1 /* 2 * raid1.c : Multiple Devices driver for Linux 3 * 4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat 5 * 6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman 7 * 8 * RAID-1 management functions. 9 * 10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000 11 * 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk> 13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au> 14 * 15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support 16 * bitmapped intelligence in resync: 17 * 18 * - bitmap marked during normal i/o 19 * - bitmap used to skip nondirty blocks during sync 20 * 21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology: 22 * - persistent bitmap code 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2, or (at your option) 27 * any later version. 28 * 29 * You should have received a copy of the GNU General Public License 30 * (for example /usr/src/linux/COPYING); if not, write to the Free 31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include "dm-bio-list.h" 35 #include <linux/raid/raid1.h> 36 #include <linux/raid/bitmap.h> 37 38 #define DEBUG 0 39 #if DEBUG 40 #define PRINTK(x...) printk(x) 41 #else 42 #define PRINTK(x...) 43 #endif 44 45 /* 46 * Number of guaranteed r1bios in case of extreme VM load: 47 */ 48 #define NR_RAID1_BIOS 256 49 50 51 static void unplug_slaves(mddev_t *mddev); 52 53 static void allow_barrier(conf_t *conf); 54 static void lower_barrier(conf_t *conf); 55 56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data) 57 { 58 struct pool_info *pi = data; 59 r1bio_t *r1_bio; 60 int size = offsetof(r1bio_t, bios[pi->raid_disks]); 61 62 /* allocate a r1bio with room for raid_disks entries in the bios array */ 63 r1_bio = kzalloc(size, gfp_flags); 64 if (!r1_bio) 65 unplug_slaves(pi->mddev); 66 67 return r1_bio; 68 } 69 70 static void r1bio_pool_free(void *r1_bio, void *data) 71 { 72 kfree(r1_bio); 73 } 74 75 #define RESYNC_BLOCK_SIZE (64*1024) 76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE 77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9) 78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE) 79 #define RESYNC_WINDOW (2048*1024) 80 81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data) 82 { 83 struct pool_info *pi = data; 84 struct page *page; 85 r1bio_t *r1_bio; 86 struct bio *bio; 87 int i, j; 88 89 r1_bio = r1bio_pool_alloc(gfp_flags, pi); 90 if (!r1_bio) { 91 unplug_slaves(pi->mddev); 92 return NULL; 93 } 94 95 /* 96 * Allocate bios : 1 for reading, n-1 for writing 97 */ 98 for (j = pi->raid_disks ; j-- ; ) { 99 bio = bio_alloc(gfp_flags, RESYNC_PAGES); 100 if (!bio) 101 goto out_free_bio; 102 r1_bio->bios[j] = bio; 103 } 104 /* 105 * Allocate RESYNC_PAGES data pages and attach them to 106 * the first bio. 107 * If this is a user-requested check/repair, allocate 108 * RESYNC_PAGES for each bio. 109 */ 110 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) 111 j = pi->raid_disks; 112 else 113 j = 1; 114 while(j--) { 115 bio = r1_bio->bios[j]; 116 for (i = 0; i < RESYNC_PAGES; i++) { 117 page = alloc_page(gfp_flags); 118 if (unlikely(!page)) 119 goto out_free_pages; 120 121 bio->bi_io_vec[i].bv_page = page; 122 } 123 } 124 /* If not user-requests, copy the page pointers to all bios */ 125 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) { 126 for (i=0; i<RESYNC_PAGES ; i++) 127 for (j=1; j<pi->raid_disks; j++) 128 r1_bio->bios[j]->bi_io_vec[i].bv_page = 129 r1_bio->bios[0]->bi_io_vec[i].bv_page; 130 } 131 132 r1_bio->master_bio = NULL; 133 134 return r1_bio; 135 136 out_free_pages: 137 for (i=0; i < RESYNC_PAGES ; i++) 138 for (j=0 ; j < pi->raid_disks; j++) 139 safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page); 140 j = -1; 141 out_free_bio: 142 while ( ++j < pi->raid_disks ) 143 bio_put(r1_bio->bios[j]); 144 r1bio_pool_free(r1_bio, data); 145 return NULL; 146 } 147 148 static void r1buf_pool_free(void *__r1_bio, void *data) 149 { 150 struct pool_info *pi = data; 151 int i,j; 152 r1bio_t *r1bio = __r1_bio; 153 154 for (i = 0; i < RESYNC_PAGES; i++) 155 for (j = pi->raid_disks; j-- ;) { 156 if (j == 0 || 157 r1bio->bios[j]->bi_io_vec[i].bv_page != 158 r1bio->bios[0]->bi_io_vec[i].bv_page) 159 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page); 160 } 161 for (i=0 ; i < pi->raid_disks; i++) 162 bio_put(r1bio->bios[i]); 163 164 r1bio_pool_free(r1bio, data); 165 } 166 167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio) 168 { 169 int i; 170 171 for (i = 0; i < conf->raid_disks; i++) { 172 struct bio **bio = r1_bio->bios + i; 173 if (*bio && *bio != IO_BLOCKED) 174 bio_put(*bio); 175 *bio = NULL; 176 } 177 } 178 179 static void free_r1bio(r1bio_t *r1_bio) 180 { 181 conf_t *conf = mddev_to_conf(r1_bio->mddev); 182 183 /* 184 * Wake up any possible resync thread that waits for the device 185 * to go idle. 186 */ 187 allow_barrier(conf); 188 189 put_all_bios(conf, r1_bio); 190 mempool_free(r1_bio, conf->r1bio_pool); 191 } 192 193 static void put_buf(r1bio_t *r1_bio) 194 { 195 conf_t *conf = mddev_to_conf(r1_bio->mddev); 196 int i; 197 198 for (i=0; i<conf->raid_disks; i++) { 199 struct bio *bio = r1_bio->bios[i]; 200 if (bio->bi_end_io) 201 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev); 202 } 203 204 mempool_free(r1_bio, conf->r1buf_pool); 205 206 lower_barrier(conf); 207 } 208 209 static void reschedule_retry(r1bio_t *r1_bio) 210 { 211 unsigned long flags; 212 mddev_t *mddev = r1_bio->mddev; 213 conf_t *conf = mddev_to_conf(mddev); 214 215 spin_lock_irqsave(&conf->device_lock, flags); 216 list_add(&r1_bio->retry_list, &conf->retry_list); 217 conf->nr_queued ++; 218 spin_unlock_irqrestore(&conf->device_lock, flags); 219 220 wake_up(&conf->wait_barrier); 221 md_wakeup_thread(mddev->thread); 222 } 223 224 /* 225 * raid_end_bio_io() is called when we have finished servicing a mirrored 226 * operation and are ready to return a success/failure code to the buffer 227 * cache layer. 228 */ 229 static void raid_end_bio_io(r1bio_t *r1_bio) 230 { 231 struct bio *bio = r1_bio->master_bio; 232 233 /* if nobody has done the final endio yet, do it now */ 234 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 235 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n", 236 (bio_data_dir(bio) == WRITE) ? "write" : "read", 237 (unsigned long long) bio->bi_sector, 238 (unsigned long long) bio->bi_sector + 239 (bio->bi_size >> 9) - 1); 240 241 bio_endio(bio, 242 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO); 243 } 244 free_r1bio(r1_bio); 245 } 246 247 /* 248 * Update disk head position estimator based on IRQ completion info. 249 */ 250 static inline void update_head_pos(int disk, r1bio_t *r1_bio) 251 { 252 conf_t *conf = mddev_to_conf(r1_bio->mddev); 253 254 conf->mirrors[disk].head_position = 255 r1_bio->sector + (r1_bio->sectors); 256 } 257 258 static void raid1_end_read_request(struct bio *bio, int error) 259 { 260 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 261 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 262 int mirror; 263 conf_t *conf = mddev_to_conf(r1_bio->mddev); 264 265 mirror = r1_bio->read_disk; 266 /* 267 * this branch is our 'one mirror IO has finished' event handler: 268 */ 269 update_head_pos(mirror, r1_bio); 270 271 if (uptodate) 272 set_bit(R1BIO_Uptodate, &r1_bio->state); 273 else { 274 /* If all other devices have failed, we want to return 275 * the error upwards rather than fail the last device. 276 * Here we redefine "uptodate" to mean "Don't want to retry" 277 */ 278 unsigned long flags; 279 spin_lock_irqsave(&conf->device_lock, flags); 280 if (r1_bio->mddev->degraded == conf->raid_disks || 281 (r1_bio->mddev->degraded == conf->raid_disks-1 && 282 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))) 283 uptodate = 1; 284 spin_unlock_irqrestore(&conf->device_lock, flags); 285 } 286 287 if (uptodate) 288 raid_end_bio_io(r1_bio); 289 else { 290 /* 291 * oops, read error: 292 */ 293 char b[BDEVNAME_SIZE]; 294 if (printk_ratelimit()) 295 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n", 296 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector); 297 reschedule_retry(r1_bio); 298 } 299 300 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 301 } 302 303 static void raid1_end_write_request(struct bio *bio, int error) 304 { 305 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 306 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 307 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state); 308 conf_t *conf = mddev_to_conf(r1_bio->mddev); 309 struct bio *to_put = NULL; 310 311 312 for (mirror = 0; mirror < conf->raid_disks; mirror++) 313 if (r1_bio->bios[mirror] == bio) 314 break; 315 316 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) { 317 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags); 318 set_bit(R1BIO_BarrierRetry, &r1_bio->state); 319 r1_bio->mddev->barriers_work = 0; 320 /* Don't rdev_dec_pending in this branch - keep it for the retry */ 321 } else { 322 /* 323 * this branch is our 'one mirror IO has finished' event handler: 324 */ 325 r1_bio->bios[mirror] = NULL; 326 to_put = bio; 327 if (!uptodate) { 328 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev); 329 /* an I/O failed, we can't clear the bitmap */ 330 set_bit(R1BIO_Degraded, &r1_bio->state); 331 } else 332 /* 333 * Set R1BIO_Uptodate in our master bio, so that 334 * we will return a good error code for to the higher 335 * levels even if IO on some other mirrored buffer fails. 336 * 337 * The 'master' represents the composite IO operation to 338 * user-side. So if something waits for IO, then it will 339 * wait for the 'master' bio. 340 */ 341 set_bit(R1BIO_Uptodate, &r1_bio->state); 342 343 update_head_pos(mirror, r1_bio); 344 345 if (behind) { 346 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags)) 347 atomic_dec(&r1_bio->behind_remaining); 348 349 /* In behind mode, we ACK the master bio once the I/O has safely 350 * reached all non-writemostly disks. Setting the Returned bit 351 * ensures that this gets done only once -- we don't ever want to 352 * return -EIO here, instead we'll wait */ 353 354 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) && 355 test_bit(R1BIO_Uptodate, &r1_bio->state)) { 356 /* Maybe we can return now */ 357 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) { 358 struct bio *mbio = r1_bio->master_bio; 359 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n", 360 (unsigned long long) mbio->bi_sector, 361 (unsigned long long) mbio->bi_sector + 362 (mbio->bi_size >> 9) - 1); 363 bio_endio(mbio, 0); 364 } 365 } 366 } 367 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev); 368 } 369 /* 370 * 371 * Let's see if all mirrored write operations have finished 372 * already. 373 */ 374 if (atomic_dec_and_test(&r1_bio->remaining)) { 375 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) 376 reschedule_retry(r1_bio); 377 else { 378 /* it really is the end of this request */ 379 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) { 380 /* free extra copy of the data pages */ 381 int i = bio->bi_vcnt; 382 while (i--) 383 safe_put_page(bio->bi_io_vec[i].bv_page); 384 } 385 /* clear the bitmap if all writes complete successfully */ 386 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector, 387 r1_bio->sectors, 388 !test_bit(R1BIO_Degraded, &r1_bio->state), 389 behind); 390 md_write_end(r1_bio->mddev); 391 raid_end_bio_io(r1_bio); 392 } 393 } 394 395 if (to_put) 396 bio_put(to_put); 397 } 398 399 400 /* 401 * This routine returns the disk from which the requested read should 402 * be done. There is a per-array 'next expected sequential IO' sector 403 * number - if this matches on the next IO then we use the last disk. 404 * There is also a per-disk 'last know head position' sector that is 405 * maintained from IRQ contexts, both the normal and the resync IO 406 * completion handlers update this position correctly. If there is no 407 * perfect sequential match then we pick the disk whose head is closest. 408 * 409 * If there are 2 mirrors in the same 2 devices, performance degrades 410 * because position is mirror, not device based. 411 * 412 * The rdev for the device selected will have nr_pending incremented. 413 */ 414 static int read_balance(conf_t *conf, r1bio_t *r1_bio) 415 { 416 const unsigned long this_sector = r1_bio->sector; 417 int new_disk = conf->last_used, disk = new_disk; 418 int wonly_disk = -1; 419 const int sectors = r1_bio->sectors; 420 sector_t new_distance, current_distance; 421 mdk_rdev_t *rdev; 422 423 rcu_read_lock(); 424 /* 425 * Check if we can balance. We can balance on the whole 426 * device if no resync is going on, or below the resync window. 427 * We take the first readable disk when above the resync window. 428 */ 429 retry: 430 if (conf->mddev->recovery_cp < MaxSector && 431 (this_sector + sectors >= conf->next_resync)) { 432 /* Choose the first operation device, for consistancy */ 433 new_disk = 0; 434 435 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 436 r1_bio->bios[new_disk] == IO_BLOCKED || 437 !rdev || !test_bit(In_sync, &rdev->flags) 438 || test_bit(WriteMostly, &rdev->flags); 439 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) { 440 441 if (rdev && test_bit(In_sync, &rdev->flags) && 442 r1_bio->bios[new_disk] != IO_BLOCKED) 443 wonly_disk = new_disk; 444 445 if (new_disk == conf->raid_disks - 1) { 446 new_disk = wonly_disk; 447 break; 448 } 449 } 450 goto rb_out; 451 } 452 453 454 /* make sure the disk is operational */ 455 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 456 r1_bio->bios[new_disk] == IO_BLOCKED || 457 !rdev || !test_bit(In_sync, &rdev->flags) || 458 test_bit(WriteMostly, &rdev->flags); 459 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) { 460 461 if (rdev && test_bit(In_sync, &rdev->flags) && 462 r1_bio->bios[new_disk] != IO_BLOCKED) 463 wonly_disk = new_disk; 464 465 if (new_disk <= 0) 466 new_disk = conf->raid_disks; 467 new_disk--; 468 if (new_disk == disk) { 469 new_disk = wonly_disk; 470 break; 471 } 472 } 473 474 if (new_disk < 0) 475 goto rb_out; 476 477 disk = new_disk; 478 /* now disk == new_disk == starting point for search */ 479 480 /* 481 * Don't change to another disk for sequential reads: 482 */ 483 if (conf->next_seq_sect == this_sector) 484 goto rb_out; 485 if (this_sector == conf->mirrors[new_disk].head_position) 486 goto rb_out; 487 488 current_distance = abs(this_sector - conf->mirrors[disk].head_position); 489 490 /* Find the disk whose head is closest */ 491 492 do { 493 if (disk <= 0) 494 disk = conf->raid_disks; 495 disk--; 496 497 rdev = rcu_dereference(conf->mirrors[disk].rdev); 498 499 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED || 500 !test_bit(In_sync, &rdev->flags) || 501 test_bit(WriteMostly, &rdev->flags)) 502 continue; 503 504 if (!atomic_read(&rdev->nr_pending)) { 505 new_disk = disk; 506 break; 507 } 508 new_distance = abs(this_sector - conf->mirrors[disk].head_position); 509 if (new_distance < current_distance) { 510 current_distance = new_distance; 511 new_disk = disk; 512 } 513 } while (disk != conf->last_used); 514 515 rb_out: 516 517 518 if (new_disk >= 0) { 519 rdev = rcu_dereference(conf->mirrors[new_disk].rdev); 520 if (!rdev) 521 goto retry; 522 atomic_inc(&rdev->nr_pending); 523 if (!test_bit(In_sync, &rdev->flags)) { 524 /* cannot risk returning a device that failed 525 * before we inc'ed nr_pending 526 */ 527 rdev_dec_pending(rdev, conf->mddev); 528 goto retry; 529 } 530 conf->next_seq_sect = this_sector + sectors; 531 conf->last_used = new_disk; 532 } 533 rcu_read_unlock(); 534 535 return new_disk; 536 } 537 538 static void unplug_slaves(mddev_t *mddev) 539 { 540 conf_t *conf = mddev_to_conf(mddev); 541 int i; 542 543 rcu_read_lock(); 544 for (i=0; i<mddev->raid_disks; i++) { 545 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 546 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) { 547 struct request_queue *r_queue = bdev_get_queue(rdev->bdev); 548 549 atomic_inc(&rdev->nr_pending); 550 rcu_read_unlock(); 551 552 if (r_queue->unplug_fn) 553 r_queue->unplug_fn(r_queue); 554 555 rdev_dec_pending(rdev, mddev); 556 rcu_read_lock(); 557 } 558 } 559 rcu_read_unlock(); 560 } 561 562 static void raid1_unplug(struct request_queue *q) 563 { 564 mddev_t *mddev = q->queuedata; 565 566 unplug_slaves(mddev); 567 md_wakeup_thread(mddev->thread); 568 } 569 570 static int raid1_congested(void *data, int bits) 571 { 572 mddev_t *mddev = data; 573 conf_t *conf = mddev_to_conf(mddev); 574 int i, ret = 0; 575 576 rcu_read_lock(); 577 for (i = 0; i < mddev->raid_disks; i++) { 578 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 579 if (rdev && !test_bit(Faulty, &rdev->flags)) { 580 struct request_queue *q = bdev_get_queue(rdev->bdev); 581 582 /* Note the '|| 1' - when read_balance prefers 583 * non-congested targets, it can be removed 584 */ 585 if ((bits & (1<<BDI_write_congested)) || 1) 586 ret |= bdi_congested(&q->backing_dev_info, bits); 587 else 588 ret &= bdi_congested(&q->backing_dev_info, bits); 589 } 590 } 591 rcu_read_unlock(); 592 return ret; 593 } 594 595 596 /* Barriers.... 597 * Sometimes we need to suspend IO while we do something else, 598 * either some resync/recovery, or reconfigure the array. 599 * To do this we raise a 'barrier'. 600 * The 'barrier' is a counter that can be raised multiple times 601 * to count how many activities are happening which preclude 602 * normal IO. 603 * We can only raise the barrier if there is no pending IO. 604 * i.e. if nr_pending == 0. 605 * We choose only to raise the barrier if no-one is waiting for the 606 * barrier to go down. This means that as soon as an IO request 607 * is ready, no other operations which require a barrier will start 608 * until the IO request has had a chance. 609 * 610 * So: regular IO calls 'wait_barrier'. When that returns there 611 * is no backgroup IO happening, It must arrange to call 612 * allow_barrier when it has finished its IO. 613 * backgroup IO calls must call raise_barrier. Once that returns 614 * there is no normal IO happeing. It must arrange to call 615 * lower_barrier when the particular background IO completes. 616 */ 617 #define RESYNC_DEPTH 32 618 619 static void raise_barrier(conf_t *conf) 620 { 621 spin_lock_irq(&conf->resync_lock); 622 623 /* Wait until no block IO is waiting */ 624 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting, 625 conf->resync_lock, 626 raid1_unplug(conf->mddev->queue)); 627 628 /* block any new IO from starting */ 629 conf->barrier++; 630 631 /* No wait for all pending IO to complete */ 632 wait_event_lock_irq(conf->wait_barrier, 633 !conf->nr_pending && conf->barrier < RESYNC_DEPTH, 634 conf->resync_lock, 635 raid1_unplug(conf->mddev->queue)); 636 637 spin_unlock_irq(&conf->resync_lock); 638 } 639 640 static void lower_barrier(conf_t *conf) 641 { 642 unsigned long flags; 643 spin_lock_irqsave(&conf->resync_lock, flags); 644 conf->barrier--; 645 spin_unlock_irqrestore(&conf->resync_lock, flags); 646 wake_up(&conf->wait_barrier); 647 } 648 649 static void wait_barrier(conf_t *conf) 650 { 651 spin_lock_irq(&conf->resync_lock); 652 if (conf->barrier) { 653 conf->nr_waiting++; 654 wait_event_lock_irq(conf->wait_barrier, !conf->barrier, 655 conf->resync_lock, 656 raid1_unplug(conf->mddev->queue)); 657 conf->nr_waiting--; 658 } 659 conf->nr_pending++; 660 spin_unlock_irq(&conf->resync_lock); 661 } 662 663 static void allow_barrier(conf_t *conf) 664 { 665 unsigned long flags; 666 spin_lock_irqsave(&conf->resync_lock, flags); 667 conf->nr_pending--; 668 spin_unlock_irqrestore(&conf->resync_lock, flags); 669 wake_up(&conf->wait_barrier); 670 } 671 672 static void freeze_array(conf_t *conf) 673 { 674 /* stop syncio and normal IO and wait for everything to 675 * go quite. 676 * We increment barrier and nr_waiting, and then 677 * wait until barrier+nr_pending match nr_queued+2 678 */ 679 spin_lock_irq(&conf->resync_lock); 680 conf->barrier++; 681 conf->nr_waiting++; 682 wait_event_lock_irq(conf->wait_barrier, 683 conf->barrier+conf->nr_pending == conf->nr_queued+2, 684 conf->resync_lock, 685 raid1_unplug(conf->mddev->queue)); 686 spin_unlock_irq(&conf->resync_lock); 687 } 688 static void unfreeze_array(conf_t *conf) 689 { 690 /* reverse the effect of the freeze */ 691 spin_lock_irq(&conf->resync_lock); 692 conf->barrier--; 693 conf->nr_waiting--; 694 wake_up(&conf->wait_barrier); 695 spin_unlock_irq(&conf->resync_lock); 696 } 697 698 699 /* duplicate the data pages for behind I/O */ 700 static struct page **alloc_behind_pages(struct bio *bio) 701 { 702 int i; 703 struct bio_vec *bvec; 704 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *), 705 GFP_NOIO); 706 if (unlikely(!pages)) 707 goto do_sync_io; 708 709 bio_for_each_segment(bvec, bio, i) { 710 pages[i] = alloc_page(GFP_NOIO); 711 if (unlikely(!pages[i])) 712 goto do_sync_io; 713 memcpy(kmap(pages[i]) + bvec->bv_offset, 714 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len); 715 kunmap(pages[i]); 716 kunmap(bvec->bv_page); 717 } 718 719 return pages; 720 721 do_sync_io: 722 if (pages) 723 for (i = 0; i < bio->bi_vcnt && pages[i]; i++) 724 put_page(pages[i]); 725 kfree(pages); 726 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size); 727 return NULL; 728 } 729 730 static int make_request(struct request_queue *q, struct bio * bio) 731 { 732 mddev_t *mddev = q->queuedata; 733 conf_t *conf = mddev_to_conf(mddev); 734 mirror_info_t *mirror; 735 r1bio_t *r1_bio; 736 struct bio *read_bio; 737 int i, targets = 0, disks; 738 mdk_rdev_t *rdev; 739 struct bitmap *bitmap = mddev->bitmap; 740 unsigned long flags; 741 struct bio_list bl; 742 struct page **behind_pages = NULL; 743 const int rw = bio_data_dir(bio); 744 const int do_sync = bio_sync(bio); 745 int do_barriers; 746 747 /* 748 * Register the new request and wait if the reconstruction 749 * thread has put up a bar for new requests. 750 * Continue immediately if no resync is active currently. 751 * We test barriers_work *after* md_write_start as md_write_start 752 * may cause the first superblock write, and that will check out 753 * if barriers work. 754 */ 755 756 md_write_start(mddev, bio); /* wait on superblock update early */ 757 758 if (unlikely(!mddev->barriers_work && bio_barrier(bio))) { 759 if (rw == WRITE) 760 md_write_end(mddev); 761 bio_endio(bio, -EOPNOTSUPP); 762 return 0; 763 } 764 765 wait_barrier(conf); 766 767 disk_stat_inc(mddev->gendisk, ios[rw]); 768 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio)); 769 770 /* 771 * make_request() can abort the operation when READA is being 772 * used and no empty request is available. 773 * 774 */ 775 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO); 776 777 r1_bio->master_bio = bio; 778 r1_bio->sectors = bio->bi_size >> 9; 779 r1_bio->state = 0; 780 r1_bio->mddev = mddev; 781 r1_bio->sector = bio->bi_sector; 782 783 if (rw == READ) { 784 /* 785 * read balancing logic: 786 */ 787 int rdisk = read_balance(conf, r1_bio); 788 789 if (rdisk < 0) { 790 /* couldn't find anywhere to read from */ 791 raid_end_bio_io(r1_bio); 792 return 0; 793 } 794 mirror = conf->mirrors + rdisk; 795 796 r1_bio->read_disk = rdisk; 797 798 read_bio = bio_clone(bio, GFP_NOIO); 799 800 r1_bio->bios[rdisk] = read_bio; 801 802 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset; 803 read_bio->bi_bdev = mirror->rdev->bdev; 804 read_bio->bi_end_io = raid1_end_read_request; 805 read_bio->bi_rw = READ | do_sync; 806 read_bio->bi_private = r1_bio; 807 808 generic_make_request(read_bio); 809 return 0; 810 } 811 812 /* 813 * WRITE: 814 */ 815 /* first select target devices under spinlock and 816 * inc refcount on their rdev. Record them by setting 817 * bios[x] to bio 818 */ 819 disks = conf->raid_disks; 820 #if 0 821 { static int first=1; 822 if (first) printk("First Write sector %llu disks %d\n", 823 (unsigned long long)r1_bio->sector, disks); 824 first = 0; 825 } 826 #endif 827 rcu_read_lock(); 828 for (i = 0; i < disks; i++) { 829 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL && 830 !test_bit(Faulty, &rdev->flags)) { 831 atomic_inc(&rdev->nr_pending); 832 if (test_bit(Faulty, &rdev->flags)) { 833 rdev_dec_pending(rdev, mddev); 834 r1_bio->bios[i] = NULL; 835 } else 836 r1_bio->bios[i] = bio; 837 targets++; 838 } else 839 r1_bio->bios[i] = NULL; 840 } 841 rcu_read_unlock(); 842 843 BUG_ON(targets == 0); /* we never fail the last device */ 844 845 if (targets < conf->raid_disks) { 846 /* array is degraded, we will not clear the bitmap 847 * on I/O completion (see raid1_end_write_request) */ 848 set_bit(R1BIO_Degraded, &r1_bio->state); 849 } 850 851 /* do behind I/O ? */ 852 if (bitmap && 853 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind && 854 (behind_pages = alloc_behind_pages(bio)) != NULL) 855 set_bit(R1BIO_BehindIO, &r1_bio->state); 856 857 atomic_set(&r1_bio->remaining, 0); 858 atomic_set(&r1_bio->behind_remaining, 0); 859 860 do_barriers = bio_barrier(bio); 861 if (do_barriers) 862 set_bit(R1BIO_Barrier, &r1_bio->state); 863 864 bio_list_init(&bl); 865 for (i = 0; i < disks; i++) { 866 struct bio *mbio; 867 if (!r1_bio->bios[i]) 868 continue; 869 870 mbio = bio_clone(bio, GFP_NOIO); 871 r1_bio->bios[i] = mbio; 872 873 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset; 874 mbio->bi_bdev = conf->mirrors[i].rdev->bdev; 875 mbio->bi_end_io = raid1_end_write_request; 876 mbio->bi_rw = WRITE | do_barriers | do_sync; 877 mbio->bi_private = r1_bio; 878 879 if (behind_pages) { 880 struct bio_vec *bvec; 881 int j; 882 883 /* Yes, I really want the '__' version so that 884 * we clear any unused pointer in the io_vec, rather 885 * than leave them unchanged. This is important 886 * because when we come to free the pages, we won't 887 * know the originial bi_idx, so we just free 888 * them all 889 */ 890 __bio_for_each_segment(bvec, mbio, j, 0) 891 bvec->bv_page = behind_pages[j]; 892 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags)) 893 atomic_inc(&r1_bio->behind_remaining); 894 } 895 896 atomic_inc(&r1_bio->remaining); 897 898 bio_list_add(&bl, mbio); 899 } 900 kfree(behind_pages); /* the behind pages are attached to the bios now */ 901 902 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors, 903 test_bit(R1BIO_BehindIO, &r1_bio->state)); 904 spin_lock_irqsave(&conf->device_lock, flags); 905 bio_list_merge(&conf->pending_bio_list, &bl); 906 bio_list_init(&bl); 907 908 blk_plug_device(mddev->queue); 909 spin_unlock_irqrestore(&conf->device_lock, flags); 910 911 if (do_sync) 912 md_wakeup_thread(mddev->thread); 913 #if 0 914 while ((bio = bio_list_pop(&bl)) != NULL) 915 generic_make_request(bio); 916 #endif 917 918 return 0; 919 } 920 921 static void status(struct seq_file *seq, mddev_t *mddev) 922 { 923 conf_t *conf = mddev_to_conf(mddev); 924 int i; 925 926 seq_printf(seq, " [%d/%d] [", conf->raid_disks, 927 conf->raid_disks - mddev->degraded); 928 rcu_read_lock(); 929 for (i = 0; i < conf->raid_disks; i++) { 930 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 931 seq_printf(seq, "%s", 932 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); 933 } 934 rcu_read_unlock(); 935 seq_printf(seq, "]"); 936 } 937 938 939 static void error(mddev_t *mddev, mdk_rdev_t *rdev) 940 { 941 char b[BDEVNAME_SIZE]; 942 conf_t *conf = mddev_to_conf(mddev); 943 944 /* 945 * If it is not operational, then we have already marked it as dead 946 * else if it is the last working disks, ignore the error, let the 947 * next level up know. 948 * else mark the drive as failed 949 */ 950 if (test_bit(In_sync, &rdev->flags) 951 && (conf->raid_disks - mddev->degraded) == 1) 952 /* 953 * Don't fail the drive, act as though we were just a 954 * normal single drive 955 */ 956 return; 957 if (test_and_clear_bit(In_sync, &rdev->flags)) { 958 unsigned long flags; 959 spin_lock_irqsave(&conf->device_lock, flags); 960 mddev->degraded++; 961 set_bit(Faulty, &rdev->flags); 962 spin_unlock_irqrestore(&conf->device_lock, flags); 963 /* 964 * if recovery is running, make sure it aborts. 965 */ 966 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 967 } else 968 set_bit(Faulty, &rdev->flags); 969 set_bit(MD_CHANGE_DEVS, &mddev->flags); 970 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n" 971 " Operation continuing on %d devices\n", 972 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded); 973 } 974 975 static void print_conf(conf_t *conf) 976 { 977 int i; 978 979 printk("RAID1 conf printout:\n"); 980 if (!conf) { 981 printk("(!conf)\n"); 982 return; 983 } 984 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded, 985 conf->raid_disks); 986 987 rcu_read_lock(); 988 for (i = 0; i < conf->raid_disks; i++) { 989 char b[BDEVNAME_SIZE]; 990 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev); 991 if (rdev) 992 printk(" disk %d, wo:%d, o:%d, dev:%s\n", 993 i, !test_bit(In_sync, &rdev->flags), 994 !test_bit(Faulty, &rdev->flags), 995 bdevname(rdev->bdev,b)); 996 } 997 rcu_read_unlock(); 998 } 999 1000 static void close_sync(conf_t *conf) 1001 { 1002 wait_barrier(conf); 1003 allow_barrier(conf); 1004 1005 mempool_destroy(conf->r1buf_pool); 1006 conf->r1buf_pool = NULL; 1007 } 1008 1009 static int raid1_spare_active(mddev_t *mddev) 1010 { 1011 int i; 1012 conf_t *conf = mddev->private; 1013 1014 /* 1015 * Find all failed disks within the RAID1 configuration 1016 * and mark them readable. 1017 * Called under mddev lock, so rcu protection not needed. 1018 */ 1019 for (i = 0; i < conf->raid_disks; i++) { 1020 mdk_rdev_t *rdev = conf->mirrors[i].rdev; 1021 if (rdev 1022 && !test_bit(Faulty, &rdev->flags) 1023 && !test_and_set_bit(In_sync, &rdev->flags)) { 1024 unsigned long flags; 1025 spin_lock_irqsave(&conf->device_lock, flags); 1026 mddev->degraded--; 1027 spin_unlock_irqrestore(&conf->device_lock, flags); 1028 } 1029 } 1030 1031 print_conf(conf); 1032 return 0; 1033 } 1034 1035 1036 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) 1037 { 1038 conf_t *conf = mddev->private; 1039 int found = 0; 1040 int mirror = 0; 1041 mirror_info_t *p; 1042 1043 for (mirror=0; mirror < mddev->raid_disks; mirror++) 1044 if ( !(p=conf->mirrors+mirror)->rdev) { 1045 1046 blk_queue_stack_limits(mddev->queue, 1047 rdev->bdev->bd_disk->queue); 1048 /* as we don't honour merge_bvec_fn, we must never risk 1049 * violating it, so limit ->max_sector to one PAGE, as 1050 * a one page request is never in violation. 1051 */ 1052 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1053 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1054 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1055 1056 p->head_position = 0; 1057 rdev->raid_disk = mirror; 1058 found = 1; 1059 /* As all devices are equivalent, we don't need a full recovery 1060 * if this was recently any drive of the array 1061 */ 1062 if (rdev->saved_raid_disk < 0) 1063 conf->fullsync = 1; 1064 rcu_assign_pointer(p->rdev, rdev); 1065 break; 1066 } 1067 1068 print_conf(conf); 1069 return found; 1070 } 1071 1072 static int raid1_remove_disk(mddev_t *mddev, int number) 1073 { 1074 conf_t *conf = mddev->private; 1075 int err = 0; 1076 mdk_rdev_t *rdev; 1077 mirror_info_t *p = conf->mirrors+ number; 1078 1079 print_conf(conf); 1080 rdev = p->rdev; 1081 if (rdev) { 1082 if (test_bit(In_sync, &rdev->flags) || 1083 atomic_read(&rdev->nr_pending)) { 1084 err = -EBUSY; 1085 goto abort; 1086 } 1087 p->rdev = NULL; 1088 synchronize_rcu(); 1089 if (atomic_read(&rdev->nr_pending)) { 1090 /* lost the race, try later */ 1091 err = -EBUSY; 1092 p->rdev = rdev; 1093 } 1094 } 1095 abort: 1096 1097 print_conf(conf); 1098 return err; 1099 } 1100 1101 1102 static void end_sync_read(struct bio *bio, int error) 1103 { 1104 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1105 int i; 1106 1107 for (i=r1_bio->mddev->raid_disks; i--; ) 1108 if (r1_bio->bios[i] == bio) 1109 break; 1110 BUG_ON(i < 0); 1111 update_head_pos(i, r1_bio); 1112 /* 1113 * we have read a block, now it needs to be re-written, 1114 * or re-read if the read failed. 1115 * We don't do much here, just schedule handling by raid1d 1116 */ 1117 if (test_bit(BIO_UPTODATE, &bio->bi_flags)) 1118 set_bit(R1BIO_Uptodate, &r1_bio->state); 1119 1120 if (atomic_dec_and_test(&r1_bio->remaining)) 1121 reschedule_retry(r1_bio); 1122 } 1123 1124 static void end_sync_write(struct bio *bio, int error) 1125 { 1126 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1127 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private); 1128 mddev_t *mddev = r1_bio->mddev; 1129 conf_t *conf = mddev_to_conf(mddev); 1130 int i; 1131 int mirror=0; 1132 1133 for (i = 0; i < conf->raid_disks; i++) 1134 if (r1_bio->bios[i] == bio) { 1135 mirror = i; 1136 break; 1137 } 1138 if (!uptodate) { 1139 int sync_blocks = 0; 1140 sector_t s = r1_bio->sector; 1141 long sectors_to_go = r1_bio->sectors; 1142 /* make sure these bits doesn't get cleared. */ 1143 do { 1144 bitmap_end_sync(mddev->bitmap, s, 1145 &sync_blocks, 1); 1146 s += sync_blocks; 1147 sectors_to_go -= sync_blocks; 1148 } while (sectors_to_go > 0); 1149 md_error(mddev, conf->mirrors[mirror].rdev); 1150 } 1151 1152 update_head_pos(mirror, r1_bio); 1153 1154 if (atomic_dec_and_test(&r1_bio->remaining)) { 1155 md_done_sync(mddev, r1_bio->sectors, uptodate); 1156 put_buf(r1_bio); 1157 } 1158 } 1159 1160 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio) 1161 { 1162 conf_t *conf = mddev_to_conf(mddev); 1163 int i; 1164 int disks = conf->raid_disks; 1165 struct bio *bio, *wbio; 1166 1167 bio = r1_bio->bios[r1_bio->read_disk]; 1168 1169 1170 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1171 /* We have read all readable devices. If we haven't 1172 * got the block, then there is no hope left. 1173 * If we have, then we want to do a comparison 1174 * and skip the write if everything is the same. 1175 * If any blocks failed to read, then we need to 1176 * attempt an over-write 1177 */ 1178 int primary; 1179 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1180 for (i=0; i<mddev->raid_disks; i++) 1181 if (r1_bio->bios[i]->bi_end_io == end_sync_read) 1182 md_error(mddev, conf->mirrors[i].rdev); 1183 1184 md_done_sync(mddev, r1_bio->sectors, 1); 1185 put_buf(r1_bio); 1186 return; 1187 } 1188 for (primary=0; primary<mddev->raid_disks; primary++) 1189 if (r1_bio->bios[primary]->bi_end_io == end_sync_read && 1190 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) { 1191 r1_bio->bios[primary]->bi_end_io = NULL; 1192 rdev_dec_pending(conf->mirrors[primary].rdev, mddev); 1193 break; 1194 } 1195 r1_bio->read_disk = primary; 1196 for (i=0; i<mddev->raid_disks; i++) 1197 if (r1_bio->bios[i]->bi_end_io == end_sync_read) { 1198 int j; 1199 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9); 1200 struct bio *pbio = r1_bio->bios[primary]; 1201 struct bio *sbio = r1_bio->bios[i]; 1202 1203 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) { 1204 for (j = vcnt; j-- ; ) { 1205 struct page *p, *s; 1206 p = pbio->bi_io_vec[j].bv_page; 1207 s = sbio->bi_io_vec[j].bv_page; 1208 if (memcmp(page_address(p), 1209 page_address(s), 1210 PAGE_SIZE)) 1211 break; 1212 } 1213 } else 1214 j = 0; 1215 if (j >= 0) 1216 mddev->resync_mismatches += r1_bio->sectors; 1217 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery) 1218 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) { 1219 sbio->bi_end_io = NULL; 1220 rdev_dec_pending(conf->mirrors[i].rdev, mddev); 1221 } else { 1222 /* fixup the bio for reuse */ 1223 sbio->bi_vcnt = vcnt; 1224 sbio->bi_size = r1_bio->sectors << 9; 1225 sbio->bi_idx = 0; 1226 sbio->bi_phys_segments = 0; 1227 sbio->bi_hw_segments = 0; 1228 sbio->bi_hw_front_size = 0; 1229 sbio->bi_hw_back_size = 0; 1230 sbio->bi_flags &= ~(BIO_POOL_MASK - 1); 1231 sbio->bi_flags |= 1 << BIO_UPTODATE; 1232 sbio->bi_next = NULL; 1233 sbio->bi_sector = r1_bio->sector + 1234 conf->mirrors[i].rdev->data_offset; 1235 sbio->bi_bdev = conf->mirrors[i].rdev->bdev; 1236 for (j = 0; j < vcnt ; j++) 1237 memcpy(page_address(sbio->bi_io_vec[j].bv_page), 1238 page_address(pbio->bi_io_vec[j].bv_page), 1239 PAGE_SIZE); 1240 1241 } 1242 } 1243 } 1244 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) { 1245 /* ouch - failed to read all of that. 1246 * Try some synchronous reads of other devices to get 1247 * good data, much like with normal read errors. Only 1248 * read into the pages we already have so we don't 1249 * need to re-issue the read request. 1250 * We don't need to freeze the array, because being in an 1251 * active sync request, there is no normal IO, and 1252 * no overlapping syncs. 1253 */ 1254 sector_t sect = r1_bio->sector; 1255 int sectors = r1_bio->sectors; 1256 int idx = 0; 1257 1258 while(sectors) { 1259 int s = sectors; 1260 int d = r1_bio->read_disk; 1261 int success = 0; 1262 mdk_rdev_t *rdev; 1263 1264 if (s > (PAGE_SIZE>>9)) 1265 s = PAGE_SIZE >> 9; 1266 do { 1267 if (r1_bio->bios[d]->bi_end_io == end_sync_read) { 1268 /* No rcu protection needed here devices 1269 * can only be removed when no resync is 1270 * active, and resync is currently active 1271 */ 1272 rdev = conf->mirrors[d].rdev; 1273 if (sync_page_io(rdev->bdev, 1274 sect + rdev->data_offset, 1275 s<<9, 1276 bio->bi_io_vec[idx].bv_page, 1277 READ)) { 1278 success = 1; 1279 break; 1280 } 1281 } 1282 d++; 1283 if (d == conf->raid_disks) 1284 d = 0; 1285 } while (!success && d != r1_bio->read_disk); 1286 1287 if (success) { 1288 int start = d; 1289 /* write it back and re-read */ 1290 set_bit(R1BIO_Uptodate, &r1_bio->state); 1291 while (d != r1_bio->read_disk) { 1292 if (d == 0) 1293 d = conf->raid_disks; 1294 d--; 1295 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1296 continue; 1297 rdev = conf->mirrors[d].rdev; 1298 atomic_add(s, &rdev->corrected_errors); 1299 if (sync_page_io(rdev->bdev, 1300 sect + rdev->data_offset, 1301 s<<9, 1302 bio->bi_io_vec[idx].bv_page, 1303 WRITE) == 0) 1304 md_error(mddev, rdev); 1305 } 1306 d = start; 1307 while (d != r1_bio->read_disk) { 1308 if (d == 0) 1309 d = conf->raid_disks; 1310 d--; 1311 if (r1_bio->bios[d]->bi_end_io != end_sync_read) 1312 continue; 1313 rdev = conf->mirrors[d].rdev; 1314 if (sync_page_io(rdev->bdev, 1315 sect + rdev->data_offset, 1316 s<<9, 1317 bio->bi_io_vec[idx].bv_page, 1318 READ) == 0) 1319 md_error(mddev, rdev); 1320 } 1321 } else { 1322 char b[BDEVNAME_SIZE]; 1323 /* Cannot read from anywhere, array is toast */ 1324 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev); 1325 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error" 1326 " for block %llu\n", 1327 bdevname(bio->bi_bdev,b), 1328 (unsigned long long)r1_bio->sector); 1329 md_done_sync(mddev, r1_bio->sectors, 0); 1330 put_buf(r1_bio); 1331 return; 1332 } 1333 sectors -= s; 1334 sect += s; 1335 idx ++; 1336 } 1337 } 1338 1339 /* 1340 * schedule writes 1341 */ 1342 atomic_set(&r1_bio->remaining, 1); 1343 for (i = 0; i < disks ; i++) { 1344 wbio = r1_bio->bios[i]; 1345 if (wbio->bi_end_io == NULL || 1346 (wbio->bi_end_io == end_sync_read && 1347 (i == r1_bio->read_disk || 1348 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery)))) 1349 continue; 1350 1351 wbio->bi_rw = WRITE; 1352 wbio->bi_end_io = end_sync_write; 1353 atomic_inc(&r1_bio->remaining); 1354 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9); 1355 1356 generic_make_request(wbio); 1357 } 1358 1359 if (atomic_dec_and_test(&r1_bio->remaining)) { 1360 /* if we're here, all write(s) have completed, so clean up */ 1361 md_done_sync(mddev, r1_bio->sectors, 1); 1362 put_buf(r1_bio); 1363 } 1364 } 1365 1366 /* 1367 * This is a kernel thread which: 1368 * 1369 * 1. Retries failed read operations on working mirrors. 1370 * 2. Updates the raid superblock when problems encounter. 1371 * 3. Performs writes following reads for array syncronising. 1372 */ 1373 1374 static void fix_read_error(conf_t *conf, int read_disk, 1375 sector_t sect, int sectors) 1376 { 1377 mddev_t *mddev = conf->mddev; 1378 while(sectors) { 1379 int s = sectors; 1380 int d = read_disk; 1381 int success = 0; 1382 int start; 1383 mdk_rdev_t *rdev; 1384 1385 if (s > (PAGE_SIZE>>9)) 1386 s = PAGE_SIZE >> 9; 1387 1388 do { 1389 /* Note: no rcu protection needed here 1390 * as this is synchronous in the raid1d thread 1391 * which is the thread that might remove 1392 * a device. If raid1d ever becomes multi-threaded.... 1393 */ 1394 rdev = conf->mirrors[d].rdev; 1395 if (rdev && 1396 test_bit(In_sync, &rdev->flags) && 1397 sync_page_io(rdev->bdev, 1398 sect + rdev->data_offset, 1399 s<<9, 1400 conf->tmppage, READ)) 1401 success = 1; 1402 else { 1403 d++; 1404 if (d == conf->raid_disks) 1405 d = 0; 1406 } 1407 } while (!success && d != read_disk); 1408 1409 if (!success) { 1410 /* Cannot read from anywhere -- bye bye array */ 1411 md_error(mddev, conf->mirrors[read_disk].rdev); 1412 break; 1413 } 1414 /* write it back and re-read */ 1415 start = d; 1416 while (d != read_disk) { 1417 if (d==0) 1418 d = conf->raid_disks; 1419 d--; 1420 rdev = conf->mirrors[d].rdev; 1421 if (rdev && 1422 test_bit(In_sync, &rdev->flags)) { 1423 if (sync_page_io(rdev->bdev, 1424 sect + rdev->data_offset, 1425 s<<9, conf->tmppage, WRITE) 1426 == 0) 1427 /* Well, this device is dead */ 1428 md_error(mddev, rdev); 1429 } 1430 } 1431 d = start; 1432 while (d != read_disk) { 1433 char b[BDEVNAME_SIZE]; 1434 if (d==0) 1435 d = conf->raid_disks; 1436 d--; 1437 rdev = conf->mirrors[d].rdev; 1438 if (rdev && 1439 test_bit(In_sync, &rdev->flags)) { 1440 if (sync_page_io(rdev->bdev, 1441 sect + rdev->data_offset, 1442 s<<9, conf->tmppage, READ) 1443 == 0) 1444 /* Well, this device is dead */ 1445 md_error(mddev, rdev); 1446 else { 1447 atomic_add(s, &rdev->corrected_errors); 1448 printk(KERN_INFO 1449 "raid1:%s: read error corrected " 1450 "(%d sectors at %llu on %s)\n", 1451 mdname(mddev), s, 1452 (unsigned long long)(sect + 1453 rdev->data_offset), 1454 bdevname(rdev->bdev, b)); 1455 } 1456 } 1457 } 1458 sectors -= s; 1459 sect += s; 1460 } 1461 } 1462 1463 static void raid1d(mddev_t *mddev) 1464 { 1465 r1bio_t *r1_bio; 1466 struct bio *bio; 1467 unsigned long flags; 1468 conf_t *conf = mddev_to_conf(mddev); 1469 struct list_head *head = &conf->retry_list; 1470 int unplug=0; 1471 mdk_rdev_t *rdev; 1472 1473 md_check_recovery(mddev); 1474 1475 for (;;) { 1476 char b[BDEVNAME_SIZE]; 1477 spin_lock_irqsave(&conf->device_lock, flags); 1478 1479 if (conf->pending_bio_list.head) { 1480 bio = bio_list_get(&conf->pending_bio_list); 1481 blk_remove_plug(mddev->queue); 1482 spin_unlock_irqrestore(&conf->device_lock, flags); 1483 /* flush any pending bitmap writes to disk before proceeding w/ I/O */ 1484 bitmap_unplug(mddev->bitmap); 1485 1486 while (bio) { /* submit pending writes */ 1487 struct bio *next = bio->bi_next; 1488 bio->bi_next = NULL; 1489 generic_make_request(bio); 1490 bio = next; 1491 } 1492 unplug = 1; 1493 1494 continue; 1495 } 1496 1497 if (list_empty(head)) 1498 break; 1499 r1_bio = list_entry(head->prev, r1bio_t, retry_list); 1500 list_del(head->prev); 1501 conf->nr_queued--; 1502 spin_unlock_irqrestore(&conf->device_lock, flags); 1503 1504 mddev = r1_bio->mddev; 1505 conf = mddev_to_conf(mddev); 1506 if (test_bit(R1BIO_IsSync, &r1_bio->state)) { 1507 sync_request_write(mddev, r1_bio); 1508 unplug = 1; 1509 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) { 1510 /* some requests in the r1bio were BIO_RW_BARRIER 1511 * requests which failed with -EOPNOTSUPP. Hohumm.. 1512 * Better resubmit without the barrier. 1513 * We know which devices to resubmit for, because 1514 * all others have had their bios[] entry cleared. 1515 * We already have a nr_pending reference on these rdevs. 1516 */ 1517 int i; 1518 const int do_sync = bio_sync(r1_bio->master_bio); 1519 clear_bit(R1BIO_BarrierRetry, &r1_bio->state); 1520 clear_bit(R1BIO_Barrier, &r1_bio->state); 1521 for (i=0; i < conf->raid_disks; i++) 1522 if (r1_bio->bios[i]) 1523 atomic_inc(&r1_bio->remaining); 1524 for (i=0; i < conf->raid_disks; i++) 1525 if (r1_bio->bios[i]) { 1526 struct bio_vec *bvec; 1527 int j; 1528 1529 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1530 /* copy pages from the failed bio, as 1531 * this might be a write-behind device */ 1532 __bio_for_each_segment(bvec, bio, j, 0) 1533 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page; 1534 bio_put(r1_bio->bios[i]); 1535 bio->bi_sector = r1_bio->sector + 1536 conf->mirrors[i].rdev->data_offset; 1537 bio->bi_bdev = conf->mirrors[i].rdev->bdev; 1538 bio->bi_end_io = raid1_end_write_request; 1539 bio->bi_rw = WRITE | do_sync; 1540 bio->bi_private = r1_bio; 1541 r1_bio->bios[i] = bio; 1542 generic_make_request(bio); 1543 } 1544 } else { 1545 int disk; 1546 1547 /* we got a read error. Maybe the drive is bad. Maybe just 1548 * the block and we can fix it. 1549 * We freeze all other IO, and try reading the block from 1550 * other devices. When we find one, we re-write 1551 * and check it that fixes the read error. 1552 * This is all done synchronously while the array is 1553 * frozen 1554 */ 1555 if (mddev->ro == 0) { 1556 freeze_array(conf); 1557 fix_read_error(conf, r1_bio->read_disk, 1558 r1_bio->sector, 1559 r1_bio->sectors); 1560 unfreeze_array(conf); 1561 } 1562 1563 bio = r1_bio->bios[r1_bio->read_disk]; 1564 if ((disk=read_balance(conf, r1_bio)) == -1) { 1565 printk(KERN_ALERT "raid1: %s: unrecoverable I/O" 1566 " read error for block %llu\n", 1567 bdevname(bio->bi_bdev,b), 1568 (unsigned long long)r1_bio->sector); 1569 raid_end_bio_io(r1_bio); 1570 } else { 1571 const int do_sync = bio_sync(r1_bio->master_bio); 1572 r1_bio->bios[r1_bio->read_disk] = 1573 mddev->ro ? IO_BLOCKED : NULL; 1574 r1_bio->read_disk = disk; 1575 bio_put(bio); 1576 bio = bio_clone(r1_bio->master_bio, GFP_NOIO); 1577 r1_bio->bios[r1_bio->read_disk] = bio; 1578 rdev = conf->mirrors[disk].rdev; 1579 if (printk_ratelimit()) 1580 printk(KERN_ERR "raid1: %s: redirecting sector %llu to" 1581 " another mirror\n", 1582 bdevname(rdev->bdev,b), 1583 (unsigned long long)r1_bio->sector); 1584 bio->bi_sector = r1_bio->sector + rdev->data_offset; 1585 bio->bi_bdev = rdev->bdev; 1586 bio->bi_end_io = raid1_end_read_request; 1587 bio->bi_rw = READ | do_sync; 1588 bio->bi_private = r1_bio; 1589 unplug = 1; 1590 generic_make_request(bio); 1591 } 1592 } 1593 } 1594 spin_unlock_irqrestore(&conf->device_lock, flags); 1595 if (unplug) 1596 unplug_slaves(mddev); 1597 } 1598 1599 1600 static int init_resync(conf_t *conf) 1601 { 1602 int buffs; 1603 1604 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE; 1605 BUG_ON(conf->r1buf_pool); 1606 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free, 1607 conf->poolinfo); 1608 if (!conf->r1buf_pool) 1609 return -ENOMEM; 1610 conf->next_resync = 0; 1611 return 0; 1612 } 1613 1614 /* 1615 * perform a "sync" on one "block" 1616 * 1617 * We need to make sure that no normal I/O request - particularly write 1618 * requests - conflict with active sync requests. 1619 * 1620 * This is achieved by tracking pending requests and a 'barrier' concept 1621 * that can be installed to exclude normal IO requests. 1622 */ 1623 1624 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster) 1625 { 1626 conf_t *conf = mddev_to_conf(mddev); 1627 r1bio_t *r1_bio; 1628 struct bio *bio; 1629 sector_t max_sector, nr_sectors; 1630 int disk = -1; 1631 int i; 1632 int wonly = -1; 1633 int write_targets = 0, read_targets = 0; 1634 int sync_blocks; 1635 int still_degraded = 0; 1636 1637 if (!conf->r1buf_pool) 1638 { 1639 /* 1640 printk("sync start - bitmap %p\n", mddev->bitmap); 1641 */ 1642 if (init_resync(conf)) 1643 return 0; 1644 } 1645 1646 max_sector = mddev->size << 1; 1647 if (sector_nr >= max_sector) { 1648 /* If we aborted, we need to abort the 1649 * sync on the 'current' bitmap chunk (there will 1650 * only be one in raid1 resync. 1651 * We can find the current addess in mddev->curr_resync 1652 */ 1653 if (mddev->curr_resync < max_sector) /* aborted */ 1654 bitmap_end_sync(mddev->bitmap, mddev->curr_resync, 1655 &sync_blocks, 1); 1656 else /* completed sync */ 1657 conf->fullsync = 0; 1658 1659 bitmap_close_sync(mddev->bitmap); 1660 close_sync(conf); 1661 return 0; 1662 } 1663 1664 if (mddev->bitmap == NULL && 1665 mddev->recovery_cp == MaxSector && 1666 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 1667 conf->fullsync == 0) { 1668 *skipped = 1; 1669 return max_sector - sector_nr; 1670 } 1671 /* before building a request, check if we can skip these blocks.. 1672 * This call the bitmap_start_sync doesn't actually record anything 1673 */ 1674 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && 1675 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1676 /* We can skip this block, and probably several more */ 1677 *skipped = 1; 1678 return sync_blocks; 1679 } 1680 /* 1681 * If there is non-resync activity waiting for a turn, 1682 * and resync is going fast enough, 1683 * then let it though before starting on this new sync request. 1684 */ 1685 if (!go_faster && conf->nr_waiting) 1686 msleep_interruptible(1000); 1687 1688 raise_barrier(conf); 1689 1690 conf->next_resync = sector_nr; 1691 1692 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO); 1693 rcu_read_lock(); 1694 /* 1695 * If we get a correctably read error during resync or recovery, 1696 * we might want to read from a different device. So we 1697 * flag all drives that could conceivably be read from for READ, 1698 * and any others (which will be non-In_sync devices) for WRITE. 1699 * If a read fails, we try reading from something else for which READ 1700 * is OK. 1701 */ 1702 1703 r1_bio->mddev = mddev; 1704 r1_bio->sector = sector_nr; 1705 r1_bio->state = 0; 1706 set_bit(R1BIO_IsSync, &r1_bio->state); 1707 1708 for (i=0; i < conf->raid_disks; i++) { 1709 mdk_rdev_t *rdev; 1710 bio = r1_bio->bios[i]; 1711 1712 /* take from bio_init */ 1713 bio->bi_next = NULL; 1714 bio->bi_flags |= 1 << BIO_UPTODATE; 1715 bio->bi_rw = READ; 1716 bio->bi_vcnt = 0; 1717 bio->bi_idx = 0; 1718 bio->bi_phys_segments = 0; 1719 bio->bi_hw_segments = 0; 1720 bio->bi_size = 0; 1721 bio->bi_end_io = NULL; 1722 bio->bi_private = NULL; 1723 1724 rdev = rcu_dereference(conf->mirrors[i].rdev); 1725 if (rdev == NULL || 1726 test_bit(Faulty, &rdev->flags)) { 1727 still_degraded = 1; 1728 continue; 1729 } else if (!test_bit(In_sync, &rdev->flags)) { 1730 bio->bi_rw = WRITE; 1731 bio->bi_end_io = end_sync_write; 1732 write_targets ++; 1733 } else { 1734 /* may need to read from here */ 1735 bio->bi_rw = READ; 1736 bio->bi_end_io = end_sync_read; 1737 if (test_bit(WriteMostly, &rdev->flags)) { 1738 if (wonly < 0) 1739 wonly = i; 1740 } else { 1741 if (disk < 0) 1742 disk = i; 1743 } 1744 read_targets++; 1745 } 1746 atomic_inc(&rdev->nr_pending); 1747 bio->bi_sector = sector_nr + rdev->data_offset; 1748 bio->bi_bdev = rdev->bdev; 1749 bio->bi_private = r1_bio; 1750 } 1751 rcu_read_unlock(); 1752 if (disk < 0) 1753 disk = wonly; 1754 r1_bio->read_disk = disk; 1755 1756 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0) 1757 /* extra read targets are also write targets */ 1758 write_targets += read_targets-1; 1759 1760 if (write_targets == 0 || read_targets == 0) { 1761 /* There is nowhere to write, so all non-sync 1762 * drives must be failed - so we are finished 1763 */ 1764 sector_t rv = max_sector - sector_nr; 1765 *skipped = 1; 1766 put_buf(r1_bio); 1767 return rv; 1768 } 1769 1770 nr_sectors = 0; 1771 sync_blocks = 0; 1772 do { 1773 struct page *page; 1774 int len = PAGE_SIZE; 1775 if (sector_nr + (len>>9) > max_sector) 1776 len = (max_sector - sector_nr) << 9; 1777 if (len == 0) 1778 break; 1779 if (sync_blocks == 0) { 1780 if (!bitmap_start_sync(mddev->bitmap, sector_nr, 1781 &sync_blocks, still_degraded) && 1782 !conf->fullsync && 1783 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 1784 break; 1785 BUG_ON(sync_blocks < (PAGE_SIZE>>9)); 1786 if (len > (sync_blocks<<9)) 1787 len = sync_blocks<<9; 1788 } 1789 1790 for (i=0 ; i < conf->raid_disks; i++) { 1791 bio = r1_bio->bios[i]; 1792 if (bio->bi_end_io) { 1793 page = bio->bi_io_vec[bio->bi_vcnt].bv_page; 1794 if (bio_add_page(bio, page, len, 0) == 0) { 1795 /* stop here */ 1796 bio->bi_io_vec[bio->bi_vcnt].bv_page = page; 1797 while (i > 0) { 1798 i--; 1799 bio = r1_bio->bios[i]; 1800 if (bio->bi_end_io==NULL) 1801 continue; 1802 /* remove last page from this bio */ 1803 bio->bi_vcnt--; 1804 bio->bi_size -= len; 1805 bio->bi_flags &= ~(1<< BIO_SEG_VALID); 1806 } 1807 goto bio_full; 1808 } 1809 } 1810 } 1811 nr_sectors += len>>9; 1812 sector_nr += len>>9; 1813 sync_blocks -= (len>>9); 1814 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES); 1815 bio_full: 1816 r1_bio->sectors = nr_sectors; 1817 1818 /* For a user-requested sync, we read all readable devices and do a 1819 * compare 1820 */ 1821 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 1822 atomic_set(&r1_bio->remaining, read_targets); 1823 for (i=0; i<conf->raid_disks; i++) { 1824 bio = r1_bio->bios[i]; 1825 if (bio->bi_end_io == end_sync_read) { 1826 md_sync_acct(bio->bi_bdev, nr_sectors); 1827 generic_make_request(bio); 1828 } 1829 } 1830 } else { 1831 atomic_set(&r1_bio->remaining, 1); 1832 bio = r1_bio->bios[r1_bio->read_disk]; 1833 md_sync_acct(bio->bi_bdev, nr_sectors); 1834 generic_make_request(bio); 1835 1836 } 1837 return nr_sectors; 1838 } 1839 1840 static int run(mddev_t *mddev) 1841 { 1842 conf_t *conf; 1843 int i, j, disk_idx; 1844 mirror_info_t *disk; 1845 mdk_rdev_t *rdev; 1846 struct list_head *tmp; 1847 1848 if (mddev->level != 1) { 1849 printk("raid1: %s: raid level not set to mirroring (%d)\n", 1850 mdname(mddev), mddev->level); 1851 goto out; 1852 } 1853 if (mddev->reshape_position != MaxSector) { 1854 printk("raid1: %s: reshape_position set but not supported\n", 1855 mdname(mddev)); 1856 goto out; 1857 } 1858 /* 1859 * copy the already verified devices into our private RAID1 1860 * bookkeeping area. [whatever we allocate in run(), 1861 * should be freed in stop()] 1862 */ 1863 conf = kzalloc(sizeof(conf_t), GFP_KERNEL); 1864 mddev->private = conf; 1865 if (!conf) 1866 goto out_no_mem; 1867 1868 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks, 1869 GFP_KERNEL); 1870 if (!conf->mirrors) 1871 goto out_no_mem; 1872 1873 conf->tmppage = alloc_page(GFP_KERNEL); 1874 if (!conf->tmppage) 1875 goto out_no_mem; 1876 1877 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL); 1878 if (!conf->poolinfo) 1879 goto out_no_mem; 1880 conf->poolinfo->mddev = mddev; 1881 conf->poolinfo->raid_disks = mddev->raid_disks; 1882 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 1883 r1bio_pool_free, 1884 conf->poolinfo); 1885 if (!conf->r1bio_pool) 1886 goto out_no_mem; 1887 1888 ITERATE_RDEV(mddev, rdev, tmp) { 1889 disk_idx = rdev->raid_disk; 1890 if (disk_idx >= mddev->raid_disks 1891 || disk_idx < 0) 1892 continue; 1893 disk = conf->mirrors + disk_idx; 1894 1895 disk->rdev = rdev; 1896 1897 blk_queue_stack_limits(mddev->queue, 1898 rdev->bdev->bd_disk->queue); 1899 /* as we don't honour merge_bvec_fn, we must never risk 1900 * violating it, so limit ->max_sector to one PAGE, as 1901 * a one page request is never in violation. 1902 */ 1903 if (rdev->bdev->bd_disk->queue->merge_bvec_fn && 1904 mddev->queue->max_sectors > (PAGE_SIZE>>9)) 1905 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9); 1906 1907 disk->head_position = 0; 1908 } 1909 conf->raid_disks = mddev->raid_disks; 1910 conf->mddev = mddev; 1911 spin_lock_init(&conf->device_lock); 1912 INIT_LIST_HEAD(&conf->retry_list); 1913 1914 spin_lock_init(&conf->resync_lock); 1915 init_waitqueue_head(&conf->wait_barrier); 1916 1917 bio_list_init(&conf->pending_bio_list); 1918 bio_list_init(&conf->flushing_bio_list); 1919 1920 1921 mddev->degraded = 0; 1922 for (i = 0; i < conf->raid_disks; i++) { 1923 1924 disk = conf->mirrors + i; 1925 1926 if (!disk->rdev || 1927 !test_bit(In_sync, &disk->rdev->flags)) { 1928 disk->head_position = 0; 1929 mddev->degraded++; 1930 if (disk->rdev) 1931 conf->fullsync = 1; 1932 } 1933 } 1934 if (mddev->degraded == conf->raid_disks) { 1935 printk(KERN_ERR "raid1: no operational mirrors for %s\n", 1936 mdname(mddev)); 1937 goto out_free_conf; 1938 } 1939 if (conf->raid_disks - mddev->degraded == 1) 1940 mddev->recovery_cp = MaxSector; 1941 1942 /* 1943 * find the first working one and use it as a starting point 1944 * to read balancing. 1945 */ 1946 for (j = 0; j < conf->raid_disks && 1947 (!conf->mirrors[j].rdev || 1948 !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++) 1949 /* nothing */; 1950 conf->last_used = j; 1951 1952 1953 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1"); 1954 if (!mddev->thread) { 1955 printk(KERN_ERR 1956 "raid1: couldn't allocate thread for %s\n", 1957 mdname(mddev)); 1958 goto out_free_conf; 1959 } 1960 1961 printk(KERN_INFO 1962 "raid1: raid set %s active with %d out of %d mirrors\n", 1963 mdname(mddev), mddev->raid_disks - mddev->degraded, 1964 mddev->raid_disks); 1965 /* 1966 * Ok, everything is just fine now 1967 */ 1968 mddev->array_size = mddev->size; 1969 1970 mddev->queue->unplug_fn = raid1_unplug; 1971 mddev->queue->backing_dev_info.congested_fn = raid1_congested; 1972 mddev->queue->backing_dev_info.congested_data = mddev; 1973 1974 return 0; 1975 1976 out_no_mem: 1977 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n", 1978 mdname(mddev)); 1979 1980 out_free_conf: 1981 if (conf) { 1982 if (conf->r1bio_pool) 1983 mempool_destroy(conf->r1bio_pool); 1984 kfree(conf->mirrors); 1985 safe_put_page(conf->tmppage); 1986 kfree(conf->poolinfo); 1987 kfree(conf); 1988 mddev->private = NULL; 1989 } 1990 out: 1991 return -EIO; 1992 } 1993 1994 static int stop(mddev_t *mddev) 1995 { 1996 conf_t *conf = mddev_to_conf(mddev); 1997 struct bitmap *bitmap = mddev->bitmap; 1998 int behind_wait = 0; 1999 2000 /* wait for behind writes to complete */ 2001 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 2002 behind_wait++; 2003 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait); 2004 set_current_state(TASK_UNINTERRUPTIBLE); 2005 schedule_timeout(HZ); /* wait a second */ 2006 /* need to kick something here to make sure I/O goes? */ 2007 } 2008 2009 md_unregister_thread(mddev->thread); 2010 mddev->thread = NULL; 2011 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 2012 if (conf->r1bio_pool) 2013 mempool_destroy(conf->r1bio_pool); 2014 kfree(conf->mirrors); 2015 kfree(conf->poolinfo); 2016 kfree(conf); 2017 mddev->private = NULL; 2018 return 0; 2019 } 2020 2021 static int raid1_resize(mddev_t *mddev, sector_t sectors) 2022 { 2023 /* no resync is happening, and there is enough space 2024 * on all devices, so we can resize. 2025 * We need to make sure resync covers any new space. 2026 * If the array is shrinking we should possibly wait until 2027 * any io in the removed space completes, but it hardly seems 2028 * worth it. 2029 */ 2030 mddev->array_size = sectors>>1; 2031 set_capacity(mddev->gendisk, mddev->array_size << 1); 2032 mddev->changed = 1; 2033 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) { 2034 mddev->recovery_cp = mddev->size << 1; 2035 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2036 } 2037 mddev->size = mddev->array_size; 2038 mddev->resync_max_sectors = sectors; 2039 return 0; 2040 } 2041 2042 static int raid1_reshape(mddev_t *mddev) 2043 { 2044 /* We need to: 2045 * 1/ resize the r1bio_pool 2046 * 2/ resize conf->mirrors 2047 * 2048 * We allocate a new r1bio_pool if we can. 2049 * Then raise a device barrier and wait until all IO stops. 2050 * Then resize conf->mirrors and swap in the new r1bio pool. 2051 * 2052 * At the same time, we "pack" the devices so that all the missing 2053 * devices have the higher raid_disk numbers. 2054 */ 2055 mempool_t *newpool, *oldpool; 2056 struct pool_info *newpoolinfo; 2057 mirror_info_t *newmirrors; 2058 conf_t *conf = mddev_to_conf(mddev); 2059 int cnt, raid_disks; 2060 unsigned long flags; 2061 int d, d2; 2062 2063 /* Cannot change chunk_size, layout, or level */ 2064 if (mddev->chunk_size != mddev->new_chunk || 2065 mddev->layout != mddev->new_layout || 2066 mddev->level != mddev->new_level) { 2067 mddev->new_chunk = mddev->chunk_size; 2068 mddev->new_layout = mddev->layout; 2069 mddev->new_level = mddev->level; 2070 return -EINVAL; 2071 } 2072 2073 md_allow_write(mddev); 2074 2075 raid_disks = mddev->raid_disks + mddev->delta_disks; 2076 2077 if (raid_disks < conf->raid_disks) { 2078 cnt=0; 2079 for (d= 0; d < conf->raid_disks; d++) 2080 if (conf->mirrors[d].rdev) 2081 cnt++; 2082 if (cnt > raid_disks) 2083 return -EBUSY; 2084 } 2085 2086 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL); 2087 if (!newpoolinfo) 2088 return -ENOMEM; 2089 newpoolinfo->mddev = mddev; 2090 newpoolinfo->raid_disks = raid_disks; 2091 2092 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc, 2093 r1bio_pool_free, newpoolinfo); 2094 if (!newpool) { 2095 kfree(newpoolinfo); 2096 return -ENOMEM; 2097 } 2098 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL); 2099 if (!newmirrors) { 2100 kfree(newpoolinfo); 2101 mempool_destroy(newpool); 2102 return -ENOMEM; 2103 } 2104 2105 raise_barrier(conf); 2106 2107 /* ok, everything is stopped */ 2108 oldpool = conf->r1bio_pool; 2109 conf->r1bio_pool = newpool; 2110 2111 for (d = d2 = 0; d < conf->raid_disks; d++) { 2112 mdk_rdev_t *rdev = conf->mirrors[d].rdev; 2113 if (rdev && rdev->raid_disk != d2) { 2114 char nm[20]; 2115 sprintf(nm, "rd%d", rdev->raid_disk); 2116 sysfs_remove_link(&mddev->kobj, nm); 2117 rdev->raid_disk = d2; 2118 sprintf(nm, "rd%d", rdev->raid_disk); 2119 sysfs_remove_link(&mddev->kobj, nm); 2120 if (sysfs_create_link(&mddev->kobj, 2121 &rdev->kobj, nm)) 2122 printk(KERN_WARNING 2123 "md/raid1: cannot register " 2124 "%s for %s\n", 2125 nm, mdname(mddev)); 2126 } 2127 if (rdev) 2128 newmirrors[d2++].rdev = rdev; 2129 } 2130 kfree(conf->mirrors); 2131 conf->mirrors = newmirrors; 2132 kfree(conf->poolinfo); 2133 conf->poolinfo = newpoolinfo; 2134 2135 spin_lock_irqsave(&conf->device_lock, flags); 2136 mddev->degraded += (raid_disks - conf->raid_disks); 2137 spin_unlock_irqrestore(&conf->device_lock, flags); 2138 conf->raid_disks = mddev->raid_disks = raid_disks; 2139 mddev->delta_disks = 0; 2140 2141 conf->last_used = 0; /* just make sure it is in-range */ 2142 lower_barrier(conf); 2143 2144 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2145 md_wakeup_thread(mddev->thread); 2146 2147 mempool_destroy(oldpool); 2148 return 0; 2149 } 2150 2151 static void raid1_quiesce(mddev_t *mddev, int state) 2152 { 2153 conf_t *conf = mddev_to_conf(mddev); 2154 2155 switch(state) { 2156 case 1: 2157 raise_barrier(conf); 2158 break; 2159 case 0: 2160 lower_barrier(conf); 2161 break; 2162 } 2163 } 2164 2165 2166 static struct mdk_personality raid1_personality = 2167 { 2168 .name = "raid1", 2169 .level = 1, 2170 .owner = THIS_MODULE, 2171 .make_request = make_request, 2172 .run = run, 2173 .stop = stop, 2174 .status = status, 2175 .error_handler = error, 2176 .hot_add_disk = raid1_add_disk, 2177 .hot_remove_disk= raid1_remove_disk, 2178 .spare_active = raid1_spare_active, 2179 .sync_request = sync_request, 2180 .resize = raid1_resize, 2181 .check_reshape = raid1_reshape, 2182 .quiesce = raid1_quiesce, 2183 }; 2184 2185 static int __init raid_init(void) 2186 { 2187 return register_md_personality(&raid1_personality); 2188 } 2189 2190 static void raid_exit(void) 2191 { 2192 unregister_md_personality(&raid1_personality); 2193 } 2194 2195 module_init(raid_init); 2196 module_exit(raid_exit); 2197 MODULE_LICENSE("GPL"); 2198 MODULE_ALIAS("md-personality-3"); /* RAID1 */ 2199 MODULE_ALIAS("md-raid1"); 2200 MODULE_ALIAS("md-level-1"); 2201