_EXPAND_SOURCE, &sh->state); 5552 set_bit(STRIPE_HANDLE, &sh->state); 5553 raid5_release_stripe(sh); 5554 first_sector += STRIPE_SECTORS; 5555 } 5556 /* Now that the sources are clearly marked, we can release 5557 * the destination stripes 5558 */ 5559 while (!list_empty(&stripes)) { 5560 sh = list_entry(stripes.next, struct stripe_head, lru); 5561 list_del_init(&sh->lru); 5562 raid5_release_stripe(sh); 5563 } 5564 /* If this takes us to the resync_max point where we have to pause, 5565 * then we need to write out the superblock. 5566 */ 5567 sector_nr += reshape_sectors; 5568 retn = reshape_sectors; 5569 finish: 5570 if (mddev->curr_resync_completed > mddev->resync_max || 5571 (sector_nr - mddev->curr_resync_completed) * 2 5572 >= mddev->resync_max - mddev->curr_resync_completed) { 5573 /* Cannot proceed until we've updated the superblock... */ 5574 wait_event(conf->wait_for_overlap, 5575 atomic_read(&conf->reshape_stripes) == 0 5576 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5577 if (atomic_read(&conf->reshape_stripes) != 0) 5578 goto ret; 5579 mddev->reshape_position = conf->reshape_progress; 5580 mddev->curr_resync_completed = sector_nr; 5581 conf->reshape_checkpoint = jiffies; 5582 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5583 md_wakeup_thread(mddev->thread); 5584 wait_event(mddev->sb_wait, 5585 !test_bit(MD_CHANGE_DEVS, &mddev->flags) 5586 || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); 5587 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5588 goto ret; 5589 spin_lock_irq(&conf->device_lock); 5590 conf->reshape_safe = mddev->reshape_position; 5591 spin_unlock_irq(&conf->device_lock); 5592 wake_up(&conf->wait_for_overlap); 5593 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5594 } 5595 ret: 5596 return retn; 5597 } 5598 5599 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, 5600 int *skipped) 5601 { 5602 struct r5conf *conf = mddev->private; 5603 struct stripe_head *sh; 5604 sector_t max_sector = mddev->dev_sectors; 5605 sector_t sync_blocks; 5606 int still_degraded = 0; 5607 int i; 5608 5609 if (sector_nr >= max_sector) { 5610 /* just being told to finish up .. nothing much to do */ 5611 5612 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 5613 end_reshape(conf); 5614 return 0; 5615 } 5616 5617 if (mddev->curr_resync < max_sector) /* aborted */ 5618 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 5619 &sync_blocks, 1); 5620 else /* completed sync */ 5621 conf->fullsync = 0; 5622 bitmap_close_sync(mddev->bitmap); 5623 5624 return 0; 5625 } 5626 5627 /* Allow raid5_quiesce to complete */ 5628 wait_event(conf->wait_for_overlap, conf->quiesce != 2); 5629 5630 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5631 return reshape_request(mddev, sector_nr, skipped); 5632 5633 /* No need to check resync_max as we never do more than one 5634 * stripe, and as resync_max will always be on a chunk boundary, 5635 * if the check in md_do_sync didn't fire, there is no chance 5636 * of overstepping resync_max here 5637 */ 5638 5639 /* if there is too many failed drives and we are trying 5640 * to resync, then assert that we are finished, because there is 5641 * nothing we can do. 5642 */ 5643 if (mddev->degraded >= conf->max_degraded && 5644 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5645 sector_t rv = mddev->dev_sectors - sector_nr; 5646 *skipped = 1; 5647 return rv; 5648 } 5649 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 5650 !conf->fullsync && 5651 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 5652 sync_blocks >= STRIPE_SECTORS) { 5653 /* we can skip this block, and probably more */ 5654 sync_blocks /= STRIPE_SECTORS; 5655 *skipped = 1; 5656 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ 5657 } 5658 5659 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); 5660 5661 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); 5662 if (sh == NULL) { 5663 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); 5664 /* make sure we don't swamp the stripe cache if someone else 5665 * is trying to get access 5666 */ 5667 schedule_timeout_uninterruptible(1); 5668 } 5669 /* Need to check if array will still be degraded after recovery/resync 5670 * Note in case of > 1 drive failures it's possible we're rebuilding 5671 * one drive while leaving another faulty drive in array. 5672 */ 5673 rcu_read_lock(); 5674 for (i = 0; i < conf->raid_disks; i++) { 5675 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev); 5676 5677 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) 5678 still_degraded = 1; 5679 } 5680 rcu_read_unlock(); 5681 5682 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); 5683 5684 set_bit(STRIPE_SYNC_REQUESTED, &sh->state); 5685 set_bit(STRIPE_HANDLE, &sh->state); 5686 5687 raid5_release_stripe(sh); 5688 5689 return STRIPE_SECTORS; 5690 } 5691 5692 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio) 5693 { 5694 /* We may not be able to submit a whole bio at once as there 5695 * may not be enough stripe_heads available. 5696 * We cannot pre-allocate enough stripe_heads as we may need 5697 * more than exist in the cache (if we allow ever large chunks). 5698 * So we do one stripe head at a time and record in 5699 * ->bi_hw_segments how many have been done. 5700 * 5701 * We *know* that this entire raid_bio is in one chunk, so 5702 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. 5703 */ 5704 struct stripe_head *sh; 5705 int dd_idx; 5706 sector_t sector, logical_sector, last_sector; 5707 int scnt = 0; 5708 int remaining; 5709 int handled = 0; 5710 5711 logical_sector = raid_bio->bi_iter.bi_sector & 5712 ~((sector_t)STRIPE_SECTORS-1); 5713 sector = raid5_compute_sector(conf, logical_sector, 5714 0, &dd_idx, NULL); 5715 last_sector = bio_end_sector(raid_bio); 5716 5717 for (; logical_sector < last_sector; 5718 logical_sector += STRIPE_SECTORS, 5719 sector += STRIPE_SECTORS, 5720 scnt++) { 5721 5722 if (scnt < raid5_bi_processed_stripes(raid_bio)) 5723 /* already done this stripe */ 5724 continue; 5725 5726 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); 5727 5728 if (!sh) { 5729 /* failed to get a stripe - must wait */ 5730 raid5_set_bi_processed_stripes(raid_bio, scnt); 5731 conf->retry_read_aligned = raid_bio; 5732 return handled; 5733 } 5734 5735 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { 5736 raid5_release_stripe(sh); 5737 raid5_set_bi_processed_stripes(raid_bio, scnt); 5738 conf->retry_read_aligned = raid_bio; 5739 return handled; 5740 } 5741 5742 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); 5743 handle_stripe(sh); 5744 raid5_release_stripe(sh); 5745 handled++; 5746 } 5747 remaining = raid5_dec_bi_active_stripes(raid_bio); 5748 if (remaining == 0) { 5749 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev), 5750 raid_bio, 0); 5751 bio_endio(raid_bio); 5752 } 5753 if (atomic_dec_and_test(&conf->active_aligned_reads)) 5754 wake_up(&conf->wait_for_quiescent); 5755 return handled; 5756 } 5757 5758 static int handle_active_stripes(struct r5conf *conf, int group, 5759 struct r5worker *worker, 5760 struct list_head *temp_inactive_list) 5761 { 5762 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; 5763 int i, batch_size = 0, hash; 5764 bool release_inactive = false; 5765 5766 while (batch_size < MAX_STRIPE_BATCH && 5767 (sh = __get_priority_stripe(conf, group)) != NULL) 5768 batch[batch_size++] = sh; 5769 5770 if (batch_size == 0) { 5771 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 5772 if (!list_empty(temp_inactive_list + i)) 5773 break; 5774 if (i == NR_STRIPE_HASH_LOCKS) { 5775 spin_unlock_irq(&conf->device_lock); 5776 r5l_flush_stripe_to_raid(conf->log); 5777 spin_lock_irq(&conf->device_lock); 5778 return batch_size; 5779 } 5780 release_inactive = true; 5781 } 5782 spin_unlock_irq(&conf->device_lock); 5783 5784 release_inactive_stripe_list(conf, temp_inactive_list, 5785 NR_STRIPE_HASH_LOCKS); 5786 5787 r5l_flush_stripe_to_raid(conf->log); 5788 if (release_inactive) { 5789 spin_lock_irq(&conf->device_lock); 5790 return 0; 5791 } 5792 5793 for (i = 0; i < batch_size; i++) 5794 handle_stripe(batch[i]); 5795 r5l_write_stripe_run(conf->log); 5796 5797 cond_resched(); 5798 5799 spin_lock_irq(&conf->device_lock); 5800 for (i = 0; i < batch_size; i++) { 5801 hash = batch[i]->hash_lock_index; 5802 __release_stripe(conf, batch[i], &temp_inactive_list[hash]); 5803 } 5804 return batch_size; 5805 } 5806 5807 static void raid5_do_work(struct work_struct *work) 5808 { 5809 struct r5worker *worker = container_of(work, struct r5worker, work); 5810 struct r5worker_group *group = worker->group; 5811 struct r5conf *conf = group->conf; 5812 int group_id = group - conf->worker_groups; 5813 int handled; 5814 struct blk_plug plug; 5815 5816 pr_debug("+++ raid5worker active\n"); 5817 5818 blk_start_plug(&plug); 5819 handled = 0; 5820 spin_lock_irq(&conf->device_lock); 5821 while (1) { 5822 int batch_size, released; 5823 5824 released = release_stripe_list(conf, worker->temp_inactive_list); 5825 5826 batch_size = handle_active_stripes(conf, group_id, worker, 5827 worker->temp_inactive_list); 5828 worker->working = false; 5829 if (!batch_size && !released) 5830 break; 5831 handled += batch_size; 5832 } 5833 pr_debug("%d stripes handled\n", handled); 5834 5835 spin_unlock_irq(&conf->device_lock); 5836 blk_finish_plug(&plug); 5837 5838 pr_debug("--- raid5worker inactive\n"); 5839 } 5840 5841 /* 5842 * This is our raid5 kernel thread. 5843 * 5844 * We scan the hash table for stripes which can be handled now. 5845 * During the scan, completed stripes are saved for us by the interrupt 5846 * handler, so that they will not have to wait for our next wakeup. 5847 */ 5848 static void raid5d(struct md_thread *thread) 5849 { 5850 struct mddev *mddev = thread->mddev; 5851 struct r5conf *conf = mddev->private; 5852 int handled; 5853 struct blk_plug plug; 5854 5855 pr_debug("+++ raid5d active\n"); 5856 5857 md_check_recovery(mddev); 5858 5859 if (!bio_list_empty(&conf->return_bi) && 5860 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5861 struct bio_list tmp = BIO_EMPTY_LIST; 5862 spin_lock_irq(&conf->device_lock); 5863 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) { 5864 bio_list_merge(&tmp, &conf->return_bi); 5865 bio_list_init(&conf->return_bi); 5866 } 5867 spin_unlock_irq(&conf->device_lock); 5868 return_io(&tmp); 5869 } 5870 5871 blk_start_plug(&plug); 5872 handled = 0; 5873 spin_lock_irq(&conf->device_lock); 5874 while (1) { 5875 struct bio *bio; 5876 int batch_size, released; 5877 5878 released = release_stripe_list(conf, conf->temp_inactive_list); 5879 if (released) 5880 clear_bit(R5_DID_ALLOC, &conf->cache_state); 5881 5882 if ( 5883 !list_empty(&conf->bitmap_list)) { 5884 /* Now is a good time to flush some bitmap updates */ 5885 conf->seq_flush++; 5886 spin_unlock_irq(&conf->device_lock); 5887 bitmap_unplug(mddev->bitmap); 5888 spin_lock_irq(&conf->device_lock); 5889 conf->seq_write = conf->seq_flush; 5890 activate_bit_delay(conf, conf->temp_inactive_list); 5891 } 5892 raid5_activate_delayed(conf); 5893 5894 while ((bio = remove_bio_from_retry(conf))) { 5895 int ok; 5896 spin_unlock_irq(&conf->device_lock); 5897 ok = retry_aligned_read(conf, bio); 5898 spin_lock_irq(&conf->device_lock); 5899 if (!ok) 5900 break; 5901 handled++; 5902 } 5903 5904 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, 5905 conf->temp_inactive_list); 5906 if (!batch_size && !released) 5907 break; 5908 handled += batch_size; 5909 5910 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) { 5911 spin_unlock_irq(&conf->device_lock); 5912 md_check_recovery(mddev); 5913 spin_lock_irq(&conf->device_lock); 5914 } 5915 } 5916 pr_debug("%d stripes handled\n", handled); 5917 5918 spin_unlock_irq(&conf->device_lock); 5919 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && 5920 mutex_trylock(&conf->cache_size_mutex)) { 5921 grow_one_stripe(conf, __GFP_NOWARN); 5922 /* Set flag even if allocation failed. This helps 5923 * slow down allocation requests when mem is short 5924 */ 5925 set_bit(R5_DID_ALLOC, &conf->cache_state); 5926 mutex_unlock(&conf->cache_size_mutex); 5927 } 5928 5929 r5l_flush_stripe_to_raid(conf->log); 5930 5931 async_tx_issue_pending_all(); 5932 blk_finish_plug(&plug); 5933 5934 pr_debug("--- raid5d inactive\n"); 5935 } 5936 5937 static ssize_t 5938 raid5_show_stripe_cache_size(struct mddev *mddev, char *page) 5939 { 5940 struct r5conf *conf; 5941 int ret = 0; 5942 spin_lock(&mddev->lock); 5943 conf = mddev->private; 5944 if (conf) 5945 ret = sprintf(page, "%d\n", conf->min_nr_stripes); 5946 spin_unlock(&mddev->lock); 5947 return ret; 5948 } 5949 5950 int 5951 raid5_set_cache_size(struct mddev *mddev, int size) 5952 { 5953 struct r5conf *conf = mddev->private; 5954 int err; 5955 5956 if (size <= 16 || size > 32768) 5957 return -EINVAL; 5958 5959 conf->min_nr_stripes = size; 5960 mutex_lock(&conf->cache_size_mutex); 5961 while (size < conf->max_nr_stripes && 5962 drop_one_stripe(conf)) 5963 ; 5964 mutex_unlock(&conf->cache_size_mutex); 5965 5966 5967 err = md_allow_write(mddev); 5968 if (err) 5969 return err; 5970 5971 mutex_lock(&conf->cache_size_mutex); 5972 while (size > conf->max_nr_stripes) 5973 if (!grow_one_stripe(conf, GFP_KERNEL)) 5974 break; 5975 mutex_unlock(&conf->cache_size_mutex); 5976 5977 return 0; 5978 } 5979 EXPORT_SYMBOL(raid5_set_cache_size); 5980 5981 static ssize_t 5982 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) 5983 { 5984 struct r5conf *conf; 5985 unsigned long new; 5986 int err; 5987 5988 if (len >= PAGE_SIZE) 5989 return -EINVAL; 5990 if (kstrtoul(page, 10, &new)) 5991 return -EINVAL; 5992 err = mddev_lock(mddev); 5993 if (err) 5994 return err; 5995 conf = mddev->private; 5996 if (!conf) 5997 err = -ENODEV; 5998 else 5999 err = raid5_set_cache_size(mddev, new); 6000 mddev_unlock(mddev); 6001 6002 return err ?: len; 6003 } 6004 6005 static struct md_sysfs_entry 6006 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, 6007 raid5_show_stripe_cache_size, 6008 raid5_store_stripe_cache_size); 6009 6010 static ssize_t 6011 raid5_show_rmw_level(struct mddev *mddev, char *page) 6012 { 6013 struct r5conf *conf = mddev->private; 6014 if (conf) 6015 return sprintf(page, "%d\n", conf->rmw_level); 6016 else 6017 return 0; 6018 } 6019 6020 static ssize_t 6021 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len) 6022 { 6023 struct r5conf *conf = mddev->private; 6024 unsigned long new; 6025 6026 if (!conf) 6027 return -ENODEV; 6028 6029 if (len >= PAGE_SIZE) 6030 return -EINVAL; 6031 6032 if (kstrtoul(page, 10, &new)) 6033 return -EINVAL; 6034 6035 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) 6036 return -EINVAL; 6037 6038 if (new != PARITY_DISABLE_RMW && 6039 new != PARITY_ENABLE_RMW && 6040 new != PARITY_PREFER_RMW) 6041 return -EINVAL; 6042 6043 conf->rmw_level = new; 6044 return len; 6045 } 6046 6047 static struct md_sysfs_entry 6048 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, 6049 raid5_show_rmw_level, 6050 raid5_store_rmw_level); 6051 6052 6053 static ssize_t 6054 raid5_show_preread_threshold(struct mddev *mddev, char *page) 6055 { 6056 struct r5conf *conf; 6057 int ret = 0; 6058 spin_lock(&mddev->lock); 6059 conf = mddev->private; 6060 if (conf) 6061 ret = sprintf(page, "%d\n", conf->bypass_threshold); 6062 spin_unlock(&mddev->lock); 6063 return ret; 6064 } 6065 6066 static ssize_t 6067 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) 6068 { 6069 struct r5conf *conf; 6070 unsigned long new; 6071 int err; 6072 6073 if (len >= PAGE_SIZE) 6074 return -EINVAL; 6075 if (kstrtoul(page, 10, &new)) 6076 return -EINVAL; 6077 6078 err = mddev_lock(mddev); 6079 if (err) 6080 return err; 6081 conf = mddev->private; 6082 if (!conf) 6083 err = -ENODEV; 6084 else if (new > conf->min_nr_stripes) 6085 err = -EINVAL; 6086 else 6087 conf->bypass_threshold = new; 6088 mddev_unlock(mddev); 6089 return err ?: len; 6090 } 6091 6092 static struct md_sysfs_entry 6093 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, 6094 S_IRUGO | S_IWUSR, 6095 raid5_show_preread_threshold, 6096 raid5_store_preread_threshold); 6097 6098 static ssize_t 6099 raid5_show_skip_copy(struct mddev *mddev, char *page) 6100 { 6101 struct r5conf *conf; 6102 int ret = 0; 6103 spin_lock(&mddev->lock); 6104 conf = mddev->private; 6105 if (conf) 6106 ret = sprintf(page, "%d\n", conf->skip_copy); 6107 spin_unlock(&mddev->lock); 6108 return ret; 6109 } 6110 6111 static ssize_t 6112 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) 6113 { 6114 struct r5conf *conf; 6115 unsigned long new; 6116 int err; 6117 6118 if (len >= PAGE_SIZE) 6119 return -EINVAL; 6120 if (kstrtoul(page, 10, &new)) 6121 return -EINVAL; 6122 new = !!new; 6123 6124 err = mddev_lock(mddev); 6125 if (err) 6126 return err; 6127 conf = mddev->private; 6128 if (!conf) 6129 err = -ENODEV; 6130 else if (new != conf->skip_copy) { 6131 mddev_suspend(mddev); 6132 conf->skip_copy = new; 6133 if (new) 6134 mddev->queue->backing_dev_info.capabilities |= 6135 BDI_CAP_STABLE_WRITES; 6136 else 6137 mddev->queue->backing_dev_info.capabilities &= 6138 ~BDI_CAP_STABLE_WRITES; 6139 mddev_resume(mddev); 6140 } 6141 mddev_unlock(mddev); 6142 return err ?: len; 6143 } 6144 6145 static struct md_sysfs_entry 6146 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, 6147 raid5_show_skip_copy, 6148 raid5_store_skip_copy); 6149 6150 static ssize_t 6151 stripe_cache_active_show(struct mddev *mddev, char *page) 6152 { 6153 struct r5conf *conf = mddev->private; 6154 if (conf) 6155 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); 6156 else 6157 return 0; 6158 } 6159 6160 static struct md_sysfs_entry 6161 raid5_stripecache_active = __ATTR_RO(stripe_cache_active); 6162 6163 static ssize_t 6164 raid5_show_group_thread_cnt(struct mddev *mddev, char *page) 6165 { 6166 struct r5conf *conf; 6167 int ret = 0; 6168 spin_lock(&mddev->lock); 6169 conf = mddev->private; 6170 if (conf) 6171 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); 6172 spin_unlock(&mddev->lock); 6173 return ret; 6174 } 6175 6176 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6177 int *group_cnt, 6178 int *worker_cnt_per_group, 6179 struct r5worker_group **worker_groups); 6180 static ssize_t 6181 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) 6182 { 6183 struct r5conf *conf; 6184 unsigned long new; 6185 int err; 6186 struct r5worker_group *new_groups, *old_groups; 6187 int group_cnt, worker_cnt_per_group; 6188 6189 if (len >= PAGE_SIZE) 6190 return -EINVAL; 6191 if (kstrtoul(page, 10, &new)) 6192 return -EINVAL; 6193 6194 err = mddev_lock(mddev); 6195 if (err) 6196 return err; 6197 conf = mddev->private; 6198 if (!conf) 6199 err = -ENODEV; 6200 else if (new != conf->worker_cnt_per_group) { 6201 mddev_suspend(mddev); 6202 6203 old_groups = conf->worker_groups; 6204 if (old_groups) 6205 flush_workqueue(raid5_wq); 6206 6207 err = alloc_thread_groups(conf, new, 6208 &group_cnt, &worker_cnt_per_group, 6209 &new_groups); 6210 if (!err) { 6211 spin_lock_irq(&conf->device_lock); 6212 conf->group_cnt = group_cnt; 6213 conf->worker_cnt_per_group = worker_cnt_per_group; 6214 conf->worker_groups = new_groups; 6215 spin_unlock_irq(&conf->device_lock); 6216 6217 if (old_groups) 6218 kfree(old_groups[0].workers); 6219 kfree(old_groups); 6220 } 6221 mddev_resume(mddev); 6222 } 6223 mddev_unlock(mddev); 6224 6225 return err ?: len; 6226 } 6227 6228 static struct md_sysfs_entry 6229 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, 6230 raid5_show_group_thread_cnt, 6231 raid5_store_group_thread_cnt); 6232 6233 static struct attribute *raid5_attrs[] = { 6234 &raid5_stripecache_size.attr, 6235 &raid5_stripecache_active.attr, 6236 &raid5_preread_bypass_threshold.attr, 6237 &raid5_group_thread_cnt.attr, 6238 &raid5_skip_copy.attr, 6239 &raid5_rmw_level.attr, 6240 NULL, 6241 }; 6242 static struct attribute_group raid5_attrs_group = { 6243 .name = NULL, 6244 .attrs = raid5_attrs, 6245 }; 6246 6247 static int alloc_thread_groups(struct r5conf *conf, int cnt, 6248 int *group_cnt, 6249 int *worker_cnt_per_group, 6250 struct r5worker_group **worker_groups) 6251 { 6252 int i, j, k; 6253 ssize_t size; 6254 struct r5worker *workers; 6255 6256 *worker_cnt_per_group = cnt; 6257 if (cnt == 0) { 6258 *group_cnt = 0; 6259 *worker_groups = NULL; 6260 return 0; 6261 } 6262 *group_cnt = num_possible_nodes(); 6263 size = sizeof(struct r5worker) * cnt; 6264 workers = kzalloc(size * *group_cnt, GFP_NOIO); 6265 *worker_groups = kzalloc(sizeof(struct r5worker_group) * 6266 *group_cnt, GFP_NOIO); 6267 if (!*worker_groups || !workers) { 6268 kfree(workers); 6269 kfree(*worker_groups); 6270 return -ENOMEM; 6271 } 6272 6273 for (i = 0; i < *group_cnt; i++) { 6274 struct r5worker_group *group; 6275 6276 group = &(*worker_groups)[i]; 6277 INIT_LIST_HEAD(&group->handle_list); 6278 group->conf = conf; 6279 group->workers = workers + i * cnt; 6280 6281 for (j = 0; j < cnt; j++) { 6282 struct r5worker *worker = group->workers + j; 6283 worker->group = group; 6284 INIT_WORK(&worker->work, raid5_do_work); 6285 6286 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) 6287 INIT_LIST_HEAD(worker->temp_inactive_list + k); 6288 } 6289 } 6290 6291 return 0; 6292 } 6293 6294 static void free_thread_groups(struct r5conf *conf) 6295 { 6296 if (conf->worker_groups) 6297 kfree(conf->worker_groups[0].workers); 6298 kfree(conf->worker_groups); 6299 conf->worker_groups = NULL; 6300 } 6301 6302 static sector_t 6303 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) 6304 { 6305 struct r5conf *conf = mddev->private; 6306 6307 if (!sectors) 6308 sectors = mddev->dev_sectors; 6309 if (!raid_disks) 6310 /* size is defined by the smallest of previous and new size */ 6311 raid_disks = min(conf->raid_disks, conf->previous_raid_disks); 6312 6313 sectors &= ~((sector_t)conf->chunk_sectors - 1); 6314 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); 6315 return sectors * (raid_disks - conf->max_degraded); 6316 } 6317 6318 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6319 { 6320 safe_put_page(percpu->spare_page); 6321 if (percpu->scribble) 6322 flex_array_free(percpu->scribble); 6323 percpu->spare_page = NULL; 6324 percpu->scribble = NULL; 6325 } 6326 6327 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) 6328 { 6329 if (conf->level == 6 && !percpu->spare_page) 6330 percpu->spare_page = alloc_page(GFP_KERNEL); 6331 if (!percpu->scribble) 6332 percpu->scribble = scribble_alloc(max(conf->raid_disks, 6333 conf->previous_raid_disks), 6334 max(conf->chunk_sectors, 6335 conf->prev_chunk_sectors) 6336 / STRIPE_SECTORS, 6337 GFP_KERNEL); 6338 6339 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { 6340 free_scratch_buffer(conf, percpu); 6341 return -ENOMEM; 6342 } 6343 6344 return 0; 6345 } 6346 6347 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) 6348 { 6349 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6350 6351 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); 6352 return 0; 6353 } 6354 6355 static void raid5_free_percpu(struct r5conf *conf) 6356 { 6357 if (!conf->percpu) 6358 return; 6359 6360 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6361 free_percpu(conf->percpu); 6362 } 6363 6364 static void free_conf(struct r5conf *conf) 6365 { 6366 if (conf->log) 6367 r5l_exit_log(conf->log); 6368 if (conf->shrinker.nr_deferred) 6369 unregister_shrinker(&conf->shrinker); 6370 6371 free_thread_groups(conf); 6372 shrink_stripes(conf); 6373 raid5_free_percpu(conf); 6374 kfree(conf->disks); 6375 kfree(conf->stripe_hashtbl); 6376 kfree(conf); 6377 } 6378 6379 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) 6380 { 6381 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); 6382 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); 6383 6384 if (alloc_scratch_buffer(conf, percpu)) { 6385 pr_err("%s: failed memory allocation for cpu%u\n", 6386 __func__, cpu); 6387 return -ENOMEM; 6388 } 6389 return 0; 6390 } 6391 6392 static int raid5_alloc_percpu(struct r5conf *conf) 6393 { 6394 int err = 0; 6395 6396 conf->percpu = alloc_percpu(struct raid5_percpu); 6397 if (!conf->percpu) 6398 return -ENOMEM; 6399 6400 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); 6401 if (!err) { 6402 conf->scribble_disks = max(conf->raid_disks, 6403 conf->previous_raid_disks); 6404 conf->scribble_sectors = max(conf->chunk_sectors, 6405 conf->prev_chunk_sectors); 6406 } 6407 return err; 6408 } 6409 6410 static unsigned long raid5_cache_scan(struct shrinker *shrink, 6411 struct shrink_control *sc) 6412 { 6413 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6414 unsigned long ret = SHRINK_STOP; 6415 6416 if (mutex_trylock(&conf->cache_size_mutex)) { 6417 ret= 0; 6418 while (ret < sc->nr_to_scan && 6419 conf->max_nr_stripes > conf->min_nr_stripes) { 6420 if (drop_one_stripe(conf) == 0) { 6421 ret = SHRINK_STOP; 6422 break; 6423 } 6424 ret++; 6425 } 6426 mutex_unlock(&conf->cache_size_mutex); 6427 } 6428 return ret; 6429 } 6430 6431 static unsigned long raid5_cache_count(struct shrinker *shrink, 6432 struct shrink_control *sc) 6433 { 6434 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); 6435 6436 if (conf->max_nr_stripes < conf->min_nr_stripes) 6437 /* unlikely, but not impossible */ 6438 return 0; 6439 return conf->max_nr_stripes - conf->min_nr_stripes; 6440 } 6441 6442 static struct r5conf *setup_conf(struct mddev *mddev) 6443 { 6444 struct r5conf *conf; 6445 int raid_disk, memory, max_disks; 6446 struct md_rdev *rdev; 6447 struct disk_info *disk; 6448 char pers_name[6]; 6449 int i; 6450 int group_cnt, worker_cnt_per_group; 6451 struct r5worker_group *new_group; 6452 6453 if (mddev->new_level != 5 6454 && mddev->new_level != 4 6455 && mddev->new_level != 6) { 6456 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n", 6457 mdname(mddev), mddev->new_level); 6458 return ERR_PTR(-EIO); 6459 } 6460 if ((mddev->new_level == 5 6461 && !algorithm_valid_raid5(mddev->new_layout)) || 6462 (mddev->new_level == 6 6463 && !algorithm_valid_raid6(mddev->new_layout))) { 6464 printk(KERN_ERR "md/raid:%s: layout %d not supported\n", 6465 mdname(mddev), mddev->new_layout); 6466 return ERR_PTR(-EIO); 6467 } 6468 if (mddev->new_level == 6 && mddev->raid_disks < 4) { 6469 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n", 6470 mdname(mddev), mddev->raid_disks); 6471 return ERR_PTR(-EINVAL); 6472 } 6473 6474 if (!mddev->new_chunk_sectors || 6475 (mddev->new_chunk_sectors << 9) % PAGE_SIZE || 6476 !is_power_of_2(mddev->new_chunk_sectors)) { 6477 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n", 6478 mdname(mddev), mddev->new_chunk_sectors << 9); 6479 return ERR_PTR(-EINVAL); 6480 } 6481 6482 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); 6483 if (conf == NULL) 6484 goto abort; 6485 /* Don't enable multi-threading by default*/ 6486 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, 6487 &new_group)) { 6488 conf->group_cnt = group_cnt; 6489 conf->worker_cnt_per_group = worker_cnt_per_group; 6490 conf->worker_groups = new_group; 6491 } else 6492 goto abort; 6493 spin_lock_init(&conf->device_lock); 6494 seqcount_init(&conf->gen_lock); 6495 mutex_init(&conf->cache_size_mutex); 6496 init_waitqueue_head(&conf->wait_for_quiescent); 6497 init_waitqueue_head(&conf->wait_for_stripe); 6498 init_waitqueue_head(&conf->wait_for_overlap); 6499 INIT_LIST_HEAD(&conf->handle_list); 6500 INIT_LIST_HEAD(&conf->hold_list); 6501 INIT_LIST_HEAD(&conf->delayed_list); 6502 INIT_LIST_HEAD(&conf->bitmap_list); 6503 bio_list_init(&conf->return_bi); 6504 init_llist_head(&conf->released_stripes); 6505 atomic_set(&conf->active_stripes, 0); 6506 atomic_set(&conf->preread_active_stripes, 0); 6507 atomic_set(&conf->active_aligned_reads, 0); 6508 conf->bypass_threshold = BYPASS_THRESHOLD; 6509 conf->recovery_disabled = mddev->recovery_disabled - 1; 6510 6511 conf->raid_disks = mddev->raid_disks; 6512 if (mddev->reshape_position == MaxSector) 6513 conf->previous_raid_disks = mddev->raid_disks; 6514 else 6515 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; 6516 max_disks = max(conf->raid_disks, conf->previous_raid_disks); 6517 6518 conf->disks = kzalloc(max_disks * sizeof(struct disk_info), 6519 GFP_KERNEL); 6520 if (!conf->disks) 6521 goto abort; 6522 6523 conf->mddev = mddev; 6524 6525 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) 6526 goto abort; 6527 6528 /* We init hash_locks[0] separately to that it can be used 6529 * as the reference lock in the spin_lock_nest_lock() call 6530 * in lock_all_device_hash_locks_irq in order to convince 6531 * lockdep that we know what we are doing. 6532 */ 6533 spin_lock_init(conf->hash_locks); 6534 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) 6535 spin_lock_init(conf->hash_locks + i); 6536 6537 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6538 INIT_LIST_HEAD(conf->inactive_list + i); 6539 6540 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) 6541 INIT_LIST_HEAD(conf->temp_inactive_list + i); 6542 6543 conf->level = mddev->new_level; 6544 conf->chunk_sectors = mddev->new_chunk_sectors; 6545 if (raid5_alloc_percpu(conf) != 0) 6546 goto abort; 6547 6548 pr_debug("raid456: run(%s) called.\n", mdname(mddev)); 6549 6550 rdev_for_each(rdev, mddev) { 6551 raid_disk = rdev->raid_disk; 6552 if (raid_disk >= max_disks 6553 || raid_disk < 0 || test_bit(Journal, &rdev->flags)) 6554 continue; 6555 disk = conf->disks + raid_disk; 6556 6557 if (test_bit(Replacement, &rdev->flags)) { 6558 if (disk->replacement) 6559 goto abort; 6560 disk->replacement = rdev; 6561 } else { 6562 if (disk->rdev) 6563 goto abort; 6564 disk->rdev = rdev; 6565 } 6566 6567 if (test_bit(In_sync, &rdev->flags)) { 6568 char b[BDEVNAME_SIZE]; 6569 printk(KERN_INFO "md/raid:%s: device %s operational as raid" 6570 " disk %d\n", 6571 mdname(mddev), bdevname(rdev->bdev, b), raid_disk); 6572 } else if (rdev->saved_raid_disk != raid_disk) 6573 /* Cannot rely on bitmap to complete recovery */ 6574 conf->fullsync = 1; 6575 } 6576 6577 conf->level = mddev->new_level; 6578 if (conf->level == 6) { 6579 conf->max_degraded = 2; 6580 if (raid6_call.xor_syndrome) 6581 conf->rmw_level = PARITY_ENABLE_RMW; 6582 else 6583 conf->rmw_level = PARITY_DISABLE_RMW; 6584 } else { 6585 conf->max_degraded = 1; 6586 conf->rmw_level = PARITY_ENABLE_RMW; 6587 } 6588 conf->algorithm = mddev->new_layout; 6589 conf->reshape_progress = mddev->reshape_position; 6590 if (conf->reshape_progress != MaxSector) { 6591 conf->prev_chunk_sectors = mddev->chunk_sectors; 6592 conf->prev_algo = mddev->layout; 6593 } else { 6594 conf->prev_chunk_sectors = conf->chunk_sectors; 6595 conf->prev_algo = conf->algorithm; 6596 } 6597 6598 conf->min_nr_stripes = NR_STRIPES; 6599 if (mddev->reshape_position != MaxSector) { 6600 int stripes = max_t(int, 6601 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4, 6602 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4); 6603 conf->min_nr_stripes = max(NR_STRIPES, stripes); 6604 if (conf->min_nr_stripes != NR_STRIPES) 6605 printk(KERN_INFO 6606 "md/raid:%s: force stripe size %d for reshape\n", 6607 mdname(mddev), conf->min_nr_stripes); 6608 } 6609 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + 6610 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 6611 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); 6612 if (grow_stripes(conf, conf->min_nr_stripes)) { 6613 printk(KERN_ERR 6614 "md/raid:%s: couldn't allocate %dkB for buffers\n", 6615 mdname(mddev), memory); 6616 goto abort; 6617 } else 6618 printk(KERN_INFO "md/raid:%s: allocated %dkB\n", 6619 mdname(mddev), memory); 6620 /* 6621 * Losing a stripe head costs more than the time to refill it, 6622 * it reduces the queue depth and so can hurt throughput. 6623 * So set it rather large, scaled by number of devices. 6624 */ 6625 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; 6626 conf->shrinker.scan_objects = raid5_cache_scan; 6627 conf->shrinker.count_objects = raid5_cache_count; 6628 conf->shrinker.batch = 128; 6629 conf->shrinker.flags = 0; 6630 if (register_shrinker(&conf->shrinker)) { 6631 printk(KERN_ERR 6632 "md/raid:%s: couldn't register shrinker.\n", 6633 mdname(mddev)); 6634 goto abort; 6635 } 6636 6637 sprintf(pers_name, "raid%d", mddev->new_level); 6638 conf->thread = md_register_thread(raid5d, mddev, pers_name); 6639 if (!conf->thread) { 6640 printk(KERN_ERR 6641 "md/raid:%s: couldn't allocate thread.\n", 6642 mdname(mddev)); 6643 goto abort; 6644 } 6645 6646 return conf; 6647 6648 abort: 6649 if (conf) { 6650 free_conf(conf); 6651 return ERR_PTR(-EIO); 6652 } else 6653 return ERR_PTR(-ENOMEM); 6654 } 6655 6656 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) 6657 { 6658 switch (algo) { 6659 case ALGORITHM_PARITY_0: 6660 if (raid_disk < max_degraded) 6661 return 1; 6662 break; 6663 case ALGORITHM_PARITY_N: 6664 if (raid_disk >= raid_disks - max_degraded) 6665 return 1; 6666 break; 6667 case ALGORITHM_PARITY_0_6: 6668 if (raid_disk == 0 || 6669 raid_disk == raid_disks - 1) 6670 return 1; 6671 break; 6672 case ALGORITHM_LEFT_ASYMMETRIC_6: 6673 case ALGORITHM_RIGHT_ASYMMETRIC_6: 6674 case ALGORITHM_LEFT_SYMMETRIC_6: 6675 case ALGORITHM_RIGHT_SYMMETRIC_6: 6676 if (raid_disk == raid_disks - 1) 6677 return 1; 6678 } 6679 return 0; 6680 } 6681 6682 static int raid5_run(struct mddev *mddev) 6683 { 6684 struct r5conf *conf; 6685 int working_disks = 0; 6686 int dirty_parity_disks = 0; 6687 struct md_rdev *rdev; 6688 struct md_rdev *journal_dev = NULL; 6689 sector_t reshape_offset = 0; 6690 int i; 6691 long long min_offset_diff = 0; 6692 int first = 1; 6693 6694 if (mddev->recovery_cp != MaxSector) 6695 printk(KERN_NOTICE "md/raid:%s: not clean" 6696 " -- starting background reconstruction\n", 6697 mdname(mddev)); 6698 6699 rdev_for_each(rdev, mddev) { 6700 long long diff; 6701 6702 if (test_bit(Journal, &rdev->flags)) { 6703 journal_dev = rdev; 6704 continue; 6705 } 6706 if (rdev->raid_disk < 0) 6707 continue; 6708 diff = (rdev->new_data_offset - rdev->data_offset); 6709 if (first) { 6710 min_offset_diff = diff; 6711 first = 0; 6712 } else if (mddev->reshape_backwards && 6713 diff < min_offset_diff) 6714 min_offset_diff = diff; 6715 else if (!mddev->reshape_backwards && 6716 diff > min_offset_diff) 6717 min_offset_diff = diff; 6718 } 6719 6720 if (mddev->reshape_position != MaxSector) { 6721 /* Check that we can continue the reshape. 6722 * Difficulties arise if the stripe we would write to 6723 * next is at or after the stripe we would read from next. 6724 * For a reshape that changes the number of devices, this 6725 * is only possible for a very short time, and mdadm makes 6726 * sure that time appears to have past before assembling 6727 * the array. So we fail if that time hasn't passed. 6728 * For a reshape that keeps the number of devices the same 6729 * mdadm must be monitoring the reshape can keeping the 6730 * critical areas read-only and backed up. It will start 6731 * the array in read-only mode, so we check for that. 6732 */ 6733 sector_t here_new, here_old; 6734 int old_disks; 6735 int max_degraded = (mddev->level == 6 ? 2 : 1); 6736 int chunk_sectors; 6737 int new_data_disks; 6738 6739 if (journal_dev) { 6740 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n", 6741 mdname(mddev)); 6742 return -EINVAL; 6743 } 6744 6745 if (mddev->new_level != mddev->level) { 6746 printk(KERN_ERR "md/raid:%s: unsupported reshape " 6747 "required - aborting.\n", 6748 mdname(mddev)); 6749 return -EINVAL; 6750 } 6751 old_disks = mddev->raid_disks - mddev->delta_disks; 6752 /* reshape_position must be on a new-stripe boundary, and one 6753 * further up in new geometry must map after here in old 6754 * geometry. 6755 * If the chunk sizes are different, then as we perform reshape 6756 * in units of the largest of the two, reshape_position needs 6757 * be a multiple of the largest chunk size times new data disks. 6758 */ 6759 here_new = mddev->reshape_position; 6760 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); 6761 new_data_disks = mddev->raid_disks - max_degraded; 6762 if (sector_div(here_new, chunk_sectors * new_data_disks)) { 6763 printk(KERN_ERR "md/raid:%s: reshape_position not " 6764 "on a stripe boundary\n", mdname(mddev)); 6765 return -EINVAL; 6766 } 6767 reshape_offset = here_new * chunk_sectors; 6768 /* here_new is the stripe we will write to */ 6769 here_old = mddev->reshape_position; 6770 sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); 6771 /* here_old is the first stripe that we might need to read 6772 * from */ 6773 if (mddev->delta_disks == 0) { 6774 /* We cannot be sure it is safe to start an in-place 6775 * reshape. It is only safe if user-space is monitoring 6776 * and taking constant backups. 6777 * mdadm always starts a situation like this in 6778 * readonly mode so it can take control before 6779 * allowing any writes. So just check for that. 6780 */ 6781 if (abs(min_offset_diff) >= mddev->chunk_sectors && 6782 abs(min_offset_diff) >= mddev->new_chunk_sectors) 6783 /* not really in-place - so OK */; 6784 else if (mddev->ro == 0) { 6785 printk(KERN_ERR "md/raid:%s: in-place reshape " 6786 "must be started in read-only mode " 6787 "- aborting\n", 6788 mdname(mddev)); 6789 return -EINVAL; 6790 } 6791 } else if (mddev->reshape_backwards 6792 ? (here_new * chunk_sectors + min_offset_diff <= 6793 here_old * chunk_sectors) 6794 : (here_new * chunk_sectors >= 6795 here_old * chunk_sectors + (-min_offset_diff))) { 6796 /* Reading from the same stripe as writing to - bad */ 6797 printk(KERN_ERR "md/raid:%s: reshape_position too early for " 6798 "auto-recovery - aborting.\n", 6799 mdname(mddev)); 6800 return -EINVAL; 6801 } 6802 printk(KERN_INFO "md/raid:%s: reshape will continue\n", 6803 mdname(mddev)); 6804 /* OK, we should be able to continue; */ 6805 } else { 6806 BUG_ON(mddev->level != mddev->new_level); 6807 BUG_ON(mddev->layout != mddev->new_layout); 6808 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); 6809 BUG_ON(mddev->delta_disks != 0); 6810 } 6811 6812 if (mddev->private == NULL) 6813 conf = setup_conf(mddev); 6814 else 6815 conf = mddev->private; 6816 6817 if (IS_ERR(conf)) 6818 return PTR_ERR(conf); 6819 6820 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 6821 if (!journal_dev) { 6822 pr_err("md/raid:%s: journal disk is missing, force array readonly\n", 6823 mdname(mddev)); 6824 mddev->ro = 1; 6825 set_disk_ro(mddev->gendisk, 1); 6826 } else if (mddev->recovery_cp == MaxSector) 6827 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 6828 } 6829 6830 conf->min_offset_diff = min_offset_diff; 6831 mddev->thread = conf->thread; 6832 conf->thread = NULL; 6833 mddev->private = conf; 6834 6835 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; 6836 i++) { 6837 rdev = conf->disks[i].rdev; 6838 if (!rdev && conf->disks[i].replacement) { 6839 /* The replacement is all we have yet */ 6840 rdev = conf->disks[i].replacement; 6841 conf->disks[i].replacement = NULL; 6842 clear_bit(Replacement, &rdev->flags); 6843 conf->disks[i].rdev = rdev; 6844 } 6845 if (!rdev) 6846 continue; 6847 if (conf->disks[i].replacement && 6848 conf->reshape_progress != MaxSector) { 6849 /* replacements and reshape simply do not mix. */ 6850 printk(KERN_ERR "md: cannot handle concurrent " 6851 "replacement and reshape.\n"); 6852 goto abort; 6853 } 6854 if (test_bit(In_sync, &rdev->flags)) { 6855 working_disks++; 6856 continue; 6857 } 6858 /* This disc is not fully in-sync. However if it 6859 * just stored parity (beyond the recovery_offset), 6860 * when we don't need to be concerned about the 6861 * array being dirty. 6862 * When reshape goes 'backwards', we never have 6863 * partially completed devices, so we only need 6864 * to worry about reshape going forwards. 6865 */ 6866 /* Hack because v0.91 doesn't store recovery_offset properly. */ 6867 if (mddev->major_version == 0 && 6868 mddev->minor_version > 90) 6869 rdev->recovery_offset = reshape_offset; 6870 6871 if (rdev->recovery_offset < reshape_offset) { 6872 /* We need to check old and new layout */ 6873 if (!only_parity(rdev->raid_disk, 6874 conf->algorithm, 6875 conf->raid_disks, 6876 conf->max_degraded)) 6877 continue; 6878 } 6879 if (!only_parity(rdev->raid_disk, 6880 conf->prev_algo, 6881 conf->previous_raid_disks, 6882 conf->max_degraded)) 6883 continue; 6884 dirty_parity_disks++; 6885 } 6886 6887 /* 6888 * 0 for a fully functional array, 1 or 2 for a degraded array. 6889 */ 6890 mddev->degraded = calc_degraded(conf); 6891 6892 if (has_failed(conf)) { 6893 printk(KERN_ERR "md/raid:%s: not enough operational devices" 6894 " (%d/%d failed)\n", 6895 mdname(mddev), mddev->degraded, conf->raid_disks); 6896 goto abort; 6897 } 6898 6899 /* device size must be a multiple of chunk size */ 6900 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); 6901 mddev->resync_max_sectors = mddev->dev_sectors; 6902 6903 if (mddev->degraded > dirty_parity_disks && 6904 mddev->recovery_cp != MaxSector) { 6905 if (mddev->ok_start_degraded) 6906 printk(KERN_WARNING 6907 "md/raid:%s: starting dirty degraded array" 6908 " - data corruption possible.\n", 6909 mdname(mddev)); 6910 else { 6911 printk(KERN_ERR 6912 "md/raid:%s: cannot start dirty degraded array.\n", 6913 mdname(mddev)); 6914 goto abort; 6915 } 6916 } 6917 6918 if (mddev->degraded == 0) 6919 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d" 6920 " devices, algorithm %d\n", mdname(mddev), conf->level, 6921 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 6922 mddev->new_layout); 6923 else 6924 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d" 6925 " out of %d devices, algorithm %d\n", 6926 mdname(mddev), conf->level, 6927 mddev->raid_disks - mddev->degraded, 6928 mddev->raid_disks, mddev->new_layout); 6929 6930 print_raid5_conf(conf); 6931 6932 if (conf->reshape_progress != MaxSector) { 6933 conf->reshape_safe = conf->reshape_progress; 6934 atomic_set(&conf->reshape_stripes, 0); 6935 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6936 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6937 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6938 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6939 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 6940 "reshape"); 6941 } 6942 6943 /* Ok, everything is just fine now */ 6944 if (mddev->to_remove == &raid5_attrs_group) 6945 mddev->to_remove = NULL; 6946 else if (mddev->kobj.sd && 6947 sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) 6948 printk(KERN_WARNING 6949 "raid5: failed to create sysfs attributes for %s\n", 6950 mdname(mddev)); 6951 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 6952 6953 if (mddev->queue) { 6954 int chunk_size; 6955 bool discard_supported = true; 6956 /* read-ahead size must cover two whole stripes, which 6957 * is 2 * (datadisks) * chunksize where 'n' is the 6958 * number of raid devices 6959 */ 6960 int data_disks = conf->previous_raid_disks - conf->max_degraded; 6961 int stripe = data_disks * 6962 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 6963 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 6964 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 6965 6966 chunk_size = mddev->chunk_sectors << 9; 6967 blk_queue_io_min(mddev->queue, chunk_size); 6968 blk_queue_io_opt(mddev->queue, chunk_size * 6969 (conf->raid_disks - conf->max_degraded)); 6970 mddev->queue->limits.raid_partial_stripes_expensive = 1; 6971 /* 6972 * We can only discard a whole stripe. It doesn't make sense to 6973 * discard data disk but write parity disk 6974 */ 6975 stripe = stripe * PAGE_SIZE; 6976 /* Round up to power of 2, as discard handling 6977 * currently assumes that */ 6978 while ((stripe-1) & stripe) 6979 stripe = (stripe | (stripe-1)) + 1; 6980 mddev->queue->limits.discard_alignment = stripe; 6981 mddev->queue->limits.discard_granularity = stripe; 6982 /* 6983 * unaligned part of discard request will be ignored, so can't 6984 * guarantee discard_zeroes_data 6985 */ 6986 mddev->queue->limits.discard_zeroes_data = 0; 6987 6988 blk_queue_max_write_same_sectors(mddev->queue, 0); 6989 6990 rdev_for_each(rdev, mddev) { 6991 disk_stack_limits(mddev->gendisk, rdev->bdev, 6992 rdev->data_offset << 9); 6993 disk_stack_limits(mddev->gendisk, rdev->bdev, 6994 rdev->new_data_offset << 9); 6995 /* 6996 * discard_zeroes_data is required, otherwise data 6997 * could be lost. Consider a scenario: discard a stripe 6998 * (the stripe could be inconsistent if 6999 * discard_zeroes_data is 0); write one disk of the 7000 * stripe (the stripe could be inconsistent again 7001 * depending on which disks are used to calculate 7002 * parity); the disk is broken; The stripe data of this 7003 * disk is lost. 7004 */ 7005 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) || 7006 !bdev_get_queue(rdev->bdev)-> 7007 limits.discard_zeroes_data) 7008 discard_supported = false; 7009 /* Unfortunately, discard_zeroes_data is not currently 7010 * a guarantee - just a hint. So we only allow DISCARD 7011 * if the sysadmin has confirmed that only safe devices 7012 * are in use by setting a module parameter. 7013 */ 7014 if (!devices_handle_discard_safely) { 7015 if (discard_supported) { 7016 pr_info("md/raid456: discard support disabled due to uncertainty.\n"); 7017 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n"); 7018 } 7019 discard_supported = false; 7020 } 7021 } 7022 7023 if (discard_supported && 7024 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && 7025 mddev->queue->limits.discard_granularity >= stripe) 7026 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, 7027 mddev->queue); 7028 else 7029 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, 7030 mddev->queue); 7031 7032 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); 7033 } 7034 7035 if (journal_dev) { 7036 char b[BDEVNAME_SIZE]; 7037 7038 printk(KERN_INFO"md/raid:%s: using device %s as journal\n", 7039 mdname(mddev), bdevname(journal_dev->bdev, b)); 7040 r5l_init_log(conf, journal_dev); 7041 } 7042 7043 return 0; 7044 abort: 7045 md_unregister_thread(&mddev->thread); 7046 print_raid5_conf(conf); 7047 free_conf(conf); 7048 mddev->private = NULL; 7049 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev)); 7050 return -EIO; 7051 } 7052 7053 static void raid5_free(struct mddev *mddev, void *priv) 7054 { 7055 struct r5conf *conf = priv; 7056 7057 free_conf(conf); 7058 mddev->to_remove = &raid5_attrs_group; 7059 } 7060 7061 static void raid5_status(struct seq_file *seq, struct mddev *mddev) 7062 { 7063 struct r5conf *conf = mddev->private; 7064 int i; 7065 7066 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, 7067 conf->chunk_sectors / 2, mddev->layout); 7068 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); 7069 rcu_read_lock(); 7070 for (i = 0; i < conf->raid_disks; i++) { 7071 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); 7072 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 7073 } 7074 rcu_read_unlock(); 7075 seq_printf (seq, "]"); 7076 } 7077 7078 static void print_raid5_conf (struct r5conf *conf) 7079 { 7080 int i; 7081 struct disk_info *tmp; 7082 7083 printk(KERN_DEBUG "RAID conf printout:\n"); 7084 if (!conf) { 7085 printk("(conf==NULL)\n"); 7086 return; 7087 } 7088 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level, 7089 conf->raid_disks, 7090 conf->raid_disks - conf->mddev->degraded); 7091 7092 for (i = 0; i < conf->raid_disks; i++) { 7093 char b[BDEVNAME_SIZE]; 7094 tmp = conf->disks + i; 7095 if (tmp->rdev) 7096 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n", 7097 i, !test_bit(Faulty, &tmp->rdev->flags), 7098 bdevname(tmp->rdev->bdev, b)); 7099 } 7100 } 7101 7102 static int raid5_spare_active(struct mddev *mddev) 7103 { 7104 int i; 7105 struct r5conf *conf = mddev->private; 7106 struct disk_info *tmp; 7107 int count = 0; 7108 unsigned long flags; 7109 7110 for (i = 0; i < conf->raid_disks; i++) { 7111 tmp = conf->disks + i; 7112 if (tmp->replacement 7113 && tmp->replacement->recovery_offset == MaxSector 7114 && !test_bit(Faulty, &tmp->replacement->flags) 7115 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { 7116 /* Replacement has just become active. */ 7117 if (!tmp->rdev 7118 || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) 7119 count++; 7120 if (tmp->rdev) { 7121 /* Replaced device not technically faulty, 7122 * but we need to be sure it gets removed 7123 * and never re-added. 7124 */ 7125 set_bit(Faulty, &tmp->rdev->flags); 7126 sysfs_notify_dirent_safe( 7127 tmp->rdev->sysfs_state); 7128 } 7129 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); 7130 } else if (tmp->rdev 7131 && tmp->rdev->recovery_offset == MaxSector 7132 && !test_bit(Faulty, &tmp->rdev->flags) 7133 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 7134 count++; 7135 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); 7136 } 7137 } 7138 spin_lock_irqsave(&conf->device_lock, flags); 7139 mddev->degraded = calc_degraded(conf); 7140 spin_unlock_irqrestore(&conf->device_lock, flags); 7141 print_raid5_conf(conf); 7142 return count; 7143 } 7144 7145 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) 7146 { 7147 struct r5conf *conf = mddev->private; 7148 int err = 0; 7149 int number = rdev->raid_disk; 7150 struct md_rdev **rdevp; 7151 struct disk_info *p = conf->disks + number; 7152 7153 print_raid5_conf(conf); 7154 if (test_bit(Journal, &rdev->flags) && conf->log) { 7155 struct r5l_log *log; 7156 /* 7157 * we can't wait pending write here, as this is called in 7158 * raid5d, wait will deadlock. 7159 */ 7160 if (atomic_read(&mddev->writes_pending)) 7161 return -EBUSY; 7162 log = conf->log; 7163 conf->log = NULL; 7164 synchronize_rcu(); 7165 r5l_exit_log(log); 7166 return 0; 7167 } 7168 if (rdev == p->rdev) 7169 rdevp = &p->rdev; 7170 else if (rdev == p->replacement) 7171 rdevp = &p->replacement; 7172 else 7173 return 0; 7174 7175 if (number >= conf->raid_disks && 7176 conf->reshape_progress == MaxSector) 7177 clear_bit(In_sync, &rdev->flags); 7178 7179 if (test_bit(In_sync, &rdev->flags) || 7180 atomic_read(&rdev->nr_pending)) { 7181 err = -EBUSY; 7182 goto abort; 7183 } 7184 /* Only remove non-faulty devices if recovery 7185 * isn't possible. 7186 */ 7187 if (!test_bit(Faulty, &rdev->flags) && 7188 mddev->recovery_disabled != conf->recovery_disabled && 7189 !has_failed(conf) && 7190 (!p->replacement || p->replacement == rdev) && 7191 number < conf->raid_disks) { 7192 err = -EBUSY; 7193 goto abort; 7194 } 7195 *rdevp = NULL; 7196 if (!test_bit(RemoveSynchronized, &rdev->flags)) { 7197 synchronize_rcu(); 7198 if (atomic_read(&rdev->nr_pending)) { 7199 /* lost the race, try later */ 7200 err = -EBUSY; 7201 *rdevp = rdev; 7202 } 7203 } 7204 if (p->replacement) { 7205 /* We must have just cleared 'rdev' */ 7206 p->rdev = p->replacement; 7207 clear_bit(Replacement, &p->replacement->flags); 7208 smp_mb(); /* Make sure other CPUs may see both as identical 7209 * but will never see neither - if they are careful 7210 */ 7211 p->replacement = NULL; 7212 clear_bit(WantReplacement, &rdev->flags); 7213 } else 7214 /* We might have just removed the Replacement as faulty- 7215 * clear the bit just in case 7216 */ 7217 clear_bit(WantReplacement, &rdev->flags); 7218 abort: 7219 7220 print_raid5_conf(conf); 7221 return err; 7222 } 7223 7224 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) 7225 { 7226 struct r5conf *conf = mddev->private; 7227 int err = -EEXIST; 7228 int disk; 7229 struct disk_info *p; 7230 int first = 0; 7231 int last = conf->raid_disks - 1; 7232 7233 if (test_bit(Journal, &rdev->flags)) { 7234 char b[BDEVNAME_SIZE]; 7235 if (conf->log) 7236 return -EBUSY; 7237 7238 rdev->raid_disk = 0; 7239 /* 7240 * The array is in readonly mode if journal is missing, so no 7241 * write requests running. We should be safe 7242 */ 7243 r5l_init_log(conf, rdev); 7244 printk(KERN_INFO"md/raid:%s: using device %s as journal\n", 7245 mdname(mddev), bdevname(rdev->bdev, b)); 7246 return 0; 7247 } 7248 if (mddev->recovery_disabled == conf->recovery_disabled) 7249 return -EBUSY; 7250 7251 if (rdev->saved_raid_disk < 0 && has_failed(conf)) 7252 /* no point adding a device */ 7253 return -EINVAL; 7254 7255 if (rdev->raid_disk >= 0) 7256 first = last = rdev->raid_disk; 7257 7258 /* 7259 * find the disk ... but prefer rdev->saved_raid_disk 7260 * if possible. 7261 */ 7262 if (rdev->saved_raid_disk >= 0 && 7263 rdev->saved_raid_disk >= first && 7264 conf->disks[rdev->saved_raid_disk].rdev == NULL) 7265 first = rdev->saved_raid_disk; 7266 7267 for (disk = first; disk <= last; disk++) { 7268 p = conf->disks + disk; 7269 if (p->rdev == NULL) { 7270 clear_bit(In_sync, &rdev->flags); 7271 rdev->raid_disk = disk; 7272 err = 0; 7273 if (rdev->saved_raid_disk != disk) 7274 conf->fullsync = 1; 7275 rcu_assign_pointer(p->rdev, rdev); 7276 goto out; 7277 } 7278 } 7279 for (disk = first; disk <= last; disk++) { 7280 p = conf->disks + disk; 7281 if (test_bit(WantReplacement, &p->rdev->flags) && 7282 p->replacement == NULL) { 7283 clear_bit(In_sync, &rdev->flags); 7284 set_bit(Replacement, &rdev->flags); 7285 rdev->raid_disk = disk; 7286 err = 0; 7287 conf->fullsync = 1; 7288 rcu_assign_pointer(p->replacement, rdev); 7289 break; 7290 } 7291 } 7292 out: 7293 print_raid5_conf(conf); 7294 return err; 7295 } 7296 7297 static int raid5_resize(struct mddev *mddev, sector_t sectors) 7298 { 7299 /* no resync is happening, and there is enough space 7300 * on all devices, so we can resize. 7301 * We need to make sure resync covers any new space. 7302 * If the array is shrinking we should possibly wait until 7303 * any io in the removed space completes, but it hardly seems 7304 * worth it. 7305 */ 7306 sector_t newsize; 7307 struct r5conf *conf = mddev->private; 7308 7309 if (conf->log) 7310 return -EINVAL; 7311 sectors &= ~((sector_t)conf->chunk_sectors - 1); 7312 newsize = raid5_size(mddev, sectors, mddev->raid_disks); 7313 if (mddev->external_size && 7314 mddev->array_sectors > newsize) 7315 return -EINVAL; 7316 if (mddev->bitmap) { 7317 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0); 7318 if (ret) 7319 return ret; 7320 } 7321 md_set_array_sectors(mddev, newsize); 7322 set_capacity(mddev->gendisk, mddev->array_sectors); 7323 revalidate_disk(mddev->gendisk); 7324 if (sectors > mddev->dev_sectors && 7325 mddev->recovery_cp > mddev->dev_sectors) { 7326 mddev->recovery_cp = mddev->dev_sectors; 7327 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7328 } 7329 mddev->dev_sectors = sectors; 7330 mddev->resync_max_sectors = sectors; 7331 return 0; 7332 } 7333 7334 static int check_stripe_cache(struct mddev *mddev) 7335 { 7336 /* Can only proceed if there are plenty of stripe_heads. 7337 * We need a minimum of one full stripe,, and for sensible progress 7338 * it is best to have about 4 times that. 7339 * If we require 4 times, then the default 256 4K stripe_heads will 7340 * allow for chunk sizes up to 256K, which is probably OK. 7341 * If the chunk size is greater, user-space should request more 7342 * stripe_heads first. 7343 */ 7344 struct r5conf *conf = mddev->private; 7345 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 7346 > conf->min_nr_stripes || 7347 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 7348 > conf->min_nr_stripes) { 7349 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n", 7350 mdname(mddev), 7351 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) 7352 / STRIPE_SIZE)*4); 7353 return 0; 7354 } 7355 return 1; 7356 } 7357 7358 static int check_reshape(struct mddev *mddev) 7359 { 7360 struct r5conf *conf = mddev->private; 7361 7362 if (conf->log) 7363 return -EINVAL; 7364 if (mddev->delta_disks == 0 && 7365 mddev->new_layout == mddev->layout && 7366 mddev->new_chunk_sectors == mddev->chunk_sectors) 7367 return 0; /* nothing to do */ 7368 if (has_failed(conf)) 7369 return -EINVAL; 7370 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { 7371 /* We might be able to shrink, but the devices must 7372 * be made bigger first. 7373 * For raid6, 4 is the minimum size. 7374 * Otherwise 2 is the minimum 7375 */ 7376 int min = 2; 7377 if (mddev->level == 6) 7378 min = 4; 7379 if (mddev->raid_disks + mddev->delta_disks < min) 7380 return -EINVAL; 7381 } 7382 7383 if (!check_stripe_cache(mddev)) 7384 return -ENOSPC; 7385 7386 if (mddev->new_chunk_sectors > mddev->chunk_sectors || 7387 mddev->delta_disks > 0) 7388 if (resize_chunks(conf, 7389 conf->previous_raid_disks 7390 + max(0, mddev->delta_disks), 7391 max(mddev->new_chunk_sectors, 7392 mddev->chunk_sectors) 7393 ) < 0) 7394 return -ENOMEM; 7395 return resize_stripes(conf, (conf->previous_raid_disks 7396 + mddev->delta_disks)); 7397 } 7398 7399 static int raid5_start_reshape(struct mddev *mddev) 7400 { 7401 struct r5conf *conf = mddev->private; 7402 struct md_rdev *rdev; 7403 int spares = 0; 7404 unsigned long flags; 7405 7406 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 7407 return -EBUSY; 7408 7409 if (!check_stripe_cache(mddev)) 7410 return -ENOSPC; 7411 7412 if (has_failed(conf)) 7413 return -EINVAL; 7414 7415 rdev_for_each(rdev, mddev) { 7416 if (!test_bit(In_sync, &rdev->flags) 7417 && !test_bit(Faulty, &rdev->flags)) 7418 spares++; 7419 } 7420 7421 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) 7422 /* Not enough devices even to make a degraded array 7423 * of that size 7424 */ 7425 return -EINVAL; 7426 7427 /* Refuse to reduce size of the array. Any reductions in 7428 * array size must be through explicit setting of array_size 7429 * attribute. 7430 */ 7431 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) 7432 < mddev->array_sectors) { 7433 printk(KERN_ERR "md/raid:%s: array size must be reduced " 7434 "before number of disks\n", mdname(mddev)); 7435 return -EINVAL; 7436 } 7437 7438 atomic_set(&conf->reshape_stripes, 0); 7439 spin_lock_irq(&conf->device_lock); 7440 write_seqcount_begin(&conf->gen_lock); 7441 conf->previous_raid_disks = conf->raid_disks; 7442 conf->raid_disks += mddev->delta_disks; 7443 conf->prev_chunk_sectors = conf->chunk_sectors; 7444 conf->chunk_sectors = mddev->new_chunk_sectors; 7445 conf->prev_algo = conf->algorithm; 7446 conf->algorithm = mddev->new_layout; 7447 conf->generation++; 7448 /* Code that selects data_offset needs to see the generation update 7449 * if reshape_progress has been set - so a memory barrier needed. 7450 */ 7451 smp_mb(); 7452 if (mddev->reshape_backwards) 7453 conf->reshape_progress = raid5_size(mddev, 0, 0); 7454 else 7455 conf->reshape_progress = 0; 7456 conf->reshape_safe = conf->reshape_progress; 7457 write_seqcount_end(&conf->gen_lock); 7458 spin_unlock_irq(&conf->device_lock); 7459 7460 /* Now make sure any requests that proceeded on the assumption 7461 * the reshape wasn't running - like Discard or Read - have 7462 * completed. 7463 */ 7464 mddev_suspend(mddev); 7465 mddev_resume(mddev); 7466 7467 /* Add some new drives, as many as will fit. 7468 * We know there are enough to make the newly sized array work. 7469 * Don't add devices if we are reducing the number of 7470 * devices in the array. This is because it is not possible 7471 * to correctly record the "partially reconstructed" state of 7472 * such devices during the reshape and confusion could result. 7473 */ 7474 if (mddev->delta_disks >= 0) { 7475 rdev_for_each(rdev, mddev) 7476 if (rdev->raid_disk < 0 && 7477 !test_bit(Faulty, &rdev->flags)) { 7478 if (raid5_add_disk(mddev, rdev) == 0) { 7479 if (rdev->raid_disk 7480 >= conf->previous_raid_disks) 7481 set_bit(In_sync, &rdev->flags); 7482 else 7483 rdev->recovery_offset = 0; 7484 7485 if (sysfs_link_rdev(mddev, rdev)) 7486 /* Failure here is OK */; 7487 } 7488 } else if (rdev->raid_disk >= conf->previous_raid_disks 7489 && !test_bit(Faulty, &rdev->flags)) { 7490 /* This is a spare that was manually added */ 7491 set_bit(In_sync, &rdev->flags); 7492 } 7493 7494 /* When a reshape changes the number of devices, 7495 * ->degraded is measured against the larger of the 7496 * pre and post number of devices. 7497 */ 7498 spin_lock_irqsave(&conf->device_lock, flags); 7499 mddev->degraded = calc_degraded(conf); 7500 spin_unlock_irqrestore(&conf->device_lock, flags); 7501 } 7502 mddev->raid_disks = conf->raid_disks; 7503 mddev->reshape_position = conf->reshape_progress; 7504 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7505 7506 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7507 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7508 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7509 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7510 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7511 mddev->sync_thread = md_register_thread(md_do_sync, mddev, 7512 "reshape"); 7513 if (!mddev->sync_thread) { 7514 mddev->recovery = 0; 7515 spin_lock_irq(&conf->device_lock); 7516 write_seqcount_begin(&conf->gen_lock); 7517 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; 7518 mddev->new_chunk_sectors = 7519 conf->chunk_sectors = conf->prev_chunk_sectors; 7520 mddev->new_layout = conf->algorithm = conf->prev_algo; 7521 rdev_for_each(rdev, mddev) 7522 rdev->new_data_offset = rdev->data_offset; 7523 smp_wmb(); 7524 conf->generation --; 7525 conf->reshape_progress = MaxSector; 7526 mddev->reshape_position = MaxSector; 7527 write_seqcount_end(&conf->gen_lock); 7528 spin_unlock_irq(&conf->device_lock); 7529 return -EAGAIN; 7530 } 7531 conf->reshape_checkpoint = jiffies; 7532 md_wakeup_thread(mddev->sync_thread); 7533 md_new_event(mddev); 7534 return 0; 7535 } 7536 7537 /* This is called from the reshape thread and should make any 7538 * changes needed in 'conf' 7539 */ 7540 static void end_reshape(struct r5conf *conf) 7541 { 7542 7543 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { 7544 struct md_rdev *rdev; 7545 7546 spin_lock_irq(&conf->device_lock); 7547 conf->previous_raid_disks = conf->raid_disks; 7548 rdev_for_each(rdev, conf->mddev) 7549 rdev->data_offset = rdev->new_data_offset; 7550 smp_wmb(); 7551 conf->reshape_progress = MaxSector; 7552 conf->mddev->reshape_position = MaxSector; 7553 spin_unlock_irq(&conf->device_lock); 7554 wake_up(&conf->wait_for_overlap); 7555 7556 /* read-ahead size must cover two whole stripes, which is 7557 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices 7558 */ 7559 if (conf->mddev->queue) { 7560 int data_disks = conf->raid_disks - conf->max_degraded; 7561 int stripe = data_disks * ((conf->chunk_sectors << 9) 7562 / PAGE_SIZE); 7563 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 7564 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 7565 } 7566 } 7567 } 7568 7569 /* This is called from the raid5d thread with mddev_lock held. 7570 * It makes config changes to the device. 7571 */ 7572 static void raid5_finish_reshape(struct mddev *mddev) 7573 { 7574 struct r5conf *conf = mddev->private; 7575 7576 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7577 7578 if (mddev->delta_disks > 0) { 7579 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); 7580 if (mddev->queue) { 7581 set_capacity(mddev->gendisk, mddev->array_sectors); 7582 revalidate_disk(mddev->gendisk); 7583 } 7584 } else { 7585 int d; 7586 spin_lock_irq(&conf->device_lock); 7587 mddev->degraded = calc_degraded(conf); 7588 spin_unlock_irq(&conf->device_lock); 7589 for (d = conf->raid_disks ; 7590 d < conf->raid_disks - mddev->delta_disks; 7591 d++) { 7592 struct md_rdev *rdev = conf->disks[d].rdev; 7593 if (rdev) 7594 clear_bit(In_sync, &rdev->flags); 7595 rdev = conf->disks[d].replacement; 7596 if (rdev) 7597 clear_bit(In_sync, &rdev->flags); 7598 } 7599 } 7600 mddev->layout = conf->algorithm; 7601 mddev->chunk_sectors = conf->chunk_sectors; 7602 mddev->reshape_position = MaxSector; 7603 mddev->delta_disks = 0; 7604 mddev->reshape_backwards = 0; 7605 } 7606 } 7607 7608 static void raid5_quiesce(struct mddev *mddev, int state) 7609 { 7610 struct r5conf *conf = mddev->private; 7611 7612 switch(state) { 7613 case 2: /* resume for a suspend */ 7614 wake_up(&conf->wait_for_overlap); 7615 break; 7616 7617 case 1: /* stop all writes */ 7618 lock_all_device_hash_locks_irq(conf); 7619 /* '2' tells resync/reshape to pause so that all 7620 * active stripes can drain 7621 */ 7622 conf->quiesce = 2; 7623 wait_event_cmd(conf->wait_for_quiescent, 7624 atomic_read(&conf->active_stripes) == 0 && 7625 atomic_read(&conf->active_aligned_reads) == 0, 7626 unlock_all_device_hash_locks_irq(conf), 7627 lock_all_device_hash_locks_irq(conf)); 7628 conf->quiesce = 1; 7629 unlock_all_device_hash_locks_irq(conf); 7630 /* allow reshape to continue */ 7631 wake_up(&conf->wait_for_overlap); 7632 break; 7633 7634 case 0: /* re-enable writes */ 7635 lock_all_device_hash_locks_irq(conf); 7636 conf->quiesce = 0; 7637 wake_up(&conf->wait_for_quiescent); 7638 wake_up(&conf->wait_for_overlap); 7639 unlock_all_device_hash_locks_irq(conf); 7640 break; 7641 } 7642 r5l_quiesce(conf->log, state); 7643 } 7644 7645 static void *raid45_takeover_raid0(struct mddev *mddev, int level) 7646 { 7647 struct r0conf *raid0_conf = mddev->private; 7648 sector_t sectors; 7649 7650 /* for raid0 takeover only one zone is supported */ 7651 if (raid0_conf->nr_strip_zones > 1) { 7652 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n", 7653 mdname(mddev)); 7654 return ERR_PTR(-EINVAL); 7655 } 7656 7657 sectors = raid0_conf->strip_zone[0].zone_end; 7658 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); 7659 mddev->dev_sectors = sectors; 7660 mddev->new_level = level; 7661 mddev->new_layout = ALGORITHM_PARITY_N; 7662 mddev->new_chunk_sectors = mddev->chunk_sectors; 7663 mddev->raid_disks += 1; 7664 mddev->delta_disks = 1; 7665 /* make sure it will be not marked as dirty */ 7666 mddev->recovery_cp = MaxSector; 7667 7668 return setup_conf(mddev); 7669 } 7670 7671 static void *raid5_takeover_raid1(struct mddev *mddev) 7672 { 7673 int chunksect; 7674 7675 if (mddev->raid_disks != 2 || 7676 mddev->degraded > 1) 7677 return ERR_PTR(-EINVAL); 7678 7679 /* Should check if there are write-behind devices? */ 7680 7681 chunksect = 64*2; /* 64K by default */ 7682 7683 /* The array must be an exact multiple of chunksize */ 7684 while (chunksect && (mddev->array_sectors & (chunksect-1))) 7685 chunksect >>= 1; 7686 7687 if ((chunksect<<9) < STRIPE_SIZE) 7688 /* array size does not allow a suitable chunk size */ 7689 return ERR_PTR(-EINVAL); 7690 7691 mddev->new_level = 5; 7692 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; 7693 mddev->new_chunk_sectors = chunksect; 7694 7695 return setup_conf(mddev); 7696 } 7697 7698 static void *raid5_takeover_raid6(struct mddev *mddev) 7699 { 7700 int new_layout; 7701 7702 switch (mddev->layout) { 7703 case ALGORITHM_LEFT_ASYMMETRIC_6: 7704 new_layout = ALGORITHM_LEFT_ASYMMETRIC; 7705 break; 7706 case ALGORITHM_RIGHT_ASYMMETRIC_6: 7707 new_layout = ALGORITHM_RIGHT_ASYMMETRIC; 7708 break; 7709 case ALGORITHM_LEFT_SYMMETRIC_6: 7710 new_layout = ALGORITHM_LEFT_SYMMETRIC; 7711 break; 7712 case ALGORITHM_RIGHT_SYMMETRIC_6: 7713 new_layout = ALGORITHM_RIGHT_SYMMETRIC; 7714 break; 7715 case ALGORITHM_PARITY_0_6: 7716 new_layout = ALGORITHM_PARITY_0; 7717 break; 7718 case ALGORITHM_PARITY_N: 7719 new_layout = ALGORITHM_PARITY_N; 7720 break; 7721 default: 7722 return ERR_PTR(-EINVAL); 7723 } 7724 mddev->new_level = 5; 7725 mddev->new_layout = new_layout; 7726 mddev->delta_disks = -1; 7727 mddev->raid_disks -= 1; 7728 return setup_conf(mddev); 7729 } 7730 7731 static int raid5_check_reshape(struct mddev *mddev) 7732 { 7733 /* For a 2-drive array, the layout and chunk size can be changed 7734 * immediately as not restriping is needed. 7735 * For larger arrays we record the new value - after validation 7736 * to be used by a reshape pass. 7737 */ 7738 struct r5conf *conf = mddev->private; 7739 int new_chunk = mddev->new_chunk_sectors; 7740 7741 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) 7742 return -EINVAL; 7743 if (new_chunk > 0) { 7744 if (!is_power_of_2(new_chunk)) 7745 return -EINVAL; 7746 if (new_chunk < (PAGE_SIZE>>9)) 7747 return -EINVAL; 7748 if (mddev->array_sectors & (new_chunk-1)) 7749 /* not factor of array size */ 7750 return -EINVAL; 7751 } 7752 7753 /* They look valid */ 7754 7755 if (mddev->raid_disks == 2) { 7756 /* can make the change immediately */ 7757 if (mddev->new_layout >= 0) { 7758 conf->algorithm = mddev->new_layout; 7759 mddev->layout = mddev->new_layout; 7760 } 7761 if (new_chunk > 0) { 7762 conf->chunk_sectors = new_chunk ; 7763 mddev->chunk_sectors = new_chunk; 7764 } 7765 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7766 md_wakeup_thread(mddev->thread); 7767 } 7768 return check_reshape(mddev); 7769 } 7770 7771 static int raid6_check_reshape(struct mddev *mddev) 7772 { 7773 int new_chunk = mddev->new_chunk_sectors; 7774 7775 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) 7776 return -EINVAL; 7777 if (new_chunk > 0) { 7778 if (!is_power_of_2(new_chunk)) 7779 return -EINVAL; 7780 if (new_chunk < (PAGE_SIZE >> 9)) 7781 return -EINVAL; 7782 if (mddev->array_sectors & (new_chunk-1)) 7783 /* not factor of array size */ 7784 return -EINVAL; 7785 } 7786 7787 /* They look valid */ 7788 return check_reshape(mddev); 7789 } 7790 7791 static void *raid5_takeover(struct mddev *mddev) 7792 { 7793 /* raid5 can take over: 7794 * raid0 - if there is only one strip zone - make it a raid4 layout 7795 * raid1 - if there are two drives. We need to know the chunk size 7796 * raid4 - trivial - just use a raid4 layout. 7797 * raid6 - Providing it is a *_6 layout 7798 */ 7799 if (mddev->level == 0) 7800 return raid45_takeover_raid0(mddev, 5); 7801 if (mddev->level == 1) 7802 return raid5_takeover_raid1(mddev); 7803 if (mddev->level == 4) { 7804 mddev->new_layout = ALGORITHM_PARITY_N; 7805 mddev->new_level = 5; 7806 return setup_conf(mddev); 7807 } 7808 if (mddev->level == 6) 7809 return raid5_takeover_raid6(mddev); 7810 7811 return ERR_PTR(-EINVAL); 7812 } 7813 7814 static void *raid4_takeover(struct mddev *mddev) 7815 { 7816 /* raid4 can take over: 7817 * raid0 - if there is only one strip zone 7818 * raid5 - if layout is right 7819 */ 7820 if (mddev->level == 0) 7821 return raid45_takeover_raid0(mddev, 4); 7822 if (mddev->level == 5 && 7823 mddev->layout == ALGORITHM_PARITY_N) { 7824 mddev->new_layout = 0; 7825 mddev->new_level = 4; 7826 return setup_conf(mddev); 7827 } 7828 return ERR_PTR(-EINVAL); 7829 } 7830 7831 static struct md_personality raid5_personality; 7832 7833 static void *raid6_takeover(struct mddev *mddev) 7834 { 7835 /* Currently can only take over a raid5. We map the 7836 * personality to an equivalent raid6 personality 7837 * with the Q block at the end. 7838 */ 7839 int new_layout; 7840 7841 if (mddev->pers != &raid5_personality) 7842 return ERR_PTR(-EINVAL); 7843 if (mddev->degraded > 1) 7844 return ERR_PTR(-EINVAL); 7845 if (mddev->raid_disks > 253) 7846 return ERR_PTR(-EINVAL); 7847 if (mddev->raid_disks < 3) 7848 return ERR_PTR(-EINVAL); 7849 7850 switch (mddev->layout) { 7851 case ALGORITHM_LEFT_ASYMMETRIC: 7852 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; 7853 break; 7854 case ALGORITHM_RIGHT_ASYMMETRIC: 7855 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; 7856 break; 7857 case ALGORITHM_LEFT_SYMMETRIC: 7858 new_layout = ALGORITHM_LEFT_SYMMETRIC_6; 7859 break; 7860 case ALGORITHM_RIGHT_SYMMETRIC: 7861 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; 7862 break; 7863 case ALGORITHM_PARITY_0: 7864 new_layout = ALGORITHM_PARITY_0_6; 7865 break; 7866 case ALGORITHM_PARITY_N: 7867 new_layout = ALGORITHM_PARITY_N; 7868 break; 7869 default: 7870 return ERR_PTR(-EINVAL); 7871 } 7872 mddev->new_level = 6; 7873 mddev->new_layout = new_layout; 7874 mddev->delta_disks = 1; 7875 mddev->raid_disks += 1; 7876 return setup_conf(mddev); 7877 } 7878 7879 static struct md_personality raid6_personality = 7880 { 7881 .name = "raid6", 7882 .level = 6, 7883 .owner = THIS_MODULE, 7884 .make_request = raid5_make_request, 7885 .run = raid5_run, 7886 .free = raid5_free, 7887 .status = raid5_status, 7888 .error_handler = raid5_error, 7889 .hot_add_disk = raid5_add_disk, 7890 .hot_remove_disk= raid5_remove_disk, 7891 .spare_active = raid5_spare_active, 7892 .sync_request = raid5_sync_request, 7893 .resize = raid5_resize, 7894 .size = raid5_size, 7895 .check_reshape = raid6_check_reshape, 7896 .start_reshape = raid5_start_reshape, 7897 .finish_reshape = raid5_finish_reshape, 7898 .quiesce = raid5_quiesce, 7899 .takeover = raid6_takeover, 7900 .congested = raid5_congested, 7901 }; 7902 static struct md_personality raid5_personality = 7903 { 7904 .name = "raid5", 7905 .level = 5, 7906 .owner = THIS_MODULE, 7907 .make_request = raid5_make_request, 7908 .run = raid5_run, 7909 .free = raid5_free, 7910 .status = raid5_status, 7911 .error_handler = raid5_error, 7912 .hot_add_disk = raid5_add_disk, 7913 .hot_remove_disk= raid5_remove_disk, 7914 .spare_active = raid5_spare_active, 7915 .sync_request = raid5_sync_request, 7916 .resize = raid5_resize, 7917 .size = raid5_size, 7918 .check_reshape = raid5_check_reshape, 7919 .start_reshape = raid5_start_reshape, 7920 .finish_reshape = raid5_finish_reshape, 7921 .quiesce = raid5_quiesce, 7922 .takeover = raid5_takeover, 7923 .congested = raid5_congested, 7924 }; 7925 7926 static struct md_personality raid4_personality = 7927 { 7928 .name = "raid4", 7929 .level = 4, 7930 .owner = THIS_MODULE, 7931 .make_request = raid5_make_request, 7932 .run = raid5_run, 7933 .free = raid5_free, 7934 .status = raid5_status, 7935 .error_handler = raid5_error, 7936 .hot_add_disk = raid5_add_disk, 7937 .hot_remove_disk= raid5_remove_disk, 7938 .spare_active = raid5_spare_active, 7939 .sync_request = raid5_sync_request, 7940 .resize = raid5_resize, 7941 .size = raid5_size, 7942 .check_reshape = raid5_check_reshape, 7943 .start_reshape = raid5_start_reshape, 7944 .finish_reshape = raid5_finish_reshape, 7945 .quiesce = raid5_quiesce, 7946 .takeover = raid4_takeover, 7947 .congested = raid5_congested, 7948 }; 7949 7950 static int __init raid5_init(void) 7951 { 7952 int ret; 7953 7954 raid5_wq = alloc_workqueue("raid5wq", 7955 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); 7956 if (!raid5_wq) 7957 return -ENOMEM; 7958 7959 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, 7960 "md/raid5:prepare", 7961 raid456_cpu_up_prepare, 7962 raid456_cpu_dead); 7963 if (ret) { 7964 destroy_workqueue(raid5_wq); 7965 return ret; 7966 } 7967 register_md_personality(&raid6_personality); 7968 register_md_personality(&raid5_personality); 7969 register_md_personality(&raid4_personality); 7970 return 0; 7971 } 7972 7973 static void raid5_exit(void) 7974 { 7975 unregister_md_personality(&raid6_personality); 7976 unregister_md_personality(&raid5_personality); 7977 unregister_md_personality(&raid4_personality); 7978 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); 7979 destroy_workqueue(raid5_wq); 7980 } 7981 7982 module_init(raid5_init); 7983 module_exit(raid5_exit); 7984 MODULE_LICENSE("GPL"); 7985 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); 7986 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 7987 MODULE_ALIAS("md-raid5"); 7988 MODULE_ALIAS("md-raid4"); 7989 MODULE_ALIAS("md-level-5"); 7990 MODULE_ALIAS("md-level-4"); 7991 MODULE_ALIAS("md-personality-8"); /* RAID6 */ 7992 MODULE_ALIAS("md-raid6"); 7993 MODULE_ALIAS("md-level-6"); 7994 7995 /* This used to be two separate modules, they were: */ 7996 MODULE_ALIAS("raid5"); 7997 MODULE_ALIAS("raid6"); 7998