1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/slab.h> 22 #include <linux/delay.h> 23 #include <linux/blkdev.h> 24 #include <linux/seq_file.h> 25 #include "md.h" 26 #include "raid10.h" 27 #include "raid0.h" 28 #include "bitmap.h" 29 30 /* 31 * RAID10 provides a combination of RAID0 and RAID1 functionality. 32 * The layout of data is defined by 33 * chunk_size 34 * raid_disks 35 * near_copies (stored in low byte of layout) 36 * far_copies (stored in second byte of layout) 37 * far_offset (stored in bit 16 of layout ) 38 * 39 * The data to be stored is divided into chunks using chunksize. 40 * Each device is divided into far_copies sections. 41 * In each section, chunks are laid out in a style similar to raid0, but 42 * near_copies copies of each chunk is stored (each on a different drive). 43 * The starting device for each section is offset near_copies from the starting 44 * device of the previous section. 45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different 46 * drive. 47 * near_copies and far_copies must be at least one, and their product is at most 48 * raid_disks. 49 * 50 * If far_offset is true, then the far_copies are handled a bit differently. 51 * The copies are still in different stripes, but instead of be very far apart 52 * on disk, there are adjacent stripes. 53 */ 54 55 /* 56 * Number of guaranteed r10bios in case of extreme VM load: 57 */ 58 #define NR_RAID10_BIOS 256 59 60 static void unplug_slaves(mddev_t *mddev); 61 62 static void allow_barrier(conf_t *conf); 63 static void lower_barrier(conf_t *conf); 64 65 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data) 66 { 67 conf_t *conf = data; 68 r10bio_t *r10_bio; 69 int size = offsetof(struct r10bio_s, devs[conf->copies]); 70 71 /* allocate a r10bio with room for raid_disks entries in the bios array */ 72 r10_bio = kzalloc(size, gfp_flags); 73 if (!r10_bio && conf->mddev) 74 unplug_slaves(conf->mddev); 75 76 return r10_bio; 77 } 78 79 static void r10bio_pool_free(void *r10_bio, void *data) 80 { 81 kfree(r10_bio); 82 } 83 84 /* Maximum size of each resync request */ 85 #define RESYNC_BLOCK_SIZE (64*1024) 86 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 87 /* amount of memory to reserve for resync requests */ 88 #define RESYNC_WINDOW (1024*1024) 89 /* maximum number of concurrent requests, memory permitting */ 90 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE) 91 92 /* 93 * When performing a resync, we need to read and compare, so 94 * we need as many pages are there are copies. 95 * When performing a recovery, we need 2 bios, one for read, 96 * one for write (we recover only one drive per r10buf) 97 * 98 */ 99 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data) 100 { 101 conf_t *conf = data; 102 struct page *page; 103 r10bio_t *r10_bio; 104 struct bio *bio; 105 int i, j; 106 int nalloc; 107 108 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 109 if (!r10_bio) { 110 unplug_slaves(conf->mddev); 111 return NULL; 112 } 113 114 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 115 nalloc = conf->copies; /* resync */ 116 else 117 nalloc = 2; /* recovery */ 118 119 /* 120 * Allocate bios. 121 */ 122 for (j = nalloc ; j-- ; ) { 123 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 124 if (!bio) 125 goto out_free_bio; 126 r10_bio->devs[j].bio = bio; 127 } 128 /* 129 * Allocate RESYNC_PAGES data pages and attach them 130 * where needed. 131 */ 132 for (j = 0 ; j < nalloc; j++) { 133 bio = r10_bio->devs[j].bio; 134 for (i = 0; i < RESYNC_PAGES; i++) { 135 page = alloc_page(gfp_flags); 136 if (unlikely(!page)) 137 goto out_free_pages; 138 139 bio->bi_io_vec[i].bv_page = page; 140 } 141 } 142 143 return r10_bio; 144 145 out_free_pages: 146 for ( ; i > 0 ; i--) 147 safe_put_page(bio->bi_io_vec[i-1].bv_page); 148 while (j--) 149 for (i = 0; i < RESYNC_PAGES ; i++) 150 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 151 j = -1; 152 out_free_bio: 153 while ( ++j < nalloc ) 154 bio_put(r10_bio->devs[j].bio); 155 r10bio_pool_free(r10_bio, conf); 156 return NULL; 157 } 158 159 static void r10buf_pool_free(void *__r10_bio, void *data) 160 { 161 int i; 162 conf_t *conf = data; 163 r10bio_t *r10bio = __r10_bio; 164 int j; 165 166 for (j=0; j < conf->copies; j++) { 167 struct bio *bio = r10bio->devs[j].bio; 168 if (bio) { 169 for (i = 0; i < RESYNC_PAGES; i++) { 170 safe_put_page(bio->bi_io_vec[i].bv_page); 171 bio->bi_io_vec[i].bv_page = NULL; 172 } 173 bio_put(bio); 174 } 175 } 176 r10bio_pool_free(r10bio, conf); 177 } 178 179 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 180 { 181 int i; 182 183 for (i = 0; i < conf->copies; i++) { 184 struct bio **bio = & r10_bio->devs[i].bio; 185 if (*bio && *bio != IO_BLOCKED) 186 bio_put(*bio); 187 *bio = NULL; 188 } 189 } 190 191 static void free_r10bio(r10bio_t *r10_bio) 192 { 193 conf_t *conf = r10_bio->mddev->private; 194 195 /* 196 * Wake up any possible resync thread that waits for the device 197 * to go idle. 198 */ 199 allow_barrier(conf); 200 201 put_all_bios(conf, r10_bio); 202 mempool_free(r10_bio, conf->r10bio_pool); 203 } 204 205 static void put_buf(r10bio_t *r10_bio) 206 { 207 conf_t *conf = r10_bio->mddev->private; 208 209 mempool_free(r10_bio, conf->r10buf_pool); 210 211 lower_barrier(conf); 212 } 213 214 static void reschedule_retry(r10bio_t *r10_bio) 215 { 216 unsigned long flags; 217 mddev_t *mddev = r10_bio->mddev; 218 conf_t *conf = mddev->private; 219 220 spin_lock_irqsave(&conf->device_lock, flags); 221 list_add(&r10_bio->retry_list, &conf->retry_list); 222 conf->nr_queued ++; 223 spin_unlock_irqrestore(&conf->device_lock, flags); 224 225 /* wake up frozen array... */ 226 wake_up(&conf->wait_barrier); 227 228 md_wakeup_thread(mddev->thread); 229 } 230 231 /* 232 * raid_end_bio_io() is called when we have finished servicing a mirrored 233 * operation and are ready to return a success/failure code to the buffer 234 * cache layer. 235 */ 236 static void raid_end_bio_io(r10bio_t *r10_bio) 237 { 238 struct bio *bio = r10_bio->master_bio; 239 240 bio_endio(bio, 241 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 242 free_r10bio(r10_bio); 243 } 244 245 /* 246 * Update disk head position estimator based on IRQ completion info. 247 */ 248 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 249 { 250 conf_t *conf = r10_bio->mddev->private; 251 252 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 253 r10_bio->devs[slot].addr + (r10_bio->sectors); 254 } 255 256 static void raid10_end_read_request(struct bio *bio, int error) 257 { 258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 259 r10bio_t *r10_bio = bio->bi_private; 260 int slot, dev; 261 conf_t *conf = r10_bio->mddev->private; 262 263 264 slot = r10_bio->read_slot; 265 dev = r10_bio->devs[slot].devnum; 266 /* 267 * this branch is our 'one mirror IO has finished' event handler: 268 */ 269 update_head_pos(slot, r10_bio); 270 271 if (uptodate) { 272 /* 273 * Set R10BIO_Uptodate in our master bio, so that 274 * we will return a good error code to the higher 275 * levels even if IO on some other mirrored buffer fails. 276 * 277 * The 'master' represents the composite IO operation to 278 * user-side. So if something waits for IO, then it will 279 * wait for the 'master' bio. 280 */ 281 set_bit(R10BIO_Uptodate, &r10_bio->state); 282 raid_end_bio_io(r10_bio); 283 } else { 284 /* 285 * oops, read error: 286 */ 287 char b[BDEVNAME_SIZE]; 288 if (printk_ratelimit()) 289 printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n", 290 mdname(conf->mddev), 291 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 292 reschedule_retry(r10_bio); 293 } 294 295 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 296 } 297 298 static void raid10_end_write_request(struct bio *bio, int error) 299 { 300 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 301 r10bio_t *r10_bio = bio->bi_private; 302 int slot, dev; 303 conf_t *conf = r10_bio->mddev->private; 304 305 for (slot = 0; slot < conf->copies; slot++) 306 if (r10_bio->devs[slot].bio == bio) 307 break; 308 dev = r10_bio->devs[slot].devnum; 309 310 /* 311 * this branch is our 'one mirror IO has finished' event handler: 312 */ 313 if (!uptodate) { 314 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 315 /* an I/O failed, we can't clear the bitmap */ 316 set_bit(R10BIO_Degraded, &r10_bio->state); 317 } else 318 /* 319 * Set R10BIO_Uptodate in our master bio, so that 320 * we will return a good error code for to the higher 321 * levels even if IO on some other mirrored buffer fails. 322 * 323 * The 'master' represents the composite IO operation to 324 * user-side. So if something waits for IO, then it will 325 * wait for the 'master' bio. 326 */ 327 set_bit(R10BIO_Uptodate, &r10_bio->state); 328 329 update_head_pos(slot, r10_bio); 330 331 /* 332 * 333 * Let's see if all mirrored write operations have finished 334 * already. 335 */ 336 if (atomic_dec_and_test(&r10_bio->remaining)) { 337 /* clear the bitmap if all writes complete successfully */ 338 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector, 339 r10_bio->sectors, 340 !test_bit(R10BIO_Degraded, &r10_bio->state), 341 0); 342 md_write_end(r10_bio->mddev); 343 raid_end_bio_io(r10_bio); 344 } 345 346 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 347 } 348 349 350 /* 351 * RAID10 layout manager 352 * Aswell as the chunksize and raid_disks count, there are two 353 * parameters: near_copies and far_copies. 354 * near_copies * far_copies must be <= raid_disks. 355 * Normally one of these will be 1. 356 * If both are 1, we get raid0. 357 * If near_copies == raid_disks, we get raid1. 358 * 359 * Chunks are layed out in raid0 style with near_copies copies of the 360 * first chunk, followed by near_copies copies of the next chunk and 361 * so on. 362 * If far_copies > 1, then after 1/far_copies of the array has been assigned 363 * as described above, we start again with a device offset of near_copies. 364 * So we effectively have another copy of the whole array further down all 365 * the drives, but with blocks on different drives. 366 * With this layout, and block is never stored twice on the one device. 367 * 368 * raid10_find_phys finds the sector offset of a given virtual sector 369 * on each device that it is on. 370 * 371 * raid10_find_virt does the reverse mapping, from a device and a 372 * sector offset to a virtual address 373 */ 374 375 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 376 { 377 int n,f; 378 sector_t sector; 379 sector_t chunk; 380 sector_t stripe; 381 int dev; 382 383 int slot = 0; 384 385 /* now calculate first sector/dev */ 386 chunk = r10bio->sector >> conf->chunk_shift; 387 sector = r10bio->sector & conf->chunk_mask; 388 389 chunk *= conf->near_copies; 390 stripe = chunk; 391 dev = sector_div(stripe, conf->raid_disks); 392 if (conf->far_offset) 393 stripe *= conf->far_copies; 394 395 sector += stripe << conf->chunk_shift; 396 397 /* and calculate all the others */ 398 for (n=0; n < conf->near_copies; n++) { 399 int d = dev; 400 sector_t s = sector; 401 r10bio->devs[slot].addr = sector; 402 r10bio->devs[slot].devnum = d; 403 slot++; 404 405 for (f = 1; f < conf->far_copies; f++) { 406 d += conf->near_copies; 407 if (d >= conf->raid_disks) 408 d -= conf->raid_disks; 409 s += conf->stride; 410 r10bio->devs[slot].devnum = d; 411 r10bio->devs[slot].addr = s; 412 slot++; 413 } 414 dev++; 415 if (dev >= conf->raid_disks) { 416 dev = 0; 417 sector += (conf->chunk_mask + 1); 418 } 419 } 420 BUG_ON(slot != conf->copies); 421 } 422 423 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 424 { 425 sector_t offset, chunk, vchunk; 426 427 offset = sector & conf->chunk_mask; 428 if (conf->far_offset) { 429 int fc; 430 chunk = sector >> conf->chunk_shift; 431 fc = sector_div(chunk, conf->far_copies); 432 dev -= fc * conf->near_copies; 433 if (dev < 0) 434 dev += conf->raid_disks; 435 } else { 436 while (sector >= conf->stride) { 437 sector -= conf->stride; 438 if (dev < conf->near_copies) 439 dev += conf->raid_disks - conf->near_copies; 440 else 441 dev -= conf->near_copies; 442 } 443 chunk = sector >> conf->chunk_shift; 444 } 445 vchunk = chunk * conf->raid_disks + dev; 446 sector_div(vchunk, conf->near_copies); 447 return (vchunk << conf->chunk_shift) + offset; 448 } 449 450 /** 451 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 452 * @q: request queue 453 * @bvm: properties of new bio 454 * @biovec: the request that could be merged to it. 455 * 456 * Return amount of bytes we can accept at this offset 457 * If near_copies == raid_disk, there are no striping issues, 458 * but in that case, the function isn't called at all. 459 */ 460 static int raid10_mergeable_bvec(struct request_queue *q, 461 struct bvec_merge_data *bvm, 462 struct bio_vec *biovec) 463 { 464 mddev_t *mddev = q->queuedata; 465 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev); 466 int max; 467 unsigned int chunk_sectors = mddev->chunk_sectors; 468 unsigned int bio_sectors = bvm->bi_size >> 9; 469 470 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 471 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 472 if (max <= biovec->bv_len && bio_sectors == 0) 473 return biovec->bv_len; 474 else 475 return max; 476 } 477 478 /* 479 * This routine returns the disk from which the requested read should 480 * be done. There is a per-array 'next expected sequential IO' sector 481 * number - if this matches on the next IO then we use the last disk. 482 * There is also a per-disk 'last know head position' sector that is 483 * maintained from IRQ contexts, both the normal and the resync IO 484 * completion handlers update this position correctly. If there is no 485 * perfect sequential match then we pick the disk whose head is closest. 486 * 487 * If there are 2 mirrors in the same 2 devices, performance degrades 488 * because position is mirror, not device based. 489 * 490 * The rdev for the device selected will have nr_pending incremented. 491 */ 492 493 /* 494 * FIXME: possibly should rethink readbalancing and do it differently 495 * depending on near_copies / far_copies geometry. 496 */ 497 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 498 { 499 const sector_t this_sector = r10_bio->sector; 500 int disk, slot, nslot; 501 const int sectors = r10_bio->sectors; 502 sector_t new_distance, current_distance; 503 mdk_rdev_t *rdev; 504 505 raid10_find_phys(conf, r10_bio); 506 rcu_read_lock(); 507 /* 508 * Check if we can balance. We can balance on the whole 509 * device if no resync is going on (recovery is ok), or below 510 * the resync window. We take the first readable disk when 511 * above the resync window. 512 */ 513 if (conf->mddev->recovery_cp < MaxSector 514 && (this_sector + sectors >= conf->next_resync)) { 515 /* make sure that disk is operational */ 516 slot = 0; 517 disk = r10_bio->devs[slot].devnum; 518 519 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 520 r10_bio->devs[slot].bio == IO_BLOCKED || 521 !test_bit(In_sync, &rdev->flags)) { 522 slot++; 523 if (slot == conf->copies) { 524 slot = 0; 525 disk = -1; 526 break; 527 } 528 disk = r10_bio->devs[slot].devnum; 529 } 530 goto rb_out; 531 } 532 533 534 /* make sure the disk is operational */ 535 slot = 0; 536 disk = r10_bio->devs[slot].devnum; 537 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL || 538 r10_bio->devs[slot].bio == IO_BLOCKED || 539 !test_bit(In_sync, &rdev->flags)) { 540 slot ++; 541 if (slot == conf->copies) { 542 disk = -1; 543 goto rb_out; 544 } 545 disk = r10_bio->devs[slot].devnum; 546 } 547 548 549 current_distance = abs(r10_bio->devs[slot].addr - 550 conf->mirrors[disk].head_position); 551 552 /* Find the disk whose head is closest, 553 * or - for far > 1 - find the closest to partition beginning */ 554 555 for (nslot = slot; nslot < conf->copies; nslot++) { 556 int ndisk = r10_bio->devs[nslot].devnum; 557 558 559 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL || 560 r10_bio->devs[nslot].bio == IO_BLOCKED || 561 !test_bit(In_sync, &rdev->flags)) 562 continue; 563 564 /* This optimisation is debatable, and completely destroys 565 * sequential read speed for 'far copies' arrays. So only 566 * keep it for 'near' arrays, and review those later. 567 */ 568 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) { 569 disk = ndisk; 570 slot = nslot; 571 break; 572 } 573 574 /* for far > 1 always use the lowest address */ 575 if (conf->far_copies > 1) 576 new_distance = r10_bio->devs[nslot].addr; 577 else 578 new_distance = abs(r10_bio->devs[nslot].addr - 579 conf->mirrors[ndisk].head_position); 580 if (new_distance < current_distance) { 581 current_distance = new_distance; 582 disk = ndisk; 583 slot = nslot; 584 } 585 } 586 587 rb_out: 588 r10_bio->read_slot = slot; 589 /* conf->next_seq_sect = this_sector + sectors;*/ 590 591 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL) 592 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 593 else 594 disk = -1; 595 rcu_read_unlock(); 596 597 return disk; 598 } 599 600 static void unplug_slaves(mddev_t *mddev) 601 { 602 conf_t *conf = mddev->private; 603 int i; 604 605 rcu_read_lock(); 606 for (i=0; i < conf->raid_disks; i++) { 607 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 608 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 609 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 610 611 atomic_inc(&rdev->nr_pending); 612 rcu_read_unlock(); 613 614 blk_unplug(r_queue); 615 616 rdev_dec_pending(rdev, mddev); 617 rcu_read_lock(); 618 } 619 } 620 rcu_read_unlock(); 621 } 622 623 static void raid10_unplug(struct request_queue *q) 624 { 625 mddev_t *mddev = q->queuedata; 626 627 unplug_slaves(q->queuedata); 628 md_wakeup_thread(mddev->thread); 629 } 630 631 static int raid10_congested(void *data, int bits) 632 { 633 mddev_t *mddev = data; 634 conf_t *conf = mddev->private; 635 int i, ret = 0; 636 637 if (mddev_congested(mddev, bits)) 638 return 1; 639 rcu_read_lock(); 640 for (i = 0; i < conf->raid_disks && ret == 0; i++) { 641 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 642 if (rdev && !test_bit(Faulty, &rdev->flags)) { 643 struct request_queue *q = bdev_get_queue(rdev->bdev); 644 645 ret |= bdi_congested(&q->backing_dev_info, bits); 646 } 647 } 648 rcu_read_unlock(); 649 return ret; 650 } 651 652 static int flush_pending_writes(conf_t *conf) 653 { 654 /* Any writes that have been queued but are awaiting 655 * bitmap updates get flushed here. 656 * We return 1 if any requests were actually submitted. 657 */ 658 int rv = 0; 659 660 spin_lock_irq(&conf->device_lock); 661 662 if (conf->pending_bio_list.head) { 663 struct bio *bio; 664 bio = bio_list_get(&conf->pending_bio_list); 665 blk_remove_plug(conf->mddev->queue); 666 spin_unlock_irq(&conf->device_lock); 667 /* flush any pending bitmap writes to disk 668 * before proceeding w/ I/O */ 669 bitmap_unplug(conf->mddev->bitmap); 670 671 while (bio) { /* submit pending writes */ 672 struct bio *next = bio->bi_next; 673 bio->bi_next = NULL; 674 generic_make_request(bio); 675 bio = next; 676 } 677 rv = 1; 678 } else 679 spin_unlock_irq(&conf->device_lock); 680 return rv; 681 } 682 /* Barriers.... 683 * Sometimes we need to suspend IO while we do something else, 684 * either some resync/recovery, or reconfigure the array. 685 * To do this we raise a 'barrier'. 686 * The 'barrier' is a counter that can be raised multiple times 687 * to count how many activities are happening which preclude 688 * normal IO. 689 * We can only raise the barrier if there is no pending IO. 690 * i.e. if nr_pending == 0. 691 * We choose only to raise the barrier if no-one is waiting for the 692 * barrier to go down. This means that as soon as an IO request 693 * is ready, no other operations which require a barrier will start 694 * until the IO request has had a chance. 695 * 696 * So: regular IO calls 'wait_barrier'. When that returns there 697 * is no backgroup IO happening, It must arrange to call 698 * allow_barrier when it has finished its IO. 699 * backgroup IO calls must call raise_barrier. Once that returns 700 * there is no normal IO happeing. It must arrange to call 701 * lower_barrier when the particular background IO completes. 702 */ 703 704 static void raise_barrier(conf_t *conf, int force) 705 { 706 BUG_ON(force && !conf->barrier); 707 spin_lock_irq(&conf->resync_lock); 708 709 /* Wait until no block IO is waiting (unless 'force') */ 710 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting, 711 conf->resync_lock, 712 raid10_unplug(conf->mddev->queue)); 713 714 /* block any new IO from starting */ 715 conf->barrier++; 716 717 /* No wait for all pending IO to complete */ 718 wait_event_lock_irq(conf->wait_barrier, 719 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 720 conf->resync_lock, 721 raid10_unplug(conf->mddev->queue)); 722 723 spin_unlock_irq(&conf->resync_lock); 724 } 725 726 static void lower_barrier(conf_t *conf) 727 { 728 unsigned long flags; 729 spin_lock_irqsave(&conf->resync_lock, flags); 730 conf->barrier--; 731 spin_unlock_irqrestore(&conf->resync_lock, flags); 732 wake_up(&conf->wait_barrier); 733 } 734 735 static void wait_barrier(conf_t *conf) 736 { 737 spin_lock_irq(&conf->resync_lock); 738 if (conf->barrier) { 739 conf->nr_waiting++; 740 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 741 conf->resync_lock, 742 raid10_unplug(conf->mddev->queue)); 743 conf->nr_waiting--; 744 } 745 conf->nr_pending++; 746 spin_unlock_irq(&conf->resync_lock); 747 } 748 749 static void allow_barrier(conf_t *conf) 750 { 751 unsigned long flags; 752 spin_lock_irqsave(&conf->resync_lock, flags); 753 conf->nr_pending--; 754 spin_unlock_irqrestore(&conf->resync_lock, flags); 755 wake_up(&conf->wait_barrier); 756 } 757 758 static void freeze_array(conf_t *conf) 759 { 760 /* stop syncio and normal IO and wait for everything to 761 * go quiet. 762 * We increment barrier and nr_waiting, and then 763 * wait until nr_pending match nr_queued+1 764 * This is called in the context of one normal IO request 765 * that has failed. Thus any sync request that might be pending 766 * will be blocked by nr_pending, and we need to wait for 767 * pending IO requests to complete or be queued for re-try. 768 * Thus the number queued (nr_queued) plus this request (1) 769 * must match the number of pending IOs (nr_pending) before 770 * we continue. 771 */ 772 spin_lock_irq(&conf->resync_lock); 773 conf->barrier++; 774 conf->nr_waiting++; 775 wait_event_lock_irq(conf->wait_barrier, 776 conf->nr_pending == conf->nr_queued+1, 777 conf->resync_lock, 778 ({ flush_pending_writes(conf); 779 raid10_unplug(conf->mddev->queue); })); 780 spin_unlock_irq(&conf->resync_lock); 781 } 782 783 static void unfreeze_array(conf_t *conf) 784 { 785 /* reverse the effect of the freeze */ 786 spin_lock_irq(&conf->resync_lock); 787 conf->barrier--; 788 conf->nr_waiting--; 789 wake_up(&conf->wait_barrier); 790 spin_unlock_irq(&conf->resync_lock); 791 } 792 793 static int make_request(mddev_t *mddev, struct bio * bio) 794 { 795 conf_t *conf = mddev->private; 796 mirror_info_t *mirror; 797 r10bio_t *r10_bio; 798 struct bio *read_bio; 799 int i; 800 int chunk_sects = conf->chunk_mask + 1; 801 const int rw = bio_data_dir(bio); 802 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO); 803 struct bio_list bl; 804 unsigned long flags; 805 mdk_rdev_t *blocked_rdev; 806 807 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) { 808 md_barrier_request(mddev, bio); 809 return 0; 810 } 811 812 /* If this request crosses a chunk boundary, we need to 813 * split it. This will only happen for 1 PAGE (or less) requests. 814 */ 815 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 816 > chunk_sects && 817 conf->near_copies < conf->raid_disks)) { 818 struct bio_pair *bp; 819 /* Sanity check -- queue functions should prevent this happening */ 820 if (bio->bi_vcnt != 1 || 821 bio->bi_idx != 0) 822 goto bad_map; 823 /* This is a one page bio that upper layers 824 * refuse to split for us, so we need to split it. 825 */ 826 bp = bio_split(bio, 827 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 828 829 /* Each of these 'make_request' calls will call 'wait_barrier'. 830 * If the first succeeds but the second blocks due to the resync 831 * thread raising the barrier, we will deadlock because the 832 * IO to the underlying device will be queued in generic_make_request 833 * and will never complete, so will never reduce nr_pending. 834 * So increment nr_waiting here so no new raise_barriers will 835 * succeed, and so the second wait_barrier cannot block. 836 */ 837 spin_lock_irq(&conf->resync_lock); 838 conf->nr_waiting++; 839 spin_unlock_irq(&conf->resync_lock); 840 841 if (make_request(mddev, &bp->bio1)) 842 generic_make_request(&bp->bio1); 843 if (make_request(mddev, &bp->bio2)) 844 generic_make_request(&bp->bio2); 845 846 spin_lock_irq(&conf->resync_lock); 847 conf->nr_waiting--; 848 wake_up(&conf->wait_barrier); 849 spin_unlock_irq(&conf->resync_lock); 850 851 bio_pair_release(bp); 852 return 0; 853 bad_map: 854 printk("md/raid10:%s: make_request bug: can't convert block across chunks" 855 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2, 856 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 857 858 bio_io_error(bio); 859 return 0; 860 } 861 862 md_write_start(mddev, bio); 863 864 /* 865 * Register the new request and wait if the reconstruction 866 * thread has put up a bar for new requests. 867 * Continue immediately if no resync is active currently. 868 */ 869 wait_barrier(conf); 870 871 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 872 873 r10_bio->master_bio = bio; 874 r10_bio->sectors = bio->bi_size >> 9; 875 876 r10_bio->mddev = mddev; 877 r10_bio->sector = bio->bi_sector; 878 r10_bio->state = 0; 879 880 if (rw == READ) { 881 /* 882 * read balancing logic: 883 */ 884 int disk = read_balance(conf, r10_bio); 885 int slot = r10_bio->read_slot; 886 if (disk < 0) { 887 raid_end_bio_io(r10_bio); 888 return 0; 889 } 890 mirror = conf->mirrors + disk; 891 892 read_bio = bio_clone(bio, GFP_NOIO); 893 894 r10_bio->devs[slot].bio = read_bio; 895 896 read_bio->bi_sector = r10_bio->devs[slot].addr + 897 mirror->rdev->data_offset; 898 read_bio->bi_bdev = mirror->rdev->bdev; 899 read_bio->bi_end_io = raid10_end_read_request; 900 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 901 read_bio->bi_private = r10_bio; 902 903 generic_make_request(read_bio); 904 return 0; 905 } 906 907 /* 908 * WRITE: 909 */ 910 /* first select target devices under rcu_lock and 911 * inc refcount on their rdev. Record them by setting 912 * bios[x] to bio 913 */ 914 raid10_find_phys(conf, r10_bio); 915 retry_write: 916 blocked_rdev = NULL; 917 rcu_read_lock(); 918 for (i = 0; i < conf->copies; i++) { 919 int d = r10_bio->devs[i].devnum; 920 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev); 921 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) { 922 atomic_inc(&rdev->nr_pending); 923 blocked_rdev = rdev; 924 break; 925 } 926 if (rdev && !test_bit(Faulty, &rdev->flags)) { 927 atomic_inc(&rdev->nr_pending); 928 r10_bio->devs[i].bio = bio; 929 } else { 930 r10_bio->devs[i].bio = NULL; 931 set_bit(R10BIO_Degraded, &r10_bio->state); 932 } 933 } 934 rcu_read_unlock(); 935 936 if (unlikely(blocked_rdev)) { 937 /* Have to wait for this device to get unblocked, then retry */ 938 int j; 939 int d; 940 941 for (j = 0; j < i; j++) 942 if (r10_bio->devs[j].bio) { 943 d = r10_bio->devs[j].devnum; 944 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 945 } 946 allow_barrier(conf); 947 md_wait_for_blocked_rdev(blocked_rdev, mddev); 948 wait_barrier(conf); 949 goto retry_write; 950 } 951 952 atomic_set(&r10_bio->remaining, 0); 953 954 bio_list_init(&bl); 955 for (i = 0; i < conf->copies; i++) { 956 struct bio *mbio; 957 int d = r10_bio->devs[i].devnum; 958 if (!r10_bio->devs[i].bio) 959 continue; 960 961 mbio = bio_clone(bio, GFP_NOIO); 962 r10_bio->devs[i].bio = mbio; 963 964 mbio->bi_sector = r10_bio->devs[i].addr+ 965 conf->mirrors[d].rdev->data_offset; 966 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 967 mbio->bi_end_io = raid10_end_write_request; 968 mbio->bi_rw = WRITE | (do_sync << BIO_RW_SYNCIO); 969 mbio->bi_private = r10_bio; 970 971 atomic_inc(&r10_bio->remaining); 972 bio_list_add(&bl, mbio); 973 } 974 975 if (unlikely(!atomic_read(&r10_bio->remaining))) { 976 /* the array is dead */ 977 md_write_end(mddev); 978 raid_end_bio_io(r10_bio); 979 return 0; 980 } 981 982 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0); 983 spin_lock_irqsave(&conf->device_lock, flags); 984 bio_list_merge(&conf->pending_bio_list, &bl); 985 blk_plug_device(mddev->queue); 986 spin_unlock_irqrestore(&conf->device_lock, flags); 987 988 /* In case raid10d snuck in to freeze_array */ 989 wake_up(&conf->wait_barrier); 990 991 if (do_sync) 992 md_wakeup_thread(mddev->thread); 993 994 return 0; 995 } 996 997 static void status(struct seq_file *seq, mddev_t *mddev) 998 { 999 conf_t *conf = mddev->private; 1000 int i; 1001 1002 if (conf->near_copies < conf->raid_disks) 1003 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2); 1004 if (conf->near_copies > 1) 1005 seq_printf(seq, " %d near-copies", conf->near_copies); 1006 if (conf->far_copies > 1) { 1007 if (conf->far_offset) 1008 seq_printf(seq, " %d offset-copies", conf->far_copies); 1009 else 1010 seq_printf(seq, " %d far-copies", conf->far_copies); 1011 } 1012 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 1013 conf->raid_disks - mddev->degraded); 1014 for (i = 0; i < conf->raid_disks; i++) 1015 seq_printf(seq, "%s", 1016 conf->mirrors[i].rdev && 1017 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_"); 1018 seq_printf(seq, "]"); 1019 } 1020 1021 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 1022 { 1023 char b[BDEVNAME_SIZE]; 1024 conf_t *conf = mddev->private; 1025 1026 /* 1027 * If it is not operational, then we have already marked it as dead 1028 * else if it is the last working disks, ignore the error, let the 1029 * next level up know. 1030 * else mark the drive as failed 1031 */ 1032 if (test_bit(In_sync, &rdev->flags) 1033 && conf->raid_disks-mddev->degraded == 1) 1034 /* 1035 * Don't fail the drive, just return an IO error. 1036 * The test should really be more sophisticated than 1037 * "working_disks == 1", but it isn't critical, and 1038 * can wait until we do more sophisticated "is the drive 1039 * really dead" tests... 1040 */ 1041 return; 1042 if (test_and_clear_bit(In_sync, &rdev->flags)) { 1043 unsigned long flags; 1044 spin_lock_irqsave(&conf->device_lock, flags); 1045 mddev->degraded++; 1046 spin_unlock_irqrestore(&conf->device_lock, flags); 1047 /* 1048 * if recovery is running, make sure it aborts. 1049 */ 1050 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 1051 } 1052 set_bit(Faulty, &rdev->flags); 1053 set_bit(MD_CHANGE_DEVS, &mddev->flags); 1054 printk(KERN_ALERT "md/raid10:%s: Disk failure on %s, disabling device.\n" 1055 KERN_ALERT "md/raid10:%s: Operation continuing on %d devices.\n", 1056 mdname(mddev), bdevname(rdev->bdev, b), 1057 mdname(mddev), conf->raid_disks - mddev->degraded); 1058 } 1059 1060 static void print_conf(conf_t *conf) 1061 { 1062 int i; 1063 mirror_info_t *tmp; 1064 1065 printk(KERN_DEBUG "RAID10 conf printout:\n"); 1066 if (!conf) { 1067 printk(KERN_DEBUG "(!conf)\n"); 1068 return; 1069 } 1070 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 1071 conf->raid_disks); 1072 1073 for (i = 0; i < conf->raid_disks; i++) { 1074 char b[BDEVNAME_SIZE]; 1075 tmp = conf->mirrors + i; 1076 if (tmp->rdev) 1077 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n", 1078 i, !test_bit(In_sync, &tmp->rdev->flags), 1079 !test_bit(Faulty, &tmp->rdev->flags), 1080 bdevname(tmp->rdev->bdev,b)); 1081 } 1082 } 1083 1084 static void close_sync(conf_t *conf) 1085 { 1086 wait_barrier(conf); 1087 allow_barrier(conf); 1088 1089 mempool_destroy(conf->r10buf_pool); 1090 conf->r10buf_pool = NULL; 1091 } 1092 1093 /* check if there are enough drives for 1094 * every block to appear on atleast one 1095 */ 1096 static int enough(conf_t *conf) 1097 { 1098 int first = 0; 1099 1100 do { 1101 int n = conf->copies; 1102 int cnt = 0; 1103 while (n--) { 1104 if (conf->mirrors[first].rdev) 1105 cnt++; 1106 first = (first+1) % conf->raid_disks; 1107 } 1108 if (cnt == 0) 1109 return 0; 1110 } while (first != 0); 1111 return 1; 1112 } 1113 1114 static int raid10_spare_active(mddev_t *mddev) 1115 { 1116 int i; 1117 conf_t *conf = mddev->private; 1118 mirror_info_t *tmp; 1119 1120 /* 1121 * Find all non-in_sync disks within the RAID10 configuration 1122 * and mark them in_sync 1123 */ 1124 for (i = 0; i < conf->raid_disks; i++) { 1125 tmp = conf->mirrors + i; 1126 if (tmp->rdev 1127 && !test_bit(Faulty, &tmp->rdev->flags) 1128 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { 1129 unsigned long flags; 1130 spin_lock_irqsave(&conf->device_lock, flags); 1131 mddev->degraded--; 1132 spin_unlock_irqrestore(&conf->device_lock, flags); 1133 } 1134 } 1135 1136 print_conf(conf); 1137 return 0; 1138 } 1139 1140 1141 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1142 { 1143 conf_t *conf = mddev->private; 1144 int err = -EEXIST; 1145 int mirror; 1146 mirror_info_t *p; 1147 int first = 0; 1148 int last = conf->raid_disks - 1; 1149 1150 if (mddev->recovery_cp < MaxSector) 1151 /* only hot-add to in-sync arrays, as recovery is 1152 * very different from resync 1153 */ 1154 return -EBUSY; 1155 if (!enough(conf)) 1156 return -EINVAL; 1157 1158 if (rdev->raid_disk >= 0) 1159 first = last = rdev->raid_disk; 1160 1161 if (rdev->saved_raid_disk >= 0 && 1162 rdev->saved_raid_disk >= first && 1163 conf->mirrors[rdev->saved_raid_disk].rdev == NULL) 1164 mirror = rdev->saved_raid_disk; 1165 else 1166 mirror = first; 1167 for ( ; mirror <= last ; mirror++) 1168 if ( !(p=conf->mirrors+mirror)->rdev) { 1169 1170 disk_stack_limits(mddev->gendisk, rdev->bdev, 1171 rdev->data_offset << 9); 1172 /* as we don't honour merge_bvec_fn, we must 1173 * never risk violating it, so limit 1174 * ->max_segments to one lying with a single 1175 * page, as a one page request is never in 1176 * violation. 1177 */ 1178 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 1179 blk_queue_max_segments(mddev->queue, 1); 1180 blk_queue_segment_boundary(mddev->queue, 1181 PAGE_CACHE_SIZE - 1); 1182 } 1183 1184 p->head_position = 0; 1185 rdev->raid_disk = mirror; 1186 err = 0; 1187 if (rdev->saved_raid_disk != mirror) 1188 conf->fullsync = 1; 1189 rcu_assign_pointer(p->rdev, rdev); 1190 break; 1191 } 1192 1193 md_integrity_add_rdev(rdev, mddev); 1194 print_conf(conf); 1195 return err; 1196 } 1197 1198 static int raid10_remove_disk(mddev_t *mddev, int number) 1199 { 1200 conf_t *conf = mddev->private; 1201 int err = 0; 1202 mdk_rdev_t *rdev; 1203 mirror_info_t *p = conf->mirrors+ number; 1204 1205 print_conf(conf); 1206 rdev = p->rdev; 1207 if (rdev) { 1208 if (test_bit(In_sync, &rdev->flags) || 1209 atomic_read(&rdev->nr_pending)) { 1210 err = -EBUSY; 1211 goto abort; 1212 } 1213 /* Only remove faulty devices in recovery 1214 * is not possible. 1215 */ 1216 if (!test_bit(Faulty, &rdev->flags) && 1217 enough(conf)) { 1218 err = -EBUSY; 1219 goto abort; 1220 } 1221 p->rdev = NULL; 1222 synchronize_rcu(); 1223 if (atomic_read(&rdev->nr_pending)) { 1224 /* lost the race, try later */ 1225 err = -EBUSY; 1226 p->rdev = rdev; 1227 goto abort; 1228 } 1229 md_integrity_register(mddev); 1230 } 1231 abort: 1232 1233 print_conf(conf); 1234 return err; 1235 } 1236 1237 1238 static void end_sync_read(struct bio *bio, int error) 1239 { 1240 r10bio_t *r10_bio = bio->bi_private; 1241 conf_t *conf = r10_bio->mddev->private; 1242 int i,d; 1243 1244 for (i=0; i<conf->copies; i++) 1245 if (r10_bio->devs[i].bio == bio) 1246 break; 1247 BUG_ON(i == conf->copies); 1248 update_head_pos(i, r10_bio); 1249 d = r10_bio->devs[i].devnum; 1250 1251 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1252 set_bit(R10BIO_Uptodate, &r10_bio->state); 1253 else { 1254 atomic_add(r10_bio->sectors, 1255 &conf->mirrors[d].rdev->corrected_errors); 1256 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 1257 md_error(r10_bio->mddev, 1258 conf->mirrors[d].rdev); 1259 } 1260 1261 /* for reconstruct, we always reschedule after a read. 1262 * for resync, only after all reads 1263 */ 1264 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1265 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1266 atomic_dec_and_test(&r10_bio->remaining)) { 1267 /* we have read all the blocks, 1268 * do the comparison in process context in raid10d 1269 */ 1270 reschedule_retry(r10_bio); 1271 } 1272 } 1273 1274 static void end_sync_write(struct bio *bio, int error) 1275 { 1276 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1277 r10bio_t *r10_bio = bio->bi_private; 1278 mddev_t *mddev = r10_bio->mddev; 1279 conf_t *conf = mddev->private; 1280 int i,d; 1281 1282 for (i = 0; i < conf->copies; i++) 1283 if (r10_bio->devs[i].bio == bio) 1284 break; 1285 d = r10_bio->devs[i].devnum; 1286 1287 if (!uptodate) 1288 md_error(mddev, conf->mirrors[d].rdev); 1289 1290 update_head_pos(i, r10_bio); 1291 1292 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1293 while (atomic_dec_and_test(&r10_bio->remaining)) { 1294 if (r10_bio->master_bio == NULL) { 1295 /* the primary of several recovery bios */ 1296 sector_t s = r10_bio->sectors; 1297 put_buf(r10_bio); 1298 md_done_sync(mddev, s, 1); 1299 break; 1300 } else { 1301 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1302 put_buf(r10_bio); 1303 r10_bio = r10_bio2; 1304 } 1305 } 1306 } 1307 1308 /* 1309 * Note: sync and recover and handled very differently for raid10 1310 * This code is for resync. 1311 * For resync, we read through virtual addresses and read all blocks. 1312 * If there is any error, we schedule a write. The lowest numbered 1313 * drive is authoritative. 1314 * However requests come for physical address, so we need to map. 1315 * For every physical address there are raid_disks/copies virtual addresses, 1316 * which is always are least one, but is not necessarly an integer. 1317 * This means that a physical address can span multiple chunks, so we may 1318 * have to submit multiple io requests for a single sync request. 1319 */ 1320 /* 1321 * We check if all blocks are in-sync and only write to blocks that 1322 * aren't in sync 1323 */ 1324 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1325 { 1326 conf_t *conf = mddev->private; 1327 int i, first; 1328 struct bio *tbio, *fbio; 1329 1330 atomic_set(&r10_bio->remaining, 1); 1331 1332 /* find the first device with a block */ 1333 for (i=0; i<conf->copies; i++) 1334 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1335 break; 1336 1337 if (i == conf->copies) 1338 goto done; 1339 1340 first = i; 1341 fbio = r10_bio->devs[i].bio; 1342 1343 /* now find blocks with errors */ 1344 for (i=0 ; i < conf->copies ; i++) { 1345 int j, d; 1346 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1347 1348 tbio = r10_bio->devs[i].bio; 1349 1350 if (tbio->bi_end_io != end_sync_read) 1351 continue; 1352 if (i == first) 1353 continue; 1354 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) { 1355 /* We know that the bi_io_vec layout is the same for 1356 * both 'first' and 'i', so we just compare them. 1357 * All vec entries are PAGE_SIZE; 1358 */ 1359 for (j = 0; j < vcnt; j++) 1360 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1361 page_address(tbio->bi_io_vec[j].bv_page), 1362 PAGE_SIZE)) 1363 break; 1364 if (j == vcnt) 1365 continue; 1366 mddev->resync_mismatches += r10_bio->sectors; 1367 } 1368 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 1369 /* Don't fix anything. */ 1370 continue; 1371 /* Ok, we need to write this bio 1372 * First we need to fixup bv_offset, bv_len and 1373 * bi_vecs, as the read request might have corrupted these 1374 */ 1375 tbio->bi_vcnt = vcnt; 1376 tbio->bi_size = r10_bio->sectors << 9; 1377 tbio->bi_idx = 0; 1378 tbio->bi_phys_segments = 0; 1379 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1380 tbio->bi_flags |= 1 << BIO_UPTODATE; 1381 tbio->bi_next = NULL; 1382 tbio->bi_rw = WRITE; 1383 tbio->bi_private = r10_bio; 1384 tbio->bi_sector = r10_bio->devs[i].addr; 1385 1386 for (j=0; j < vcnt ; j++) { 1387 tbio->bi_io_vec[j].bv_offset = 0; 1388 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1389 1390 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1391 page_address(fbio->bi_io_vec[j].bv_page), 1392 PAGE_SIZE); 1393 } 1394 tbio->bi_end_io = end_sync_write; 1395 1396 d = r10_bio->devs[i].devnum; 1397 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1398 atomic_inc(&r10_bio->remaining); 1399 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1400 1401 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1402 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1403 generic_make_request(tbio); 1404 } 1405 1406 done: 1407 if (atomic_dec_and_test(&r10_bio->remaining)) { 1408 md_done_sync(mddev, r10_bio->sectors, 1); 1409 put_buf(r10_bio); 1410 } 1411 } 1412 1413 /* 1414 * Now for the recovery code. 1415 * Recovery happens across physical sectors. 1416 * We recover all non-is_sync drives by finding the virtual address of 1417 * each, and then choose a working drive that also has that virt address. 1418 * There is a separate r10_bio for each non-in_sync drive. 1419 * Only the first two slots are in use. The first for reading, 1420 * The second for writing. 1421 * 1422 */ 1423 1424 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1425 { 1426 conf_t *conf = mddev->private; 1427 int i, d; 1428 struct bio *bio, *wbio; 1429 1430 1431 /* move the pages across to the second bio 1432 * and submit the write request 1433 */ 1434 bio = r10_bio->devs[0].bio; 1435 wbio = r10_bio->devs[1].bio; 1436 for (i=0; i < wbio->bi_vcnt; i++) { 1437 struct page *p = bio->bi_io_vec[i].bv_page; 1438 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1439 wbio->bi_io_vec[i].bv_page = p; 1440 } 1441 d = r10_bio->devs[1].devnum; 1442 1443 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1444 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1445 if (test_bit(R10BIO_Uptodate, &r10_bio->state)) 1446 generic_make_request(wbio); 1447 else 1448 bio_endio(wbio, -EIO); 1449 } 1450 1451 1452 /* 1453 * Used by fix_read_error() to decay the per rdev read_errors. 1454 * We halve the read error count for every hour that has elapsed 1455 * since the last recorded read error. 1456 * 1457 */ 1458 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev) 1459 { 1460 struct timespec cur_time_mon; 1461 unsigned long hours_since_last; 1462 unsigned int read_errors = atomic_read(&rdev->read_errors); 1463 1464 ktime_get_ts(&cur_time_mon); 1465 1466 if (rdev->last_read_error.tv_sec == 0 && 1467 rdev->last_read_error.tv_nsec == 0) { 1468 /* first time we've seen a read error */ 1469 rdev->last_read_error = cur_time_mon; 1470 return; 1471 } 1472 1473 hours_since_last = (cur_time_mon.tv_sec - 1474 rdev->last_read_error.tv_sec) / 3600; 1475 1476 rdev->last_read_error = cur_time_mon; 1477 1478 /* 1479 * if hours_since_last is > the number of bits in read_errors 1480 * just set read errors to 0. We do this to avoid 1481 * overflowing the shift of read_errors by hours_since_last. 1482 */ 1483 if (hours_since_last >= 8 * sizeof(read_errors)) 1484 atomic_set(&rdev->read_errors, 0); 1485 else 1486 atomic_set(&rdev->read_errors, read_errors >> hours_since_last); 1487 } 1488 1489 /* 1490 * This is a kernel thread which: 1491 * 1492 * 1. Retries failed read operations on working mirrors. 1493 * 2. Updates the raid superblock when problems encounter. 1494 * 3. Performs writes following reads for array synchronising. 1495 */ 1496 1497 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio) 1498 { 1499 int sect = 0; /* Offset from r10_bio->sector */ 1500 int sectors = r10_bio->sectors; 1501 mdk_rdev_t*rdev; 1502 int max_read_errors = atomic_read(&mddev->max_corr_read_errors); 1503 int d = r10_bio->devs[r10_bio->read_slot].devnum; 1504 1505 rcu_read_lock(); 1506 rdev = rcu_dereference(conf->mirrors[d].rdev); 1507 if (rdev) { /* If rdev is not NULL */ 1508 char b[BDEVNAME_SIZE]; 1509 int cur_read_error_count = 0; 1510 1511 bdevname(rdev->bdev, b); 1512 1513 if (test_bit(Faulty, &rdev->flags)) { 1514 rcu_read_unlock(); 1515 /* drive has already been failed, just ignore any 1516 more fix_read_error() attempts */ 1517 return; 1518 } 1519 1520 check_decay_read_errors(mddev, rdev); 1521 atomic_inc(&rdev->read_errors); 1522 cur_read_error_count = atomic_read(&rdev->read_errors); 1523 if (cur_read_error_count > max_read_errors) { 1524 rcu_read_unlock(); 1525 printk(KERN_NOTICE 1526 "md/raid10:%s: %s: Raid device exceeded " 1527 "read_error threshold " 1528 "[cur %d:max %d]\n", 1529 mdname(mddev), 1530 b, cur_read_error_count, max_read_errors); 1531 printk(KERN_NOTICE 1532 "md/raid10:%s: %s: Failing raid " 1533 "device\n", mdname(mddev), b); 1534 md_error(mddev, conf->mirrors[d].rdev); 1535 return; 1536 } 1537 } 1538 rcu_read_unlock(); 1539 1540 while(sectors) { 1541 int s = sectors; 1542 int sl = r10_bio->read_slot; 1543 int success = 0; 1544 int start; 1545 1546 if (s > (PAGE_SIZE>>9)) 1547 s = PAGE_SIZE >> 9; 1548 1549 rcu_read_lock(); 1550 do { 1551 d = r10_bio->devs[sl].devnum; 1552 rdev = rcu_dereference(conf->mirrors[d].rdev); 1553 if (rdev && 1554 test_bit(In_sync, &rdev->flags)) { 1555 atomic_inc(&rdev->nr_pending); 1556 rcu_read_unlock(); 1557 success = sync_page_io(rdev->bdev, 1558 r10_bio->devs[sl].addr + 1559 sect + rdev->data_offset, 1560 s<<9, 1561 conf->tmppage, READ); 1562 rdev_dec_pending(rdev, mddev); 1563 rcu_read_lock(); 1564 if (success) 1565 break; 1566 } 1567 sl++; 1568 if (sl == conf->copies) 1569 sl = 0; 1570 } while (!success && sl != r10_bio->read_slot); 1571 rcu_read_unlock(); 1572 1573 if (!success) { 1574 /* Cannot read from anywhere -- bye bye array */ 1575 int dn = r10_bio->devs[r10_bio->read_slot].devnum; 1576 md_error(mddev, conf->mirrors[dn].rdev); 1577 break; 1578 } 1579 1580 start = sl; 1581 /* write it back and re-read */ 1582 rcu_read_lock(); 1583 while (sl != r10_bio->read_slot) { 1584 char b[BDEVNAME_SIZE]; 1585 1586 if (sl==0) 1587 sl = conf->copies; 1588 sl--; 1589 d = r10_bio->devs[sl].devnum; 1590 rdev = rcu_dereference(conf->mirrors[d].rdev); 1591 if (rdev && 1592 test_bit(In_sync, &rdev->flags)) { 1593 atomic_inc(&rdev->nr_pending); 1594 rcu_read_unlock(); 1595 atomic_add(s, &rdev->corrected_errors); 1596 if (sync_page_io(rdev->bdev, 1597 r10_bio->devs[sl].addr + 1598 sect + rdev->data_offset, 1599 s<<9, conf->tmppage, WRITE) 1600 == 0) { 1601 /* Well, this device is dead */ 1602 printk(KERN_NOTICE 1603 "md/raid10:%s: read correction " 1604 "write failed" 1605 " (%d sectors at %llu on %s)\n", 1606 mdname(mddev), s, 1607 (unsigned long long)(sect+ 1608 rdev->data_offset), 1609 bdevname(rdev->bdev, b)); 1610 printk(KERN_NOTICE "md/raid10:%s: %s: failing " 1611 "drive\n", 1612 mdname(mddev), 1613 bdevname(rdev->bdev, b)); 1614 md_error(mddev, rdev); 1615 } 1616 rdev_dec_pending(rdev, mddev); 1617 rcu_read_lock(); 1618 } 1619 } 1620 sl = start; 1621 while (sl != r10_bio->read_slot) { 1622 1623 if (sl==0) 1624 sl = conf->copies; 1625 sl--; 1626 d = r10_bio->devs[sl].devnum; 1627 rdev = rcu_dereference(conf->mirrors[d].rdev); 1628 if (rdev && 1629 test_bit(In_sync, &rdev->flags)) { 1630 char b[BDEVNAME_SIZE]; 1631 atomic_inc(&rdev->nr_pending); 1632 rcu_read_unlock(); 1633 if (sync_page_io(rdev->bdev, 1634 r10_bio->devs[sl].addr + 1635 sect + rdev->data_offset, 1636 s<<9, conf->tmppage, 1637 READ) == 0) { 1638 /* Well, this device is dead */ 1639 printk(KERN_NOTICE 1640 "md/raid10:%s: unable to read back " 1641 "corrected sectors" 1642 " (%d sectors at %llu on %s)\n", 1643 mdname(mddev), s, 1644 (unsigned long long)(sect+ 1645 rdev->data_offset), 1646 bdevname(rdev->bdev, b)); 1647 printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n", 1648 mdname(mddev), 1649 bdevname(rdev->bdev, b)); 1650 1651 md_error(mddev, rdev); 1652 } else { 1653 printk(KERN_INFO 1654 "md/raid10:%s: read error corrected" 1655 " (%d sectors at %llu on %s)\n", 1656 mdname(mddev), s, 1657 (unsigned long long)(sect+ 1658 rdev->data_offset), 1659 bdevname(rdev->bdev, b)); 1660 } 1661 1662 rdev_dec_pending(rdev, mddev); 1663 rcu_read_lock(); 1664 } 1665 } 1666 rcu_read_unlock(); 1667 1668 sectors -= s; 1669 sect += s; 1670 } 1671 } 1672 1673 static void raid10d(mddev_t *mddev) 1674 { 1675 r10bio_t *r10_bio; 1676 struct bio *bio; 1677 unsigned long flags; 1678 conf_t *conf = mddev->private; 1679 struct list_head *head = &conf->retry_list; 1680 int unplug=0; 1681 mdk_rdev_t *rdev; 1682 1683 md_check_recovery(mddev); 1684 1685 for (;;) { 1686 char b[BDEVNAME_SIZE]; 1687 1688 unplug += flush_pending_writes(conf); 1689 1690 spin_lock_irqsave(&conf->device_lock, flags); 1691 if (list_empty(head)) { 1692 spin_unlock_irqrestore(&conf->device_lock, flags); 1693 break; 1694 } 1695 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1696 list_del(head->prev); 1697 conf->nr_queued--; 1698 spin_unlock_irqrestore(&conf->device_lock, flags); 1699 1700 mddev = r10_bio->mddev; 1701 conf = mddev->private; 1702 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1703 sync_request_write(mddev, r10_bio); 1704 unplug = 1; 1705 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1706 recovery_request_write(mddev, r10_bio); 1707 unplug = 1; 1708 } else { 1709 int mirror; 1710 /* we got a read error. Maybe the drive is bad. Maybe just 1711 * the block and we can fix it. 1712 * We freeze all other IO, and try reading the block from 1713 * other devices. When we find one, we re-write 1714 * and check it that fixes the read error. 1715 * This is all done synchronously while the array is 1716 * frozen. 1717 */ 1718 if (mddev->ro == 0) { 1719 freeze_array(conf); 1720 fix_read_error(conf, mddev, r10_bio); 1721 unfreeze_array(conf); 1722 } 1723 1724 bio = r10_bio->devs[r10_bio->read_slot].bio; 1725 r10_bio->devs[r10_bio->read_slot].bio = 1726 mddev->ro ? IO_BLOCKED : NULL; 1727 mirror = read_balance(conf, r10_bio); 1728 if (mirror == -1) { 1729 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O" 1730 " read error for block %llu\n", 1731 mdname(mddev), 1732 bdevname(bio->bi_bdev,b), 1733 (unsigned long long)r10_bio->sector); 1734 raid_end_bio_io(r10_bio); 1735 bio_put(bio); 1736 } else { 1737 const bool do_sync = bio_rw_flagged(r10_bio->master_bio, BIO_RW_SYNCIO); 1738 bio_put(bio); 1739 rdev = conf->mirrors[mirror].rdev; 1740 if (printk_ratelimit()) 1741 printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to" 1742 " another mirror\n", 1743 mdname(mddev), 1744 bdevname(rdev->bdev,b), 1745 (unsigned long long)r10_bio->sector); 1746 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1747 r10_bio->devs[r10_bio->read_slot].bio = bio; 1748 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1749 + rdev->data_offset; 1750 bio->bi_bdev = rdev->bdev; 1751 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO); 1752 bio->bi_private = r10_bio; 1753 bio->bi_end_io = raid10_end_read_request; 1754 unplug = 1; 1755 generic_make_request(bio); 1756 } 1757 } 1758 cond_resched(); 1759 } 1760 if (unplug) 1761 unplug_slaves(mddev); 1762 } 1763 1764 1765 static int init_resync(conf_t *conf) 1766 { 1767 int buffs; 1768 1769 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1770 BUG_ON(conf->r10buf_pool); 1771 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1772 if (!conf->r10buf_pool) 1773 return -ENOMEM; 1774 conf->next_resync = 0; 1775 return 0; 1776 } 1777 1778 /* 1779 * perform a "sync" on one "block" 1780 * 1781 * We need to make sure that no normal I/O request - particularly write 1782 * requests - conflict with active sync requests. 1783 * 1784 * This is achieved by tracking pending requests and a 'barrier' concept 1785 * that can be installed to exclude normal IO requests. 1786 * 1787 * Resync and recovery are handled very differently. 1788 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1789 * 1790 * For resync, we iterate over virtual addresses, read all copies, 1791 * and update if there are differences. If only one copy is live, 1792 * skip it. 1793 * For recovery, we iterate over physical addresses, read a good 1794 * value for each non-in_sync drive, and over-write. 1795 * 1796 * So, for recovery we may have several outstanding complex requests for a 1797 * given address, one for each out-of-sync device. We model this by allocating 1798 * a number of r10_bio structures, one for each out-of-sync device. 1799 * As we setup these structures, we collect all bio's together into a list 1800 * which we then process collectively to add pages, and then process again 1801 * to pass to generic_make_request. 1802 * 1803 * The r10_bio structures are linked using a borrowed master_bio pointer. 1804 * This link is counted in ->remaining. When the r10_bio that points to NULL 1805 * has its remaining count decremented to 0, the whole complex operation 1806 * is complete. 1807 * 1808 */ 1809 1810 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1811 { 1812 conf_t *conf = mddev->private; 1813 r10bio_t *r10_bio; 1814 struct bio *biolist = NULL, *bio; 1815 sector_t max_sector, nr_sectors; 1816 int disk; 1817 int i; 1818 int max_sync; 1819 int sync_blocks; 1820 1821 sector_t sectors_skipped = 0; 1822 int chunks_skipped = 0; 1823 1824 if (!conf->r10buf_pool) 1825 if (init_resync(conf)) 1826 return 0; 1827 1828 skipped: 1829 max_sector = mddev->dev_sectors; 1830 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1831 max_sector = mddev->resync_max_sectors; 1832 if (sector_nr >= max_sector) { 1833 /* If we aborted, we need to abort the 1834 * sync on the 'current' bitmap chucks (there can 1835 * be several when recovering multiple devices). 1836 * as we may have started syncing it but not finished. 1837 * We can find the current address in 1838 * mddev->curr_resync, but for recovery, 1839 * we need to convert that to several 1840 * virtual addresses. 1841 */ 1842 if (mddev->curr_resync < max_sector) { /* aborted */ 1843 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1844 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1845 &sync_blocks, 1); 1846 else for (i=0; i<conf->raid_disks; i++) { 1847 sector_t sect = 1848 raid10_find_virt(conf, mddev->curr_resync, i); 1849 bitmap_end_sync(mddev->bitmap, sect, 1850 &sync_blocks, 1); 1851 } 1852 } else /* completed sync */ 1853 conf->fullsync = 0; 1854 1855 bitmap_close_sync(mddev->bitmap); 1856 close_sync(conf); 1857 *skipped = 1; 1858 return sectors_skipped; 1859 } 1860 if (chunks_skipped >= conf->raid_disks) { 1861 /* if there has been nothing to do on any drive, 1862 * then there is nothing to do at all.. 1863 */ 1864 *skipped = 1; 1865 return (max_sector - sector_nr) + sectors_skipped; 1866 } 1867 1868 if (max_sector > mddev->resync_max) 1869 max_sector = mddev->resync_max; /* Don't do IO beyond here */ 1870 1871 /* make sure whole request will fit in a chunk - if chunks 1872 * are meaningful 1873 */ 1874 if (conf->near_copies < conf->raid_disks && 1875 max_sector > (sector_nr | conf->chunk_mask)) 1876 max_sector = (sector_nr | conf->chunk_mask) + 1; 1877 /* 1878 * If there is non-resync activity waiting for us then 1879 * put in a delay to throttle resync. 1880 */ 1881 if (!go_faster && conf->nr_waiting) 1882 msleep_interruptible(1000); 1883 1884 /* Again, very different code for resync and recovery. 1885 * Both must result in an r10bio with a list of bios that 1886 * have bi_end_io, bi_sector, bi_bdev set, 1887 * and bi_private set to the r10bio. 1888 * For recovery, we may actually create several r10bios 1889 * with 2 bios in each, that correspond to the bios in the main one. 1890 * In this case, the subordinate r10bios link back through a 1891 * borrowed master_bio pointer, and the counter in the master 1892 * includes a ref from each subordinate. 1893 */ 1894 /* First, we decide what to do and set ->bi_end_io 1895 * To end_sync_read if we want to read, and 1896 * end_sync_write if we will want to write. 1897 */ 1898 1899 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9); 1900 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1901 /* recovery... the complicated one */ 1902 int j, k; 1903 r10_bio = NULL; 1904 1905 for (i=0 ; i<conf->raid_disks; i++) 1906 if (conf->mirrors[i].rdev && 1907 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) { 1908 int still_degraded = 0; 1909 /* want to reconstruct this device */ 1910 r10bio_t *rb2 = r10_bio; 1911 sector_t sect = raid10_find_virt(conf, sector_nr, i); 1912 int must_sync; 1913 /* Unless we are doing a full sync, we only need 1914 * to recover the block if it is set in the bitmap 1915 */ 1916 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1917 &sync_blocks, 1); 1918 if (sync_blocks < max_sync) 1919 max_sync = sync_blocks; 1920 if (!must_sync && 1921 !conf->fullsync) { 1922 /* yep, skip the sync_blocks here, but don't assume 1923 * that there will never be anything to do here 1924 */ 1925 chunks_skipped = -1; 1926 continue; 1927 } 1928 1929 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1930 raise_barrier(conf, rb2 != NULL); 1931 atomic_set(&r10_bio->remaining, 0); 1932 1933 r10_bio->master_bio = (struct bio*)rb2; 1934 if (rb2) 1935 atomic_inc(&rb2->remaining); 1936 r10_bio->mddev = mddev; 1937 set_bit(R10BIO_IsRecover, &r10_bio->state); 1938 r10_bio->sector = sect; 1939 1940 raid10_find_phys(conf, r10_bio); 1941 1942 /* Need to check if the array will still be 1943 * degraded 1944 */ 1945 for (j=0; j<conf->raid_disks; j++) 1946 if (conf->mirrors[j].rdev == NULL || 1947 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) { 1948 still_degraded = 1; 1949 break; 1950 } 1951 1952 must_sync = bitmap_start_sync(mddev->bitmap, sect, 1953 &sync_blocks, still_degraded); 1954 1955 for (j=0; j<conf->copies;j++) { 1956 int d = r10_bio->devs[j].devnum; 1957 if (conf->mirrors[d].rdev && 1958 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) { 1959 /* This is where we read from */ 1960 bio = r10_bio->devs[0].bio; 1961 bio->bi_next = biolist; 1962 biolist = bio; 1963 bio->bi_private = r10_bio; 1964 bio->bi_end_io = end_sync_read; 1965 bio->bi_rw = READ; 1966 bio->bi_sector = r10_bio->devs[j].addr + 1967 conf->mirrors[d].rdev->data_offset; 1968 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1969 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1970 atomic_inc(&r10_bio->remaining); 1971 /* and we write to 'i' */ 1972 1973 for (k=0; k<conf->copies; k++) 1974 if (r10_bio->devs[k].devnum == i) 1975 break; 1976 BUG_ON(k == conf->copies); 1977 bio = r10_bio->devs[1].bio; 1978 bio->bi_next = biolist; 1979 biolist = bio; 1980 bio->bi_private = r10_bio; 1981 bio->bi_end_io = end_sync_write; 1982 bio->bi_rw = WRITE; 1983 bio->bi_sector = r10_bio->devs[k].addr + 1984 conf->mirrors[i].rdev->data_offset; 1985 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1986 1987 r10_bio->devs[0].devnum = d; 1988 r10_bio->devs[1].devnum = i; 1989 1990 break; 1991 } 1992 } 1993 if (j == conf->copies) { 1994 /* Cannot recover, so abort the recovery */ 1995 put_buf(r10_bio); 1996 if (rb2) 1997 atomic_dec(&rb2->remaining); 1998 r10_bio = rb2; 1999 if (!test_and_set_bit(MD_RECOVERY_INTR, 2000 &mddev->recovery)) 2001 printk(KERN_INFO "md/raid10:%s: insufficient " 2002 "working devices for recovery.\n", 2003 mdname(mddev)); 2004 break; 2005 } 2006 } 2007 if (biolist == NULL) { 2008 while (r10_bio) { 2009 r10bio_t *rb2 = r10_bio; 2010 r10_bio = (r10bio_t*) rb2->master_bio; 2011 rb2->master_bio = NULL; 2012 put_buf(rb2); 2013 } 2014 goto giveup; 2015 } 2016 } else { 2017 /* resync. Schedule a read for every block at this virt offset */ 2018 int count = 0; 2019 2020 bitmap_cond_end_sync(mddev->bitmap, sector_nr); 2021 2022 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 2023 &sync_blocks, mddev->degraded) && 2024 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 2025 /* We can skip this block */ 2026 *skipped = 1; 2027 return sync_blocks + sectors_skipped; 2028 } 2029 if (sync_blocks < max_sync) 2030 max_sync = sync_blocks; 2031 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 2032 2033 r10_bio->mddev = mddev; 2034 atomic_set(&r10_bio->remaining, 0); 2035 raise_barrier(conf, 0); 2036 conf->next_resync = sector_nr; 2037 2038 r10_bio->master_bio = NULL; 2039 r10_bio->sector = sector_nr; 2040 set_bit(R10BIO_IsSync, &r10_bio->state); 2041 raid10_find_phys(conf, r10_bio); 2042 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 2043 2044 for (i=0; i<conf->copies; i++) { 2045 int d = r10_bio->devs[i].devnum; 2046 bio = r10_bio->devs[i].bio; 2047 bio->bi_end_io = NULL; 2048 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2049 if (conf->mirrors[d].rdev == NULL || 2050 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) 2051 continue; 2052 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 2053 atomic_inc(&r10_bio->remaining); 2054 bio->bi_next = biolist; 2055 biolist = bio; 2056 bio->bi_private = r10_bio; 2057 bio->bi_end_io = end_sync_read; 2058 bio->bi_rw = READ; 2059 bio->bi_sector = r10_bio->devs[i].addr + 2060 conf->mirrors[d].rdev->data_offset; 2061 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 2062 count++; 2063 } 2064 2065 if (count < 2) { 2066 for (i=0; i<conf->copies; i++) { 2067 int d = r10_bio->devs[i].devnum; 2068 if (r10_bio->devs[i].bio->bi_end_io) 2069 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 2070 } 2071 put_buf(r10_bio); 2072 biolist = NULL; 2073 goto giveup; 2074 } 2075 } 2076 2077 for (bio = biolist; bio ; bio=bio->bi_next) { 2078 2079 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 2080 if (bio->bi_end_io) 2081 bio->bi_flags |= 1 << BIO_UPTODATE; 2082 bio->bi_vcnt = 0; 2083 bio->bi_idx = 0; 2084 bio->bi_phys_segments = 0; 2085 bio->bi_size = 0; 2086 } 2087 2088 nr_sectors = 0; 2089 if (sector_nr + max_sync < max_sector) 2090 max_sector = sector_nr + max_sync; 2091 do { 2092 struct page *page; 2093 int len = PAGE_SIZE; 2094 disk = 0; 2095 if (sector_nr + (len>>9) > max_sector) 2096 len = (max_sector - sector_nr) << 9; 2097 if (len == 0) 2098 break; 2099 for (bio= biolist ; bio ; bio=bio->bi_next) { 2100 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 2101 if (bio_add_page(bio, page, len, 0) == 0) { 2102 /* stop here */ 2103 struct bio *bio2; 2104 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 2105 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 2106 /* remove last page from this bio */ 2107 bio2->bi_vcnt--; 2108 bio2->bi_size -= len; 2109 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 2110 } 2111 goto bio_full; 2112 } 2113 disk = i; 2114 } 2115 nr_sectors += len>>9; 2116 sector_nr += len>>9; 2117 } while (biolist->bi_vcnt < RESYNC_PAGES); 2118 bio_full: 2119 r10_bio->sectors = nr_sectors; 2120 2121 while (biolist) { 2122 bio = biolist; 2123 biolist = biolist->bi_next; 2124 2125 bio->bi_next = NULL; 2126 r10_bio = bio->bi_private; 2127 r10_bio->sectors = nr_sectors; 2128 2129 if (bio->bi_end_io == end_sync_read) { 2130 md_sync_acct(bio->bi_bdev, nr_sectors); 2131 generic_make_request(bio); 2132 } 2133 } 2134 2135 if (sectors_skipped) 2136 /* pretend they weren't skipped, it makes 2137 * no important difference in this case 2138 */ 2139 md_done_sync(mddev, sectors_skipped, 1); 2140 2141 return sectors_skipped + nr_sectors; 2142 giveup: 2143 /* There is nowhere to write, so all non-sync 2144 * drives must be failed, so try the next chunk... 2145 */ 2146 if (sector_nr + max_sync < max_sector) 2147 max_sector = sector_nr + max_sync; 2148 2149 sectors_skipped += (max_sector - sector_nr); 2150 chunks_skipped ++; 2151 sector_nr = max_sector; 2152 goto skipped; 2153 } 2154 2155 static sector_t 2156 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks) 2157 { 2158 sector_t size; 2159 conf_t *conf = mddev->private; 2160 2161 if (!raid_disks) 2162 raid_disks = conf->raid_disks; 2163 if (!sectors) 2164 sectors = conf->dev_sectors; 2165 2166 size = sectors >> conf->chunk_shift; 2167 sector_div(size, conf->far_copies); 2168 size = size * raid_disks; 2169 sector_div(size, conf->near_copies); 2170 2171 return size << conf->chunk_shift; 2172 } 2173 2174 2175 static conf_t *setup_conf(mddev_t *mddev) 2176 { 2177 conf_t *conf = NULL; 2178 int nc, fc, fo; 2179 sector_t stride, size; 2180 int err = -EINVAL; 2181 2182 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) || 2183 !is_power_of_2(mddev->new_chunk_sectors)) { 2184 printk(KERN_ERR "md/raid10:%s: chunk size must be " 2185 "at least PAGE_SIZE(%ld) and be a power of 2.\n", 2186 mdname(mddev), PAGE_SIZE); 2187 goto out; 2188 } 2189 2190 nc = mddev->new_layout & 255; 2191 fc = (mddev->new_layout >> 8) & 255; 2192 fo = mddev->new_layout & (1<<16); 2193 2194 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 2195 (mddev->new_layout >> 17)) { 2196 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n", 2197 mdname(mddev), mddev->new_layout); 2198 goto out; 2199 } 2200 2201 err = -ENOMEM; 2202 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 2203 if (!conf) 2204 goto out; 2205 2206 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 2207 GFP_KERNEL); 2208 if (!conf->mirrors) 2209 goto out; 2210 2211 conf->tmppage = alloc_page(GFP_KERNEL); 2212 if (!conf->tmppage) 2213 goto out; 2214 2215 2216 conf->raid_disks = mddev->raid_disks; 2217 conf->near_copies = nc; 2218 conf->far_copies = fc; 2219 conf->copies = nc*fc; 2220 conf->far_offset = fo; 2221 conf->chunk_mask = mddev->new_chunk_sectors - 1; 2222 conf->chunk_shift = ffz(~mddev->new_chunk_sectors); 2223 2224 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 2225 r10bio_pool_free, conf); 2226 if (!conf->r10bio_pool) 2227 goto out; 2228 2229 size = mddev->dev_sectors >> conf->chunk_shift; 2230 sector_div(size, fc); 2231 size = size * conf->raid_disks; 2232 sector_div(size, nc); 2233 /* 'size' is now the number of chunks in the array */ 2234 /* calculate "used chunks per device" in 'stride' */ 2235 stride = size * conf->copies; 2236 2237 /* We need to round up when dividing by raid_disks to 2238 * get the stride size. 2239 */ 2240 stride += conf->raid_disks - 1; 2241 sector_div(stride, conf->raid_disks); 2242 2243 conf->dev_sectors = stride << conf->chunk_shift; 2244 2245 if (fo) 2246 stride = 1; 2247 else 2248 sector_div(stride, fc); 2249 conf->stride = stride << conf->chunk_shift; 2250 2251 2252 spin_lock_init(&conf->device_lock); 2253 INIT_LIST_HEAD(&conf->retry_list); 2254 2255 spin_lock_init(&conf->resync_lock); 2256 init_waitqueue_head(&conf->wait_barrier); 2257 2258 conf->thread = md_register_thread(raid10d, mddev, NULL); 2259 if (!conf->thread) 2260 goto out; 2261 2262 conf->mddev = mddev; 2263 return conf; 2264 2265 out: 2266 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n", 2267 mdname(mddev)); 2268 if (conf) { 2269 if (conf->r10bio_pool) 2270 mempool_destroy(conf->r10bio_pool); 2271 kfree(conf->mirrors); 2272 safe_put_page(conf->tmppage); 2273 kfree(conf); 2274 } 2275 return ERR_PTR(err); 2276 } 2277 2278 static int run(mddev_t *mddev) 2279 { 2280 conf_t *conf; 2281 int i, disk_idx, chunk_size; 2282 mirror_info_t *disk; 2283 mdk_rdev_t *rdev; 2284 sector_t size; 2285 2286 /* 2287 * copy the already verified devices into our private RAID10 2288 * bookkeeping area. [whatever we allocate in run(), 2289 * should be freed in stop()] 2290 */ 2291 2292 if (mddev->private == NULL) { 2293 conf = setup_conf(mddev); 2294 if (IS_ERR(conf)) 2295 return PTR_ERR(conf); 2296 mddev->private = conf; 2297 } 2298 conf = mddev->private; 2299 if (!conf) 2300 goto out; 2301 2302 mddev->queue->queue_lock = &conf->device_lock; 2303 2304 mddev->thread = conf->thread; 2305 conf->thread = NULL; 2306 2307 chunk_size = mddev->chunk_sectors << 9; 2308 blk_queue_io_min(mddev->queue, chunk_size); 2309 if (conf->raid_disks % conf->near_copies) 2310 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks); 2311 else 2312 blk_queue_io_opt(mddev->queue, chunk_size * 2313 (conf->raid_disks / conf->near_copies)); 2314 2315 list_for_each_entry(rdev, &mddev->disks, same_set) { 2316 disk_idx = rdev->raid_disk; 2317 if (disk_idx >= conf->raid_disks 2318 || disk_idx < 0) 2319 continue; 2320 disk = conf->mirrors + disk_idx; 2321 2322 disk->rdev = rdev; 2323 disk_stack_limits(mddev->gendisk, rdev->bdev, 2324 rdev->data_offset << 9); 2325 /* as we don't honour merge_bvec_fn, we must never risk 2326 * violating it, so limit max_segments to 1 lying 2327 * within a single page. 2328 */ 2329 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) { 2330 blk_queue_max_segments(mddev->queue, 1); 2331 blk_queue_segment_boundary(mddev->queue, 2332 PAGE_CACHE_SIZE - 1); 2333 } 2334 2335 disk->head_position = 0; 2336 } 2337 /* need to check that every block has at least one working mirror */ 2338 if (!enough(conf)) { 2339 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n", 2340 mdname(mddev)); 2341 goto out_free_conf; 2342 } 2343 2344 mddev->degraded = 0; 2345 for (i = 0; i < conf->raid_disks; i++) { 2346 2347 disk = conf->mirrors + i; 2348 2349 if (!disk->rdev || 2350 !test_bit(In_sync, &disk->rdev->flags)) { 2351 disk->head_position = 0; 2352 mddev->degraded++; 2353 if (disk->rdev) 2354 conf->fullsync = 1; 2355 } 2356 } 2357 2358 if (mddev->recovery_cp != MaxSector) 2359 printk(KERN_NOTICE "md/raid10:%s: not clean" 2360 " -- starting background reconstruction\n", 2361 mdname(mddev)); 2362 printk(KERN_INFO 2363 "md/raid10:%s: active with %d out of %d devices\n", 2364 mdname(mddev), conf->raid_disks - mddev->degraded, 2365 conf->raid_disks); 2366 /* 2367 * Ok, everything is just fine now 2368 */ 2369 mddev->dev_sectors = conf->dev_sectors; 2370 size = raid10_size(mddev, 0, 0); 2371 md_set_array_sectors(mddev, size); 2372 mddev->resync_max_sectors = size; 2373 2374 mddev->queue->unplug_fn = raid10_unplug; 2375 mddev->queue->backing_dev_info.congested_fn = raid10_congested; 2376 mddev->queue->backing_dev_info.congested_data = mddev; 2377 2378 /* Calculate max read-ahead size. 2379 * We need to readahead at least twice a whole stripe.... 2380 * maybe... 2381 */ 2382 { 2383 int stripe = conf->raid_disks * 2384 ((mddev->chunk_sectors << 9) / PAGE_SIZE); 2385 stripe /= conf->near_copies; 2386 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 2387 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 2388 } 2389 2390 if (conf->near_copies < conf->raid_disks) 2391 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 2392 md_integrity_register(mddev); 2393 return 0; 2394 2395 out_free_conf: 2396 if (conf->r10bio_pool) 2397 mempool_destroy(conf->r10bio_pool); 2398 safe_put_page(conf->tmppage); 2399 kfree(conf->mirrors); 2400 kfree(conf); 2401 mddev->private = NULL; 2402 md_unregister_thread(mddev->thread); 2403 out: 2404 return -EIO; 2405 } 2406 2407 static int stop(mddev_t *mddev) 2408 { 2409 conf_t *conf = mddev->private; 2410 2411 raise_barrier(conf, 0); 2412 lower_barrier(conf); 2413 2414 md_unregister_thread(mddev->thread); 2415 mddev->thread = NULL; 2416 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2417 if (conf->r10bio_pool) 2418 mempool_destroy(conf->r10bio_pool); 2419 kfree(conf->mirrors); 2420 kfree(conf); 2421 mddev->private = NULL; 2422 return 0; 2423 } 2424 2425 static void raid10_quiesce(mddev_t *mddev, int state) 2426 { 2427 conf_t *conf = mddev->private; 2428 2429 switch(state) { 2430 case 1: 2431 raise_barrier(conf, 0); 2432 break; 2433 case 0: 2434 lower_barrier(conf); 2435 break; 2436 } 2437 } 2438 2439 static void *raid10_takeover_raid0(mddev_t *mddev) 2440 { 2441 mdk_rdev_t *rdev; 2442 conf_t *conf; 2443 2444 if (mddev->degraded > 0) { 2445 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n", 2446 mdname(mddev)); 2447 return ERR_PTR(-EINVAL); 2448 } 2449 2450 /* Set new parameters */ 2451 mddev->new_level = 10; 2452 /* new layout: far_copies = 1, near_copies = 2 */ 2453 mddev->new_layout = (1<<8) + 2; 2454 mddev->new_chunk_sectors = mddev->chunk_sectors; 2455 mddev->delta_disks = mddev->raid_disks; 2456 mddev->raid_disks *= 2; 2457 /* make sure it will be not marked as dirty */ 2458 mddev->recovery_cp = MaxSector; 2459 2460 conf = setup_conf(mddev); 2461 if (!IS_ERR(conf)) 2462 list_for_each_entry(rdev, &mddev->disks, same_set) 2463 if (rdev->raid_disk >= 0) 2464 rdev->new_raid_disk = rdev->raid_disk * 2; 2465 2466 return conf; 2467 } 2468 2469 static void *raid10_takeover(mddev_t *mddev) 2470 { 2471 struct raid0_private_data *raid0_priv; 2472 2473 /* raid10 can take over: 2474 * raid0 - providing it has only two drives 2475 */ 2476 if (mddev->level == 0) { 2477 /* for raid0 takeover only one zone is supported */ 2478 raid0_priv = mddev->private; 2479 if (raid0_priv->nr_strip_zones > 1) { 2480 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0" 2481 " with more than one zone.\n", 2482 mdname(mddev)); 2483 return ERR_PTR(-EINVAL); 2484 } 2485 return raid10_takeover_raid0(mddev); 2486 } 2487 return ERR_PTR(-EINVAL); 2488 } 2489 2490 static struct mdk_personality raid10_personality = 2491 { 2492 .name = "raid10", 2493 .level = 10, 2494 .owner = THIS_MODULE, 2495 .make_request = make_request, 2496 .run = run, 2497 .stop = stop, 2498 .status = status, 2499 .error_handler = error, 2500 .hot_add_disk = raid10_add_disk, 2501 .hot_remove_disk= raid10_remove_disk, 2502 .spare_active = raid10_spare_active, 2503 .sync_request = sync_request, 2504 .quiesce = raid10_quiesce, 2505 .size = raid10_size, 2506 .takeover = raid10_takeover, 2507 }; 2508 2509 static int __init raid_init(void) 2510 { 2511 return register_md_personality(&raid10_personality); 2512 } 2513 2514 static void raid_exit(void) 2515 { 2516 unregister_md_personality(&raid10_personality); 2517 } 2518 2519 module_init(raid_init); 2520 module_exit(raid_exit); 2521 MODULE_LICENSE("GPL"); 2522 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD"); 2523 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 2524 MODULE_ALIAS("md-raid10"); 2525 MODULE_ALIAS("md-level-10"); 2526