xref: /openbmc/linux/drivers/md/raid1.c (revision 81464192839de0b5bc84c5739381101e04d94f62)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32 #include <linux/interval_tree_generic.h>
33 
34 #include <trace/events/block.h>
35 
36 #include "md.h"
37 #include "raid1.h"
38 #include "md-bitmap.h"
39 
40 #define UNSUPPORTED_MDDEV_FLAGS		\
41 	((1L << MD_HAS_JOURNAL) |	\
42 	 (1L << MD_JOURNAL_CLEAN) |	\
43 	 (1L << MD_HAS_PPL) |		\
44 	 (1L << MD_HAS_MULTIPLE_PPLS))
45 
46 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
47 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
48 
49 #define raid1_log(md, fmt, args...)				\
50 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
51 
52 #include "raid1-10.c"
53 
54 #define START(node) ((node)->start)
55 #define LAST(node) ((node)->last)
56 INTERVAL_TREE_DEFINE(struct serial_info, node, sector_t, _subtree_last,
57 		     START, LAST, static inline, raid1_rb);
58 
59 static int check_and_add_serial(struct md_rdev *rdev, struct r1bio *r1_bio,
60 				struct serial_info *si, int idx)
61 {
62 	unsigned long flags;
63 	int ret = 0;
64 	sector_t lo = r1_bio->sector;
65 	sector_t hi = lo + r1_bio->sectors;
66 	struct serial_in_rdev *serial = &rdev->serial[idx];
67 
68 	spin_lock_irqsave(&serial->serial_lock, flags);
69 	/* collision happened */
70 	if (raid1_rb_iter_first(&serial->serial_rb, lo, hi))
71 		ret = -EBUSY;
72 	else {
73 		si->start = lo;
74 		si->last = hi;
75 		raid1_rb_insert(si, &serial->serial_rb);
76 	}
77 	spin_unlock_irqrestore(&serial->serial_lock, flags);
78 
79 	return ret;
80 }
81 
82 static void wait_for_serialization(struct md_rdev *rdev, struct r1bio *r1_bio)
83 {
84 	struct mddev *mddev = rdev->mddev;
85 	struct serial_info *si;
86 	int idx = sector_to_idx(r1_bio->sector);
87 	struct serial_in_rdev *serial = &rdev->serial[idx];
88 
89 	if (WARN_ON(!mddev->serial_info_pool))
90 		return;
91 	si = mempool_alloc(mddev->serial_info_pool, GFP_NOIO);
92 	wait_event(serial->serial_io_wait,
93 		   check_and_add_serial(rdev, r1_bio, si, idx) == 0);
94 }
95 
96 static void remove_serial(struct md_rdev *rdev, sector_t lo, sector_t hi)
97 {
98 	struct serial_info *si;
99 	unsigned long flags;
100 	int found = 0;
101 	struct mddev *mddev = rdev->mddev;
102 	int idx = sector_to_idx(lo);
103 	struct serial_in_rdev *serial = &rdev->serial[idx];
104 
105 	spin_lock_irqsave(&serial->serial_lock, flags);
106 	for (si = raid1_rb_iter_first(&serial->serial_rb, lo, hi);
107 	     si; si = raid1_rb_iter_next(si, lo, hi)) {
108 		if (si->start == lo && si->last == hi) {
109 			raid1_rb_remove(si, &serial->serial_rb);
110 			mempool_free(si, mddev->serial_info_pool);
111 			found = 1;
112 			break;
113 		}
114 	}
115 	if (!found)
116 		WARN(1, "The write IO is not recorded for serialization\n");
117 	spin_unlock_irqrestore(&serial->serial_lock, flags);
118 	wake_up(&serial->serial_io_wait);
119 }
120 
121 /*
122  * for resync bio, r1bio pointer can be retrieved from the per-bio
123  * 'struct resync_pages'.
124  */
125 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
126 {
127 	return get_resync_pages(bio)->raid_bio;
128 }
129 
130 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
131 {
132 	struct pool_info *pi = data;
133 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
134 
135 	/* allocate a r1bio with room for raid_disks entries in the bios array */
136 	return kzalloc(size, gfp_flags);
137 }
138 
139 #define RESYNC_DEPTH 32
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
142 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
143 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
144 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
145 
146 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
147 {
148 	struct pool_info *pi = data;
149 	struct r1bio *r1_bio;
150 	struct bio *bio;
151 	int need_pages;
152 	int j;
153 	struct resync_pages *rps;
154 
155 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
156 	if (!r1_bio)
157 		return NULL;
158 
159 	rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
160 			    gfp_flags);
161 	if (!rps)
162 		goto out_free_r1bio;
163 
164 	/*
165 	 * Allocate bios : 1 for reading, n-1 for writing
166 	 */
167 	for (j = pi->raid_disks ; j-- ; ) {
168 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
169 		if (!bio)
170 			goto out_free_bio;
171 		r1_bio->bios[j] = bio;
172 	}
173 	/*
174 	 * Allocate RESYNC_PAGES data pages and attach them to
175 	 * the first bio.
176 	 * If this is a user-requested check/repair, allocate
177 	 * RESYNC_PAGES for each bio.
178 	 */
179 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
180 		need_pages = pi->raid_disks;
181 	else
182 		need_pages = 1;
183 	for (j = 0; j < pi->raid_disks; j++) {
184 		struct resync_pages *rp = &rps[j];
185 
186 		bio = r1_bio->bios[j];
187 
188 		if (j < need_pages) {
189 			if (resync_alloc_pages(rp, gfp_flags))
190 				goto out_free_pages;
191 		} else {
192 			memcpy(rp, &rps[0], sizeof(*rp));
193 			resync_get_all_pages(rp);
194 		}
195 
196 		rp->raid_bio = r1_bio;
197 		bio->bi_private = rp;
198 	}
199 
200 	r1_bio->master_bio = NULL;
201 
202 	return r1_bio;
203 
204 out_free_pages:
205 	while (--j >= 0)
206 		resync_free_pages(&rps[j]);
207 
208 out_free_bio:
209 	while (++j < pi->raid_disks)
210 		bio_put(r1_bio->bios[j]);
211 	kfree(rps);
212 
213 out_free_r1bio:
214 	rbio_pool_free(r1_bio, data);
215 	return NULL;
216 }
217 
218 static void r1buf_pool_free(void *__r1_bio, void *data)
219 {
220 	struct pool_info *pi = data;
221 	int i;
222 	struct r1bio *r1bio = __r1_bio;
223 	struct resync_pages *rp = NULL;
224 
225 	for (i = pi->raid_disks; i--; ) {
226 		rp = get_resync_pages(r1bio->bios[i]);
227 		resync_free_pages(rp);
228 		bio_put(r1bio->bios[i]);
229 	}
230 
231 	/* resync pages array stored in the 1st bio's .bi_private */
232 	kfree(rp);
233 
234 	rbio_pool_free(r1bio, data);
235 }
236 
237 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
238 {
239 	int i;
240 
241 	for (i = 0; i < conf->raid_disks * 2; i++) {
242 		struct bio **bio = r1_bio->bios + i;
243 		if (!BIO_SPECIAL(*bio))
244 			bio_put(*bio);
245 		*bio = NULL;
246 	}
247 }
248 
249 static void free_r1bio(struct r1bio *r1_bio)
250 {
251 	struct r1conf *conf = r1_bio->mddev->private;
252 
253 	put_all_bios(conf, r1_bio);
254 	mempool_free(r1_bio, &conf->r1bio_pool);
255 }
256 
257 static void put_buf(struct r1bio *r1_bio)
258 {
259 	struct r1conf *conf = r1_bio->mddev->private;
260 	sector_t sect = r1_bio->sector;
261 	int i;
262 
263 	for (i = 0; i < conf->raid_disks * 2; i++) {
264 		struct bio *bio = r1_bio->bios[i];
265 		if (bio->bi_end_io)
266 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
267 	}
268 
269 	mempool_free(r1_bio, &conf->r1buf_pool);
270 
271 	lower_barrier(conf, sect);
272 }
273 
274 static void reschedule_retry(struct r1bio *r1_bio)
275 {
276 	unsigned long flags;
277 	struct mddev *mddev = r1_bio->mddev;
278 	struct r1conf *conf = mddev->private;
279 	int idx;
280 
281 	idx = sector_to_idx(r1_bio->sector);
282 	spin_lock_irqsave(&conf->device_lock, flags);
283 	list_add(&r1_bio->retry_list, &conf->retry_list);
284 	atomic_inc(&conf->nr_queued[idx]);
285 	spin_unlock_irqrestore(&conf->device_lock, flags);
286 
287 	wake_up(&conf->wait_barrier);
288 	md_wakeup_thread(mddev->thread);
289 }
290 
291 /*
292  * raid_end_bio_io() is called when we have finished servicing a mirrored
293  * operation and are ready to return a success/failure code to the buffer
294  * cache layer.
295  */
296 static void call_bio_endio(struct r1bio *r1_bio)
297 {
298 	struct bio *bio = r1_bio->master_bio;
299 
300 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
301 		bio->bi_status = BLK_STS_IOERR;
302 
303 	bio_endio(bio);
304 }
305 
306 static void raid_end_bio_io(struct r1bio *r1_bio)
307 {
308 	struct bio *bio = r1_bio->master_bio;
309 	struct r1conf *conf = r1_bio->mddev->private;
310 
311 	/* if nobody has done the final endio yet, do it now */
312 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
313 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
314 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
315 			 (unsigned long long) bio->bi_iter.bi_sector,
316 			 (unsigned long long) bio_end_sector(bio) - 1);
317 
318 		call_bio_endio(r1_bio);
319 	}
320 	/*
321 	 * Wake up any possible resync thread that waits for the device
322 	 * to go idle.  All I/Os, even write-behind writes, are done.
323 	 */
324 	allow_barrier(conf, r1_bio->sector);
325 
326 	free_r1bio(r1_bio);
327 }
328 
329 /*
330  * Update disk head position estimator based on IRQ completion info.
331  */
332 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
333 {
334 	struct r1conf *conf = r1_bio->mddev->private;
335 
336 	conf->mirrors[disk].head_position =
337 		r1_bio->sector + (r1_bio->sectors);
338 }
339 
340 /*
341  * Find the disk number which triggered given bio
342  */
343 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
344 {
345 	int mirror;
346 	struct r1conf *conf = r1_bio->mddev->private;
347 	int raid_disks = conf->raid_disks;
348 
349 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
350 		if (r1_bio->bios[mirror] == bio)
351 			break;
352 
353 	BUG_ON(mirror == raid_disks * 2);
354 	update_head_pos(mirror, r1_bio);
355 
356 	return mirror;
357 }
358 
359 static void raid1_end_read_request(struct bio *bio)
360 {
361 	int uptodate = !bio->bi_status;
362 	struct r1bio *r1_bio = bio->bi_private;
363 	struct r1conf *conf = r1_bio->mddev->private;
364 	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
365 
366 	/*
367 	 * this branch is our 'one mirror IO has finished' event handler:
368 	 */
369 	update_head_pos(r1_bio->read_disk, r1_bio);
370 
371 	if (uptodate)
372 		set_bit(R1BIO_Uptodate, &r1_bio->state);
373 	else if (test_bit(FailFast, &rdev->flags) &&
374 		 test_bit(R1BIO_FailFast, &r1_bio->state))
375 		/* This was a fail-fast read so we definitely
376 		 * want to retry */
377 		;
378 	else {
379 		/* If all other devices have failed, we want to return
380 		 * the error upwards rather than fail the last device.
381 		 * Here we redefine "uptodate" to mean "Don't want to retry"
382 		 */
383 		unsigned long flags;
384 		spin_lock_irqsave(&conf->device_lock, flags);
385 		if (r1_bio->mddev->degraded == conf->raid_disks ||
386 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
387 		     test_bit(In_sync, &rdev->flags)))
388 			uptodate = 1;
389 		spin_unlock_irqrestore(&conf->device_lock, flags);
390 	}
391 
392 	if (uptodate) {
393 		raid_end_bio_io(r1_bio);
394 		rdev_dec_pending(rdev, conf->mddev);
395 	} else {
396 		/*
397 		 * oops, read error:
398 		 */
399 		char b[BDEVNAME_SIZE];
400 		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
401 				   mdname(conf->mddev),
402 				   bdevname(rdev->bdev, b),
403 				   (unsigned long long)r1_bio->sector);
404 		set_bit(R1BIO_ReadError, &r1_bio->state);
405 		reschedule_retry(r1_bio);
406 		/* don't drop the reference on read_disk yet */
407 	}
408 }
409 
410 static void close_write(struct r1bio *r1_bio)
411 {
412 	/* it really is the end of this request */
413 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
414 		bio_free_pages(r1_bio->behind_master_bio);
415 		bio_put(r1_bio->behind_master_bio);
416 		r1_bio->behind_master_bio = NULL;
417 	}
418 	/* clear the bitmap if all writes complete successfully */
419 	md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
420 			   r1_bio->sectors,
421 			   !test_bit(R1BIO_Degraded, &r1_bio->state),
422 			   test_bit(R1BIO_BehindIO, &r1_bio->state));
423 	md_write_end(r1_bio->mddev);
424 }
425 
426 static void r1_bio_write_done(struct r1bio *r1_bio)
427 {
428 	if (!atomic_dec_and_test(&r1_bio->remaining))
429 		return;
430 
431 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
432 		reschedule_retry(r1_bio);
433 	else {
434 		close_write(r1_bio);
435 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
436 			reschedule_retry(r1_bio);
437 		else
438 			raid_end_bio_io(r1_bio);
439 	}
440 }
441 
442 static void raid1_end_write_request(struct bio *bio)
443 {
444 	struct r1bio *r1_bio = bio->bi_private;
445 	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
446 	struct r1conf *conf = r1_bio->mddev->private;
447 	struct bio *to_put = NULL;
448 	int mirror = find_bio_disk(r1_bio, bio);
449 	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
450 	bool discard_error;
451 	sector_t lo = r1_bio->sector;
452 	sector_t hi = r1_bio->sector + r1_bio->sectors;
453 
454 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
455 
456 	/*
457 	 * 'one mirror IO has finished' event handler:
458 	 */
459 	if (bio->bi_status && !discard_error) {
460 		set_bit(WriteErrorSeen,	&rdev->flags);
461 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
462 			set_bit(MD_RECOVERY_NEEDED, &
463 				conf->mddev->recovery);
464 
465 		if (test_bit(FailFast, &rdev->flags) &&
466 		    (bio->bi_opf & MD_FAILFAST) &&
467 		    /* We never try FailFast to WriteMostly devices */
468 		    !test_bit(WriteMostly, &rdev->flags)) {
469 			md_error(r1_bio->mddev, rdev);
470 		}
471 
472 		/*
473 		 * When the device is faulty, it is not necessary to
474 		 * handle write error.
475 		 * For failfast, this is the only remaining device,
476 		 * We need to retry the write without FailFast.
477 		 */
478 		if (!test_bit(Faulty, &rdev->flags))
479 			set_bit(R1BIO_WriteError, &r1_bio->state);
480 		else {
481 			/* Finished with this branch */
482 			r1_bio->bios[mirror] = NULL;
483 			to_put = bio;
484 		}
485 	} else {
486 		/*
487 		 * Set R1BIO_Uptodate in our master bio, so that we
488 		 * will return a good error code for to the higher
489 		 * levels even if IO on some other mirrored buffer
490 		 * fails.
491 		 *
492 		 * The 'master' represents the composite IO operation
493 		 * to user-side. So if something waits for IO, then it
494 		 * will wait for the 'master' bio.
495 		 */
496 		sector_t first_bad;
497 		int bad_sectors;
498 
499 		r1_bio->bios[mirror] = NULL;
500 		to_put = bio;
501 		/*
502 		 * Do not set R1BIO_Uptodate if the current device is
503 		 * rebuilding or Faulty. This is because we cannot use
504 		 * such device for properly reading the data back (we could
505 		 * potentially use it, if the current write would have felt
506 		 * before rdev->recovery_offset, but for simplicity we don't
507 		 * check this here.
508 		 */
509 		if (test_bit(In_sync, &rdev->flags) &&
510 		    !test_bit(Faulty, &rdev->flags))
511 			set_bit(R1BIO_Uptodate, &r1_bio->state);
512 
513 		/* Maybe we can clear some bad blocks. */
514 		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
515 				&first_bad, &bad_sectors) && !discard_error) {
516 			r1_bio->bios[mirror] = IO_MADE_GOOD;
517 			set_bit(R1BIO_MadeGood, &r1_bio->state);
518 		}
519 	}
520 
521 	if (behind) {
522 		if (test_bit(CollisionCheck, &rdev->flags))
523 			remove_serial(rdev, lo, hi);
524 		if (test_bit(WriteMostly, &rdev->flags))
525 			atomic_dec(&r1_bio->behind_remaining);
526 
527 		/*
528 		 * In behind mode, we ACK the master bio once the I/O
529 		 * has safely reached all non-writemostly
530 		 * disks. Setting the Returned bit ensures that this
531 		 * gets done only once -- we don't ever want to return
532 		 * -EIO here, instead we'll wait
533 		 */
534 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
535 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
536 			/* Maybe we can return now */
537 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
538 				struct bio *mbio = r1_bio->master_bio;
539 				pr_debug("raid1: behind end write sectors"
540 					 " %llu-%llu\n",
541 					 (unsigned long long) mbio->bi_iter.bi_sector,
542 					 (unsigned long long) bio_end_sector(mbio) - 1);
543 				call_bio_endio(r1_bio);
544 			}
545 		}
546 	} else if (rdev->mddev->serialize_policy)
547 		remove_serial(rdev, lo, hi);
548 	if (r1_bio->bios[mirror] == NULL)
549 		rdev_dec_pending(rdev, conf->mddev);
550 
551 	/*
552 	 * Let's see if all mirrored write operations have finished
553 	 * already.
554 	 */
555 	r1_bio_write_done(r1_bio);
556 
557 	if (to_put)
558 		bio_put(to_put);
559 }
560 
561 static sector_t align_to_barrier_unit_end(sector_t start_sector,
562 					  sector_t sectors)
563 {
564 	sector_t len;
565 
566 	WARN_ON(sectors == 0);
567 	/*
568 	 * len is the number of sectors from start_sector to end of the
569 	 * barrier unit which start_sector belongs to.
570 	 */
571 	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
572 	      start_sector;
573 
574 	if (len > sectors)
575 		len = sectors;
576 
577 	return len;
578 }
579 
580 /*
581  * This routine returns the disk from which the requested read should
582  * be done. There is a per-array 'next expected sequential IO' sector
583  * number - if this matches on the next IO then we use the last disk.
584  * There is also a per-disk 'last know head position' sector that is
585  * maintained from IRQ contexts, both the normal and the resync IO
586  * completion handlers update this position correctly. If there is no
587  * perfect sequential match then we pick the disk whose head is closest.
588  *
589  * If there are 2 mirrors in the same 2 devices, performance degrades
590  * because position is mirror, not device based.
591  *
592  * The rdev for the device selected will have nr_pending incremented.
593  */
594 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
595 {
596 	const sector_t this_sector = r1_bio->sector;
597 	int sectors;
598 	int best_good_sectors;
599 	int best_disk, best_dist_disk, best_pending_disk;
600 	int has_nonrot_disk;
601 	int disk;
602 	sector_t best_dist;
603 	unsigned int min_pending;
604 	struct md_rdev *rdev;
605 	int choose_first;
606 	int choose_next_idle;
607 
608 	rcu_read_lock();
609 	/*
610 	 * Check if we can balance. We can balance on the whole
611 	 * device if no resync is going on, or below the resync window.
612 	 * We take the first readable disk when above the resync window.
613 	 */
614  retry:
615 	sectors = r1_bio->sectors;
616 	best_disk = -1;
617 	best_dist_disk = -1;
618 	best_dist = MaxSector;
619 	best_pending_disk = -1;
620 	min_pending = UINT_MAX;
621 	best_good_sectors = 0;
622 	has_nonrot_disk = 0;
623 	choose_next_idle = 0;
624 	clear_bit(R1BIO_FailFast, &r1_bio->state);
625 
626 	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
627 	    (mddev_is_clustered(conf->mddev) &&
628 	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
629 		    this_sector + sectors)))
630 		choose_first = 1;
631 	else
632 		choose_first = 0;
633 
634 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
635 		sector_t dist;
636 		sector_t first_bad;
637 		int bad_sectors;
638 		unsigned int pending;
639 		bool nonrot;
640 
641 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
642 		if (r1_bio->bios[disk] == IO_BLOCKED
643 		    || rdev == NULL
644 		    || test_bit(Faulty, &rdev->flags))
645 			continue;
646 		if (!test_bit(In_sync, &rdev->flags) &&
647 		    rdev->recovery_offset < this_sector + sectors)
648 			continue;
649 		if (test_bit(WriteMostly, &rdev->flags)) {
650 			/* Don't balance among write-mostly, just
651 			 * use the first as a last resort */
652 			if (best_dist_disk < 0) {
653 				if (is_badblock(rdev, this_sector, sectors,
654 						&first_bad, &bad_sectors)) {
655 					if (first_bad <= this_sector)
656 						/* Cannot use this */
657 						continue;
658 					best_good_sectors = first_bad - this_sector;
659 				} else
660 					best_good_sectors = sectors;
661 				best_dist_disk = disk;
662 				best_pending_disk = disk;
663 			}
664 			continue;
665 		}
666 		/* This is a reasonable device to use.  It might
667 		 * even be best.
668 		 */
669 		if (is_badblock(rdev, this_sector, sectors,
670 				&first_bad, &bad_sectors)) {
671 			if (best_dist < MaxSector)
672 				/* already have a better device */
673 				continue;
674 			if (first_bad <= this_sector) {
675 				/* cannot read here. If this is the 'primary'
676 				 * device, then we must not read beyond
677 				 * bad_sectors from another device..
678 				 */
679 				bad_sectors -= (this_sector - first_bad);
680 				if (choose_first && sectors > bad_sectors)
681 					sectors = bad_sectors;
682 				if (best_good_sectors > sectors)
683 					best_good_sectors = sectors;
684 
685 			} else {
686 				sector_t good_sectors = first_bad - this_sector;
687 				if (good_sectors > best_good_sectors) {
688 					best_good_sectors = good_sectors;
689 					best_disk = disk;
690 				}
691 				if (choose_first)
692 					break;
693 			}
694 			continue;
695 		} else {
696 			if ((sectors > best_good_sectors) && (best_disk >= 0))
697 				best_disk = -1;
698 			best_good_sectors = sectors;
699 		}
700 
701 		if (best_disk >= 0)
702 			/* At least two disks to choose from so failfast is OK */
703 			set_bit(R1BIO_FailFast, &r1_bio->state);
704 
705 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
706 		has_nonrot_disk |= nonrot;
707 		pending = atomic_read(&rdev->nr_pending);
708 		dist = abs(this_sector - conf->mirrors[disk].head_position);
709 		if (choose_first) {
710 			best_disk = disk;
711 			break;
712 		}
713 		/* Don't change to another disk for sequential reads */
714 		if (conf->mirrors[disk].next_seq_sect == this_sector
715 		    || dist == 0) {
716 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
717 			struct raid1_info *mirror = &conf->mirrors[disk];
718 
719 			best_disk = disk;
720 			/*
721 			 * If buffered sequential IO size exceeds optimal
722 			 * iosize, check if there is idle disk. If yes, choose
723 			 * the idle disk. read_balance could already choose an
724 			 * idle disk before noticing it's a sequential IO in
725 			 * this disk. This doesn't matter because this disk
726 			 * will idle, next time it will be utilized after the
727 			 * first disk has IO size exceeds optimal iosize. In
728 			 * this way, iosize of the first disk will be optimal
729 			 * iosize at least. iosize of the second disk might be
730 			 * small, but not a big deal since when the second disk
731 			 * starts IO, the first disk is likely still busy.
732 			 */
733 			if (nonrot && opt_iosize > 0 &&
734 			    mirror->seq_start != MaxSector &&
735 			    mirror->next_seq_sect > opt_iosize &&
736 			    mirror->next_seq_sect - opt_iosize >=
737 			    mirror->seq_start) {
738 				choose_next_idle = 1;
739 				continue;
740 			}
741 			break;
742 		}
743 
744 		if (choose_next_idle)
745 			continue;
746 
747 		if (min_pending > pending) {
748 			min_pending = pending;
749 			best_pending_disk = disk;
750 		}
751 
752 		if (dist < best_dist) {
753 			best_dist = dist;
754 			best_dist_disk = disk;
755 		}
756 	}
757 
758 	/*
759 	 * If all disks are rotational, choose the closest disk. If any disk is
760 	 * non-rotational, choose the disk with less pending request even the
761 	 * disk is rotational, which might/might not be optimal for raids with
762 	 * mixed ratation/non-rotational disks depending on workload.
763 	 */
764 	if (best_disk == -1) {
765 		if (has_nonrot_disk || min_pending == 0)
766 			best_disk = best_pending_disk;
767 		else
768 			best_disk = best_dist_disk;
769 	}
770 
771 	if (best_disk >= 0) {
772 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
773 		if (!rdev)
774 			goto retry;
775 		atomic_inc(&rdev->nr_pending);
776 		sectors = best_good_sectors;
777 
778 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
779 			conf->mirrors[best_disk].seq_start = this_sector;
780 
781 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
782 	}
783 	rcu_read_unlock();
784 	*max_sectors = sectors;
785 
786 	return best_disk;
787 }
788 
789 static int raid1_congested(struct mddev *mddev, int bits)
790 {
791 	struct r1conf *conf = mddev->private;
792 	int i, ret = 0;
793 
794 	if ((bits & (1 << WB_async_congested)) &&
795 	    conf->pending_count >= max_queued_requests)
796 		return 1;
797 
798 	rcu_read_lock();
799 	for (i = 0; i < conf->raid_disks * 2; i++) {
800 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
801 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
802 			struct request_queue *q = bdev_get_queue(rdev->bdev);
803 
804 			BUG_ON(!q);
805 
806 			/* Note the '|| 1' - when read_balance prefers
807 			 * non-congested targets, it can be removed
808 			 */
809 			if ((bits & (1 << WB_async_congested)) || 1)
810 				ret |= bdi_congested(q->backing_dev_info, bits);
811 			else
812 				ret &= bdi_congested(q->backing_dev_info, bits);
813 		}
814 	}
815 	rcu_read_unlock();
816 	return ret;
817 }
818 
819 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
820 {
821 	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
822 	md_bitmap_unplug(conf->mddev->bitmap);
823 	wake_up(&conf->wait_barrier);
824 
825 	while (bio) { /* submit pending writes */
826 		struct bio *next = bio->bi_next;
827 		struct md_rdev *rdev = (void *)bio->bi_disk;
828 		bio->bi_next = NULL;
829 		bio_set_dev(bio, rdev->bdev);
830 		if (test_bit(Faulty, &rdev->flags)) {
831 			bio_io_error(bio);
832 		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
833 				    !blk_queue_discard(bio->bi_disk->queue)))
834 			/* Just ignore it */
835 			bio_endio(bio);
836 		else
837 			generic_make_request(bio);
838 		bio = next;
839 		cond_resched();
840 	}
841 }
842 
843 static void flush_pending_writes(struct r1conf *conf)
844 {
845 	/* Any writes that have been queued but are awaiting
846 	 * bitmap updates get flushed here.
847 	 */
848 	spin_lock_irq(&conf->device_lock);
849 
850 	if (conf->pending_bio_list.head) {
851 		struct blk_plug plug;
852 		struct bio *bio;
853 
854 		bio = bio_list_get(&conf->pending_bio_list);
855 		conf->pending_count = 0;
856 		spin_unlock_irq(&conf->device_lock);
857 
858 		/*
859 		 * As this is called in a wait_event() loop (see freeze_array),
860 		 * current->state might be TASK_UNINTERRUPTIBLE which will
861 		 * cause a warning when we prepare to wait again.  As it is
862 		 * rare that this path is taken, it is perfectly safe to force
863 		 * us to go around the wait_event() loop again, so the warning
864 		 * is a false-positive.  Silence the warning by resetting
865 		 * thread state
866 		 */
867 		__set_current_state(TASK_RUNNING);
868 		blk_start_plug(&plug);
869 		flush_bio_list(conf, bio);
870 		blk_finish_plug(&plug);
871 	} else
872 		spin_unlock_irq(&conf->device_lock);
873 }
874 
875 /* Barriers....
876  * Sometimes we need to suspend IO while we do something else,
877  * either some resync/recovery, or reconfigure the array.
878  * To do this we raise a 'barrier'.
879  * The 'barrier' is a counter that can be raised multiple times
880  * to count how many activities are happening which preclude
881  * normal IO.
882  * We can only raise the barrier if there is no pending IO.
883  * i.e. if nr_pending == 0.
884  * We choose only to raise the barrier if no-one is waiting for the
885  * barrier to go down.  This means that as soon as an IO request
886  * is ready, no other operations which require a barrier will start
887  * until the IO request has had a chance.
888  *
889  * So: regular IO calls 'wait_barrier'.  When that returns there
890  *    is no backgroup IO happening,  It must arrange to call
891  *    allow_barrier when it has finished its IO.
892  * backgroup IO calls must call raise_barrier.  Once that returns
893  *    there is no normal IO happeing.  It must arrange to call
894  *    lower_barrier when the particular background IO completes.
895  *
896  * If resync/recovery is interrupted, returns -EINTR;
897  * Otherwise, returns 0.
898  */
899 static int raise_barrier(struct r1conf *conf, sector_t sector_nr)
900 {
901 	int idx = sector_to_idx(sector_nr);
902 
903 	spin_lock_irq(&conf->resync_lock);
904 
905 	/* Wait until no block IO is waiting */
906 	wait_event_lock_irq(conf->wait_barrier,
907 			    !atomic_read(&conf->nr_waiting[idx]),
908 			    conf->resync_lock);
909 
910 	/* block any new IO from starting */
911 	atomic_inc(&conf->barrier[idx]);
912 	/*
913 	 * In raise_barrier() we firstly increase conf->barrier[idx] then
914 	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
915 	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
916 	 * A memory barrier here to make sure conf->nr_pending[idx] won't
917 	 * be fetched before conf->barrier[idx] is increased. Otherwise
918 	 * there will be a race between raise_barrier() and _wait_barrier().
919 	 */
920 	smp_mb__after_atomic();
921 
922 	/* For these conditions we must wait:
923 	 * A: while the array is in frozen state
924 	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
925 	 *    existing in corresponding I/O barrier bucket.
926 	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
927 	 *    max resync count which allowed on current I/O barrier bucket.
928 	 */
929 	wait_event_lock_irq(conf->wait_barrier,
930 			    (!conf->array_frozen &&
931 			     !atomic_read(&conf->nr_pending[idx]) &&
932 			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
933 				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
934 			    conf->resync_lock);
935 
936 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
937 		atomic_dec(&conf->barrier[idx]);
938 		spin_unlock_irq(&conf->resync_lock);
939 		wake_up(&conf->wait_barrier);
940 		return -EINTR;
941 	}
942 
943 	atomic_inc(&conf->nr_sync_pending);
944 	spin_unlock_irq(&conf->resync_lock);
945 
946 	return 0;
947 }
948 
949 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
950 {
951 	int idx = sector_to_idx(sector_nr);
952 
953 	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
954 
955 	atomic_dec(&conf->barrier[idx]);
956 	atomic_dec(&conf->nr_sync_pending);
957 	wake_up(&conf->wait_barrier);
958 }
959 
960 static void _wait_barrier(struct r1conf *conf, int idx)
961 {
962 	/*
963 	 * We need to increase conf->nr_pending[idx] very early here,
964 	 * then raise_barrier() can be blocked when it waits for
965 	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
966 	 * conf->resync_lock when there is no barrier raised in same
967 	 * barrier unit bucket. Also if the array is frozen, I/O
968 	 * should be blocked until array is unfrozen.
969 	 */
970 	atomic_inc(&conf->nr_pending[idx]);
971 	/*
972 	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
973 	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
974 	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
975 	 * barrier is necessary here to make sure conf->barrier[idx] won't be
976 	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
977 	 * will be a race between _wait_barrier() and raise_barrier().
978 	 */
979 	smp_mb__after_atomic();
980 
981 	/*
982 	 * Don't worry about checking two atomic_t variables at same time
983 	 * here. If during we check conf->barrier[idx], the array is
984 	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
985 	 * 0, it is safe to return and make the I/O continue. Because the
986 	 * array is frozen, all I/O returned here will eventually complete
987 	 * or be queued, no race will happen. See code comment in
988 	 * frozen_array().
989 	 */
990 	if (!READ_ONCE(conf->array_frozen) &&
991 	    !atomic_read(&conf->barrier[idx]))
992 		return;
993 
994 	/*
995 	 * After holding conf->resync_lock, conf->nr_pending[idx]
996 	 * should be decreased before waiting for barrier to drop.
997 	 * Otherwise, we may encounter a race condition because
998 	 * raise_barrer() might be waiting for conf->nr_pending[idx]
999 	 * to be 0 at same time.
1000 	 */
1001 	spin_lock_irq(&conf->resync_lock);
1002 	atomic_inc(&conf->nr_waiting[idx]);
1003 	atomic_dec(&conf->nr_pending[idx]);
1004 	/*
1005 	 * In case freeze_array() is waiting for
1006 	 * get_unqueued_pending() == extra
1007 	 */
1008 	wake_up(&conf->wait_barrier);
1009 	/* Wait for the barrier in same barrier unit bucket to drop. */
1010 	wait_event_lock_irq(conf->wait_barrier,
1011 			    !conf->array_frozen &&
1012 			     !atomic_read(&conf->barrier[idx]),
1013 			    conf->resync_lock);
1014 	atomic_inc(&conf->nr_pending[idx]);
1015 	atomic_dec(&conf->nr_waiting[idx]);
1016 	spin_unlock_irq(&conf->resync_lock);
1017 }
1018 
1019 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
1020 {
1021 	int idx = sector_to_idx(sector_nr);
1022 
1023 	/*
1024 	 * Very similar to _wait_barrier(). The difference is, for read
1025 	 * I/O we don't need wait for sync I/O, but if the whole array
1026 	 * is frozen, the read I/O still has to wait until the array is
1027 	 * unfrozen. Since there is no ordering requirement with
1028 	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
1029 	 */
1030 	atomic_inc(&conf->nr_pending[idx]);
1031 
1032 	if (!READ_ONCE(conf->array_frozen))
1033 		return;
1034 
1035 	spin_lock_irq(&conf->resync_lock);
1036 	atomic_inc(&conf->nr_waiting[idx]);
1037 	atomic_dec(&conf->nr_pending[idx]);
1038 	/*
1039 	 * In case freeze_array() is waiting for
1040 	 * get_unqueued_pending() == extra
1041 	 */
1042 	wake_up(&conf->wait_barrier);
1043 	/* Wait for array to be unfrozen */
1044 	wait_event_lock_irq(conf->wait_barrier,
1045 			    !conf->array_frozen,
1046 			    conf->resync_lock);
1047 	atomic_inc(&conf->nr_pending[idx]);
1048 	atomic_dec(&conf->nr_waiting[idx]);
1049 	spin_unlock_irq(&conf->resync_lock);
1050 }
1051 
1052 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1053 {
1054 	int idx = sector_to_idx(sector_nr);
1055 
1056 	_wait_barrier(conf, idx);
1057 }
1058 
1059 static void _allow_barrier(struct r1conf *conf, int idx)
1060 {
1061 	atomic_dec(&conf->nr_pending[idx]);
1062 	wake_up(&conf->wait_barrier);
1063 }
1064 
1065 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1066 {
1067 	int idx = sector_to_idx(sector_nr);
1068 
1069 	_allow_barrier(conf, idx);
1070 }
1071 
1072 /* conf->resync_lock should be held */
1073 static int get_unqueued_pending(struct r1conf *conf)
1074 {
1075 	int idx, ret;
1076 
1077 	ret = atomic_read(&conf->nr_sync_pending);
1078 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1079 		ret += atomic_read(&conf->nr_pending[idx]) -
1080 			atomic_read(&conf->nr_queued[idx]);
1081 
1082 	return ret;
1083 }
1084 
1085 static void freeze_array(struct r1conf *conf, int extra)
1086 {
1087 	/* Stop sync I/O and normal I/O and wait for everything to
1088 	 * go quiet.
1089 	 * This is called in two situations:
1090 	 * 1) management command handlers (reshape, remove disk, quiesce).
1091 	 * 2) one normal I/O request failed.
1092 
1093 	 * After array_frozen is set to 1, new sync IO will be blocked at
1094 	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1095 	 * or wait_read_barrier(). The flying I/Os will either complete or be
1096 	 * queued. When everything goes quite, there are only queued I/Os left.
1097 
1098 	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1099 	 * barrier bucket index which this I/O request hits. When all sync and
1100 	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1101 	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1102 	 * in handle_read_error(), we may call freeze_array() before trying to
1103 	 * fix the read error. In this case, the error read I/O is not queued,
1104 	 * so get_unqueued_pending() == 1.
1105 	 *
1106 	 * Therefore before this function returns, we need to wait until
1107 	 * get_unqueued_pendings(conf) gets equal to extra. For
1108 	 * normal I/O context, extra is 1, in rested situations extra is 0.
1109 	 */
1110 	spin_lock_irq(&conf->resync_lock);
1111 	conf->array_frozen = 1;
1112 	raid1_log(conf->mddev, "wait freeze");
1113 	wait_event_lock_irq_cmd(
1114 		conf->wait_barrier,
1115 		get_unqueued_pending(conf) == extra,
1116 		conf->resync_lock,
1117 		flush_pending_writes(conf));
1118 	spin_unlock_irq(&conf->resync_lock);
1119 }
1120 static void unfreeze_array(struct r1conf *conf)
1121 {
1122 	/* reverse the effect of the freeze */
1123 	spin_lock_irq(&conf->resync_lock);
1124 	conf->array_frozen = 0;
1125 	spin_unlock_irq(&conf->resync_lock);
1126 	wake_up(&conf->wait_barrier);
1127 }
1128 
1129 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1130 					   struct bio *bio)
1131 {
1132 	int size = bio->bi_iter.bi_size;
1133 	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1134 	int i = 0;
1135 	struct bio *behind_bio = NULL;
1136 
1137 	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1138 	if (!behind_bio)
1139 		return;
1140 
1141 	/* discard op, we don't support writezero/writesame yet */
1142 	if (!bio_has_data(bio)) {
1143 		behind_bio->bi_iter.bi_size = size;
1144 		goto skip_copy;
1145 	}
1146 
1147 	behind_bio->bi_write_hint = bio->bi_write_hint;
1148 
1149 	while (i < vcnt && size) {
1150 		struct page *page;
1151 		int len = min_t(int, PAGE_SIZE, size);
1152 
1153 		page = alloc_page(GFP_NOIO);
1154 		if (unlikely(!page))
1155 			goto free_pages;
1156 
1157 		bio_add_page(behind_bio, page, len, 0);
1158 
1159 		size -= len;
1160 		i++;
1161 	}
1162 
1163 	bio_copy_data(behind_bio, bio);
1164 skip_copy:
1165 	r1_bio->behind_master_bio = behind_bio;
1166 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1167 
1168 	return;
1169 
1170 free_pages:
1171 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1172 		 bio->bi_iter.bi_size);
1173 	bio_free_pages(behind_bio);
1174 	bio_put(behind_bio);
1175 }
1176 
1177 struct raid1_plug_cb {
1178 	struct blk_plug_cb	cb;
1179 	struct bio_list		pending;
1180 	int			pending_cnt;
1181 };
1182 
1183 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1184 {
1185 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1186 						  cb);
1187 	struct mddev *mddev = plug->cb.data;
1188 	struct r1conf *conf = mddev->private;
1189 	struct bio *bio;
1190 
1191 	if (from_schedule || current->bio_list) {
1192 		spin_lock_irq(&conf->device_lock);
1193 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1194 		conf->pending_count += plug->pending_cnt;
1195 		spin_unlock_irq(&conf->device_lock);
1196 		wake_up(&conf->wait_barrier);
1197 		md_wakeup_thread(mddev->thread);
1198 		kfree(plug);
1199 		return;
1200 	}
1201 
1202 	/* we aren't scheduling, so we can do the write-out directly. */
1203 	bio = bio_list_get(&plug->pending);
1204 	flush_bio_list(conf, bio);
1205 	kfree(plug);
1206 }
1207 
1208 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1209 {
1210 	r1_bio->master_bio = bio;
1211 	r1_bio->sectors = bio_sectors(bio);
1212 	r1_bio->state = 0;
1213 	r1_bio->mddev = mddev;
1214 	r1_bio->sector = bio->bi_iter.bi_sector;
1215 }
1216 
1217 static inline struct r1bio *
1218 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1219 {
1220 	struct r1conf *conf = mddev->private;
1221 	struct r1bio *r1_bio;
1222 
1223 	r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1224 	/* Ensure no bio records IO_BLOCKED */
1225 	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1226 	init_r1bio(r1_bio, mddev, bio);
1227 	return r1_bio;
1228 }
1229 
1230 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1231 			       int max_read_sectors, struct r1bio *r1_bio)
1232 {
1233 	struct r1conf *conf = mddev->private;
1234 	struct raid1_info *mirror;
1235 	struct bio *read_bio;
1236 	struct bitmap *bitmap = mddev->bitmap;
1237 	const int op = bio_op(bio);
1238 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1239 	int max_sectors;
1240 	int rdisk;
1241 	bool print_msg = !!r1_bio;
1242 	char b[BDEVNAME_SIZE];
1243 
1244 	/*
1245 	 * If r1_bio is set, we are blocking the raid1d thread
1246 	 * so there is a tiny risk of deadlock.  So ask for
1247 	 * emergency memory if needed.
1248 	 */
1249 	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1250 
1251 	if (print_msg) {
1252 		/* Need to get the block device name carefully */
1253 		struct md_rdev *rdev;
1254 		rcu_read_lock();
1255 		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1256 		if (rdev)
1257 			bdevname(rdev->bdev, b);
1258 		else
1259 			strcpy(b, "???");
1260 		rcu_read_unlock();
1261 	}
1262 
1263 	/*
1264 	 * Still need barrier for READ in case that whole
1265 	 * array is frozen.
1266 	 */
1267 	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1268 
1269 	if (!r1_bio)
1270 		r1_bio = alloc_r1bio(mddev, bio);
1271 	else
1272 		init_r1bio(r1_bio, mddev, bio);
1273 	r1_bio->sectors = max_read_sectors;
1274 
1275 	/*
1276 	 * make_request() can abort the operation when read-ahead is being
1277 	 * used and no empty request is available.
1278 	 */
1279 	rdisk = read_balance(conf, r1_bio, &max_sectors);
1280 
1281 	if (rdisk < 0) {
1282 		/* couldn't find anywhere to read from */
1283 		if (print_msg) {
1284 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1285 					    mdname(mddev),
1286 					    b,
1287 					    (unsigned long long)r1_bio->sector);
1288 		}
1289 		raid_end_bio_io(r1_bio);
1290 		return;
1291 	}
1292 	mirror = conf->mirrors + rdisk;
1293 
1294 	if (print_msg)
1295 		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1296 				    mdname(mddev),
1297 				    (unsigned long long)r1_bio->sector,
1298 				    bdevname(mirror->rdev->bdev, b));
1299 
1300 	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1301 	    bitmap) {
1302 		/*
1303 		 * Reading from a write-mostly device must take care not to
1304 		 * over-take any writes that are 'behind'
1305 		 */
1306 		raid1_log(mddev, "wait behind writes");
1307 		wait_event(bitmap->behind_wait,
1308 			   atomic_read(&bitmap->behind_writes) == 0);
1309 	}
1310 
1311 	if (max_sectors < bio_sectors(bio)) {
1312 		struct bio *split = bio_split(bio, max_sectors,
1313 					      gfp, &conf->bio_split);
1314 		bio_chain(split, bio);
1315 		generic_make_request(bio);
1316 		bio = split;
1317 		r1_bio->master_bio = bio;
1318 		r1_bio->sectors = max_sectors;
1319 	}
1320 
1321 	r1_bio->read_disk = rdisk;
1322 
1323 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1324 
1325 	r1_bio->bios[rdisk] = read_bio;
1326 
1327 	read_bio->bi_iter.bi_sector = r1_bio->sector +
1328 		mirror->rdev->data_offset;
1329 	bio_set_dev(read_bio, mirror->rdev->bdev);
1330 	read_bio->bi_end_io = raid1_end_read_request;
1331 	bio_set_op_attrs(read_bio, op, do_sync);
1332 	if (test_bit(FailFast, &mirror->rdev->flags) &&
1333 	    test_bit(R1BIO_FailFast, &r1_bio->state))
1334 	        read_bio->bi_opf |= MD_FAILFAST;
1335 	read_bio->bi_private = r1_bio;
1336 
1337 	if (mddev->gendisk)
1338 	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1339 				disk_devt(mddev->gendisk), r1_bio->sector);
1340 
1341 	generic_make_request(read_bio);
1342 }
1343 
1344 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1345 				int max_write_sectors)
1346 {
1347 	struct r1conf *conf = mddev->private;
1348 	struct r1bio *r1_bio;
1349 	int i, disks;
1350 	struct bitmap *bitmap = mddev->bitmap;
1351 	unsigned long flags;
1352 	struct md_rdev *blocked_rdev;
1353 	struct blk_plug_cb *cb;
1354 	struct raid1_plug_cb *plug = NULL;
1355 	int first_clone;
1356 	int max_sectors;
1357 
1358 	if (mddev_is_clustered(mddev) &&
1359 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1360 		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1361 
1362 		DEFINE_WAIT(w);
1363 		for (;;) {
1364 			prepare_to_wait(&conf->wait_barrier,
1365 					&w, TASK_IDLE);
1366 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1367 							bio->bi_iter.bi_sector,
1368 							bio_end_sector(bio)))
1369 				break;
1370 			schedule();
1371 		}
1372 		finish_wait(&conf->wait_barrier, &w);
1373 	}
1374 
1375 	/*
1376 	 * Register the new request and wait if the reconstruction
1377 	 * thread has put up a bar for new requests.
1378 	 * Continue immediately if no resync is active currently.
1379 	 */
1380 	wait_barrier(conf, bio->bi_iter.bi_sector);
1381 
1382 	r1_bio = alloc_r1bio(mddev, bio);
1383 	r1_bio->sectors = max_write_sectors;
1384 
1385 	if (conf->pending_count >= max_queued_requests) {
1386 		md_wakeup_thread(mddev->thread);
1387 		raid1_log(mddev, "wait queued");
1388 		wait_event(conf->wait_barrier,
1389 			   conf->pending_count < max_queued_requests);
1390 	}
1391 	/* first select target devices under rcu_lock and
1392 	 * inc refcount on their rdev.  Record them by setting
1393 	 * bios[x] to bio
1394 	 * If there are known/acknowledged bad blocks on any device on
1395 	 * which we have seen a write error, we want to avoid writing those
1396 	 * blocks.
1397 	 * This potentially requires several writes to write around
1398 	 * the bad blocks.  Each set of writes gets it's own r1bio
1399 	 * with a set of bios attached.
1400 	 */
1401 
1402 	disks = conf->raid_disks * 2;
1403  retry_write:
1404 	blocked_rdev = NULL;
1405 	rcu_read_lock();
1406 	max_sectors = r1_bio->sectors;
1407 	for (i = 0;  i < disks; i++) {
1408 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1409 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1410 			atomic_inc(&rdev->nr_pending);
1411 			blocked_rdev = rdev;
1412 			break;
1413 		}
1414 		r1_bio->bios[i] = NULL;
1415 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1416 			if (i < conf->raid_disks)
1417 				set_bit(R1BIO_Degraded, &r1_bio->state);
1418 			continue;
1419 		}
1420 
1421 		atomic_inc(&rdev->nr_pending);
1422 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1423 			sector_t first_bad;
1424 			int bad_sectors;
1425 			int is_bad;
1426 
1427 			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1428 					     &first_bad, &bad_sectors);
1429 			if (is_bad < 0) {
1430 				/* mustn't write here until the bad block is
1431 				 * acknowledged*/
1432 				set_bit(BlockedBadBlocks, &rdev->flags);
1433 				blocked_rdev = rdev;
1434 				break;
1435 			}
1436 			if (is_bad && first_bad <= r1_bio->sector) {
1437 				/* Cannot write here at all */
1438 				bad_sectors -= (r1_bio->sector - first_bad);
1439 				if (bad_sectors < max_sectors)
1440 					/* mustn't write more than bad_sectors
1441 					 * to other devices yet
1442 					 */
1443 					max_sectors = bad_sectors;
1444 				rdev_dec_pending(rdev, mddev);
1445 				/* We don't set R1BIO_Degraded as that
1446 				 * only applies if the disk is
1447 				 * missing, so it might be re-added,
1448 				 * and we want to know to recover this
1449 				 * chunk.
1450 				 * In this case the device is here,
1451 				 * and the fact that this chunk is not
1452 				 * in-sync is recorded in the bad
1453 				 * block log
1454 				 */
1455 				continue;
1456 			}
1457 			if (is_bad) {
1458 				int good_sectors = first_bad - r1_bio->sector;
1459 				if (good_sectors < max_sectors)
1460 					max_sectors = good_sectors;
1461 			}
1462 		}
1463 		r1_bio->bios[i] = bio;
1464 	}
1465 	rcu_read_unlock();
1466 
1467 	if (unlikely(blocked_rdev)) {
1468 		/* Wait for this device to become unblocked */
1469 		int j;
1470 
1471 		for (j = 0; j < i; j++)
1472 			if (r1_bio->bios[j])
1473 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1474 		r1_bio->state = 0;
1475 		allow_barrier(conf, bio->bi_iter.bi_sector);
1476 		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1477 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1478 		wait_barrier(conf, bio->bi_iter.bi_sector);
1479 		goto retry_write;
1480 	}
1481 
1482 	if (max_sectors < bio_sectors(bio)) {
1483 		struct bio *split = bio_split(bio, max_sectors,
1484 					      GFP_NOIO, &conf->bio_split);
1485 		bio_chain(split, bio);
1486 		generic_make_request(bio);
1487 		bio = split;
1488 		r1_bio->master_bio = bio;
1489 		r1_bio->sectors = max_sectors;
1490 	}
1491 
1492 	atomic_set(&r1_bio->remaining, 1);
1493 	atomic_set(&r1_bio->behind_remaining, 0);
1494 
1495 	first_clone = 1;
1496 
1497 	for (i = 0; i < disks; i++) {
1498 		struct bio *mbio = NULL;
1499 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1500 		if (!r1_bio->bios[i])
1501 			continue;
1502 
1503 		if (first_clone) {
1504 			/* do behind I/O ?
1505 			 * Not if there are too many, or cannot
1506 			 * allocate memory, or a reader on WriteMostly
1507 			 * is waiting for behind writes to flush */
1508 			if (bitmap &&
1509 			    (atomic_read(&bitmap->behind_writes)
1510 			     < mddev->bitmap_info.max_write_behind) &&
1511 			    !waitqueue_active(&bitmap->behind_wait)) {
1512 				alloc_behind_master_bio(r1_bio, bio);
1513 			}
1514 
1515 			md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1516 					     test_bit(R1BIO_BehindIO, &r1_bio->state));
1517 			first_clone = 0;
1518 		}
1519 
1520 		if (r1_bio->behind_master_bio)
1521 			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1522 					      GFP_NOIO, &mddev->bio_set);
1523 		else
1524 			mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1525 
1526 		if (r1_bio->behind_master_bio) {
1527 			if (test_bit(CollisionCheck, &rdev->flags))
1528 				wait_for_serialization(rdev, r1_bio);
1529 			if (test_bit(WriteMostly, &rdev->flags))
1530 				atomic_inc(&r1_bio->behind_remaining);
1531 		} else if (mddev->serialize_policy)
1532 			wait_for_serialization(rdev, r1_bio);
1533 
1534 		r1_bio->bios[i] = mbio;
1535 
1536 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1537 				   conf->mirrors[i].rdev->data_offset);
1538 		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1539 		mbio->bi_end_io	= raid1_end_write_request;
1540 		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1541 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1542 		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1543 		    conf->raid_disks - mddev->degraded > 1)
1544 			mbio->bi_opf |= MD_FAILFAST;
1545 		mbio->bi_private = r1_bio;
1546 
1547 		atomic_inc(&r1_bio->remaining);
1548 
1549 		if (mddev->gendisk)
1550 			trace_block_bio_remap(mbio->bi_disk->queue,
1551 					      mbio, disk_devt(mddev->gendisk),
1552 					      r1_bio->sector);
1553 		/* flush_pending_writes() needs access to the rdev so...*/
1554 		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1555 
1556 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1557 		if (cb)
1558 			plug = container_of(cb, struct raid1_plug_cb, cb);
1559 		else
1560 			plug = NULL;
1561 		if (plug) {
1562 			bio_list_add(&plug->pending, mbio);
1563 			plug->pending_cnt++;
1564 		} else {
1565 			spin_lock_irqsave(&conf->device_lock, flags);
1566 			bio_list_add(&conf->pending_bio_list, mbio);
1567 			conf->pending_count++;
1568 			spin_unlock_irqrestore(&conf->device_lock, flags);
1569 			md_wakeup_thread(mddev->thread);
1570 		}
1571 	}
1572 
1573 	r1_bio_write_done(r1_bio);
1574 
1575 	/* In case raid1d snuck in to freeze_array */
1576 	wake_up(&conf->wait_barrier);
1577 }
1578 
1579 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1580 {
1581 	sector_t sectors;
1582 
1583 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1584 	    && md_flush_request(mddev, bio))
1585 		return true;
1586 
1587 	/*
1588 	 * There is a limit to the maximum size, but
1589 	 * the read/write handler might find a lower limit
1590 	 * due to bad blocks.  To avoid multiple splits,
1591 	 * we pass the maximum number of sectors down
1592 	 * and let the lower level perform the split.
1593 	 */
1594 	sectors = align_to_barrier_unit_end(
1595 		bio->bi_iter.bi_sector, bio_sectors(bio));
1596 
1597 	if (bio_data_dir(bio) == READ)
1598 		raid1_read_request(mddev, bio, sectors, NULL);
1599 	else {
1600 		if (!md_write_start(mddev,bio))
1601 			return false;
1602 		raid1_write_request(mddev, bio, sectors);
1603 	}
1604 	return true;
1605 }
1606 
1607 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1608 {
1609 	struct r1conf *conf = mddev->private;
1610 	int i;
1611 
1612 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1613 		   conf->raid_disks - mddev->degraded);
1614 	rcu_read_lock();
1615 	for (i = 0; i < conf->raid_disks; i++) {
1616 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1617 		seq_printf(seq, "%s",
1618 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1619 	}
1620 	rcu_read_unlock();
1621 	seq_printf(seq, "]");
1622 }
1623 
1624 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1625 {
1626 	char b[BDEVNAME_SIZE];
1627 	struct r1conf *conf = mddev->private;
1628 	unsigned long flags;
1629 
1630 	/*
1631 	 * If it is not operational, then we have already marked it as dead
1632 	 * else if it is the last working disks with "fail_last_dev == false",
1633 	 * ignore the error, let the next level up know.
1634 	 * else mark the drive as failed
1635 	 */
1636 	spin_lock_irqsave(&conf->device_lock, flags);
1637 	if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1638 	    && (conf->raid_disks - mddev->degraded) == 1) {
1639 		/*
1640 		 * Don't fail the drive, act as though we were just a
1641 		 * normal single drive.
1642 		 * However don't try a recovery from this drive as
1643 		 * it is very likely to fail.
1644 		 */
1645 		conf->recovery_disabled = mddev->recovery_disabled;
1646 		spin_unlock_irqrestore(&conf->device_lock, flags);
1647 		return;
1648 	}
1649 	set_bit(Blocked, &rdev->flags);
1650 	if (test_and_clear_bit(In_sync, &rdev->flags))
1651 		mddev->degraded++;
1652 	set_bit(Faulty, &rdev->flags);
1653 	spin_unlock_irqrestore(&conf->device_lock, flags);
1654 	/*
1655 	 * if recovery is running, make sure it aborts.
1656 	 */
1657 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1658 	set_mask_bits(&mddev->sb_flags, 0,
1659 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1660 	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1661 		"md/raid1:%s: Operation continuing on %d devices.\n",
1662 		mdname(mddev), bdevname(rdev->bdev, b),
1663 		mdname(mddev), conf->raid_disks - mddev->degraded);
1664 }
1665 
1666 static void print_conf(struct r1conf *conf)
1667 {
1668 	int i;
1669 
1670 	pr_debug("RAID1 conf printout:\n");
1671 	if (!conf) {
1672 		pr_debug("(!conf)\n");
1673 		return;
1674 	}
1675 	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1676 		 conf->raid_disks);
1677 
1678 	rcu_read_lock();
1679 	for (i = 0; i < conf->raid_disks; i++) {
1680 		char b[BDEVNAME_SIZE];
1681 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1682 		if (rdev)
1683 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1684 				 i, !test_bit(In_sync, &rdev->flags),
1685 				 !test_bit(Faulty, &rdev->flags),
1686 				 bdevname(rdev->bdev,b));
1687 	}
1688 	rcu_read_unlock();
1689 }
1690 
1691 static void close_sync(struct r1conf *conf)
1692 {
1693 	int idx;
1694 
1695 	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1696 		_wait_barrier(conf, idx);
1697 		_allow_barrier(conf, idx);
1698 	}
1699 
1700 	mempool_exit(&conf->r1buf_pool);
1701 }
1702 
1703 static int raid1_spare_active(struct mddev *mddev)
1704 {
1705 	int i;
1706 	struct r1conf *conf = mddev->private;
1707 	int count = 0;
1708 	unsigned long flags;
1709 
1710 	/*
1711 	 * Find all failed disks within the RAID1 configuration
1712 	 * and mark them readable.
1713 	 * Called under mddev lock, so rcu protection not needed.
1714 	 * device_lock used to avoid races with raid1_end_read_request
1715 	 * which expects 'In_sync' flags and ->degraded to be consistent.
1716 	 */
1717 	spin_lock_irqsave(&conf->device_lock, flags);
1718 	for (i = 0; i < conf->raid_disks; i++) {
1719 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1720 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1721 		if (repl
1722 		    && !test_bit(Candidate, &repl->flags)
1723 		    && repl->recovery_offset == MaxSector
1724 		    && !test_bit(Faulty, &repl->flags)
1725 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1726 			/* replacement has just become active */
1727 			if (!rdev ||
1728 			    !test_and_clear_bit(In_sync, &rdev->flags))
1729 				count++;
1730 			if (rdev) {
1731 				/* Replaced device not technically
1732 				 * faulty, but we need to be sure
1733 				 * it gets removed and never re-added
1734 				 */
1735 				set_bit(Faulty, &rdev->flags);
1736 				sysfs_notify_dirent_safe(
1737 					rdev->sysfs_state);
1738 			}
1739 		}
1740 		if (rdev
1741 		    && rdev->recovery_offset == MaxSector
1742 		    && !test_bit(Faulty, &rdev->flags)
1743 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1744 			count++;
1745 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1746 		}
1747 	}
1748 	mddev->degraded -= count;
1749 	spin_unlock_irqrestore(&conf->device_lock, flags);
1750 
1751 	print_conf(conf);
1752 	return count;
1753 }
1754 
1755 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1756 {
1757 	struct r1conf *conf = mddev->private;
1758 	int err = -EEXIST;
1759 	int mirror = 0;
1760 	struct raid1_info *p;
1761 	int first = 0;
1762 	int last = conf->raid_disks - 1;
1763 
1764 	if (mddev->recovery_disabled == conf->recovery_disabled)
1765 		return -EBUSY;
1766 
1767 	if (md_integrity_add_rdev(rdev, mddev))
1768 		return -ENXIO;
1769 
1770 	if (rdev->raid_disk >= 0)
1771 		first = last = rdev->raid_disk;
1772 
1773 	/*
1774 	 * find the disk ... but prefer rdev->saved_raid_disk
1775 	 * if possible.
1776 	 */
1777 	if (rdev->saved_raid_disk >= 0 &&
1778 	    rdev->saved_raid_disk >= first &&
1779 	    rdev->saved_raid_disk < conf->raid_disks &&
1780 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1781 		first = last = rdev->saved_raid_disk;
1782 
1783 	for (mirror = first; mirror <= last; mirror++) {
1784 		p = conf->mirrors + mirror;
1785 		if (!p->rdev) {
1786 			if (mddev->gendisk)
1787 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1788 						  rdev->data_offset << 9);
1789 
1790 			p->head_position = 0;
1791 			rdev->raid_disk = mirror;
1792 			err = 0;
1793 			/* As all devices are equivalent, we don't need a full recovery
1794 			 * if this was recently any drive of the array
1795 			 */
1796 			if (rdev->saved_raid_disk < 0)
1797 				conf->fullsync = 1;
1798 			rcu_assign_pointer(p->rdev, rdev);
1799 			break;
1800 		}
1801 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1802 		    p[conf->raid_disks].rdev == NULL) {
1803 			/* Add this device as a replacement */
1804 			clear_bit(In_sync, &rdev->flags);
1805 			set_bit(Replacement, &rdev->flags);
1806 			rdev->raid_disk = mirror;
1807 			err = 0;
1808 			conf->fullsync = 1;
1809 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1810 			break;
1811 		}
1812 	}
1813 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1814 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1815 	print_conf(conf);
1816 	return err;
1817 }
1818 
1819 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1820 {
1821 	struct r1conf *conf = mddev->private;
1822 	int err = 0;
1823 	int number = rdev->raid_disk;
1824 	struct raid1_info *p = conf->mirrors + number;
1825 
1826 	if (rdev != p->rdev)
1827 		p = conf->mirrors + conf->raid_disks + number;
1828 
1829 	print_conf(conf);
1830 	if (rdev == p->rdev) {
1831 		if (test_bit(In_sync, &rdev->flags) ||
1832 		    atomic_read(&rdev->nr_pending)) {
1833 			err = -EBUSY;
1834 			goto abort;
1835 		}
1836 		/* Only remove non-faulty devices if recovery
1837 		 * is not possible.
1838 		 */
1839 		if (!test_bit(Faulty, &rdev->flags) &&
1840 		    mddev->recovery_disabled != conf->recovery_disabled &&
1841 		    mddev->degraded < conf->raid_disks) {
1842 			err = -EBUSY;
1843 			goto abort;
1844 		}
1845 		p->rdev = NULL;
1846 		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1847 			synchronize_rcu();
1848 			if (atomic_read(&rdev->nr_pending)) {
1849 				/* lost the race, try later */
1850 				err = -EBUSY;
1851 				p->rdev = rdev;
1852 				goto abort;
1853 			}
1854 		}
1855 		if (conf->mirrors[conf->raid_disks + number].rdev) {
1856 			/* We just removed a device that is being replaced.
1857 			 * Move down the replacement.  We drain all IO before
1858 			 * doing this to avoid confusion.
1859 			 */
1860 			struct md_rdev *repl =
1861 				conf->mirrors[conf->raid_disks + number].rdev;
1862 			freeze_array(conf, 0);
1863 			if (atomic_read(&repl->nr_pending)) {
1864 				/* It means that some queued IO of retry_list
1865 				 * hold repl. Thus, we cannot set replacement
1866 				 * as NULL, avoiding rdev NULL pointer
1867 				 * dereference in sync_request_write and
1868 				 * handle_write_finished.
1869 				 */
1870 				err = -EBUSY;
1871 				unfreeze_array(conf);
1872 				goto abort;
1873 			}
1874 			clear_bit(Replacement, &repl->flags);
1875 			p->rdev = repl;
1876 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1877 			unfreeze_array(conf);
1878 		}
1879 
1880 		clear_bit(WantReplacement, &rdev->flags);
1881 		err = md_integrity_register(mddev);
1882 	}
1883 abort:
1884 
1885 	print_conf(conf);
1886 	return err;
1887 }
1888 
1889 static void end_sync_read(struct bio *bio)
1890 {
1891 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1892 
1893 	update_head_pos(r1_bio->read_disk, r1_bio);
1894 
1895 	/*
1896 	 * we have read a block, now it needs to be re-written,
1897 	 * or re-read if the read failed.
1898 	 * We don't do much here, just schedule handling by raid1d
1899 	 */
1900 	if (!bio->bi_status)
1901 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1902 
1903 	if (atomic_dec_and_test(&r1_bio->remaining))
1904 		reschedule_retry(r1_bio);
1905 }
1906 
1907 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1908 {
1909 	sector_t sync_blocks = 0;
1910 	sector_t s = r1_bio->sector;
1911 	long sectors_to_go = r1_bio->sectors;
1912 
1913 	/* make sure these bits don't get cleared. */
1914 	do {
1915 		md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1916 		s += sync_blocks;
1917 		sectors_to_go -= sync_blocks;
1918 	} while (sectors_to_go > 0);
1919 }
1920 
1921 static void put_sync_write_buf(struct r1bio *r1_bio, int uptodate)
1922 {
1923 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1924 		struct mddev *mddev = r1_bio->mddev;
1925 		int s = r1_bio->sectors;
1926 
1927 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1928 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1929 			reschedule_retry(r1_bio);
1930 		else {
1931 			put_buf(r1_bio);
1932 			md_done_sync(mddev, s, uptodate);
1933 		}
1934 	}
1935 }
1936 
1937 static void end_sync_write(struct bio *bio)
1938 {
1939 	int uptodate = !bio->bi_status;
1940 	struct r1bio *r1_bio = get_resync_r1bio(bio);
1941 	struct mddev *mddev = r1_bio->mddev;
1942 	struct r1conf *conf = mddev->private;
1943 	sector_t first_bad;
1944 	int bad_sectors;
1945 	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1946 
1947 	if (!uptodate) {
1948 		abort_sync_write(mddev, r1_bio);
1949 		set_bit(WriteErrorSeen, &rdev->flags);
1950 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1951 			set_bit(MD_RECOVERY_NEEDED, &
1952 				mddev->recovery);
1953 		set_bit(R1BIO_WriteError, &r1_bio->state);
1954 	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1955 			       &first_bad, &bad_sectors) &&
1956 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1957 				r1_bio->sector,
1958 				r1_bio->sectors,
1959 				&first_bad, &bad_sectors)
1960 		)
1961 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1962 
1963 	put_sync_write_buf(r1_bio, uptodate);
1964 }
1965 
1966 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1967 			    int sectors, struct page *page, int rw)
1968 {
1969 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1970 		/* success */
1971 		return 1;
1972 	if (rw == WRITE) {
1973 		set_bit(WriteErrorSeen, &rdev->flags);
1974 		if (!test_and_set_bit(WantReplacement,
1975 				      &rdev->flags))
1976 			set_bit(MD_RECOVERY_NEEDED, &
1977 				rdev->mddev->recovery);
1978 	}
1979 	/* need to record an error - either for the block or the device */
1980 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1981 		md_error(rdev->mddev, rdev);
1982 	return 0;
1983 }
1984 
1985 static int fix_sync_read_error(struct r1bio *r1_bio)
1986 {
1987 	/* Try some synchronous reads of other devices to get
1988 	 * good data, much like with normal read errors.  Only
1989 	 * read into the pages we already have so we don't
1990 	 * need to re-issue the read request.
1991 	 * We don't need to freeze the array, because being in an
1992 	 * active sync request, there is no normal IO, and
1993 	 * no overlapping syncs.
1994 	 * We don't need to check is_badblock() again as we
1995 	 * made sure that anything with a bad block in range
1996 	 * will have bi_end_io clear.
1997 	 */
1998 	struct mddev *mddev = r1_bio->mddev;
1999 	struct r1conf *conf = mddev->private;
2000 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
2001 	struct page **pages = get_resync_pages(bio)->pages;
2002 	sector_t sect = r1_bio->sector;
2003 	int sectors = r1_bio->sectors;
2004 	int idx = 0;
2005 	struct md_rdev *rdev;
2006 
2007 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2008 	if (test_bit(FailFast, &rdev->flags)) {
2009 		/* Don't try recovering from here - just fail it
2010 		 * ... unless it is the last working device of course */
2011 		md_error(mddev, rdev);
2012 		if (test_bit(Faulty, &rdev->flags))
2013 			/* Don't try to read from here, but make sure
2014 			 * put_buf does it's thing
2015 			 */
2016 			bio->bi_end_io = end_sync_write;
2017 	}
2018 
2019 	while(sectors) {
2020 		int s = sectors;
2021 		int d = r1_bio->read_disk;
2022 		int success = 0;
2023 		int start;
2024 
2025 		if (s > (PAGE_SIZE>>9))
2026 			s = PAGE_SIZE >> 9;
2027 		do {
2028 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
2029 				/* No rcu protection needed here devices
2030 				 * can only be removed when no resync is
2031 				 * active, and resync is currently active
2032 				 */
2033 				rdev = conf->mirrors[d].rdev;
2034 				if (sync_page_io(rdev, sect, s<<9,
2035 						 pages[idx],
2036 						 REQ_OP_READ, 0, false)) {
2037 					success = 1;
2038 					break;
2039 				}
2040 			}
2041 			d++;
2042 			if (d == conf->raid_disks * 2)
2043 				d = 0;
2044 		} while (!success && d != r1_bio->read_disk);
2045 
2046 		if (!success) {
2047 			char b[BDEVNAME_SIZE];
2048 			int abort = 0;
2049 			/* Cannot read from anywhere, this block is lost.
2050 			 * Record a bad block on each device.  If that doesn't
2051 			 * work just disable and interrupt the recovery.
2052 			 * Don't fail devices as that won't really help.
2053 			 */
2054 			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2055 					    mdname(mddev), bio_devname(bio, b),
2056 					    (unsigned long long)r1_bio->sector);
2057 			for (d = 0; d < conf->raid_disks * 2; d++) {
2058 				rdev = conf->mirrors[d].rdev;
2059 				if (!rdev || test_bit(Faulty, &rdev->flags))
2060 					continue;
2061 				if (!rdev_set_badblocks(rdev, sect, s, 0))
2062 					abort = 1;
2063 			}
2064 			if (abort) {
2065 				conf->recovery_disabled =
2066 					mddev->recovery_disabled;
2067 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2068 				md_done_sync(mddev, r1_bio->sectors, 0);
2069 				put_buf(r1_bio);
2070 				return 0;
2071 			}
2072 			/* Try next page */
2073 			sectors -= s;
2074 			sect += s;
2075 			idx++;
2076 			continue;
2077 		}
2078 
2079 		start = d;
2080 		/* write it back and re-read */
2081 		while (d != r1_bio->read_disk) {
2082 			if (d == 0)
2083 				d = conf->raid_disks * 2;
2084 			d--;
2085 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2086 				continue;
2087 			rdev = conf->mirrors[d].rdev;
2088 			if (r1_sync_page_io(rdev, sect, s,
2089 					    pages[idx],
2090 					    WRITE) == 0) {
2091 				r1_bio->bios[d]->bi_end_io = NULL;
2092 				rdev_dec_pending(rdev, mddev);
2093 			}
2094 		}
2095 		d = start;
2096 		while (d != r1_bio->read_disk) {
2097 			if (d == 0)
2098 				d = conf->raid_disks * 2;
2099 			d--;
2100 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2101 				continue;
2102 			rdev = conf->mirrors[d].rdev;
2103 			if (r1_sync_page_io(rdev, sect, s,
2104 					    pages[idx],
2105 					    READ) != 0)
2106 				atomic_add(s, &rdev->corrected_errors);
2107 		}
2108 		sectors -= s;
2109 		sect += s;
2110 		idx ++;
2111 	}
2112 	set_bit(R1BIO_Uptodate, &r1_bio->state);
2113 	bio->bi_status = 0;
2114 	return 1;
2115 }
2116 
2117 static void process_checks(struct r1bio *r1_bio)
2118 {
2119 	/* We have read all readable devices.  If we haven't
2120 	 * got the block, then there is no hope left.
2121 	 * If we have, then we want to do a comparison
2122 	 * and skip the write if everything is the same.
2123 	 * If any blocks failed to read, then we need to
2124 	 * attempt an over-write
2125 	 */
2126 	struct mddev *mddev = r1_bio->mddev;
2127 	struct r1conf *conf = mddev->private;
2128 	int primary;
2129 	int i;
2130 	int vcnt;
2131 
2132 	/* Fix variable parts of all bios */
2133 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2134 	for (i = 0; i < conf->raid_disks * 2; i++) {
2135 		blk_status_t status;
2136 		struct bio *b = r1_bio->bios[i];
2137 		struct resync_pages *rp = get_resync_pages(b);
2138 		if (b->bi_end_io != end_sync_read)
2139 			continue;
2140 		/* fixup the bio for reuse, but preserve errno */
2141 		status = b->bi_status;
2142 		bio_reset(b);
2143 		b->bi_status = status;
2144 		b->bi_iter.bi_sector = r1_bio->sector +
2145 			conf->mirrors[i].rdev->data_offset;
2146 		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2147 		b->bi_end_io = end_sync_read;
2148 		rp->raid_bio = r1_bio;
2149 		b->bi_private = rp;
2150 
2151 		/* initialize bvec table again */
2152 		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2153 	}
2154 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2155 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2156 		    !r1_bio->bios[primary]->bi_status) {
2157 			r1_bio->bios[primary]->bi_end_io = NULL;
2158 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2159 			break;
2160 		}
2161 	r1_bio->read_disk = primary;
2162 	for (i = 0; i < conf->raid_disks * 2; i++) {
2163 		int j = 0;
2164 		struct bio *pbio = r1_bio->bios[primary];
2165 		struct bio *sbio = r1_bio->bios[i];
2166 		blk_status_t status = sbio->bi_status;
2167 		struct page **ppages = get_resync_pages(pbio)->pages;
2168 		struct page **spages = get_resync_pages(sbio)->pages;
2169 		struct bio_vec *bi;
2170 		int page_len[RESYNC_PAGES] = { 0 };
2171 		struct bvec_iter_all iter_all;
2172 
2173 		if (sbio->bi_end_io != end_sync_read)
2174 			continue;
2175 		/* Now we can 'fixup' the error value */
2176 		sbio->bi_status = 0;
2177 
2178 		bio_for_each_segment_all(bi, sbio, iter_all)
2179 			page_len[j++] = bi->bv_len;
2180 
2181 		if (!status) {
2182 			for (j = vcnt; j-- ; ) {
2183 				if (memcmp(page_address(ppages[j]),
2184 					   page_address(spages[j]),
2185 					   page_len[j]))
2186 					break;
2187 			}
2188 		} else
2189 			j = 0;
2190 		if (j >= 0)
2191 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2192 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2193 			      && !status)) {
2194 			/* No need to write to this device. */
2195 			sbio->bi_end_io = NULL;
2196 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2197 			continue;
2198 		}
2199 
2200 		bio_copy_data(sbio, pbio);
2201 	}
2202 }
2203 
2204 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2205 {
2206 	struct r1conf *conf = mddev->private;
2207 	int i;
2208 	int disks = conf->raid_disks * 2;
2209 	struct bio *wbio;
2210 
2211 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2212 		/* ouch - failed to read all of that. */
2213 		if (!fix_sync_read_error(r1_bio))
2214 			return;
2215 
2216 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2217 		process_checks(r1_bio);
2218 
2219 	/*
2220 	 * schedule writes
2221 	 */
2222 	atomic_set(&r1_bio->remaining, 1);
2223 	for (i = 0; i < disks ; i++) {
2224 		wbio = r1_bio->bios[i];
2225 		if (wbio->bi_end_io == NULL ||
2226 		    (wbio->bi_end_io == end_sync_read &&
2227 		     (i == r1_bio->read_disk ||
2228 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2229 			continue;
2230 		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2231 			abort_sync_write(mddev, r1_bio);
2232 			continue;
2233 		}
2234 
2235 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2236 		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2237 			wbio->bi_opf |= MD_FAILFAST;
2238 
2239 		wbio->bi_end_io = end_sync_write;
2240 		atomic_inc(&r1_bio->remaining);
2241 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2242 
2243 		generic_make_request(wbio);
2244 	}
2245 
2246 	put_sync_write_buf(r1_bio, 1);
2247 }
2248 
2249 /*
2250  * This is a kernel thread which:
2251  *
2252  *	1.	Retries failed read operations on working mirrors.
2253  *	2.	Updates the raid superblock when problems encounter.
2254  *	3.	Performs writes following reads for array synchronising.
2255  */
2256 
2257 static void fix_read_error(struct r1conf *conf, int read_disk,
2258 			   sector_t sect, int sectors)
2259 {
2260 	struct mddev *mddev = conf->mddev;
2261 	while(sectors) {
2262 		int s = sectors;
2263 		int d = read_disk;
2264 		int success = 0;
2265 		int start;
2266 		struct md_rdev *rdev;
2267 
2268 		if (s > (PAGE_SIZE>>9))
2269 			s = PAGE_SIZE >> 9;
2270 
2271 		do {
2272 			sector_t first_bad;
2273 			int bad_sectors;
2274 
2275 			rcu_read_lock();
2276 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2277 			if (rdev &&
2278 			    (test_bit(In_sync, &rdev->flags) ||
2279 			     (!test_bit(Faulty, &rdev->flags) &&
2280 			      rdev->recovery_offset >= sect + s)) &&
2281 			    is_badblock(rdev, sect, s,
2282 					&first_bad, &bad_sectors) == 0) {
2283 				atomic_inc(&rdev->nr_pending);
2284 				rcu_read_unlock();
2285 				if (sync_page_io(rdev, sect, s<<9,
2286 					 conf->tmppage, REQ_OP_READ, 0, false))
2287 					success = 1;
2288 				rdev_dec_pending(rdev, mddev);
2289 				if (success)
2290 					break;
2291 			} else
2292 				rcu_read_unlock();
2293 			d++;
2294 			if (d == conf->raid_disks * 2)
2295 				d = 0;
2296 		} while (!success && d != read_disk);
2297 
2298 		if (!success) {
2299 			/* Cannot read from anywhere - mark it bad */
2300 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2301 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2302 				md_error(mddev, rdev);
2303 			break;
2304 		}
2305 		/* write it back and re-read */
2306 		start = d;
2307 		while (d != read_disk) {
2308 			if (d==0)
2309 				d = conf->raid_disks * 2;
2310 			d--;
2311 			rcu_read_lock();
2312 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2313 			if (rdev &&
2314 			    !test_bit(Faulty, &rdev->flags)) {
2315 				atomic_inc(&rdev->nr_pending);
2316 				rcu_read_unlock();
2317 				r1_sync_page_io(rdev, sect, s,
2318 						conf->tmppage, WRITE);
2319 				rdev_dec_pending(rdev, mddev);
2320 			} else
2321 				rcu_read_unlock();
2322 		}
2323 		d = start;
2324 		while (d != read_disk) {
2325 			char b[BDEVNAME_SIZE];
2326 			if (d==0)
2327 				d = conf->raid_disks * 2;
2328 			d--;
2329 			rcu_read_lock();
2330 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2331 			if (rdev &&
2332 			    !test_bit(Faulty, &rdev->flags)) {
2333 				atomic_inc(&rdev->nr_pending);
2334 				rcu_read_unlock();
2335 				if (r1_sync_page_io(rdev, sect, s,
2336 						    conf->tmppage, READ)) {
2337 					atomic_add(s, &rdev->corrected_errors);
2338 					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2339 						mdname(mddev), s,
2340 						(unsigned long long)(sect +
2341 								     rdev->data_offset),
2342 						bdevname(rdev->bdev, b));
2343 				}
2344 				rdev_dec_pending(rdev, mddev);
2345 			} else
2346 				rcu_read_unlock();
2347 		}
2348 		sectors -= s;
2349 		sect += s;
2350 	}
2351 }
2352 
2353 static int narrow_write_error(struct r1bio *r1_bio, int i)
2354 {
2355 	struct mddev *mddev = r1_bio->mddev;
2356 	struct r1conf *conf = mddev->private;
2357 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2358 
2359 	/* bio has the data to be written to device 'i' where
2360 	 * we just recently had a write error.
2361 	 * We repeatedly clone the bio and trim down to one block,
2362 	 * then try the write.  Where the write fails we record
2363 	 * a bad block.
2364 	 * It is conceivable that the bio doesn't exactly align with
2365 	 * blocks.  We must handle this somehow.
2366 	 *
2367 	 * We currently own a reference on the rdev.
2368 	 */
2369 
2370 	int block_sectors;
2371 	sector_t sector;
2372 	int sectors;
2373 	int sect_to_write = r1_bio->sectors;
2374 	int ok = 1;
2375 
2376 	if (rdev->badblocks.shift < 0)
2377 		return 0;
2378 
2379 	block_sectors = roundup(1 << rdev->badblocks.shift,
2380 				bdev_logical_block_size(rdev->bdev) >> 9);
2381 	sector = r1_bio->sector;
2382 	sectors = ((sector + block_sectors)
2383 		   & ~(sector_t)(block_sectors - 1))
2384 		- sector;
2385 
2386 	while (sect_to_write) {
2387 		struct bio *wbio;
2388 		if (sectors > sect_to_write)
2389 			sectors = sect_to_write;
2390 		/* Write at 'sector' for 'sectors'*/
2391 
2392 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2393 			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2394 					      GFP_NOIO,
2395 					      &mddev->bio_set);
2396 		} else {
2397 			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2398 					      &mddev->bio_set);
2399 		}
2400 
2401 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2402 		wbio->bi_iter.bi_sector = r1_bio->sector;
2403 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2404 
2405 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2406 		wbio->bi_iter.bi_sector += rdev->data_offset;
2407 		bio_set_dev(wbio, rdev->bdev);
2408 
2409 		if (submit_bio_wait(wbio) < 0)
2410 			/* failure! */
2411 			ok = rdev_set_badblocks(rdev, sector,
2412 						sectors, 0)
2413 				&& ok;
2414 
2415 		bio_put(wbio);
2416 		sect_to_write -= sectors;
2417 		sector += sectors;
2418 		sectors = block_sectors;
2419 	}
2420 	return ok;
2421 }
2422 
2423 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2424 {
2425 	int m;
2426 	int s = r1_bio->sectors;
2427 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2428 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2429 		struct bio *bio = r1_bio->bios[m];
2430 		if (bio->bi_end_io == NULL)
2431 			continue;
2432 		if (!bio->bi_status &&
2433 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2434 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2435 		}
2436 		if (bio->bi_status &&
2437 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2438 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2439 				md_error(conf->mddev, rdev);
2440 		}
2441 	}
2442 	put_buf(r1_bio);
2443 	md_done_sync(conf->mddev, s, 1);
2444 }
2445 
2446 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2447 {
2448 	int m, idx;
2449 	bool fail = false;
2450 
2451 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2452 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2453 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2454 			rdev_clear_badblocks(rdev,
2455 					     r1_bio->sector,
2456 					     r1_bio->sectors, 0);
2457 			rdev_dec_pending(rdev, conf->mddev);
2458 		} else if (r1_bio->bios[m] != NULL) {
2459 			/* This drive got a write error.  We need to
2460 			 * narrow down and record precise write
2461 			 * errors.
2462 			 */
2463 			fail = true;
2464 			if (!narrow_write_error(r1_bio, m)) {
2465 				md_error(conf->mddev,
2466 					 conf->mirrors[m].rdev);
2467 				/* an I/O failed, we can't clear the bitmap */
2468 				set_bit(R1BIO_Degraded, &r1_bio->state);
2469 			}
2470 			rdev_dec_pending(conf->mirrors[m].rdev,
2471 					 conf->mddev);
2472 		}
2473 	if (fail) {
2474 		spin_lock_irq(&conf->device_lock);
2475 		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2476 		idx = sector_to_idx(r1_bio->sector);
2477 		atomic_inc(&conf->nr_queued[idx]);
2478 		spin_unlock_irq(&conf->device_lock);
2479 		/*
2480 		 * In case freeze_array() is waiting for condition
2481 		 * get_unqueued_pending() == extra to be true.
2482 		 */
2483 		wake_up(&conf->wait_barrier);
2484 		md_wakeup_thread(conf->mddev->thread);
2485 	} else {
2486 		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2487 			close_write(r1_bio);
2488 		raid_end_bio_io(r1_bio);
2489 	}
2490 }
2491 
2492 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2493 {
2494 	struct mddev *mddev = conf->mddev;
2495 	struct bio *bio;
2496 	struct md_rdev *rdev;
2497 
2498 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2499 	/* we got a read error. Maybe the drive is bad.  Maybe just
2500 	 * the block and we can fix it.
2501 	 * We freeze all other IO, and try reading the block from
2502 	 * other devices.  When we find one, we re-write
2503 	 * and check it that fixes the read error.
2504 	 * This is all done synchronously while the array is
2505 	 * frozen
2506 	 */
2507 
2508 	bio = r1_bio->bios[r1_bio->read_disk];
2509 	bio_put(bio);
2510 	r1_bio->bios[r1_bio->read_disk] = NULL;
2511 
2512 	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2513 	if (mddev->ro == 0
2514 	    && !test_bit(FailFast, &rdev->flags)) {
2515 		freeze_array(conf, 1);
2516 		fix_read_error(conf, r1_bio->read_disk,
2517 			       r1_bio->sector, r1_bio->sectors);
2518 		unfreeze_array(conf);
2519 	} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2520 		md_error(mddev, rdev);
2521 	} else {
2522 		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2523 	}
2524 
2525 	rdev_dec_pending(rdev, conf->mddev);
2526 	allow_barrier(conf, r1_bio->sector);
2527 	bio = r1_bio->master_bio;
2528 
2529 	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2530 	r1_bio->state = 0;
2531 	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2532 }
2533 
2534 static void raid1d(struct md_thread *thread)
2535 {
2536 	struct mddev *mddev = thread->mddev;
2537 	struct r1bio *r1_bio;
2538 	unsigned long flags;
2539 	struct r1conf *conf = mddev->private;
2540 	struct list_head *head = &conf->retry_list;
2541 	struct blk_plug plug;
2542 	int idx;
2543 
2544 	md_check_recovery(mddev);
2545 
2546 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2547 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2548 		LIST_HEAD(tmp);
2549 		spin_lock_irqsave(&conf->device_lock, flags);
2550 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2551 			list_splice_init(&conf->bio_end_io_list, &tmp);
2552 		spin_unlock_irqrestore(&conf->device_lock, flags);
2553 		while (!list_empty(&tmp)) {
2554 			r1_bio = list_first_entry(&tmp, struct r1bio,
2555 						  retry_list);
2556 			list_del(&r1_bio->retry_list);
2557 			idx = sector_to_idx(r1_bio->sector);
2558 			atomic_dec(&conf->nr_queued[idx]);
2559 			if (mddev->degraded)
2560 				set_bit(R1BIO_Degraded, &r1_bio->state);
2561 			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2562 				close_write(r1_bio);
2563 			raid_end_bio_io(r1_bio);
2564 		}
2565 	}
2566 
2567 	blk_start_plug(&plug);
2568 	for (;;) {
2569 
2570 		flush_pending_writes(conf);
2571 
2572 		spin_lock_irqsave(&conf->device_lock, flags);
2573 		if (list_empty(head)) {
2574 			spin_unlock_irqrestore(&conf->device_lock, flags);
2575 			break;
2576 		}
2577 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2578 		list_del(head->prev);
2579 		idx = sector_to_idx(r1_bio->sector);
2580 		atomic_dec(&conf->nr_queued[idx]);
2581 		spin_unlock_irqrestore(&conf->device_lock, flags);
2582 
2583 		mddev = r1_bio->mddev;
2584 		conf = mddev->private;
2585 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2586 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2587 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2588 				handle_sync_write_finished(conf, r1_bio);
2589 			else
2590 				sync_request_write(mddev, r1_bio);
2591 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2592 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2593 			handle_write_finished(conf, r1_bio);
2594 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2595 			handle_read_error(conf, r1_bio);
2596 		else
2597 			WARN_ON_ONCE(1);
2598 
2599 		cond_resched();
2600 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2601 			md_check_recovery(mddev);
2602 	}
2603 	blk_finish_plug(&plug);
2604 }
2605 
2606 static int init_resync(struct r1conf *conf)
2607 {
2608 	int buffs;
2609 
2610 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2611 	BUG_ON(mempool_initialized(&conf->r1buf_pool));
2612 
2613 	return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2614 			    r1buf_pool_free, conf->poolinfo);
2615 }
2616 
2617 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2618 {
2619 	struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2620 	struct resync_pages *rps;
2621 	struct bio *bio;
2622 	int i;
2623 
2624 	for (i = conf->poolinfo->raid_disks; i--; ) {
2625 		bio = r1bio->bios[i];
2626 		rps = bio->bi_private;
2627 		bio_reset(bio);
2628 		bio->bi_private = rps;
2629 	}
2630 	r1bio->master_bio = NULL;
2631 	return r1bio;
2632 }
2633 
2634 /*
2635  * perform a "sync" on one "block"
2636  *
2637  * We need to make sure that no normal I/O request - particularly write
2638  * requests - conflict with active sync requests.
2639  *
2640  * This is achieved by tracking pending requests and a 'barrier' concept
2641  * that can be installed to exclude normal IO requests.
2642  */
2643 
2644 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2645 				   int *skipped)
2646 {
2647 	struct r1conf *conf = mddev->private;
2648 	struct r1bio *r1_bio;
2649 	struct bio *bio;
2650 	sector_t max_sector, nr_sectors;
2651 	int disk = -1;
2652 	int i;
2653 	int wonly = -1;
2654 	int write_targets = 0, read_targets = 0;
2655 	sector_t sync_blocks;
2656 	int still_degraded = 0;
2657 	int good_sectors = RESYNC_SECTORS;
2658 	int min_bad = 0; /* number of sectors that are bad in all devices */
2659 	int idx = sector_to_idx(sector_nr);
2660 	int page_idx = 0;
2661 
2662 	if (!mempool_initialized(&conf->r1buf_pool))
2663 		if (init_resync(conf))
2664 			return 0;
2665 
2666 	max_sector = mddev->dev_sectors;
2667 	if (sector_nr >= max_sector) {
2668 		/* If we aborted, we need to abort the
2669 		 * sync on the 'current' bitmap chunk (there will
2670 		 * only be one in raid1 resync.
2671 		 * We can find the current addess in mddev->curr_resync
2672 		 */
2673 		if (mddev->curr_resync < max_sector) /* aborted */
2674 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2675 					   &sync_blocks, 1);
2676 		else /* completed sync */
2677 			conf->fullsync = 0;
2678 
2679 		md_bitmap_close_sync(mddev->bitmap);
2680 		close_sync(conf);
2681 
2682 		if (mddev_is_clustered(mddev)) {
2683 			conf->cluster_sync_low = 0;
2684 			conf->cluster_sync_high = 0;
2685 		}
2686 		return 0;
2687 	}
2688 
2689 	if (mddev->bitmap == NULL &&
2690 	    mddev->recovery_cp == MaxSector &&
2691 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2692 	    conf->fullsync == 0) {
2693 		*skipped = 1;
2694 		return max_sector - sector_nr;
2695 	}
2696 	/* before building a request, check if we can skip these blocks..
2697 	 * This call the bitmap_start_sync doesn't actually record anything
2698 	 */
2699 	if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2700 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2701 		/* We can skip this block, and probably several more */
2702 		*skipped = 1;
2703 		return sync_blocks;
2704 	}
2705 
2706 	/*
2707 	 * If there is non-resync activity waiting for a turn, then let it
2708 	 * though before starting on this new sync request.
2709 	 */
2710 	if (atomic_read(&conf->nr_waiting[idx]))
2711 		schedule_timeout_uninterruptible(1);
2712 
2713 	/* we are incrementing sector_nr below. To be safe, we check against
2714 	 * sector_nr + two times RESYNC_SECTORS
2715 	 */
2716 
2717 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2718 		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2719 
2720 
2721 	if (raise_barrier(conf, sector_nr))
2722 		return 0;
2723 
2724 	r1_bio = raid1_alloc_init_r1buf(conf);
2725 
2726 	rcu_read_lock();
2727 	/*
2728 	 * If we get a correctably read error during resync or recovery,
2729 	 * we might want to read from a different device.  So we
2730 	 * flag all drives that could conceivably be read from for READ,
2731 	 * and any others (which will be non-In_sync devices) for WRITE.
2732 	 * If a read fails, we try reading from something else for which READ
2733 	 * is OK.
2734 	 */
2735 
2736 	r1_bio->mddev = mddev;
2737 	r1_bio->sector = sector_nr;
2738 	r1_bio->state = 0;
2739 	set_bit(R1BIO_IsSync, &r1_bio->state);
2740 	/* make sure good_sectors won't go across barrier unit boundary */
2741 	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2742 
2743 	for (i = 0; i < conf->raid_disks * 2; i++) {
2744 		struct md_rdev *rdev;
2745 		bio = r1_bio->bios[i];
2746 
2747 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2748 		if (rdev == NULL ||
2749 		    test_bit(Faulty, &rdev->flags)) {
2750 			if (i < conf->raid_disks)
2751 				still_degraded = 1;
2752 		} else if (!test_bit(In_sync, &rdev->flags)) {
2753 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2754 			bio->bi_end_io = end_sync_write;
2755 			write_targets ++;
2756 		} else {
2757 			/* may need to read from here */
2758 			sector_t first_bad = MaxSector;
2759 			int bad_sectors;
2760 
2761 			if (is_badblock(rdev, sector_nr, good_sectors,
2762 					&first_bad, &bad_sectors)) {
2763 				if (first_bad > sector_nr)
2764 					good_sectors = first_bad - sector_nr;
2765 				else {
2766 					bad_sectors -= (sector_nr - first_bad);
2767 					if (min_bad == 0 ||
2768 					    min_bad > bad_sectors)
2769 						min_bad = bad_sectors;
2770 				}
2771 			}
2772 			if (sector_nr < first_bad) {
2773 				if (test_bit(WriteMostly, &rdev->flags)) {
2774 					if (wonly < 0)
2775 						wonly = i;
2776 				} else {
2777 					if (disk < 0)
2778 						disk = i;
2779 				}
2780 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2781 				bio->bi_end_io = end_sync_read;
2782 				read_targets++;
2783 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2784 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2785 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2786 				/*
2787 				 * The device is suitable for reading (InSync),
2788 				 * but has bad block(s) here. Let's try to correct them,
2789 				 * if we are doing resync or repair. Otherwise, leave
2790 				 * this device alone for this sync request.
2791 				 */
2792 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2793 				bio->bi_end_io = end_sync_write;
2794 				write_targets++;
2795 			}
2796 		}
2797 		if (rdev && bio->bi_end_io) {
2798 			atomic_inc(&rdev->nr_pending);
2799 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2800 			bio_set_dev(bio, rdev->bdev);
2801 			if (test_bit(FailFast, &rdev->flags))
2802 				bio->bi_opf |= MD_FAILFAST;
2803 		}
2804 	}
2805 	rcu_read_unlock();
2806 	if (disk < 0)
2807 		disk = wonly;
2808 	r1_bio->read_disk = disk;
2809 
2810 	if (read_targets == 0 && min_bad > 0) {
2811 		/* These sectors are bad on all InSync devices, so we
2812 		 * need to mark them bad on all write targets
2813 		 */
2814 		int ok = 1;
2815 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2816 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2817 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2818 				ok = rdev_set_badblocks(rdev, sector_nr,
2819 							min_bad, 0
2820 					) && ok;
2821 			}
2822 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2823 		*skipped = 1;
2824 		put_buf(r1_bio);
2825 
2826 		if (!ok) {
2827 			/* Cannot record the badblocks, so need to
2828 			 * abort the resync.
2829 			 * If there are multiple read targets, could just
2830 			 * fail the really bad ones ???
2831 			 */
2832 			conf->recovery_disabled = mddev->recovery_disabled;
2833 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2834 			return 0;
2835 		} else
2836 			return min_bad;
2837 
2838 	}
2839 	if (min_bad > 0 && min_bad < good_sectors) {
2840 		/* only resync enough to reach the next bad->good
2841 		 * transition */
2842 		good_sectors = min_bad;
2843 	}
2844 
2845 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2846 		/* extra read targets are also write targets */
2847 		write_targets += read_targets-1;
2848 
2849 	if (write_targets == 0 || read_targets == 0) {
2850 		/* There is nowhere to write, so all non-sync
2851 		 * drives must be failed - so we are finished
2852 		 */
2853 		sector_t rv;
2854 		if (min_bad > 0)
2855 			max_sector = sector_nr + min_bad;
2856 		rv = max_sector - sector_nr;
2857 		*skipped = 1;
2858 		put_buf(r1_bio);
2859 		return rv;
2860 	}
2861 
2862 	if (max_sector > mddev->resync_max)
2863 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2864 	if (max_sector > sector_nr + good_sectors)
2865 		max_sector = sector_nr + good_sectors;
2866 	nr_sectors = 0;
2867 	sync_blocks = 0;
2868 	do {
2869 		struct page *page;
2870 		int len = PAGE_SIZE;
2871 		if (sector_nr + (len>>9) > max_sector)
2872 			len = (max_sector - sector_nr) << 9;
2873 		if (len == 0)
2874 			break;
2875 		if (sync_blocks == 0) {
2876 			if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2877 						  &sync_blocks, still_degraded) &&
2878 			    !conf->fullsync &&
2879 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2880 				break;
2881 			if ((len >> 9) > sync_blocks)
2882 				len = sync_blocks<<9;
2883 		}
2884 
2885 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2886 			struct resync_pages *rp;
2887 
2888 			bio = r1_bio->bios[i];
2889 			rp = get_resync_pages(bio);
2890 			if (bio->bi_end_io) {
2891 				page = resync_fetch_page(rp, page_idx);
2892 
2893 				/*
2894 				 * won't fail because the vec table is big
2895 				 * enough to hold all these pages
2896 				 */
2897 				bio_add_page(bio, page, len, 0);
2898 			}
2899 		}
2900 		nr_sectors += len>>9;
2901 		sector_nr += len>>9;
2902 		sync_blocks -= (len>>9);
2903 	} while (++page_idx < RESYNC_PAGES);
2904 
2905 	r1_bio->sectors = nr_sectors;
2906 
2907 	if (mddev_is_clustered(mddev) &&
2908 			conf->cluster_sync_high < sector_nr + nr_sectors) {
2909 		conf->cluster_sync_low = mddev->curr_resync_completed;
2910 		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2911 		/* Send resync message */
2912 		md_cluster_ops->resync_info_update(mddev,
2913 				conf->cluster_sync_low,
2914 				conf->cluster_sync_high);
2915 	}
2916 
2917 	/* For a user-requested sync, we read all readable devices and do a
2918 	 * compare
2919 	 */
2920 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2921 		atomic_set(&r1_bio->remaining, read_targets);
2922 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2923 			bio = r1_bio->bios[i];
2924 			if (bio->bi_end_io == end_sync_read) {
2925 				read_targets--;
2926 				md_sync_acct_bio(bio, nr_sectors);
2927 				if (read_targets == 1)
2928 					bio->bi_opf &= ~MD_FAILFAST;
2929 				generic_make_request(bio);
2930 			}
2931 		}
2932 	} else {
2933 		atomic_set(&r1_bio->remaining, 1);
2934 		bio = r1_bio->bios[r1_bio->read_disk];
2935 		md_sync_acct_bio(bio, nr_sectors);
2936 		if (read_targets == 1)
2937 			bio->bi_opf &= ~MD_FAILFAST;
2938 		generic_make_request(bio);
2939 	}
2940 	return nr_sectors;
2941 }
2942 
2943 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2944 {
2945 	if (sectors)
2946 		return sectors;
2947 
2948 	return mddev->dev_sectors;
2949 }
2950 
2951 static struct r1conf *setup_conf(struct mddev *mddev)
2952 {
2953 	struct r1conf *conf;
2954 	int i;
2955 	struct raid1_info *disk;
2956 	struct md_rdev *rdev;
2957 	int err = -ENOMEM;
2958 
2959 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2960 	if (!conf)
2961 		goto abort;
2962 
2963 	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2964 				   sizeof(atomic_t), GFP_KERNEL);
2965 	if (!conf->nr_pending)
2966 		goto abort;
2967 
2968 	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2969 				   sizeof(atomic_t), GFP_KERNEL);
2970 	if (!conf->nr_waiting)
2971 		goto abort;
2972 
2973 	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2974 				  sizeof(atomic_t), GFP_KERNEL);
2975 	if (!conf->nr_queued)
2976 		goto abort;
2977 
2978 	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2979 				sizeof(atomic_t), GFP_KERNEL);
2980 	if (!conf->barrier)
2981 		goto abort;
2982 
2983 	conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2984 					    mddev->raid_disks, 2),
2985 				GFP_KERNEL);
2986 	if (!conf->mirrors)
2987 		goto abort;
2988 
2989 	conf->tmppage = alloc_page(GFP_KERNEL);
2990 	if (!conf->tmppage)
2991 		goto abort;
2992 
2993 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2994 	if (!conf->poolinfo)
2995 		goto abort;
2996 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2997 	err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2998 			   rbio_pool_free, conf->poolinfo);
2999 	if (err)
3000 		goto abort;
3001 
3002 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3003 	if (err)
3004 		goto abort;
3005 
3006 	conf->poolinfo->mddev = mddev;
3007 
3008 	err = -EINVAL;
3009 	spin_lock_init(&conf->device_lock);
3010 	rdev_for_each(rdev, mddev) {
3011 		int disk_idx = rdev->raid_disk;
3012 		if (disk_idx >= mddev->raid_disks
3013 		    || disk_idx < 0)
3014 			continue;
3015 		if (test_bit(Replacement, &rdev->flags))
3016 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
3017 		else
3018 			disk = conf->mirrors + disk_idx;
3019 
3020 		if (disk->rdev)
3021 			goto abort;
3022 		disk->rdev = rdev;
3023 		disk->head_position = 0;
3024 		disk->seq_start = MaxSector;
3025 	}
3026 	conf->raid_disks = mddev->raid_disks;
3027 	conf->mddev = mddev;
3028 	INIT_LIST_HEAD(&conf->retry_list);
3029 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3030 
3031 	spin_lock_init(&conf->resync_lock);
3032 	init_waitqueue_head(&conf->wait_barrier);
3033 
3034 	bio_list_init(&conf->pending_bio_list);
3035 	conf->pending_count = 0;
3036 	conf->recovery_disabled = mddev->recovery_disabled - 1;
3037 
3038 	err = -EIO;
3039 	for (i = 0; i < conf->raid_disks * 2; i++) {
3040 
3041 		disk = conf->mirrors + i;
3042 
3043 		if (i < conf->raid_disks &&
3044 		    disk[conf->raid_disks].rdev) {
3045 			/* This slot has a replacement. */
3046 			if (!disk->rdev) {
3047 				/* No original, just make the replacement
3048 				 * a recovering spare
3049 				 */
3050 				disk->rdev =
3051 					disk[conf->raid_disks].rdev;
3052 				disk[conf->raid_disks].rdev = NULL;
3053 			} else if (!test_bit(In_sync, &disk->rdev->flags))
3054 				/* Original is not in_sync - bad */
3055 				goto abort;
3056 		}
3057 
3058 		if (!disk->rdev ||
3059 		    !test_bit(In_sync, &disk->rdev->flags)) {
3060 			disk->head_position = 0;
3061 			if (disk->rdev &&
3062 			    (disk->rdev->saved_raid_disk < 0))
3063 				conf->fullsync = 1;
3064 		}
3065 	}
3066 
3067 	err = -ENOMEM;
3068 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3069 	if (!conf->thread)
3070 		goto abort;
3071 
3072 	return conf;
3073 
3074  abort:
3075 	if (conf) {
3076 		mempool_exit(&conf->r1bio_pool);
3077 		kfree(conf->mirrors);
3078 		safe_put_page(conf->tmppage);
3079 		kfree(conf->poolinfo);
3080 		kfree(conf->nr_pending);
3081 		kfree(conf->nr_waiting);
3082 		kfree(conf->nr_queued);
3083 		kfree(conf->barrier);
3084 		bioset_exit(&conf->bio_split);
3085 		kfree(conf);
3086 	}
3087 	return ERR_PTR(err);
3088 }
3089 
3090 static void raid1_free(struct mddev *mddev, void *priv);
3091 static int raid1_run(struct mddev *mddev)
3092 {
3093 	struct r1conf *conf;
3094 	int i;
3095 	struct md_rdev *rdev;
3096 	int ret;
3097 	bool discard_supported = false;
3098 
3099 	if (mddev->level != 1) {
3100 		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3101 			mdname(mddev), mddev->level);
3102 		return -EIO;
3103 	}
3104 	if (mddev->reshape_position != MaxSector) {
3105 		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3106 			mdname(mddev));
3107 		return -EIO;
3108 	}
3109 	if (mddev_init_writes_pending(mddev) < 0)
3110 		return -ENOMEM;
3111 	/*
3112 	 * copy the already verified devices into our private RAID1
3113 	 * bookkeeping area. [whatever we allocate in run(),
3114 	 * should be freed in raid1_free()]
3115 	 */
3116 	if (mddev->private == NULL)
3117 		conf = setup_conf(mddev);
3118 	else
3119 		conf = mddev->private;
3120 
3121 	if (IS_ERR(conf))
3122 		return PTR_ERR(conf);
3123 
3124 	if (mddev->queue) {
3125 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3126 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3127 	}
3128 
3129 	rdev_for_each(rdev, mddev) {
3130 		if (!mddev->gendisk)
3131 			continue;
3132 		disk_stack_limits(mddev->gendisk, rdev->bdev,
3133 				  rdev->data_offset << 9);
3134 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3135 			discard_supported = true;
3136 	}
3137 
3138 	mddev->degraded = 0;
3139 	for (i = 0; i < conf->raid_disks; i++)
3140 		if (conf->mirrors[i].rdev == NULL ||
3141 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3142 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3143 			mddev->degraded++;
3144 	/*
3145 	 * RAID1 needs at least one disk in active
3146 	 */
3147 	if (conf->raid_disks - mddev->degraded < 1) {
3148 		ret = -EINVAL;
3149 		goto abort;
3150 	}
3151 
3152 	if (conf->raid_disks - mddev->degraded == 1)
3153 		mddev->recovery_cp = MaxSector;
3154 
3155 	if (mddev->recovery_cp != MaxSector)
3156 		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3157 			mdname(mddev));
3158 	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3159 		mdname(mddev), mddev->raid_disks - mddev->degraded,
3160 		mddev->raid_disks);
3161 
3162 	/*
3163 	 * Ok, everything is just fine now
3164 	 */
3165 	mddev->thread = conf->thread;
3166 	conf->thread = NULL;
3167 	mddev->private = conf;
3168 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3169 
3170 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3171 
3172 	if (mddev->queue) {
3173 		if (discard_supported)
3174 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3175 						mddev->queue);
3176 		else
3177 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3178 						  mddev->queue);
3179 	}
3180 
3181 	ret = md_integrity_register(mddev);
3182 	if (ret) {
3183 		md_unregister_thread(&mddev->thread);
3184 		goto abort;
3185 	}
3186 	return 0;
3187 
3188 abort:
3189 	raid1_free(mddev, conf);
3190 	return ret;
3191 }
3192 
3193 static void raid1_free(struct mddev *mddev, void *priv)
3194 {
3195 	struct r1conf *conf = priv;
3196 
3197 	mempool_exit(&conf->r1bio_pool);
3198 	kfree(conf->mirrors);
3199 	safe_put_page(conf->tmppage);
3200 	kfree(conf->poolinfo);
3201 	kfree(conf->nr_pending);
3202 	kfree(conf->nr_waiting);
3203 	kfree(conf->nr_queued);
3204 	kfree(conf->barrier);
3205 	bioset_exit(&conf->bio_split);
3206 	kfree(conf);
3207 }
3208 
3209 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3210 {
3211 	/* no resync is happening, and there is enough space
3212 	 * on all devices, so we can resize.
3213 	 * We need to make sure resync covers any new space.
3214 	 * If the array is shrinking we should possibly wait until
3215 	 * any io in the removed space completes, but it hardly seems
3216 	 * worth it.
3217 	 */
3218 	sector_t newsize = raid1_size(mddev, sectors, 0);
3219 	if (mddev->external_size &&
3220 	    mddev->array_sectors > newsize)
3221 		return -EINVAL;
3222 	if (mddev->bitmap) {
3223 		int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3224 		if (ret)
3225 			return ret;
3226 	}
3227 	md_set_array_sectors(mddev, newsize);
3228 	if (sectors > mddev->dev_sectors &&
3229 	    mddev->recovery_cp > mddev->dev_sectors) {
3230 		mddev->recovery_cp = mddev->dev_sectors;
3231 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3232 	}
3233 	mddev->dev_sectors = sectors;
3234 	mddev->resync_max_sectors = sectors;
3235 	return 0;
3236 }
3237 
3238 static int raid1_reshape(struct mddev *mddev)
3239 {
3240 	/* We need to:
3241 	 * 1/ resize the r1bio_pool
3242 	 * 2/ resize conf->mirrors
3243 	 *
3244 	 * We allocate a new r1bio_pool if we can.
3245 	 * Then raise a device barrier and wait until all IO stops.
3246 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3247 	 *
3248 	 * At the same time, we "pack" the devices so that all the missing
3249 	 * devices have the higher raid_disk numbers.
3250 	 */
3251 	mempool_t newpool, oldpool;
3252 	struct pool_info *newpoolinfo;
3253 	struct raid1_info *newmirrors;
3254 	struct r1conf *conf = mddev->private;
3255 	int cnt, raid_disks;
3256 	unsigned long flags;
3257 	int d, d2;
3258 	int ret;
3259 
3260 	memset(&newpool, 0, sizeof(newpool));
3261 	memset(&oldpool, 0, sizeof(oldpool));
3262 
3263 	/* Cannot change chunk_size, layout, or level */
3264 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3265 	    mddev->layout != mddev->new_layout ||
3266 	    mddev->level != mddev->new_level) {
3267 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3268 		mddev->new_layout = mddev->layout;
3269 		mddev->new_level = mddev->level;
3270 		return -EINVAL;
3271 	}
3272 
3273 	if (!mddev_is_clustered(mddev))
3274 		md_allow_write(mddev);
3275 
3276 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3277 
3278 	if (raid_disks < conf->raid_disks) {
3279 		cnt=0;
3280 		for (d= 0; d < conf->raid_disks; d++)
3281 			if (conf->mirrors[d].rdev)
3282 				cnt++;
3283 		if (cnt > raid_disks)
3284 			return -EBUSY;
3285 	}
3286 
3287 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3288 	if (!newpoolinfo)
3289 		return -ENOMEM;
3290 	newpoolinfo->mddev = mddev;
3291 	newpoolinfo->raid_disks = raid_disks * 2;
3292 
3293 	ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3294 			   rbio_pool_free, newpoolinfo);
3295 	if (ret) {
3296 		kfree(newpoolinfo);
3297 		return ret;
3298 	}
3299 	newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3300 					 raid_disks, 2),
3301 			     GFP_KERNEL);
3302 	if (!newmirrors) {
3303 		kfree(newpoolinfo);
3304 		mempool_exit(&newpool);
3305 		return -ENOMEM;
3306 	}
3307 
3308 	freeze_array(conf, 0);
3309 
3310 	/* ok, everything is stopped */
3311 	oldpool = conf->r1bio_pool;
3312 	conf->r1bio_pool = newpool;
3313 
3314 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3315 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3316 		if (rdev && rdev->raid_disk != d2) {
3317 			sysfs_unlink_rdev(mddev, rdev);
3318 			rdev->raid_disk = d2;
3319 			sysfs_unlink_rdev(mddev, rdev);
3320 			if (sysfs_link_rdev(mddev, rdev))
3321 				pr_warn("md/raid1:%s: cannot register rd%d\n",
3322 					mdname(mddev), rdev->raid_disk);
3323 		}
3324 		if (rdev)
3325 			newmirrors[d2++].rdev = rdev;
3326 	}
3327 	kfree(conf->mirrors);
3328 	conf->mirrors = newmirrors;
3329 	kfree(conf->poolinfo);
3330 	conf->poolinfo = newpoolinfo;
3331 
3332 	spin_lock_irqsave(&conf->device_lock, flags);
3333 	mddev->degraded += (raid_disks - conf->raid_disks);
3334 	spin_unlock_irqrestore(&conf->device_lock, flags);
3335 	conf->raid_disks = mddev->raid_disks = raid_disks;
3336 	mddev->delta_disks = 0;
3337 
3338 	unfreeze_array(conf);
3339 
3340 	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3341 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3342 	md_wakeup_thread(mddev->thread);
3343 
3344 	mempool_exit(&oldpool);
3345 	return 0;
3346 }
3347 
3348 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3349 {
3350 	struct r1conf *conf = mddev->private;
3351 
3352 	if (quiesce)
3353 		freeze_array(conf, 0);
3354 	else
3355 		unfreeze_array(conf);
3356 }
3357 
3358 static void *raid1_takeover(struct mddev *mddev)
3359 {
3360 	/* raid1 can take over:
3361 	 *  raid5 with 2 devices, any layout or chunk size
3362 	 */
3363 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3364 		struct r1conf *conf;
3365 		mddev->new_level = 1;
3366 		mddev->new_layout = 0;
3367 		mddev->new_chunk_sectors = 0;
3368 		conf = setup_conf(mddev);
3369 		if (!IS_ERR(conf)) {
3370 			/* Array must appear to be quiesced */
3371 			conf->array_frozen = 1;
3372 			mddev_clear_unsupported_flags(mddev,
3373 				UNSUPPORTED_MDDEV_FLAGS);
3374 		}
3375 		return conf;
3376 	}
3377 	return ERR_PTR(-EINVAL);
3378 }
3379 
3380 static struct md_personality raid1_personality =
3381 {
3382 	.name		= "raid1",
3383 	.level		= 1,
3384 	.owner		= THIS_MODULE,
3385 	.make_request	= raid1_make_request,
3386 	.run		= raid1_run,
3387 	.free		= raid1_free,
3388 	.status		= raid1_status,
3389 	.error_handler	= raid1_error,
3390 	.hot_add_disk	= raid1_add_disk,
3391 	.hot_remove_disk= raid1_remove_disk,
3392 	.spare_active	= raid1_spare_active,
3393 	.sync_request	= raid1_sync_request,
3394 	.resize		= raid1_resize,
3395 	.size		= raid1_size,
3396 	.check_reshape	= raid1_reshape,
3397 	.quiesce	= raid1_quiesce,
3398 	.takeover	= raid1_takeover,
3399 	.congested	= raid1_congested,
3400 };
3401 
3402 static int __init raid_init(void)
3403 {
3404 	return register_md_personality(&raid1_personality);
3405 }
3406 
3407 static void raid_exit(void)
3408 {
3409 	unregister_md_personality(&raid1_personality);
3410 }
3411 
3412 module_init(raid_init);
3413 module_exit(raid_exit);
3414 MODULE_LICENSE("GPL");
3415 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3416 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3417 MODULE_ALIAS("md-raid1");
3418 MODULE_ALIAS("md-level-1");
3419 
3420 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3421