1 /* 2 * raid10.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 2000-2004 Neil Brown 5 * 6 * RAID-10 support for md. 7 * 8 * Base on code in raid1.c. See raid1.c for futher copyright information. 9 * 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * You should have received a copy of the GNU General Public License 17 * (for example /usr/src/linux/COPYING); if not, write to the Free 18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/raid/raid10.h> 22 23 /* 24 * RAID10 provides a combination of RAID0 and RAID1 functionality. 25 * The layout of data is defined by 26 * chunk_size 27 * raid_disks 28 * near_copies (stored in low byte of layout) 29 * far_copies (stored in second byte of layout) 30 * 31 * The data to be stored is divided into chunks using chunksize. 32 * Each device is divided into far_copies sections. 33 * In each section, chunks are laid out in a style similar to raid0, but 34 * near_copies copies of each chunk is stored (each on a different drive). 35 * The starting device for each section is offset near_copies from the starting 36 * device of the previous section. 37 * Thus there are (near_copies*far_copies) of each chunk, and each is on a different 38 * drive. 39 * near_copies and far_copies must be at least one, and their product is at most 40 * raid_disks. 41 */ 42 43 /* 44 * Number of guaranteed r10bios in case of extreme VM load: 45 */ 46 #define NR_RAID10_BIOS 256 47 48 static void unplug_slaves(mddev_t *mddev); 49 50 static void * r10bio_pool_alloc(unsigned int __nocast gfp_flags, void *data) 51 { 52 conf_t *conf = data; 53 r10bio_t *r10_bio; 54 int size = offsetof(struct r10bio_s, devs[conf->copies]); 55 56 /* allocate a r10bio with room for raid_disks entries in the bios array */ 57 r10_bio = kmalloc(size, gfp_flags); 58 if (r10_bio) 59 memset(r10_bio, 0, size); 60 else 61 unplug_slaves(conf->mddev); 62 63 return r10_bio; 64 } 65 66 static void r10bio_pool_free(void *r10_bio, void *data) 67 { 68 kfree(r10_bio); 69 } 70 71 #define RESYNC_BLOCK_SIZE (64*1024) 72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 75 #define RESYNC_WINDOW (2048*1024) 76 77 /* 78 * When performing a resync, we need to read and compare, so 79 * we need as many pages are there are copies. 80 * When performing a recovery, we need 2 bios, one for read, 81 * one for write (we recover only one drive per r10buf) 82 * 83 */ 84 static void * r10buf_pool_alloc(unsigned int __nocast gfp_flags, void *data) 85 { 86 conf_t *conf = data; 87 struct page *page; 88 r10bio_t *r10_bio; 89 struct bio *bio; 90 int i, j; 91 int nalloc; 92 93 r10_bio = r10bio_pool_alloc(gfp_flags, conf); 94 if (!r10_bio) { 95 unplug_slaves(conf->mddev); 96 return NULL; 97 } 98 99 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery)) 100 nalloc = conf->copies; /* resync */ 101 else 102 nalloc = 2; /* recovery */ 103 104 /* 105 * Allocate bios. 106 */ 107 for (j = nalloc ; j-- ; ) { 108 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 109 if (!bio) 110 goto out_free_bio; 111 r10_bio->devs[j].bio = bio; 112 } 113 /* 114 * Allocate RESYNC_PAGES data pages and attach them 115 * where needed. 116 */ 117 for (j = 0 ; j < nalloc; j++) { 118 bio = r10_bio->devs[j].bio; 119 for (i = 0; i < RESYNC_PAGES; i++) { 120 page = alloc_page(gfp_flags); 121 if (unlikely(!page)) 122 goto out_free_pages; 123 124 bio->bi_io_vec[i].bv_page = page; 125 } 126 } 127 128 return r10_bio; 129 130 out_free_pages: 131 for ( ; i > 0 ; i--) 132 __free_page(bio->bi_io_vec[i-1].bv_page); 133 while (j--) 134 for (i = 0; i < RESYNC_PAGES ; i++) 135 __free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page); 136 j = -1; 137 out_free_bio: 138 while ( ++j < nalloc ) 139 bio_put(r10_bio->devs[j].bio); 140 r10bio_pool_free(r10_bio, conf); 141 return NULL; 142 } 143 144 static void r10buf_pool_free(void *__r10_bio, void *data) 145 { 146 int i; 147 conf_t *conf = data; 148 r10bio_t *r10bio = __r10_bio; 149 int j; 150 151 for (j=0; j < conf->copies; j++) { 152 struct bio *bio = r10bio->devs[j].bio; 153 if (bio) { 154 for (i = 0; i < RESYNC_PAGES; i++) { 155 __free_page(bio->bi_io_vec[i].bv_page); 156 bio->bi_io_vec[i].bv_page = NULL; 157 } 158 bio_put(bio); 159 } 160 } 161 r10bio_pool_free(r10bio, conf); 162 } 163 164 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio) 165 { 166 int i; 167 168 for (i = 0; i < conf->copies; i++) { 169 struct bio **bio = & r10_bio->devs[i].bio; 170 if (*bio) 171 bio_put(*bio); 172 *bio = NULL; 173 } 174 } 175 176 static inline void free_r10bio(r10bio_t *r10_bio) 177 { 178 unsigned long flags; 179 180 conf_t *conf = mddev_to_conf(r10_bio->mddev); 181 182 /* 183 * Wake up any possible resync thread that waits for the device 184 * to go idle. 185 */ 186 spin_lock_irqsave(&conf->resync_lock, flags); 187 if (!--conf->nr_pending) { 188 wake_up(&conf->wait_idle); 189 wake_up(&conf->wait_resume); 190 } 191 spin_unlock_irqrestore(&conf->resync_lock, flags); 192 193 put_all_bios(conf, r10_bio); 194 mempool_free(r10_bio, conf->r10bio_pool); 195 } 196 197 static inline void put_buf(r10bio_t *r10_bio) 198 { 199 conf_t *conf = mddev_to_conf(r10_bio->mddev); 200 unsigned long flags; 201 202 mempool_free(r10_bio, conf->r10buf_pool); 203 204 spin_lock_irqsave(&conf->resync_lock, flags); 205 if (!conf->barrier) 206 BUG(); 207 --conf->barrier; 208 wake_up(&conf->wait_resume); 209 wake_up(&conf->wait_idle); 210 211 if (!--conf->nr_pending) { 212 wake_up(&conf->wait_idle); 213 wake_up(&conf->wait_resume); 214 } 215 spin_unlock_irqrestore(&conf->resync_lock, flags); 216 } 217 218 static void reschedule_retry(r10bio_t *r10_bio) 219 { 220 unsigned long flags; 221 mddev_t *mddev = r10_bio->mddev; 222 conf_t *conf = mddev_to_conf(mddev); 223 224 spin_lock_irqsave(&conf->device_lock, flags); 225 list_add(&r10_bio->retry_list, &conf->retry_list); 226 spin_unlock_irqrestore(&conf->device_lock, flags); 227 228 md_wakeup_thread(mddev->thread); 229 } 230 231 /* 232 * raid_end_bio_io() is called when we have finished servicing a mirrored 233 * operation and are ready to return a success/failure code to the buffer 234 * cache layer. 235 */ 236 static void raid_end_bio_io(r10bio_t *r10_bio) 237 { 238 struct bio *bio = r10_bio->master_bio; 239 240 bio_endio(bio, bio->bi_size, 241 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO); 242 free_r10bio(r10_bio); 243 } 244 245 /* 246 * Update disk head position estimator based on IRQ completion info. 247 */ 248 static inline void update_head_pos(int slot, r10bio_t *r10_bio) 249 { 250 conf_t *conf = mddev_to_conf(r10_bio->mddev); 251 252 conf->mirrors[r10_bio->devs[slot].devnum].head_position = 253 r10_bio->devs[slot].addr + (r10_bio->sectors); 254 } 255 256 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error) 257 { 258 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 259 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 260 int slot, dev; 261 conf_t *conf = mddev_to_conf(r10_bio->mddev); 262 263 if (bio->bi_size) 264 return 1; 265 266 slot = r10_bio->read_slot; 267 dev = r10_bio->devs[slot].devnum; 268 /* 269 * this branch is our 'one mirror IO has finished' event handler: 270 */ 271 if (!uptodate) 272 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 273 else 274 /* 275 * Set R10BIO_Uptodate in our master bio, so that 276 * we will return a good error code to the higher 277 * levels even if IO on some other mirrored buffer fails. 278 * 279 * The 'master' represents the composite IO operation to 280 * user-side. So if something waits for IO, then it will 281 * wait for the 'master' bio. 282 */ 283 set_bit(R10BIO_Uptodate, &r10_bio->state); 284 285 update_head_pos(slot, r10_bio); 286 287 /* 288 * we have only one bio on the read side 289 */ 290 if (uptodate) 291 raid_end_bio_io(r10_bio); 292 else { 293 /* 294 * oops, read error: 295 */ 296 char b[BDEVNAME_SIZE]; 297 if (printk_ratelimit()) 298 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n", 299 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector); 300 reschedule_retry(r10_bio); 301 } 302 303 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 304 return 0; 305 } 306 307 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error) 308 { 309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 310 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 311 int slot, dev; 312 conf_t *conf = mddev_to_conf(r10_bio->mddev); 313 314 if (bio->bi_size) 315 return 1; 316 317 for (slot = 0; slot < conf->copies; slot++) 318 if (r10_bio->devs[slot].bio == bio) 319 break; 320 dev = r10_bio->devs[slot].devnum; 321 322 /* 323 * this branch is our 'one mirror IO has finished' event handler: 324 */ 325 if (!uptodate) 326 md_error(r10_bio->mddev, conf->mirrors[dev].rdev); 327 else 328 /* 329 * Set R10BIO_Uptodate in our master bio, so that 330 * we will return a good error code for to the higher 331 * levels even if IO on some other mirrored buffer fails. 332 * 333 * The 'master' represents the composite IO operation to 334 * user-side. So if something waits for IO, then it will 335 * wait for the 'master' bio. 336 */ 337 set_bit(R10BIO_Uptodate, &r10_bio->state); 338 339 update_head_pos(slot, r10_bio); 340 341 /* 342 * 343 * Let's see if all mirrored write operations have finished 344 * already. 345 */ 346 if (atomic_dec_and_test(&r10_bio->remaining)) { 347 md_write_end(r10_bio->mddev); 348 raid_end_bio_io(r10_bio); 349 } 350 351 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev); 352 return 0; 353 } 354 355 356 /* 357 * RAID10 layout manager 358 * Aswell as the chunksize and raid_disks count, there are two 359 * parameters: near_copies and far_copies. 360 * near_copies * far_copies must be <= raid_disks. 361 * Normally one of these will be 1. 362 * If both are 1, we get raid0. 363 * If near_copies == raid_disks, we get raid1. 364 * 365 * Chunks are layed out in raid0 style with near_copies copies of the 366 * first chunk, followed by near_copies copies of the next chunk and 367 * so on. 368 * If far_copies > 1, then after 1/far_copies of the array has been assigned 369 * as described above, we start again with a device offset of near_copies. 370 * So we effectively have another copy of the whole array further down all 371 * the drives, but with blocks on different drives. 372 * With this layout, and block is never stored twice on the one device. 373 * 374 * raid10_find_phys finds the sector offset of a given virtual sector 375 * on each device that it is on. If a block isn't on a device, 376 * that entry in the array is set to MaxSector. 377 * 378 * raid10_find_virt does the reverse mapping, from a device and a 379 * sector offset to a virtual address 380 */ 381 382 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio) 383 { 384 int n,f; 385 sector_t sector; 386 sector_t chunk; 387 sector_t stripe; 388 int dev; 389 390 int slot = 0; 391 392 /* now calculate first sector/dev */ 393 chunk = r10bio->sector >> conf->chunk_shift; 394 sector = r10bio->sector & conf->chunk_mask; 395 396 chunk *= conf->near_copies; 397 stripe = chunk; 398 dev = sector_div(stripe, conf->raid_disks); 399 400 sector += stripe << conf->chunk_shift; 401 402 /* and calculate all the others */ 403 for (n=0; n < conf->near_copies; n++) { 404 int d = dev; 405 sector_t s = sector; 406 r10bio->devs[slot].addr = sector; 407 r10bio->devs[slot].devnum = d; 408 slot++; 409 410 for (f = 1; f < conf->far_copies; f++) { 411 d += conf->near_copies; 412 if (d >= conf->raid_disks) 413 d -= conf->raid_disks; 414 s += conf->stride; 415 r10bio->devs[slot].devnum = d; 416 r10bio->devs[slot].addr = s; 417 slot++; 418 } 419 dev++; 420 if (dev >= conf->raid_disks) { 421 dev = 0; 422 sector += (conf->chunk_mask + 1); 423 } 424 } 425 BUG_ON(slot != conf->copies); 426 } 427 428 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev) 429 { 430 sector_t offset, chunk, vchunk; 431 432 while (sector > conf->stride) { 433 sector -= conf->stride; 434 if (dev < conf->near_copies) 435 dev += conf->raid_disks - conf->near_copies; 436 else 437 dev -= conf->near_copies; 438 } 439 440 offset = sector & conf->chunk_mask; 441 chunk = sector >> conf->chunk_shift; 442 vchunk = chunk * conf->raid_disks + dev; 443 sector_div(vchunk, conf->near_copies); 444 return (vchunk << conf->chunk_shift) + offset; 445 } 446 447 /** 448 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged 449 * @q: request queue 450 * @bio: the buffer head that's been built up so far 451 * @biovec: the request that could be merged to it. 452 * 453 * Return amount of bytes we can accept at this offset 454 * If near_copies == raid_disk, there are no striping issues, 455 * but in that case, the function isn't called at all. 456 */ 457 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio, 458 struct bio_vec *bio_vec) 459 { 460 mddev_t *mddev = q->queuedata; 461 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev); 462 int max; 463 unsigned int chunk_sectors = mddev->chunk_size >> 9; 464 unsigned int bio_sectors = bio->bi_size >> 9; 465 466 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9; 467 if (max < 0) max = 0; /* bio_add cannot handle a negative return */ 468 if (max <= bio_vec->bv_len && bio_sectors == 0) 469 return bio_vec->bv_len; 470 else 471 return max; 472 } 473 474 /* 475 * This routine returns the disk from which the requested read should 476 * be done. There is a per-array 'next expected sequential IO' sector 477 * number - if this matches on the next IO then we use the last disk. 478 * There is also a per-disk 'last know head position' sector that is 479 * maintained from IRQ contexts, both the normal and the resync IO 480 * completion handlers update this position correctly. If there is no 481 * perfect sequential match then we pick the disk whose head is closest. 482 * 483 * If there are 2 mirrors in the same 2 devices, performance degrades 484 * because position is mirror, not device based. 485 * 486 * The rdev for the device selected will have nr_pending incremented. 487 */ 488 489 /* 490 * FIXME: possibly should rethink readbalancing and do it differently 491 * depending on near_copies / far_copies geometry. 492 */ 493 static int read_balance(conf_t *conf, r10bio_t *r10_bio) 494 { 495 const unsigned long this_sector = r10_bio->sector; 496 int disk, slot, nslot; 497 const int sectors = r10_bio->sectors; 498 sector_t new_distance, current_distance; 499 500 raid10_find_phys(conf, r10_bio); 501 rcu_read_lock(); 502 /* 503 * Check if we can balance. We can balance on the whole 504 * device if no resync is going on, or below the resync window. 505 * We take the first readable disk when above the resync window. 506 */ 507 if (conf->mddev->recovery_cp < MaxSector 508 && (this_sector + sectors >= conf->next_resync)) { 509 /* make sure that disk is operational */ 510 slot = 0; 511 disk = r10_bio->devs[slot].devnum; 512 513 while (!conf->mirrors[disk].rdev || 514 !conf->mirrors[disk].rdev->in_sync) { 515 slot++; 516 if (slot == conf->copies) { 517 slot = 0; 518 disk = -1; 519 break; 520 } 521 disk = r10_bio->devs[slot].devnum; 522 } 523 goto rb_out; 524 } 525 526 527 /* make sure the disk is operational */ 528 slot = 0; 529 disk = r10_bio->devs[slot].devnum; 530 while (!conf->mirrors[disk].rdev || 531 !conf->mirrors[disk].rdev->in_sync) { 532 slot ++; 533 if (slot == conf->copies) { 534 disk = -1; 535 goto rb_out; 536 } 537 disk = r10_bio->devs[slot].devnum; 538 } 539 540 541 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 542 543 /* Find the disk whose head is closest */ 544 545 for (nslot = slot; nslot < conf->copies; nslot++) { 546 int ndisk = r10_bio->devs[nslot].devnum; 547 548 549 if (!conf->mirrors[ndisk].rdev || 550 !conf->mirrors[ndisk].rdev->in_sync) 551 continue; 552 553 if (!atomic_read(&conf->mirrors[ndisk].rdev->nr_pending)) { 554 disk = ndisk; 555 slot = nslot; 556 break; 557 } 558 new_distance = abs(r10_bio->devs[nslot].addr - 559 conf->mirrors[ndisk].head_position); 560 if (new_distance < current_distance) { 561 current_distance = new_distance; 562 disk = ndisk; 563 slot = nslot; 564 } 565 } 566 567 rb_out: 568 r10_bio->read_slot = slot; 569 /* conf->next_seq_sect = this_sector + sectors;*/ 570 571 if (disk >= 0 && conf->mirrors[disk].rdev) 572 atomic_inc(&conf->mirrors[disk].rdev->nr_pending); 573 rcu_read_unlock(); 574 575 return disk; 576 } 577 578 static void unplug_slaves(mddev_t *mddev) 579 { 580 conf_t *conf = mddev_to_conf(mddev); 581 int i; 582 583 rcu_read_lock(); 584 for (i=0; i<mddev->raid_disks; i++) { 585 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 586 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) { 587 request_queue_t *r_queue = bdev_get_queue(rdev->bdev); 588 589 atomic_inc(&rdev->nr_pending); 590 rcu_read_unlock(); 591 592 if (r_queue->unplug_fn) 593 r_queue->unplug_fn(r_queue); 594 595 rdev_dec_pending(rdev, mddev); 596 rcu_read_lock(); 597 } 598 } 599 rcu_read_unlock(); 600 } 601 602 static void raid10_unplug(request_queue_t *q) 603 { 604 unplug_slaves(q->queuedata); 605 } 606 607 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk, 608 sector_t *error_sector) 609 { 610 mddev_t *mddev = q->queuedata; 611 conf_t *conf = mddev_to_conf(mddev); 612 int i, ret = 0; 613 614 rcu_read_lock(); 615 for (i=0; i<mddev->raid_disks && ret == 0; i++) { 616 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 617 if (rdev && !rdev->faulty) { 618 struct block_device *bdev = rdev->bdev; 619 request_queue_t *r_queue = bdev_get_queue(bdev); 620 621 if (!r_queue->issue_flush_fn) 622 ret = -EOPNOTSUPP; 623 else { 624 atomic_inc(&rdev->nr_pending); 625 rcu_read_unlock(); 626 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk, 627 error_sector); 628 rdev_dec_pending(rdev, mddev); 629 rcu_read_lock(); 630 } 631 } 632 } 633 rcu_read_unlock(); 634 return ret; 635 } 636 637 /* 638 * Throttle resync depth, so that we can both get proper overlapping of 639 * requests, but are still able to handle normal requests quickly. 640 */ 641 #define RESYNC_DEPTH 32 642 643 static void device_barrier(conf_t *conf, sector_t sect) 644 { 645 spin_lock_irq(&conf->resync_lock); 646 wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume), 647 conf->resync_lock, unplug_slaves(conf->mddev)); 648 649 if (!conf->barrier++) { 650 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending, 651 conf->resync_lock, unplug_slaves(conf->mddev)); 652 if (conf->nr_pending) 653 BUG(); 654 } 655 wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH, 656 conf->resync_lock, unplug_slaves(conf->mddev)); 657 conf->next_resync = sect; 658 spin_unlock_irq(&conf->resync_lock); 659 } 660 661 static int make_request(request_queue_t *q, struct bio * bio) 662 { 663 mddev_t *mddev = q->queuedata; 664 conf_t *conf = mddev_to_conf(mddev); 665 mirror_info_t *mirror; 666 r10bio_t *r10_bio; 667 struct bio *read_bio; 668 int i; 669 int chunk_sects = conf->chunk_mask + 1; 670 671 /* If this request crosses a chunk boundary, we need to 672 * split it. This will only happen for 1 PAGE (or less) requests. 673 */ 674 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9) 675 > chunk_sects && 676 conf->near_copies < conf->raid_disks)) { 677 struct bio_pair *bp; 678 /* Sanity check -- queue functions should prevent this happening */ 679 if (bio->bi_vcnt != 1 || 680 bio->bi_idx != 0) 681 goto bad_map; 682 /* This is a one page bio that upper layers 683 * refuse to split for us, so we need to split it. 684 */ 685 bp = bio_split(bio, bio_split_pool, 686 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) ); 687 if (make_request(q, &bp->bio1)) 688 generic_make_request(&bp->bio1); 689 if (make_request(q, &bp->bio2)) 690 generic_make_request(&bp->bio2); 691 692 bio_pair_release(bp); 693 return 0; 694 bad_map: 695 printk("raid10_make_request bug: can't convert block across chunks" 696 " or bigger than %dk %llu %d\n", chunk_sects/2, 697 (unsigned long long)bio->bi_sector, bio->bi_size >> 10); 698 699 bio_io_error(bio, bio->bi_size); 700 return 0; 701 } 702 703 /* 704 * Register the new request and wait if the reconstruction 705 * thread has put up a bar for new requests. 706 * Continue immediately if no resync is active currently. 707 */ 708 spin_lock_irq(&conf->resync_lock); 709 wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, ); 710 conf->nr_pending++; 711 spin_unlock_irq(&conf->resync_lock); 712 713 if (bio_data_dir(bio)==WRITE) { 714 disk_stat_inc(mddev->gendisk, writes); 715 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio)); 716 } else { 717 disk_stat_inc(mddev->gendisk, reads); 718 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio)); 719 } 720 721 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO); 722 723 r10_bio->master_bio = bio; 724 r10_bio->sectors = bio->bi_size >> 9; 725 726 r10_bio->mddev = mddev; 727 r10_bio->sector = bio->bi_sector; 728 729 if (bio_data_dir(bio) == READ) { 730 /* 731 * read balancing logic: 732 */ 733 int disk = read_balance(conf, r10_bio); 734 int slot = r10_bio->read_slot; 735 if (disk < 0) { 736 raid_end_bio_io(r10_bio); 737 return 0; 738 } 739 mirror = conf->mirrors + disk; 740 741 read_bio = bio_clone(bio, GFP_NOIO); 742 743 r10_bio->devs[slot].bio = read_bio; 744 745 read_bio->bi_sector = r10_bio->devs[slot].addr + 746 mirror->rdev->data_offset; 747 read_bio->bi_bdev = mirror->rdev->bdev; 748 read_bio->bi_end_io = raid10_end_read_request; 749 read_bio->bi_rw = READ; 750 read_bio->bi_private = r10_bio; 751 752 generic_make_request(read_bio); 753 return 0; 754 } 755 756 /* 757 * WRITE: 758 */ 759 /* first select target devices under spinlock and 760 * inc refcount on their rdev. Record them by setting 761 * bios[x] to bio 762 */ 763 raid10_find_phys(conf, r10_bio); 764 rcu_read_lock(); 765 for (i = 0; i < conf->copies; i++) { 766 int d = r10_bio->devs[i].devnum; 767 if (conf->mirrors[d].rdev && 768 !conf->mirrors[d].rdev->faulty) { 769 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 770 r10_bio->devs[i].bio = bio; 771 } else 772 r10_bio->devs[i].bio = NULL; 773 } 774 rcu_read_unlock(); 775 776 atomic_set(&r10_bio->remaining, 1); 777 md_write_start(mddev); 778 for (i = 0; i < conf->copies; i++) { 779 struct bio *mbio; 780 int d = r10_bio->devs[i].devnum; 781 if (!r10_bio->devs[i].bio) 782 continue; 783 784 mbio = bio_clone(bio, GFP_NOIO); 785 r10_bio->devs[i].bio = mbio; 786 787 mbio->bi_sector = r10_bio->devs[i].addr+ 788 conf->mirrors[d].rdev->data_offset; 789 mbio->bi_bdev = conf->mirrors[d].rdev->bdev; 790 mbio->bi_end_io = raid10_end_write_request; 791 mbio->bi_rw = WRITE; 792 mbio->bi_private = r10_bio; 793 794 atomic_inc(&r10_bio->remaining); 795 generic_make_request(mbio); 796 } 797 798 if (atomic_dec_and_test(&r10_bio->remaining)) { 799 md_write_end(mddev); 800 raid_end_bio_io(r10_bio); 801 } 802 803 return 0; 804 } 805 806 static void status(struct seq_file *seq, mddev_t *mddev) 807 { 808 conf_t *conf = mddev_to_conf(mddev); 809 int i; 810 811 if (conf->near_copies < conf->raid_disks) 812 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024); 813 if (conf->near_copies > 1) 814 seq_printf(seq, " %d near-copies", conf->near_copies); 815 if (conf->far_copies > 1) 816 seq_printf(seq, " %d far-copies", conf->far_copies); 817 818 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 819 conf->working_disks); 820 for (i = 0; i < conf->raid_disks; i++) 821 seq_printf(seq, "%s", 822 conf->mirrors[i].rdev && 823 conf->mirrors[i].rdev->in_sync ? "U" : "_"); 824 seq_printf(seq, "]"); 825 } 826 827 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 828 { 829 char b[BDEVNAME_SIZE]; 830 conf_t *conf = mddev_to_conf(mddev); 831 832 /* 833 * If it is not operational, then we have already marked it as dead 834 * else if it is the last working disks, ignore the error, let the 835 * next level up know. 836 * else mark the drive as failed 837 */ 838 if (rdev->in_sync 839 && conf->working_disks == 1) 840 /* 841 * Don't fail the drive, just return an IO error. 842 * The test should really be more sophisticated than 843 * "working_disks == 1", but it isn't critical, and 844 * can wait until we do more sophisticated "is the drive 845 * really dead" tests... 846 */ 847 return; 848 if (rdev->in_sync) { 849 mddev->degraded++; 850 conf->working_disks--; 851 /* 852 * if recovery is running, make sure it aborts. 853 */ 854 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 855 } 856 rdev->in_sync = 0; 857 rdev->faulty = 1; 858 mddev->sb_dirty = 1; 859 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n" 860 " Operation continuing on %d devices\n", 861 bdevname(rdev->bdev,b), conf->working_disks); 862 } 863 864 static void print_conf(conf_t *conf) 865 { 866 int i; 867 mirror_info_t *tmp; 868 869 printk("RAID10 conf printout:\n"); 870 if (!conf) { 871 printk("(!conf)\n"); 872 return; 873 } 874 printk(" --- wd:%d rd:%d\n", conf->working_disks, 875 conf->raid_disks); 876 877 for (i = 0; i < conf->raid_disks; i++) { 878 char b[BDEVNAME_SIZE]; 879 tmp = conf->mirrors + i; 880 if (tmp->rdev) 881 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 882 i, !tmp->rdev->in_sync, !tmp->rdev->faulty, 883 bdevname(tmp->rdev->bdev,b)); 884 } 885 } 886 887 static void close_sync(conf_t *conf) 888 { 889 spin_lock_irq(&conf->resync_lock); 890 wait_event_lock_irq(conf->wait_resume, !conf->barrier, 891 conf->resync_lock, unplug_slaves(conf->mddev)); 892 spin_unlock_irq(&conf->resync_lock); 893 894 if (conf->barrier) BUG(); 895 if (waitqueue_active(&conf->wait_idle)) BUG(); 896 897 mempool_destroy(conf->r10buf_pool); 898 conf->r10buf_pool = NULL; 899 } 900 901 static int raid10_spare_active(mddev_t *mddev) 902 { 903 int i; 904 conf_t *conf = mddev->private; 905 mirror_info_t *tmp; 906 907 /* 908 * Find all non-in_sync disks within the RAID10 configuration 909 * and mark them in_sync 910 */ 911 for (i = 0; i < conf->raid_disks; i++) { 912 tmp = conf->mirrors + i; 913 if (tmp->rdev 914 && !tmp->rdev->faulty 915 && !tmp->rdev->in_sync) { 916 conf->working_disks++; 917 mddev->degraded--; 918 tmp->rdev->in_sync = 1; 919 } 920 } 921 922 print_conf(conf); 923 return 0; 924 } 925 926 927 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 928 { 929 conf_t *conf = mddev->private; 930 int found = 0; 931 int mirror; 932 mirror_info_t *p; 933 934 if (mddev->recovery_cp < MaxSector) 935 /* only hot-add to in-sync arrays, as recovery is 936 * very different from resync 937 */ 938 return 0; 939 940 for (mirror=0; mirror < mddev->raid_disks; mirror++) 941 if ( !(p=conf->mirrors+mirror)->rdev) { 942 943 blk_queue_stack_limits(mddev->queue, 944 rdev->bdev->bd_disk->queue); 945 /* as we don't honour merge_bvec_fn, we must never risk 946 * violating it, so limit ->max_sector to one PAGE, as 947 * a one page request is never in violation. 948 */ 949 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 950 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 951 mddev->queue->max_sectors = (PAGE_SIZE>>9); 952 953 p->head_position = 0; 954 rdev->raid_disk = mirror; 955 found = 1; 956 p->rdev = rdev; 957 break; 958 } 959 960 print_conf(conf); 961 return found; 962 } 963 964 static int raid10_remove_disk(mddev_t *mddev, int number) 965 { 966 conf_t *conf = mddev->private; 967 int err = 0; 968 mdk_rdev_t *rdev; 969 mirror_info_t *p = conf->mirrors+ number; 970 971 print_conf(conf); 972 rdev = p->rdev; 973 if (rdev) { 974 if (rdev->in_sync || 975 atomic_read(&rdev->nr_pending)) { 976 err = -EBUSY; 977 goto abort; 978 } 979 p->rdev = NULL; 980 synchronize_kernel(); 981 if (atomic_read(&rdev->nr_pending)) { 982 /* lost the race, try later */ 983 err = -EBUSY; 984 p->rdev = rdev; 985 } 986 } 987 abort: 988 989 print_conf(conf); 990 return err; 991 } 992 993 994 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error) 995 { 996 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 997 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 998 conf_t *conf = mddev_to_conf(r10_bio->mddev); 999 int i,d; 1000 1001 if (bio->bi_size) 1002 return 1; 1003 1004 for (i=0; i<conf->copies; i++) 1005 if (r10_bio->devs[i].bio == bio) 1006 break; 1007 if (i == conf->copies) 1008 BUG(); 1009 update_head_pos(i, r10_bio); 1010 d = r10_bio->devs[i].devnum; 1011 if (!uptodate) 1012 md_error(r10_bio->mddev, 1013 conf->mirrors[d].rdev); 1014 1015 /* for reconstruct, we always reschedule after a read. 1016 * for resync, only after all reads 1017 */ 1018 if (test_bit(R10BIO_IsRecover, &r10_bio->state) || 1019 atomic_dec_and_test(&r10_bio->remaining)) { 1020 /* we have read all the blocks, 1021 * do the comparison in process context in raid10d 1022 */ 1023 reschedule_retry(r10_bio); 1024 } 1025 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev); 1026 return 0; 1027 } 1028 1029 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error) 1030 { 1031 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1032 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private); 1033 mddev_t *mddev = r10_bio->mddev; 1034 conf_t *conf = mddev_to_conf(mddev); 1035 int i,d; 1036 1037 if (bio->bi_size) 1038 return 1; 1039 1040 for (i = 0; i < conf->copies; i++) 1041 if (r10_bio->devs[i].bio == bio) 1042 break; 1043 d = r10_bio->devs[i].devnum; 1044 1045 if (!uptodate) 1046 md_error(mddev, conf->mirrors[d].rdev); 1047 update_head_pos(i, r10_bio); 1048 1049 while (atomic_dec_and_test(&r10_bio->remaining)) { 1050 if (r10_bio->master_bio == NULL) { 1051 /* the primary of several recovery bios */ 1052 md_done_sync(mddev, r10_bio->sectors, 1); 1053 put_buf(r10_bio); 1054 break; 1055 } else { 1056 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio; 1057 put_buf(r10_bio); 1058 r10_bio = r10_bio2; 1059 } 1060 } 1061 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1062 return 0; 1063 } 1064 1065 /* 1066 * Note: sync and recover and handled very differently for raid10 1067 * This code is for resync. 1068 * For resync, we read through virtual addresses and read all blocks. 1069 * If there is any error, we schedule a write. The lowest numbered 1070 * drive is authoritative. 1071 * However requests come for physical address, so we need to map. 1072 * For every physical address there are raid_disks/copies virtual addresses, 1073 * which is always are least one, but is not necessarly an integer. 1074 * This means that a physical address can span multiple chunks, so we may 1075 * have to submit multiple io requests for a single sync request. 1076 */ 1077 /* 1078 * We check if all blocks are in-sync and only write to blocks that 1079 * aren't in sync 1080 */ 1081 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1082 { 1083 conf_t *conf = mddev_to_conf(mddev); 1084 int i, first; 1085 struct bio *tbio, *fbio; 1086 1087 atomic_set(&r10_bio->remaining, 1); 1088 1089 /* find the first device with a block */ 1090 for (i=0; i<conf->copies; i++) 1091 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1092 break; 1093 1094 if (i == conf->copies) 1095 goto done; 1096 1097 first = i; 1098 fbio = r10_bio->devs[i].bio; 1099 1100 /* now find blocks with errors */ 1101 for (i=first+1 ; i < conf->copies ; i++) { 1102 int vcnt, j, d; 1103 1104 if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) 1105 continue; 1106 /* We know that the bi_io_vec layout is the same for 1107 * both 'first' and 'i', so we just compare them. 1108 * All vec entries are PAGE_SIZE; 1109 */ 1110 tbio = r10_bio->devs[i].bio; 1111 vcnt = r10_bio->sectors >> (PAGE_SHIFT-9); 1112 for (j = 0; j < vcnt; j++) 1113 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page), 1114 page_address(tbio->bi_io_vec[j].bv_page), 1115 PAGE_SIZE)) 1116 break; 1117 if (j == vcnt) 1118 continue; 1119 /* Ok, we need to write this bio 1120 * First we need to fixup bv_offset, bv_len and 1121 * bi_vecs, as the read request might have corrupted these 1122 */ 1123 tbio->bi_vcnt = vcnt; 1124 tbio->bi_size = r10_bio->sectors << 9; 1125 tbio->bi_idx = 0; 1126 tbio->bi_phys_segments = 0; 1127 tbio->bi_hw_segments = 0; 1128 tbio->bi_hw_front_size = 0; 1129 tbio->bi_hw_back_size = 0; 1130 tbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1131 tbio->bi_flags |= 1 << BIO_UPTODATE; 1132 tbio->bi_next = NULL; 1133 tbio->bi_rw = WRITE; 1134 tbio->bi_private = r10_bio; 1135 tbio->bi_sector = r10_bio->devs[i].addr; 1136 1137 for (j=0; j < vcnt ; j++) { 1138 tbio->bi_io_vec[j].bv_offset = 0; 1139 tbio->bi_io_vec[j].bv_len = PAGE_SIZE; 1140 1141 memcpy(page_address(tbio->bi_io_vec[j].bv_page), 1142 page_address(fbio->bi_io_vec[j].bv_page), 1143 PAGE_SIZE); 1144 } 1145 tbio->bi_end_io = end_sync_write; 1146 1147 d = r10_bio->devs[i].devnum; 1148 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1149 atomic_inc(&r10_bio->remaining); 1150 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9); 1151 1152 tbio->bi_sector += conf->mirrors[d].rdev->data_offset; 1153 tbio->bi_bdev = conf->mirrors[d].rdev->bdev; 1154 generic_make_request(tbio); 1155 } 1156 1157 done: 1158 if (atomic_dec_and_test(&r10_bio->remaining)) { 1159 md_done_sync(mddev, r10_bio->sectors, 1); 1160 put_buf(r10_bio); 1161 } 1162 } 1163 1164 /* 1165 * Now for the recovery code. 1166 * Recovery happens across physical sectors. 1167 * We recover all non-is_sync drives by finding the virtual address of 1168 * each, and then choose a working drive that also has that virt address. 1169 * There is a separate r10_bio for each non-in_sync drive. 1170 * Only the first two slots are in use. The first for reading, 1171 * The second for writing. 1172 * 1173 */ 1174 1175 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio) 1176 { 1177 conf_t *conf = mddev_to_conf(mddev); 1178 int i, d; 1179 struct bio *bio, *wbio; 1180 1181 1182 /* move the pages across to the second bio 1183 * and submit the write request 1184 */ 1185 bio = r10_bio->devs[0].bio; 1186 wbio = r10_bio->devs[1].bio; 1187 for (i=0; i < wbio->bi_vcnt; i++) { 1188 struct page *p = bio->bi_io_vec[i].bv_page; 1189 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page; 1190 wbio->bi_io_vec[i].bv_page = p; 1191 } 1192 d = r10_bio->devs[1].devnum; 1193 1194 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1195 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9); 1196 generic_make_request(wbio); 1197 } 1198 1199 1200 /* 1201 * This is a kernel thread which: 1202 * 1203 * 1. Retries failed read operations on working mirrors. 1204 * 2. Updates the raid superblock when problems encounter. 1205 * 3. Performs writes following reads for array syncronising. 1206 */ 1207 1208 static void raid10d(mddev_t *mddev) 1209 { 1210 r10bio_t *r10_bio; 1211 struct bio *bio; 1212 unsigned long flags; 1213 conf_t *conf = mddev_to_conf(mddev); 1214 struct list_head *head = &conf->retry_list; 1215 int unplug=0; 1216 mdk_rdev_t *rdev; 1217 1218 md_check_recovery(mddev); 1219 md_handle_safemode(mddev); 1220 1221 for (;;) { 1222 char b[BDEVNAME_SIZE]; 1223 spin_lock_irqsave(&conf->device_lock, flags); 1224 if (list_empty(head)) 1225 break; 1226 r10_bio = list_entry(head->prev, r10bio_t, retry_list); 1227 list_del(head->prev); 1228 spin_unlock_irqrestore(&conf->device_lock, flags); 1229 1230 mddev = r10_bio->mddev; 1231 conf = mddev_to_conf(mddev); 1232 if (test_bit(R10BIO_IsSync, &r10_bio->state)) { 1233 sync_request_write(mddev, r10_bio); 1234 unplug = 1; 1235 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) { 1236 recovery_request_write(mddev, r10_bio); 1237 unplug = 1; 1238 } else { 1239 int mirror; 1240 bio = r10_bio->devs[r10_bio->read_slot].bio; 1241 r10_bio->devs[r10_bio->read_slot].bio = NULL; 1242 bio_put(bio); 1243 mirror = read_balance(conf, r10_bio); 1244 if (mirror == -1) { 1245 printk(KERN_ALERT "raid10: %s: unrecoverable I/O" 1246 " read error for block %llu\n", 1247 bdevname(bio->bi_bdev,b), 1248 (unsigned long long)r10_bio->sector); 1249 raid_end_bio_io(r10_bio); 1250 } else { 1251 rdev = conf->mirrors[mirror].rdev; 1252 if (printk_ratelimit()) 1253 printk(KERN_ERR "raid10: %s: redirecting sector %llu to" 1254 " another mirror\n", 1255 bdevname(rdev->bdev,b), 1256 (unsigned long long)r10_bio->sector); 1257 bio = bio_clone(r10_bio->master_bio, GFP_NOIO); 1258 r10_bio->devs[r10_bio->read_slot].bio = bio; 1259 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr 1260 + rdev->data_offset; 1261 bio->bi_bdev = rdev->bdev; 1262 bio->bi_rw = READ; 1263 bio->bi_private = r10_bio; 1264 bio->bi_end_io = raid10_end_read_request; 1265 unplug = 1; 1266 generic_make_request(bio); 1267 } 1268 } 1269 } 1270 spin_unlock_irqrestore(&conf->device_lock, flags); 1271 if (unplug) 1272 unplug_slaves(mddev); 1273 } 1274 1275 1276 static int init_resync(conf_t *conf) 1277 { 1278 int buffs; 1279 1280 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1281 if (conf->r10buf_pool) 1282 BUG(); 1283 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf); 1284 if (!conf->r10buf_pool) 1285 return -ENOMEM; 1286 conf->next_resync = 0; 1287 return 0; 1288 } 1289 1290 /* 1291 * perform a "sync" on one "block" 1292 * 1293 * We need to make sure that no normal I/O request - particularly write 1294 * requests - conflict with active sync requests. 1295 * 1296 * This is achieved by tracking pending requests and a 'barrier' concept 1297 * that can be installed to exclude normal IO requests. 1298 * 1299 * Resync and recovery are handled very differently. 1300 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery. 1301 * 1302 * For resync, we iterate over virtual addresses, read all copies, 1303 * and update if there are differences. If only one copy is live, 1304 * skip it. 1305 * For recovery, we iterate over physical addresses, read a good 1306 * value for each non-in_sync drive, and over-write. 1307 * 1308 * So, for recovery we may have several outstanding complex requests for a 1309 * given address, one for each out-of-sync device. We model this by allocating 1310 * a number of r10_bio structures, one for each out-of-sync device. 1311 * As we setup these structures, we collect all bio's together into a list 1312 * which we then process collectively to add pages, and then process again 1313 * to pass to generic_make_request. 1314 * 1315 * The r10_bio structures are linked using a borrowed master_bio pointer. 1316 * This link is counted in ->remaining. When the r10_bio that points to NULL 1317 * has its remaining count decremented to 0, the whole complex operation 1318 * is complete. 1319 * 1320 */ 1321 1322 static int sync_request(mddev_t *mddev, sector_t sector_nr, int go_faster) 1323 { 1324 conf_t *conf = mddev_to_conf(mddev); 1325 r10bio_t *r10_bio; 1326 struct bio *biolist = NULL, *bio; 1327 sector_t max_sector, nr_sectors; 1328 int disk; 1329 int i; 1330 1331 sector_t sectors_skipped = 0; 1332 int chunks_skipped = 0; 1333 1334 if (!conf->r10buf_pool) 1335 if (init_resync(conf)) 1336 return -ENOMEM; 1337 1338 skipped: 1339 max_sector = mddev->size << 1; 1340 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 1341 max_sector = mddev->resync_max_sectors; 1342 if (sector_nr >= max_sector) { 1343 close_sync(conf); 1344 return sectors_skipped; 1345 } 1346 if (chunks_skipped >= conf->raid_disks) { 1347 /* if there has been nothing to do on any drive, 1348 * then there is nothing to do at all.. 1349 */ 1350 sector_t sec = max_sector - sector_nr; 1351 md_done_sync(mddev, sec, 1); 1352 return sec + sectors_skipped; 1353 } 1354 1355 /* make sure whole request will fit in a chunk - if chunks 1356 * are meaningful 1357 */ 1358 if (conf->near_copies < conf->raid_disks && 1359 max_sector > (sector_nr | conf->chunk_mask)) 1360 max_sector = (sector_nr | conf->chunk_mask) + 1; 1361 /* 1362 * If there is non-resync activity waiting for us then 1363 * put in a delay to throttle resync. 1364 */ 1365 if (!go_faster && waitqueue_active(&conf->wait_resume)) 1366 msleep_interruptible(1000); 1367 device_barrier(conf, sector_nr + RESYNC_SECTORS); 1368 1369 /* Again, very different code for resync and recovery. 1370 * Both must result in an r10bio with a list of bios that 1371 * have bi_end_io, bi_sector, bi_bdev set, 1372 * and bi_private set to the r10bio. 1373 * For recovery, we may actually create several r10bios 1374 * with 2 bios in each, that correspond to the bios in the main one. 1375 * In this case, the subordinate r10bios link back through a 1376 * borrowed master_bio pointer, and the counter in the master 1377 * includes a ref from each subordinate. 1378 */ 1379 /* First, we decide what to do and set ->bi_end_io 1380 * To end_sync_read if we want to read, and 1381 * end_sync_write if we will want to write. 1382 */ 1383 1384 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 1385 /* recovery... the complicated one */ 1386 int i, j, k; 1387 r10_bio = NULL; 1388 1389 for (i=0 ; i<conf->raid_disks; i++) 1390 if (conf->mirrors[i].rdev && 1391 !conf->mirrors[i].rdev->in_sync) { 1392 /* want to reconstruct this device */ 1393 r10bio_t *rb2 = r10_bio; 1394 1395 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1396 spin_lock_irq(&conf->resync_lock); 1397 conf->nr_pending++; 1398 if (rb2) conf->barrier++; 1399 spin_unlock_irq(&conf->resync_lock); 1400 atomic_set(&r10_bio->remaining, 0); 1401 1402 r10_bio->master_bio = (struct bio*)rb2; 1403 if (rb2) 1404 atomic_inc(&rb2->remaining); 1405 r10_bio->mddev = mddev; 1406 set_bit(R10BIO_IsRecover, &r10_bio->state); 1407 r10_bio->sector = raid10_find_virt(conf, sector_nr, i); 1408 raid10_find_phys(conf, r10_bio); 1409 for (j=0; j<conf->copies;j++) { 1410 int d = r10_bio->devs[j].devnum; 1411 if (conf->mirrors[d].rdev && 1412 conf->mirrors[d].rdev->in_sync) { 1413 /* This is where we read from */ 1414 bio = r10_bio->devs[0].bio; 1415 bio->bi_next = biolist; 1416 biolist = bio; 1417 bio->bi_private = r10_bio; 1418 bio->bi_end_io = end_sync_read; 1419 bio->bi_rw = 0; 1420 bio->bi_sector = r10_bio->devs[j].addr + 1421 conf->mirrors[d].rdev->data_offset; 1422 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1423 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1424 atomic_inc(&r10_bio->remaining); 1425 /* and we write to 'i' */ 1426 1427 for (k=0; k<conf->copies; k++) 1428 if (r10_bio->devs[k].devnum == i) 1429 break; 1430 bio = r10_bio->devs[1].bio; 1431 bio->bi_next = biolist; 1432 biolist = bio; 1433 bio->bi_private = r10_bio; 1434 bio->bi_end_io = end_sync_write; 1435 bio->bi_rw = 1; 1436 bio->bi_sector = r10_bio->devs[k].addr + 1437 conf->mirrors[i].rdev->data_offset; 1438 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1439 1440 r10_bio->devs[0].devnum = d; 1441 r10_bio->devs[1].devnum = i; 1442 1443 break; 1444 } 1445 } 1446 if (j == conf->copies) { 1447 BUG(); 1448 } 1449 } 1450 if (biolist == NULL) { 1451 while (r10_bio) { 1452 r10bio_t *rb2 = r10_bio; 1453 r10_bio = (r10bio_t*) rb2->master_bio; 1454 rb2->master_bio = NULL; 1455 put_buf(rb2); 1456 } 1457 goto giveup; 1458 } 1459 } else { 1460 /* resync. Schedule a read for every block at this virt offset */ 1461 int count = 0; 1462 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO); 1463 1464 spin_lock_irq(&conf->resync_lock); 1465 conf->nr_pending++; 1466 spin_unlock_irq(&conf->resync_lock); 1467 1468 r10_bio->mddev = mddev; 1469 atomic_set(&r10_bio->remaining, 0); 1470 1471 r10_bio->master_bio = NULL; 1472 r10_bio->sector = sector_nr; 1473 set_bit(R10BIO_IsSync, &r10_bio->state); 1474 raid10_find_phys(conf, r10_bio); 1475 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1; 1476 1477 for (i=0; i<conf->copies; i++) { 1478 int d = r10_bio->devs[i].devnum; 1479 bio = r10_bio->devs[i].bio; 1480 bio->bi_end_io = NULL; 1481 if (conf->mirrors[d].rdev == NULL || 1482 conf->mirrors[d].rdev->faulty) 1483 continue; 1484 atomic_inc(&conf->mirrors[d].rdev->nr_pending); 1485 atomic_inc(&r10_bio->remaining); 1486 bio->bi_next = biolist; 1487 biolist = bio; 1488 bio->bi_private = r10_bio; 1489 bio->bi_end_io = end_sync_read; 1490 bio->bi_rw = 0; 1491 bio->bi_sector = r10_bio->devs[i].addr + 1492 conf->mirrors[d].rdev->data_offset; 1493 bio->bi_bdev = conf->mirrors[d].rdev->bdev; 1494 count++; 1495 } 1496 1497 if (count < 2) { 1498 for (i=0; i<conf->copies; i++) { 1499 int d = r10_bio->devs[i].devnum; 1500 if (r10_bio->devs[i].bio->bi_end_io) 1501 rdev_dec_pending(conf->mirrors[d].rdev, mddev); 1502 } 1503 put_buf(r10_bio); 1504 biolist = NULL; 1505 goto giveup; 1506 } 1507 } 1508 1509 for (bio = biolist; bio ; bio=bio->bi_next) { 1510 1511 bio->bi_flags &= ~(BIO_POOL_MASK - 1); 1512 if (bio->bi_end_io) 1513 bio->bi_flags |= 1 << BIO_UPTODATE; 1514 bio->bi_vcnt = 0; 1515 bio->bi_idx = 0; 1516 bio->bi_phys_segments = 0; 1517 bio->bi_hw_segments = 0; 1518 bio->bi_size = 0; 1519 } 1520 1521 nr_sectors = 0; 1522 do { 1523 struct page *page; 1524 int len = PAGE_SIZE; 1525 disk = 0; 1526 if (sector_nr + (len>>9) > max_sector) 1527 len = (max_sector - sector_nr) << 9; 1528 if (len == 0) 1529 break; 1530 for (bio= biolist ; bio ; bio=bio->bi_next) { 1531 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1532 if (bio_add_page(bio, page, len, 0) == 0) { 1533 /* stop here */ 1534 struct bio *bio2; 1535 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1536 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) { 1537 /* remove last page from this bio */ 1538 bio2->bi_vcnt--; 1539 bio2->bi_size -= len; 1540 bio2->bi_flags &= ~(1<< BIO_SEG_VALID); 1541 } 1542 goto bio_full; 1543 } 1544 disk = i; 1545 } 1546 nr_sectors += len>>9; 1547 sector_nr += len>>9; 1548 } while (biolist->bi_vcnt < RESYNC_PAGES); 1549 bio_full: 1550 r10_bio->sectors = nr_sectors; 1551 1552 while (biolist) { 1553 bio = biolist; 1554 biolist = biolist->bi_next; 1555 1556 bio->bi_next = NULL; 1557 r10_bio = bio->bi_private; 1558 r10_bio->sectors = nr_sectors; 1559 1560 if (bio->bi_end_io == end_sync_read) { 1561 md_sync_acct(bio->bi_bdev, nr_sectors); 1562 generic_make_request(bio); 1563 } 1564 } 1565 1566 return sectors_skipped + nr_sectors; 1567 giveup: 1568 /* There is nowhere to write, so all non-sync 1569 * drives must be failed, so try the next chunk... 1570 */ 1571 { 1572 int sec = max_sector - sector_nr; 1573 sectors_skipped += sec; 1574 chunks_skipped ++; 1575 sector_nr = max_sector; 1576 md_done_sync(mddev, sec, 1); 1577 goto skipped; 1578 } 1579 } 1580 1581 static int run(mddev_t *mddev) 1582 { 1583 conf_t *conf; 1584 int i, disk_idx; 1585 mirror_info_t *disk; 1586 mdk_rdev_t *rdev; 1587 struct list_head *tmp; 1588 int nc, fc; 1589 sector_t stride, size; 1590 1591 if (mddev->level != 10) { 1592 printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n", 1593 mdname(mddev), mddev->level); 1594 goto out; 1595 } 1596 nc = mddev->layout & 255; 1597 fc = (mddev->layout >> 8) & 255; 1598 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks || 1599 (mddev->layout >> 16)) { 1600 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n", 1601 mdname(mddev), mddev->layout); 1602 goto out; 1603 } 1604 /* 1605 * copy the already verified devices into our private RAID10 1606 * bookkeeping area. [whatever we allocate in run(), 1607 * should be freed in stop()] 1608 */ 1609 conf = kmalloc(sizeof(conf_t), GFP_KERNEL); 1610 mddev->private = conf; 1611 if (!conf) { 1612 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1613 mdname(mddev)); 1614 goto out; 1615 } 1616 memset(conf, 0, sizeof(*conf)); 1617 conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1618 GFP_KERNEL); 1619 if (!conf->mirrors) { 1620 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1621 mdname(mddev)); 1622 goto out_free_conf; 1623 } 1624 memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks); 1625 1626 conf->near_copies = nc; 1627 conf->far_copies = fc; 1628 conf->copies = nc*fc; 1629 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1; 1630 conf->chunk_shift = ffz(~mddev->chunk_size) - 9; 1631 stride = mddev->size >> (conf->chunk_shift-1); 1632 sector_div(stride, fc); 1633 conf->stride = stride << conf->chunk_shift; 1634 1635 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc, 1636 r10bio_pool_free, conf); 1637 if (!conf->r10bio_pool) { 1638 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n", 1639 mdname(mddev)); 1640 goto out_free_conf; 1641 } 1642 mddev->queue->unplug_fn = raid10_unplug; 1643 1644 mddev->queue->issue_flush_fn = raid10_issue_flush; 1645 1646 ITERATE_RDEV(mddev, rdev, tmp) { 1647 disk_idx = rdev->raid_disk; 1648 if (disk_idx >= mddev->raid_disks 1649 || disk_idx < 0) 1650 continue; 1651 disk = conf->mirrors + disk_idx; 1652 1653 disk->rdev = rdev; 1654 1655 blk_queue_stack_limits(mddev->queue, 1656 rdev->bdev->bd_disk->queue); 1657 /* as we don't honour merge_bvec_fn, we must never risk 1658 * violating it, so limit ->max_sector to one PAGE, as 1659 * a one page request is never in violation. 1660 */ 1661 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1662 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1663 mddev->queue->max_sectors = (PAGE_SIZE>>9); 1664 1665 disk->head_position = 0; 1666 if (!rdev->faulty && rdev->in_sync) 1667 conf->working_disks++; 1668 } 1669 conf->raid_disks = mddev->raid_disks; 1670 conf->mddev = mddev; 1671 spin_lock_init(&conf->device_lock); 1672 INIT_LIST_HEAD(&conf->retry_list); 1673 1674 spin_lock_init(&conf->resync_lock); 1675 init_waitqueue_head(&conf->wait_idle); 1676 init_waitqueue_head(&conf->wait_resume); 1677 1678 if (!conf->working_disks) { 1679 printk(KERN_ERR "raid10: no operational mirrors for %s\n", 1680 mdname(mddev)); 1681 goto out_free_conf; 1682 } 1683 1684 mddev->degraded = 0; 1685 for (i = 0; i < conf->raid_disks; i++) { 1686 1687 disk = conf->mirrors + i; 1688 1689 if (!disk->rdev) { 1690 disk->head_position = 0; 1691 mddev->degraded++; 1692 } 1693 } 1694 1695 1696 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10"); 1697 if (!mddev->thread) { 1698 printk(KERN_ERR 1699 "raid10: couldn't allocate thread for %s\n", 1700 mdname(mddev)); 1701 goto out_free_conf; 1702 } 1703 1704 printk(KERN_INFO 1705 "raid10: raid set %s active with %d out of %d devices\n", 1706 mdname(mddev), mddev->raid_disks - mddev->degraded, 1707 mddev->raid_disks); 1708 /* 1709 * Ok, everything is just fine now 1710 */ 1711 size = conf->stride * conf->raid_disks; 1712 sector_div(size, conf->near_copies); 1713 mddev->array_size = size/2; 1714 mddev->resync_max_sectors = size; 1715 1716 /* Calculate max read-ahead size. 1717 * We need to readahead at least twice a whole stripe.... 1718 * maybe... 1719 */ 1720 { 1721 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE; 1722 stripe /= conf->near_copies; 1723 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe) 1724 mddev->queue->backing_dev_info.ra_pages = 2* stripe; 1725 } 1726 1727 if (conf->near_copies < mddev->raid_disks) 1728 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec); 1729 return 0; 1730 1731 out_free_conf: 1732 if (conf->r10bio_pool) 1733 mempool_destroy(conf->r10bio_pool); 1734 if (conf->mirrors) 1735 kfree(conf->mirrors); 1736 kfree(conf); 1737 mddev->private = NULL; 1738 out: 1739 return -EIO; 1740 } 1741 1742 static int stop(mddev_t *mddev) 1743 { 1744 conf_t *conf = mddev_to_conf(mddev); 1745 1746 md_unregister_thread(mddev->thread); 1747 mddev->thread = NULL; 1748 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 1749 if (conf->r10bio_pool) 1750 mempool_destroy(conf->r10bio_pool); 1751 if (conf->mirrors) 1752 kfree(conf->mirrors); 1753 kfree(conf); 1754 mddev->private = NULL; 1755 return 0; 1756 } 1757 1758 1759 static mdk_personality_t raid10_personality = 1760 { 1761 .name = "raid10", 1762 .owner = THIS_MODULE, 1763 .make_request = make_request, 1764 .run = run, 1765 .stop = stop, 1766 .status = status, 1767 .error_handler = error, 1768 .hot_add_disk = raid10_add_disk, 1769 .hot_remove_disk= raid10_remove_disk, 1770 .spare_active = raid10_spare_active, 1771 .sync_request = sync_request, 1772 }; 1773 1774 static int __init raid_init(void) 1775 { 1776 return register_md_personality(RAID10, &raid10_personality); 1777 } 1778 1779 static void raid_exit(void) 1780 { 1781 unregister_md_personality(RAID10); 1782 } 1783 1784 module_init(raid_init); 1785 module_exit(raid_exit); 1786 MODULE_LICENSE("GPL"); 1787 MODULE_ALIAS("md-personality-9"); /* RAID10 */ 1788