xref: /openbmc/linux/drivers/md/raid1.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43 
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define	NR_RAID1_BIOS 256
48 
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60 
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62 
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68 
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 			  sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72 
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 	struct pool_info *pi = data;
76 	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77 
78 	/* allocate a r1bio with room for raid_disks entries in the bios array */
79 	return kzalloc(size, gfp_flags);
80 }
81 
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 	kfree(r1_bio);
85 }
86 
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94 
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 	struct pool_info *pi = data;
98 	struct r1bio *r1_bio;
99 	struct bio *bio;
100 	int need_pages;
101 	int i, j;
102 
103 	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 	if (!r1_bio)
105 		return NULL;
106 
107 	/*
108 	 * Allocate bios : 1 for reading, n-1 for writing
109 	 */
110 	for (j = pi->raid_disks ; j-- ; ) {
111 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 		if (!bio)
113 			goto out_free_bio;
114 		r1_bio->bios[j] = bio;
115 	}
116 	/*
117 	 * Allocate RESYNC_PAGES data pages and attach them to
118 	 * the first bio.
119 	 * If this is a user-requested check/repair, allocate
120 	 * RESYNC_PAGES for each bio.
121 	 */
122 	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 		need_pages = pi->raid_disks;
124 	else
125 		need_pages = 1;
126 	for (j = 0; j < need_pages; j++) {
127 		bio = r1_bio->bios[j];
128 		bio->bi_vcnt = RESYNC_PAGES;
129 
130 		if (bio_alloc_pages(bio, gfp_flags))
131 			goto out_free_pages;
132 	}
133 	/* If not user-requests, copy the page pointers to all bios */
134 	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 		for (i=0; i<RESYNC_PAGES ; i++)
136 			for (j=1; j<pi->raid_disks; j++)
137 				r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 					r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 	}
140 
141 	r1_bio->master_bio = NULL;
142 
143 	return r1_bio;
144 
145 out_free_pages:
146 	while (--j >= 0) {
147 		struct bio_vec *bv;
148 
149 		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 			__free_page(bv->bv_page);
151 	}
152 
153 out_free_bio:
154 	while (++j < pi->raid_disks)
155 		bio_put(r1_bio->bios[j]);
156 	r1bio_pool_free(r1_bio, data);
157 	return NULL;
158 }
159 
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 	struct pool_info *pi = data;
163 	int i,j;
164 	struct r1bio *r1bio = __r1_bio;
165 
166 	for (i = 0; i < RESYNC_PAGES; i++)
167 		for (j = pi->raid_disks; j-- ;) {
168 			if (j == 0 ||
169 			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 			    r1bio->bios[0]->bi_io_vec[i].bv_page)
171 				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 		}
173 	for (i=0 ; i < pi->raid_disks; i++)
174 		bio_put(r1bio->bios[i]);
175 
176 	r1bio_pool_free(r1bio, data);
177 }
178 
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 	int i;
182 
183 	for (i = 0; i < conf->raid_disks * 2; i++) {
184 		struct bio **bio = r1_bio->bios + i;
185 		if (!BIO_SPECIAL(*bio))
186 			bio_put(*bio);
187 		*bio = NULL;
188 	}
189 }
190 
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 	struct r1conf *conf = r1_bio->mddev->private;
194 
195 	put_all_bios(conf, r1_bio);
196 	mempool_free(r1_bio, conf->r1bio_pool);
197 }
198 
199 static void put_buf(struct r1bio *r1_bio)
200 {
201 	struct r1conf *conf = r1_bio->mddev->private;
202 	int i;
203 
204 	for (i = 0; i < conf->raid_disks * 2; i++) {
205 		struct bio *bio = r1_bio->bios[i];
206 		if (bio->bi_end_io)
207 			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 	}
209 
210 	mempool_free(r1_bio, conf->r1buf_pool);
211 
212 	lower_barrier(conf);
213 }
214 
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 	unsigned long flags;
218 	struct mddev *mddev = r1_bio->mddev;
219 	struct r1conf *conf = mddev->private;
220 
221 	spin_lock_irqsave(&conf->device_lock, flags);
222 	list_add(&r1_bio->retry_list, &conf->retry_list);
223 	conf->nr_queued ++;
224 	spin_unlock_irqrestore(&conf->device_lock, flags);
225 
226 	wake_up(&conf->wait_barrier);
227 	md_wakeup_thread(mddev->thread);
228 }
229 
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 	struct bio *bio = r1_bio->master_bio;
238 	int done;
239 	struct r1conf *conf = r1_bio->mddev->private;
240 	sector_t start_next_window = r1_bio->start_next_window;
241 	sector_t bi_sector = bio->bi_iter.bi_sector;
242 
243 	if (bio->bi_phys_segments) {
244 		unsigned long flags;
245 		spin_lock_irqsave(&conf->device_lock, flags);
246 		bio->bi_phys_segments--;
247 		done = (bio->bi_phys_segments == 0);
248 		spin_unlock_irqrestore(&conf->device_lock, flags);
249 		/*
250 		 * make_request() might be waiting for
251 		 * bi_phys_segments to decrease
252 		 */
253 		wake_up(&conf->wait_barrier);
254 	} else
255 		done = 1;
256 
257 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 	if (done) {
260 		bio_endio(bio, 0);
261 		/*
262 		 * Wake up any possible resync thread that waits for the device
263 		 * to go idle.
264 		 */
265 		allow_barrier(conf, start_next_window, bi_sector);
266 	}
267 }
268 
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271 	struct bio *bio = r1_bio->master_bio;
272 
273 	/* if nobody has done the final endio yet, do it now */
274 	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 			 (unsigned long long) bio->bi_iter.bi_sector,
278 			 (unsigned long long) bio_end_sector(bio) - 1);
279 
280 		call_bio_endio(r1_bio);
281 	}
282 	free_r1bio(r1_bio);
283 }
284 
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290 	struct r1conf *conf = r1_bio->mddev->private;
291 
292 	conf->mirrors[disk].head_position =
293 		r1_bio->sector + (r1_bio->sectors);
294 }
295 
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301 	int mirror;
302 	struct r1conf *conf = r1_bio->mddev->private;
303 	int raid_disks = conf->raid_disks;
304 
305 	for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 		if (r1_bio->bios[mirror] == bio)
307 			break;
308 
309 	BUG_ON(mirror == raid_disks * 2);
310 	update_head_pos(mirror, r1_bio);
311 
312 	return mirror;
313 }
314 
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 	struct r1bio *r1_bio = bio->bi_private;
319 	int mirror;
320 	struct r1conf *conf = r1_bio->mddev->private;
321 
322 	mirror = r1_bio->read_disk;
323 	/*
324 	 * this branch is our 'one mirror IO has finished' event handler:
325 	 */
326 	update_head_pos(mirror, r1_bio);
327 
328 	if (uptodate)
329 		set_bit(R1BIO_Uptodate, &r1_bio->state);
330 	else {
331 		/* If all other devices have failed, we want to return
332 		 * the error upwards rather than fail the last device.
333 		 * Here we redefine "uptodate" to mean "Don't want to retry"
334 		 */
335 		unsigned long flags;
336 		spin_lock_irqsave(&conf->device_lock, flags);
337 		if (r1_bio->mddev->degraded == conf->raid_disks ||
338 		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 			uptodate = 1;
341 		spin_unlock_irqrestore(&conf->device_lock, flags);
342 	}
343 
344 	if (uptodate) {
345 		raid_end_bio_io(r1_bio);
346 		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 	} else {
348 		/*
349 		 * oops, read error:
350 		 */
351 		char b[BDEVNAME_SIZE];
352 		printk_ratelimited(
353 			KERN_ERR "md/raid1:%s: %s: "
354 			"rescheduling sector %llu\n",
355 			mdname(conf->mddev),
356 			bdevname(conf->mirrors[mirror].rdev->bdev,
357 				 b),
358 			(unsigned long long)r1_bio->sector);
359 		set_bit(R1BIO_ReadError, &r1_bio->state);
360 		reschedule_retry(r1_bio);
361 		/* don't drop the reference on read_disk yet */
362 	}
363 }
364 
365 static void close_write(struct r1bio *r1_bio)
366 {
367 	/* it really is the end of this request */
368 	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 		/* free extra copy of the data pages */
370 		int i = r1_bio->behind_page_count;
371 		while (i--)
372 			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 		kfree(r1_bio->behind_bvecs);
374 		r1_bio->behind_bvecs = NULL;
375 	}
376 	/* clear the bitmap if all writes complete successfully */
377 	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 			r1_bio->sectors,
379 			!test_bit(R1BIO_Degraded, &r1_bio->state),
380 			test_bit(R1BIO_BehindIO, &r1_bio->state));
381 	md_write_end(r1_bio->mddev);
382 }
383 
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386 	if (!atomic_dec_and_test(&r1_bio->remaining))
387 		return;
388 
389 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 		reschedule_retry(r1_bio);
391 	else {
392 		close_write(r1_bio);
393 		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 			reschedule_retry(r1_bio);
395 		else
396 			raid_end_bio_io(r1_bio);
397 	}
398 }
399 
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 	struct r1bio *r1_bio = bio->bi_private;
404 	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 	struct r1conf *conf = r1_bio->mddev->private;
406 	struct bio *to_put = NULL;
407 
408 	mirror = find_bio_disk(r1_bio, bio);
409 
410 	/*
411 	 * 'one mirror IO has finished' event handler:
412 	 */
413 	if (!uptodate) {
414 		set_bit(WriteErrorSeen,
415 			&conf->mirrors[mirror].rdev->flags);
416 		if (!test_and_set_bit(WantReplacement,
417 				      &conf->mirrors[mirror].rdev->flags))
418 			set_bit(MD_RECOVERY_NEEDED, &
419 				conf->mddev->recovery);
420 
421 		set_bit(R1BIO_WriteError, &r1_bio->state);
422 	} else {
423 		/*
424 		 * Set R1BIO_Uptodate in our master bio, so that we
425 		 * will return a good error code for to the higher
426 		 * levels even if IO on some other mirrored buffer
427 		 * fails.
428 		 *
429 		 * The 'master' represents the composite IO operation
430 		 * to user-side. So if something waits for IO, then it
431 		 * will wait for the 'master' bio.
432 		 */
433 		sector_t first_bad;
434 		int bad_sectors;
435 
436 		r1_bio->bios[mirror] = NULL;
437 		to_put = bio;
438 		/*
439 		 * Do not set R1BIO_Uptodate if the current device is
440 		 * rebuilding or Faulty. This is because we cannot use
441 		 * such device for properly reading the data back (we could
442 		 * potentially use it, if the current write would have felt
443 		 * before rdev->recovery_offset, but for simplicity we don't
444 		 * check this here.
445 		 */
446 		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 			set_bit(R1BIO_Uptodate, &r1_bio->state);
449 
450 		/* Maybe we can clear some bad blocks. */
451 		if (is_badblock(conf->mirrors[mirror].rdev,
452 				r1_bio->sector, r1_bio->sectors,
453 				&first_bad, &bad_sectors)) {
454 			r1_bio->bios[mirror] = IO_MADE_GOOD;
455 			set_bit(R1BIO_MadeGood, &r1_bio->state);
456 		}
457 	}
458 
459 	if (behind) {
460 		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 			atomic_dec(&r1_bio->behind_remaining);
462 
463 		/*
464 		 * In behind mode, we ACK the master bio once the I/O
465 		 * has safely reached all non-writemostly
466 		 * disks. Setting the Returned bit ensures that this
467 		 * gets done only once -- we don't ever want to return
468 		 * -EIO here, instead we'll wait
469 		 */
470 		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 			/* Maybe we can return now */
473 			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 				struct bio *mbio = r1_bio->master_bio;
475 				pr_debug("raid1: behind end write sectors"
476 					 " %llu-%llu\n",
477 					 (unsigned long long) mbio->bi_iter.bi_sector,
478 					 (unsigned long long) bio_end_sector(mbio) - 1);
479 				call_bio_endio(r1_bio);
480 			}
481 		}
482 	}
483 	if (r1_bio->bios[mirror] == NULL)
484 		rdev_dec_pending(conf->mirrors[mirror].rdev,
485 				 conf->mddev);
486 
487 	/*
488 	 * Let's see if all mirrored write operations have finished
489 	 * already.
490 	 */
491 	r1_bio_write_done(r1_bio);
492 
493 	if (to_put)
494 		bio_put(to_put);
495 }
496 
497 
498 /*
499  * This routine returns the disk from which the requested read should
500  * be done. There is a per-array 'next expected sequential IO' sector
501  * number - if this matches on the next IO then we use the last disk.
502  * There is also a per-disk 'last know head position' sector that is
503  * maintained from IRQ contexts, both the normal and the resync IO
504  * completion handlers update this position correctly. If there is no
505  * perfect sequential match then we pick the disk whose head is closest.
506  *
507  * If there are 2 mirrors in the same 2 devices, performance degrades
508  * because position is mirror, not device based.
509  *
510  * The rdev for the device selected will have nr_pending incremented.
511  */
512 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
513 {
514 	const sector_t this_sector = r1_bio->sector;
515 	int sectors;
516 	int best_good_sectors;
517 	int best_disk, best_dist_disk, best_pending_disk;
518 	int has_nonrot_disk;
519 	int disk;
520 	sector_t best_dist;
521 	unsigned int min_pending;
522 	struct md_rdev *rdev;
523 	int choose_first;
524 	int choose_next_idle;
525 
526 	rcu_read_lock();
527 	/*
528 	 * Check if we can balance. We can balance on the whole
529 	 * device if no resync is going on, or below the resync window.
530 	 * We take the first readable disk when above the resync window.
531 	 */
532  retry:
533 	sectors = r1_bio->sectors;
534 	best_disk = -1;
535 	best_dist_disk = -1;
536 	best_dist = MaxSector;
537 	best_pending_disk = -1;
538 	min_pending = UINT_MAX;
539 	best_good_sectors = 0;
540 	has_nonrot_disk = 0;
541 	choose_next_idle = 0;
542 
543 	if (conf->mddev->recovery_cp < MaxSector &&
544 	    (this_sector + sectors >= conf->next_resync))
545 		choose_first = 1;
546 	else
547 		choose_first = 0;
548 
549 	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
550 		sector_t dist;
551 		sector_t first_bad;
552 		int bad_sectors;
553 		unsigned int pending;
554 		bool nonrot;
555 
556 		rdev = rcu_dereference(conf->mirrors[disk].rdev);
557 		if (r1_bio->bios[disk] == IO_BLOCKED
558 		    || rdev == NULL
559 		    || test_bit(Unmerged, &rdev->flags)
560 		    || test_bit(Faulty, &rdev->flags))
561 			continue;
562 		if (!test_bit(In_sync, &rdev->flags) &&
563 		    rdev->recovery_offset < this_sector + sectors)
564 			continue;
565 		if (test_bit(WriteMostly, &rdev->flags)) {
566 			/* Don't balance among write-mostly, just
567 			 * use the first as a last resort */
568 			if (best_disk < 0) {
569 				if (is_badblock(rdev, this_sector, sectors,
570 						&first_bad, &bad_sectors)) {
571 					if (first_bad < this_sector)
572 						/* Cannot use this */
573 						continue;
574 					best_good_sectors = first_bad - this_sector;
575 				} else
576 					best_good_sectors = sectors;
577 				best_disk = disk;
578 			}
579 			continue;
580 		}
581 		/* This is a reasonable device to use.  It might
582 		 * even be best.
583 		 */
584 		if (is_badblock(rdev, this_sector, sectors,
585 				&first_bad, &bad_sectors)) {
586 			if (best_dist < MaxSector)
587 				/* already have a better device */
588 				continue;
589 			if (first_bad <= this_sector) {
590 				/* cannot read here. If this is the 'primary'
591 				 * device, then we must not read beyond
592 				 * bad_sectors from another device..
593 				 */
594 				bad_sectors -= (this_sector - first_bad);
595 				if (choose_first && sectors > bad_sectors)
596 					sectors = bad_sectors;
597 				if (best_good_sectors > sectors)
598 					best_good_sectors = sectors;
599 
600 			} else {
601 				sector_t good_sectors = first_bad - this_sector;
602 				if (good_sectors > best_good_sectors) {
603 					best_good_sectors = good_sectors;
604 					best_disk = disk;
605 				}
606 				if (choose_first)
607 					break;
608 			}
609 			continue;
610 		} else
611 			best_good_sectors = sectors;
612 
613 		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
614 		has_nonrot_disk |= nonrot;
615 		pending = atomic_read(&rdev->nr_pending);
616 		dist = abs(this_sector - conf->mirrors[disk].head_position);
617 		if (choose_first) {
618 			best_disk = disk;
619 			break;
620 		}
621 		/* Don't change to another disk for sequential reads */
622 		if (conf->mirrors[disk].next_seq_sect == this_sector
623 		    || dist == 0) {
624 			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
625 			struct raid1_info *mirror = &conf->mirrors[disk];
626 
627 			best_disk = disk;
628 			/*
629 			 * If buffered sequential IO size exceeds optimal
630 			 * iosize, check if there is idle disk. If yes, choose
631 			 * the idle disk. read_balance could already choose an
632 			 * idle disk before noticing it's a sequential IO in
633 			 * this disk. This doesn't matter because this disk
634 			 * will idle, next time it will be utilized after the
635 			 * first disk has IO size exceeds optimal iosize. In
636 			 * this way, iosize of the first disk will be optimal
637 			 * iosize at least. iosize of the second disk might be
638 			 * small, but not a big deal since when the second disk
639 			 * starts IO, the first disk is likely still busy.
640 			 */
641 			if (nonrot && opt_iosize > 0 &&
642 			    mirror->seq_start != MaxSector &&
643 			    mirror->next_seq_sect > opt_iosize &&
644 			    mirror->next_seq_sect - opt_iosize >=
645 			    mirror->seq_start) {
646 				choose_next_idle = 1;
647 				continue;
648 			}
649 			break;
650 		}
651 		/* If device is idle, use it */
652 		if (pending == 0) {
653 			best_disk = disk;
654 			break;
655 		}
656 
657 		if (choose_next_idle)
658 			continue;
659 
660 		if (min_pending > pending) {
661 			min_pending = pending;
662 			best_pending_disk = disk;
663 		}
664 
665 		if (dist < best_dist) {
666 			best_dist = dist;
667 			best_dist_disk = disk;
668 		}
669 	}
670 
671 	/*
672 	 * If all disks are rotational, choose the closest disk. If any disk is
673 	 * non-rotational, choose the disk with less pending request even the
674 	 * disk is rotational, which might/might not be optimal for raids with
675 	 * mixed ratation/non-rotational disks depending on workload.
676 	 */
677 	if (best_disk == -1) {
678 		if (has_nonrot_disk)
679 			best_disk = best_pending_disk;
680 		else
681 			best_disk = best_dist_disk;
682 	}
683 
684 	if (best_disk >= 0) {
685 		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
686 		if (!rdev)
687 			goto retry;
688 		atomic_inc(&rdev->nr_pending);
689 		if (test_bit(Faulty, &rdev->flags)) {
690 			/* cannot risk returning a device that failed
691 			 * before we inc'ed nr_pending
692 			 */
693 			rdev_dec_pending(rdev, conf->mddev);
694 			goto retry;
695 		}
696 		sectors = best_good_sectors;
697 
698 		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
699 			conf->mirrors[best_disk].seq_start = this_sector;
700 
701 		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
702 	}
703 	rcu_read_unlock();
704 	*max_sectors = sectors;
705 
706 	return best_disk;
707 }
708 
709 static int raid1_mergeable_bvec(struct request_queue *q,
710 				struct bvec_merge_data *bvm,
711 				struct bio_vec *biovec)
712 {
713 	struct mddev *mddev = q->queuedata;
714 	struct r1conf *conf = mddev->private;
715 	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
716 	int max = biovec->bv_len;
717 
718 	if (mddev->merge_check_needed) {
719 		int disk;
720 		rcu_read_lock();
721 		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
722 			struct md_rdev *rdev = rcu_dereference(
723 				conf->mirrors[disk].rdev);
724 			if (rdev && !test_bit(Faulty, &rdev->flags)) {
725 				struct request_queue *q =
726 					bdev_get_queue(rdev->bdev);
727 				if (q->merge_bvec_fn) {
728 					bvm->bi_sector = sector +
729 						rdev->data_offset;
730 					bvm->bi_bdev = rdev->bdev;
731 					max = min(max, q->merge_bvec_fn(
732 							  q, bvm, biovec));
733 				}
734 			}
735 		}
736 		rcu_read_unlock();
737 	}
738 	return max;
739 
740 }
741 
742 int md_raid1_congested(struct mddev *mddev, int bits)
743 {
744 	struct r1conf *conf = mddev->private;
745 	int i, ret = 0;
746 
747 	if ((bits & (1 << BDI_async_congested)) &&
748 	    conf->pending_count >= max_queued_requests)
749 		return 1;
750 
751 	rcu_read_lock();
752 	for (i = 0; i < conf->raid_disks * 2; i++) {
753 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
754 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
755 			struct request_queue *q = bdev_get_queue(rdev->bdev);
756 
757 			BUG_ON(!q);
758 
759 			/* Note the '|| 1' - when read_balance prefers
760 			 * non-congested targets, it can be removed
761 			 */
762 			if ((bits & (1<<BDI_async_congested)) || 1)
763 				ret |= bdi_congested(&q->backing_dev_info, bits);
764 			else
765 				ret &= bdi_congested(&q->backing_dev_info, bits);
766 		}
767 	}
768 	rcu_read_unlock();
769 	return ret;
770 }
771 EXPORT_SYMBOL_GPL(md_raid1_congested);
772 
773 static int raid1_congested(void *data, int bits)
774 {
775 	struct mddev *mddev = data;
776 
777 	return mddev_congested(mddev, bits) ||
778 		md_raid1_congested(mddev, bits);
779 }
780 
781 static void flush_pending_writes(struct r1conf *conf)
782 {
783 	/* Any writes that have been queued but are awaiting
784 	 * bitmap updates get flushed here.
785 	 */
786 	spin_lock_irq(&conf->device_lock);
787 
788 	if (conf->pending_bio_list.head) {
789 		struct bio *bio;
790 		bio = bio_list_get(&conf->pending_bio_list);
791 		conf->pending_count = 0;
792 		spin_unlock_irq(&conf->device_lock);
793 		/* flush any pending bitmap writes to
794 		 * disk before proceeding w/ I/O */
795 		bitmap_unplug(conf->mddev->bitmap);
796 		wake_up(&conf->wait_barrier);
797 
798 		while (bio) { /* submit pending writes */
799 			struct bio *next = bio->bi_next;
800 			bio->bi_next = NULL;
801 			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
802 			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
803 				/* Just ignore it */
804 				bio_endio(bio, 0);
805 			else
806 				generic_make_request(bio);
807 			bio = next;
808 		}
809 	} else
810 		spin_unlock_irq(&conf->device_lock);
811 }
812 
813 /* Barriers....
814  * Sometimes we need to suspend IO while we do something else,
815  * either some resync/recovery, or reconfigure the array.
816  * To do this we raise a 'barrier'.
817  * The 'barrier' is a counter that can be raised multiple times
818  * to count how many activities are happening which preclude
819  * normal IO.
820  * We can only raise the barrier if there is no pending IO.
821  * i.e. if nr_pending == 0.
822  * We choose only to raise the barrier if no-one is waiting for the
823  * barrier to go down.  This means that as soon as an IO request
824  * is ready, no other operations which require a barrier will start
825  * until the IO request has had a chance.
826  *
827  * So: regular IO calls 'wait_barrier'.  When that returns there
828  *    is no backgroup IO happening,  It must arrange to call
829  *    allow_barrier when it has finished its IO.
830  * backgroup IO calls must call raise_barrier.  Once that returns
831  *    there is no normal IO happeing.  It must arrange to call
832  *    lower_barrier when the particular background IO completes.
833  */
834 static void raise_barrier(struct r1conf *conf)
835 {
836 	spin_lock_irq(&conf->resync_lock);
837 
838 	/* Wait until no block IO is waiting */
839 	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
840 			    conf->resync_lock);
841 
842 	/* block any new IO from starting */
843 	conf->barrier++;
844 
845 	/* For these conditions we must wait:
846 	 * A: while the array is in frozen state
847 	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
848 	 *    the max count which allowed.
849 	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
850 	 *    next resync will reach to the window which normal bios are
851 	 *    handling.
852 	 */
853 	wait_event_lock_irq(conf->wait_barrier,
854 			    !conf->array_frozen &&
855 			    conf->barrier < RESYNC_DEPTH &&
856 			    (conf->start_next_window >=
857 			     conf->next_resync + RESYNC_SECTORS),
858 			    conf->resync_lock);
859 
860 	spin_unlock_irq(&conf->resync_lock);
861 }
862 
863 static void lower_barrier(struct r1conf *conf)
864 {
865 	unsigned long flags;
866 	BUG_ON(conf->barrier <= 0);
867 	spin_lock_irqsave(&conf->resync_lock, flags);
868 	conf->barrier--;
869 	spin_unlock_irqrestore(&conf->resync_lock, flags);
870 	wake_up(&conf->wait_barrier);
871 }
872 
873 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
874 {
875 	bool wait = false;
876 
877 	if (conf->array_frozen || !bio)
878 		wait = true;
879 	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
880 		if (conf->next_resync < RESYNC_WINDOW_SECTORS)
881 			wait = true;
882 		else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
883 				>= bio_end_sector(bio)) ||
884 			 (conf->next_resync + NEXT_NORMALIO_DISTANCE
885 				<= bio->bi_iter.bi_sector))
886 			wait = false;
887 		else
888 			wait = true;
889 	}
890 
891 	return wait;
892 }
893 
894 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
895 {
896 	sector_t sector = 0;
897 
898 	spin_lock_irq(&conf->resync_lock);
899 	if (need_to_wait_for_sync(conf, bio)) {
900 		conf->nr_waiting++;
901 		/* Wait for the barrier to drop.
902 		 * However if there are already pending
903 		 * requests (preventing the barrier from
904 		 * rising completely), and the
905 		 * pre-process bio queue isn't empty,
906 		 * then don't wait, as we need to empty
907 		 * that queue to get the nr_pending
908 		 * count down.
909 		 */
910 		wait_event_lock_irq(conf->wait_barrier,
911 				    !conf->array_frozen &&
912 				    (!conf->barrier ||
913 				    ((conf->start_next_window <
914 				      conf->next_resync + RESYNC_SECTORS) &&
915 				     current->bio_list &&
916 				     !bio_list_empty(current->bio_list))),
917 				    conf->resync_lock);
918 		conf->nr_waiting--;
919 	}
920 
921 	if (bio && bio_data_dir(bio) == WRITE) {
922 		if (conf->next_resync + NEXT_NORMALIO_DISTANCE
923 		    <= bio->bi_iter.bi_sector) {
924 			if (conf->start_next_window == MaxSector)
925 				conf->start_next_window =
926 					conf->next_resync +
927 					NEXT_NORMALIO_DISTANCE;
928 
929 			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
930 			    <= bio->bi_iter.bi_sector)
931 				conf->next_window_requests++;
932 			else
933 				conf->current_window_requests++;
934 			sector = conf->start_next_window;
935 		}
936 	}
937 
938 	conf->nr_pending++;
939 	spin_unlock_irq(&conf->resync_lock);
940 	return sector;
941 }
942 
943 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
944 			  sector_t bi_sector)
945 {
946 	unsigned long flags;
947 
948 	spin_lock_irqsave(&conf->resync_lock, flags);
949 	conf->nr_pending--;
950 	if (start_next_window) {
951 		if (start_next_window == conf->start_next_window) {
952 			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
953 			    <= bi_sector)
954 				conf->next_window_requests--;
955 			else
956 				conf->current_window_requests--;
957 		} else
958 			conf->current_window_requests--;
959 
960 		if (!conf->current_window_requests) {
961 			if (conf->next_window_requests) {
962 				conf->current_window_requests =
963 					conf->next_window_requests;
964 				conf->next_window_requests = 0;
965 				conf->start_next_window +=
966 					NEXT_NORMALIO_DISTANCE;
967 			} else
968 				conf->start_next_window = MaxSector;
969 		}
970 	}
971 	spin_unlock_irqrestore(&conf->resync_lock, flags);
972 	wake_up(&conf->wait_barrier);
973 }
974 
975 static void freeze_array(struct r1conf *conf, int extra)
976 {
977 	/* stop syncio and normal IO and wait for everything to
978 	 * go quite.
979 	 * We wait until nr_pending match nr_queued+extra
980 	 * This is called in the context of one normal IO request
981 	 * that has failed. Thus any sync request that might be pending
982 	 * will be blocked by nr_pending, and we need to wait for
983 	 * pending IO requests to complete or be queued for re-try.
984 	 * Thus the number queued (nr_queued) plus this request (extra)
985 	 * must match the number of pending IOs (nr_pending) before
986 	 * we continue.
987 	 */
988 	spin_lock_irq(&conf->resync_lock);
989 	conf->array_frozen = 1;
990 	wait_event_lock_irq_cmd(conf->wait_barrier,
991 				conf->nr_pending == conf->nr_queued+extra,
992 				conf->resync_lock,
993 				flush_pending_writes(conf));
994 	spin_unlock_irq(&conf->resync_lock);
995 }
996 static void unfreeze_array(struct r1conf *conf)
997 {
998 	/* reverse the effect of the freeze */
999 	spin_lock_irq(&conf->resync_lock);
1000 	conf->array_frozen = 0;
1001 	wake_up(&conf->wait_barrier);
1002 	spin_unlock_irq(&conf->resync_lock);
1003 }
1004 
1005 
1006 /* duplicate the data pages for behind I/O
1007  */
1008 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1009 {
1010 	int i;
1011 	struct bio_vec *bvec;
1012 	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1013 					GFP_NOIO);
1014 	if (unlikely(!bvecs))
1015 		return;
1016 
1017 	bio_for_each_segment_all(bvec, bio, i) {
1018 		bvecs[i] = *bvec;
1019 		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1020 		if (unlikely(!bvecs[i].bv_page))
1021 			goto do_sync_io;
1022 		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1023 		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1024 		kunmap(bvecs[i].bv_page);
1025 		kunmap(bvec->bv_page);
1026 	}
1027 	r1_bio->behind_bvecs = bvecs;
1028 	r1_bio->behind_page_count = bio->bi_vcnt;
1029 	set_bit(R1BIO_BehindIO, &r1_bio->state);
1030 	return;
1031 
1032 do_sync_io:
1033 	for (i = 0; i < bio->bi_vcnt; i++)
1034 		if (bvecs[i].bv_page)
1035 			put_page(bvecs[i].bv_page);
1036 	kfree(bvecs);
1037 	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1038 		 bio->bi_iter.bi_size);
1039 }
1040 
1041 struct raid1_plug_cb {
1042 	struct blk_plug_cb	cb;
1043 	struct bio_list		pending;
1044 	int			pending_cnt;
1045 };
1046 
1047 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1048 {
1049 	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1050 						  cb);
1051 	struct mddev *mddev = plug->cb.data;
1052 	struct r1conf *conf = mddev->private;
1053 	struct bio *bio;
1054 
1055 	if (from_schedule || current->bio_list) {
1056 		spin_lock_irq(&conf->device_lock);
1057 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1058 		conf->pending_count += plug->pending_cnt;
1059 		spin_unlock_irq(&conf->device_lock);
1060 		wake_up(&conf->wait_barrier);
1061 		md_wakeup_thread(mddev->thread);
1062 		kfree(plug);
1063 		return;
1064 	}
1065 
1066 	/* we aren't scheduling, so we can do the write-out directly. */
1067 	bio = bio_list_get(&plug->pending);
1068 	bitmap_unplug(mddev->bitmap);
1069 	wake_up(&conf->wait_barrier);
1070 
1071 	while (bio) { /* submit pending writes */
1072 		struct bio *next = bio->bi_next;
1073 		bio->bi_next = NULL;
1074 		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1075 		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1076 			/* Just ignore it */
1077 			bio_endio(bio, 0);
1078 		else
1079 			generic_make_request(bio);
1080 		bio = next;
1081 	}
1082 	kfree(plug);
1083 }
1084 
1085 static void make_request(struct mddev *mddev, struct bio * bio)
1086 {
1087 	struct r1conf *conf = mddev->private;
1088 	struct raid1_info *mirror;
1089 	struct r1bio *r1_bio;
1090 	struct bio *read_bio;
1091 	int i, disks;
1092 	struct bitmap *bitmap;
1093 	unsigned long flags;
1094 	const int rw = bio_data_dir(bio);
1095 	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1096 	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1097 	const unsigned long do_discard = (bio->bi_rw
1098 					  & (REQ_DISCARD | REQ_SECURE));
1099 	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1100 	struct md_rdev *blocked_rdev;
1101 	struct blk_plug_cb *cb;
1102 	struct raid1_plug_cb *plug = NULL;
1103 	int first_clone;
1104 	int sectors_handled;
1105 	int max_sectors;
1106 	sector_t start_next_window;
1107 
1108 	/*
1109 	 * Register the new request and wait if the reconstruction
1110 	 * thread has put up a bar for new requests.
1111 	 * Continue immediately if no resync is active currently.
1112 	 */
1113 
1114 	md_write_start(mddev, bio); /* wait on superblock update early */
1115 
1116 	if (bio_data_dir(bio) == WRITE &&
1117 	    bio_end_sector(bio) > mddev->suspend_lo &&
1118 	    bio->bi_iter.bi_sector < mddev->suspend_hi) {
1119 		/* As the suspend_* range is controlled by
1120 		 * userspace, we want an interruptible
1121 		 * wait.
1122 		 */
1123 		DEFINE_WAIT(w);
1124 		for (;;) {
1125 			flush_signals(current);
1126 			prepare_to_wait(&conf->wait_barrier,
1127 					&w, TASK_INTERRUPTIBLE);
1128 			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1129 			    bio->bi_iter.bi_sector >= mddev->suspend_hi)
1130 				break;
1131 			schedule();
1132 		}
1133 		finish_wait(&conf->wait_barrier, &w);
1134 	}
1135 
1136 	start_next_window = wait_barrier(conf, bio);
1137 
1138 	bitmap = mddev->bitmap;
1139 
1140 	/*
1141 	 * make_request() can abort the operation when READA is being
1142 	 * used and no empty request is available.
1143 	 *
1144 	 */
1145 	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1146 
1147 	r1_bio->master_bio = bio;
1148 	r1_bio->sectors = bio_sectors(bio);
1149 	r1_bio->state = 0;
1150 	r1_bio->mddev = mddev;
1151 	r1_bio->sector = bio->bi_iter.bi_sector;
1152 
1153 	/* We might need to issue multiple reads to different
1154 	 * devices if there are bad blocks around, so we keep
1155 	 * track of the number of reads in bio->bi_phys_segments.
1156 	 * If this is 0, there is only one r1_bio and no locking
1157 	 * will be needed when requests complete.  If it is
1158 	 * non-zero, then it is the number of not-completed requests.
1159 	 */
1160 	bio->bi_phys_segments = 0;
1161 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1162 
1163 	if (rw == READ) {
1164 		/*
1165 		 * read balancing logic:
1166 		 */
1167 		int rdisk;
1168 
1169 read_again:
1170 		rdisk = read_balance(conf, r1_bio, &max_sectors);
1171 
1172 		if (rdisk < 0) {
1173 			/* couldn't find anywhere to read from */
1174 			raid_end_bio_io(r1_bio);
1175 			return;
1176 		}
1177 		mirror = conf->mirrors + rdisk;
1178 
1179 		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1180 		    bitmap) {
1181 			/* Reading from a write-mostly device must
1182 			 * take care not to over-take any writes
1183 			 * that are 'behind'
1184 			 */
1185 			wait_event(bitmap->behind_wait,
1186 				   atomic_read(&bitmap->behind_writes) == 0);
1187 		}
1188 		r1_bio->read_disk = rdisk;
1189 
1190 		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1191 		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1192 			 max_sectors);
1193 
1194 		r1_bio->bios[rdisk] = read_bio;
1195 
1196 		read_bio->bi_iter.bi_sector = r1_bio->sector +
1197 			mirror->rdev->data_offset;
1198 		read_bio->bi_bdev = mirror->rdev->bdev;
1199 		read_bio->bi_end_io = raid1_end_read_request;
1200 		read_bio->bi_rw = READ | do_sync;
1201 		read_bio->bi_private = r1_bio;
1202 
1203 		if (max_sectors < r1_bio->sectors) {
1204 			/* could not read all from this device, so we will
1205 			 * need another r1_bio.
1206 			 */
1207 
1208 			sectors_handled = (r1_bio->sector + max_sectors
1209 					   - bio->bi_iter.bi_sector);
1210 			r1_bio->sectors = max_sectors;
1211 			spin_lock_irq(&conf->device_lock);
1212 			if (bio->bi_phys_segments == 0)
1213 				bio->bi_phys_segments = 2;
1214 			else
1215 				bio->bi_phys_segments++;
1216 			spin_unlock_irq(&conf->device_lock);
1217 			/* Cannot call generic_make_request directly
1218 			 * as that will be queued in __make_request
1219 			 * and subsequent mempool_alloc might block waiting
1220 			 * for it.  So hand bio over to raid1d.
1221 			 */
1222 			reschedule_retry(r1_bio);
1223 
1224 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1225 
1226 			r1_bio->master_bio = bio;
1227 			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1228 			r1_bio->state = 0;
1229 			r1_bio->mddev = mddev;
1230 			r1_bio->sector = bio->bi_iter.bi_sector +
1231 				sectors_handled;
1232 			goto read_again;
1233 		} else
1234 			generic_make_request(read_bio);
1235 		return;
1236 	}
1237 
1238 	/*
1239 	 * WRITE:
1240 	 */
1241 	if (conf->pending_count >= max_queued_requests) {
1242 		md_wakeup_thread(mddev->thread);
1243 		wait_event(conf->wait_barrier,
1244 			   conf->pending_count < max_queued_requests);
1245 	}
1246 	/* first select target devices under rcu_lock and
1247 	 * inc refcount on their rdev.  Record them by setting
1248 	 * bios[x] to bio
1249 	 * If there are known/acknowledged bad blocks on any device on
1250 	 * which we have seen a write error, we want to avoid writing those
1251 	 * blocks.
1252 	 * This potentially requires several writes to write around
1253 	 * the bad blocks.  Each set of writes gets it's own r1bio
1254 	 * with a set of bios attached.
1255 	 */
1256 
1257 	disks = conf->raid_disks * 2;
1258  retry_write:
1259 	r1_bio->start_next_window = start_next_window;
1260 	blocked_rdev = NULL;
1261 	rcu_read_lock();
1262 	max_sectors = r1_bio->sectors;
1263 	for (i = 0;  i < disks; i++) {
1264 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1265 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1266 			atomic_inc(&rdev->nr_pending);
1267 			blocked_rdev = rdev;
1268 			break;
1269 		}
1270 		r1_bio->bios[i] = NULL;
1271 		if (!rdev || test_bit(Faulty, &rdev->flags)
1272 		    || test_bit(Unmerged, &rdev->flags)) {
1273 			if (i < conf->raid_disks)
1274 				set_bit(R1BIO_Degraded, &r1_bio->state);
1275 			continue;
1276 		}
1277 
1278 		atomic_inc(&rdev->nr_pending);
1279 		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1280 			sector_t first_bad;
1281 			int bad_sectors;
1282 			int is_bad;
1283 
1284 			is_bad = is_badblock(rdev, r1_bio->sector,
1285 					     max_sectors,
1286 					     &first_bad, &bad_sectors);
1287 			if (is_bad < 0) {
1288 				/* mustn't write here until the bad block is
1289 				 * acknowledged*/
1290 				set_bit(BlockedBadBlocks, &rdev->flags);
1291 				blocked_rdev = rdev;
1292 				break;
1293 			}
1294 			if (is_bad && first_bad <= r1_bio->sector) {
1295 				/* Cannot write here at all */
1296 				bad_sectors -= (r1_bio->sector - first_bad);
1297 				if (bad_sectors < max_sectors)
1298 					/* mustn't write more than bad_sectors
1299 					 * to other devices yet
1300 					 */
1301 					max_sectors = bad_sectors;
1302 				rdev_dec_pending(rdev, mddev);
1303 				/* We don't set R1BIO_Degraded as that
1304 				 * only applies if the disk is
1305 				 * missing, so it might be re-added,
1306 				 * and we want to know to recover this
1307 				 * chunk.
1308 				 * In this case the device is here,
1309 				 * and the fact that this chunk is not
1310 				 * in-sync is recorded in the bad
1311 				 * block log
1312 				 */
1313 				continue;
1314 			}
1315 			if (is_bad) {
1316 				int good_sectors = first_bad - r1_bio->sector;
1317 				if (good_sectors < max_sectors)
1318 					max_sectors = good_sectors;
1319 			}
1320 		}
1321 		r1_bio->bios[i] = bio;
1322 	}
1323 	rcu_read_unlock();
1324 
1325 	if (unlikely(blocked_rdev)) {
1326 		/* Wait for this device to become unblocked */
1327 		int j;
1328 		sector_t old = start_next_window;
1329 
1330 		for (j = 0; j < i; j++)
1331 			if (r1_bio->bios[j])
1332 				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1333 		r1_bio->state = 0;
1334 		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1335 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1336 		start_next_window = wait_barrier(conf, bio);
1337 		/*
1338 		 * We must make sure the multi r1bios of bio have
1339 		 * the same value of bi_phys_segments
1340 		 */
1341 		if (bio->bi_phys_segments && old &&
1342 		    old != start_next_window)
1343 			/* Wait for the former r1bio(s) to complete */
1344 			wait_event(conf->wait_barrier,
1345 				   bio->bi_phys_segments == 1);
1346 		goto retry_write;
1347 	}
1348 
1349 	if (max_sectors < r1_bio->sectors) {
1350 		/* We are splitting this write into multiple parts, so
1351 		 * we need to prepare for allocating another r1_bio.
1352 		 */
1353 		r1_bio->sectors = max_sectors;
1354 		spin_lock_irq(&conf->device_lock);
1355 		if (bio->bi_phys_segments == 0)
1356 			bio->bi_phys_segments = 2;
1357 		else
1358 			bio->bi_phys_segments++;
1359 		spin_unlock_irq(&conf->device_lock);
1360 	}
1361 	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1362 
1363 	atomic_set(&r1_bio->remaining, 1);
1364 	atomic_set(&r1_bio->behind_remaining, 0);
1365 
1366 	first_clone = 1;
1367 	for (i = 0; i < disks; i++) {
1368 		struct bio *mbio;
1369 		if (!r1_bio->bios[i])
1370 			continue;
1371 
1372 		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1373 		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1374 
1375 		if (first_clone) {
1376 			/* do behind I/O ?
1377 			 * Not if there are too many, or cannot
1378 			 * allocate memory, or a reader on WriteMostly
1379 			 * is waiting for behind writes to flush */
1380 			if (bitmap &&
1381 			    (atomic_read(&bitmap->behind_writes)
1382 			     < mddev->bitmap_info.max_write_behind) &&
1383 			    !waitqueue_active(&bitmap->behind_wait))
1384 				alloc_behind_pages(mbio, r1_bio);
1385 
1386 			bitmap_startwrite(bitmap, r1_bio->sector,
1387 					  r1_bio->sectors,
1388 					  test_bit(R1BIO_BehindIO,
1389 						   &r1_bio->state));
1390 			first_clone = 0;
1391 		}
1392 		if (r1_bio->behind_bvecs) {
1393 			struct bio_vec *bvec;
1394 			int j;
1395 
1396 			/*
1397 			 * We trimmed the bio, so _all is legit
1398 			 */
1399 			bio_for_each_segment_all(bvec, mbio, j)
1400 				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1401 			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1402 				atomic_inc(&r1_bio->behind_remaining);
1403 		}
1404 
1405 		r1_bio->bios[i] = mbio;
1406 
1407 		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1408 				   conf->mirrors[i].rdev->data_offset);
1409 		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1410 		mbio->bi_end_io	= raid1_end_write_request;
1411 		mbio->bi_rw =
1412 			WRITE | do_flush_fua | do_sync | do_discard | do_same;
1413 		mbio->bi_private = r1_bio;
1414 
1415 		atomic_inc(&r1_bio->remaining);
1416 
1417 		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1418 		if (cb)
1419 			plug = container_of(cb, struct raid1_plug_cb, cb);
1420 		else
1421 			plug = NULL;
1422 		spin_lock_irqsave(&conf->device_lock, flags);
1423 		if (plug) {
1424 			bio_list_add(&plug->pending, mbio);
1425 			plug->pending_cnt++;
1426 		} else {
1427 			bio_list_add(&conf->pending_bio_list, mbio);
1428 			conf->pending_count++;
1429 		}
1430 		spin_unlock_irqrestore(&conf->device_lock, flags);
1431 		if (!plug)
1432 			md_wakeup_thread(mddev->thread);
1433 	}
1434 	/* Mustn't call r1_bio_write_done before this next test,
1435 	 * as it could result in the bio being freed.
1436 	 */
1437 	if (sectors_handled < bio_sectors(bio)) {
1438 		r1_bio_write_done(r1_bio);
1439 		/* We need another r1_bio.  It has already been counted
1440 		 * in bio->bi_phys_segments
1441 		 */
1442 		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1443 		r1_bio->master_bio = bio;
1444 		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1445 		r1_bio->state = 0;
1446 		r1_bio->mddev = mddev;
1447 		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1448 		goto retry_write;
1449 	}
1450 
1451 	r1_bio_write_done(r1_bio);
1452 
1453 	/* In case raid1d snuck in to freeze_array */
1454 	wake_up(&conf->wait_barrier);
1455 }
1456 
1457 static void status(struct seq_file *seq, struct mddev *mddev)
1458 {
1459 	struct r1conf *conf = mddev->private;
1460 	int i;
1461 
1462 	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1463 		   conf->raid_disks - mddev->degraded);
1464 	rcu_read_lock();
1465 	for (i = 0; i < conf->raid_disks; i++) {
1466 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1467 		seq_printf(seq, "%s",
1468 			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1469 	}
1470 	rcu_read_unlock();
1471 	seq_printf(seq, "]");
1472 }
1473 
1474 
1475 static void error(struct mddev *mddev, struct md_rdev *rdev)
1476 {
1477 	char b[BDEVNAME_SIZE];
1478 	struct r1conf *conf = mddev->private;
1479 
1480 	/*
1481 	 * If it is not operational, then we have already marked it as dead
1482 	 * else if it is the last working disks, ignore the error, let the
1483 	 * next level up know.
1484 	 * else mark the drive as failed
1485 	 */
1486 	if (test_bit(In_sync, &rdev->flags)
1487 	    && (conf->raid_disks - mddev->degraded) == 1) {
1488 		/*
1489 		 * Don't fail the drive, act as though we were just a
1490 		 * normal single drive.
1491 		 * However don't try a recovery from this drive as
1492 		 * it is very likely to fail.
1493 		 */
1494 		conf->recovery_disabled = mddev->recovery_disabled;
1495 		return;
1496 	}
1497 	set_bit(Blocked, &rdev->flags);
1498 	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1499 		unsigned long flags;
1500 		spin_lock_irqsave(&conf->device_lock, flags);
1501 		mddev->degraded++;
1502 		set_bit(Faulty, &rdev->flags);
1503 		spin_unlock_irqrestore(&conf->device_lock, flags);
1504 	} else
1505 		set_bit(Faulty, &rdev->flags);
1506 	/*
1507 	 * if recovery is running, make sure it aborts.
1508 	 */
1509 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1510 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1511 	printk(KERN_ALERT
1512 	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1513 	       "md/raid1:%s: Operation continuing on %d devices.\n",
1514 	       mdname(mddev), bdevname(rdev->bdev, b),
1515 	       mdname(mddev), conf->raid_disks - mddev->degraded);
1516 }
1517 
1518 static void print_conf(struct r1conf *conf)
1519 {
1520 	int i;
1521 
1522 	printk(KERN_DEBUG "RAID1 conf printout:\n");
1523 	if (!conf) {
1524 		printk(KERN_DEBUG "(!conf)\n");
1525 		return;
1526 	}
1527 	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1528 		conf->raid_disks);
1529 
1530 	rcu_read_lock();
1531 	for (i = 0; i < conf->raid_disks; i++) {
1532 		char b[BDEVNAME_SIZE];
1533 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1534 		if (rdev)
1535 			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1536 			       i, !test_bit(In_sync, &rdev->flags),
1537 			       !test_bit(Faulty, &rdev->flags),
1538 			       bdevname(rdev->bdev,b));
1539 	}
1540 	rcu_read_unlock();
1541 }
1542 
1543 static void close_sync(struct r1conf *conf)
1544 {
1545 	wait_barrier(conf, NULL);
1546 	allow_barrier(conf, 0, 0);
1547 
1548 	mempool_destroy(conf->r1buf_pool);
1549 	conf->r1buf_pool = NULL;
1550 
1551 	conf->next_resync = 0;
1552 	conf->start_next_window = MaxSector;
1553 }
1554 
1555 static int raid1_spare_active(struct mddev *mddev)
1556 {
1557 	int i;
1558 	struct r1conf *conf = mddev->private;
1559 	int count = 0;
1560 	unsigned long flags;
1561 
1562 	/*
1563 	 * Find all failed disks within the RAID1 configuration
1564 	 * and mark them readable.
1565 	 * Called under mddev lock, so rcu protection not needed.
1566 	 */
1567 	for (i = 0; i < conf->raid_disks; i++) {
1568 		struct md_rdev *rdev = conf->mirrors[i].rdev;
1569 		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1570 		if (repl
1571 		    && repl->recovery_offset == MaxSector
1572 		    && !test_bit(Faulty, &repl->flags)
1573 		    && !test_and_set_bit(In_sync, &repl->flags)) {
1574 			/* replacement has just become active */
1575 			if (!rdev ||
1576 			    !test_and_clear_bit(In_sync, &rdev->flags))
1577 				count++;
1578 			if (rdev) {
1579 				/* Replaced device not technically
1580 				 * faulty, but we need to be sure
1581 				 * it gets removed and never re-added
1582 				 */
1583 				set_bit(Faulty, &rdev->flags);
1584 				sysfs_notify_dirent_safe(
1585 					rdev->sysfs_state);
1586 			}
1587 		}
1588 		if (rdev
1589 		    && rdev->recovery_offset == MaxSector
1590 		    && !test_bit(Faulty, &rdev->flags)
1591 		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1592 			count++;
1593 			sysfs_notify_dirent_safe(rdev->sysfs_state);
1594 		}
1595 	}
1596 	spin_lock_irqsave(&conf->device_lock, flags);
1597 	mddev->degraded -= count;
1598 	spin_unlock_irqrestore(&conf->device_lock, flags);
1599 
1600 	print_conf(conf);
1601 	return count;
1602 }
1603 
1604 
1605 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1606 {
1607 	struct r1conf *conf = mddev->private;
1608 	int err = -EEXIST;
1609 	int mirror = 0;
1610 	struct raid1_info *p;
1611 	int first = 0;
1612 	int last = conf->raid_disks - 1;
1613 	struct request_queue *q = bdev_get_queue(rdev->bdev);
1614 
1615 	if (mddev->recovery_disabled == conf->recovery_disabled)
1616 		return -EBUSY;
1617 
1618 	if (rdev->raid_disk >= 0)
1619 		first = last = rdev->raid_disk;
1620 
1621 	if (q->merge_bvec_fn) {
1622 		set_bit(Unmerged, &rdev->flags);
1623 		mddev->merge_check_needed = 1;
1624 	}
1625 
1626 	for (mirror = first; mirror <= last; mirror++) {
1627 		p = conf->mirrors+mirror;
1628 		if (!p->rdev) {
1629 
1630 			if (mddev->gendisk)
1631 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1632 						  rdev->data_offset << 9);
1633 
1634 			p->head_position = 0;
1635 			rdev->raid_disk = mirror;
1636 			err = 0;
1637 			/* As all devices are equivalent, we don't need a full recovery
1638 			 * if this was recently any drive of the array
1639 			 */
1640 			if (rdev->saved_raid_disk < 0)
1641 				conf->fullsync = 1;
1642 			rcu_assign_pointer(p->rdev, rdev);
1643 			break;
1644 		}
1645 		if (test_bit(WantReplacement, &p->rdev->flags) &&
1646 		    p[conf->raid_disks].rdev == NULL) {
1647 			/* Add this device as a replacement */
1648 			clear_bit(In_sync, &rdev->flags);
1649 			set_bit(Replacement, &rdev->flags);
1650 			rdev->raid_disk = mirror;
1651 			err = 0;
1652 			conf->fullsync = 1;
1653 			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1654 			break;
1655 		}
1656 	}
1657 	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1658 		/* Some requests might not have seen this new
1659 		 * merge_bvec_fn.  We must wait for them to complete
1660 		 * before merging the device fully.
1661 		 * First we make sure any code which has tested
1662 		 * our function has submitted the request, then
1663 		 * we wait for all outstanding requests to complete.
1664 		 */
1665 		synchronize_sched();
1666 		freeze_array(conf, 0);
1667 		unfreeze_array(conf);
1668 		clear_bit(Unmerged, &rdev->flags);
1669 	}
1670 	md_integrity_add_rdev(rdev, mddev);
1671 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1672 		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1673 	print_conf(conf);
1674 	return err;
1675 }
1676 
1677 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1678 {
1679 	struct r1conf *conf = mddev->private;
1680 	int err = 0;
1681 	int number = rdev->raid_disk;
1682 	struct raid1_info *p = conf->mirrors + number;
1683 
1684 	if (rdev != p->rdev)
1685 		p = conf->mirrors + conf->raid_disks + number;
1686 
1687 	print_conf(conf);
1688 	if (rdev == p->rdev) {
1689 		if (test_bit(In_sync, &rdev->flags) ||
1690 		    atomic_read(&rdev->nr_pending)) {
1691 			err = -EBUSY;
1692 			goto abort;
1693 		}
1694 		/* Only remove non-faulty devices if recovery
1695 		 * is not possible.
1696 		 */
1697 		if (!test_bit(Faulty, &rdev->flags) &&
1698 		    mddev->recovery_disabled != conf->recovery_disabled &&
1699 		    mddev->degraded < conf->raid_disks) {
1700 			err = -EBUSY;
1701 			goto abort;
1702 		}
1703 		p->rdev = NULL;
1704 		synchronize_rcu();
1705 		if (atomic_read(&rdev->nr_pending)) {
1706 			/* lost the race, try later */
1707 			err = -EBUSY;
1708 			p->rdev = rdev;
1709 			goto abort;
1710 		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
1711 			/* We just removed a device that is being replaced.
1712 			 * Move down the replacement.  We drain all IO before
1713 			 * doing this to avoid confusion.
1714 			 */
1715 			struct md_rdev *repl =
1716 				conf->mirrors[conf->raid_disks + number].rdev;
1717 			freeze_array(conf, 0);
1718 			clear_bit(Replacement, &repl->flags);
1719 			p->rdev = repl;
1720 			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1721 			unfreeze_array(conf);
1722 			clear_bit(WantReplacement, &rdev->flags);
1723 		} else
1724 			clear_bit(WantReplacement, &rdev->flags);
1725 		err = md_integrity_register(mddev);
1726 	}
1727 abort:
1728 
1729 	print_conf(conf);
1730 	return err;
1731 }
1732 
1733 
1734 static void end_sync_read(struct bio *bio, int error)
1735 {
1736 	struct r1bio *r1_bio = bio->bi_private;
1737 
1738 	update_head_pos(r1_bio->read_disk, r1_bio);
1739 
1740 	/*
1741 	 * we have read a block, now it needs to be re-written,
1742 	 * or re-read if the read failed.
1743 	 * We don't do much here, just schedule handling by raid1d
1744 	 */
1745 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1746 		set_bit(R1BIO_Uptodate, &r1_bio->state);
1747 
1748 	if (atomic_dec_and_test(&r1_bio->remaining))
1749 		reschedule_retry(r1_bio);
1750 }
1751 
1752 static void end_sync_write(struct bio *bio, int error)
1753 {
1754 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1755 	struct r1bio *r1_bio = bio->bi_private;
1756 	struct mddev *mddev = r1_bio->mddev;
1757 	struct r1conf *conf = mddev->private;
1758 	int mirror=0;
1759 	sector_t first_bad;
1760 	int bad_sectors;
1761 
1762 	mirror = find_bio_disk(r1_bio, bio);
1763 
1764 	if (!uptodate) {
1765 		sector_t sync_blocks = 0;
1766 		sector_t s = r1_bio->sector;
1767 		long sectors_to_go = r1_bio->sectors;
1768 		/* make sure these bits doesn't get cleared. */
1769 		do {
1770 			bitmap_end_sync(mddev->bitmap, s,
1771 					&sync_blocks, 1);
1772 			s += sync_blocks;
1773 			sectors_to_go -= sync_blocks;
1774 		} while (sectors_to_go > 0);
1775 		set_bit(WriteErrorSeen,
1776 			&conf->mirrors[mirror].rdev->flags);
1777 		if (!test_and_set_bit(WantReplacement,
1778 				      &conf->mirrors[mirror].rdev->flags))
1779 			set_bit(MD_RECOVERY_NEEDED, &
1780 				mddev->recovery);
1781 		set_bit(R1BIO_WriteError, &r1_bio->state);
1782 	} else if (is_badblock(conf->mirrors[mirror].rdev,
1783 			       r1_bio->sector,
1784 			       r1_bio->sectors,
1785 			       &first_bad, &bad_sectors) &&
1786 		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1787 				r1_bio->sector,
1788 				r1_bio->sectors,
1789 				&first_bad, &bad_sectors)
1790 		)
1791 		set_bit(R1BIO_MadeGood, &r1_bio->state);
1792 
1793 	if (atomic_dec_and_test(&r1_bio->remaining)) {
1794 		int s = r1_bio->sectors;
1795 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1796 		    test_bit(R1BIO_WriteError, &r1_bio->state))
1797 			reschedule_retry(r1_bio);
1798 		else {
1799 			put_buf(r1_bio);
1800 			md_done_sync(mddev, s, uptodate);
1801 		}
1802 	}
1803 }
1804 
1805 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1806 			    int sectors, struct page *page, int rw)
1807 {
1808 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1809 		/* success */
1810 		return 1;
1811 	if (rw == WRITE) {
1812 		set_bit(WriteErrorSeen, &rdev->flags);
1813 		if (!test_and_set_bit(WantReplacement,
1814 				      &rdev->flags))
1815 			set_bit(MD_RECOVERY_NEEDED, &
1816 				rdev->mddev->recovery);
1817 	}
1818 	/* need to record an error - either for the block or the device */
1819 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1820 		md_error(rdev->mddev, rdev);
1821 	return 0;
1822 }
1823 
1824 static int fix_sync_read_error(struct r1bio *r1_bio)
1825 {
1826 	/* Try some synchronous reads of other devices to get
1827 	 * good data, much like with normal read errors.  Only
1828 	 * read into the pages we already have so we don't
1829 	 * need to re-issue the read request.
1830 	 * We don't need to freeze the array, because being in an
1831 	 * active sync request, there is no normal IO, and
1832 	 * no overlapping syncs.
1833 	 * We don't need to check is_badblock() again as we
1834 	 * made sure that anything with a bad block in range
1835 	 * will have bi_end_io clear.
1836 	 */
1837 	struct mddev *mddev = r1_bio->mddev;
1838 	struct r1conf *conf = mddev->private;
1839 	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1840 	sector_t sect = r1_bio->sector;
1841 	int sectors = r1_bio->sectors;
1842 	int idx = 0;
1843 
1844 	while(sectors) {
1845 		int s = sectors;
1846 		int d = r1_bio->read_disk;
1847 		int success = 0;
1848 		struct md_rdev *rdev;
1849 		int start;
1850 
1851 		if (s > (PAGE_SIZE>>9))
1852 			s = PAGE_SIZE >> 9;
1853 		do {
1854 			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1855 				/* No rcu protection needed here devices
1856 				 * can only be removed when no resync is
1857 				 * active, and resync is currently active
1858 				 */
1859 				rdev = conf->mirrors[d].rdev;
1860 				if (sync_page_io(rdev, sect, s<<9,
1861 						 bio->bi_io_vec[idx].bv_page,
1862 						 READ, false)) {
1863 					success = 1;
1864 					break;
1865 				}
1866 			}
1867 			d++;
1868 			if (d == conf->raid_disks * 2)
1869 				d = 0;
1870 		} while (!success && d != r1_bio->read_disk);
1871 
1872 		if (!success) {
1873 			char b[BDEVNAME_SIZE];
1874 			int abort = 0;
1875 			/* Cannot read from anywhere, this block is lost.
1876 			 * Record a bad block on each device.  If that doesn't
1877 			 * work just disable and interrupt the recovery.
1878 			 * Don't fail devices as that won't really help.
1879 			 */
1880 			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1881 			       " for block %llu\n",
1882 			       mdname(mddev),
1883 			       bdevname(bio->bi_bdev, b),
1884 			       (unsigned long long)r1_bio->sector);
1885 			for (d = 0; d < conf->raid_disks * 2; d++) {
1886 				rdev = conf->mirrors[d].rdev;
1887 				if (!rdev || test_bit(Faulty, &rdev->flags))
1888 					continue;
1889 				if (!rdev_set_badblocks(rdev, sect, s, 0))
1890 					abort = 1;
1891 			}
1892 			if (abort) {
1893 				conf->recovery_disabled =
1894 					mddev->recovery_disabled;
1895 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1896 				md_done_sync(mddev, r1_bio->sectors, 0);
1897 				put_buf(r1_bio);
1898 				return 0;
1899 			}
1900 			/* Try next page */
1901 			sectors -= s;
1902 			sect += s;
1903 			idx++;
1904 			continue;
1905 		}
1906 
1907 		start = d;
1908 		/* write it back and re-read */
1909 		while (d != r1_bio->read_disk) {
1910 			if (d == 0)
1911 				d = conf->raid_disks * 2;
1912 			d--;
1913 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1914 				continue;
1915 			rdev = conf->mirrors[d].rdev;
1916 			if (r1_sync_page_io(rdev, sect, s,
1917 					    bio->bi_io_vec[idx].bv_page,
1918 					    WRITE) == 0) {
1919 				r1_bio->bios[d]->bi_end_io = NULL;
1920 				rdev_dec_pending(rdev, mddev);
1921 			}
1922 		}
1923 		d = start;
1924 		while (d != r1_bio->read_disk) {
1925 			if (d == 0)
1926 				d = conf->raid_disks * 2;
1927 			d--;
1928 			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1929 				continue;
1930 			rdev = conf->mirrors[d].rdev;
1931 			if (r1_sync_page_io(rdev, sect, s,
1932 					    bio->bi_io_vec[idx].bv_page,
1933 					    READ) != 0)
1934 				atomic_add(s, &rdev->corrected_errors);
1935 		}
1936 		sectors -= s;
1937 		sect += s;
1938 		idx ++;
1939 	}
1940 	set_bit(R1BIO_Uptodate, &r1_bio->state);
1941 	set_bit(BIO_UPTODATE, &bio->bi_flags);
1942 	return 1;
1943 }
1944 
1945 static int process_checks(struct r1bio *r1_bio)
1946 {
1947 	/* We have read all readable devices.  If we haven't
1948 	 * got the block, then there is no hope left.
1949 	 * If we have, then we want to do a comparison
1950 	 * and skip the write if everything is the same.
1951 	 * If any blocks failed to read, then we need to
1952 	 * attempt an over-write
1953 	 */
1954 	struct mddev *mddev = r1_bio->mddev;
1955 	struct r1conf *conf = mddev->private;
1956 	int primary;
1957 	int i;
1958 	int vcnt;
1959 
1960 	/* Fix variable parts of all bios */
1961 	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1962 	for (i = 0; i < conf->raid_disks * 2; i++) {
1963 		int j;
1964 		int size;
1965 		int uptodate;
1966 		struct bio *b = r1_bio->bios[i];
1967 		if (b->bi_end_io != end_sync_read)
1968 			continue;
1969 		/* fixup the bio for reuse, but preserve BIO_UPTODATE */
1970 		uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1971 		bio_reset(b);
1972 		if (!uptodate)
1973 			clear_bit(BIO_UPTODATE, &b->bi_flags);
1974 		b->bi_vcnt = vcnt;
1975 		b->bi_iter.bi_size = r1_bio->sectors << 9;
1976 		b->bi_iter.bi_sector = r1_bio->sector +
1977 			conf->mirrors[i].rdev->data_offset;
1978 		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1979 		b->bi_end_io = end_sync_read;
1980 		b->bi_private = r1_bio;
1981 
1982 		size = b->bi_iter.bi_size;
1983 		for (j = 0; j < vcnt ; j++) {
1984 			struct bio_vec *bi;
1985 			bi = &b->bi_io_vec[j];
1986 			bi->bv_offset = 0;
1987 			if (size > PAGE_SIZE)
1988 				bi->bv_len = PAGE_SIZE;
1989 			else
1990 				bi->bv_len = size;
1991 			size -= PAGE_SIZE;
1992 		}
1993 	}
1994 	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1995 		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1996 		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1997 			r1_bio->bios[primary]->bi_end_io = NULL;
1998 			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1999 			break;
2000 		}
2001 	r1_bio->read_disk = primary;
2002 	for (i = 0; i < conf->raid_disks * 2; i++) {
2003 		int j;
2004 		struct bio *pbio = r1_bio->bios[primary];
2005 		struct bio *sbio = r1_bio->bios[i];
2006 		int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2007 
2008 		if (sbio->bi_end_io != end_sync_read)
2009 			continue;
2010 		/* Now we can 'fixup' the BIO_UPTODATE flag */
2011 		set_bit(BIO_UPTODATE, &sbio->bi_flags);
2012 
2013 		if (uptodate) {
2014 			for (j = vcnt; j-- ; ) {
2015 				struct page *p, *s;
2016 				p = pbio->bi_io_vec[j].bv_page;
2017 				s = sbio->bi_io_vec[j].bv_page;
2018 				if (memcmp(page_address(p),
2019 					   page_address(s),
2020 					   sbio->bi_io_vec[j].bv_len))
2021 					break;
2022 			}
2023 		} else
2024 			j = 0;
2025 		if (j >= 0)
2026 			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2027 		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2028 			      && uptodate)) {
2029 			/* No need to write to this device. */
2030 			sbio->bi_end_io = NULL;
2031 			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2032 			continue;
2033 		}
2034 
2035 		bio_copy_data(sbio, pbio);
2036 	}
2037 	return 0;
2038 }
2039 
2040 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2041 {
2042 	struct r1conf *conf = mddev->private;
2043 	int i;
2044 	int disks = conf->raid_disks * 2;
2045 	struct bio *bio, *wbio;
2046 
2047 	bio = r1_bio->bios[r1_bio->read_disk];
2048 
2049 	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2050 		/* ouch - failed to read all of that. */
2051 		if (!fix_sync_read_error(r1_bio))
2052 			return;
2053 
2054 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2055 		if (process_checks(r1_bio) < 0)
2056 			return;
2057 	/*
2058 	 * schedule writes
2059 	 */
2060 	atomic_set(&r1_bio->remaining, 1);
2061 	for (i = 0; i < disks ; i++) {
2062 		wbio = r1_bio->bios[i];
2063 		if (wbio->bi_end_io == NULL ||
2064 		    (wbio->bi_end_io == end_sync_read &&
2065 		     (i == r1_bio->read_disk ||
2066 		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2067 			continue;
2068 
2069 		wbio->bi_rw = WRITE;
2070 		wbio->bi_end_io = end_sync_write;
2071 		atomic_inc(&r1_bio->remaining);
2072 		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2073 
2074 		generic_make_request(wbio);
2075 	}
2076 
2077 	if (atomic_dec_and_test(&r1_bio->remaining)) {
2078 		/* if we're here, all write(s) have completed, so clean up */
2079 		int s = r1_bio->sectors;
2080 		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2081 		    test_bit(R1BIO_WriteError, &r1_bio->state))
2082 			reschedule_retry(r1_bio);
2083 		else {
2084 			put_buf(r1_bio);
2085 			md_done_sync(mddev, s, 1);
2086 		}
2087 	}
2088 }
2089 
2090 /*
2091  * This is a kernel thread which:
2092  *
2093  *	1.	Retries failed read operations on working mirrors.
2094  *	2.	Updates the raid superblock when problems encounter.
2095  *	3.	Performs writes following reads for array synchronising.
2096  */
2097 
2098 static void fix_read_error(struct r1conf *conf, int read_disk,
2099 			   sector_t sect, int sectors)
2100 {
2101 	struct mddev *mddev = conf->mddev;
2102 	while(sectors) {
2103 		int s = sectors;
2104 		int d = read_disk;
2105 		int success = 0;
2106 		int start;
2107 		struct md_rdev *rdev;
2108 
2109 		if (s > (PAGE_SIZE>>9))
2110 			s = PAGE_SIZE >> 9;
2111 
2112 		do {
2113 			/* Note: no rcu protection needed here
2114 			 * as this is synchronous in the raid1d thread
2115 			 * which is the thread that might remove
2116 			 * a device.  If raid1d ever becomes multi-threaded....
2117 			 */
2118 			sector_t first_bad;
2119 			int bad_sectors;
2120 
2121 			rdev = conf->mirrors[d].rdev;
2122 			if (rdev &&
2123 			    (test_bit(In_sync, &rdev->flags) ||
2124 			     (!test_bit(Faulty, &rdev->flags) &&
2125 			      rdev->recovery_offset >= sect + s)) &&
2126 			    is_badblock(rdev, sect, s,
2127 					&first_bad, &bad_sectors) == 0 &&
2128 			    sync_page_io(rdev, sect, s<<9,
2129 					 conf->tmppage, READ, false))
2130 				success = 1;
2131 			else {
2132 				d++;
2133 				if (d == conf->raid_disks * 2)
2134 					d = 0;
2135 			}
2136 		} while (!success && d != read_disk);
2137 
2138 		if (!success) {
2139 			/* Cannot read from anywhere - mark it bad */
2140 			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2141 			if (!rdev_set_badblocks(rdev, sect, s, 0))
2142 				md_error(mddev, rdev);
2143 			break;
2144 		}
2145 		/* write it back and re-read */
2146 		start = d;
2147 		while (d != read_disk) {
2148 			if (d==0)
2149 				d = conf->raid_disks * 2;
2150 			d--;
2151 			rdev = conf->mirrors[d].rdev;
2152 			if (rdev &&
2153 			    test_bit(In_sync, &rdev->flags))
2154 				r1_sync_page_io(rdev, sect, s,
2155 						conf->tmppage, WRITE);
2156 		}
2157 		d = start;
2158 		while (d != read_disk) {
2159 			char b[BDEVNAME_SIZE];
2160 			if (d==0)
2161 				d = conf->raid_disks * 2;
2162 			d--;
2163 			rdev = conf->mirrors[d].rdev;
2164 			if (rdev &&
2165 			    test_bit(In_sync, &rdev->flags)) {
2166 				if (r1_sync_page_io(rdev, sect, s,
2167 						    conf->tmppage, READ)) {
2168 					atomic_add(s, &rdev->corrected_errors);
2169 					printk(KERN_INFO
2170 					       "md/raid1:%s: read error corrected "
2171 					       "(%d sectors at %llu on %s)\n",
2172 					       mdname(mddev), s,
2173 					       (unsigned long long)(sect +
2174 					           rdev->data_offset),
2175 					       bdevname(rdev->bdev, b));
2176 				}
2177 			}
2178 		}
2179 		sectors -= s;
2180 		sect += s;
2181 	}
2182 }
2183 
2184 static int narrow_write_error(struct r1bio *r1_bio, int i)
2185 {
2186 	struct mddev *mddev = r1_bio->mddev;
2187 	struct r1conf *conf = mddev->private;
2188 	struct md_rdev *rdev = conf->mirrors[i].rdev;
2189 
2190 	/* bio has the data to be written to device 'i' where
2191 	 * we just recently had a write error.
2192 	 * We repeatedly clone the bio and trim down to one block,
2193 	 * then try the write.  Where the write fails we record
2194 	 * a bad block.
2195 	 * It is conceivable that the bio doesn't exactly align with
2196 	 * blocks.  We must handle this somehow.
2197 	 *
2198 	 * We currently own a reference on the rdev.
2199 	 */
2200 
2201 	int block_sectors;
2202 	sector_t sector;
2203 	int sectors;
2204 	int sect_to_write = r1_bio->sectors;
2205 	int ok = 1;
2206 
2207 	if (rdev->badblocks.shift < 0)
2208 		return 0;
2209 
2210 	block_sectors = 1 << rdev->badblocks.shift;
2211 	sector = r1_bio->sector;
2212 	sectors = ((sector + block_sectors)
2213 		   & ~(sector_t)(block_sectors - 1))
2214 		- sector;
2215 
2216 	while (sect_to_write) {
2217 		struct bio *wbio;
2218 		if (sectors > sect_to_write)
2219 			sectors = sect_to_write;
2220 		/* Write at 'sector' for 'sectors'*/
2221 
2222 		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2223 			unsigned vcnt = r1_bio->behind_page_count;
2224 			struct bio_vec *vec = r1_bio->behind_bvecs;
2225 
2226 			while (!vec->bv_page) {
2227 				vec++;
2228 				vcnt--;
2229 			}
2230 
2231 			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2232 			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2233 
2234 			wbio->bi_vcnt = vcnt;
2235 		} else {
2236 			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2237 		}
2238 
2239 		wbio->bi_rw = WRITE;
2240 		wbio->bi_iter.bi_sector = r1_bio->sector;
2241 		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2242 
2243 		bio_trim(wbio, sector - r1_bio->sector, sectors);
2244 		wbio->bi_iter.bi_sector += rdev->data_offset;
2245 		wbio->bi_bdev = rdev->bdev;
2246 		if (submit_bio_wait(WRITE, wbio) == 0)
2247 			/* failure! */
2248 			ok = rdev_set_badblocks(rdev, sector,
2249 						sectors, 0)
2250 				&& ok;
2251 
2252 		bio_put(wbio);
2253 		sect_to_write -= sectors;
2254 		sector += sectors;
2255 		sectors = block_sectors;
2256 	}
2257 	return ok;
2258 }
2259 
2260 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2261 {
2262 	int m;
2263 	int s = r1_bio->sectors;
2264 	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2265 		struct md_rdev *rdev = conf->mirrors[m].rdev;
2266 		struct bio *bio = r1_bio->bios[m];
2267 		if (bio->bi_end_io == NULL)
2268 			continue;
2269 		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2270 		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2271 			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2272 		}
2273 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2274 		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2275 			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2276 				md_error(conf->mddev, rdev);
2277 		}
2278 	}
2279 	put_buf(r1_bio);
2280 	md_done_sync(conf->mddev, s, 1);
2281 }
2282 
2283 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2284 {
2285 	int m;
2286 	for (m = 0; m < conf->raid_disks * 2 ; m++)
2287 		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2288 			struct md_rdev *rdev = conf->mirrors[m].rdev;
2289 			rdev_clear_badblocks(rdev,
2290 					     r1_bio->sector,
2291 					     r1_bio->sectors, 0);
2292 			rdev_dec_pending(rdev, conf->mddev);
2293 		} else if (r1_bio->bios[m] != NULL) {
2294 			/* This drive got a write error.  We need to
2295 			 * narrow down and record precise write
2296 			 * errors.
2297 			 */
2298 			if (!narrow_write_error(r1_bio, m)) {
2299 				md_error(conf->mddev,
2300 					 conf->mirrors[m].rdev);
2301 				/* an I/O failed, we can't clear the bitmap */
2302 				set_bit(R1BIO_Degraded, &r1_bio->state);
2303 			}
2304 			rdev_dec_pending(conf->mirrors[m].rdev,
2305 					 conf->mddev);
2306 		}
2307 	if (test_bit(R1BIO_WriteError, &r1_bio->state))
2308 		close_write(r1_bio);
2309 	raid_end_bio_io(r1_bio);
2310 }
2311 
2312 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2313 {
2314 	int disk;
2315 	int max_sectors;
2316 	struct mddev *mddev = conf->mddev;
2317 	struct bio *bio;
2318 	char b[BDEVNAME_SIZE];
2319 	struct md_rdev *rdev;
2320 
2321 	clear_bit(R1BIO_ReadError, &r1_bio->state);
2322 	/* we got a read error. Maybe the drive is bad.  Maybe just
2323 	 * the block and we can fix it.
2324 	 * We freeze all other IO, and try reading the block from
2325 	 * other devices.  When we find one, we re-write
2326 	 * and check it that fixes the read error.
2327 	 * This is all done synchronously while the array is
2328 	 * frozen
2329 	 */
2330 	if (mddev->ro == 0) {
2331 		freeze_array(conf, 1);
2332 		fix_read_error(conf, r1_bio->read_disk,
2333 			       r1_bio->sector, r1_bio->sectors);
2334 		unfreeze_array(conf);
2335 	} else
2336 		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2337 	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2338 
2339 	bio = r1_bio->bios[r1_bio->read_disk];
2340 	bdevname(bio->bi_bdev, b);
2341 read_more:
2342 	disk = read_balance(conf, r1_bio, &max_sectors);
2343 	if (disk == -1) {
2344 		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2345 		       " read error for block %llu\n",
2346 		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2347 		raid_end_bio_io(r1_bio);
2348 	} else {
2349 		const unsigned long do_sync
2350 			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2351 		if (bio) {
2352 			r1_bio->bios[r1_bio->read_disk] =
2353 				mddev->ro ? IO_BLOCKED : NULL;
2354 			bio_put(bio);
2355 		}
2356 		r1_bio->read_disk = disk;
2357 		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2358 		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2359 			 max_sectors);
2360 		r1_bio->bios[r1_bio->read_disk] = bio;
2361 		rdev = conf->mirrors[disk].rdev;
2362 		printk_ratelimited(KERN_ERR
2363 				   "md/raid1:%s: redirecting sector %llu"
2364 				   " to other mirror: %s\n",
2365 				   mdname(mddev),
2366 				   (unsigned long long)r1_bio->sector,
2367 				   bdevname(rdev->bdev, b));
2368 		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2369 		bio->bi_bdev = rdev->bdev;
2370 		bio->bi_end_io = raid1_end_read_request;
2371 		bio->bi_rw = READ | do_sync;
2372 		bio->bi_private = r1_bio;
2373 		if (max_sectors < r1_bio->sectors) {
2374 			/* Drat - have to split this up more */
2375 			struct bio *mbio = r1_bio->master_bio;
2376 			int sectors_handled = (r1_bio->sector + max_sectors
2377 					       - mbio->bi_iter.bi_sector);
2378 			r1_bio->sectors = max_sectors;
2379 			spin_lock_irq(&conf->device_lock);
2380 			if (mbio->bi_phys_segments == 0)
2381 				mbio->bi_phys_segments = 2;
2382 			else
2383 				mbio->bi_phys_segments++;
2384 			spin_unlock_irq(&conf->device_lock);
2385 			generic_make_request(bio);
2386 			bio = NULL;
2387 
2388 			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2389 
2390 			r1_bio->master_bio = mbio;
2391 			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2392 			r1_bio->state = 0;
2393 			set_bit(R1BIO_ReadError, &r1_bio->state);
2394 			r1_bio->mddev = mddev;
2395 			r1_bio->sector = mbio->bi_iter.bi_sector +
2396 				sectors_handled;
2397 
2398 			goto read_more;
2399 		} else
2400 			generic_make_request(bio);
2401 	}
2402 }
2403 
2404 static void raid1d(struct md_thread *thread)
2405 {
2406 	struct mddev *mddev = thread->mddev;
2407 	struct r1bio *r1_bio;
2408 	unsigned long flags;
2409 	struct r1conf *conf = mddev->private;
2410 	struct list_head *head = &conf->retry_list;
2411 	struct blk_plug plug;
2412 
2413 	md_check_recovery(mddev);
2414 
2415 	blk_start_plug(&plug);
2416 	for (;;) {
2417 
2418 		flush_pending_writes(conf);
2419 
2420 		spin_lock_irqsave(&conf->device_lock, flags);
2421 		if (list_empty(head)) {
2422 			spin_unlock_irqrestore(&conf->device_lock, flags);
2423 			break;
2424 		}
2425 		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2426 		list_del(head->prev);
2427 		conf->nr_queued--;
2428 		spin_unlock_irqrestore(&conf->device_lock, flags);
2429 
2430 		mddev = r1_bio->mddev;
2431 		conf = mddev->private;
2432 		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2433 			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2434 			    test_bit(R1BIO_WriteError, &r1_bio->state))
2435 				handle_sync_write_finished(conf, r1_bio);
2436 			else
2437 				sync_request_write(mddev, r1_bio);
2438 		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2439 			   test_bit(R1BIO_WriteError, &r1_bio->state))
2440 			handle_write_finished(conf, r1_bio);
2441 		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2442 			handle_read_error(conf, r1_bio);
2443 		else
2444 			/* just a partial read to be scheduled from separate
2445 			 * context
2446 			 */
2447 			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2448 
2449 		cond_resched();
2450 		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2451 			md_check_recovery(mddev);
2452 	}
2453 	blk_finish_plug(&plug);
2454 }
2455 
2456 
2457 static int init_resync(struct r1conf *conf)
2458 {
2459 	int buffs;
2460 
2461 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2462 	BUG_ON(conf->r1buf_pool);
2463 	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2464 					  conf->poolinfo);
2465 	if (!conf->r1buf_pool)
2466 		return -ENOMEM;
2467 	conf->next_resync = 0;
2468 	return 0;
2469 }
2470 
2471 /*
2472  * perform a "sync" on one "block"
2473  *
2474  * We need to make sure that no normal I/O request - particularly write
2475  * requests - conflict with active sync requests.
2476  *
2477  * This is achieved by tracking pending requests and a 'barrier' concept
2478  * that can be installed to exclude normal IO requests.
2479  */
2480 
2481 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2482 {
2483 	struct r1conf *conf = mddev->private;
2484 	struct r1bio *r1_bio;
2485 	struct bio *bio;
2486 	sector_t max_sector, nr_sectors;
2487 	int disk = -1;
2488 	int i;
2489 	int wonly = -1;
2490 	int write_targets = 0, read_targets = 0;
2491 	sector_t sync_blocks;
2492 	int still_degraded = 0;
2493 	int good_sectors = RESYNC_SECTORS;
2494 	int min_bad = 0; /* number of sectors that are bad in all devices */
2495 
2496 	if (!conf->r1buf_pool)
2497 		if (init_resync(conf))
2498 			return 0;
2499 
2500 	max_sector = mddev->dev_sectors;
2501 	if (sector_nr >= max_sector) {
2502 		/* If we aborted, we need to abort the
2503 		 * sync on the 'current' bitmap chunk (there will
2504 		 * only be one in raid1 resync.
2505 		 * We can find the current addess in mddev->curr_resync
2506 		 */
2507 		if (mddev->curr_resync < max_sector) /* aborted */
2508 			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2509 						&sync_blocks, 1);
2510 		else /* completed sync */
2511 			conf->fullsync = 0;
2512 
2513 		bitmap_close_sync(mddev->bitmap);
2514 		close_sync(conf);
2515 		return 0;
2516 	}
2517 
2518 	if (mddev->bitmap == NULL &&
2519 	    mddev->recovery_cp == MaxSector &&
2520 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2521 	    conf->fullsync == 0) {
2522 		*skipped = 1;
2523 		return max_sector - sector_nr;
2524 	}
2525 	/* before building a request, check if we can skip these blocks..
2526 	 * This call the bitmap_start_sync doesn't actually record anything
2527 	 */
2528 	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2529 	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2530 		/* We can skip this block, and probably several more */
2531 		*skipped = 1;
2532 		return sync_blocks;
2533 	}
2534 	/*
2535 	 * If there is non-resync activity waiting for a turn,
2536 	 * and resync is going fast enough,
2537 	 * then let it though before starting on this new sync request.
2538 	 */
2539 	if (!go_faster && conf->nr_waiting)
2540 		msleep_interruptible(1000);
2541 
2542 	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2543 	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2544 	raise_barrier(conf);
2545 
2546 	conf->next_resync = sector_nr;
2547 
2548 	rcu_read_lock();
2549 	/*
2550 	 * If we get a correctably read error during resync or recovery,
2551 	 * we might want to read from a different device.  So we
2552 	 * flag all drives that could conceivably be read from for READ,
2553 	 * and any others (which will be non-In_sync devices) for WRITE.
2554 	 * If a read fails, we try reading from something else for which READ
2555 	 * is OK.
2556 	 */
2557 
2558 	r1_bio->mddev = mddev;
2559 	r1_bio->sector = sector_nr;
2560 	r1_bio->state = 0;
2561 	set_bit(R1BIO_IsSync, &r1_bio->state);
2562 
2563 	for (i = 0; i < conf->raid_disks * 2; i++) {
2564 		struct md_rdev *rdev;
2565 		bio = r1_bio->bios[i];
2566 		bio_reset(bio);
2567 
2568 		rdev = rcu_dereference(conf->mirrors[i].rdev);
2569 		if (rdev == NULL ||
2570 		    test_bit(Faulty, &rdev->flags)) {
2571 			if (i < conf->raid_disks)
2572 				still_degraded = 1;
2573 		} else if (!test_bit(In_sync, &rdev->flags)) {
2574 			bio->bi_rw = WRITE;
2575 			bio->bi_end_io = end_sync_write;
2576 			write_targets ++;
2577 		} else {
2578 			/* may need to read from here */
2579 			sector_t first_bad = MaxSector;
2580 			int bad_sectors;
2581 
2582 			if (is_badblock(rdev, sector_nr, good_sectors,
2583 					&first_bad, &bad_sectors)) {
2584 				if (first_bad > sector_nr)
2585 					good_sectors = first_bad - sector_nr;
2586 				else {
2587 					bad_sectors -= (sector_nr - first_bad);
2588 					if (min_bad == 0 ||
2589 					    min_bad > bad_sectors)
2590 						min_bad = bad_sectors;
2591 				}
2592 			}
2593 			if (sector_nr < first_bad) {
2594 				if (test_bit(WriteMostly, &rdev->flags)) {
2595 					if (wonly < 0)
2596 						wonly = i;
2597 				} else {
2598 					if (disk < 0)
2599 						disk = i;
2600 				}
2601 				bio->bi_rw = READ;
2602 				bio->bi_end_io = end_sync_read;
2603 				read_targets++;
2604 			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2605 				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2606 				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2607 				/*
2608 				 * The device is suitable for reading (InSync),
2609 				 * but has bad block(s) here. Let's try to correct them,
2610 				 * if we are doing resync or repair. Otherwise, leave
2611 				 * this device alone for this sync request.
2612 				 */
2613 				bio->bi_rw = WRITE;
2614 				bio->bi_end_io = end_sync_write;
2615 				write_targets++;
2616 			}
2617 		}
2618 		if (bio->bi_end_io) {
2619 			atomic_inc(&rdev->nr_pending);
2620 			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2621 			bio->bi_bdev = rdev->bdev;
2622 			bio->bi_private = r1_bio;
2623 		}
2624 	}
2625 	rcu_read_unlock();
2626 	if (disk < 0)
2627 		disk = wonly;
2628 	r1_bio->read_disk = disk;
2629 
2630 	if (read_targets == 0 && min_bad > 0) {
2631 		/* These sectors are bad on all InSync devices, so we
2632 		 * need to mark them bad on all write targets
2633 		 */
2634 		int ok = 1;
2635 		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2636 			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2637 				struct md_rdev *rdev = conf->mirrors[i].rdev;
2638 				ok = rdev_set_badblocks(rdev, sector_nr,
2639 							min_bad, 0
2640 					) && ok;
2641 			}
2642 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2643 		*skipped = 1;
2644 		put_buf(r1_bio);
2645 
2646 		if (!ok) {
2647 			/* Cannot record the badblocks, so need to
2648 			 * abort the resync.
2649 			 * If there are multiple read targets, could just
2650 			 * fail the really bad ones ???
2651 			 */
2652 			conf->recovery_disabled = mddev->recovery_disabled;
2653 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2654 			return 0;
2655 		} else
2656 			return min_bad;
2657 
2658 	}
2659 	if (min_bad > 0 && min_bad < good_sectors) {
2660 		/* only resync enough to reach the next bad->good
2661 		 * transition */
2662 		good_sectors = min_bad;
2663 	}
2664 
2665 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2666 		/* extra read targets are also write targets */
2667 		write_targets += read_targets-1;
2668 
2669 	if (write_targets == 0 || read_targets == 0) {
2670 		/* There is nowhere to write, so all non-sync
2671 		 * drives must be failed - so we are finished
2672 		 */
2673 		sector_t rv;
2674 		if (min_bad > 0)
2675 			max_sector = sector_nr + min_bad;
2676 		rv = max_sector - sector_nr;
2677 		*skipped = 1;
2678 		put_buf(r1_bio);
2679 		return rv;
2680 	}
2681 
2682 	if (max_sector > mddev->resync_max)
2683 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2684 	if (max_sector > sector_nr + good_sectors)
2685 		max_sector = sector_nr + good_sectors;
2686 	nr_sectors = 0;
2687 	sync_blocks = 0;
2688 	do {
2689 		struct page *page;
2690 		int len = PAGE_SIZE;
2691 		if (sector_nr + (len>>9) > max_sector)
2692 			len = (max_sector - sector_nr) << 9;
2693 		if (len == 0)
2694 			break;
2695 		if (sync_blocks == 0) {
2696 			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2697 					       &sync_blocks, still_degraded) &&
2698 			    !conf->fullsync &&
2699 			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2700 				break;
2701 			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2702 			if ((len >> 9) > sync_blocks)
2703 				len = sync_blocks<<9;
2704 		}
2705 
2706 		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2707 			bio = r1_bio->bios[i];
2708 			if (bio->bi_end_io) {
2709 				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2710 				if (bio_add_page(bio, page, len, 0) == 0) {
2711 					/* stop here */
2712 					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2713 					while (i > 0) {
2714 						i--;
2715 						bio = r1_bio->bios[i];
2716 						if (bio->bi_end_io==NULL)
2717 							continue;
2718 						/* remove last page from this bio */
2719 						bio->bi_vcnt--;
2720 						bio->bi_iter.bi_size -= len;
2721 						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2722 					}
2723 					goto bio_full;
2724 				}
2725 			}
2726 		}
2727 		nr_sectors += len>>9;
2728 		sector_nr += len>>9;
2729 		sync_blocks -= (len>>9);
2730 	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2731  bio_full:
2732 	r1_bio->sectors = nr_sectors;
2733 
2734 	/* For a user-requested sync, we read all readable devices and do a
2735 	 * compare
2736 	 */
2737 	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2738 		atomic_set(&r1_bio->remaining, read_targets);
2739 		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2740 			bio = r1_bio->bios[i];
2741 			if (bio->bi_end_io == end_sync_read) {
2742 				read_targets--;
2743 				md_sync_acct(bio->bi_bdev, nr_sectors);
2744 				generic_make_request(bio);
2745 			}
2746 		}
2747 	} else {
2748 		atomic_set(&r1_bio->remaining, 1);
2749 		bio = r1_bio->bios[r1_bio->read_disk];
2750 		md_sync_acct(bio->bi_bdev, nr_sectors);
2751 		generic_make_request(bio);
2752 
2753 	}
2754 	return nr_sectors;
2755 }
2756 
2757 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2758 {
2759 	if (sectors)
2760 		return sectors;
2761 
2762 	return mddev->dev_sectors;
2763 }
2764 
2765 static struct r1conf *setup_conf(struct mddev *mddev)
2766 {
2767 	struct r1conf *conf;
2768 	int i;
2769 	struct raid1_info *disk;
2770 	struct md_rdev *rdev;
2771 	int err = -ENOMEM;
2772 
2773 	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2774 	if (!conf)
2775 		goto abort;
2776 
2777 	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2778 				* mddev->raid_disks * 2,
2779 				 GFP_KERNEL);
2780 	if (!conf->mirrors)
2781 		goto abort;
2782 
2783 	conf->tmppage = alloc_page(GFP_KERNEL);
2784 	if (!conf->tmppage)
2785 		goto abort;
2786 
2787 	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2788 	if (!conf->poolinfo)
2789 		goto abort;
2790 	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2791 	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2792 					  r1bio_pool_free,
2793 					  conf->poolinfo);
2794 	if (!conf->r1bio_pool)
2795 		goto abort;
2796 
2797 	conf->poolinfo->mddev = mddev;
2798 
2799 	err = -EINVAL;
2800 	spin_lock_init(&conf->device_lock);
2801 	rdev_for_each(rdev, mddev) {
2802 		struct request_queue *q;
2803 		int disk_idx = rdev->raid_disk;
2804 		if (disk_idx >= mddev->raid_disks
2805 		    || disk_idx < 0)
2806 			continue;
2807 		if (test_bit(Replacement, &rdev->flags))
2808 			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2809 		else
2810 			disk = conf->mirrors + disk_idx;
2811 
2812 		if (disk->rdev)
2813 			goto abort;
2814 		disk->rdev = rdev;
2815 		q = bdev_get_queue(rdev->bdev);
2816 		if (q->merge_bvec_fn)
2817 			mddev->merge_check_needed = 1;
2818 
2819 		disk->head_position = 0;
2820 		disk->seq_start = MaxSector;
2821 	}
2822 	conf->raid_disks = mddev->raid_disks;
2823 	conf->mddev = mddev;
2824 	INIT_LIST_HEAD(&conf->retry_list);
2825 
2826 	spin_lock_init(&conf->resync_lock);
2827 	init_waitqueue_head(&conf->wait_barrier);
2828 
2829 	bio_list_init(&conf->pending_bio_list);
2830 	conf->pending_count = 0;
2831 	conf->recovery_disabled = mddev->recovery_disabled - 1;
2832 
2833 	conf->start_next_window = MaxSector;
2834 	conf->current_window_requests = conf->next_window_requests = 0;
2835 
2836 	err = -EIO;
2837 	for (i = 0; i < conf->raid_disks * 2; i++) {
2838 
2839 		disk = conf->mirrors + i;
2840 
2841 		if (i < conf->raid_disks &&
2842 		    disk[conf->raid_disks].rdev) {
2843 			/* This slot has a replacement. */
2844 			if (!disk->rdev) {
2845 				/* No original, just make the replacement
2846 				 * a recovering spare
2847 				 */
2848 				disk->rdev =
2849 					disk[conf->raid_disks].rdev;
2850 				disk[conf->raid_disks].rdev = NULL;
2851 			} else if (!test_bit(In_sync, &disk->rdev->flags))
2852 				/* Original is not in_sync - bad */
2853 				goto abort;
2854 		}
2855 
2856 		if (!disk->rdev ||
2857 		    !test_bit(In_sync, &disk->rdev->flags)) {
2858 			disk->head_position = 0;
2859 			if (disk->rdev &&
2860 			    (disk->rdev->saved_raid_disk < 0))
2861 				conf->fullsync = 1;
2862 		}
2863 	}
2864 
2865 	err = -ENOMEM;
2866 	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2867 	if (!conf->thread) {
2868 		printk(KERN_ERR
2869 		       "md/raid1:%s: couldn't allocate thread\n",
2870 		       mdname(mddev));
2871 		goto abort;
2872 	}
2873 
2874 	return conf;
2875 
2876  abort:
2877 	if (conf) {
2878 		if (conf->r1bio_pool)
2879 			mempool_destroy(conf->r1bio_pool);
2880 		kfree(conf->mirrors);
2881 		safe_put_page(conf->tmppage);
2882 		kfree(conf->poolinfo);
2883 		kfree(conf);
2884 	}
2885 	return ERR_PTR(err);
2886 }
2887 
2888 static int stop(struct mddev *mddev);
2889 static int run(struct mddev *mddev)
2890 {
2891 	struct r1conf *conf;
2892 	int i;
2893 	struct md_rdev *rdev;
2894 	int ret;
2895 	bool discard_supported = false;
2896 
2897 	if (mddev->level != 1) {
2898 		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2899 		       mdname(mddev), mddev->level);
2900 		return -EIO;
2901 	}
2902 	if (mddev->reshape_position != MaxSector) {
2903 		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2904 		       mdname(mddev));
2905 		return -EIO;
2906 	}
2907 	/*
2908 	 * copy the already verified devices into our private RAID1
2909 	 * bookkeeping area. [whatever we allocate in run(),
2910 	 * should be freed in stop()]
2911 	 */
2912 	if (mddev->private == NULL)
2913 		conf = setup_conf(mddev);
2914 	else
2915 		conf = mddev->private;
2916 
2917 	if (IS_ERR(conf))
2918 		return PTR_ERR(conf);
2919 
2920 	if (mddev->queue)
2921 		blk_queue_max_write_same_sectors(mddev->queue, 0);
2922 
2923 	rdev_for_each(rdev, mddev) {
2924 		if (!mddev->gendisk)
2925 			continue;
2926 		disk_stack_limits(mddev->gendisk, rdev->bdev,
2927 				  rdev->data_offset << 9);
2928 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2929 			discard_supported = true;
2930 	}
2931 
2932 	mddev->degraded = 0;
2933 	for (i=0; i < conf->raid_disks; i++)
2934 		if (conf->mirrors[i].rdev == NULL ||
2935 		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2936 		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2937 			mddev->degraded++;
2938 
2939 	if (conf->raid_disks - mddev->degraded == 1)
2940 		mddev->recovery_cp = MaxSector;
2941 
2942 	if (mddev->recovery_cp != MaxSector)
2943 		printk(KERN_NOTICE "md/raid1:%s: not clean"
2944 		       " -- starting background reconstruction\n",
2945 		       mdname(mddev));
2946 	printk(KERN_INFO
2947 		"md/raid1:%s: active with %d out of %d mirrors\n",
2948 		mdname(mddev), mddev->raid_disks - mddev->degraded,
2949 		mddev->raid_disks);
2950 
2951 	/*
2952 	 * Ok, everything is just fine now
2953 	 */
2954 	mddev->thread = conf->thread;
2955 	conf->thread = NULL;
2956 	mddev->private = conf;
2957 
2958 	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2959 
2960 	if (mddev->queue) {
2961 		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2962 		mddev->queue->backing_dev_info.congested_data = mddev;
2963 		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2964 
2965 		if (discard_supported)
2966 			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2967 						mddev->queue);
2968 		else
2969 			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2970 						  mddev->queue);
2971 	}
2972 
2973 	ret =  md_integrity_register(mddev);
2974 	if (ret)
2975 		stop(mddev);
2976 	return ret;
2977 }
2978 
2979 static int stop(struct mddev *mddev)
2980 {
2981 	struct r1conf *conf = mddev->private;
2982 	struct bitmap *bitmap = mddev->bitmap;
2983 
2984 	/* wait for behind writes to complete */
2985 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2986 		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2987 		       mdname(mddev));
2988 		/* need to kick something here to make sure I/O goes? */
2989 		wait_event(bitmap->behind_wait,
2990 			   atomic_read(&bitmap->behind_writes) == 0);
2991 	}
2992 
2993 	freeze_array(conf, 0);
2994 	unfreeze_array(conf);
2995 
2996 	md_unregister_thread(&mddev->thread);
2997 	if (conf->r1bio_pool)
2998 		mempool_destroy(conf->r1bio_pool);
2999 	kfree(conf->mirrors);
3000 	safe_put_page(conf->tmppage);
3001 	kfree(conf->poolinfo);
3002 	kfree(conf);
3003 	mddev->private = NULL;
3004 	return 0;
3005 }
3006 
3007 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3008 {
3009 	/* no resync is happening, and there is enough space
3010 	 * on all devices, so we can resize.
3011 	 * We need to make sure resync covers any new space.
3012 	 * If the array is shrinking we should possibly wait until
3013 	 * any io in the removed space completes, but it hardly seems
3014 	 * worth it.
3015 	 */
3016 	sector_t newsize = raid1_size(mddev, sectors, 0);
3017 	if (mddev->external_size &&
3018 	    mddev->array_sectors > newsize)
3019 		return -EINVAL;
3020 	if (mddev->bitmap) {
3021 		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3022 		if (ret)
3023 			return ret;
3024 	}
3025 	md_set_array_sectors(mddev, newsize);
3026 	set_capacity(mddev->gendisk, mddev->array_sectors);
3027 	revalidate_disk(mddev->gendisk);
3028 	if (sectors > mddev->dev_sectors &&
3029 	    mddev->recovery_cp > mddev->dev_sectors) {
3030 		mddev->recovery_cp = mddev->dev_sectors;
3031 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3032 	}
3033 	mddev->dev_sectors = sectors;
3034 	mddev->resync_max_sectors = sectors;
3035 	return 0;
3036 }
3037 
3038 static int raid1_reshape(struct mddev *mddev)
3039 {
3040 	/* We need to:
3041 	 * 1/ resize the r1bio_pool
3042 	 * 2/ resize conf->mirrors
3043 	 *
3044 	 * We allocate a new r1bio_pool if we can.
3045 	 * Then raise a device barrier and wait until all IO stops.
3046 	 * Then resize conf->mirrors and swap in the new r1bio pool.
3047 	 *
3048 	 * At the same time, we "pack" the devices so that all the missing
3049 	 * devices have the higher raid_disk numbers.
3050 	 */
3051 	mempool_t *newpool, *oldpool;
3052 	struct pool_info *newpoolinfo;
3053 	struct raid1_info *newmirrors;
3054 	struct r1conf *conf = mddev->private;
3055 	int cnt, raid_disks;
3056 	unsigned long flags;
3057 	int d, d2, err;
3058 
3059 	/* Cannot change chunk_size, layout, or level */
3060 	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3061 	    mddev->layout != mddev->new_layout ||
3062 	    mddev->level != mddev->new_level) {
3063 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3064 		mddev->new_layout = mddev->layout;
3065 		mddev->new_level = mddev->level;
3066 		return -EINVAL;
3067 	}
3068 
3069 	err = md_allow_write(mddev);
3070 	if (err)
3071 		return err;
3072 
3073 	raid_disks = mddev->raid_disks + mddev->delta_disks;
3074 
3075 	if (raid_disks < conf->raid_disks) {
3076 		cnt=0;
3077 		for (d= 0; d < conf->raid_disks; d++)
3078 			if (conf->mirrors[d].rdev)
3079 				cnt++;
3080 		if (cnt > raid_disks)
3081 			return -EBUSY;
3082 	}
3083 
3084 	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3085 	if (!newpoolinfo)
3086 		return -ENOMEM;
3087 	newpoolinfo->mddev = mddev;
3088 	newpoolinfo->raid_disks = raid_disks * 2;
3089 
3090 	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3091 				 r1bio_pool_free, newpoolinfo);
3092 	if (!newpool) {
3093 		kfree(newpoolinfo);
3094 		return -ENOMEM;
3095 	}
3096 	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3097 			     GFP_KERNEL);
3098 	if (!newmirrors) {
3099 		kfree(newpoolinfo);
3100 		mempool_destroy(newpool);
3101 		return -ENOMEM;
3102 	}
3103 
3104 	freeze_array(conf, 0);
3105 
3106 	/* ok, everything is stopped */
3107 	oldpool = conf->r1bio_pool;
3108 	conf->r1bio_pool = newpool;
3109 
3110 	for (d = d2 = 0; d < conf->raid_disks; d++) {
3111 		struct md_rdev *rdev = conf->mirrors[d].rdev;
3112 		if (rdev && rdev->raid_disk != d2) {
3113 			sysfs_unlink_rdev(mddev, rdev);
3114 			rdev->raid_disk = d2;
3115 			sysfs_unlink_rdev(mddev, rdev);
3116 			if (sysfs_link_rdev(mddev, rdev))
3117 				printk(KERN_WARNING
3118 				       "md/raid1:%s: cannot register rd%d\n",
3119 				       mdname(mddev), rdev->raid_disk);
3120 		}
3121 		if (rdev)
3122 			newmirrors[d2++].rdev = rdev;
3123 	}
3124 	kfree(conf->mirrors);
3125 	conf->mirrors = newmirrors;
3126 	kfree(conf->poolinfo);
3127 	conf->poolinfo = newpoolinfo;
3128 
3129 	spin_lock_irqsave(&conf->device_lock, flags);
3130 	mddev->degraded += (raid_disks - conf->raid_disks);
3131 	spin_unlock_irqrestore(&conf->device_lock, flags);
3132 	conf->raid_disks = mddev->raid_disks = raid_disks;
3133 	mddev->delta_disks = 0;
3134 
3135 	unfreeze_array(conf);
3136 
3137 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3138 	md_wakeup_thread(mddev->thread);
3139 
3140 	mempool_destroy(oldpool);
3141 	return 0;
3142 }
3143 
3144 static void raid1_quiesce(struct mddev *mddev, int state)
3145 {
3146 	struct r1conf *conf = mddev->private;
3147 
3148 	switch(state) {
3149 	case 2: /* wake for suspend */
3150 		wake_up(&conf->wait_barrier);
3151 		break;
3152 	case 1:
3153 		freeze_array(conf, 0);
3154 		break;
3155 	case 0:
3156 		unfreeze_array(conf);
3157 		break;
3158 	}
3159 }
3160 
3161 static void *raid1_takeover(struct mddev *mddev)
3162 {
3163 	/* raid1 can take over:
3164 	 *  raid5 with 2 devices, any layout or chunk size
3165 	 */
3166 	if (mddev->level == 5 && mddev->raid_disks == 2) {
3167 		struct r1conf *conf;
3168 		mddev->new_level = 1;
3169 		mddev->new_layout = 0;
3170 		mddev->new_chunk_sectors = 0;
3171 		conf = setup_conf(mddev);
3172 		if (!IS_ERR(conf))
3173 			/* Array must appear to be quiesced */
3174 			conf->array_frozen = 1;
3175 		return conf;
3176 	}
3177 	return ERR_PTR(-EINVAL);
3178 }
3179 
3180 static struct md_personality raid1_personality =
3181 {
3182 	.name		= "raid1",
3183 	.level		= 1,
3184 	.owner		= THIS_MODULE,
3185 	.make_request	= make_request,
3186 	.run		= run,
3187 	.stop		= stop,
3188 	.status		= status,
3189 	.error_handler	= error,
3190 	.hot_add_disk	= raid1_add_disk,
3191 	.hot_remove_disk= raid1_remove_disk,
3192 	.spare_active	= raid1_spare_active,
3193 	.sync_request	= sync_request,
3194 	.resize		= raid1_resize,
3195 	.size		= raid1_size,
3196 	.check_reshape	= raid1_reshape,
3197 	.quiesce	= raid1_quiesce,
3198 	.takeover	= raid1_takeover,
3199 };
3200 
3201 static int __init raid_init(void)
3202 {
3203 	return register_md_personality(&raid1_personality);
3204 }
3205 
3206 static void raid_exit(void)
3207 {
3208 	unregister_md_personality(&raid1_personality);
3209 }
3210 
3211 module_init(raid_init);
3212 module_exit(raid_exit);
3213 MODULE_LICENSE("GPL");
3214 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3215 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3216 MODULE_ALIAS("md-raid1");
3217 MODULE_ALIAS("md-level-1");
3218 
3219 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
3220