1 /* 2 * raid5.c : Multiple Devices driver for Linux 3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman 4 * Copyright (C) 1999, 2000 Ingo Molnar 5 * 6 * RAID-5 management functions. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2, or (at your option) 11 * any later version. 12 * 13 * You should have received a copy of the GNU General Public License 14 * (for example /usr/src/linux/COPYING); if not, write to the Free 15 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 16 */ 17 18 19 #include <linux/config.h> 20 #include <linux/module.h> 21 #include <linux/slab.h> 22 #include <linux/raid/raid5.h> 23 #include <linux/highmem.h> 24 #include <linux/bitops.h> 25 #include <asm/atomic.h> 26 27 /* 28 * Stripe cache 29 */ 30 31 #define NR_STRIPES 256 32 #define STRIPE_SIZE PAGE_SIZE 33 #define STRIPE_SHIFT (PAGE_SHIFT - 9) 34 #define STRIPE_SECTORS (STRIPE_SIZE>>9) 35 #define IO_THRESHOLD 1 36 #define HASH_PAGES 1 37 #define HASH_PAGES_ORDER 0 38 #define NR_HASH (HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *)) 39 #define HASH_MASK (NR_HASH - 1) 40 41 #define stripe_hash(conf, sect) ((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]) 42 43 /* bio's attached to a stripe+device for I/O are linked together in bi_sector 44 * order without overlap. There may be several bio's per stripe+device, and 45 * a bio could span several devices. 46 * When walking this list for a particular stripe+device, we must never proceed 47 * beyond a bio that extends past this device, as the next bio might no longer 48 * be valid. 49 * This macro is used to determine the 'next' bio in the list, given the sector 50 * of the current stripe+device 51 */ 52 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL) 53 /* 54 * The following can be used to debug the driver 55 */ 56 #define RAID5_DEBUG 0 57 #define RAID5_PARANOIA 1 58 #if RAID5_PARANOIA && defined(CONFIG_SMP) 59 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock) 60 #else 61 # define CHECK_DEVLOCK() 62 #endif 63 64 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x))) 65 #if RAID5_DEBUG 66 #define inline 67 #define __inline__ 68 #endif 69 70 static void print_raid5_conf (raid5_conf_t *conf); 71 72 static inline void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh) 73 { 74 if (atomic_dec_and_test(&sh->count)) { 75 if (!list_empty(&sh->lru)) 76 BUG(); 77 if (atomic_read(&conf->active_stripes)==0) 78 BUG(); 79 if (test_bit(STRIPE_HANDLE, &sh->state)) { 80 if (test_bit(STRIPE_DELAYED, &sh->state)) 81 list_add_tail(&sh->lru, &conf->delayed_list); 82 else 83 list_add_tail(&sh->lru, &conf->handle_list); 84 md_wakeup_thread(conf->mddev->thread); 85 } else { 86 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 87 atomic_dec(&conf->preread_active_stripes); 88 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 89 md_wakeup_thread(conf->mddev->thread); 90 } 91 list_add_tail(&sh->lru, &conf->inactive_list); 92 atomic_dec(&conf->active_stripes); 93 if (!conf->inactive_blocked || 94 atomic_read(&conf->active_stripes) < (NR_STRIPES*3/4)) 95 wake_up(&conf->wait_for_stripe); 96 } 97 } 98 } 99 static void release_stripe(struct stripe_head *sh) 100 { 101 raid5_conf_t *conf = sh->raid_conf; 102 unsigned long flags; 103 104 spin_lock_irqsave(&conf->device_lock, flags); 105 __release_stripe(conf, sh); 106 spin_unlock_irqrestore(&conf->device_lock, flags); 107 } 108 109 static void remove_hash(struct stripe_head *sh) 110 { 111 PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector); 112 113 if (sh->hash_pprev) { 114 if (sh->hash_next) 115 sh->hash_next->hash_pprev = sh->hash_pprev; 116 *sh->hash_pprev = sh->hash_next; 117 sh->hash_pprev = NULL; 118 } 119 } 120 121 static __inline__ void insert_hash(raid5_conf_t *conf, struct stripe_head *sh) 122 { 123 struct stripe_head **shp = &stripe_hash(conf, sh->sector); 124 125 PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector); 126 127 CHECK_DEVLOCK(); 128 if ((sh->hash_next = *shp) != NULL) 129 (*shp)->hash_pprev = &sh->hash_next; 130 *shp = sh; 131 sh->hash_pprev = shp; 132 } 133 134 135 /* find an idle stripe, make sure it is unhashed, and return it. */ 136 static struct stripe_head *get_free_stripe(raid5_conf_t *conf) 137 { 138 struct stripe_head *sh = NULL; 139 struct list_head *first; 140 141 CHECK_DEVLOCK(); 142 if (list_empty(&conf->inactive_list)) 143 goto out; 144 first = conf->inactive_list.next; 145 sh = list_entry(first, struct stripe_head, lru); 146 list_del_init(first); 147 remove_hash(sh); 148 atomic_inc(&conf->active_stripes); 149 out: 150 return sh; 151 } 152 153 static void shrink_buffers(struct stripe_head *sh, int num) 154 { 155 struct page *p; 156 int i; 157 158 for (i=0; i<num ; i++) { 159 p = sh->dev[i].page; 160 if (!p) 161 continue; 162 sh->dev[i].page = NULL; 163 page_cache_release(p); 164 } 165 } 166 167 static int grow_buffers(struct stripe_head *sh, int num) 168 { 169 int i; 170 171 for (i=0; i<num; i++) { 172 struct page *page; 173 174 if (!(page = alloc_page(GFP_KERNEL))) { 175 return 1; 176 } 177 sh->dev[i].page = page; 178 } 179 return 0; 180 } 181 182 static void raid5_build_block (struct stripe_head *sh, int i); 183 184 static inline void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx) 185 { 186 raid5_conf_t *conf = sh->raid_conf; 187 int disks = conf->raid_disks, i; 188 189 if (atomic_read(&sh->count) != 0) 190 BUG(); 191 if (test_bit(STRIPE_HANDLE, &sh->state)) 192 BUG(); 193 194 CHECK_DEVLOCK(); 195 PRINTK("init_stripe called, stripe %llu\n", 196 (unsigned long long)sh->sector); 197 198 remove_hash(sh); 199 200 sh->sector = sector; 201 sh->pd_idx = pd_idx; 202 sh->state = 0; 203 204 for (i=disks; i--; ) { 205 struct r5dev *dev = &sh->dev[i]; 206 207 if (dev->toread || dev->towrite || dev->written || 208 test_bit(R5_LOCKED, &dev->flags)) { 209 printk("sector=%llx i=%d %p %p %p %d\n", 210 (unsigned long long)sh->sector, i, dev->toread, 211 dev->towrite, dev->written, 212 test_bit(R5_LOCKED, &dev->flags)); 213 BUG(); 214 } 215 dev->flags = 0; 216 raid5_build_block(sh, i); 217 } 218 insert_hash(conf, sh); 219 } 220 221 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector) 222 { 223 struct stripe_head *sh; 224 225 CHECK_DEVLOCK(); 226 PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector); 227 for (sh = stripe_hash(conf, sector); sh; sh = sh->hash_next) 228 if (sh->sector == sector) 229 return sh; 230 PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector); 231 return NULL; 232 } 233 234 static void unplug_slaves(mddev_t *mddev); 235 static void raid5_unplug_device(request_queue_t *q); 236 237 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, 238 int pd_idx, int noblock) 239 { 240 struct stripe_head *sh; 241 242 PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector); 243 244 spin_lock_irq(&conf->device_lock); 245 246 do { 247 sh = __find_stripe(conf, sector); 248 if (!sh) { 249 if (!conf->inactive_blocked) 250 sh = get_free_stripe(conf); 251 if (noblock && sh == NULL) 252 break; 253 if (!sh) { 254 conf->inactive_blocked = 1; 255 wait_event_lock_irq(conf->wait_for_stripe, 256 !list_empty(&conf->inactive_list) && 257 (atomic_read(&conf->active_stripes) < (NR_STRIPES *3/4) 258 || !conf->inactive_blocked), 259 conf->device_lock, 260 unplug_slaves(conf->mddev); 261 ); 262 conf->inactive_blocked = 0; 263 } else 264 init_stripe(sh, sector, pd_idx); 265 } else { 266 if (atomic_read(&sh->count)) { 267 if (!list_empty(&sh->lru)) 268 BUG(); 269 } else { 270 if (!test_bit(STRIPE_HANDLE, &sh->state)) 271 atomic_inc(&conf->active_stripes); 272 if (list_empty(&sh->lru)) 273 BUG(); 274 list_del_init(&sh->lru); 275 } 276 } 277 } while (sh == NULL); 278 279 if (sh) 280 atomic_inc(&sh->count); 281 282 spin_unlock_irq(&conf->device_lock); 283 return sh; 284 } 285 286 static int grow_stripes(raid5_conf_t *conf, int num) 287 { 288 struct stripe_head *sh; 289 kmem_cache_t *sc; 290 int devs = conf->raid_disks; 291 292 sprintf(conf->cache_name, "raid5/%s", mdname(conf->mddev)); 293 294 sc = kmem_cache_create(conf->cache_name, 295 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), 296 0, 0, NULL, NULL); 297 if (!sc) 298 return 1; 299 conf->slab_cache = sc; 300 while (num--) { 301 sh = kmem_cache_alloc(sc, GFP_KERNEL); 302 if (!sh) 303 return 1; 304 memset(sh, 0, sizeof(*sh) + (devs-1)*sizeof(struct r5dev)); 305 sh->raid_conf = conf; 306 spin_lock_init(&sh->lock); 307 308 if (grow_buffers(sh, conf->raid_disks)) { 309 shrink_buffers(sh, conf->raid_disks); 310 kmem_cache_free(sc, sh); 311 return 1; 312 } 313 /* we just created an active stripe so... */ 314 atomic_set(&sh->count, 1); 315 atomic_inc(&conf->active_stripes); 316 INIT_LIST_HEAD(&sh->lru); 317 release_stripe(sh); 318 } 319 return 0; 320 } 321 322 static void shrink_stripes(raid5_conf_t *conf) 323 { 324 struct stripe_head *sh; 325 326 while (1) { 327 spin_lock_irq(&conf->device_lock); 328 sh = get_free_stripe(conf); 329 spin_unlock_irq(&conf->device_lock); 330 if (!sh) 331 break; 332 if (atomic_read(&sh->count)) 333 BUG(); 334 shrink_buffers(sh, conf->raid_disks); 335 kmem_cache_free(conf->slab_cache, sh); 336 atomic_dec(&conf->active_stripes); 337 } 338 kmem_cache_destroy(conf->slab_cache); 339 conf->slab_cache = NULL; 340 } 341 342 static int raid5_end_read_request (struct bio * bi, unsigned int bytes_done, 343 int error) 344 { 345 struct stripe_head *sh = bi->bi_private; 346 raid5_conf_t *conf = sh->raid_conf; 347 int disks = conf->raid_disks, i; 348 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 349 350 if (bi->bi_size) 351 return 1; 352 353 for (i=0 ; i<disks; i++) 354 if (bi == &sh->dev[i].req) 355 break; 356 357 PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n", 358 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 359 uptodate); 360 if (i == disks) { 361 BUG(); 362 return 0; 363 } 364 365 if (uptodate) { 366 #if 0 367 struct bio *bio; 368 unsigned long flags; 369 spin_lock_irqsave(&conf->device_lock, flags); 370 /* we can return a buffer if we bypassed the cache or 371 * if the top buffer is not in highmem. If there are 372 * multiple buffers, leave the extra work to 373 * handle_stripe 374 */ 375 buffer = sh->bh_read[i]; 376 if (buffer && 377 (!PageHighMem(buffer->b_page) 378 || buffer->b_page == bh->b_page ) 379 ) { 380 sh->bh_read[i] = buffer->b_reqnext; 381 buffer->b_reqnext = NULL; 382 } else 383 buffer = NULL; 384 spin_unlock_irqrestore(&conf->device_lock, flags); 385 if (sh->bh_page[i]==bh->b_page) 386 set_buffer_uptodate(bh); 387 if (buffer) { 388 if (buffer->b_page != bh->b_page) 389 memcpy(buffer->b_data, bh->b_data, bh->b_size); 390 buffer->b_end_io(buffer, 1); 391 } 392 #else 393 set_bit(R5_UPTODATE, &sh->dev[i].flags); 394 #endif 395 } else { 396 md_error(conf->mddev, conf->disks[i].rdev); 397 clear_bit(R5_UPTODATE, &sh->dev[i].flags); 398 } 399 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 400 #if 0 401 /* must restore b_page before unlocking buffer... */ 402 if (sh->bh_page[i] != bh->b_page) { 403 bh->b_page = sh->bh_page[i]; 404 bh->b_data = page_address(bh->b_page); 405 clear_buffer_uptodate(bh); 406 } 407 #endif 408 clear_bit(R5_LOCKED, &sh->dev[i].flags); 409 set_bit(STRIPE_HANDLE, &sh->state); 410 release_stripe(sh); 411 return 0; 412 } 413 414 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done, 415 int error) 416 { 417 struct stripe_head *sh = bi->bi_private; 418 raid5_conf_t *conf = sh->raid_conf; 419 int disks = conf->raid_disks, i; 420 unsigned long flags; 421 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); 422 423 if (bi->bi_size) 424 return 1; 425 426 for (i=0 ; i<disks; i++) 427 if (bi == &sh->dev[i].req) 428 break; 429 430 PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n", 431 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 432 uptodate); 433 if (i == disks) { 434 BUG(); 435 return 0; 436 } 437 438 spin_lock_irqsave(&conf->device_lock, flags); 439 if (!uptodate) 440 md_error(conf->mddev, conf->disks[i].rdev); 441 442 rdev_dec_pending(conf->disks[i].rdev, conf->mddev); 443 444 clear_bit(R5_LOCKED, &sh->dev[i].flags); 445 set_bit(STRIPE_HANDLE, &sh->state); 446 __release_stripe(conf, sh); 447 spin_unlock_irqrestore(&conf->device_lock, flags); 448 return 0; 449 } 450 451 452 static sector_t compute_blocknr(struct stripe_head *sh, int i); 453 454 static void raid5_build_block (struct stripe_head *sh, int i) 455 { 456 struct r5dev *dev = &sh->dev[i]; 457 458 bio_init(&dev->req); 459 dev->req.bi_io_vec = &dev->vec; 460 dev->req.bi_vcnt++; 461 dev->req.bi_max_vecs++; 462 dev->vec.bv_page = dev->page; 463 dev->vec.bv_len = STRIPE_SIZE; 464 dev->vec.bv_offset = 0; 465 466 dev->req.bi_sector = sh->sector; 467 dev->req.bi_private = sh; 468 469 dev->flags = 0; 470 if (i != sh->pd_idx) 471 dev->sector = compute_blocknr(sh, i); 472 } 473 474 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 475 { 476 char b[BDEVNAME_SIZE]; 477 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 478 PRINTK("raid5: error called\n"); 479 480 if (!rdev->faulty) { 481 mddev->sb_dirty = 1; 482 if (rdev->in_sync) { 483 conf->working_disks--; 484 mddev->degraded++; 485 conf->failed_disks++; 486 rdev->in_sync = 0; 487 /* 488 * if recovery was running, make sure it aborts. 489 */ 490 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 491 } 492 rdev->faulty = 1; 493 printk (KERN_ALERT 494 "raid5: Disk failure on %s, disabling device." 495 " Operation continuing on %d devices\n", 496 bdevname(rdev->bdev,b), conf->working_disks); 497 } 498 } 499 500 /* 501 * Input: a 'big' sector number, 502 * Output: index of the data and parity disk, and the sector # in them. 503 */ 504 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks, 505 unsigned int data_disks, unsigned int * dd_idx, 506 unsigned int * pd_idx, raid5_conf_t *conf) 507 { 508 long stripe; 509 unsigned long chunk_number; 510 unsigned int chunk_offset; 511 sector_t new_sector; 512 int sectors_per_chunk = conf->chunk_size >> 9; 513 514 /* First compute the information on this sector */ 515 516 /* 517 * Compute the chunk number and the sector offset inside the chunk 518 */ 519 chunk_offset = sector_div(r_sector, sectors_per_chunk); 520 chunk_number = r_sector; 521 BUG_ON(r_sector != chunk_number); 522 523 /* 524 * Compute the stripe number 525 */ 526 stripe = chunk_number / data_disks; 527 528 /* 529 * Compute the data disk and parity disk indexes inside the stripe 530 */ 531 *dd_idx = chunk_number % data_disks; 532 533 /* 534 * Select the parity disk based on the user selected algorithm. 535 */ 536 if (conf->level == 4) 537 *pd_idx = data_disks; 538 else switch (conf->algorithm) { 539 case ALGORITHM_LEFT_ASYMMETRIC: 540 *pd_idx = data_disks - stripe % raid_disks; 541 if (*dd_idx >= *pd_idx) 542 (*dd_idx)++; 543 break; 544 case ALGORITHM_RIGHT_ASYMMETRIC: 545 *pd_idx = stripe % raid_disks; 546 if (*dd_idx >= *pd_idx) 547 (*dd_idx)++; 548 break; 549 case ALGORITHM_LEFT_SYMMETRIC: 550 *pd_idx = data_disks - stripe % raid_disks; 551 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; 552 break; 553 case ALGORITHM_RIGHT_SYMMETRIC: 554 *pd_idx = stripe % raid_disks; 555 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; 556 break; 557 default: 558 printk("raid5: unsupported algorithm %d\n", 559 conf->algorithm); 560 } 561 562 /* 563 * Finally, compute the new sector number 564 */ 565 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; 566 return new_sector; 567 } 568 569 570 static sector_t compute_blocknr(struct stripe_head *sh, int i) 571 { 572 raid5_conf_t *conf = sh->raid_conf; 573 int raid_disks = conf->raid_disks, data_disks = raid_disks - 1; 574 sector_t new_sector = sh->sector, check; 575 int sectors_per_chunk = conf->chunk_size >> 9; 576 sector_t stripe; 577 int chunk_offset; 578 int chunk_number, dummy1, dummy2, dd_idx = i; 579 sector_t r_sector; 580 581 chunk_offset = sector_div(new_sector, sectors_per_chunk); 582 stripe = new_sector; 583 BUG_ON(new_sector != stripe); 584 585 586 switch (conf->algorithm) { 587 case ALGORITHM_LEFT_ASYMMETRIC: 588 case ALGORITHM_RIGHT_ASYMMETRIC: 589 if (i > sh->pd_idx) 590 i--; 591 break; 592 case ALGORITHM_LEFT_SYMMETRIC: 593 case ALGORITHM_RIGHT_SYMMETRIC: 594 if (i < sh->pd_idx) 595 i += raid_disks; 596 i -= (sh->pd_idx + 1); 597 break; 598 default: 599 printk("raid5: unsupported algorithm %d\n", 600 conf->algorithm); 601 } 602 603 chunk_number = stripe * data_disks + i; 604 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset; 605 606 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf); 607 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { 608 printk("compute_blocknr: map not correct\n"); 609 return 0; 610 } 611 return r_sector; 612 } 613 614 615 616 /* 617 * Copy data between a page in the stripe cache, and a bio. 618 * There are no alignment or size guarantees between the page or the 619 * bio except that there is some overlap. 620 * All iovecs in the bio must be considered. 621 */ 622 static void copy_data(int frombio, struct bio *bio, 623 struct page *page, 624 sector_t sector) 625 { 626 char *pa = page_address(page); 627 struct bio_vec *bvl; 628 int i; 629 int page_offset; 630 631 if (bio->bi_sector >= sector) 632 page_offset = (signed)(bio->bi_sector - sector) * 512; 633 else 634 page_offset = (signed)(sector - bio->bi_sector) * -512; 635 bio_for_each_segment(bvl, bio, i) { 636 int len = bio_iovec_idx(bio,i)->bv_len; 637 int clen; 638 int b_offset = 0; 639 640 if (page_offset < 0) { 641 b_offset = -page_offset; 642 page_offset += b_offset; 643 len -= b_offset; 644 } 645 646 if (len > 0 && page_offset + len > STRIPE_SIZE) 647 clen = STRIPE_SIZE - page_offset; 648 else clen = len; 649 650 if (clen > 0) { 651 char *ba = __bio_kmap_atomic(bio, i, KM_USER0); 652 if (frombio) 653 memcpy(pa+page_offset, ba+b_offset, clen); 654 else 655 memcpy(ba+b_offset, pa+page_offset, clen); 656 __bio_kunmap_atomic(ba, KM_USER0); 657 } 658 if (clen < len) /* hit end of page */ 659 break; 660 page_offset += len; 661 } 662 } 663 664 #define check_xor() do { \ 665 if (count == MAX_XOR_BLOCKS) { \ 666 xor_block(count, STRIPE_SIZE, ptr); \ 667 count = 1; \ 668 } \ 669 } while(0) 670 671 672 static void compute_block(struct stripe_head *sh, int dd_idx) 673 { 674 raid5_conf_t *conf = sh->raid_conf; 675 int i, count, disks = conf->raid_disks; 676 void *ptr[MAX_XOR_BLOCKS], *p; 677 678 PRINTK("compute_block, stripe %llu, idx %d\n", 679 (unsigned long long)sh->sector, dd_idx); 680 681 ptr[0] = page_address(sh->dev[dd_idx].page); 682 memset(ptr[0], 0, STRIPE_SIZE); 683 count = 1; 684 for (i = disks ; i--; ) { 685 if (i == dd_idx) 686 continue; 687 p = page_address(sh->dev[i].page); 688 if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) 689 ptr[count++] = p; 690 else 691 printk("compute_block() %d, stripe %llu, %d" 692 " not present\n", dd_idx, 693 (unsigned long long)sh->sector, i); 694 695 check_xor(); 696 } 697 if (count != 1) 698 xor_block(count, STRIPE_SIZE, ptr); 699 set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); 700 } 701 702 static void compute_parity(struct stripe_head *sh, int method) 703 { 704 raid5_conf_t *conf = sh->raid_conf; 705 int i, pd_idx = sh->pd_idx, disks = conf->raid_disks, count; 706 void *ptr[MAX_XOR_BLOCKS]; 707 struct bio *chosen; 708 709 PRINTK("compute_parity, stripe %llu, method %d\n", 710 (unsigned long long)sh->sector, method); 711 712 count = 1; 713 ptr[0] = page_address(sh->dev[pd_idx].page); 714 switch(method) { 715 case READ_MODIFY_WRITE: 716 if (!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags)) 717 BUG(); 718 for (i=disks ; i-- ;) { 719 if (i==pd_idx) 720 continue; 721 if (sh->dev[i].towrite && 722 test_bit(R5_UPTODATE, &sh->dev[i].flags)) { 723 ptr[count++] = page_address(sh->dev[i].page); 724 chosen = sh->dev[i].towrite; 725 sh->dev[i].towrite = NULL; 726 727 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 728 wake_up(&conf->wait_for_overlap); 729 730 if (sh->dev[i].written) BUG(); 731 sh->dev[i].written = chosen; 732 check_xor(); 733 } 734 } 735 break; 736 case RECONSTRUCT_WRITE: 737 memset(ptr[0], 0, STRIPE_SIZE); 738 for (i= disks; i-- ;) 739 if (i!=pd_idx && sh->dev[i].towrite) { 740 chosen = sh->dev[i].towrite; 741 sh->dev[i].towrite = NULL; 742 743 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 744 wake_up(&conf->wait_for_overlap); 745 746 if (sh->dev[i].written) BUG(); 747 sh->dev[i].written = chosen; 748 } 749 break; 750 case CHECK_PARITY: 751 break; 752 } 753 if (count>1) { 754 xor_block(count, STRIPE_SIZE, ptr); 755 count = 1; 756 } 757 758 for (i = disks; i--;) 759 if (sh->dev[i].written) { 760 sector_t sector = sh->dev[i].sector; 761 struct bio *wbi = sh->dev[i].written; 762 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { 763 copy_data(1, wbi, sh->dev[i].page, sector); 764 wbi = r5_next_bio(wbi, sector); 765 } 766 767 set_bit(R5_LOCKED, &sh->dev[i].flags); 768 set_bit(R5_UPTODATE, &sh->dev[i].flags); 769 } 770 771 switch(method) { 772 case RECONSTRUCT_WRITE: 773 case CHECK_PARITY: 774 for (i=disks; i--;) 775 if (i != pd_idx) { 776 ptr[count++] = page_address(sh->dev[i].page); 777 check_xor(); 778 } 779 break; 780 case READ_MODIFY_WRITE: 781 for (i = disks; i--;) 782 if (sh->dev[i].written) { 783 ptr[count++] = page_address(sh->dev[i].page); 784 check_xor(); 785 } 786 } 787 if (count != 1) 788 xor_block(count, STRIPE_SIZE, ptr); 789 790 if (method != CHECK_PARITY) { 791 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 792 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); 793 } else 794 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); 795 } 796 797 /* 798 * Each stripe/dev can have one or more bion attached. 799 * toread/towrite point to the first in a chain. 800 * The bi_next chain must be in order. 801 */ 802 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) 803 { 804 struct bio **bip; 805 raid5_conf_t *conf = sh->raid_conf; 806 807 PRINTK("adding bh b#%llu to stripe s#%llu\n", 808 (unsigned long long)bi->bi_sector, 809 (unsigned long long)sh->sector); 810 811 812 spin_lock(&sh->lock); 813 spin_lock_irq(&conf->device_lock); 814 if (forwrite) 815 bip = &sh->dev[dd_idx].towrite; 816 else 817 bip = &sh->dev[dd_idx].toread; 818 while (*bip && (*bip)->bi_sector < bi->bi_sector) { 819 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector) 820 goto overlap; 821 bip = & (*bip)->bi_next; 822 } 823 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9)) 824 goto overlap; 825 826 if (*bip && bi->bi_next && (*bip) != bi->bi_next) 827 BUG(); 828 if (*bip) 829 bi->bi_next = *bip; 830 *bip = bi; 831 bi->bi_phys_segments ++; 832 spin_unlock_irq(&conf->device_lock); 833 spin_unlock(&sh->lock); 834 835 PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n", 836 (unsigned long long)bi->bi_sector, 837 (unsigned long long)sh->sector, dd_idx); 838 839 if (forwrite) { 840 /* check if page is covered */ 841 sector_t sector = sh->dev[dd_idx].sector; 842 for (bi=sh->dev[dd_idx].towrite; 843 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && 844 bi && bi->bi_sector <= sector; 845 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { 846 if (bi->bi_sector + (bi->bi_size>>9) >= sector) 847 sector = bi->bi_sector + (bi->bi_size>>9); 848 } 849 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) 850 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); 851 } 852 return 1; 853 854 overlap: 855 set_bit(R5_Overlap, &sh->dev[dd_idx].flags); 856 spin_unlock_irq(&conf->device_lock); 857 spin_unlock(&sh->lock); 858 return 0; 859 } 860 861 862 /* 863 * handle_stripe - do things to a stripe. 864 * 865 * We lock the stripe and then examine the state of various bits 866 * to see what needs to be done. 867 * Possible results: 868 * return some read request which now have data 869 * return some write requests which are safely on disc 870 * schedule a read on some buffers 871 * schedule a write of some buffers 872 * return confirmation of parity correctness 873 * 874 * Parity calculations are done inside the stripe lock 875 * buffers are taken off read_list or write_list, and bh_cache buffers 876 * get BH_Lock set before the stripe lock is released. 877 * 878 */ 879 880 static void handle_stripe(struct stripe_head *sh) 881 { 882 raid5_conf_t *conf = sh->raid_conf; 883 int disks = conf->raid_disks; 884 struct bio *return_bi= NULL; 885 struct bio *bi; 886 int i; 887 int syncing; 888 int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0; 889 int non_overwrite = 0; 890 int failed_num=0; 891 struct r5dev *dev; 892 893 PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n", 894 (unsigned long long)sh->sector, atomic_read(&sh->count), 895 sh->pd_idx); 896 897 spin_lock(&sh->lock); 898 clear_bit(STRIPE_HANDLE, &sh->state); 899 clear_bit(STRIPE_DELAYED, &sh->state); 900 901 syncing = test_bit(STRIPE_SYNCING, &sh->state); 902 /* Now to look around and see what can be done */ 903 904 for (i=disks; i--; ) { 905 mdk_rdev_t *rdev; 906 dev = &sh->dev[i]; 907 clear_bit(R5_Insync, &dev->flags); 908 clear_bit(R5_Syncio, &dev->flags); 909 910 PRINTK("check %d: state 0x%lx read %p write %p written %p\n", 911 i, dev->flags, dev->toread, dev->towrite, dev->written); 912 /* maybe we can reply to a read */ 913 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) { 914 struct bio *rbi, *rbi2; 915 PRINTK("Return read for disc %d\n", i); 916 spin_lock_irq(&conf->device_lock); 917 rbi = dev->toread; 918 dev->toread = NULL; 919 if (test_and_clear_bit(R5_Overlap, &dev->flags)) 920 wake_up(&conf->wait_for_overlap); 921 spin_unlock_irq(&conf->device_lock); 922 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { 923 copy_data(0, rbi, dev->page, dev->sector); 924 rbi2 = r5_next_bio(rbi, dev->sector); 925 spin_lock_irq(&conf->device_lock); 926 if (--rbi->bi_phys_segments == 0) { 927 rbi->bi_next = return_bi; 928 return_bi = rbi; 929 } 930 spin_unlock_irq(&conf->device_lock); 931 rbi = rbi2; 932 } 933 } 934 935 /* now count some things */ 936 if (test_bit(R5_LOCKED, &dev->flags)) locked++; 937 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++; 938 939 940 if (dev->toread) to_read++; 941 if (dev->towrite) { 942 to_write++; 943 if (!test_bit(R5_OVERWRITE, &dev->flags)) 944 non_overwrite++; 945 } 946 if (dev->written) written++; 947 rdev = conf->disks[i].rdev; /* FIXME, should I be looking rdev */ 948 if (!rdev || !rdev->in_sync) { 949 failed++; 950 failed_num = i; 951 } else 952 set_bit(R5_Insync, &dev->flags); 953 } 954 PRINTK("locked=%d uptodate=%d to_read=%d" 955 " to_write=%d failed=%d failed_num=%d\n", 956 locked, uptodate, to_read, to_write, failed, failed_num); 957 /* check if the array has lost two devices and, if so, some requests might 958 * need to be failed 959 */ 960 if (failed > 1 && to_read+to_write+written) { 961 spin_lock_irq(&conf->device_lock); 962 for (i=disks; i--; ) { 963 /* fail all writes first */ 964 bi = sh->dev[i].towrite; 965 sh->dev[i].towrite = NULL; 966 if (bi) to_write--; 967 968 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 969 wake_up(&conf->wait_for_overlap); 970 971 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ 972 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 973 clear_bit(BIO_UPTODATE, &bi->bi_flags); 974 if (--bi->bi_phys_segments == 0) { 975 md_write_end(conf->mddev); 976 bi->bi_next = return_bi; 977 return_bi = bi; 978 } 979 bi = nextbi; 980 } 981 /* and fail all 'written' */ 982 bi = sh->dev[i].written; 983 sh->dev[i].written = NULL; 984 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { 985 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); 986 clear_bit(BIO_UPTODATE, &bi->bi_flags); 987 if (--bi->bi_phys_segments == 0) { 988 md_write_end(conf->mddev); 989 bi->bi_next = return_bi; 990 return_bi = bi; 991 } 992 bi = bi2; 993 } 994 995 /* fail any reads if this device is non-operational */ 996 if (!test_bit(R5_Insync, &sh->dev[i].flags)) { 997 bi = sh->dev[i].toread; 998 sh->dev[i].toread = NULL; 999 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) 1000 wake_up(&conf->wait_for_overlap); 1001 if (bi) to_read--; 1002 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ 1003 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); 1004 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1005 if (--bi->bi_phys_segments == 0) { 1006 bi->bi_next = return_bi; 1007 return_bi = bi; 1008 } 1009 bi = nextbi; 1010 } 1011 } 1012 } 1013 spin_unlock_irq(&conf->device_lock); 1014 } 1015 if (failed > 1 && syncing) { 1016 md_done_sync(conf->mddev, STRIPE_SECTORS,0); 1017 clear_bit(STRIPE_SYNCING, &sh->state); 1018 syncing = 0; 1019 } 1020 1021 /* might be able to return some write requests if the parity block 1022 * is safe, or on a failed drive 1023 */ 1024 dev = &sh->dev[sh->pd_idx]; 1025 if ( written && 1026 ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) && 1027 test_bit(R5_UPTODATE, &dev->flags)) 1028 || (failed == 1 && failed_num == sh->pd_idx)) 1029 ) { 1030 /* any written block on an uptodate or failed drive can be returned. 1031 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 1032 * never LOCKED, so we don't need to test 'failed' directly. 1033 */ 1034 for (i=disks; i--; ) 1035 if (sh->dev[i].written) { 1036 dev = &sh->dev[i]; 1037 if (!test_bit(R5_LOCKED, &dev->flags) && 1038 test_bit(R5_UPTODATE, &dev->flags) ) { 1039 /* We can return any write requests */ 1040 struct bio *wbi, *wbi2; 1041 PRINTK("Return write for disc %d\n", i); 1042 spin_lock_irq(&conf->device_lock); 1043 wbi = dev->written; 1044 dev->written = NULL; 1045 while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) { 1046 wbi2 = r5_next_bio(wbi, dev->sector); 1047 if (--wbi->bi_phys_segments == 0) { 1048 md_write_end(conf->mddev); 1049 wbi->bi_next = return_bi; 1050 return_bi = wbi; 1051 } 1052 wbi = wbi2; 1053 } 1054 spin_unlock_irq(&conf->device_lock); 1055 } 1056 } 1057 } 1058 1059 /* Now we might consider reading some blocks, either to check/generate 1060 * parity, or to satisfy requests 1061 * or to load a block that is being partially written. 1062 */ 1063 if (to_read || non_overwrite || (syncing && (uptodate < disks))) { 1064 for (i=disks; i--;) { 1065 dev = &sh->dev[i]; 1066 if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 1067 (dev->toread || 1068 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || 1069 syncing || 1070 (failed && (sh->dev[failed_num].toread || 1071 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags)))) 1072 ) 1073 ) { 1074 /* we would like to get this block, possibly 1075 * by computing it, but we might not be able to 1076 */ 1077 if (uptodate == disks-1) { 1078 PRINTK("Computing block %d\n", i); 1079 compute_block(sh, i); 1080 uptodate++; 1081 } else if (test_bit(R5_Insync, &dev->flags)) { 1082 set_bit(R5_LOCKED, &dev->flags); 1083 set_bit(R5_Wantread, &dev->flags); 1084 #if 0 1085 /* if I am just reading this block and we don't have 1086 a failed drive, or any pending writes then sidestep the cache */ 1087 if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext && 1088 ! syncing && !failed && !to_write) { 1089 sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page; 1090 sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data; 1091 } 1092 #endif 1093 locked++; 1094 PRINTK("Reading block %d (sync=%d)\n", 1095 i, syncing); 1096 if (syncing) 1097 md_sync_acct(conf->disks[i].rdev->bdev, 1098 STRIPE_SECTORS); 1099 } 1100 } 1101 } 1102 set_bit(STRIPE_HANDLE, &sh->state); 1103 } 1104 1105 /* now to consider writing and what else, if anything should be read */ 1106 if (to_write) { 1107 int rmw=0, rcw=0; 1108 for (i=disks ; i--;) { 1109 /* would I have to read this buffer for read_modify_write */ 1110 dev = &sh->dev[i]; 1111 if ((dev->towrite || i == sh->pd_idx) && 1112 (!test_bit(R5_LOCKED, &dev->flags) 1113 #if 0 1114 || sh->bh_page[i]!=bh->b_page 1115 #endif 1116 ) && 1117 !test_bit(R5_UPTODATE, &dev->flags)) { 1118 if (test_bit(R5_Insync, &dev->flags) 1119 /* && !(!mddev->insync && i == sh->pd_idx) */ 1120 ) 1121 rmw++; 1122 else rmw += 2*disks; /* cannot read it */ 1123 } 1124 /* Would I have to read this buffer for reconstruct_write */ 1125 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 1126 (!test_bit(R5_LOCKED, &dev->flags) 1127 #if 0 1128 || sh->bh_page[i] != bh->b_page 1129 #endif 1130 ) && 1131 !test_bit(R5_UPTODATE, &dev->flags)) { 1132 if (test_bit(R5_Insync, &dev->flags)) rcw++; 1133 else rcw += 2*disks; 1134 } 1135 } 1136 PRINTK("for sector %llu, rmw=%d rcw=%d\n", 1137 (unsigned long long)sh->sector, rmw, rcw); 1138 set_bit(STRIPE_HANDLE, &sh->state); 1139 if (rmw < rcw && rmw > 0) 1140 /* prefer read-modify-write, but need to get some data */ 1141 for (i=disks; i--;) { 1142 dev = &sh->dev[i]; 1143 if ((dev->towrite || i == sh->pd_idx) && 1144 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 1145 test_bit(R5_Insync, &dev->flags)) { 1146 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 1147 { 1148 PRINTK("Read_old block %d for r-m-w\n", i); 1149 set_bit(R5_LOCKED, &dev->flags); 1150 set_bit(R5_Wantread, &dev->flags); 1151 locked++; 1152 } else { 1153 set_bit(STRIPE_DELAYED, &sh->state); 1154 set_bit(STRIPE_HANDLE, &sh->state); 1155 } 1156 } 1157 } 1158 if (rcw <= rmw && rcw > 0) 1159 /* want reconstruct write, but need to get some data */ 1160 for (i=disks; i--;) { 1161 dev = &sh->dev[i]; 1162 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx && 1163 !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && 1164 test_bit(R5_Insync, &dev->flags)) { 1165 if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 1166 { 1167 PRINTK("Read_old block %d for Reconstruct\n", i); 1168 set_bit(R5_LOCKED, &dev->flags); 1169 set_bit(R5_Wantread, &dev->flags); 1170 locked++; 1171 } else { 1172 set_bit(STRIPE_DELAYED, &sh->state); 1173 set_bit(STRIPE_HANDLE, &sh->state); 1174 } 1175 } 1176 } 1177 /* now if nothing is locked, and if we have enough data, we can start a write request */ 1178 if (locked == 0 && (rcw == 0 ||rmw == 0)) { 1179 PRINTK("Computing parity...\n"); 1180 compute_parity(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE); 1181 /* now every locked buffer is ready to be written */ 1182 for (i=disks; i--;) 1183 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) { 1184 PRINTK("Writing block %d\n", i); 1185 locked++; 1186 set_bit(R5_Wantwrite, &sh->dev[i].flags); 1187 if (!test_bit(R5_Insync, &sh->dev[i].flags) 1188 || (i==sh->pd_idx && failed == 0)) 1189 set_bit(STRIPE_INSYNC, &sh->state); 1190 } 1191 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { 1192 atomic_dec(&conf->preread_active_stripes); 1193 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) 1194 md_wakeup_thread(conf->mddev->thread); 1195 } 1196 } 1197 } 1198 1199 /* maybe we need to check and possibly fix the parity for this stripe 1200 * Any reads will already have been scheduled, so we just see if enough data 1201 * is available 1202 */ 1203 if (syncing && locked == 0 && 1204 !test_bit(STRIPE_INSYNC, &sh->state) && failed <= 1) { 1205 set_bit(STRIPE_HANDLE, &sh->state); 1206 if (failed == 0) { 1207 char *pagea; 1208 if (uptodate != disks) 1209 BUG(); 1210 compute_parity(sh, CHECK_PARITY); 1211 uptodate--; 1212 pagea = page_address(sh->dev[sh->pd_idx].page); 1213 if ((*(u32*)pagea) == 0 && 1214 !memcmp(pagea, pagea+4, STRIPE_SIZE-4)) { 1215 /* parity is correct (on disc, not in buffer any more) */ 1216 set_bit(STRIPE_INSYNC, &sh->state); 1217 } 1218 } 1219 if (!test_bit(STRIPE_INSYNC, &sh->state)) { 1220 if (failed==0) 1221 failed_num = sh->pd_idx; 1222 /* should be able to compute the missing block and write it to spare */ 1223 if (!test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)) { 1224 if (uptodate+1 != disks) 1225 BUG(); 1226 compute_block(sh, failed_num); 1227 uptodate++; 1228 } 1229 if (uptodate != disks) 1230 BUG(); 1231 dev = &sh->dev[failed_num]; 1232 set_bit(R5_LOCKED, &dev->flags); 1233 set_bit(R5_Wantwrite, &dev->flags); 1234 locked++; 1235 set_bit(STRIPE_INSYNC, &sh->state); 1236 set_bit(R5_Syncio, &dev->flags); 1237 } 1238 } 1239 if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { 1240 md_done_sync(conf->mddev, STRIPE_SECTORS,1); 1241 clear_bit(STRIPE_SYNCING, &sh->state); 1242 } 1243 1244 spin_unlock(&sh->lock); 1245 1246 while ((bi=return_bi)) { 1247 int bytes = bi->bi_size; 1248 1249 return_bi = bi->bi_next; 1250 bi->bi_next = NULL; 1251 bi->bi_size = 0; 1252 bi->bi_end_io(bi, bytes, 0); 1253 } 1254 for (i=disks; i-- ;) { 1255 int rw; 1256 struct bio *bi; 1257 mdk_rdev_t *rdev; 1258 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) 1259 rw = 1; 1260 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) 1261 rw = 0; 1262 else 1263 continue; 1264 1265 bi = &sh->dev[i].req; 1266 1267 bi->bi_rw = rw; 1268 if (rw) 1269 bi->bi_end_io = raid5_end_write_request; 1270 else 1271 bi->bi_end_io = raid5_end_read_request; 1272 1273 rcu_read_lock(); 1274 rdev = conf->disks[i].rdev; 1275 if (rdev && rdev->faulty) 1276 rdev = NULL; 1277 if (rdev) 1278 atomic_inc(&rdev->nr_pending); 1279 rcu_read_unlock(); 1280 1281 if (rdev) { 1282 if (test_bit(R5_Syncio, &sh->dev[i].flags)) 1283 md_sync_acct(rdev->bdev, STRIPE_SECTORS); 1284 1285 bi->bi_bdev = rdev->bdev; 1286 PRINTK("for %llu schedule op %ld on disc %d\n", 1287 (unsigned long long)sh->sector, bi->bi_rw, i); 1288 atomic_inc(&sh->count); 1289 bi->bi_sector = sh->sector + rdev->data_offset; 1290 bi->bi_flags = 1 << BIO_UPTODATE; 1291 bi->bi_vcnt = 1; 1292 bi->bi_max_vecs = 1; 1293 bi->bi_idx = 0; 1294 bi->bi_io_vec = &sh->dev[i].vec; 1295 bi->bi_io_vec[0].bv_len = STRIPE_SIZE; 1296 bi->bi_io_vec[0].bv_offset = 0; 1297 bi->bi_size = STRIPE_SIZE; 1298 bi->bi_next = NULL; 1299 generic_make_request(bi); 1300 } else { 1301 PRINTK("skip op %ld on disc %d for sector %llu\n", 1302 bi->bi_rw, i, (unsigned long long)sh->sector); 1303 clear_bit(R5_LOCKED, &sh->dev[i].flags); 1304 set_bit(STRIPE_HANDLE, &sh->state); 1305 } 1306 } 1307 } 1308 1309 static inline void raid5_activate_delayed(raid5_conf_t *conf) 1310 { 1311 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { 1312 while (!list_empty(&conf->delayed_list)) { 1313 struct list_head *l = conf->delayed_list.next; 1314 struct stripe_head *sh; 1315 sh = list_entry(l, struct stripe_head, lru); 1316 list_del_init(l); 1317 clear_bit(STRIPE_DELAYED, &sh->state); 1318 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) 1319 atomic_inc(&conf->preread_active_stripes); 1320 list_add_tail(&sh->lru, &conf->handle_list); 1321 } 1322 } 1323 } 1324 1325 static void unplug_slaves(mddev_t *mddev) 1326 { 1327 raid5_conf_t *conf = mddev_to_conf(mddev); 1328 int i; 1329 1330 rcu_read_lock(); 1331 for (i=0; i<mddev->raid_disks; i++) { 1332 mdk_rdev_t *rdev = conf->disks[i].rdev; 1333 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) { 1334 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 1335 1336 atomic_inc(&rdev->nr_pending); 1337 rcu_read_unlock(); 1338 1339 if (r_queue->unplug_fn) 1340 r_queue->unplug_fn(r_queue); 1341 1342 rdev_dec_pending(rdev, mddev); 1343 rcu_read_lock(); 1344 } 1345 } 1346 rcu_read_unlock(); 1347 } 1348 1349 static void raid5_unplug_device(request_queue_t *q) 1350 { 1351 mddev_t *mddev = q->queuedata; 1352 raid5_conf_t *conf = mddev_to_conf(mddev); 1353 unsigned long flags; 1354 1355 spin_lock_irqsave(&conf->device_lock, flags); 1356 1357 if (blk_remove_plug(q)) 1358 raid5_activate_delayed(conf); 1359 md_wakeup_thread(mddev->thread); 1360 1361 spin_unlock_irqrestore(&conf->device_lock, flags); 1362 1363 unplug_slaves(mddev); 1364 } 1365 1366 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk, 1367 sector_t *error_sector) 1368 { 1369 mddev_t *mddev = q->queuedata; 1370 raid5_conf_t *conf = mddev_to_conf(mddev); 1371 int i, ret = 0; 1372 1373 rcu_read_lock(); 1374 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 1375 mdk_rdev_t *rdev = conf->disks[i].rdev; 1376 if (rdev && !rdev->faulty) { 1377 struct block_device *bdev = rdev->bdev; 1378 request_queue_t *r_queue = bdev_get_queue(bdev); 1379 1380 if (!r_queue->issue_flush_fn) 1381 ret = -EOPNOTSUPP; 1382 else { 1383 atomic_inc(&rdev->nr_pending); 1384 rcu_read_unlock(); 1385 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 1386 error_sector); 1387 rdev_dec_pending(rdev, mddev); 1388 rcu_read_lock(); 1389 } 1390 } 1391 } 1392 rcu_read_unlock(); 1393 return ret; 1394 } 1395 1396 static inline void raid5_plug_device(raid5_conf_t *conf) 1397 { 1398 spin_lock_irq(&conf->device_lock); 1399 blk_plug_device(conf->mddev->queue); 1400 spin_unlock_irq(&conf->device_lock); 1401 } 1402 1403 static int make_request (request_queue_t *q, struct bio * bi) 1404 { 1405 mddev_t *mddev = q->queuedata; 1406 raid5_conf_t *conf = mddev_to_conf(mddev); 1407 const unsigned int raid_disks = conf->raid_disks; 1408 const unsigned int data_disks = raid_disks - 1; 1409 unsigned int dd_idx, pd_idx; 1410 sector_t new_sector; 1411 sector_t logical_sector, last_sector; 1412 struct stripe_head *sh; 1413 1414 if (bio_data_dir(bi)==WRITE) { 1415 disk_stat_inc(mddev->gendisk, writes); 1416 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bi)); 1417 } else { 1418 disk_stat_inc(mddev->gendisk, reads); 1419 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bi)); 1420 } 1421 1422 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 1423 last_sector = bi->bi_sector + (bi->bi_size>>9); 1424 bi->bi_next = NULL; 1425 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ 1426 if ( bio_data_dir(bi) == WRITE ) 1427 md_write_start(mddev); 1428 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { 1429 DEFINE_WAIT(w); 1430 1431 new_sector = raid5_compute_sector(logical_sector, 1432 raid_disks, data_disks, &dd_idx, &pd_idx, conf); 1433 1434 PRINTK("raid5: make_request, sector %llu logical %llu\n", 1435 (unsigned long long)new_sector, 1436 (unsigned long long)logical_sector); 1437 1438 retry: 1439 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); 1440 sh = get_active_stripe(conf, new_sector, pd_idx, (bi->bi_rw&RWA_MASK)); 1441 if (sh) { 1442 if (!add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) { 1443 /* Add failed due to overlap. Flush everything 1444 * and wait a while 1445 */ 1446 raid5_unplug_device(mddev->queue); 1447 release_stripe(sh); 1448 schedule(); 1449 goto retry; 1450 } 1451 finish_wait(&conf->wait_for_overlap, &w); 1452 raid5_plug_device(conf); 1453 handle_stripe(sh); 1454 release_stripe(sh); 1455 1456 } else { 1457 /* cannot get stripe for read-ahead, just give-up */ 1458 clear_bit(BIO_UPTODATE, &bi->bi_flags); 1459 finish_wait(&conf->wait_for_overlap, &w); 1460 break; 1461 } 1462 1463 } 1464 spin_lock_irq(&conf->device_lock); 1465 if (--bi->bi_phys_segments == 0) { 1466 int bytes = bi->bi_size; 1467 1468 if ( bio_data_dir(bi) == WRITE ) 1469 md_write_end(mddev); 1470 bi->bi_size = 0; 1471 bi->bi_end_io(bi, bytes, 0); 1472 } 1473 spin_unlock_irq(&conf->device_lock); 1474 return 0; 1475 } 1476 1477 /* FIXME go_faster isn't used */ 1478 static int sync_request (mddev_t *mddev, sector_t sector_nr, int go_faster) 1479 { 1480 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 1481 struct stripe_head *sh; 1482 int sectors_per_chunk = conf->chunk_size >> 9; 1483 sector_t x; 1484 unsigned long stripe; 1485 int chunk_offset; 1486 int dd_idx, pd_idx; 1487 sector_t first_sector; 1488 int raid_disks = conf->raid_disks; 1489 int data_disks = raid_disks-1; 1490 1491 if (sector_nr >= mddev->size <<1) { 1492 /* just being told to finish up .. nothing much to do */ 1493 unplug_slaves(mddev); 1494 return 0; 1495 } 1496 /* if there is 1 or more failed drives and we are trying 1497 * to resync, then assert that we are finished, because there is 1498 * nothing we can do. 1499 */ 1500 if (mddev->degraded >= 1 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1501 int rv = (mddev->size << 1) - sector_nr; 1502 md_done_sync(mddev, rv, 1); 1503 return rv; 1504 } 1505 1506 x = sector_nr; 1507 chunk_offset = sector_div(x, sectors_per_chunk); 1508 stripe = x; 1509 BUG_ON(x != stripe); 1510 1511 first_sector = raid5_compute_sector((sector_t)stripe*data_disks*sectors_per_chunk 1512 + chunk_offset, raid_disks, data_disks, &dd_idx, &pd_idx, conf); 1513 sh = get_active_stripe(conf, sector_nr, pd_idx, 1); 1514 if (sh == NULL) { 1515 sh = get_active_stripe(conf, sector_nr, pd_idx, 0); 1516 /* make sure we don't swamp the stripe cache if someone else 1517 * is trying to get access 1518 */ 1519 set_current_state(TASK_UNINTERRUPTIBLE); 1520 schedule_timeout(1); 1521 } 1522 spin_lock(&sh->lock); 1523 set_bit(STRIPE_SYNCING, &sh->state); 1524 clear_bit(STRIPE_INSYNC, &sh->state); 1525 spin_unlock(&sh->lock); 1526 1527 handle_stripe(sh); 1528 release_stripe(sh); 1529 1530 return STRIPE_SECTORS; 1531 } 1532 1533 /* 1534 * This is our raid5 kernel thread. 1535 * 1536 * We scan the hash table for stripes which can be handled now. 1537 * During the scan, completed stripes are saved for us by the interrupt 1538 * handler, so that they will not have to wait for our next wakeup. 1539 */ 1540 static void raid5d (mddev_t *mddev) 1541 { 1542 struct stripe_head *sh; 1543 raid5_conf_t *conf = mddev_to_conf(mddev); 1544 int handled; 1545 1546 PRINTK("+++ raid5d active\n"); 1547 1548 md_check_recovery(mddev); 1549 md_handle_safemode(mddev); 1550 1551 handled = 0; 1552 spin_lock_irq(&conf->device_lock); 1553 while (1) { 1554 struct list_head *first; 1555 1556 if (list_empty(&conf->handle_list) && 1557 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD && 1558 !blk_queue_plugged(mddev->queue) && 1559 !list_empty(&conf->delayed_list)) 1560 raid5_activate_delayed(conf); 1561 1562 if (list_empty(&conf->handle_list)) 1563 break; 1564 1565 first = conf->handle_list.next; 1566 sh = list_entry(first, struct stripe_head, lru); 1567 1568 list_del_init(first); 1569 atomic_inc(&sh->count); 1570 if (atomic_read(&sh->count)!= 1) 1571 BUG(); 1572 spin_unlock_irq(&conf->device_lock); 1573 1574 handled++; 1575 handle_stripe(sh); 1576 release_stripe(sh); 1577 1578 spin_lock_irq(&conf->device_lock); 1579 } 1580 PRINTK("%d stripes handled\n", handled); 1581 1582 spin_unlock_irq(&conf->device_lock); 1583 1584 unplug_slaves(mddev); 1585 1586 PRINTK("--- raid5d inactive\n"); 1587 } 1588 1589 static int run (mddev_t *mddev) 1590 { 1591 raid5_conf_t *conf; 1592 int raid_disk, memory; 1593 mdk_rdev_t *rdev; 1594 struct disk_info *disk; 1595 struct list_head *tmp; 1596 1597 if (mddev->level != 5 && mddev->level != 4) { 1598 printk("raid5: %s: raid level not set to 4/5 (%d)\n", mdname(mddev), mddev->level); 1599 return -EIO; 1600 } 1601 1602 mddev->private = kmalloc (sizeof (raid5_conf_t) 1603 + mddev->raid_disks * sizeof(struct disk_info), 1604 GFP_KERNEL); 1605 if ((conf = mddev->private) == NULL) 1606 goto abort; 1607 memset (conf, 0, sizeof (*conf) + mddev->raid_disks * sizeof(struct disk_info) ); 1608 conf->mddev = mddev; 1609 1610 if ((conf->stripe_hashtbl = (struct stripe_head **) __get_free_pages(GFP_ATOMIC, HASH_PAGES_ORDER)) == NULL) 1611 goto abort; 1612 memset(conf->stripe_hashtbl, 0, HASH_PAGES * PAGE_SIZE); 1613 1614 spin_lock_init(&conf->device_lock); 1615 init_waitqueue_head(&conf->wait_for_stripe); 1616 init_waitqueue_head(&conf->wait_for_overlap); 1617 INIT_LIST_HEAD(&conf->handle_list); 1618 INIT_LIST_HEAD(&conf->delayed_list); 1619 INIT_LIST_HEAD(&conf->inactive_list); 1620 atomic_set(&conf->active_stripes, 0); 1621 atomic_set(&conf->preread_active_stripes, 0); 1622 1623 mddev->queue->unplug_fn = raid5_unplug_device; 1624 mddev->queue->issue_flush_fn = raid5_issue_flush; 1625 1626 PRINTK("raid5: run(%s) called.\n", mdname(mddev)); 1627 1628 ITERATE_RDEV(mddev,rdev,tmp) { 1629 raid_disk = rdev->raid_disk; 1630 if (raid_disk >= mddev->raid_disks 1631 || raid_disk < 0) 1632 continue; 1633 disk = conf->disks + raid_disk; 1634 1635 disk->rdev = rdev; 1636 1637 if (rdev->in_sync) { 1638 char b[BDEVNAME_SIZE]; 1639 printk(KERN_INFO "raid5: device %s operational as raid" 1640 " disk %d\n", bdevname(rdev->bdev,b), 1641 raid_disk); 1642 conf->working_disks++; 1643 } 1644 } 1645 1646 conf->raid_disks = mddev->raid_disks; 1647 /* 1648 * 0 for a fully functional array, 1 for a degraded array. 1649 */ 1650 mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks; 1651 conf->mddev = mddev; 1652 conf->chunk_size = mddev->chunk_size; 1653 conf->level = mddev->level; 1654 conf->algorithm = mddev->layout; 1655 conf->max_nr_stripes = NR_STRIPES; 1656 1657 /* device size must be a multiple of chunk size */ 1658 mddev->size &= ~(mddev->chunk_size/1024 -1); 1659 1660 if (!conf->chunk_size || conf->chunk_size % 4) { 1661 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n", 1662 conf->chunk_size, mdname(mddev)); 1663 goto abort; 1664 } 1665 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) { 1666 printk(KERN_ERR 1667 "raid5: unsupported parity algorithm %d for %s\n", 1668 conf->algorithm, mdname(mddev)); 1669 goto abort; 1670 } 1671 if (mddev->degraded > 1) { 1672 printk(KERN_ERR "raid5: not enough operational devices for %s" 1673 " (%d/%d failed)\n", 1674 mdname(mddev), conf->failed_disks, conf->raid_disks); 1675 goto abort; 1676 } 1677 1678 if (mddev->degraded == 1 && 1679 mddev->recovery_cp != MaxSector) { 1680 printk(KERN_ERR 1681 "raid5: cannot start dirty degraded array for %s\n", 1682 mdname(mddev)); 1683 goto abort; 1684 } 1685 1686 { 1687 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5"); 1688 if (!mddev->thread) { 1689 printk(KERN_ERR 1690 "raid5: couldn't allocate thread for %s\n", 1691 mdname(mddev)); 1692 goto abort; 1693 } 1694 } 1695 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + 1696 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; 1697 if (grow_stripes(conf, conf->max_nr_stripes)) { 1698 printk(KERN_ERR 1699 "raid5: couldn't allocate %dkB for buffers\n", memory); 1700 shrink_stripes(conf); 1701 md_unregister_thread(mddev->thread); 1702 goto abort; 1703 } else 1704 printk(KERN_INFO "raid5: allocated %dkB for %s\n", 1705 memory, mdname(mddev)); 1706 1707 if (mddev->degraded == 0) 1708 printk("raid5: raid level %d set %s active with %d out of %d" 1709 " devices, algorithm %d\n", conf->level, mdname(mddev), 1710 mddev->raid_disks-mddev->degraded, mddev->raid_disks, 1711 conf->algorithm); 1712 else 1713 printk(KERN_ALERT "raid5: raid level %d set %s active with %d" 1714 " out of %d devices, algorithm %d\n", conf->level, 1715 mdname(mddev), mddev->raid_disks - mddev->degraded, 1716 mddev->raid_disks, conf->algorithm); 1717 1718 print_raid5_conf(conf); 1719 1720 /* read-ahead size must cover two whole stripes, which is 1721 * 2 * (n-1) * chunksize where 'n' is the number of raid devices 1722 */ 1723 { 1724 int stripe = (mddev->raid_disks-1) * mddev->chunk_size 1725 / PAGE_CACHE_SIZE; 1726 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe) 1727 mddev->queue->backing_dev_info.ra_pages = 2 * stripe; 1728 } 1729 1730 /* Ok, everything is just fine now */ 1731 mddev->array_size = mddev->size * (mddev->raid_disks - 1); 1732 return 0; 1733 abort: 1734 if (conf) { 1735 print_raid5_conf(conf); 1736 if (conf->stripe_hashtbl) 1737 free_pages((unsigned long) conf->stripe_hashtbl, 1738 HASH_PAGES_ORDER); 1739 kfree(conf); 1740 } 1741 mddev->private = NULL; 1742 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev)); 1743 return -EIO; 1744 } 1745 1746 1747 1748 static int stop (mddev_t *mddev) 1749 { 1750 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 1751 1752 md_unregister_thread(mddev->thread); 1753 mddev->thread = NULL; 1754 shrink_stripes(conf); 1755 free_pages((unsigned long) conf->stripe_hashtbl, HASH_PAGES_ORDER); 1756 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 1757 kfree(conf); 1758 mddev->private = NULL; 1759 return 0; 1760 } 1761 1762 #if RAID5_DEBUG 1763 static void print_sh (struct stripe_head *sh) 1764 { 1765 int i; 1766 1767 printk("sh %llu, pd_idx %d, state %ld.\n", 1768 (unsigned long long)sh->sector, sh->pd_idx, sh->state); 1769 printk("sh %llu, count %d.\n", 1770 (unsigned long long)sh->sector, atomic_read(&sh->count)); 1771 printk("sh %llu, ", (unsigned long long)sh->sector); 1772 for (i = 0; i < sh->raid_conf->raid_disks; i++) { 1773 printk("(cache%d: %p %ld) ", 1774 i, sh->dev[i].page, sh->dev[i].flags); 1775 } 1776 printk("\n"); 1777 } 1778 1779 static void printall (raid5_conf_t *conf) 1780 { 1781 struct stripe_head *sh; 1782 int i; 1783 1784 spin_lock_irq(&conf->device_lock); 1785 for (i = 0; i < NR_HASH; i++) { 1786 sh = conf->stripe_hashtbl[i]; 1787 for (; sh; sh = sh->hash_next) { 1788 if (sh->raid_conf != conf) 1789 continue; 1790 print_sh(sh); 1791 } 1792 } 1793 spin_unlock_irq(&conf->device_lock); 1794 } 1795 #endif 1796 1797 static void status (struct seq_file *seq, mddev_t *mddev) 1798 { 1799 raid5_conf_t *conf = (raid5_conf_t *) mddev->private; 1800 int i; 1801 1802 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout); 1803 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks); 1804 for (i = 0; i < conf->raid_disks; i++) 1805 seq_printf (seq, "%s", 1806 conf->disks[i].rdev && 1807 conf->disks[i].rdev->in_sync ? "U" : "_"); 1808 seq_printf (seq, "]"); 1809 #if RAID5_DEBUG 1810 #define D(x) \ 1811 seq_printf (seq, "<"#x":%d>", atomic_read(&conf->x)) 1812 printall(conf); 1813 #endif 1814 } 1815 1816 static void print_raid5_conf (raid5_conf_t *conf) 1817 { 1818 int i; 1819 struct disk_info *tmp; 1820 1821 printk("RAID5 conf printout:\n"); 1822 if (!conf) { 1823 printk("(conf==NULL)\n"); 1824 return; 1825 } 1826 printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks, 1827 conf->working_disks, conf->failed_disks); 1828 1829 for (i = 0; i < conf->raid_disks; i++) { 1830 char b[BDEVNAME_SIZE]; 1831 tmp = conf->disks + i; 1832 if (tmp->rdev) 1833 printk(" disk %d, o:%d, dev:%s\n", 1834 i, !tmp->rdev->faulty, 1835 bdevname(tmp->rdev->bdev,b)); 1836 } 1837 } 1838 1839 static int raid5_spare_active(mddev_t *mddev) 1840 { 1841 int i; 1842 raid5_conf_t *conf = mddev->private; 1843 struct disk_info *tmp; 1844 1845 for (i = 0; i < conf->raid_disks; i++) { 1846 tmp = conf->disks + i; 1847 if (tmp->rdev 1848 && !tmp->rdev->faulty 1849 && !tmp->rdev->in_sync) { 1850 mddev->degraded--; 1851 conf->failed_disks--; 1852 conf->working_disks++; 1853 tmp->rdev->in_sync = 1; 1854 } 1855 } 1856 print_raid5_conf(conf); 1857 return 0; 1858 } 1859 1860 static int raid5_remove_disk(mddev_t *mddev, int number) 1861 { 1862 raid5_conf_t *conf = mddev->private; 1863 int err = 0; 1864 mdk_rdev_t *rdev; 1865 struct disk_info *p = conf->disks + number; 1866 1867 print_raid5_conf(conf); 1868 rdev = p->rdev; 1869 if (rdev) { 1870 if (rdev->in_sync || 1871 atomic_read(&rdev->nr_pending)) { 1872 err = -EBUSY; 1873 goto abort; 1874 } 1875 p->rdev = NULL; 1876 synchronize_kernel(); 1877 if (atomic_read(&rdev->nr_pending)) { 1878 /* lost the race, try later */ 1879 err = -EBUSY; 1880 p->rdev = rdev; 1881 } 1882 } 1883 abort: 1884 1885 print_raid5_conf(conf); 1886 return err; 1887 } 1888 1889 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1890 { 1891 raid5_conf_t *conf = mddev->private; 1892 int found = 0; 1893 int disk; 1894 struct disk_info *p; 1895 1896 if (mddev->degraded > 1) 1897 /* no point adding a device */ 1898 return 0; 1899 1900 /* 1901 * find the disk ... 1902 */ 1903 for (disk=0; disk < mddev->raid_disks; disk++) 1904 if ((p=conf->disks + disk)->rdev == NULL) { 1905 rdev->in_sync = 0; 1906 rdev->raid_disk = disk; 1907 found = 1; 1908 p->rdev = rdev; 1909 break; 1910 } 1911 print_raid5_conf(conf); 1912 return found; 1913 } 1914 1915 static int raid5_resize(mddev_t *mddev, sector_t sectors) 1916 { 1917 /* no resync is happening, and there is enough space 1918 * on all devices, so we can resize. 1919 * We need to make sure resync covers any new space. 1920 * If the array is shrinking we should possibly wait until 1921 * any io in the removed space completes, but it hardly seems 1922 * worth it. 1923 */ 1924 sectors &= ~((sector_t)mddev->chunk_size/512 - 1); 1925 mddev->array_size = (sectors * (mddev->raid_disks-1))>>1; 1926 set_capacity(mddev->gendisk, mddev->array_size << 1); 1927 mddev->changed = 1; 1928 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) { 1929 mddev->recovery_cp = mddev->size << 1; 1930 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 1931 } 1932 mddev->size = sectors /2; 1933 return 0; 1934 } 1935 1936 static mdk_personality_t raid5_personality= 1937 { 1938 .name = "raid5", 1939 .owner = THIS_MODULE, 1940 .make_request = make_request, 1941 .run = run, 1942 .stop = stop, 1943 .status = status, 1944 .error_handler = error, 1945 .hot_add_disk = raid5_add_disk, 1946 .hot_remove_disk= raid5_remove_disk, 1947 .spare_active = raid5_spare_active, 1948 .sync_request = sync_request, 1949 .resize = raid5_resize, 1950 }; 1951 1952 static int __init raid5_init (void) 1953 { 1954 return register_md_personality (RAID5, &raid5_personality); 1955 } 1956 1957 static void raid5_exit (void) 1958 { 1959 unregister_md_personality (RAID5); 1960 } 1961 1962 module_init(raid5_init); 1963 module_exit(raid5_exit); 1964 MODULE_LICENSE("GPL"); 1965 MODULE_ALIAS("md-personality-4"); /* RAID5 */ 1966