xref: /openbmc/linux/drivers/md/raid1.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37 
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44 
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define	NR_RAID1_BIOS 256
49 
50 
51 static void unplug_slaves(mddev_t *mddev);
52 
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
55 
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
57 {
58 	struct pool_info *pi = data;
59 	r1bio_t *r1_bio;
60 	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61 
62 	/* allocate a r1bio with room for raid_disks entries in the bios array */
63 	r1_bio = kzalloc(size, gfp_flags);
64 	if (!r1_bio)
65 		unplug_slaves(pi->mddev);
66 
67 	return r1_bio;
68 }
69 
70 static void r1bio_pool_free(void *r1_bio, void *data)
71 {
72 	kfree(r1_bio);
73 }
74 
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
80 
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83 	struct pool_info *pi = data;
84 	struct page *page;
85 	r1bio_t *r1_bio;
86 	struct bio *bio;
87 	int i, j;
88 
89 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90 	if (!r1_bio) {
91 		unplug_slaves(pi->mddev);
92 		return NULL;
93 	}
94 
95 	/*
96 	 * Allocate bios : 1 for reading, n-1 for writing
97 	 */
98 	for (j = pi->raid_disks ; j-- ; ) {
99 		bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100 		if (!bio)
101 			goto out_free_bio;
102 		r1_bio->bios[j] = bio;
103 	}
104 	/*
105 	 * Allocate RESYNC_PAGES data pages and attach them to
106 	 * the first bio.
107 	 * If this is a user-requested check/repair, allocate
108 	 * RESYNC_PAGES for each bio.
109 	 */
110 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111 		j = pi->raid_disks;
112 	else
113 		j = 1;
114 	while(j--) {
115 		bio = r1_bio->bios[j];
116 		for (i = 0; i < RESYNC_PAGES; i++) {
117 			page = alloc_page(gfp_flags);
118 			if (unlikely(!page))
119 				goto out_free_pages;
120 
121 			bio->bi_io_vec[i].bv_page = page;
122 		}
123 	}
124 	/* If not user-requests, copy the page pointers to all bios */
125 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126 		for (i=0; i<RESYNC_PAGES ; i++)
127 			for (j=1; j<pi->raid_disks; j++)
128 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
129 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
130 	}
131 
132 	r1_bio->master_bio = NULL;
133 
134 	return r1_bio;
135 
136 out_free_pages:
137 	for (i=0; i < RESYNC_PAGES ; i++)
138 		for (j=0 ; j < pi->raid_disks; j++)
139 			safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140 	j = -1;
141 out_free_bio:
142 	while ( ++j < pi->raid_disks )
143 		bio_put(r1_bio->bios[j]);
144 	r1bio_pool_free(r1_bio, data);
145 	return NULL;
146 }
147 
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150 	struct pool_info *pi = data;
151 	int i,j;
152 	r1bio_t *r1bio = __r1_bio;
153 
154 	for (i = 0; i < RESYNC_PAGES; i++)
155 		for (j = pi->raid_disks; j-- ;) {
156 			if (j == 0 ||
157 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
158 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
159 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160 		}
161 	for (i=0 ; i < pi->raid_disks; i++)
162 		bio_put(r1bio->bios[i]);
163 
164 	r1bio_pool_free(r1bio, data);
165 }
166 
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
168 {
169 	int i;
170 
171 	for (i = 0; i < conf->raid_disks; i++) {
172 		struct bio **bio = r1_bio->bios + i;
173 		if (*bio && *bio != IO_BLOCKED)
174 			bio_put(*bio);
175 		*bio = NULL;
176 	}
177 }
178 
179 static void free_r1bio(r1bio_t *r1_bio)
180 {
181 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
182 
183 	/*
184 	 * Wake up any possible resync thread that waits for the device
185 	 * to go idle.
186 	 */
187 	allow_barrier(conf);
188 
189 	put_all_bios(conf, r1_bio);
190 	mempool_free(r1_bio, conf->r1bio_pool);
191 }
192 
193 static void put_buf(r1bio_t *r1_bio)
194 {
195 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
196 	int i;
197 
198 	for (i=0; i<conf->raid_disks; i++) {
199 		struct bio *bio = r1_bio->bios[i];
200 		if (bio->bi_end_io)
201 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
202 	}
203 
204 	mempool_free(r1_bio, conf->r1buf_pool);
205 
206 	lower_barrier(conf);
207 }
208 
209 static void reschedule_retry(r1bio_t *r1_bio)
210 {
211 	unsigned long flags;
212 	mddev_t *mddev = r1_bio->mddev;
213 	conf_t *conf = mddev_to_conf(mddev);
214 
215 	spin_lock_irqsave(&conf->device_lock, flags);
216 	list_add(&r1_bio->retry_list, &conf->retry_list);
217 	conf->nr_queued ++;
218 	spin_unlock_irqrestore(&conf->device_lock, flags);
219 
220 	wake_up(&conf->wait_barrier);
221 	md_wakeup_thread(mddev->thread);
222 }
223 
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r1bio_t *r1_bio)
230 {
231 	struct bio *bio = r1_bio->master_bio;
232 
233 	/* if nobody has done the final endio yet, do it now */
234 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235 		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236 			(bio_data_dir(bio) == WRITE) ? "write" : "read",
237 			(unsigned long long) bio->bi_sector,
238 			(unsigned long long) bio->bi_sector +
239 				(bio->bi_size >> 9) - 1);
240 
241 		bio_endio(bio,
242 			test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
243 	}
244 	free_r1bio(r1_bio);
245 }
246 
247 /*
248  * Update disk head position estimator based on IRQ completion info.
249  */
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
251 {
252 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
253 
254 	conf->mirrors[disk].head_position =
255 		r1_bio->sector + (r1_bio->sectors);
256 }
257 
258 static void raid1_end_read_request(struct bio *bio, int error)
259 {
260 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262 	int mirror;
263 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
264 
265 	mirror = r1_bio->read_disk;
266 	/*
267 	 * this branch is our 'one mirror IO has finished' event handler:
268 	 */
269 	update_head_pos(mirror, r1_bio);
270 
271 	if (uptodate)
272 		set_bit(R1BIO_Uptodate, &r1_bio->state);
273 	else {
274 		/* If all other devices have failed, we want to return
275 		 * the error upwards rather than fail the last device.
276 		 * Here we redefine "uptodate" to mean "Don't want to retry"
277 		 */
278 		unsigned long flags;
279 		spin_lock_irqsave(&conf->device_lock, flags);
280 		if (r1_bio->mddev->degraded == conf->raid_disks ||
281 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
282 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
283 			uptodate = 1;
284 		spin_unlock_irqrestore(&conf->device_lock, flags);
285 	}
286 
287 	if (uptodate)
288 		raid_end_bio_io(r1_bio);
289 	else {
290 		/*
291 		 * oops, read error:
292 		 */
293 		char b[BDEVNAME_SIZE];
294 		if (printk_ratelimit())
295 			printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
296 			       bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
297 		reschedule_retry(r1_bio);
298 	}
299 
300 	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
301 }
302 
303 static void raid1_end_write_request(struct bio *bio, int error)
304 {
305 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308 	conf_t *conf = mddev_to_conf(r1_bio->mddev);
309 	struct bio *to_put = NULL;
310 
311 
312 	for (mirror = 0; mirror < conf->raid_disks; mirror++)
313 		if (r1_bio->bios[mirror] == bio)
314 			break;
315 
316 	if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
317 		set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
318 		set_bit(R1BIO_BarrierRetry, &r1_bio->state);
319 		r1_bio->mddev->barriers_work = 0;
320 		/* Don't rdev_dec_pending in this branch - keep it for the retry */
321 	} else {
322 		/*
323 		 * this branch is our 'one mirror IO has finished' event handler:
324 		 */
325 		r1_bio->bios[mirror] = NULL;
326 		to_put = bio;
327 		if (!uptodate) {
328 			md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
329 			/* an I/O failed, we can't clear the bitmap */
330 			set_bit(R1BIO_Degraded, &r1_bio->state);
331 		} else
332 			/*
333 			 * Set R1BIO_Uptodate in our master bio, so that
334 			 * we will return a good error code for to the higher
335 			 * levels even if IO on some other mirrored buffer fails.
336 			 *
337 			 * The 'master' represents the composite IO operation to
338 			 * user-side. So if something waits for IO, then it will
339 			 * wait for the 'master' bio.
340 			 */
341 			set_bit(R1BIO_Uptodate, &r1_bio->state);
342 
343 		update_head_pos(mirror, r1_bio);
344 
345 		if (behind) {
346 			if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
347 				atomic_dec(&r1_bio->behind_remaining);
348 
349 			/* In behind mode, we ACK the master bio once the I/O has safely
350 			 * reached all non-writemostly disks. Setting the Returned bit
351 			 * ensures that this gets done only once -- we don't ever want to
352 			 * return -EIO here, instead we'll wait */
353 
354 			if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
355 			    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
356 				/* Maybe we can return now */
357 				if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
358 					struct bio *mbio = r1_bio->master_bio;
359 					PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
360 					       (unsigned long long) mbio->bi_sector,
361 					       (unsigned long long) mbio->bi_sector +
362 					       (mbio->bi_size >> 9) - 1);
363 					bio_endio(mbio, 0);
364 				}
365 			}
366 		}
367 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
368 	}
369 	/*
370 	 *
371 	 * Let's see if all mirrored write operations have finished
372 	 * already.
373 	 */
374 	if (atomic_dec_and_test(&r1_bio->remaining)) {
375 		if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
376 			reschedule_retry(r1_bio);
377 		else {
378 			/* it really is the end of this request */
379 			if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
380 				/* free extra copy of the data pages */
381 				int i = bio->bi_vcnt;
382 				while (i--)
383 					safe_put_page(bio->bi_io_vec[i].bv_page);
384 			}
385 			/* clear the bitmap if all writes complete successfully */
386 			bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
387 					r1_bio->sectors,
388 					!test_bit(R1BIO_Degraded, &r1_bio->state),
389 					behind);
390 			md_write_end(r1_bio->mddev);
391 			raid_end_bio_io(r1_bio);
392 		}
393 	}
394 
395 	if (to_put)
396 		bio_put(to_put);
397 }
398 
399 
400 /*
401  * This routine returns the disk from which the requested read should
402  * be done. There is a per-array 'next expected sequential IO' sector
403  * number - if this matches on the next IO then we use the last disk.
404  * There is also a per-disk 'last know head position' sector that is
405  * maintained from IRQ contexts, both the normal and the resync IO
406  * completion handlers update this position correctly. If there is no
407  * perfect sequential match then we pick the disk whose head is closest.
408  *
409  * If there are 2 mirrors in the same 2 devices, performance degrades
410  * because position is mirror, not device based.
411  *
412  * The rdev for the device selected will have nr_pending incremented.
413  */
414 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
415 {
416 	const unsigned long this_sector = r1_bio->sector;
417 	int new_disk = conf->last_used, disk = new_disk;
418 	int wonly_disk = -1;
419 	const int sectors = r1_bio->sectors;
420 	sector_t new_distance, current_distance;
421 	mdk_rdev_t *rdev;
422 
423 	rcu_read_lock();
424 	/*
425 	 * Check if we can balance. We can balance on the whole
426 	 * device if no resync is going on, or below the resync window.
427 	 * We take the first readable disk when above the resync window.
428 	 */
429  retry:
430 	if (conf->mddev->recovery_cp < MaxSector &&
431 	    (this_sector + sectors >= conf->next_resync)) {
432 		/* Choose the first operation device, for consistancy */
433 		new_disk = 0;
434 
435 		for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
436 		     r1_bio->bios[new_disk] == IO_BLOCKED ||
437 		     !rdev || !test_bit(In_sync, &rdev->flags)
438 			     || test_bit(WriteMostly, &rdev->flags);
439 		     rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
440 
441 			if (rdev && test_bit(In_sync, &rdev->flags) &&
442 				r1_bio->bios[new_disk] != IO_BLOCKED)
443 				wonly_disk = new_disk;
444 
445 			if (new_disk == conf->raid_disks - 1) {
446 				new_disk = wonly_disk;
447 				break;
448 			}
449 		}
450 		goto rb_out;
451 	}
452 
453 
454 	/* make sure the disk is operational */
455 	for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
456 	     r1_bio->bios[new_disk] == IO_BLOCKED ||
457 	     !rdev || !test_bit(In_sync, &rdev->flags) ||
458 		     test_bit(WriteMostly, &rdev->flags);
459 	     rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
460 
461 		if (rdev && test_bit(In_sync, &rdev->flags) &&
462 		    r1_bio->bios[new_disk] != IO_BLOCKED)
463 			wonly_disk = new_disk;
464 
465 		if (new_disk <= 0)
466 			new_disk = conf->raid_disks;
467 		new_disk--;
468 		if (new_disk == disk) {
469 			new_disk = wonly_disk;
470 			break;
471 		}
472 	}
473 
474 	if (new_disk < 0)
475 		goto rb_out;
476 
477 	disk = new_disk;
478 	/* now disk == new_disk == starting point for search */
479 
480 	/*
481 	 * Don't change to another disk for sequential reads:
482 	 */
483 	if (conf->next_seq_sect == this_sector)
484 		goto rb_out;
485 	if (this_sector == conf->mirrors[new_disk].head_position)
486 		goto rb_out;
487 
488 	current_distance = abs(this_sector - conf->mirrors[disk].head_position);
489 
490 	/* Find the disk whose head is closest */
491 
492 	do {
493 		if (disk <= 0)
494 			disk = conf->raid_disks;
495 		disk--;
496 
497 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
498 
499 		if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
500 		    !test_bit(In_sync, &rdev->flags) ||
501 		    test_bit(WriteMostly, &rdev->flags))
502 			continue;
503 
504 		if (!atomic_read(&rdev->nr_pending)) {
505 			new_disk = disk;
506 			break;
507 		}
508 		new_distance = abs(this_sector - conf->mirrors[disk].head_position);
509 		if (new_distance < current_distance) {
510 			current_distance = new_distance;
511 			new_disk = disk;
512 		}
513 	} while (disk != conf->last_used);
514 
515  rb_out:
516 
517 
518 	if (new_disk >= 0) {
519 		rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
520 		if (!rdev)
521 			goto retry;
522 		atomic_inc(&rdev->nr_pending);
523 		if (!test_bit(In_sync, &rdev->flags)) {
524 			/* cannot risk returning a device that failed
525 			 * before we inc'ed nr_pending
526 			 */
527 			rdev_dec_pending(rdev, conf->mddev);
528 			goto retry;
529 		}
530 		conf->next_seq_sect = this_sector + sectors;
531 		conf->last_used = new_disk;
532 	}
533 	rcu_read_unlock();
534 
535 	return new_disk;
536 }
537 
538 static void unplug_slaves(mddev_t *mddev)
539 {
540 	conf_t *conf = mddev_to_conf(mddev);
541 	int i;
542 
543 	rcu_read_lock();
544 	for (i=0; i<mddev->raid_disks; i++) {
545 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
546 		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
547 			struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
548 
549 			atomic_inc(&rdev->nr_pending);
550 			rcu_read_unlock();
551 
552 			if (r_queue->unplug_fn)
553 				r_queue->unplug_fn(r_queue);
554 
555 			rdev_dec_pending(rdev, mddev);
556 			rcu_read_lock();
557 		}
558 	}
559 	rcu_read_unlock();
560 }
561 
562 static void raid1_unplug(struct request_queue *q)
563 {
564 	mddev_t *mddev = q->queuedata;
565 
566 	unplug_slaves(mddev);
567 	md_wakeup_thread(mddev->thread);
568 }
569 
570 static int raid1_congested(void *data, int bits)
571 {
572 	mddev_t *mddev = data;
573 	conf_t *conf = mddev_to_conf(mddev);
574 	int i, ret = 0;
575 
576 	rcu_read_lock();
577 	for (i = 0; i < mddev->raid_disks; i++) {
578 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
579 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
580 			struct request_queue *q = bdev_get_queue(rdev->bdev);
581 
582 			/* Note the '|| 1' - when read_balance prefers
583 			 * non-congested targets, it can be removed
584 			 */
585 			if ((bits & (1<<BDI_write_congested)) || 1)
586 				ret |= bdi_congested(&q->backing_dev_info, bits);
587 			else
588 				ret &= bdi_congested(&q->backing_dev_info, bits);
589 		}
590 	}
591 	rcu_read_unlock();
592 	return ret;
593 }
594 
595 
596 /* Barriers....
597  * Sometimes we need to suspend IO while we do something else,
598  * either some resync/recovery, or reconfigure the array.
599  * To do this we raise a 'barrier'.
600  * The 'barrier' is a counter that can be raised multiple times
601  * to count how many activities are happening which preclude
602  * normal IO.
603  * We can only raise the barrier if there is no pending IO.
604  * i.e. if nr_pending == 0.
605  * We choose only to raise the barrier if no-one is waiting for the
606  * barrier to go down.  This means that as soon as an IO request
607  * is ready, no other operations which require a barrier will start
608  * until the IO request has had a chance.
609  *
610  * So: regular IO calls 'wait_barrier'.  When that returns there
611  *    is no backgroup IO happening,  It must arrange to call
612  *    allow_barrier when it has finished its IO.
613  * backgroup IO calls must call raise_barrier.  Once that returns
614  *    there is no normal IO happeing.  It must arrange to call
615  *    lower_barrier when the particular background IO completes.
616  */
617 #define RESYNC_DEPTH 32
618 
619 static void raise_barrier(conf_t *conf)
620 {
621 	spin_lock_irq(&conf->resync_lock);
622 
623 	/* Wait until no block IO is waiting */
624 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
625 			    conf->resync_lock,
626 			    raid1_unplug(conf->mddev->queue));
627 
628 	/* block any new IO from starting */
629 	conf->barrier++;
630 
631 	/* No wait for all pending IO to complete */
632 	wait_event_lock_irq(conf->wait_barrier,
633 			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
634 			    conf->resync_lock,
635 			    raid1_unplug(conf->mddev->queue));
636 
637 	spin_unlock_irq(&conf->resync_lock);
638 }
639 
640 static void lower_barrier(conf_t *conf)
641 {
642 	unsigned long flags;
643 	spin_lock_irqsave(&conf->resync_lock, flags);
644 	conf->barrier--;
645 	spin_unlock_irqrestore(&conf->resync_lock, flags);
646 	wake_up(&conf->wait_barrier);
647 }
648 
649 static void wait_barrier(conf_t *conf)
650 {
651 	spin_lock_irq(&conf->resync_lock);
652 	if (conf->barrier) {
653 		conf->nr_waiting++;
654 		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
655 				    conf->resync_lock,
656 				    raid1_unplug(conf->mddev->queue));
657 		conf->nr_waiting--;
658 	}
659 	conf->nr_pending++;
660 	spin_unlock_irq(&conf->resync_lock);
661 }
662 
663 static void allow_barrier(conf_t *conf)
664 {
665 	unsigned long flags;
666 	spin_lock_irqsave(&conf->resync_lock, flags);
667 	conf->nr_pending--;
668 	spin_unlock_irqrestore(&conf->resync_lock, flags);
669 	wake_up(&conf->wait_barrier);
670 }
671 
672 static void freeze_array(conf_t *conf)
673 {
674 	/* stop syncio and normal IO and wait for everything to
675 	 * go quite.
676 	 * We increment barrier and nr_waiting, and then
677 	 * wait until barrier+nr_pending match nr_queued+2
678 	 */
679 	spin_lock_irq(&conf->resync_lock);
680 	conf->barrier++;
681 	conf->nr_waiting++;
682 	wait_event_lock_irq(conf->wait_barrier,
683 			    conf->barrier+conf->nr_pending == conf->nr_queued+2,
684 			    conf->resync_lock,
685 			    raid1_unplug(conf->mddev->queue));
686 	spin_unlock_irq(&conf->resync_lock);
687 }
688 static void unfreeze_array(conf_t *conf)
689 {
690 	/* reverse the effect of the freeze */
691 	spin_lock_irq(&conf->resync_lock);
692 	conf->barrier--;
693 	conf->nr_waiting--;
694 	wake_up(&conf->wait_barrier);
695 	spin_unlock_irq(&conf->resync_lock);
696 }
697 
698 
699 /* duplicate the data pages for behind I/O */
700 static struct page **alloc_behind_pages(struct bio *bio)
701 {
702 	int i;
703 	struct bio_vec *bvec;
704 	struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
705 					GFP_NOIO);
706 	if (unlikely(!pages))
707 		goto do_sync_io;
708 
709 	bio_for_each_segment(bvec, bio, i) {
710 		pages[i] = alloc_page(GFP_NOIO);
711 		if (unlikely(!pages[i]))
712 			goto do_sync_io;
713 		memcpy(kmap(pages[i]) + bvec->bv_offset,
714 			kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
715 		kunmap(pages[i]);
716 		kunmap(bvec->bv_page);
717 	}
718 
719 	return pages;
720 
721 do_sync_io:
722 	if (pages)
723 		for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
724 			put_page(pages[i]);
725 	kfree(pages);
726 	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
727 	return NULL;
728 }
729 
730 static int make_request(struct request_queue *q, struct bio * bio)
731 {
732 	mddev_t *mddev = q->queuedata;
733 	conf_t *conf = mddev_to_conf(mddev);
734 	mirror_info_t *mirror;
735 	r1bio_t *r1_bio;
736 	struct bio *read_bio;
737 	int i, targets = 0, disks;
738 	mdk_rdev_t *rdev;
739 	struct bitmap *bitmap = mddev->bitmap;
740 	unsigned long flags;
741 	struct bio_list bl;
742 	struct page **behind_pages = NULL;
743 	const int rw = bio_data_dir(bio);
744 	const int do_sync = bio_sync(bio);
745 	int do_barriers;
746 
747 	/*
748 	 * Register the new request and wait if the reconstruction
749 	 * thread has put up a bar for new requests.
750 	 * Continue immediately if no resync is active currently.
751 	 * We test barriers_work *after* md_write_start as md_write_start
752 	 * may cause the first superblock write, and that will check out
753 	 * if barriers work.
754 	 */
755 
756 	md_write_start(mddev, bio); /* wait on superblock update early */
757 
758 	if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
759 		if (rw == WRITE)
760 			md_write_end(mddev);
761 		bio_endio(bio, -EOPNOTSUPP);
762 		return 0;
763 	}
764 
765 	wait_barrier(conf);
766 
767 	disk_stat_inc(mddev->gendisk, ios[rw]);
768 	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
769 
770 	/*
771 	 * make_request() can abort the operation when READA is being
772 	 * used and no empty request is available.
773 	 *
774 	 */
775 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
776 
777 	r1_bio->master_bio = bio;
778 	r1_bio->sectors = bio->bi_size >> 9;
779 	r1_bio->state = 0;
780 	r1_bio->mddev = mddev;
781 	r1_bio->sector = bio->bi_sector;
782 
783 	if (rw == READ) {
784 		/*
785 		 * read balancing logic:
786 		 */
787 		int rdisk = read_balance(conf, r1_bio);
788 
789 		if (rdisk < 0) {
790 			/* couldn't find anywhere to read from */
791 			raid_end_bio_io(r1_bio);
792 			return 0;
793 		}
794 		mirror = conf->mirrors + rdisk;
795 
796 		r1_bio->read_disk = rdisk;
797 
798 		read_bio = bio_clone(bio, GFP_NOIO);
799 
800 		r1_bio->bios[rdisk] = read_bio;
801 
802 		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
803 		read_bio->bi_bdev = mirror->rdev->bdev;
804 		read_bio->bi_end_io = raid1_end_read_request;
805 		read_bio->bi_rw = READ | do_sync;
806 		read_bio->bi_private = r1_bio;
807 
808 		generic_make_request(read_bio);
809 		return 0;
810 	}
811 
812 	/*
813 	 * WRITE:
814 	 */
815 	/* first select target devices under spinlock and
816 	 * inc refcount on their rdev.  Record them by setting
817 	 * bios[x] to bio
818 	 */
819 	disks = conf->raid_disks;
820 #if 0
821 	{ static int first=1;
822 	if (first) printk("First Write sector %llu disks %d\n",
823 			  (unsigned long long)r1_bio->sector, disks);
824 	first = 0;
825 	}
826 #endif
827 	rcu_read_lock();
828 	for (i = 0;  i < disks; i++) {
829 		if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
830 		    !test_bit(Faulty, &rdev->flags)) {
831 			atomic_inc(&rdev->nr_pending);
832 			if (test_bit(Faulty, &rdev->flags)) {
833 				rdev_dec_pending(rdev, mddev);
834 				r1_bio->bios[i] = NULL;
835 			} else
836 				r1_bio->bios[i] = bio;
837 			targets++;
838 		} else
839 			r1_bio->bios[i] = NULL;
840 	}
841 	rcu_read_unlock();
842 
843 	BUG_ON(targets == 0); /* we never fail the last device */
844 
845 	if (targets < conf->raid_disks) {
846 		/* array is degraded, we will not clear the bitmap
847 		 * on I/O completion (see raid1_end_write_request) */
848 		set_bit(R1BIO_Degraded, &r1_bio->state);
849 	}
850 
851 	/* do behind I/O ? */
852 	if (bitmap &&
853 	    atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
854 	    (behind_pages = alloc_behind_pages(bio)) != NULL)
855 		set_bit(R1BIO_BehindIO, &r1_bio->state);
856 
857 	atomic_set(&r1_bio->remaining, 0);
858 	atomic_set(&r1_bio->behind_remaining, 0);
859 
860 	do_barriers = bio_barrier(bio);
861 	if (do_barriers)
862 		set_bit(R1BIO_Barrier, &r1_bio->state);
863 
864 	bio_list_init(&bl);
865 	for (i = 0; i < disks; i++) {
866 		struct bio *mbio;
867 		if (!r1_bio->bios[i])
868 			continue;
869 
870 		mbio = bio_clone(bio, GFP_NOIO);
871 		r1_bio->bios[i] = mbio;
872 
873 		mbio->bi_sector	= r1_bio->sector + conf->mirrors[i].rdev->data_offset;
874 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
875 		mbio->bi_end_io	= raid1_end_write_request;
876 		mbio->bi_rw = WRITE | do_barriers | do_sync;
877 		mbio->bi_private = r1_bio;
878 
879 		if (behind_pages) {
880 			struct bio_vec *bvec;
881 			int j;
882 
883 			/* Yes, I really want the '__' version so that
884 			 * we clear any unused pointer in the io_vec, rather
885 			 * than leave them unchanged.  This is important
886 			 * because when we come to free the pages, we won't
887 			 * know the originial bi_idx, so we just free
888 			 * them all
889 			 */
890 			__bio_for_each_segment(bvec, mbio, j, 0)
891 				bvec->bv_page = behind_pages[j];
892 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
893 				atomic_inc(&r1_bio->behind_remaining);
894 		}
895 
896 		atomic_inc(&r1_bio->remaining);
897 
898 		bio_list_add(&bl, mbio);
899 	}
900 	kfree(behind_pages); /* the behind pages are attached to the bios now */
901 
902 	bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
903 				test_bit(R1BIO_BehindIO, &r1_bio->state));
904 	spin_lock_irqsave(&conf->device_lock, flags);
905 	bio_list_merge(&conf->pending_bio_list, &bl);
906 	bio_list_init(&bl);
907 
908 	blk_plug_device(mddev->queue);
909 	spin_unlock_irqrestore(&conf->device_lock, flags);
910 
911 	if (do_sync)
912 		md_wakeup_thread(mddev->thread);
913 #if 0
914 	while ((bio = bio_list_pop(&bl)) != NULL)
915 		generic_make_request(bio);
916 #endif
917 
918 	return 0;
919 }
920 
921 static void status(struct seq_file *seq, mddev_t *mddev)
922 {
923 	conf_t *conf = mddev_to_conf(mddev);
924 	int i;
925 
926 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
927 		   conf->raid_disks - mddev->degraded);
928 	rcu_read_lock();
929 	for (i = 0; i < conf->raid_disks; i++) {
930 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
931 		seq_printf(seq, "%s",
932 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
933 	}
934 	rcu_read_unlock();
935 	seq_printf(seq, "]");
936 }
937 
938 
939 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
940 {
941 	char b[BDEVNAME_SIZE];
942 	conf_t *conf = mddev_to_conf(mddev);
943 
944 	/*
945 	 * If it is not operational, then we have already marked it as dead
946 	 * else if it is the last working disks, ignore the error, let the
947 	 * next level up know.
948 	 * else mark the drive as failed
949 	 */
950 	if (test_bit(In_sync, &rdev->flags)
951 	    && (conf->raid_disks - mddev->degraded) == 1)
952 		/*
953 		 * Don't fail the drive, act as though we were just a
954 		 * normal single drive
955 		 */
956 		return;
957 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
958 		unsigned long flags;
959 		spin_lock_irqsave(&conf->device_lock, flags);
960 		mddev->degraded++;
961 		set_bit(Faulty, &rdev->flags);
962 		spin_unlock_irqrestore(&conf->device_lock, flags);
963 		/*
964 		 * if recovery is running, make sure it aborts.
965 		 */
966 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
967 	} else
968 		set_bit(Faulty, &rdev->flags);
969 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
970 	printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
971 		"	Operation continuing on %d devices\n",
972 		bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
973 }
974 
975 static void print_conf(conf_t *conf)
976 {
977 	int i;
978 
979 	printk("RAID1 conf printout:\n");
980 	if (!conf) {
981 		printk("(!conf)\n");
982 		return;
983 	}
984 	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
985 		conf->raid_disks);
986 
987 	rcu_read_lock();
988 	for (i = 0; i < conf->raid_disks; i++) {
989 		char b[BDEVNAME_SIZE];
990 		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
991 		if (rdev)
992 			printk(" disk %d, wo:%d, o:%d, dev:%s\n",
993 			       i, !test_bit(In_sync, &rdev->flags),
994 			       !test_bit(Faulty, &rdev->flags),
995 			       bdevname(rdev->bdev,b));
996 	}
997 	rcu_read_unlock();
998 }
999 
1000 static void close_sync(conf_t *conf)
1001 {
1002 	wait_barrier(conf);
1003 	allow_barrier(conf);
1004 
1005 	mempool_destroy(conf->r1buf_pool);
1006 	conf->r1buf_pool = NULL;
1007 }
1008 
1009 static int raid1_spare_active(mddev_t *mddev)
1010 {
1011 	int i;
1012 	conf_t *conf = mddev->private;
1013 
1014 	/*
1015 	 * Find all failed disks within the RAID1 configuration
1016 	 * and mark them readable.
1017 	 * Called under mddev lock, so rcu protection not needed.
1018 	 */
1019 	for (i = 0; i < conf->raid_disks; i++) {
1020 		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1021 		if (rdev
1022 		    && !test_bit(Faulty, &rdev->flags)
1023 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1024 			unsigned long flags;
1025 			spin_lock_irqsave(&conf->device_lock, flags);
1026 			mddev->degraded--;
1027 			spin_unlock_irqrestore(&conf->device_lock, flags);
1028 		}
1029 	}
1030 
1031 	print_conf(conf);
1032 	return 0;
1033 }
1034 
1035 
1036 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1037 {
1038 	conf_t *conf = mddev->private;
1039 	int found = 0;
1040 	int mirror = 0;
1041 	mirror_info_t *p;
1042 
1043 	for (mirror=0; mirror < mddev->raid_disks; mirror++)
1044 		if ( !(p=conf->mirrors+mirror)->rdev) {
1045 
1046 			blk_queue_stack_limits(mddev->queue,
1047 					       rdev->bdev->bd_disk->queue);
1048 			/* as we don't honour merge_bvec_fn, we must never risk
1049 			 * violating it, so limit ->max_sector to one PAGE, as
1050 			 * a one page request is never in violation.
1051 			 */
1052 			if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1053 			    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1054 				blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1055 
1056 			p->head_position = 0;
1057 			rdev->raid_disk = mirror;
1058 			found = 1;
1059 			/* As all devices are equivalent, we don't need a full recovery
1060 			 * if this was recently any drive of the array
1061 			 */
1062 			if (rdev->saved_raid_disk < 0)
1063 				conf->fullsync = 1;
1064 			rcu_assign_pointer(p->rdev, rdev);
1065 			break;
1066 		}
1067 
1068 	print_conf(conf);
1069 	return found;
1070 }
1071 
1072 static int raid1_remove_disk(mddev_t *mddev, int number)
1073 {
1074 	conf_t *conf = mddev->private;
1075 	int err = 0;
1076 	mdk_rdev_t *rdev;
1077 	mirror_info_t *p = conf->mirrors+ number;
1078 
1079 	print_conf(conf);
1080 	rdev = p->rdev;
1081 	if (rdev) {
1082 		if (test_bit(In_sync, &rdev->flags) ||
1083 		    atomic_read(&rdev->nr_pending)) {
1084 			err = -EBUSY;
1085 			goto abort;
1086 		}
1087 		p->rdev = NULL;
1088 		synchronize_rcu();
1089 		if (atomic_read(&rdev->nr_pending)) {
1090 			/* lost the race, try later */
1091 			err = -EBUSY;
1092 			p->rdev = rdev;
1093 		}
1094 	}
1095 abort:
1096 
1097 	print_conf(conf);
1098 	return err;
1099 }
1100 
1101 
1102 static void end_sync_read(struct bio *bio, int error)
1103 {
1104 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1105 	int i;
1106 
1107 	for (i=r1_bio->mddev->raid_disks; i--; )
1108 		if (r1_bio->bios[i] == bio)
1109 			break;
1110 	BUG_ON(i < 0);
1111 	update_head_pos(i, r1_bio);
1112 	/*
1113 	 * we have read a block, now it needs to be re-written,
1114 	 * or re-read if the read failed.
1115 	 * We don't do much here, just schedule handling by raid1d
1116 	 */
1117 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1118 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1119 
1120 	if (atomic_dec_and_test(&r1_bio->remaining))
1121 		reschedule_retry(r1_bio);
1122 }
1123 
1124 static void end_sync_write(struct bio *bio, int error)
1125 {
1126 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1127 	r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1128 	mddev_t *mddev = r1_bio->mddev;
1129 	conf_t *conf = mddev_to_conf(mddev);
1130 	int i;
1131 	int mirror=0;
1132 
1133 	for (i = 0; i < conf->raid_disks; i++)
1134 		if (r1_bio->bios[i] == bio) {
1135 			mirror = i;
1136 			break;
1137 		}
1138 	if (!uptodate) {
1139 		int sync_blocks = 0;
1140 		sector_t s = r1_bio->sector;
1141 		long sectors_to_go = r1_bio->sectors;
1142 		/* make sure these bits doesn't get cleared. */
1143 		do {
1144 			bitmap_end_sync(mddev->bitmap, s,
1145 					&sync_blocks, 1);
1146 			s += sync_blocks;
1147 			sectors_to_go -= sync_blocks;
1148 		} while (sectors_to_go > 0);
1149 		md_error(mddev, conf->mirrors[mirror].rdev);
1150 	}
1151 
1152 	update_head_pos(mirror, r1_bio);
1153 
1154 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1155 		md_done_sync(mddev, r1_bio->sectors, uptodate);
1156 		put_buf(r1_bio);
1157 	}
1158 }
1159 
1160 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1161 {
1162 	conf_t *conf = mddev_to_conf(mddev);
1163 	int i;
1164 	int disks = conf->raid_disks;
1165 	struct bio *bio, *wbio;
1166 
1167 	bio = r1_bio->bios[r1_bio->read_disk];
1168 
1169 
1170 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1171 		/* We have read all readable devices.  If we haven't
1172 		 * got the block, then there is no hope left.
1173 		 * If we have, then we want to do a comparison
1174 		 * and skip the write if everything is the same.
1175 		 * If any blocks failed to read, then we need to
1176 		 * attempt an over-write
1177 		 */
1178 		int primary;
1179 		if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1180 			for (i=0; i<mddev->raid_disks; i++)
1181 				if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1182 					md_error(mddev, conf->mirrors[i].rdev);
1183 
1184 			md_done_sync(mddev, r1_bio->sectors, 1);
1185 			put_buf(r1_bio);
1186 			return;
1187 		}
1188 		for (primary=0; primary<mddev->raid_disks; primary++)
1189 			if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1190 			    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1191 				r1_bio->bios[primary]->bi_end_io = NULL;
1192 				rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1193 				break;
1194 			}
1195 		r1_bio->read_disk = primary;
1196 		for (i=0; i<mddev->raid_disks; i++)
1197 			if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1198 				int j;
1199 				int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1200 				struct bio *pbio = r1_bio->bios[primary];
1201 				struct bio *sbio = r1_bio->bios[i];
1202 
1203 				if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1204 					for (j = vcnt; j-- ; ) {
1205 						struct page *p, *s;
1206 						p = pbio->bi_io_vec[j].bv_page;
1207 						s = sbio->bi_io_vec[j].bv_page;
1208 						if (memcmp(page_address(p),
1209 							   page_address(s),
1210 							   PAGE_SIZE))
1211 							break;
1212 					}
1213 				} else
1214 					j = 0;
1215 				if (j >= 0)
1216 					mddev->resync_mismatches += r1_bio->sectors;
1217 				if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1218 					      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1219 					sbio->bi_end_io = NULL;
1220 					rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1221 				} else {
1222 					/* fixup the bio for reuse */
1223 					sbio->bi_vcnt = vcnt;
1224 					sbio->bi_size = r1_bio->sectors << 9;
1225 					sbio->bi_idx = 0;
1226 					sbio->bi_phys_segments = 0;
1227 					sbio->bi_hw_segments = 0;
1228 					sbio->bi_hw_front_size = 0;
1229 					sbio->bi_hw_back_size = 0;
1230 					sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1231 					sbio->bi_flags |= 1 << BIO_UPTODATE;
1232 					sbio->bi_next = NULL;
1233 					sbio->bi_sector = r1_bio->sector +
1234 						conf->mirrors[i].rdev->data_offset;
1235 					sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1236 					for (j = 0; j < vcnt ; j++)
1237 						memcpy(page_address(sbio->bi_io_vec[j].bv_page),
1238 						       page_address(pbio->bi_io_vec[j].bv_page),
1239 						       PAGE_SIZE);
1240 
1241 				}
1242 			}
1243 	}
1244 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1245 		/* ouch - failed to read all of that.
1246 		 * Try some synchronous reads of other devices to get
1247 		 * good data, much like with normal read errors.  Only
1248 		 * read into the pages we already have so we don't
1249 		 * need to re-issue the read request.
1250 		 * We don't need to freeze the array, because being in an
1251 		 * active sync request, there is no normal IO, and
1252 		 * no overlapping syncs.
1253 		 */
1254 		sector_t sect = r1_bio->sector;
1255 		int sectors = r1_bio->sectors;
1256 		int idx = 0;
1257 
1258 		while(sectors) {
1259 			int s = sectors;
1260 			int d = r1_bio->read_disk;
1261 			int success = 0;
1262 			mdk_rdev_t *rdev;
1263 
1264 			if (s > (PAGE_SIZE>>9))
1265 				s = PAGE_SIZE >> 9;
1266 			do {
1267 				if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1268 					/* No rcu protection needed here devices
1269 					 * can only be removed when no resync is
1270 					 * active, and resync is currently active
1271 					 */
1272 					rdev = conf->mirrors[d].rdev;
1273 					if (sync_page_io(rdev->bdev,
1274 							 sect + rdev->data_offset,
1275 							 s<<9,
1276 							 bio->bi_io_vec[idx].bv_page,
1277 							 READ)) {
1278 						success = 1;
1279 						break;
1280 					}
1281 				}
1282 				d++;
1283 				if (d == conf->raid_disks)
1284 					d = 0;
1285 			} while (!success && d != r1_bio->read_disk);
1286 
1287 			if (success) {
1288 				int start = d;
1289 				/* write it back and re-read */
1290 				set_bit(R1BIO_Uptodate, &r1_bio->state);
1291 				while (d != r1_bio->read_disk) {
1292 					if (d == 0)
1293 						d = conf->raid_disks;
1294 					d--;
1295 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1296 						continue;
1297 					rdev = conf->mirrors[d].rdev;
1298 					atomic_add(s, &rdev->corrected_errors);
1299 					if (sync_page_io(rdev->bdev,
1300 							 sect + rdev->data_offset,
1301 							 s<<9,
1302 							 bio->bi_io_vec[idx].bv_page,
1303 							 WRITE) == 0)
1304 						md_error(mddev, rdev);
1305 				}
1306 				d = start;
1307 				while (d != r1_bio->read_disk) {
1308 					if (d == 0)
1309 						d = conf->raid_disks;
1310 					d--;
1311 					if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1312 						continue;
1313 					rdev = conf->mirrors[d].rdev;
1314 					if (sync_page_io(rdev->bdev,
1315 							 sect + rdev->data_offset,
1316 							 s<<9,
1317 							 bio->bi_io_vec[idx].bv_page,
1318 							 READ) == 0)
1319 						md_error(mddev, rdev);
1320 				}
1321 			} else {
1322 				char b[BDEVNAME_SIZE];
1323 				/* Cannot read from anywhere, array is toast */
1324 				md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1325 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1326 				       " for block %llu\n",
1327 				       bdevname(bio->bi_bdev,b),
1328 				       (unsigned long long)r1_bio->sector);
1329 				md_done_sync(mddev, r1_bio->sectors, 0);
1330 				put_buf(r1_bio);
1331 				return;
1332 			}
1333 			sectors -= s;
1334 			sect += s;
1335 			idx ++;
1336 		}
1337 	}
1338 
1339 	/*
1340 	 * schedule writes
1341 	 */
1342 	atomic_set(&r1_bio->remaining, 1);
1343 	for (i = 0; i < disks ; i++) {
1344 		wbio = r1_bio->bios[i];
1345 		if (wbio->bi_end_io == NULL ||
1346 		    (wbio->bi_end_io == end_sync_read &&
1347 		     (i == r1_bio->read_disk ||
1348 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1349 			continue;
1350 
1351 		wbio->bi_rw = WRITE;
1352 		wbio->bi_end_io = end_sync_write;
1353 		atomic_inc(&r1_bio->remaining);
1354 		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1355 
1356 		generic_make_request(wbio);
1357 	}
1358 
1359 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1360 		/* if we're here, all write(s) have completed, so clean up */
1361 		md_done_sync(mddev, r1_bio->sectors, 1);
1362 		put_buf(r1_bio);
1363 	}
1364 }
1365 
1366 /*
1367  * This is a kernel thread which:
1368  *
1369  *	1.	Retries failed read operations on working mirrors.
1370  *	2.	Updates the raid superblock when problems encounter.
1371  *	3.	Performs writes following reads for array syncronising.
1372  */
1373 
1374 static void fix_read_error(conf_t *conf, int read_disk,
1375 			   sector_t sect, int sectors)
1376 {
1377 	mddev_t *mddev = conf->mddev;
1378 	while(sectors) {
1379 		int s = sectors;
1380 		int d = read_disk;
1381 		int success = 0;
1382 		int start;
1383 		mdk_rdev_t *rdev;
1384 
1385 		if (s > (PAGE_SIZE>>9))
1386 			s = PAGE_SIZE >> 9;
1387 
1388 		do {
1389 			/* Note: no rcu protection needed here
1390 			 * as this is synchronous in the raid1d thread
1391 			 * which is the thread that might remove
1392 			 * a device.  If raid1d ever becomes multi-threaded....
1393 			 */
1394 			rdev = conf->mirrors[d].rdev;
1395 			if (rdev &&
1396 			    test_bit(In_sync, &rdev->flags) &&
1397 			    sync_page_io(rdev->bdev,
1398 					 sect + rdev->data_offset,
1399 					 s<<9,
1400 					 conf->tmppage, READ))
1401 				success = 1;
1402 			else {
1403 				d++;
1404 				if (d == conf->raid_disks)
1405 					d = 0;
1406 			}
1407 		} while (!success && d != read_disk);
1408 
1409 		if (!success) {
1410 			/* Cannot read from anywhere -- bye bye array */
1411 			md_error(mddev, conf->mirrors[read_disk].rdev);
1412 			break;
1413 		}
1414 		/* write it back and re-read */
1415 		start = d;
1416 		while (d != read_disk) {
1417 			if (d==0)
1418 				d = conf->raid_disks;
1419 			d--;
1420 			rdev = conf->mirrors[d].rdev;
1421 			if (rdev &&
1422 			    test_bit(In_sync, &rdev->flags)) {
1423 				if (sync_page_io(rdev->bdev,
1424 						 sect + rdev->data_offset,
1425 						 s<<9, conf->tmppage, WRITE)
1426 				    == 0)
1427 					/* Well, this device is dead */
1428 					md_error(mddev, rdev);
1429 			}
1430 		}
1431 		d = start;
1432 		while (d != read_disk) {
1433 			char b[BDEVNAME_SIZE];
1434 			if (d==0)
1435 				d = conf->raid_disks;
1436 			d--;
1437 			rdev = conf->mirrors[d].rdev;
1438 			if (rdev &&
1439 			    test_bit(In_sync, &rdev->flags)) {
1440 				if (sync_page_io(rdev->bdev,
1441 						 sect + rdev->data_offset,
1442 						 s<<9, conf->tmppage, READ)
1443 				    == 0)
1444 					/* Well, this device is dead */
1445 					md_error(mddev, rdev);
1446 				else {
1447 					atomic_add(s, &rdev->corrected_errors);
1448 					printk(KERN_INFO
1449 					       "raid1:%s: read error corrected "
1450 					       "(%d sectors at %llu on %s)\n",
1451 					       mdname(mddev), s,
1452 					       (unsigned long long)(sect +
1453 					           rdev->data_offset),
1454 					       bdevname(rdev->bdev, b));
1455 				}
1456 			}
1457 		}
1458 		sectors -= s;
1459 		sect += s;
1460 	}
1461 }
1462 
1463 static void raid1d(mddev_t *mddev)
1464 {
1465 	r1bio_t *r1_bio;
1466 	struct bio *bio;
1467 	unsigned long flags;
1468 	conf_t *conf = mddev_to_conf(mddev);
1469 	struct list_head *head = &conf->retry_list;
1470 	int unplug=0;
1471 	mdk_rdev_t *rdev;
1472 
1473 	md_check_recovery(mddev);
1474 
1475 	for (;;) {
1476 		char b[BDEVNAME_SIZE];
1477 		spin_lock_irqsave(&conf->device_lock, flags);
1478 
1479 		if (conf->pending_bio_list.head) {
1480 			bio = bio_list_get(&conf->pending_bio_list);
1481 			blk_remove_plug(mddev->queue);
1482 			spin_unlock_irqrestore(&conf->device_lock, flags);
1483 			/* flush any pending bitmap writes to disk before proceeding w/ I/O */
1484 			bitmap_unplug(mddev->bitmap);
1485 
1486 			while (bio) { /* submit pending writes */
1487 				struct bio *next = bio->bi_next;
1488 				bio->bi_next = NULL;
1489 				generic_make_request(bio);
1490 				bio = next;
1491 			}
1492 			unplug = 1;
1493 
1494 			continue;
1495 		}
1496 
1497 		if (list_empty(head))
1498 			break;
1499 		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1500 		list_del(head->prev);
1501 		conf->nr_queued--;
1502 		spin_unlock_irqrestore(&conf->device_lock, flags);
1503 
1504 		mddev = r1_bio->mddev;
1505 		conf = mddev_to_conf(mddev);
1506 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1507 			sync_request_write(mddev, r1_bio);
1508 			unplug = 1;
1509 		} else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1510 			/* some requests in the r1bio were BIO_RW_BARRIER
1511 			 * requests which failed with -EOPNOTSUPP.  Hohumm..
1512 			 * Better resubmit without the barrier.
1513 			 * We know which devices to resubmit for, because
1514 			 * all others have had their bios[] entry cleared.
1515 			 * We already have a nr_pending reference on these rdevs.
1516 			 */
1517 			int i;
1518 			const int do_sync = bio_sync(r1_bio->master_bio);
1519 			clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1520 			clear_bit(R1BIO_Barrier, &r1_bio->state);
1521 			for (i=0; i < conf->raid_disks; i++)
1522 				if (r1_bio->bios[i])
1523 					atomic_inc(&r1_bio->remaining);
1524 			for (i=0; i < conf->raid_disks; i++)
1525 				if (r1_bio->bios[i]) {
1526 					struct bio_vec *bvec;
1527 					int j;
1528 
1529 					bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1530 					/* copy pages from the failed bio, as
1531 					 * this might be a write-behind device */
1532 					__bio_for_each_segment(bvec, bio, j, 0)
1533 						bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1534 					bio_put(r1_bio->bios[i]);
1535 					bio->bi_sector = r1_bio->sector +
1536 						conf->mirrors[i].rdev->data_offset;
1537 					bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1538 					bio->bi_end_io = raid1_end_write_request;
1539 					bio->bi_rw = WRITE | do_sync;
1540 					bio->bi_private = r1_bio;
1541 					r1_bio->bios[i] = bio;
1542 					generic_make_request(bio);
1543 				}
1544 		} else {
1545 			int disk;
1546 
1547 			/* we got a read error. Maybe the drive is bad.  Maybe just
1548 			 * the block and we can fix it.
1549 			 * We freeze all other IO, and try reading the block from
1550 			 * other devices.  When we find one, we re-write
1551 			 * and check it that fixes the read error.
1552 			 * This is all done synchronously while the array is
1553 			 * frozen
1554 			 */
1555 			if (mddev->ro == 0) {
1556 				freeze_array(conf);
1557 				fix_read_error(conf, r1_bio->read_disk,
1558 					       r1_bio->sector,
1559 					       r1_bio->sectors);
1560 				unfreeze_array(conf);
1561 			}
1562 
1563 			bio = r1_bio->bios[r1_bio->read_disk];
1564 			if ((disk=read_balance(conf, r1_bio)) == -1) {
1565 				printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1566 				       " read error for block %llu\n",
1567 				       bdevname(bio->bi_bdev,b),
1568 				       (unsigned long long)r1_bio->sector);
1569 				raid_end_bio_io(r1_bio);
1570 			} else {
1571 				const int do_sync = bio_sync(r1_bio->master_bio);
1572 				r1_bio->bios[r1_bio->read_disk] =
1573 					mddev->ro ? IO_BLOCKED : NULL;
1574 				r1_bio->read_disk = disk;
1575 				bio_put(bio);
1576 				bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1577 				r1_bio->bios[r1_bio->read_disk] = bio;
1578 				rdev = conf->mirrors[disk].rdev;
1579 				if (printk_ratelimit())
1580 					printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1581 					       " another mirror\n",
1582 					       bdevname(rdev->bdev,b),
1583 					       (unsigned long long)r1_bio->sector);
1584 				bio->bi_sector = r1_bio->sector + rdev->data_offset;
1585 				bio->bi_bdev = rdev->bdev;
1586 				bio->bi_end_io = raid1_end_read_request;
1587 				bio->bi_rw = READ | do_sync;
1588 				bio->bi_private = r1_bio;
1589 				unplug = 1;
1590 				generic_make_request(bio);
1591 			}
1592 		}
1593 	}
1594 	spin_unlock_irqrestore(&conf->device_lock, flags);
1595 	if (unplug)
1596 		unplug_slaves(mddev);
1597 }
1598 
1599 
1600 static int init_resync(conf_t *conf)
1601 {
1602 	int buffs;
1603 
1604 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1605 	BUG_ON(conf->r1buf_pool);
1606 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1607 					  conf->poolinfo);
1608 	if (!conf->r1buf_pool)
1609 		return -ENOMEM;
1610 	conf->next_resync = 0;
1611 	return 0;
1612 }
1613 
1614 /*
1615  * perform a "sync" on one "block"
1616  *
1617  * We need to make sure that no normal I/O request - particularly write
1618  * requests - conflict with active sync requests.
1619  *
1620  * This is achieved by tracking pending requests and a 'barrier' concept
1621  * that can be installed to exclude normal IO requests.
1622  */
1623 
1624 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1625 {
1626 	conf_t *conf = mddev_to_conf(mddev);
1627 	r1bio_t *r1_bio;
1628 	struct bio *bio;
1629 	sector_t max_sector, nr_sectors;
1630 	int disk = -1;
1631 	int i;
1632 	int wonly = -1;
1633 	int write_targets = 0, read_targets = 0;
1634 	int sync_blocks;
1635 	int still_degraded = 0;
1636 
1637 	if (!conf->r1buf_pool)
1638 	{
1639 /*
1640 		printk("sync start - bitmap %p\n", mddev->bitmap);
1641 */
1642 		if (init_resync(conf))
1643 			return 0;
1644 	}
1645 
1646 	max_sector = mddev->size << 1;
1647 	if (sector_nr >= max_sector) {
1648 		/* If we aborted, we need to abort the
1649 		 * sync on the 'current' bitmap chunk (there will
1650 		 * only be one in raid1 resync.
1651 		 * We can find the current addess in mddev->curr_resync
1652 		 */
1653 		if (mddev->curr_resync < max_sector) /* aborted */
1654 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1655 						&sync_blocks, 1);
1656 		else /* completed sync */
1657 			conf->fullsync = 0;
1658 
1659 		bitmap_close_sync(mddev->bitmap);
1660 		close_sync(conf);
1661 		return 0;
1662 	}
1663 
1664 	if (mddev->bitmap == NULL &&
1665 	    mddev->recovery_cp == MaxSector &&
1666 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1667 	    conf->fullsync == 0) {
1668 		*skipped = 1;
1669 		return max_sector - sector_nr;
1670 	}
1671 	/* before building a request, check if we can skip these blocks..
1672 	 * This call the bitmap_start_sync doesn't actually record anything
1673 	 */
1674 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1675 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1676 		/* We can skip this block, and probably several more */
1677 		*skipped = 1;
1678 		return sync_blocks;
1679 	}
1680 	/*
1681 	 * If there is non-resync activity waiting for a turn,
1682 	 * and resync is going fast enough,
1683 	 * then let it though before starting on this new sync request.
1684 	 */
1685 	if (!go_faster && conf->nr_waiting)
1686 		msleep_interruptible(1000);
1687 
1688 	raise_barrier(conf);
1689 
1690 	conf->next_resync = sector_nr;
1691 
1692 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1693 	rcu_read_lock();
1694 	/*
1695 	 * If we get a correctably read error during resync or recovery,
1696 	 * we might want to read from a different device.  So we
1697 	 * flag all drives that could conceivably be read from for READ,
1698 	 * and any others (which will be non-In_sync devices) for WRITE.
1699 	 * If a read fails, we try reading from something else for which READ
1700 	 * is OK.
1701 	 */
1702 
1703 	r1_bio->mddev = mddev;
1704 	r1_bio->sector = sector_nr;
1705 	r1_bio->state = 0;
1706 	set_bit(R1BIO_IsSync, &r1_bio->state);
1707 
1708 	for (i=0; i < conf->raid_disks; i++) {
1709 		mdk_rdev_t *rdev;
1710 		bio = r1_bio->bios[i];
1711 
1712 		/* take from bio_init */
1713 		bio->bi_next = NULL;
1714 		bio->bi_flags |= 1 << BIO_UPTODATE;
1715 		bio->bi_rw = READ;
1716 		bio->bi_vcnt = 0;
1717 		bio->bi_idx = 0;
1718 		bio->bi_phys_segments = 0;
1719 		bio->bi_hw_segments = 0;
1720 		bio->bi_size = 0;
1721 		bio->bi_end_io = NULL;
1722 		bio->bi_private = NULL;
1723 
1724 		rdev = rcu_dereference(conf->mirrors[i].rdev);
1725 		if (rdev == NULL ||
1726 			   test_bit(Faulty, &rdev->flags)) {
1727 			still_degraded = 1;
1728 			continue;
1729 		} else if (!test_bit(In_sync, &rdev->flags)) {
1730 			bio->bi_rw = WRITE;
1731 			bio->bi_end_io = end_sync_write;
1732 			write_targets ++;
1733 		} else {
1734 			/* may need to read from here */
1735 			bio->bi_rw = READ;
1736 			bio->bi_end_io = end_sync_read;
1737 			if (test_bit(WriteMostly, &rdev->flags)) {
1738 				if (wonly < 0)
1739 					wonly = i;
1740 			} else {
1741 				if (disk < 0)
1742 					disk = i;
1743 			}
1744 			read_targets++;
1745 		}
1746 		atomic_inc(&rdev->nr_pending);
1747 		bio->bi_sector = sector_nr + rdev->data_offset;
1748 		bio->bi_bdev = rdev->bdev;
1749 		bio->bi_private = r1_bio;
1750 	}
1751 	rcu_read_unlock();
1752 	if (disk < 0)
1753 		disk = wonly;
1754 	r1_bio->read_disk = disk;
1755 
1756 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1757 		/* extra read targets are also write targets */
1758 		write_targets += read_targets-1;
1759 
1760 	if (write_targets == 0 || read_targets == 0) {
1761 		/* There is nowhere to write, so all non-sync
1762 		 * drives must be failed - so we are finished
1763 		 */
1764 		sector_t rv = max_sector - sector_nr;
1765 		*skipped = 1;
1766 		put_buf(r1_bio);
1767 		return rv;
1768 	}
1769 
1770 	nr_sectors = 0;
1771 	sync_blocks = 0;
1772 	do {
1773 		struct page *page;
1774 		int len = PAGE_SIZE;
1775 		if (sector_nr + (len>>9) > max_sector)
1776 			len = (max_sector - sector_nr) << 9;
1777 		if (len == 0)
1778 			break;
1779 		if (sync_blocks == 0) {
1780 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1781 					       &sync_blocks, still_degraded) &&
1782 			    !conf->fullsync &&
1783 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1784 				break;
1785 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1786 			if (len > (sync_blocks<<9))
1787 				len = sync_blocks<<9;
1788 		}
1789 
1790 		for (i=0 ; i < conf->raid_disks; i++) {
1791 			bio = r1_bio->bios[i];
1792 			if (bio->bi_end_io) {
1793 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1794 				if (bio_add_page(bio, page, len, 0) == 0) {
1795 					/* stop here */
1796 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1797 					while (i > 0) {
1798 						i--;
1799 						bio = r1_bio->bios[i];
1800 						if (bio->bi_end_io==NULL)
1801 							continue;
1802 						/* remove last page from this bio */
1803 						bio->bi_vcnt--;
1804 						bio->bi_size -= len;
1805 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1806 					}
1807 					goto bio_full;
1808 				}
1809 			}
1810 		}
1811 		nr_sectors += len>>9;
1812 		sector_nr += len>>9;
1813 		sync_blocks -= (len>>9);
1814 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1815  bio_full:
1816 	r1_bio->sectors = nr_sectors;
1817 
1818 	/* For a user-requested sync, we read all readable devices and do a
1819 	 * compare
1820 	 */
1821 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1822 		atomic_set(&r1_bio->remaining, read_targets);
1823 		for (i=0; i<conf->raid_disks; i++) {
1824 			bio = r1_bio->bios[i];
1825 			if (bio->bi_end_io == end_sync_read) {
1826 				md_sync_acct(bio->bi_bdev, nr_sectors);
1827 				generic_make_request(bio);
1828 			}
1829 		}
1830 	} else {
1831 		atomic_set(&r1_bio->remaining, 1);
1832 		bio = r1_bio->bios[r1_bio->read_disk];
1833 		md_sync_acct(bio->bi_bdev, nr_sectors);
1834 		generic_make_request(bio);
1835 
1836 	}
1837 	return nr_sectors;
1838 }
1839 
1840 static int run(mddev_t *mddev)
1841 {
1842 	conf_t *conf;
1843 	int i, j, disk_idx;
1844 	mirror_info_t *disk;
1845 	mdk_rdev_t *rdev;
1846 	struct list_head *tmp;
1847 
1848 	if (mddev->level != 1) {
1849 		printk("raid1: %s: raid level not set to mirroring (%d)\n",
1850 		       mdname(mddev), mddev->level);
1851 		goto out;
1852 	}
1853 	if (mddev->reshape_position != MaxSector) {
1854 		printk("raid1: %s: reshape_position set but not supported\n",
1855 		       mdname(mddev));
1856 		goto out;
1857 	}
1858 	/*
1859 	 * copy the already verified devices into our private RAID1
1860 	 * bookkeeping area. [whatever we allocate in run(),
1861 	 * should be freed in stop()]
1862 	 */
1863 	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1864 	mddev->private = conf;
1865 	if (!conf)
1866 		goto out_no_mem;
1867 
1868 	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1869 				 GFP_KERNEL);
1870 	if (!conf->mirrors)
1871 		goto out_no_mem;
1872 
1873 	conf->tmppage = alloc_page(GFP_KERNEL);
1874 	if (!conf->tmppage)
1875 		goto out_no_mem;
1876 
1877 	conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1878 	if (!conf->poolinfo)
1879 		goto out_no_mem;
1880 	conf->poolinfo->mddev = mddev;
1881 	conf->poolinfo->raid_disks = mddev->raid_disks;
1882 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1883 					  r1bio_pool_free,
1884 					  conf->poolinfo);
1885 	if (!conf->r1bio_pool)
1886 		goto out_no_mem;
1887 
1888 	ITERATE_RDEV(mddev, rdev, tmp) {
1889 		disk_idx = rdev->raid_disk;
1890 		if (disk_idx >= mddev->raid_disks
1891 		    || disk_idx < 0)
1892 			continue;
1893 		disk = conf->mirrors + disk_idx;
1894 
1895 		disk->rdev = rdev;
1896 
1897 		blk_queue_stack_limits(mddev->queue,
1898 				       rdev->bdev->bd_disk->queue);
1899 		/* as we don't honour merge_bvec_fn, we must never risk
1900 		 * violating it, so limit ->max_sector to one PAGE, as
1901 		 * a one page request is never in violation.
1902 		 */
1903 		if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1904 		    mddev->queue->max_sectors > (PAGE_SIZE>>9))
1905 			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1906 
1907 		disk->head_position = 0;
1908 	}
1909 	conf->raid_disks = mddev->raid_disks;
1910 	conf->mddev = mddev;
1911 	spin_lock_init(&conf->device_lock);
1912 	INIT_LIST_HEAD(&conf->retry_list);
1913 
1914 	spin_lock_init(&conf->resync_lock);
1915 	init_waitqueue_head(&conf->wait_barrier);
1916 
1917 	bio_list_init(&conf->pending_bio_list);
1918 	bio_list_init(&conf->flushing_bio_list);
1919 
1920 
1921 	mddev->degraded = 0;
1922 	for (i = 0; i < conf->raid_disks; i++) {
1923 
1924 		disk = conf->mirrors + i;
1925 
1926 		if (!disk->rdev ||
1927 		    !test_bit(In_sync, &disk->rdev->flags)) {
1928 			disk->head_position = 0;
1929 			mddev->degraded++;
1930 			if (disk->rdev)
1931 				conf->fullsync = 1;
1932 		}
1933 	}
1934 	if (mddev->degraded == conf->raid_disks) {
1935 		printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1936 			mdname(mddev));
1937 		goto out_free_conf;
1938 	}
1939 	if (conf->raid_disks - mddev->degraded == 1)
1940 		mddev->recovery_cp = MaxSector;
1941 
1942 	/*
1943 	 * find the first working one and use it as a starting point
1944 	 * to read balancing.
1945 	 */
1946 	for (j = 0; j < conf->raid_disks &&
1947 		     (!conf->mirrors[j].rdev ||
1948 		      !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1949 		/* nothing */;
1950 	conf->last_used = j;
1951 
1952 
1953 	mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1954 	if (!mddev->thread) {
1955 		printk(KERN_ERR
1956 		       "raid1: couldn't allocate thread for %s\n",
1957 		       mdname(mddev));
1958 		goto out_free_conf;
1959 	}
1960 
1961 	printk(KERN_INFO
1962 		"raid1: raid set %s active with %d out of %d mirrors\n",
1963 		mdname(mddev), mddev->raid_disks - mddev->degraded,
1964 		mddev->raid_disks);
1965 	/*
1966 	 * Ok, everything is just fine now
1967 	 */
1968 	mddev->array_size = mddev->size;
1969 
1970 	mddev->queue->unplug_fn = raid1_unplug;
1971 	mddev->queue->backing_dev_info.congested_fn = raid1_congested;
1972 	mddev->queue->backing_dev_info.congested_data = mddev;
1973 
1974 	return 0;
1975 
1976 out_no_mem:
1977 	printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1978 	       mdname(mddev));
1979 
1980 out_free_conf:
1981 	if (conf) {
1982 		if (conf->r1bio_pool)
1983 			mempool_destroy(conf->r1bio_pool);
1984 		kfree(conf->mirrors);
1985 		safe_put_page(conf->tmppage);
1986 		kfree(conf->poolinfo);
1987 		kfree(conf);
1988 		mddev->private = NULL;
1989 	}
1990 out:
1991 	return -EIO;
1992 }
1993 
1994 static int stop(mddev_t *mddev)
1995 {
1996 	conf_t *conf = mddev_to_conf(mddev);
1997 	struct bitmap *bitmap = mddev->bitmap;
1998 	int behind_wait = 0;
1999 
2000 	/* wait for behind writes to complete */
2001 	while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2002 		behind_wait++;
2003 		printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2004 		set_current_state(TASK_UNINTERRUPTIBLE);
2005 		schedule_timeout(HZ); /* wait a second */
2006 		/* need to kick something here to make sure I/O goes? */
2007 	}
2008 
2009 	md_unregister_thread(mddev->thread);
2010 	mddev->thread = NULL;
2011 	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2012 	if (conf->r1bio_pool)
2013 		mempool_destroy(conf->r1bio_pool);
2014 	kfree(conf->mirrors);
2015 	kfree(conf->poolinfo);
2016 	kfree(conf);
2017 	mddev->private = NULL;
2018 	return 0;
2019 }
2020 
2021 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2022 {
2023 	/* no resync is happening, and there is enough space
2024 	 * on all devices, so we can resize.
2025 	 * We need to make sure resync covers any new space.
2026 	 * If the array is shrinking we should possibly wait until
2027 	 * any io in the removed space completes, but it hardly seems
2028 	 * worth it.
2029 	 */
2030 	mddev->array_size = sectors>>1;
2031 	set_capacity(mddev->gendisk, mddev->array_size << 1);
2032 	mddev->changed = 1;
2033 	if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
2034 		mddev->recovery_cp = mddev->size << 1;
2035 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2036 	}
2037 	mddev->size = mddev->array_size;
2038 	mddev->resync_max_sectors = sectors;
2039 	return 0;
2040 }
2041 
2042 static int raid1_reshape(mddev_t *mddev)
2043 {
2044 	/* We need to:
2045 	 * 1/ resize the r1bio_pool
2046 	 * 2/ resize conf->mirrors
2047 	 *
2048 	 * We allocate a new r1bio_pool if we can.
2049 	 * Then raise a device barrier and wait until all IO stops.
2050 	 * Then resize conf->mirrors and swap in the new r1bio pool.
2051 	 *
2052 	 * At the same time, we "pack" the devices so that all the missing
2053 	 * devices have the higher raid_disk numbers.
2054 	 */
2055 	mempool_t *newpool, *oldpool;
2056 	struct pool_info *newpoolinfo;
2057 	mirror_info_t *newmirrors;
2058 	conf_t *conf = mddev_to_conf(mddev);
2059 	int cnt, raid_disks;
2060 	unsigned long flags;
2061 	int d, d2;
2062 
2063 	/* Cannot change chunk_size, layout, or level */
2064 	if (mddev->chunk_size != mddev->new_chunk ||
2065 	    mddev->layout != mddev->new_layout ||
2066 	    mddev->level != mddev->new_level) {
2067 		mddev->new_chunk = mddev->chunk_size;
2068 		mddev->new_layout = mddev->layout;
2069 		mddev->new_level = mddev->level;
2070 		return -EINVAL;
2071 	}
2072 
2073 	md_allow_write(mddev);
2074 
2075 	raid_disks = mddev->raid_disks + mddev->delta_disks;
2076 
2077 	if (raid_disks < conf->raid_disks) {
2078 		cnt=0;
2079 		for (d= 0; d < conf->raid_disks; d++)
2080 			if (conf->mirrors[d].rdev)
2081 				cnt++;
2082 		if (cnt > raid_disks)
2083 			return -EBUSY;
2084 	}
2085 
2086 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2087 	if (!newpoolinfo)
2088 		return -ENOMEM;
2089 	newpoolinfo->mddev = mddev;
2090 	newpoolinfo->raid_disks = raid_disks;
2091 
2092 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2093 				 r1bio_pool_free, newpoolinfo);
2094 	if (!newpool) {
2095 		kfree(newpoolinfo);
2096 		return -ENOMEM;
2097 	}
2098 	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2099 	if (!newmirrors) {
2100 		kfree(newpoolinfo);
2101 		mempool_destroy(newpool);
2102 		return -ENOMEM;
2103 	}
2104 
2105 	raise_barrier(conf);
2106 
2107 	/* ok, everything is stopped */
2108 	oldpool = conf->r1bio_pool;
2109 	conf->r1bio_pool = newpool;
2110 
2111 	for (d = d2 = 0; d < conf->raid_disks; d++) {
2112 		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2113 		if (rdev && rdev->raid_disk != d2) {
2114 			char nm[20];
2115 			sprintf(nm, "rd%d", rdev->raid_disk);
2116 			sysfs_remove_link(&mddev->kobj, nm);
2117 			rdev->raid_disk = d2;
2118 			sprintf(nm, "rd%d", rdev->raid_disk);
2119 			sysfs_remove_link(&mddev->kobj, nm);
2120 			if (sysfs_create_link(&mddev->kobj,
2121 					      &rdev->kobj, nm))
2122 				printk(KERN_WARNING
2123 				       "md/raid1: cannot register "
2124 				       "%s for %s\n",
2125 				       nm, mdname(mddev));
2126 		}
2127 		if (rdev)
2128 			newmirrors[d2++].rdev = rdev;
2129 	}
2130 	kfree(conf->mirrors);
2131 	conf->mirrors = newmirrors;
2132 	kfree(conf->poolinfo);
2133 	conf->poolinfo = newpoolinfo;
2134 
2135 	spin_lock_irqsave(&conf->device_lock, flags);
2136 	mddev->degraded += (raid_disks - conf->raid_disks);
2137 	spin_unlock_irqrestore(&conf->device_lock, flags);
2138 	conf->raid_disks = mddev->raid_disks = raid_disks;
2139 	mddev->delta_disks = 0;
2140 
2141 	conf->last_used = 0; /* just make sure it is in-range */
2142 	lower_barrier(conf);
2143 
2144 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2145 	md_wakeup_thread(mddev->thread);
2146 
2147 	mempool_destroy(oldpool);
2148 	return 0;
2149 }
2150 
2151 static void raid1_quiesce(mddev_t *mddev, int state)
2152 {
2153 	conf_t *conf = mddev_to_conf(mddev);
2154 
2155 	switch(state) {
2156 	case 1:
2157 		raise_barrier(conf);
2158 		break;
2159 	case 0:
2160 		lower_barrier(conf);
2161 		break;
2162 	}
2163 }
2164 
2165 
2166 static struct mdk_personality raid1_personality =
2167 {
2168 	.name		= "raid1",
2169 	.level		= 1,
2170 	.owner		= THIS_MODULE,
2171 	.make_request	= make_request,
2172 	.run		= run,
2173 	.stop		= stop,
2174 	.status		= status,
2175 	.error_handler	= error,
2176 	.hot_add_disk	= raid1_add_disk,
2177 	.hot_remove_disk= raid1_remove_disk,
2178 	.spare_active	= raid1_spare_active,
2179 	.sync_request	= sync_request,
2180 	.resize		= raid1_resize,
2181 	.check_reshape	= raid1_reshape,
2182 	.quiesce	= raid1_quiesce,
2183 };
2184 
2185 static int __init raid_init(void)
2186 {
2187 	return register_md_personality(&raid1_personality);
2188 }
2189 
2190 static void raid_exit(void)
2191 {
2192 	unregister_md_personality(&raid1_personality);
2193 }
2194 
2195 module_init(raid_init);
2196 module_exit(raid_exit);
2197 MODULE_LICENSE("GPL");
2198 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2199 MODULE_ALIAS("md-raid1");
2200 MODULE_ALIAS("md-level-1");
2201