xref: /openbmc/linux/drivers/md/raid5-ppl.c (revision 4536bf9ba2d03404655586b07f8830b6f2106242)
1 /*
2  * Partial Parity Log for closing the RAID5 write hole
3  * Copyright (c) 2017, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/crc32c.h>
19 #include <linux/flex_array.h>
20 #include <linux/async_tx.h>
21 #include <linux/raid/md_p.h>
22 #include "md.h"
23 #include "raid5.h"
24 
25 /*
26  * PPL consists of a 4KB header (struct ppl_header) and at least 128KB for
27  * partial parity data. The header contains an array of entries
28  * (struct ppl_header_entry) which describe the logged write requests.
29  * Partial parity for the entries comes after the header, written in the same
30  * sequence as the entries:
31  *
32  * Header
33  *   entry0
34  *   ...
35  *   entryN
36  * PP data
37  *   PP for entry0
38  *   ...
39  *   PP for entryN
40  *
41  * An entry describes one or more consecutive stripe_heads, up to a full
42  * stripe. The modifed raid data chunks form an m-by-n matrix, where m is the
43  * number of stripe_heads in the entry and n is the number of modified data
44  * disks. Every stripe_head in the entry must write to the same data disks.
45  * An example of a valid case described by a single entry (writes to the first
46  * stripe of a 4 disk array, 16k chunk size):
47  *
48  * sh->sector   dd0   dd1   dd2    ppl
49  *            +-----+-----+-----+
50  * 0          | --- | --- | --- | +----+
51  * 8          | -W- | -W- | --- | | pp |   data_sector = 8
52  * 16         | -W- | -W- | --- | | pp |   data_size = 3 * 2 * 4k
53  * 24         | -W- | -W- | --- | | pp |   pp_size = 3 * 4k
54  *            +-----+-----+-----+ +----+
55  *
56  * data_sector is the first raid sector of the modified data, data_size is the
57  * total size of modified data and pp_size is the size of partial parity for
58  * this entry. Entries for full stripe writes contain no partial parity
59  * (pp_size = 0), they only mark the stripes for which parity should be
60  * recalculated after an unclean shutdown. Every entry holds a checksum of its
61  * partial parity, the header also has a checksum of the header itself.
62  *
63  * A write request is always logged to the PPL instance stored on the parity
64  * disk of the corresponding stripe. For each member disk there is one ppl_log
65  * used to handle logging for this disk, independently from others. They are
66  * grouped in child_logs array in struct ppl_conf, which is assigned to
67  * r5conf->log_private.
68  *
69  * ppl_io_unit represents a full PPL write, header_page contains the ppl_header.
70  * PPL entries for logged stripes are added in ppl_log_stripe(). A stripe_head
71  * can be appended to the last entry if it meets the conditions for a valid
72  * entry described above, otherwise a new entry is added. Checksums of entries
73  * are calculated incrementally as stripes containing partial parity are being
74  * added. ppl_submit_iounit() calculates the checksum of the header and submits
75  * a bio containing the header page and partial parity pages (sh->ppl_page) for
76  * all stripes of the io_unit. When the PPL write completes, the stripes
77  * associated with the io_unit are released and raid5d starts writing their data
78  * and parity. When all stripes are written, the io_unit is freed and the next
79  * can be submitted.
80  *
81  * An io_unit is used to gather stripes until it is submitted or becomes full
82  * (if the maximum number of entries or size of PPL is reached). Another io_unit
83  * can't be submitted until the previous has completed (PPL and stripe
84  * data+parity is written). The log->io_list tracks all io_units of a log
85  * (for a single member disk). New io_units are added to the end of the list
86  * and the first io_unit is submitted, if it is not submitted already.
87  * The current io_unit accepting new stripes is always at the end of the list.
88  */
89 
90 struct ppl_conf {
91 	struct mddev *mddev;
92 
93 	/* array of child logs, one for each raid disk */
94 	struct ppl_log *child_logs;
95 	int count;
96 
97 	int block_size;		/* the logical block size used for data_sector
98 				 * in ppl_header_entry */
99 	u32 signature;		/* raid array identifier */
100 	atomic64_t seq;		/* current log write sequence number */
101 
102 	struct kmem_cache *io_kc;
103 	mempool_t *io_pool;
104 	struct bio_set *bs;
105 	mempool_t *meta_pool;
106 
107 	/* used only for recovery */
108 	int recovered_entries;
109 	int mismatch_count;
110 };
111 
112 struct ppl_log {
113 	struct ppl_conf *ppl_conf;	/* shared between all log instances */
114 
115 	struct md_rdev *rdev;		/* array member disk associated with
116 					 * this log instance */
117 	struct mutex io_mutex;
118 	struct ppl_io_unit *current_io;	/* current io_unit accepting new data
119 					 * always at the end of io_list */
120 	spinlock_t io_list_lock;
121 	struct list_head io_list;	/* all io_units of this log */
122 	struct list_head no_mem_stripes;/* stripes to retry if failed to
123 					 * allocate io_unit */
124 };
125 
126 #define PPL_IO_INLINE_BVECS 32
127 
128 struct ppl_io_unit {
129 	struct ppl_log *log;
130 
131 	struct page *header_page;	/* for ppl_header */
132 
133 	unsigned int entries_count;	/* number of entries in ppl_header */
134 	unsigned int pp_size;		/* total size current of partial parity */
135 
136 	u64 seq;			/* sequence number of this log write */
137 	struct list_head log_sibling;	/* log->io_list */
138 
139 	struct list_head stripe_list;	/* stripes added to the io_unit */
140 	atomic_t pending_stripes;	/* how many stripes not written to raid */
141 
142 	bool submitted;			/* true if write to log started */
143 
144 	/* inline bio and its biovec for submitting the iounit */
145 	struct bio bio;
146 	struct bio_vec biovec[PPL_IO_INLINE_BVECS];
147 };
148 
149 struct dma_async_tx_descriptor *
150 ops_run_partial_parity(struct stripe_head *sh, struct raid5_percpu *percpu,
151 		       struct dma_async_tx_descriptor *tx)
152 {
153 	int disks = sh->disks;
154 	struct page **xor_srcs = flex_array_get(percpu->scribble, 0);
155 	int count = 0, pd_idx = sh->pd_idx, i;
156 	struct async_submit_ctl submit;
157 
158 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
159 
160 	/*
161 	 * Partial parity is the XOR of stripe data chunks that are not changed
162 	 * during the write request. Depending on available data
163 	 * (read-modify-write vs. reconstruct-write case) we calculate it
164 	 * differently.
165 	 */
166 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
167 		/* rmw: xor old data and parity from updated disks */
168 		for (i = disks; i--;) {
169 			struct r5dev *dev = &sh->dev[i];
170 			if (test_bit(R5_Wantdrain, &dev->flags) || i == pd_idx)
171 				xor_srcs[count++] = dev->page;
172 		}
173 	} else if (sh->reconstruct_state == reconstruct_state_drain_run) {
174 		/* rcw: xor data from all not updated disks */
175 		for (i = disks; i--;) {
176 			struct r5dev *dev = &sh->dev[i];
177 			if (test_bit(R5_UPTODATE, &dev->flags))
178 				xor_srcs[count++] = dev->page;
179 		}
180 	} else {
181 		return tx;
182 	}
183 
184 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, tx,
185 			  NULL, sh, flex_array_get(percpu->scribble, 0)
186 			  + sizeof(struct page *) * (sh->disks + 2));
187 
188 	if (count == 1)
189 		tx = async_memcpy(sh->ppl_page, xor_srcs[0], 0, 0, PAGE_SIZE,
190 				  &submit);
191 	else
192 		tx = async_xor(sh->ppl_page, xor_srcs, 0, count, PAGE_SIZE,
193 			       &submit);
194 
195 	return tx;
196 }
197 
198 static struct ppl_io_unit *ppl_new_iounit(struct ppl_log *log,
199 					  struct stripe_head *sh)
200 {
201 	struct ppl_conf *ppl_conf = log->ppl_conf;
202 	struct ppl_io_unit *io;
203 	struct ppl_header *pplhdr;
204 
205 	io = mempool_alloc(ppl_conf->io_pool, GFP_ATOMIC);
206 	if (!io)
207 		return NULL;
208 
209 	memset(io, 0, sizeof(*io));
210 	io->log = log;
211 	INIT_LIST_HEAD(&io->log_sibling);
212 	INIT_LIST_HEAD(&io->stripe_list);
213 	atomic_set(&io->pending_stripes, 0);
214 	bio_init(&io->bio, io->biovec, PPL_IO_INLINE_BVECS);
215 
216 	io->header_page = mempool_alloc(ppl_conf->meta_pool, GFP_NOIO);
217 	pplhdr = page_address(io->header_page);
218 	clear_page(pplhdr);
219 	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
220 	pplhdr->signature = cpu_to_le32(ppl_conf->signature);
221 
222 	io->seq = atomic64_add_return(1, &ppl_conf->seq);
223 	pplhdr->generation = cpu_to_le64(io->seq);
224 
225 	return io;
226 }
227 
228 static int ppl_log_stripe(struct ppl_log *log, struct stripe_head *sh)
229 {
230 	struct ppl_io_unit *io = log->current_io;
231 	struct ppl_header_entry *e = NULL;
232 	struct ppl_header *pplhdr;
233 	int i;
234 	sector_t data_sector = 0;
235 	int data_disks = 0;
236 	unsigned int entry_space = (log->rdev->ppl.size << 9) - PPL_HEADER_SIZE;
237 	struct r5conf *conf = sh->raid_conf;
238 
239 	pr_debug("%s: stripe: %llu\n", __func__, (unsigned long long)sh->sector);
240 
241 	/* check if current io_unit is full */
242 	if (io && (io->pp_size == entry_space ||
243 		   io->entries_count == PPL_HDR_MAX_ENTRIES)) {
244 		pr_debug("%s: add io_unit blocked by seq: %llu\n",
245 			 __func__, io->seq);
246 		io = NULL;
247 	}
248 
249 	/* add a new unit if there is none or the current is full */
250 	if (!io) {
251 		io = ppl_new_iounit(log, sh);
252 		if (!io)
253 			return -ENOMEM;
254 		spin_lock_irq(&log->io_list_lock);
255 		list_add_tail(&io->log_sibling, &log->io_list);
256 		spin_unlock_irq(&log->io_list_lock);
257 
258 		log->current_io = io;
259 	}
260 
261 	for (i = 0; i < sh->disks; i++) {
262 		struct r5dev *dev = &sh->dev[i];
263 
264 		if (i != sh->pd_idx && test_bit(R5_Wantwrite, &dev->flags)) {
265 			if (!data_disks || dev->sector < data_sector)
266 				data_sector = dev->sector;
267 			data_disks++;
268 		}
269 	}
270 	BUG_ON(!data_disks);
271 
272 	pr_debug("%s: seq: %llu data_sector: %llu data_disks: %d\n", __func__,
273 		 io->seq, (unsigned long long)data_sector, data_disks);
274 
275 	pplhdr = page_address(io->header_page);
276 
277 	if (io->entries_count > 0) {
278 		struct ppl_header_entry *last =
279 				&pplhdr->entries[io->entries_count - 1];
280 		struct stripe_head *sh_last = list_last_entry(
281 				&io->stripe_list, struct stripe_head, log_list);
282 		u64 data_sector_last = le64_to_cpu(last->data_sector);
283 		u32 data_size_last = le32_to_cpu(last->data_size);
284 
285 		/*
286 		 * Check if we can append the stripe to the last entry. It must
287 		 * be just after the last logged stripe and write to the same
288 		 * disks. Use bit shift and logarithm to avoid 64-bit division.
289 		 */
290 		if ((sh->sector == sh_last->sector + STRIPE_SECTORS) &&
291 		    (data_sector >> ilog2(conf->chunk_sectors) ==
292 		     data_sector_last >> ilog2(conf->chunk_sectors)) &&
293 		    ((data_sector - data_sector_last) * data_disks ==
294 		     data_size_last >> 9))
295 			e = last;
296 	}
297 
298 	if (!e) {
299 		e = &pplhdr->entries[io->entries_count++];
300 		e->data_sector = cpu_to_le64(data_sector);
301 		e->parity_disk = cpu_to_le32(sh->pd_idx);
302 		e->checksum = cpu_to_le32(~0);
303 	}
304 
305 	le32_add_cpu(&e->data_size, data_disks << PAGE_SHIFT);
306 
307 	/* don't write any PP if full stripe write */
308 	if (!test_bit(STRIPE_FULL_WRITE, &sh->state)) {
309 		le32_add_cpu(&e->pp_size, PAGE_SIZE);
310 		io->pp_size += PAGE_SIZE;
311 		e->checksum = cpu_to_le32(crc32c_le(le32_to_cpu(e->checksum),
312 						    page_address(sh->ppl_page),
313 						    PAGE_SIZE));
314 	}
315 
316 	list_add_tail(&sh->log_list, &io->stripe_list);
317 	atomic_inc(&io->pending_stripes);
318 	sh->ppl_io = io;
319 
320 	return 0;
321 }
322 
323 int ppl_write_stripe(struct r5conf *conf, struct stripe_head *sh)
324 {
325 	struct ppl_conf *ppl_conf = conf->log_private;
326 	struct ppl_io_unit *io = sh->ppl_io;
327 	struct ppl_log *log;
328 
329 	if (io || test_bit(STRIPE_SYNCING, &sh->state) ||
330 	    !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
331 	    !test_bit(R5_Insync, &sh->dev[sh->pd_idx].flags)) {
332 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
333 		return -EAGAIN;
334 	}
335 
336 	log = &ppl_conf->child_logs[sh->pd_idx];
337 
338 	mutex_lock(&log->io_mutex);
339 
340 	if (!log->rdev || test_bit(Faulty, &log->rdev->flags)) {
341 		mutex_unlock(&log->io_mutex);
342 		return -EAGAIN;
343 	}
344 
345 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
346 	clear_bit(STRIPE_DELAYED, &sh->state);
347 	atomic_inc(&sh->count);
348 
349 	if (ppl_log_stripe(log, sh)) {
350 		spin_lock_irq(&log->io_list_lock);
351 		list_add_tail(&sh->log_list, &log->no_mem_stripes);
352 		spin_unlock_irq(&log->io_list_lock);
353 	}
354 
355 	mutex_unlock(&log->io_mutex);
356 
357 	return 0;
358 }
359 
360 static void ppl_log_endio(struct bio *bio)
361 {
362 	struct ppl_io_unit *io = bio->bi_private;
363 	struct ppl_log *log = io->log;
364 	struct ppl_conf *ppl_conf = log->ppl_conf;
365 	struct stripe_head *sh, *next;
366 
367 	pr_debug("%s: seq: %llu\n", __func__, io->seq);
368 
369 	if (bio->bi_error)
370 		md_error(ppl_conf->mddev, log->rdev);
371 
372 	mempool_free(io->header_page, ppl_conf->meta_pool);
373 
374 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
375 		list_del_init(&sh->log_list);
376 
377 		set_bit(STRIPE_HANDLE, &sh->state);
378 		raid5_release_stripe(sh);
379 	}
380 }
381 
382 static void ppl_submit_iounit_bio(struct ppl_io_unit *io, struct bio *bio)
383 {
384 	char b[BDEVNAME_SIZE];
385 
386 	pr_debug("%s: seq: %llu size: %u sector: %llu dev: %s\n",
387 		 __func__, io->seq, bio->bi_iter.bi_size,
388 		 (unsigned long long)bio->bi_iter.bi_sector,
389 		 bdevname(bio->bi_bdev, b));
390 
391 	submit_bio(bio);
392 }
393 
394 static void ppl_submit_iounit(struct ppl_io_unit *io)
395 {
396 	struct ppl_log *log = io->log;
397 	struct ppl_conf *ppl_conf = log->ppl_conf;
398 	struct ppl_header *pplhdr = page_address(io->header_page);
399 	struct bio *bio = &io->bio;
400 	struct stripe_head *sh;
401 	int i;
402 
403 	for (i = 0; i < io->entries_count; i++) {
404 		struct ppl_header_entry *e = &pplhdr->entries[i];
405 
406 		pr_debug("%s: seq: %llu entry: %d data_sector: %llu pp_size: %u data_size: %u\n",
407 			 __func__, io->seq, i, le64_to_cpu(e->data_sector),
408 			 le32_to_cpu(e->pp_size), le32_to_cpu(e->data_size));
409 
410 		e->data_sector = cpu_to_le64(le64_to_cpu(e->data_sector) >>
411 					     ilog2(ppl_conf->block_size >> 9));
412 		e->checksum = cpu_to_le32(~le32_to_cpu(e->checksum));
413 	}
414 
415 	pplhdr->entries_count = cpu_to_le32(io->entries_count);
416 	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PPL_HEADER_SIZE));
417 
418 	bio->bi_private = io;
419 	bio->bi_end_io = ppl_log_endio;
420 	bio->bi_opf = REQ_OP_WRITE | REQ_FUA;
421 	bio->bi_bdev = log->rdev->bdev;
422 	bio->bi_iter.bi_sector = log->rdev->ppl.sector;
423 	bio_add_page(bio, io->header_page, PAGE_SIZE, 0);
424 
425 	list_for_each_entry(sh, &io->stripe_list, log_list) {
426 		/* entries for full stripe writes have no partial parity */
427 		if (test_bit(STRIPE_FULL_WRITE, &sh->state))
428 			continue;
429 
430 		if (!bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0)) {
431 			struct bio *prev = bio;
432 
433 			bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES,
434 					       ppl_conf->bs);
435 			bio->bi_opf = prev->bi_opf;
436 			bio->bi_bdev = prev->bi_bdev;
437 			bio->bi_iter.bi_sector = bio_end_sector(prev);
438 			bio_add_page(bio, sh->ppl_page, PAGE_SIZE, 0);
439 
440 			bio_chain(bio, prev);
441 			ppl_submit_iounit_bio(io, prev);
442 		}
443 	}
444 
445 	ppl_submit_iounit_bio(io, bio);
446 }
447 
448 static void ppl_submit_current_io(struct ppl_log *log)
449 {
450 	struct ppl_io_unit *io;
451 
452 	spin_lock_irq(&log->io_list_lock);
453 
454 	io = list_first_entry_or_null(&log->io_list, struct ppl_io_unit,
455 				      log_sibling);
456 	if (io && io->submitted)
457 		io = NULL;
458 
459 	spin_unlock_irq(&log->io_list_lock);
460 
461 	if (io) {
462 		io->submitted = true;
463 
464 		if (io == log->current_io)
465 			log->current_io = NULL;
466 
467 		ppl_submit_iounit(io);
468 	}
469 }
470 
471 void ppl_write_stripe_run(struct r5conf *conf)
472 {
473 	struct ppl_conf *ppl_conf = conf->log_private;
474 	struct ppl_log *log;
475 	int i;
476 
477 	for (i = 0; i < ppl_conf->count; i++) {
478 		log = &ppl_conf->child_logs[i];
479 
480 		mutex_lock(&log->io_mutex);
481 		ppl_submit_current_io(log);
482 		mutex_unlock(&log->io_mutex);
483 	}
484 }
485 
486 static void ppl_io_unit_finished(struct ppl_io_unit *io)
487 {
488 	struct ppl_log *log = io->log;
489 	unsigned long flags;
490 
491 	pr_debug("%s: seq: %llu\n", __func__, io->seq);
492 
493 	spin_lock_irqsave(&log->io_list_lock, flags);
494 
495 	list_del(&io->log_sibling);
496 	mempool_free(io, log->ppl_conf->io_pool);
497 
498 	if (!list_empty(&log->no_mem_stripes)) {
499 		struct stripe_head *sh = list_first_entry(&log->no_mem_stripes,
500 							  struct stripe_head,
501 							  log_list);
502 		list_del_init(&sh->log_list);
503 		set_bit(STRIPE_HANDLE, &sh->state);
504 		raid5_release_stripe(sh);
505 	}
506 
507 	spin_unlock_irqrestore(&log->io_list_lock, flags);
508 }
509 
510 void ppl_stripe_write_finished(struct stripe_head *sh)
511 {
512 	struct ppl_io_unit *io;
513 
514 	io = sh->ppl_io;
515 	sh->ppl_io = NULL;
516 
517 	if (io && atomic_dec_and_test(&io->pending_stripes))
518 		ppl_io_unit_finished(io);
519 }
520 
521 static void ppl_xor(int size, struct page *page1, struct page *page2)
522 {
523 	struct async_submit_ctl submit;
524 	struct dma_async_tx_descriptor *tx;
525 	struct page *xor_srcs[] = { page1, page2 };
526 
527 	init_async_submit(&submit, ASYNC_TX_ACK|ASYNC_TX_XOR_DROP_DST,
528 			  NULL, NULL, NULL, NULL);
529 	tx = async_xor(page1, xor_srcs, 0, 2, size, &submit);
530 
531 	async_tx_quiesce(&tx);
532 }
533 
534 /*
535  * PPL recovery strategy: xor partial parity and data from all modified data
536  * disks within a stripe and write the result as the new stripe parity. If all
537  * stripe data disks are modified (full stripe write), no partial parity is
538  * available, so just xor the data disks.
539  *
540  * Recovery of a PPL entry shall occur only if all modified data disks are
541  * available and read from all of them succeeds.
542  *
543  * A PPL entry applies to a stripe, partial parity size for an entry is at most
544  * the size of the chunk. Examples of possible cases for a single entry:
545  *
546  * case 0: single data disk write:
547  *   data0    data1    data2     ppl        parity
548  * +--------+--------+--------+           +--------------------+
549  * | ------ | ------ | ------ | +----+    | (no change)        |
550  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
551  * | ------ | -data- | ------ | | pp | -> | data1 ^ pp         |
552  * | ------ | ------ | ------ | +----+    | (no change)        |
553  * +--------+--------+--------+           +--------------------+
554  * pp_size = data_size
555  *
556  * case 1: more than one data disk write:
557  *   data0    data1    data2     ppl        parity
558  * +--------+--------+--------+           +--------------------+
559  * | ------ | ------ | ------ | +----+    | (no change)        |
560  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
561  * | -data- | -data- | ------ | | pp | -> | data0 ^ data1 ^ pp |
562  * | ------ | ------ | ------ | +----+    | (no change)        |
563  * +--------+--------+--------+           +--------------------+
564  * pp_size = data_size / modified_data_disks
565  *
566  * case 2: write to all data disks (also full stripe write):
567  *   data0    data1    data2                parity
568  * +--------+--------+--------+           +--------------------+
569  * | ------ | ------ | ------ |           | (no change)        |
570  * | -data- | -data- | -data- | --------> | xor all data       |
571  * | ------ | ------ | ------ | --------> | (no change)        |
572  * | ------ | ------ | ------ |           | (no change)        |
573  * +--------+--------+--------+           +--------------------+
574  * pp_size = 0
575  *
576  * The following cases are possible only in other implementations. The recovery
577  * code can handle them, but they are not generated at runtime because they can
578  * be reduced to cases 0, 1 and 2:
579  *
580  * case 3:
581  *   data0    data1    data2     ppl        parity
582  * +--------+--------+--------+ +----+    +--------------------+
583  * | ------ | -data- | -data- | | pp |    | data1 ^ data2 ^ pp |
584  * | ------ | -data- | -data- | | pp | -> | data1 ^ data2 ^ pp |
585  * | -data- | -data- | -data- | | -- | -> | xor all data       |
586  * | -data- | -data- | ------ | | pp |    | data0 ^ data1 ^ pp |
587  * +--------+--------+--------+ +----+    +--------------------+
588  * pp_size = chunk_size
589  *
590  * case 4:
591  *   data0    data1    data2     ppl        parity
592  * +--------+--------+--------+ +----+    +--------------------+
593  * | ------ | -data- | ------ | | pp |    | data1 ^ pp         |
594  * | ------ | ------ | ------ | | -- | -> | (no change)        |
595  * | ------ | ------ | ------ | | -- | -> | (no change)        |
596  * | -data- | ------ | ------ | | pp |    | data0 ^ pp         |
597  * +--------+--------+--------+ +----+    +--------------------+
598  * pp_size = chunk_size
599  */
600 static int ppl_recover_entry(struct ppl_log *log, struct ppl_header_entry *e,
601 			     sector_t ppl_sector)
602 {
603 	struct ppl_conf *ppl_conf = log->ppl_conf;
604 	struct mddev *mddev = ppl_conf->mddev;
605 	struct r5conf *conf = mddev->private;
606 	int block_size = ppl_conf->block_size;
607 	struct page *page1;
608 	struct page *page2;
609 	sector_t r_sector_first;
610 	sector_t r_sector_last;
611 	int strip_sectors;
612 	int data_disks;
613 	int i;
614 	int ret = 0;
615 	char b[BDEVNAME_SIZE];
616 	unsigned int pp_size = le32_to_cpu(e->pp_size);
617 	unsigned int data_size = le32_to_cpu(e->data_size);
618 
619 	page1 = alloc_page(GFP_KERNEL);
620 	page2 = alloc_page(GFP_KERNEL);
621 
622 	if (!page1 || !page2) {
623 		ret = -ENOMEM;
624 		goto out;
625 	}
626 
627 	r_sector_first = le64_to_cpu(e->data_sector) * (block_size >> 9);
628 
629 	if ((pp_size >> 9) < conf->chunk_sectors) {
630 		if (pp_size > 0) {
631 			data_disks = data_size / pp_size;
632 			strip_sectors = pp_size >> 9;
633 		} else {
634 			data_disks = conf->raid_disks - conf->max_degraded;
635 			strip_sectors = (data_size >> 9) / data_disks;
636 		}
637 		r_sector_last = r_sector_first +
638 				(data_disks - 1) * conf->chunk_sectors +
639 				strip_sectors;
640 	} else {
641 		data_disks = conf->raid_disks - conf->max_degraded;
642 		strip_sectors = conf->chunk_sectors;
643 		r_sector_last = r_sector_first + (data_size >> 9);
644 	}
645 
646 	pr_debug("%s: array sector first: %llu last: %llu\n", __func__,
647 		 (unsigned long long)r_sector_first,
648 		 (unsigned long long)r_sector_last);
649 
650 	/* if start and end is 4k aligned, use a 4k block */
651 	if (block_size == 512 &&
652 	    (r_sector_first & (STRIPE_SECTORS - 1)) == 0 &&
653 	    (r_sector_last & (STRIPE_SECTORS - 1)) == 0)
654 		block_size = STRIPE_SIZE;
655 
656 	/* iterate through blocks in strip */
657 	for (i = 0; i < strip_sectors; i += (block_size >> 9)) {
658 		bool update_parity = false;
659 		sector_t parity_sector;
660 		struct md_rdev *parity_rdev;
661 		struct stripe_head sh;
662 		int disk;
663 		int indent = 0;
664 
665 		pr_debug("%s:%*s iter %d start\n", __func__, indent, "", i);
666 		indent += 2;
667 
668 		memset(page_address(page1), 0, PAGE_SIZE);
669 
670 		/* iterate through data member disks */
671 		for (disk = 0; disk < data_disks; disk++) {
672 			int dd_idx;
673 			struct md_rdev *rdev;
674 			sector_t sector;
675 			sector_t r_sector = r_sector_first + i +
676 					    (disk * conf->chunk_sectors);
677 
678 			pr_debug("%s:%*s data member disk %d start\n",
679 				 __func__, indent, "", disk);
680 			indent += 2;
681 
682 			if (r_sector >= r_sector_last) {
683 				pr_debug("%s:%*s array sector %llu doesn't need parity update\n",
684 					 __func__, indent, "",
685 					 (unsigned long long)r_sector);
686 				indent -= 2;
687 				continue;
688 			}
689 
690 			update_parity = true;
691 
692 			/* map raid sector to member disk */
693 			sector = raid5_compute_sector(conf, r_sector, 0,
694 						      &dd_idx, NULL);
695 			pr_debug("%s:%*s processing array sector %llu => data member disk %d, sector %llu\n",
696 				 __func__, indent, "",
697 				 (unsigned long long)r_sector, dd_idx,
698 				 (unsigned long long)sector);
699 
700 			rdev = conf->disks[dd_idx].rdev;
701 			if (!rdev) {
702 				pr_debug("%s:%*s data member disk %d missing\n",
703 					 __func__, indent, "", dd_idx);
704 				update_parity = false;
705 				break;
706 			}
707 
708 			pr_debug("%s:%*s reading data member disk %s sector %llu\n",
709 				 __func__, indent, "", bdevname(rdev->bdev, b),
710 				 (unsigned long long)sector);
711 			if (!sync_page_io(rdev, sector, block_size, page2,
712 					REQ_OP_READ, 0, false)) {
713 				md_error(mddev, rdev);
714 				pr_debug("%s:%*s read failed!\n", __func__,
715 					 indent, "");
716 				ret = -EIO;
717 				goto out;
718 			}
719 
720 			ppl_xor(block_size, page1, page2);
721 
722 			indent -= 2;
723 		}
724 
725 		if (!update_parity)
726 			continue;
727 
728 		if (pp_size > 0) {
729 			pr_debug("%s:%*s reading pp disk sector %llu\n",
730 				 __func__, indent, "",
731 				 (unsigned long long)(ppl_sector + i));
732 			if (!sync_page_io(log->rdev,
733 					ppl_sector - log->rdev->data_offset + i,
734 					block_size, page2, REQ_OP_READ, 0,
735 					false)) {
736 				pr_debug("%s:%*s read failed!\n", __func__,
737 					 indent, "");
738 				md_error(mddev, log->rdev);
739 				ret = -EIO;
740 				goto out;
741 			}
742 
743 			ppl_xor(block_size, page1, page2);
744 		}
745 
746 		/* map raid sector to parity disk */
747 		parity_sector = raid5_compute_sector(conf, r_sector_first + i,
748 				0, &disk, &sh);
749 		BUG_ON(sh.pd_idx != le32_to_cpu(e->parity_disk));
750 		parity_rdev = conf->disks[sh.pd_idx].rdev;
751 
752 		BUG_ON(parity_rdev->bdev->bd_dev != log->rdev->bdev->bd_dev);
753 		pr_debug("%s:%*s write parity at sector %llu, disk %s\n",
754 			 __func__, indent, "",
755 			 (unsigned long long)parity_sector,
756 			 bdevname(parity_rdev->bdev, b));
757 		if (!sync_page_io(parity_rdev, parity_sector, block_size,
758 				page1, REQ_OP_WRITE, 0, false)) {
759 			pr_debug("%s:%*s parity write error!\n", __func__,
760 				 indent, "");
761 			md_error(mddev, parity_rdev);
762 			ret = -EIO;
763 			goto out;
764 		}
765 	}
766 out:
767 	if (page1)
768 		__free_page(page1);
769 	if (page2)
770 		__free_page(page2);
771 	return ret;
772 }
773 
774 static int ppl_recover(struct ppl_log *log, struct ppl_header *pplhdr)
775 {
776 	struct ppl_conf *ppl_conf = log->ppl_conf;
777 	struct md_rdev *rdev = log->rdev;
778 	struct mddev *mddev = rdev->mddev;
779 	sector_t ppl_sector = rdev->ppl.sector + (PPL_HEADER_SIZE >> 9);
780 	struct page *page;
781 	int i;
782 	int ret = 0;
783 
784 	page = alloc_page(GFP_KERNEL);
785 	if (!page)
786 		return -ENOMEM;
787 
788 	/* iterate through all PPL entries saved */
789 	for (i = 0; i < le32_to_cpu(pplhdr->entries_count); i++) {
790 		struct ppl_header_entry *e = &pplhdr->entries[i];
791 		u32 pp_size = le32_to_cpu(e->pp_size);
792 		sector_t sector = ppl_sector;
793 		int ppl_entry_sectors = pp_size >> 9;
794 		u32 crc, crc_stored;
795 
796 		pr_debug("%s: disk: %d entry: %d ppl_sector: %llu pp_size: %u\n",
797 			 __func__, rdev->raid_disk, i,
798 			 (unsigned long long)ppl_sector, pp_size);
799 
800 		crc = ~0;
801 		crc_stored = le32_to_cpu(e->checksum);
802 
803 		/* read parial parity for this entry and calculate its checksum */
804 		while (pp_size) {
805 			int s = pp_size > PAGE_SIZE ? PAGE_SIZE : pp_size;
806 
807 			if (!sync_page_io(rdev, sector - rdev->data_offset,
808 					s, page, REQ_OP_READ, 0, false)) {
809 				md_error(mddev, rdev);
810 				ret = -EIO;
811 				goto out;
812 			}
813 
814 			crc = crc32c_le(crc, page_address(page), s);
815 
816 			pp_size -= s;
817 			sector += s >> 9;
818 		}
819 
820 		crc = ~crc;
821 
822 		if (crc != crc_stored) {
823 			/*
824 			 * Don't recover this entry if the checksum does not
825 			 * match, but keep going and try to recover other
826 			 * entries.
827 			 */
828 			pr_debug("%s: ppl entry crc does not match: stored: 0x%x calculated: 0x%x\n",
829 				 __func__, crc_stored, crc);
830 			ppl_conf->mismatch_count++;
831 		} else {
832 			ret = ppl_recover_entry(log, e, ppl_sector);
833 			if (ret)
834 				goto out;
835 			ppl_conf->recovered_entries++;
836 		}
837 
838 		ppl_sector += ppl_entry_sectors;
839 	}
840 
841 	/* flush the disk cache after recovery if necessary */
842 	ret = blkdev_issue_flush(rdev->bdev, GFP_KERNEL, NULL);
843 out:
844 	__free_page(page);
845 	return ret;
846 }
847 
848 static int ppl_write_empty_header(struct ppl_log *log)
849 {
850 	struct page *page;
851 	struct ppl_header *pplhdr;
852 	struct md_rdev *rdev = log->rdev;
853 	int ret = 0;
854 
855 	pr_debug("%s: disk: %d ppl_sector: %llu\n", __func__,
856 		 rdev->raid_disk, (unsigned long long)rdev->ppl.sector);
857 
858 	page = alloc_page(GFP_NOIO | __GFP_ZERO);
859 	if (!page)
860 		return -ENOMEM;
861 
862 	pplhdr = page_address(page);
863 	memset(pplhdr->reserved, 0xff, PPL_HDR_RESERVED);
864 	pplhdr->signature = cpu_to_le32(log->ppl_conf->signature);
865 	pplhdr->checksum = cpu_to_le32(~crc32c_le(~0, pplhdr, PAGE_SIZE));
866 
867 	if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
868 			  PPL_HEADER_SIZE, page, REQ_OP_WRITE | REQ_FUA, 0,
869 			  false)) {
870 		md_error(rdev->mddev, rdev);
871 		ret = -EIO;
872 	}
873 
874 	__free_page(page);
875 	return ret;
876 }
877 
878 static int ppl_load_distributed(struct ppl_log *log)
879 {
880 	struct ppl_conf *ppl_conf = log->ppl_conf;
881 	struct md_rdev *rdev = log->rdev;
882 	struct mddev *mddev = rdev->mddev;
883 	struct page *page;
884 	struct ppl_header *pplhdr;
885 	u32 crc, crc_stored;
886 	u32 signature;
887 	int ret = 0;
888 
889 	pr_debug("%s: disk: %d\n", __func__, rdev->raid_disk);
890 
891 	/* read PPL header */
892 	page = alloc_page(GFP_KERNEL);
893 	if (!page)
894 		return -ENOMEM;
895 
896 	if (!sync_page_io(rdev, rdev->ppl.sector - rdev->data_offset,
897 			  PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
898 		md_error(mddev, rdev);
899 		ret = -EIO;
900 		goto out;
901 	}
902 	pplhdr = page_address(page);
903 
904 	/* check header validity */
905 	crc_stored = le32_to_cpu(pplhdr->checksum);
906 	pplhdr->checksum = 0;
907 	crc = ~crc32c_le(~0, pplhdr, PAGE_SIZE);
908 
909 	if (crc_stored != crc) {
910 		pr_debug("%s: ppl header crc does not match: stored: 0x%x calculated: 0x%x\n",
911 			 __func__, crc_stored, crc);
912 		ppl_conf->mismatch_count++;
913 		goto out;
914 	}
915 
916 	signature = le32_to_cpu(pplhdr->signature);
917 
918 	if (mddev->external) {
919 		/*
920 		 * For external metadata the header signature is set and
921 		 * validated in userspace.
922 		 */
923 		ppl_conf->signature = signature;
924 	} else if (ppl_conf->signature != signature) {
925 		pr_debug("%s: ppl header signature does not match: stored: 0x%x configured: 0x%x\n",
926 			 __func__, signature, ppl_conf->signature);
927 		ppl_conf->mismatch_count++;
928 		goto out;
929 	}
930 
931 	/* attempt to recover from log if we are starting a dirty array */
932 	if (!mddev->pers && mddev->recovery_cp != MaxSector)
933 		ret = ppl_recover(log, pplhdr);
934 out:
935 	/* write empty header if we are starting the array */
936 	if (!ret && !mddev->pers)
937 		ret = ppl_write_empty_header(log);
938 
939 	__free_page(page);
940 
941 	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
942 		 __func__, ret, ppl_conf->mismatch_count,
943 		 ppl_conf->recovered_entries);
944 	return ret;
945 }
946 
947 static int ppl_load(struct ppl_conf *ppl_conf)
948 {
949 	int ret = 0;
950 	u32 signature = 0;
951 	bool signature_set = false;
952 	int i;
953 
954 	for (i = 0; i < ppl_conf->count; i++) {
955 		struct ppl_log *log = &ppl_conf->child_logs[i];
956 
957 		/* skip missing drive */
958 		if (!log->rdev)
959 			continue;
960 
961 		ret = ppl_load_distributed(log);
962 		if (ret)
963 			break;
964 
965 		/*
966 		 * For external metadata we can't check if the signature is
967 		 * correct on a single drive, but we can check if it is the same
968 		 * on all drives.
969 		 */
970 		if (ppl_conf->mddev->external) {
971 			if (!signature_set) {
972 				signature = ppl_conf->signature;
973 				signature_set = true;
974 			} else if (signature != ppl_conf->signature) {
975 				pr_warn("md/raid:%s: PPL header signature does not match on all member drives\n",
976 					mdname(ppl_conf->mddev));
977 				ret = -EINVAL;
978 				break;
979 			}
980 		}
981 	}
982 
983 	pr_debug("%s: return: %d mismatch_count: %d recovered_entries: %d\n",
984 		 __func__, ret, ppl_conf->mismatch_count,
985 		 ppl_conf->recovered_entries);
986 	return ret;
987 }
988 
989 static void __ppl_exit_log(struct ppl_conf *ppl_conf)
990 {
991 	clear_bit(MD_HAS_PPL, &ppl_conf->mddev->flags);
992 
993 	kfree(ppl_conf->child_logs);
994 
995 	mempool_destroy(ppl_conf->meta_pool);
996 	if (ppl_conf->bs)
997 		bioset_free(ppl_conf->bs);
998 	mempool_destroy(ppl_conf->io_pool);
999 	kmem_cache_destroy(ppl_conf->io_kc);
1000 
1001 	kfree(ppl_conf);
1002 }
1003 
1004 void ppl_exit_log(struct r5conf *conf)
1005 {
1006 	struct ppl_conf *ppl_conf = conf->log_private;
1007 
1008 	if (ppl_conf) {
1009 		__ppl_exit_log(ppl_conf);
1010 		conf->log_private = NULL;
1011 	}
1012 }
1013 
1014 static int ppl_validate_rdev(struct md_rdev *rdev)
1015 {
1016 	char b[BDEVNAME_SIZE];
1017 	int ppl_data_sectors;
1018 	int ppl_size_new;
1019 
1020 	/*
1021 	 * The configured PPL size must be enough to store
1022 	 * the header and (at the very least) partial parity
1023 	 * for one stripe. Round it down to ensure the data
1024 	 * space is cleanly divisible by stripe size.
1025 	 */
1026 	ppl_data_sectors = rdev->ppl.size - (PPL_HEADER_SIZE >> 9);
1027 
1028 	if (ppl_data_sectors > 0)
1029 		ppl_data_sectors = rounddown(ppl_data_sectors, STRIPE_SECTORS);
1030 
1031 	if (ppl_data_sectors <= 0) {
1032 		pr_warn("md/raid:%s: PPL space too small on %s\n",
1033 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1034 		return -ENOSPC;
1035 	}
1036 
1037 	ppl_size_new = ppl_data_sectors + (PPL_HEADER_SIZE >> 9);
1038 
1039 	if ((rdev->ppl.sector < rdev->data_offset &&
1040 	     rdev->ppl.sector + ppl_size_new > rdev->data_offset) ||
1041 	    (rdev->ppl.sector >= rdev->data_offset &&
1042 	     rdev->data_offset + rdev->sectors > rdev->ppl.sector)) {
1043 		pr_warn("md/raid:%s: PPL space overlaps with data on %s\n",
1044 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1045 		return -EINVAL;
1046 	}
1047 
1048 	if (!rdev->mddev->external &&
1049 	    ((rdev->ppl.offset > 0 && rdev->ppl.offset < (rdev->sb_size >> 9)) ||
1050 	     (rdev->ppl.offset <= 0 && rdev->ppl.offset + ppl_size_new > 0))) {
1051 		pr_warn("md/raid:%s: PPL space overlaps with superblock on %s\n",
1052 			mdname(rdev->mddev), bdevname(rdev->bdev, b));
1053 		return -EINVAL;
1054 	}
1055 
1056 	rdev->ppl.size = ppl_size_new;
1057 
1058 	return 0;
1059 }
1060 
1061 int ppl_init_log(struct r5conf *conf)
1062 {
1063 	struct ppl_conf *ppl_conf;
1064 	struct mddev *mddev = conf->mddev;
1065 	int ret = 0;
1066 	int i;
1067 	bool need_cache_flush;
1068 
1069 	pr_debug("md/raid:%s: enabling distributed Partial Parity Log\n",
1070 		 mdname(conf->mddev));
1071 
1072 	if (PAGE_SIZE != 4096)
1073 		return -EINVAL;
1074 
1075 	if (mddev->level != 5) {
1076 		pr_warn("md/raid:%s PPL is not compatible with raid level %d\n",
1077 			mdname(mddev), mddev->level);
1078 		return -EINVAL;
1079 	}
1080 
1081 	if (mddev->bitmap_info.file || mddev->bitmap_info.offset) {
1082 		pr_warn("md/raid:%s PPL is not compatible with bitmap\n",
1083 			mdname(mddev));
1084 		return -EINVAL;
1085 	}
1086 
1087 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
1088 		pr_warn("md/raid:%s PPL is not compatible with journal\n",
1089 			mdname(mddev));
1090 		return -EINVAL;
1091 	}
1092 
1093 	ppl_conf = kzalloc(sizeof(struct ppl_conf), GFP_KERNEL);
1094 	if (!ppl_conf)
1095 		return -ENOMEM;
1096 
1097 	ppl_conf->mddev = mddev;
1098 
1099 	ppl_conf->io_kc = KMEM_CACHE(ppl_io_unit, 0);
1100 	if (!ppl_conf->io_kc) {
1101 		ret = -EINVAL;
1102 		goto err;
1103 	}
1104 
1105 	ppl_conf->io_pool = mempool_create_slab_pool(conf->raid_disks, ppl_conf->io_kc);
1106 	if (!ppl_conf->io_pool) {
1107 		ret = -EINVAL;
1108 		goto err;
1109 	}
1110 
1111 	ppl_conf->bs = bioset_create(conf->raid_disks, 0);
1112 	if (!ppl_conf->bs) {
1113 		ret = -EINVAL;
1114 		goto err;
1115 	}
1116 
1117 	ppl_conf->meta_pool = mempool_create_page_pool(conf->raid_disks, 0);
1118 	if (!ppl_conf->meta_pool) {
1119 		ret = -EINVAL;
1120 		goto err;
1121 	}
1122 
1123 	ppl_conf->count = conf->raid_disks;
1124 	ppl_conf->child_logs = kcalloc(ppl_conf->count, sizeof(struct ppl_log),
1125 				       GFP_KERNEL);
1126 	if (!ppl_conf->child_logs) {
1127 		ret = -ENOMEM;
1128 		goto err;
1129 	}
1130 
1131 	atomic64_set(&ppl_conf->seq, 0);
1132 
1133 	if (!mddev->external) {
1134 		ppl_conf->signature = ~crc32c_le(~0, mddev->uuid, sizeof(mddev->uuid));
1135 		ppl_conf->block_size = 512;
1136 	} else {
1137 		ppl_conf->block_size = queue_logical_block_size(mddev->queue);
1138 	}
1139 
1140 	for (i = 0; i < ppl_conf->count; i++) {
1141 		struct ppl_log *log = &ppl_conf->child_logs[i];
1142 		struct md_rdev *rdev = conf->disks[i].rdev;
1143 
1144 		mutex_init(&log->io_mutex);
1145 		spin_lock_init(&log->io_list_lock);
1146 		INIT_LIST_HEAD(&log->io_list);
1147 		INIT_LIST_HEAD(&log->no_mem_stripes);
1148 
1149 		log->ppl_conf = ppl_conf;
1150 		log->rdev = rdev;
1151 
1152 		if (rdev) {
1153 			struct request_queue *q;
1154 
1155 			ret = ppl_validate_rdev(rdev);
1156 			if (ret)
1157 				goto err;
1158 
1159 			q = bdev_get_queue(rdev->bdev);
1160 			if (test_bit(QUEUE_FLAG_WC, &q->queue_flags))
1161 				need_cache_flush = true;
1162 		}
1163 	}
1164 
1165 	if (need_cache_flush)
1166 		pr_warn("md/raid:%s: Volatile write-back cache should be disabled on all member drives when using PPL!\n",
1167 			mdname(mddev));
1168 
1169 	/* load and possibly recover the logs from the member disks */
1170 	ret = ppl_load(ppl_conf);
1171 
1172 	if (ret) {
1173 		goto err;
1174 	} else if (!mddev->pers &&
1175 		   mddev->recovery_cp == 0 && !mddev->degraded &&
1176 		   ppl_conf->recovered_entries > 0 &&
1177 		   ppl_conf->mismatch_count == 0) {
1178 		/*
1179 		 * If we are starting a dirty array and the recovery succeeds
1180 		 * without any issues, set the array as clean.
1181 		 */
1182 		mddev->recovery_cp = MaxSector;
1183 		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
1184 	}
1185 
1186 	conf->log_private = ppl_conf;
1187 
1188 	return 0;
1189 err:
1190 	__ppl_exit_log(ppl_conf);
1191 	return ret;
1192 }
1193