xref: /openbmc/linux/drivers/md/raid5-ppl.c (revision 6358c239d88c751a9f14152a8d4ad2b69f5be48f)
1 /*
2  * Partial Parity Log for closing the RAID5 write hole
3  * Copyright (c) 2017, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/crc32c.h>
19 #include <linux/flex_array.h>
20 #include <linux/async_tx.h>
21 #include <linux/raid/md_p.h>
22 #include "md.h"
23 #include "raid5.h"
24 
25 /*
26  * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
27  * partial parity data. The header contains an array of entries
28  * (struct ppl_header_entry) which describe the logged write requests.
29  * Partial parity for the entries comes after the header, written in the same
30  * sequence as the entries:
31  *
32  * Header
33  *   entry0
34  *   ...
35  *   entryN
36  * PP data
37  *   PP for entry0
38  *   ...
39  *   PP for entryN
40  *
41  * An entry describes one or more consecutive stripe_heads, up to a full
42  * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
43  * number of stripe_heads in the entry and n is the number of modified data
44  * disks. Every stripe_head in the entry must write to the same data disks.
45  * An example of a valid case described by a single entry (writes to the first
46  * stripe of a 4 disk array, 16k chunk size):
47  *
48  * sh->sector   dd0   dd1   dd2    ppl
49  *            +-----+-----+-----+
50  * 0          | --- | --- | --- | +----+
51  * 8          | -W- | -W- | --- | | pp |   data_sector = 8
52  * 16         | -W- | -W- | --- | | pp |   data_size = 3 * 2 * 4k
53  * 24         | -W- | -W- | --- | | pp |   pp_size = 3 * 4k
54  *            +-----+-----+-----+ +----+
55  *
56  * data_sector is the first raid sector of the modified data, data_size is the
57  * total size of modified data and pp_size is the size of partial parity for
58  * this entry. Entries for full stripe writes contain no partial parity
59  * (pp_size = 0), they only mark the stripes for which parity should be
60  * recalculated after an unclean shutdown. Every entry holds a checksum of its
61  * partial parity, the header also has a checksum of the header itself.
62  *
63  * A write request is always logged to the PPL instance stored on the parity
64  * disk of the corresponding stripe. For each member disk there is one ppl_log
65  * used to handle logging for this disk, independently from others. They are
66  * grouped in child_logs array in struct ppl_conf, which is assigned to
67  * r5conf->log_private.
68  *
69  * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
70  * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
71  * can be appended to the last entry if it meets the conditions for a valid
72  * entry described above, otherwise a new entry is added. Checksums of entries
73  * are calculated incrementally as stripes containing partial parity are being
74  * added. ppl_submit_iounit() calculates the checksum of the header and submits
75  * a bio containing the header page and partial parity pages (sh->ppl_page) for
76  * all stripes of the io_unit. When the PPL write completes, the stripes
77  * associated with the io_unit are released and raid5d starts writing their data
78  * and parity. When all stripes are written, the io_unit is freed and the next
79  * can be submitted.
80  *
81  * An io_unit is used to gather stripes until it is submitted or becomes full
82  * (if the maximum number of entries or size of PPL is reached). Another io_unit
83  * can't be submitted until the previous has completed (PPL and stripe
84  * data+parity is written). The log->io_list tracks all io_units of a log
85  * (for a single member disk). New io_units are added to the end of the list
86  * and the first io_unit is submitted, if it is not submitted already.
87  * The current io_unit accepting new stripes is always at the end of the list.
88  */
89 
90 struct ppl_conf {
91 	struct mddev *mddev;
92 
93 	/* array of child logs, one for each raid disk */
94 	struct ppl_log *child_logs;
95 	int count;
96 
97 	int block_size;		/* the logical block size used for data_sector
98 				 * in ppl_header_entry */
99 	u32 signature;		/* raid array identifier */
100 	atomic64_t seq;		/* current log write sequence number */
101 
102 	struct kmem_cache *io_kc;
103 	mempool_t *io_pool;
104 	struct bio_set *bs;
105 	mempool_t *meta_pool;
106 
107 	/* used only for recovery */
108 	int recovered_entries;
109 	int mismatch_count;
110 };
111 
112 struct ppl_log {
113 	struct ppl_conf *ppl_conf;	/* shared between all log instances */
114 
115 	struct md_rdev *rdev;		/* array member disk associated with
116 					 * this log instance */
117 	struct mutex io_mutex;
118 	struct ppl_io_unit *current_io;	/* current io_unit accepting new data
119 					 * always at the end of io_list */
120 	spinlock_t io_list_lock;
121 	struct list_head io_list;	/* all io_units of this log */
122 	struct list_head no_mem_stripes;/* stripes to retry if failed to
123 					 * allocate io_unit */
124 };
125 
126 #define PPL_IO_INLINE_BVECS 32
127 
128 struct ppl_io_unit {
129 	struct ppl_log *log;
130 
131 	struct page *header_page;	/* for ppl_header */
132 
133 	unsigned int entries_count;	/* number of entries in ppl_header */
134 	unsigned int pp_size;		/* total size current of partial parity */
135 
136 	u64 seq;			/* sequence number of this log write */
137 	struct list_head log_sibling;	/* log->io_list */
138 
139 	struct list_head stripe_list;	/* stripes added to the io_unit */
140 	atomic_t pending_stripes;	/* how many stripes not written to raid */
141 
142 	bool submitted;			/* true if write to log started */
143 
144 	/* inline bio and its biovec for submitting the iounit */
145 	struct bio bio;
146 	struct bio_vec biovec[PPL_IO_INLINE_BVECS];
147 };
148 
149 struct dma_async_tx_descriptor *
150 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
151 		       struct dma_async_tx_descriptor *tx)
152 {
153 	int disks = sh->disks;
154 	struct page **xor_srcs = flex_array_get(percpu->scribble, 0);
155 	int count = 0, pd_idx = sh->pd_idx, i;
156 	struct async_submit_ctl submit;
157 
158 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
159 
160 	/*
161 	 * Partial parity is the XOR of stripe data chunks that are not changed
162 	 * during the write request. Depending on available data
163 	 * (read-modify-write vs. reconstruct-write case) we calculate it
164 	 * differently.
165 	 */
166 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
167 		/* rmw: xor old data and parity from updated disks */
168 		for (i = disks; i--;) {
169 			struct r5dev *dev = &sh->dev[i];
170 			if (test_bit(R5_Wantdrain, &dev->flags) || i == pd_idx)
171 				xor_srcs[count++] = dev->page;
172 		}
173 	} else if (sh->reconstruct_state == reconstruct_state_drain_run) {
174 		/* rcw: xor data from all not updated disks */
175 		for (i = disks; i--;) {
176 			struct r5dev *dev = &sh->dev[i];
177 			if (test_bit(R5_UPTODATE, &dev->flags))
178 				xor_srcs[count++] = dev->page;
179 		}
180 	} else {
181 		return tx;
182 	}
183 
184 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
185 			  NULL, sh, flex_array_get(percpu->scribble, 0)
186 			  + sizeof(struct page *) * (sh->disks + 2));
187 
188 	if (count == 1)
189 		tx = async_memcpy(sh->ppl_page, xor_srcs[0], 0, 0, PAGE_SIZE,
190 				  &submit);
191 	else
192 		tx = async_xor(sh->ppl_page, xor_srcs, 0, count, PAGE_SIZE,
193 			       &submit);
194 
195 	return tx;
196 }
197 
198 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
199 					  struct stripe_head *sh)
200 {
201 	struct ppl_conf *ppl_conf = log->ppl_conf;
202 	struct ppl_io_unit *io;
203 	struct ppl_header *pplhdr;
204 
205 	io = mempool_alloc(ppl_conf->io_pool, GFP_ATOMIC);
206 	if (!io)
207 		return NULL;
208 
209 	memset(io, 0, sizeof(*io));
210 	io->log = log;
211 	INIT_LIST_HEAD(&io->log_sibling);
212 	INIT_LIST_HEAD(&io->stripe_list);
213 	atomic_set(&io->pending_stripes, 0);
214 	bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS);
215 
216 	io->header_page = mempool_alloc(ppl_conf->meta_pool, GFP_NOIO);
217 	pplhdr = page_address(io->header_page);
218 	clear_page(pplhdr);
219 	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
220 	pplhdr->signature = cpu_to_le32(ppl_conf->signature);
221 
222 	io->seq = atomic64_add_return(1, &ppl_conf->seq);
223 	pplhdr->generation = cpu_to_le64(io->seq);
224 
225 	return io;
226 }
227 
228 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
229 {
230 	struct ppl_io_unit *io = log->current_io;
231 	struct ppl_header_entry *e = NULL;
232 	struct ppl_header *pplhdr;
233 	int i;
234 	sector_t data_sector = 0;
235 	int data_disks = 0;
236 	unsigned int entry_space = (log->rdev->ppl.size << 9) - PPL_HEADER_SIZE;
237 	struct r5conf *conf = sh->raid_conf;
238 
239 	pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
240 
241 	/* check if current io_unit is full */
242 	if (io && (io->pp_size == entry_space ||
243 		   io->entries_count == PPL_HDR_MAX_ENTRIES)) {
244 		pr_debug("%s: add io_unit blocked by seq: %llu\n",
245 			 __func__, io->seq);
246 		io = NULL;
247 	}
248 
249 	/* add a new unit if there is none or the current is full */
250 	if (!io) {
251 		io = ppl_new_iounit(log, sh);
252 		if (!io)
253 			return -ENOMEM;
254 		spin_lock_irq(&log->io_list_lock);
255 		list_add_tail(&io->log_sibling, &log->io_list);
256 		spin_unlock_irq(&log->io_list_lock);
257 
258 		log->current_io = io;
259 	}
260 
261 	for (i = 0; i < sh->disks; i++) {
262 		struct r5dev *dev = &sh->dev[i];
263 
264 		if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
265 			if (!data_disks || dev->sector < data_sector)
266 				data_sector = dev->sector;
267 			data_disks++;
268 		}
269 	}
270 	BUG_ON(!data_disks);
271 
272 	pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
273 		 io->seq, (unsigned long long)data_sector, data_disks);
274 
275 	pplhdr = page_address(io->header_page);
276 
277 	if (io->entries_count > 0) {
278 		struct ppl_header_entry *last =
279 				&pplhdr->entries[io->entries_count - 1];
280 		struct stripe_head *sh_last = list_last_entry(
281 				&io->stripe_list, struct stripe_head, log_list);
282 		u64 data_sector_last = le64_to_cpu(last->data_sector);
283 		u32 data_size_last = le32_to_cpu(last->data_size);
284 
285 		/*
286 		 * Check if we can append the stripe to the last entry. It must
287 		 * be just after the last logged stripe and write to the same
288 		 * disks. Use bit shift and logarithm to avoid 64-bit division.
289 		 */
290 		if ((sh->sector == sh_last->sector + STRIPE_SECTORS) &&
291 		    (data_sector >> ilog2(conf->chunk_sectors) ==
292 		     data_sector_last >> ilog2(conf->chunk_sectors)) &&
293 		    ((data_sector - data_sector_last) * data_disks ==
294 		     data_size_last >> 9))
295 			e = last;
296 	}
297 
298 	if (!e) {
299 		e = &pplhdr->entries[io->entries_count++];
300 		e->data_sector = cpu_to_le64(data_sector);
301 		e->parity_disk = cpu_to_le32(sh->pd_idx);
302 		e->checksum = cpu_to_le32(~0);
303 	}
304 
305 	le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
306 
307 	/* don't write any PP if full stripe write */
308 	if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
309 		le32_add_cpu(&e->pp_size, PAGE_SIZE);
310 		io->pp_size += PAGE_SIZE;
311 		e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
312 						    page_address(sh->ppl_page),
313 						    PAGE_SIZE));
314 	}
315 
316 	list_add_tail(&sh->log_list, &io->stripe_list);
317 	atomic_inc(&io->pending_stripes);
318 	sh->ppl_io = io;
319 
320 	return 0;
321 }
322 
323 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
324 {
325 	struct ppl_conf *ppl_conf = conf->log_private;
326 	struct ppl_io_unit *io = sh->ppl_io;
327 	struct ppl_log *log;
328 
329 	if (io || test_bit(STRIPE_SYNCING, &sh->state) ||
330 	    !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
331 	    !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
332 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
333 		return -EAGAIN;
334 	}
335 
336 	log = &ppl_conf->child_logs[sh->pd_idx];
337 
338 	mutex_lock(&log->io_mutex);
339 
340 	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
341 		mutex_unlock(&log->io_mutex);
342 		return -EAGAIN;
343 	}
344 
345 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
346 	clear_bit(STRIPE_DELAYED, &sh->state);
347 	atomic_inc(&sh->count);
348 
349 	if (ppl_log_stripe(log, sh)) {
350 		spin_lock_irq(&log->io_list_lock);
351 		list_add_tail(&sh->log_list, &log->no_mem_stripes);
352 		spin_unlock_irq(&log->io_list_lock);
353 	}
354 
355 	mutex_unlock(&log->io_mutex);
356 
357 	return 0;
358 }
359 
360 static void ppl_log_endio(struct bio *bio)
361 {
362 	struct ppl_io_unit *io = bio->bi_private;
363 	struct ppl_log *log = io->log;
364 	struct ppl_conf *ppl_conf = log->ppl_conf;
365 	struct stripe_head *sh, *next;
366 
367 	pr_debug("%s: seq: %llu\n", __func__, io->seq);
368 
369 	if (bio->bi_error)
370 		md_error(ppl_conf->mddev, log->rdev);
371 
372 	mempool_free(io->header_page, ppl_conf->meta_pool);
373 
374 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
375 		list_del_init(&sh->log_list);
376 
377 		set_bit(STRIPE_HANDLE, &sh->state);
378 		raid5_release_stripe(sh);
379 	}
380 }
381 
382 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
383 {
384 	char b[BDEVNAME_SIZE];
385 
386 	pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n",
387 		 __func__, io->seq, bio->bi_iter.bi_size,
388 		 (unsigned long long)bio->bi_iter.bi_sector,
389 		 bdevname(bio->bi_bdev, b));
390 
391 	submit_bio(bio);
392 }
393 
394 static void ppl_submit_iounit(struct ppl_io_unit *io)
395 {
396 	struct ppl_log *log = io->log;
397 	struct ppl_conf *ppl_conf = log->ppl_conf;
398 	struct ppl_header *pplhdr = page_address(io->header_page);
399 	struct bio *bio = &io->bio;
400 	struct stripe_head *sh;
401 	int i;
402 
403 	bio->bi_private = io;
404 
405 	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
406 		ppl_log_endio(bio);
407 		return;
408 	}
409 
410 	for (i = 0; i < io->entries_count; i++) {
411 		struct ppl_header_entry *e = &pplhdr->entries[i];
412 
413 		pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
414 			 __func__, io->seq, i, le64_to_cpu(e->data_sector),
415 			 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
416 
417 		e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
418 					     ilog2(ppl_conf->block_size >> 9));
419 		e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
420 	}
421 
422 	pplhdr->entries_count = cpu_to_le32(io->entries_count);
423 	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
424 
425 	bio->bi_end_io = ppl_log_endio;
426 	bio->bi_opf = REQ_OP_WRITE | REQ_FUA;
427 	bio->bi_bdev = log->rdev->bdev;
428 	bio->bi_iter.bi_sector = log->rdev->ppl.sector;
429 	bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
430 
431 	list_for_each_entry(sh, &io->stripe_list, log_list) {
432 		/* entries for full stripe writes have no partial parity */
433 		if (test_bit(STRIPE_FULL_WRITE, &sh->state))
434 			continue;
435 
436 		if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
437 			struct bio *prev = bio;
438 
439 			bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES,
440 					       ppl_conf->bs);
441 			bio->bi_opf = prev->bi_opf;
442 			bio->bi_bdev = prev->bi_bdev;
443 			bio->bi_iter.bi_sector = bio_end_sector(prev);
444 			bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
445 
446 			bio_chain(bio, prev);
447 			ppl_submit_iounit_bio(io, prev);
448 		}
449 	}
450 
451 	ppl_submit_iounit_bio(io, bio);
452 }
453 
454 static void ppl_submit_current_io(struct ppl_log *log)
455 {
456 	struct ppl_io_unit *io;
457 
458 	spin_lock_irq(&log->io_list_lock);
459 
460 	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
461 				      log_sibling);
462 	if (io && io->submitted)
463 		io = NULL;
464 
465 	spin_unlock_irq(&log->io_list_lock);
466 
467 	if (io) {
468 		io->submitted = true;
469 
470 		if (io == log->current_io)
471 			log->current_io = NULL;
472 
473 		ppl_submit_iounit(io);
474 	}
475 }
476 
477 void ppl_write_stripe_run(struct r5conf *conf)
478 {
479 	struct ppl_conf *ppl_conf = conf->log_private;
480 	struct ppl_log *log;
481 	int i;
482 
483 	for (i = 0; i < ppl_conf->count; i++) {
484 		log = &ppl_conf->child_logs[i];
485 
486 		mutex_lock(&log->io_mutex);
487 		ppl_submit_current_io(log);
488 		mutex_unlock(&log->io_mutex);
489 	}
490 }
491 
492 static void ppl_io_unit_finished(struct ppl_io_unit *io)
493 {
494 	struct ppl_log *log = io->log;
495 	unsigned long flags;
496 
497 	pr_debug("%s: seq: %llu\n", __func__, io->seq);
498 
499 	spin_lock_irqsave(&log->io_list_lock, flags);
500 
501 	list_del(&io->log_sibling);
502 	mempool_free(io, log->ppl_conf->io_pool);
503 
504 	if (!list_empty(&log->no_mem_stripes)) {
505 		struct stripe_head *sh = list_first_entry(&log->no_mem_stripes,
506 							  struct stripe_head,
507 							  log_list);
508 		list_del_init(&sh->log_list);
509 		set_bit(STRIPE_HANDLE, &sh->state);
510 		raid5_release_stripe(sh);
511 	}
512 
513 	spin_unlock_irqrestore(&log->io_list_lock, flags);
514 }
515 
516 void ppl_stripe_write_finished(struct stripe_head *sh)
517 {
518 	struct ppl_io_unit *io;
519 
520 	io = sh->ppl_io;
521 	sh->ppl_io = NULL;
522 
523 	if (io && atomic_dec_and_test(&io->pending_stripes))
524 		ppl_io_unit_finished(io);
525 }
526 
527 static void ppl_xor(int size, struct page *page1, struct page *page2)
528 {
529 	struct async_submit_ctl submit;
530 	struct dma_async_tx_descriptor *tx;
531 	struct page *xor_srcs[] = { page1, page2 };
532 
533 	init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
534 			  NULL, NULL, NULL, NULL);
535 	tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
536 
537 	async_tx_quiesce(&tx);
538 }
539 
540 /*
541  * PPL recovery strategy: xor partial parity and data from all modified data
542  * disks within a stripe and write the result as the new stripe parity. If all
543  * stripe data disks are modified (full stripe write), no partial parity is
544  * available, so just xor the data disks.
545  *
546  * Recovery of a PPL entry shall occur only if all modified data disks are
547  * available and read from all of them succeeds.
548  *
549  * A PPL entry applies to a stripe, partial parity size for an entry is at most
550  * the size of the chunk. Examples of possible cases for a single entry:
551  *
552  * case 0: single data disk write:
553  *   data0    data1    data2     ppl        parity
554  * +--------+--------+--------+           +--------------------+
555  * | ------ | ------ | ------ | +----+    | (no change)        |
556  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
557  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
558  * | ------ | ------ | ------ | +----+    | (no change)        |
559  * +--------+--------+--------+           +--------------------+
560  * pp_size = data_size
561  *
562  * case 1: more than one data disk write:
563  *   data0    data1    data2     ppl        parity
564  * +--------+--------+--------+           +--------------------+
565  * | ------ | ------ | ------ | +----+    | (no change)        |
566  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
567  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
568  * | ------ | ------ | ------ | +----+    | (no change)        |
569  * +--------+--------+--------+           +--------------------+
570  * pp_size = data_size / modified_data_disks
571  *
572  * case 2: write to all data disks (also full stripe write):
573  *   data0    data1    data2                parity
574  * +--------+--------+--------+           +--------------------+
575  * | ------ | ------ | ------ |           | (no change)        |
576  * | -data- | -data- | -data- | --------> | xor all data       |
577  * | ------ | ------ | ------ | --------> | (no change)        |
578  * | ------ | ------ | ------ |           | (no change)        |
579  * +--------+--------+--------+           +--------------------+
580  * pp_size = 0
581  *
582  * The following cases are possible only in other implementations. The recovery
583  * code can handle them, but they are not generated at runtime because they can
584  * be reduced to cases 0, 1 and 2:
585  *
586  * case 3:
587  *   data0    data1    data2     ppl        parity
588  * +--------+--------+--------+ +----+    +--------------------+
589  * | ------ | -data- | -data- | | pp |    | data1 ^ data2 ^ pp |
590  * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
591  * | -data- | -data- | -data- | | -- | -> | xor all data       |
592  * | -data- | -data- | ------ | | pp |    | data0 ^ data1 ^ pp |
593  * +--------+--------+--------+ +----+    +--------------------+
594  * pp_size = chunk_size
595  *
596  * case 4:
597  *   data0    data1    data2     ppl        parity
598  * +--------+--------+--------+ +----+    +--------------------+
599  * | ------ | -data- | ------ | | pp |    | data1 ^ pp         |
600  * | ------ | ------ | ------ | | -- | -> | (no change)        |
601  * | ------ | ------ | ------ | | -- | -> | (no change)        |
602  * | -data- | ------ | ------ | | pp |    | data0 ^ pp         |
603  * +--------+--------+--------+ +----+    +--------------------+
604  * pp_size = chunk_size
605  */
606 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
607 			     sector_t ppl_sector)
608 {
609 	struct ppl_conf *ppl_conf = log->ppl_conf;
610 	struct mddev *mddev = ppl_conf->mddev;
611 	struct r5conf *conf = mddev->private;
612 	int block_size = ppl_conf->block_size;
613 	struct page *page1;
614 	struct page *page2;
615 	sector_t r_sector_first;
616 	sector_t r_sector_last;
617 	int strip_sectors;
618 	int data_disks;
619 	int i;
620 	int ret = 0;
621 	char b[BDEVNAME_SIZE];
622 	unsigned int pp_size = le32_to_cpu(e->pp_size);
623 	unsigned int data_size = le32_to_cpu(e->data_size);
624 
625 	page1 = alloc_page(GFP_KERNEL);
626 	page2 = alloc_page(GFP_KERNEL);
627 
628 	if (!page1 || !page2) {
629 		ret = -ENOMEM;
630 		goto out;
631 	}
632 
633 	r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
634 
635 	if ((pp_size >> 9) < conf->chunk_sectors) {
636 		if (pp_size > 0) {
637 			data_disks = data_size / pp_size;
638 			strip_sectors = pp_size >> 9;
639 		} else {
640 			data_disks = conf->raid_disks - conf->max_degraded;
641 			strip_sectors = (data_size >> 9) / data_disks;
642 		}
643 		r_sector_last = r_sector_first +
644 				(data_disks - 1) * conf->chunk_sectors +
645 				strip_sectors;
646 	} else {
647 		data_disks = conf->raid_disks - conf->max_degraded;
648 		strip_sectors = conf->chunk_sectors;
649 		r_sector_last = r_sector_first + (data_size >> 9);
650 	}
651 
652 	pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
653 		 (unsigned long long)r_sector_first,
654 		 (unsigned long long)r_sector_last);
655 
656 	/* if start and end is 4k aligned, use a 4k block */
657 	if (block_size == 512 &&
658 	    (r_sector_first & (STRIPE_SECTORS - 1)) == 0 &&
659 	    (r_sector_last & (STRIPE_SECTORS - 1)) == 0)
660 		block_size = STRIPE_SIZE;
661 
662 	/* iterate through blocks in strip */
663 	for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
664 		bool update_parity = false;
665 		sector_t parity_sector;
666 		struct md_rdev *parity_rdev;
667 		struct stripe_head sh;
668 		int disk;
669 		int indent = 0;
670 
671 		pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
672 		indent += 2;
673 
674 		memset(page_address(page1), 0, PAGE_SIZE);
675 
676 		/* iterate through data member disks */
677 		for (disk = 0; disk < data_disks; disk++) {
678 			int dd_idx;
679 			struct md_rdev *rdev;
680 			sector_t sector;
681 			sector_t r_sector = r_sector_first + i +
682 					    (disk * conf->chunk_sectors);
683 
684 			pr_debug("%s:%*s data member disk %d start\n",
685 				 __func__, indent, "", disk);
686 			indent += 2;
687 
688 			if (r_sector >= r_sector_last) {
689 				pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
690 					 __func__, indent, "",
691 					 (unsigned long long)r_sector);
692 				indent -= 2;
693 				continue;
694 			}
695 
696 			update_parity = true;
697 
698 			/* map raid sector to member disk */
699 			sector = raid5_compute_sector(conf, r_sector, 0,
700 						      &dd_idx, NULL);
701 			pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
702 				 __func__, indent, "",
703 				 (unsigned long long)r_sector, dd_idx,
704 				 (unsigned long long)sector);
705 
706 			rdev = conf->disks[dd_idx].rdev;
707 			if (!rdev) {
708 				pr_debug("%s:%*s data member disk %d missing\n",
709 					 __func__, indent, "", dd_idx);
710 				update_parity = false;
711 				break;
712 			}
713 
714 			pr_debug("%s:%*s reading data member disk %s sector %llu\n",
715 				 __func__, indent, "", bdevname(rdev->bdev, b),
716 				 (unsigned long long)sector);
717 			if (!sync_page_io(rdev, sector, block_size, page2,
718 					REQ_OP_READ, 0, false)) {
719 				md_error(mddev, rdev);
720 				pr_debug("%s:%*s read failed!\n", __func__,
721 					 indent, "");
722 				ret = -EIO;
723 				goto out;
724 			}
725 
726 			ppl_xor(block_size, page1, page2);
727 
728 			indent -= 2;
729 		}
730 
731 		if (!update_parity)
732 			continue;
733 
734 		if (pp_size > 0) {
735 			pr_debug("%s:%*s reading pp disk sector %llu\n",
736 				 __func__, indent, "",
737 				 (unsigned long long)(ppl_sector + i));
738 			if (!sync_page_io(log->rdev,
739 					ppl_sector - log->rdev->data_offset + i,
740 					block_size, page2, REQ_OP_READ, 0,
741 					false)) {
742 				pr_debug("%s:%*s read failed!\n", __func__,
743 					 indent, "");
744 				md_error(mddev, log->rdev);
745 				ret = -EIO;
746 				goto out;
747 			}
748 
749 			ppl_xor(block_size, page1, page2);
750 		}
751 
752 		/* map raid sector to parity disk */
753 		parity_sector = raid5_compute_sector(conf, r_sector_first + i,
754 				0, &disk, &sh);
755 		BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
756 		parity_rdev = conf->disks[sh.pd_idx].rdev;
757 
758 		BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
759 		pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
760 			 __func__, indent, "",
761 			 (unsigned long long)parity_sector,
762 			 bdevname(parity_rdev->bdev, b));
763 		if (!sync_page_io(parity_rdev, parity_sector, block_size,
764 				page1, REQ_OP_WRITE, 0, false)) {
765 			pr_debug("%s:%*s parity write error!\n", __func__,
766 				 indent, "");
767 			md_error(mddev, parity_rdev);
768 			ret = -EIO;
769 			goto out;
770 		}
771 	}
772 out:
773 	if (page1)
774 		__free_page(page1);
775 	if (page2)
776 		__free_page(page2);
777 	return ret;
778 }
779 
780 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr)
781 {
782 	struct ppl_conf *ppl_conf = log->ppl_conf;
783 	struct md_rdev *rdev = log->rdev;
784 	struct mddev *mddev = rdev->mddev;
785 	sector_t ppl_sector = rdev->ppl.sector + (PPL_HEADER_SIZE >> 9);
786 	struct page *page;
787 	int i;
788 	int ret = 0;
789 
790 	page = alloc_page(GFP_KERNEL);
791 	if (!page)
792 		return -ENOMEM;
793 
794 	/* iterate through all PPL entries saved */
795 	for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
796 		struct ppl_header_entry *e = &pplhdr->entries[i];
797 		u32 pp_size = le32_to_cpu(e->pp_size);
798 		sector_t sector = ppl_sector;
799 		int ppl_entry_sectors = pp_size >> 9;
800 		u32 crc, crc_stored;
801 
802 		pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
803 			 __func__, rdev->raid_disk, i,
804 			 (unsigned long long)ppl_sector, pp_size);
805 
806 		crc = ~0;
807 		crc_stored = le32_to_cpu(e->checksum);
808 
809 		/* read parial parity for this entry and calculate its checksum */
810 		while (pp_size) {
811 			int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
812 
813 			if (!sync_page_io(rdev, sector - rdev->data_offset,
814 					s, page, REQ_OP_READ, 0, false)) {
815 				md_error(mddev, rdev);
816 				ret = -EIO;
817 				goto out;
818 			}
819 
820 			crc = crc32c_le(crc, page_address(page), s);
821 
822 			pp_size -= s;
823 			sector += s >> 9;
824 		}
825 
826 		crc = ~crc;
827 
828 		if (crc != crc_stored) {
829 			/*
830 			 * Don't recover this entry if the checksum does not
831 			 * match, but keep going and try to recover other
832 			 * entries.
833 			 */
834 			pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
835 				 __func__, crc_stored, crc);
836 			ppl_conf->mismatch_count++;
837 		} else {
838 			ret = ppl_recover_entry(log, e, ppl_sector);
839 			if (ret)
840 				goto out;
841 			ppl_conf->recovered_entries++;
842 		}
843 
844 		ppl_sector += ppl_entry_sectors;
845 	}
846 
847 	/* flush the disk cache after recovery if necessary */
848 	ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL, NULL);
849 out:
850 	__free_page(page);
851 	return ret;
852 }
853 
854 static int ppl_write_empty_header(struct ppl_log *log)
855 {
856 	struct page *page;
857 	struct ppl_header *pplhdr;
858 	struct md_rdev *rdev = log->rdev;
859 	int ret = 0;
860 
861 	pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
862 		 rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
863 
864 	page = alloc_page(GFP_NOIO | __GFP_ZERO);
865 	if (!page)
866 		return -ENOMEM;
867 
868 	pplhdr = page_address(page);
869 	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
870 	pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
871 	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
872 
873 	if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
874 			  PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_FUA, 0,
875 			  false)) {
876 		md_error(rdev->mddev, rdev);
877 		ret = -EIO;
878 	}
879 
880 	__free_page(page);
881 	return ret;
882 }
883 
884 static int ppl_load_distributed(struct ppl_log *log)
885 {
886 	struct ppl_conf *ppl_conf = log->ppl_conf;
887 	struct md_rdev *rdev = log->rdev;
888 	struct mddev *mddev = rdev->mddev;
889 	struct page *page;
890 	struct ppl_header *pplhdr;
891 	u32 crc, crc_stored;
892 	u32 signature;
893 	int ret = 0;
894 
895 	pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
896 
897 	/* read PPL header */
898 	page = alloc_page(GFP_KERNEL);
899 	if (!page)
900 		return -ENOMEM;
901 
902 	if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
903 			  PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
904 		md_error(mddev, rdev);
905 		ret = -EIO;
906 		goto out;
907 	}
908 	pplhdr = page_address(page);
909 
910 	/* check header validity */
911 	crc_stored = le32_to_cpu(pplhdr->checksum);
912 	pplhdr->checksum = 0;
913 	crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
914 
915 	if (crc_stored != crc) {
916 		pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x\n",
917 			 __func__, crc_stored, crc);
918 		ppl_conf->mismatch_count++;
919 		goto out;
920 	}
921 
922 	signature = le32_to_cpu(pplhdr->signature);
923 
924 	if (mddev->external) {
925 		/*
926 		 * For external metadata the header signature is set and
927 		 * validated in userspace.
928 		 */
929 		ppl_conf->signature = signature;
930 	} else if (ppl_conf->signature != signature) {
931 		pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x\n",
932 			 __func__, signature, ppl_conf->signature);
933 		ppl_conf->mismatch_count++;
934 		goto out;
935 	}
936 
937 	/* attempt to recover from log if we are starting a dirty array */
938 	if (!mddev->pers && mddev->recovery_cp != MaxSector)
939 		ret = ppl_recover(log, pplhdr);
940 out:
941 	/* write empty header if we are starting the array */
942 	if (!ret && !mddev->pers)
943 		ret = ppl_write_empty_header(log);
944 
945 	__free_page(page);
946 
947 	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
948 		 __func__, ret, ppl_conf->mismatch_count,
949 		 ppl_conf->recovered_entries);
950 	return ret;
951 }
952 
953 static int ppl_load(struct ppl_conf *ppl_conf)
954 {
955 	int ret = 0;
956 	u32 signature = 0;
957 	bool signature_set = false;
958 	int i;
959 
960 	for (i = 0; i < ppl_conf->count; i++) {
961 		struct ppl_log *log = &ppl_conf->child_logs[i];
962 
963 		/* skip missing drive */
964 		if (!log->rdev)
965 			continue;
966 
967 		ret = ppl_load_distributed(log);
968 		if (ret)
969 			break;
970 
971 		/*
972 		 * For external metadata we can't check if the signature is
973 		 * correct on a single drive, but we can check if it is the same
974 		 * on all drives.
975 		 */
976 		if (ppl_conf->mddev->external) {
977 			if (!signature_set) {
978 				signature = ppl_conf->signature;
979 				signature_set = true;
980 			} else if (signature != ppl_conf->signature) {
981 				pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
982 					mdname(ppl_conf->mddev));
983 				ret = -EINVAL;
984 				break;
985 			}
986 		}
987 	}
988 
989 	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
990 		 __func__, ret, ppl_conf->mismatch_count,
991 		 ppl_conf->recovered_entries);
992 	return ret;
993 }
994 
995 static void __ppl_exit_log(struct ppl_conf *ppl_conf)
996 {
997 	clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
998 
999 	kfree(ppl_conf->child_logs);
1000 
1001 	mempool_destroy(ppl_conf->meta_pool);
1002 	if (ppl_conf->bs)
1003 		bioset_free(ppl_conf->bs);
1004 	mempool_destroy(ppl_conf->io_pool);
1005 	kmem_cache_destroy(ppl_conf->io_kc);
1006 
1007 	kfree(ppl_conf);
1008 }
1009 
1010 void ppl_exit_log(struct r5conf *conf)
1011 {
1012 	struct ppl_conf *ppl_conf = conf->log_private;
1013 
1014 	if (ppl_conf) {
1015 		__ppl_exit_log(ppl_conf);
1016 		conf->log_private = NULL;
1017 	}
1018 }
1019 
1020 static int ppl_validate_rdev(struct md_rdev *rdev)
1021 {
1022 	char b[BDEVNAME_SIZE];
1023 	int ppl_data_sectors;
1024 	int ppl_size_new;
1025 
1026 	/*
1027 	 * The configured PPL size must be enough to store
1028 	 * the header and (at the very least) partial parity
1029 	 * for one stripe. Round it down to ensure the data
1030 	 * space is cleanly divisible by stripe size.
1031 	 */
1032 	ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1033 
1034 	if (ppl_data_sectors > 0)
1035 		ppl_data_sectors = rounddown(ppl_data_sectors, STRIPE_SECTORS);
1036 
1037 	if (ppl_data_sectors <= 0) {
1038 		pr_warn("md/raid:%s: PPL space too small on %s\n",
1039 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1040 		return -ENOSPC;
1041 	}
1042 
1043 	ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1044 
1045 	if ((rdev->ppl.sector < rdev->data_offset &&
1046 	     rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1047 	    (rdev->ppl.sector >= rdev->data_offset &&
1048 	     rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1049 		pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1050 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1051 		return -EINVAL;
1052 	}
1053 
1054 	if (!rdev->mddev->external &&
1055 	    ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1056 	     (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1057 		pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1058 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1059 		return -EINVAL;
1060 	}
1061 
1062 	rdev->ppl.size = ppl_size_new;
1063 
1064 	return 0;
1065 }
1066 
1067 int ppl_init_log(struct r5conf *conf)
1068 {
1069 	struct ppl_conf *ppl_conf;
1070 	struct mddev *mddev = conf->mddev;
1071 	int ret = 0;
1072 	int i;
1073 	bool need_cache_flush;
1074 
1075 	pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1076 		 mdname(conf->mddev));
1077 
1078 	if (PAGE_SIZE != 4096)
1079 		return -EINVAL;
1080 
1081 	if (mddev->level != 5) {
1082 		pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1083 			mdname(mddev), mddev->level);
1084 		return -EINVAL;
1085 	}
1086 
1087 	if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1088 		pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1089 			mdname(mddev));
1090 		return -EINVAL;
1091 	}
1092 
1093 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1094 		pr_warn("md/raid:%s PPL is not compatible with journal\n",
1095 			mdname(mddev));
1096 		return -EINVAL;
1097 	}
1098 
1099 	ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1100 	if (!ppl_conf)
1101 		return -ENOMEM;
1102 
1103 	ppl_conf->mddev = mddev;
1104 
1105 	ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1106 	if (!ppl_conf->io_kc) {
1107 		ret = -EINVAL;
1108 		goto err;
1109 	}
1110 
1111 	ppl_conf->io_pool = mempool_create_slab_pool(conf->raid_disks, ppl_conf->io_kc);
1112 	if (!ppl_conf->io_pool) {
1113 		ret = -EINVAL;
1114 		goto err;
1115 	}
1116 
1117 	ppl_conf->bs = bioset_create(conf->raid_disks, 0);
1118 	if (!ppl_conf->bs) {
1119 		ret = -EINVAL;
1120 		goto err;
1121 	}
1122 
1123 	ppl_conf->meta_pool = mempool_create_page_pool(conf->raid_disks, 0);
1124 	if (!ppl_conf->meta_pool) {
1125 		ret = -EINVAL;
1126 		goto err;
1127 	}
1128 
1129 	ppl_conf->count = conf->raid_disks;
1130 	ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1131 				       GFP_KERNEL);
1132 	if (!ppl_conf->child_logs) {
1133 		ret = -ENOMEM;
1134 		goto err;
1135 	}
1136 
1137 	atomic64_set(&ppl_conf->seq, 0);
1138 
1139 	if (!mddev->external) {
1140 		ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1141 		ppl_conf->block_size = 512;
1142 	} else {
1143 		ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1144 	}
1145 
1146 	for (i = 0; i < ppl_conf->count; i++) {
1147 		struct ppl_log *log = &ppl_conf->child_logs[i];
1148 		struct md_rdev *rdev = conf->disks[i].rdev;
1149 
1150 		mutex_init(&log->io_mutex);
1151 		spin_lock_init(&log->io_list_lock);
1152 		INIT_LIST_HEAD(&log->io_list);
1153 		INIT_LIST_HEAD(&log->no_mem_stripes);
1154 
1155 		log->ppl_conf = ppl_conf;
1156 		log->rdev = rdev;
1157 
1158 		if (rdev) {
1159 			struct request_queue *q;
1160 
1161 			ret = ppl_validate_rdev(rdev);
1162 			if (ret)
1163 				goto err;
1164 
1165 			q = bdev_get_queue(rdev->bdev);
1166 			if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
1167 				need_cache_flush = true;
1168 		}
1169 	}
1170 
1171 	if (need_cache_flush)
1172 		pr_warn("md/raid:%s: Volatile write-back cache should be disabled on all member drives when using PPL!\n",
1173 			mdname(mddev));
1174 
1175 	/* load and possibly recover the logs from the member disks */
1176 	ret = ppl_load(ppl_conf);
1177 
1178 	if (ret) {
1179 		goto err;
1180 	} else if (!mddev->pers &&
1181 		   mddev->recovery_cp == 0 && !mddev->degraded &&
1182 		   ppl_conf->recovered_entries > 0 &&
1183 		   ppl_conf->mismatch_count == 0) {
1184 		/*
1185 		 * If we are starting a dirty array and the recovery succeeds
1186 		 * without any issues, set the array as clean.
1187 		 */
1188 		mddev->recovery_cp = MaxSector;
1189 		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1190 	}
1191 
1192 	conf->log_private = ppl_conf;
1193 
1194 	return 0;
1195 err:
1196 	__ppl_exit_log(ppl_conf);
1197 	return ret;
1198 }
1199 
1200 int ppl_modify_log(struct r5conf *conf, struct md_rdev *rdev, bool add)
1201 {
1202 	struct ppl_conf *ppl_conf = conf->log_private;
1203 	struct ppl_log *log;
1204 	int ret = 0;
1205 	char b[BDEVNAME_SIZE];
1206 
1207 	if (!rdev)
1208 		return -EINVAL;
1209 
1210 	pr_debug("%s: disk: %d operation: %s dev: %s\n",
1211 		 __func__, rdev->raid_disk, add ? "add" : "remove",
1212 		 bdevname(rdev->bdev, b));
1213 
1214 	if (rdev->raid_disk < 0)
1215 		return 0;
1216 
1217 	if (rdev->raid_disk >= ppl_conf->count)
1218 		return -ENODEV;
1219 
1220 	log = &ppl_conf->child_logs[rdev->raid_disk];
1221 
1222 	mutex_lock(&log->io_mutex);
1223 	if (add) {
1224 		ret = ppl_validate_rdev(rdev);
1225 		if (!ret) {
1226 			log->rdev = rdev;
1227 			ret = ppl_write_empty_header(log);
1228 		}
1229 	} else {
1230 		log->rdev = NULL;
1231 	}
1232 	mutex_unlock(&log->io_mutex);
1233 
1234 	return ret;
1235 }
1236